
Making an Abox Persistent

Quentin Elhaik and Marie-Christine Rousset

L.R.I U.R.A C.N.R.S

University of Paris-Sud

Building 490, 91405 Orsay Cedex, France

fquentin,mcrg@lri.lri.fr

1 Introduction

Much of the research in Description Logics (DL) has con-

centrated so far on the study of computational complex-

ity of reasoning problems and on the design of reasoning

algorithms (see e.g.

[

3

]

for a recent survey). However,

the implementation of DL systems and their use in ap-

plications involve many other aspects. In particular, in

several domains of applications (e.g con�guration

[

4

]

),

it would be very useful to manage large and persistent

Aboxes (relative to a �xed Tbox). On the other hand,

several database applications would bene�t from being

o�ered the expressive and reasoning power of DLs.

In this paper, we address the problem of encoding and

storing an Abox (relative to a �xed Tbox) as a database.

Our approach consists of relying on database manage-

ment systems for storing, e�ciently manipulating and

querying large amount of data, while providing the rea-

soning services usually o�ered by a DL system.

We consider Aboxes that are too large to be loaded

in main memory. The solution that we propose is to

store them in a database so that, at each update, it is

logically saturated: all the facts which can be logically

entailed from the database, the new fact and the Tbox

are explicitly added and stored. By doing so, at query

time, answering queries is straightforward

1

, e�cient and

not requiring any further inference or reasoning.

The core issue is to determine, at each update, the

subpart of the database encoding the Abox which is rel-

evant to the update. Once the relevant facts have been

identi�ed, they can be loaded in the main memory and

standard DL inference procedures can be applied to them

in order to determine all the new facts that can be log-

ically entailed (and thus have to be added). Speaking

informally, a subset A of the Abox is relevant to an up-

date f if it is su�cient to consider A together with f to

infer all the facts that can be logically entailed from f ,

the whole Abox and the Tbox.

The problem is to characterize the set of relevant facts

1

while being careful with the mismatch open/close world

assumption

for f , given the schema of the Abox, and not the Abox

itself. The reason is that the Abox that has to be up-

dated and saturated is not directly available. It is stored

as a database and we can just query it to search and load

facts from it. The only way to access the set of facts that

are relevant to an update is by queries over the database

encoding the Abox. Those queries depends on the en-

coding choices (i.e the relations that have been chosen

to encode the di�erent facts of the Abox) and also on

the DL language that is considered because they must

account for the di�erent constructors that are available

for building facts and concepts.

In this paper, we consider Aboxes composed of in-

stances of concepts and roles in the setting of the DL

language (referred to as core-CLASSIC) having the con-

structors u;8; (� nR); (� nR) and : (on basic con-

cepts only).

The paper is organized as follows. Section 2 provides

the basic de�nitions of the problem that we consider.

In section 3, we propose an encoding for core-Classic

Aboxes. In section 4, we provide an algorithm which,

given a database encoding an Abox A, and a fact f to

be added, computes the set of facts in the database that

are relevant to the fact f .

2 Preliminaries

Let V a basic vocabulary composed of basic concepts

and roles, and let L a description logic language de�ned

by a set of constructors. We �rst de�ne the notion of

Abox relative to V and L. We then de�ne the notion of

underlying Tbox. Finally we de�ne the relevance scope

of an update.

De�nition 2.1: Let V be a vocabulary composed of ba-

sics concepts and roles, L be a description logic language

de�ned by a set of constructors, and O a set of individ-

uals. An Abox relative to V, L and O is a set of facts of

the form C(a), or R(a; b), where C and R are concept

and role expressions that can be built from V using the

constructors of L, and a and b are individuals of O.

Example 2.1:

Let A

1

:

f(� 1R

0

)(a

0

); (� 2R

1

)(a

1

); (8R

2

A

2

)(a

1

);

(8R

0

(8R

2

:A

2

))(a

3

); R

0

(a

0

; a

1

); R

1

(a

1

; a

2

)g

A

1

is an Abox relative to the vocabulary V

1

=

fA

1

; A

2

; A

3

; R

0

; R

1

; R

2

g, the language core-CLASSIC,

and the set O of individuals fa

0

; a

1

; a

2

; a

3

g.

De�nition 2.2: Let A be an Abox relative to V, L and

O. The underlying terminology is composed of a set of

concept de�nitions giving a concept name to each con-

cept expression that is a conjunct in concept expressions

appearing in A.

