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Abstract. This paper compares two approaches for deriv-

ing subsumption algorithms for the description logic ALN :

structural subsumption and an automata-theoretic charac-

terization of subsumption. It turns out that structural sub-

sumption algorithms can be seen as special implementations

of the automata-theoretic characterization.

1 Introduction

Structural subsumption algorithms are e�cient methods

for deciding subsumption in description logics without

full negation, disjunction, and existential restrictions.

The structural subsumption algorithm employed by the

system Classic [4, 5] is based on a speci�c data struc-

ture for representing concept descriptions, called descrip-

tion graphs. The subsumption problem is reduced to a

structural comparison of description graphs.

Another approach for deciding subsumption in sub-

languages of Classic can be obtained from the

automata-theoretic characterizations of subsumption

w.r.t. greatest �xed-point (gfp) semantics in cyclic ter-

minologies [1, 7], which reduce the subsumption problem

to an inclusion problem for certain regular languages. In

the case of acyclic terminologies (and thus in particular

for concept descriptions), these languages turn out to be

�nite.

At �rst sight, there is no connection between these two

approaches since they are based on rather di�erent nor-

mal forms for concept descriptions. Intuitively speaking,

structural subsumption is based on a normal form that

applies the equivalence 8R:(A u B) � 8R:A u 8R:B as

a rewrite rule from right to left, i.e., the descriptions

are grouped w.r.t. role names, whereas the �nite lan-

guages considered in the automata-theoretic approach

correspond to a normal form obtained by applying the

above equivalence from left to right.

Another di�erence between the two approaches is that

they describe decision procedures for subsumption on

two di�erent levels of abstraction. The structural sub-

sumption algorithm for Classic is presented in [4, 5]

on the level of the data structure (namely, description

graphs) used in the implementation. This provides a de-

scription of the algorithm that is very close to its actual

implementation. Consequently, both the formal descrip-

tion of the algorithm and the proof of its correctness

are quite complex [4, 5, 8]. In contrast, the automata-

theoretic approach reduces the subsumption problem to

a formal language problem (namely, inclusion of �nite or

regular languages), which means that the description of

the subsumption algorithm (and thus also the proof of

its correctness) can be split into two independent parts:

(i) the characterization of subsumption on the abstract

formal language level, and (ii) an algorithm that decides

the formal language problem.

The goal of this paper is to show that structural sub-

sumption algorithms based on description graphs can be

seen as \parallel" implementations of the language in-

clusion tests required by the automata-theoretic char-

acterization of subsumption. We illustrate the connec-

tion between the two approaches starting with the small

language FL

0

, which allows for value restrictions and

conjunction, and then extend the comparison to ALN ,

which additionally provides us with atomic negation and

number restrictions.

2 The automata-theoretic approach

In order to obtain the automata-theoretic characteriza-

tion of subsumption in FL

0

, one translates (possibly

cyclic) FL

0

-terminologies T into corresponding �nite au-

tomata A

T

(with "-transitions). The concept names in

T are the states of A

T

, and the transitions of A

T

are in-

duced by the value restrictions in T (see [1] for details).

For a de�ned concept A and a primitive concept P in T ,

the language L

A

T

(A;P ) is the set of all words labeling

paths in A

T

from A to P . The languages L

A

T

(A;P )

represent all the value restrictions that must be satis�ed

by instances of the concept A.

To apply this approach to the subsumption problem

for concept descriptions, we must �rst translate a given

concept description C into a corresponding (acyclic)

FL

0

-terminology T

C

. In principle, this is achieved by

introducing new concept names and corresponding con-



cept de�nitions for all sub-descriptions occurring inside

value restrictions (see [3] for details).

Example 1.

Consider the concept descriptions C := 8R:P u 8R:Q u

8R:8S:P u 8S:Q and D := 8R:8S:8R:P u 8S:Q. These

descriptions can be represented by the de�ned concepts

A and B in the following acyclic FL

0

-terminologies:

T

1

: A = 8R:A

1

u 8R:A

2

u 8R:A

3

u 8S:A

4

;

A

1

= P; A

2

= Q; A

4

= Q

A

3

= 8S:A

31

; A

31

= P:

T

2

: B = 8R:B

1

u 8S:B

2

; B

2

= Q

B

1

= 8S:B

11

; B

11

= 8R:B

111

; B

111

= P:

The terminologies T

1

and T

2

yield the automata A

1

and

A

2

of Fig. 1. In this example, we have L

A

1

(A;P ) =

fR;RSg, L

A

1

(A;Q) = fR;Sg, L

A

2

(B;P ) = fRSRg,

and L

A

2

(B;Q) = fSg.

Informally, the characterization of subsumption in

FL

0

[1] says that the de�ned concept A is subsumed

by the de�ned concept B i� the set of all value restric-

tions that must be satis�ed by A is a superset of the set

of value restrictions that must be satis�ed by B. Using

the automata introduced above, this can be stated more

formally (as a special case of the results in [1]) as follows:

Theorem 2.

