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It is well-known that description logics can be viewed

as syntactic variants of propositional modal logics, and

that they can be embedded into small fragments of �rst-

order logic, or into extensions of such fragments by ap-

propriate features like counting quanti�ers, �xed-point

operators etc.

Indeed an interpretation of atomic concepts and roles

for a description logic is just a Kripke structure or, equiv-

alently, a �rst-order structure with only unary and bi-

nary predicates. The translation of, say, the description

logic ALC into �rst-order logic maps any concept C to

a �rst-order formula C

�

(x) with one free-variable such

that for all ALC-interpretations K and all objects w in

the domain of K

w 2 C

K

if and only if K j= C

�

(w):

This translation takes any atomic concept A to the

atomic formula Ax, commutes with the Boolean connec-

tives, i.e.

(:C)

�

(x) := :C

�

(x)

(C uD)

�

(x) := C

�

(x) ^D

�

(x)

and translates the application of roles as follows:

(9R:C)

�

(x) := 9y(Rxy ^ C

�

(y))

(8R:C)

�

(x) := 8y(Rxy ! C

�

(y)):

(Here C

�

(y) is obtained from C

�

(x) by replacing all oc-

curences of x by y and vice versa).

Clearly, there is an equivalent translation of proposi-

tional modal logic into �rst-order logic. The image of

ALC under this translation is called the modal fragment

of �rst-order logic. It has turned out that the modal

fragment has very interesting and useful algorithmic and

model-theoretic properties. On the other side, the modal

fragment is a rather small part of �rst-order logic. It

is properly contained in FO

2

, relational �rst-order logic

with only two variables and the strictness of this inclu-

sion can be pinned to a number of di�erent restrictions

on the modal fragment: It does not have equality, it does

not have global quanti�cation over objects and it does

not have mechanisms for de�ning new binary predicates

(i.e. new roles), not even at the quanti�er-free level.

On the other side, although FO

2

is decidable for sat-

is�ability and has the �nite model property (see [10, 7]),

it lacks the nice model-theoretic properties and the ro-

bust decidability of modal and description logics (see e.g.

[1, 9, 8, 11]). The embedding in FO

2

therefore does not

explain the good properties of description logics. Also

with respect to complexity, description logics are simpler

than FO

2

: while the satis�ablility problems for the basic

description logics are in Pspace and in some cases Ex-

ptime, the satis�ability problem for FO

2

is Nexptime-

complete [7].

A closer look at the translation of concepts into �rst-

order formulae reveals that the quanti�ers are used only

in a very restricted way, and it has been suspected that

this may be the real reason for the good properties of the

modal fragments. To investigate this question Andr�eka,

van Benthem and N�emeti [1] have introduced the guarded

fragment of �rst-order logic. They dropped the restric-

tion to use only two variables and only monadic and

binary predicates, but imposed that all quanti�ers must

be relatived (or `guarded') by atomic formulae.

De�nition. The guarded fragment GF of �rst-order

logic is de�ned by induction as follows:

(1) Every relational atomic formula belongs to GF.

(2) GF is closed under propositional connectives :,

^, _, ! and $.

(3) If x;y are tuples of variables, �(x;y) is atomic

and  (x;y) is a formula in GF, such that

free( ) � free(�) = fx;yg, then the formulae

9y(�(x;y) ^  (x;y))

8y(�(x;y) !  (x;y))

belong to GF.



The atom�(x;y) that relativizes a quanti�er as in rule

(3) is the guard of the quanti�er. Note that the guard

must contain all the free variables of the formula that

follows. Formulae in GF are called guarded formulae.

While the guarded fragment clearly contains the

modal fragment of �rst-order logic, it seems not expres-

sive enough for temporal logic. Indeed the straightfor-

ward translation of ( until ') into �rst-order logic is

9y(x � y ^ '(y) ^ 8z((x � z ^ z < y) !  (z))

which is not guarded in the sense of the previous def-

inition. However, the quanti�er 8z in this formula is

guarded in a weaker sense, which lead van Benthem [4]

to the following generalization of GF.

De�nition. The loosely guarded fragment LGF is is

de�ned similarly to GF, but the quanti�er-rule is relaxed

as follows:

(3)' If  (x;y) is in LGF, and �

1

^� � ��

m

is a conjunction

of atoms, then

9y((�

1

^ � � � ^ �

m

) ^  (x;y))

8y((�

1

^ � � � ^ �

m

)) !  (x;y))

belong to LGF, provided that every variable y

i

co-

exists with every other variable of fx;yg in at least

one of the atoms �

j

.

The guarded fragments turn out to have interesting

properties [1, 6]:

(1) The satis�ability problem for GF and LGF is de-

cidable.

(2) GF has the �nite model property, i.e. every satis-

�able formula in the guarded fragment also has a

�nite model.

(3) Many important model theoretic properties (like

the interpolation property, the Beth de�nability

property, the  Los-Tarski property etc.) which

hold for �rst-order logic and the modal fragment,

but not, say, for the bounded-variable fragments

FO

k

, do hold also for the guarded fragments.

(4) Both GF and LGF satisfy a generalized variant of

the tree model property. Indeed, every satis�able

guarded formula has a model of small tree-width.

(5) The notion of indistinguishability by guarded for-

mulae can be characterized by natural generaliza-

tions of bisimulation.

The guarded fragment thus displays properties which

are rather similar to the modal fragment. An advantage

of the guarded fragment with respect to other decidable

fragments of �rst-order logic (see [5]) is that the usual

restrictions of the latter on the number and arity of the

relation symbols or on the quanti�er pattern are avoided.

It thus is interesting to determine the power of the

guarded fragment, or to put it di�erently: how much do

the guards restrict expressiveness? We give a complexity

theoretic answer by showing that the satis�ability prob-

lems for both GF and LGF are complete for deterministic

double exponential time.

The upper complexity bound follows from a new de-

cidability proof, which is based on extension properties

of atomic types and also establishes the tree-model prop-

erty for LGF and GF. The lower bound proof is based on

the construction of a family of polynomial-size guarded

formulae that force their models to contain a binary trees

of double exponential depth.

Of course, double exponential complexity is very high

and beyond practical possibilities. However, the reason

for this high complexity is just the fact that there is

no bound on the arity of the predicates that may occur

in guarded formulae. Even if we have just one predi-

cate of arity n over a domain of just two objects then

there are 2

2

n

possible interpretations. In practical ap-

plications, the arity of the predicates is usually bounded

(recall that in description logics, only unary and binary

predicates are used). We can prove that the bounded-

variable or bounded-arity subfragments of GF and LGF

have deterministic exponential time complexity, a com-

plexity level we have to live with even for some rather

modest extensions of ALC. And indeed, we can often

live with this level of complexity since it is in terms of

the length of the formulae (the concept de�nitions), and

in most practical application the formulae tend be rather

small compared to the often huge size of the structures

or knowledge bases.

Given that guarded formulae behave very much like

modal formulae, established techniques in the �elds of

modal logic and description logics are applicable in

this framework too. In particular this is the case for

automata-theoretic techniques. I therefore believe that

due to their nice syntactic, model-theoretic and algorith-

mic properties, the guarded fragments can be a basis for

constructing new families of description logics and prac-

tical systems that are not limited to unary and binary

predicates, that admit more 
exibility in the de�nition

of new roles while retaining most of the good features of

known description logics.
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