Example 2.2: The terminology corresponding to the

Abox A

1

is

C

1

:= (� 1R

0

)

C

2

:= (� 2R

1

)

C

3

:= (8R

2

A

2

)

C

4

:= (8R

0

(8R

2

:A

2

))

Given an Abox A and a fact f , let Th(A [f) be the

set of facts that can be logically entailed from A[f , and

let �(A[f) the set of facts that can be logically entailed

from A [f while not belonging to A [f .

Th(A[f) = A [f [�(A [f)

�(A [f) includes the facts that have to be explicitly

added to the database as a result of the adding of f if

we want the database to be saturated after the update

by f .

Existing algorithms (e.g constraint-based algorithms,

CLASSIC propagation algorithm) can be used to com-

pute �(A[f). The problem is that for the use of those

algorithms, it is implicitly assumed that the whole Abox

A is provided as an input.

We consider a setting in which such an assumption

does not hold. The problem is therefore to load a sub-

set of relevant facts that are su�cient for saturating the

Abox when adding the fact f . Existing DL algorithms

will be applied to that subset.

De�nition 2.3: Given an Abox A and a fact f to be

added, the set of relevant facts Rel(f;A) for f in A is the

minimal subset S

A

of A such that �(A[f) = �(S

A

[f).

Example 2.3:

Let f : (8R

1

A

1

)(a

1

).

Rel(f;A

1

) = f(� 1R

0

)(a

0

); R

0

(a

0

; a

1

); R

1

(a

1

; a

2

)g

Those facts, together with f , are su�cient to compute

�(A

1

[f).

�(A

1

[f) = fA

1

(a

2

); (8R

0

(8R

1

A

1

))(a

0

)g

3 Encoding core-Classic Aboxes

Recall that all the conjuncts appearing in concept ex-

pressions in the Abox are named and de�ned in the

Tbox. There is no de�nition of conjunction of concepts

in the Tbox.

� The facts of the Abox which are of the form (C1 u

: : :uCn)(a) are represented in the database by the

encoding of the n facts a : C1 : : : a : Cn. In the same

way, (8R(C1 u : : : u Cn))(a) is represented by the

encoding of the n facts (8RC1)(a) : : : (8RCn)(a),

� all the facts of the Abox that are stored in the

database are named by constants f

1

; : : : ; f

n

,

� the two kinds of facts (instances of a concept or of a

role predicate) are encoded by two EDB predicates

ConceptFact and RoleFact

{ ConceptFact(f; c; a) denotes that the fact

named f and corresponding to the belonging

of the constant a to the concept named c is

present in the Abox.

{ ConceptRole(f; r; a; b) denotes that the fact

named f and corresponding to the relationship

between a and b through the role r is stated in

the Abox

� each form of concept (depending on its main con-

structor) is encoded by as many EDB predicates as

constructors in the language.

{ ForAll(cn; r; c) denotes that the subconcept

named cn and corresponding to the concept 8rc

is refered in the Abox, and present in the Tbox,

{ Atleast(cr; r; n) denotes that the subconcept

named cn and corresponding to the concept

(� n r) is refered in the Abox, and present in

the Tbox,

{ Atmost(cr; r; n) denotes that the subconcept

named cn and corresponding to the concept

(� n r) is refered in the Abox, and present in

the Tbox,

{ Basic(A) denotes that the basic concept A is

refered in the Abox, and present in the Tbox,

{ NegPrimitive(A) denotes that the negation of

basic concept :A is refered in the Abox, and

present in the Tbox.

4 Updating a core-CLASSIC Abox

We consider updates that are only adding facts to the

Abox. We can add either a fact of the form C(a) or a fact

of the form R(a; b), where C is a core-CLASSIC concept

expressions C, and R is a basic role. We assume that the

underlying Tbox can be loaded in main memory so that

all the subsumption relations and disjunction relations

between concepts are known (or can be computed on

demand).

We assume that the databases which encode our

Aboxes are saturated and we want to guarantee that

they are saturated after each update.

De�nition 4.1: A database DB encoding an Abox A

is saturated if for every fact f

� if f can be put in the form (C

1

u : : : u C

n

)(a), if

A j= f then 8i; C

i

(a) 2 DB

� if f is of the form (� nR)(a), if A j= f then (�

n

m

R)(a) 2 DB, where n

m

is the minimal integer n

such that A j= (� nR)(a)

� if f is of the form (� nR)(a), if A j= f then (�

n

M

R)(a) 2 DB, where n

M

is the maximal integer

n such that A j= (� nR)(a)

� otherwise, if A j= f then f 2 DB

In the case of the adding of C(a),

� either, the concept C already belong to the Tbox,

or is a conjunction of concepts that belong to the

Tbox, and therefore the Tbox does not have to be

updated,

� or, it is not the case, and then the Tbox has to be

updated (by adding and naming the conjuncts of C)

The updating of the database encoding the Abox, and

possibly of the underlying Tbox, proceeds in two steps.