Let T

1

; T

2

be acyclic FL

0

-terminologies not sharing any

de�ned concept names, let A

1

;A

2

be the corresponding

automata, and let A and B be de�ned in T

1

and T

2

, re-

spectively. Then A v

T

1

[T

2

B i� L

A

1

(B;P ) � L

A

2

(A;P )

for all primitive concepts P . 2

In Example 1, we have L

A

2

(B;P ) = fRSRg 6�

L

A

1

(A;P ), and therefore A 6v B. In order to decide

subsumption based on this approach, one must decide

the inclusion problem for the corresponding languages.

3 Deciding inclusion of regular

languages

In automata theory, the inclusion problem for regular

languages is usually reduced to the emptiness problem:

L

2

� L

1

i� L

2

\L

1

= ;. In order to construct an automa-

ton for L

2

\L

1

from given (nondeterministic) automata

for L

1

; L

2

, one �rst computes a deterministic automaton

for L

1

by applying the powerset construction. For the

automaton A

1

of our example, the powerset construc-

tion yields the automaton P(A

1

) (see Fig. 1). This au-

tomaton accepts the complement L

A

1

(A;P ) of the lan-

guage L

A

1

(A;P ) if we make fAg the initial state and

all states not containing P the �nal states. Thus, we

have L

A

2

(B;P ) \ L

A

1

(A;P ) 6= ; i� there exists a word

W such that (1) there is a path with label W in P(A

1

)

leading from fAg to a state not containing P , and (2)

there is a path with label W in A

2

leading from B to P .

In the example, RSR is such a word.

In the general case, the existence of such a word can be

decided in time polynomial in the size of P(A

1

) and A

2

.

It should be noted that, even for acyclic terminologies,

the powerset automaton P(A

1

) may be exponential in

the size of A

1

(see Nebel's coNP-hardness result for sub-

sumption w.r.t. acyclicFL

0

-terminologies [9]). However,

for terminologies constructed from concept descriptions

(as in our example) it can be shown that this exponential

blow-up cannot occur [3].

Instead of testing the required inclusion relationships

separately for each primitive concept, one can realize this

test in parallel, i.e., we look for a primitive concept P

and a wordW such that (1) and (2) from above hold. We

shall show below that this is exactly what the structural

subsumption algorithms based on description graphs do.

4 Structural subsumption algorithms

based on description graphs

Description graphs are rooted directed acyclic graphs

whose nodes are labeled by sets of primitive concepts

and whose edges are labeled by roles. Concept descrip-

tions can be turned into description graphs by a straight-

forward translation of the syntactic structure of the de-

scriptions.

Example 3 (Example 1 continued).

Fig. 2 shows the description graphs G

C

and G

D

corre-

sponding to the descriptions C;D of Example 1. The

label ; at the root of G

C

expresses that no primitive

concept occurs in the top-level conjunction of C. The

edge labeled S from the root to the node labeled Q says

that there is a value restriction 8S:C

0

in the top-level

conjunction of C such that Q is the only primitive con-

cept occurring in the top-level conjunction of C

0

, etc.

Before we can decide whether C is subsumed by D

based on a structural comparison of the description

graphs, the graph for the subsumee C must be normal-

ized by merging successor nodes reached by edges labeled

by the same role name. (This corresponds to applying

the rewrite rule 8R:A u 8R:B ! 8R:(A u B) to the de-

scriptions.) In our example, the canonical description

graph

b

G

C

obtained this way is also shown in Fig. 2.

The structural comparison of description graphs is for-

malized in Theorem 4, based on the notion of more spe-

ci�c paths, as introduced in [5]. The rooted path p (i.e.,

a path starting at the root) in G

C

is more speci�c than

the rooted path q in G

D

i� (1) the word over the alphabet

of role names labeling q is a pre�x of the word labeling

p (i.e., p may be longer than q), and (2) the node labels

in p are supersets of the corresponding node labels in q.

Theorem 4 (Structural subsumption [5]).

Let C;D be FL

0

-concept descriptions,

b

G

C

the canonical

description graph of C and G

D

the description graph of



;

R; S

S

fAg

R

S

fA

4

;Qg

fA

1

; A

2

; A

3

; P;Qg

S

R

R; S

R; SfA

31

; Pg

R

R

R

S

S

Q

A

A

1

A

2

A

3

A

4

A

31

P

"

"

" "

R

S

B

B

1

Q

R

"

"

B

2

B

11

B

111

P

P(A

1

) :

A

2

:
A

1

:

Figure 1: The automata corresponding to C and D.
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Figure 2: The description graphs corresponding to C and D.