The �rst step takes care of all that concerns the Tbox

(Tbox update and subsumption reasoning). It consists

of possibly updating the Tbox and of determining the set

ToAdd of the facts that will have to be added explicitly

to the database encoding the Abox in the second step.

If the fact to be added is of the form R(a; b), the �rst

step simply set ToAdd to be fR(a; b)g.

If the fact to be added is of the form C(a), let C

1

: : : C

n

be the conjuncts composing the concept C (n = 1 if C

is not a conjunction of concepts)

2

.

1. Let ToAdd be the set of facts fC

1

(a); : : : ; C

n

(a)g

2. For every conjunct CC of C (possibly C itself if

it is not a conjunction of concepts) which does not

belong to Tbox, add a new de�nition in the Tbox

for CC.

3. For every conjunct CC of C, for every concept D

in the Tbox such that CC � D

3

, add D(a) to the

set ToAdd: D(a) has to be explicitly added to the

database encoding the Abox, if we want it to be

saturated.

2

concepts 8R:(C

1

u: : :uC

n

) are considered as conjunctions

of concepts

3

This subsumption can be checked using any subsump-

tion algorithm since the Tbox is supposed to be in the main

memory

4. If C is equivalent to (8R:?), add (� 0R)(a) to the

set ToAdd.

The second step consists of adding to the database

encoding the Abox each fact of the set ToAdd that has

been determined at the �rst step. Those facts, together

with facts that are already stored in the database, can in

turn entail new facts (which, therefore will also have to

be added to the database). Consequently, it is necessary

to determine the set of facts in the database that are

relevant to each element of the set ToAdd. We describe

in section 4.2 an algorithm that determines the set of

facts in the database which are relevant to a fact F .

This algorithm relies on a set of inference rules which

characterizes the logical entailment of facts for a core-

Classic Aboxes.

4.1 Characterization of entailment for

core-CLASSIC facts

Let A a core-CLASSIC Abox.

We de�ne an inference relation ` on facts by the fol-

lowing set of rules.

R

0

: If f 2 A Then A ` f

R

1

: If A ` C(a) and C � D Then A ` D(a)

R

2

: If A ` (8R:C)(a);A ` R(a; b) Then A ` C(b)

R

3

: If A ` R(a; b

1

); : : : ;A ` R(a; b

n

); (8i 6= j; b

i

6= b

j

)

Then A ` (� nR)(a)

R

4

: If A ` R(a; b

1

); : : : ;A ` R(a; b

n

);

A ` C(b

1

); : : : ;A ` C(b

n

); (8i 6= j; b

i

6= b

j

),

A ` (� nR)(a) Then A ` (8R:C)(a)

R

5

: If A ` (8R:?)(a) Then A ` (� 0R)(a)

R

6

: If A ` C(a);A ` D(a), and C \D � ?

Then A ` ?

Theorem 4.1: The set of inference rules is sound and

complete: for every Abox A in core-Classic, for every

fact f ,

A j= f () A ` f

4.2 Algorithm for computing the set of

relevant facts to an update

The updates that we consider are the elements of the

set ToAdd. There are facts of the form R(a; b), or C(a)

where C is a concept which cannot be put in the form

of a conjunction of concepts (we are in the second step

of the updating process). In addition, the facts that can

be entailed from C(a) through subsumption have already

been treated. Therefore, the rule R

1

and R

5

do not need

being considered.

Given a fact f to be added to a saturated database

encoding an Abox, the other inference rules are used to

determine the neighborhood of f, which consists of those

facts that are present in the database and which may

cause some inference rules to get �red in the presence of

f . Then, we determine the set V irtualFacts of facts that

can be infered from f , its neighborhood and the inference

rules. It is done by an iterative forward-chaining process,

each step determining the facts that can be infered as an

immediate consequence of some inference rules, until no

new fact can be obtained.

We de�ne formally the notion of neighborhood of a

fact, and we state the property that makes it the core

of our algorithm. We then describe our algorithm that

determines the set of relevant facts for a given fact f .

De�nition 4.2:

Let DB

A

be a saturated database encoding a core-

CLASSIC Abox A, and let f be a fact to be added.

� If f is of the form C(a):

Neighborhood(C(a);DB

A

) =

fR(a; o) j R(a; o) 2 DB

A

g

[fR(o; a) j R(o; a) 2 DB

A

g

[fD(a) j D(a) 2 DB

A

g

[

S

fojR(a;o)2DB

A

g

fD(o) j D(o) 2 DB

A

g

[

S

fojR(o;a)2DB

A

g

fD(o) j D(o) 2 DB

A

g

� If f is of the form R(a; b):

Neighborhood(R(a; b);DB

A

) =

S

fCjC(a)2DB

A

g

Neighborhood(C(a);DB

A

)

[

S

fDjD(b)2DB

A

g

Neighborhood(D(b);DB

A

)

It is important to note that the neighborhood of a fact

in a database encoding a Abox can be easily obtained by

a set of simple SQL queries asked to the database.

De�nition 4.3:

Given a Abox A and a fact f , g is an immediate conse-

quence of A and f (denoted f;A `

1

g) i� g 62 A and g

is obtained as a consequence of the application of one of

the inference rule to A and f .

The following proposition states that the immediate

consequences of an Abox A and a fact f are contained

in the neighborhood of f in the database encoding A.

Proposition 4.1:

Let A be a core-CLASSIC Abox, DB

A

the saturated

database encoding A, and f a fact.

If f;A `

1

g then f;Neighborhood(f;DB

A

) `

1

g.

The algorithm for determining the set of relevant

facts to a given fact f in a databaseDB

A

is the following:

RelevantFacts(f, DB

A

):

V irtualFacts := ffg ; NH := ;

repeat

NH := NH

S

f2V irtualFacts

Neighborhood(f,DB

A

)

V irtualFacts := fg j NH [V irtualFacts `

1

gg

until (V irtualFacts = ;) or (? 2 V irtualFacts)

return NH

Theorem 4.2: Let f a fact of the form C(a) or R(a; b)

to be added to a core-Classic Abox A. Let DB

A

the

saturated database resulting from the encoding of A. The

set of facts returned by RelevantFacts(f;DB

A

) contains

the facts in DB which are relevant to f :

Rel(f;A) � RelevantFacts(f;DB

A

)

5 Conclusion and Perspectives

In this paper, we have presented an approach for combin-

ing the storage and querying bene�ts of database man-

agement systems with the reasoning services of DL sys-

tems. It is based on encoding an Abox as a relational

database that is saturated at each update so that, at

query time, answering queries is e�cient because not re-

quiring any inference. The saturation step relies on an

algorithm that determines the set of relevant facts to a

given fact in a saturated database encoding an Abox.

This work has been implemented in the Delphi

[

1

]

en-

vironment. Delphi provides a relational database embed-

ded in a object-oriented Pascal-like programming envi-

ronment. We have started a testing protocol for mea-

suring the number of relevant facts w.r.t the size of the

Aboxes. This protocol is based on random uniform sam-

ples of core-CLASSIC Aboxes relative to a �xed Tbox,

which have been generated by a MCMC simulation al-

gorithm

[

2

]

. The results that we have obtained so far are

preliminary. They concern random Aboxes relative to a

a given Tbox having 100 concepts (including 80 % of ba-

sic concepts or negation of basic concepts), and to a set

of 100 individuals. Those Aboxes, when saturated, con-

tain around 8400 facts. In the current experiment, the

percentage of relevant facts to a given fact is very weak

(less than 10%). This preliminary experiment needs to

be completed.

The updates that we have considered so far are addi-

tion operations. The next step will be the handling of

retraction operations. When retracting a fact f from a

database encoding a given Abox, we have to also retract

those facts whose logical entailment depends on f and

which cannot be logically entailed without the presence

of f . For making it possible, we have to determine and

keep trace of the dependency links between facts when

they are added. For that purpose, the characterization

of the logical entailment by inference rules is a useful

tool.

This work is done in the setting of a rather restricted

DL language. We claim that this language is a reason-

able compromise between the database world and the

DL world. However, one interesting perspective is to in-

vestigate how to extend this work to a more expressive

DL language.

References

[

1

]

Borland Delphi 3.0

[

2

]

Quentin Elhaik andM-C Rousset and Bernard Ycart.

Generating Random Benchmarks for Description

Logics. In Proceedings of DL'98, 1998.

[

3

]

D.Nardi F.M Donini, M. Lenzerini and A.Schaerf.

Reasoning in description logics. In Principles of Ar-

ti�cial Intelligence. G.Brewska (ed), Springer Verlag,

1995.

[

4

]

J.R Wright, E.S. Weixelbaum, K. Brown, G.T Veson-

der, S.R Palmer, J.I Berman, and H.H Moore. A

knowledge-based con�gurator that supports sales,

engineering and manufacturing at AT&T network

systems. In Proceedings of IAAI-93, 1993.