D. Then C v D i� for each rooted path q in G

D

there

exists a more speci�c rooted path p in

b

G

C

. 2

As an example, consider the description graphs in

Fig. 2. The path with label RS in

b

G

C

is more speci�c

than the path with label RS in G

D

. However, for the

path with label RSR in G

D

there does not exist a more

speci�c path in

b

G

C

. Consequently, the structural sub-

sumption test recognizes that C is not subsumed by D.

5 Comparing the approaches

If we compare Fig. 1 with Fig. 2, then we see that the

description graphs G

C

and G

D

essentially agree with the

automata A

1

and A

2

. The only di�erence is that in

the automata there is only one state for every primi-

tive concept, and the primitive concepts (here P;Q) are

reached via "-transition from intermediate de�ned con-

cepts (e.g., A

1

). To make this observation more precise,

we can show that there exists an isomorphism between

the automaton corresponding to a concept description C

and the description graph G

C

[3]. This \isomorphism"

is a bijective mapping ' from the nodes of G

C

onto the

set of states corresponding to de�ned concepts in the au-

tomaton. This mapping is such that the label of node v

consists of exactly those primitive concepts reached from

'(v) via "-transitions.

Another obvious similarity between the automata-

theoretic and the structural approach is that in both

cases the automaton/graph for the subsumee C must be

modi�ed. A closer look at Fig. 1 and 2 reveals that the

powerset automaton P(A

1

) and the canonical descrip-

tion graph

b

G

C

are also essentially identical. To be more

precise,

b

G

C

can be obtained from P(A

1

) by (1) removing

the names of de�ned concepts from the node labels, and

(2) by removing the sink state ; and the edges leading

to this sink.

Because of this similarity between the automata and

the description graphs, structural subsumption on de-

scription graphs can be seen as a special implementation

of the language inclusion tests required by the automata-

theoretic characterization of subsumption of concept de-

scriptions. To make this more precise, let C;D be con-

cept descriptions and assume that C 6v D. By The-

orem 4, the structural subsumption algorithm detects

non-subsumption by �nding a rooted path q in G

D

with

label W such that there does not exist a more speci�c

rooted path p in

b

G

C

. There are two possible reasons why

this more speci�c path does not exist in

b

G

C

:

(1) There is no path with label W in

b

G

C

. Without

loss of generality we may assume that the path q in G

D

ends in a node with non-empty label set (otherwise, the

path could be extended appropriately). Assume that

the primitive concept P is contained in this label set.

Then we have W 2 L

A

2

(B;P ) \ L

A

1

(A;P ). In fact,

W 2 L

A

2

(B;P ) because the path q in G

D

to a node

containing P yields a path in A

2

from B to P . The

fact that there is no (rooted) path with label W in

b

G

C

implies that the path with label W in P(A

1

) leads from

the initial state to the sink state ;. Since ; does not



contain P , it is a �nal state for the automaton accepting

L

A

1

(A;P ).

(2) For q and the (unique) path p with label W in

b

G

C

, the inclusion condition between the labels is vio-

lated by some primitive concept P , i.e., P belongs to

the label of a node in q, but not to the label of the cor-

responding node in p. An argument similar to the one

employed in the �rst case can be used to show the follow-

ing: if U is the pre�x ofW leading to the node where the

inclusion between labels is violated because of P , then

U 2 L

A

2

(B;P ) \ L

A

1

(A;P ).

To sum up, we have shown that the existence of a

rooted path in G

D

without a more speci�c path in

b

G

C

implies that there is a primitive concept P such that

L

A

2

(B;P ) 6� L

A

1

(A;P ). The converse of this implica-

tion can be shown analogously.

6 Extending the comparison to ALN

In both approaches, number restrictions and negated

primitive concepts are treated like new primitive con-

cepts. In the automata-theoretic approach, they give

rise to new states in the automaton of C, and to addi-

tional inclusion conditions. In the description graphs,

they may also occur in node labels. However, since both

primitive negation and number restrictions may cause

inconsistencies, this straightforward extension is not suf-

�cient to obtain a complete subsumption algorithm.

Example 5.

If we treat primitive negations and number restrictions

in the ALN -concept description C

0

:= 8S:Q u 8R:(P u

Qu8S:8S:(Qu:Q)u8S:(� 1 S)) like primitive concepts,

then we obtain the powerset automaton P(A

3

) and the

FL

0

-canonical description graph

b

G

C

0

depicted in Fig. 3.

For the concept description C of Example 1 we

have C

0

v C, even though (1) RS 2 L

A

1

(A;P ) \

L

P(A

3

)

(A

0

; P ), and (2) the path with label RS in G

C

does

not have a corresponding more speci�c path in

b

G

C

0

, i.e.,

neither the automata-theoretic approach nor the struc-

tural approach detects the subsumption relationship.

The automata-theoretic approach for ALN

For an FL

0

-terminology T , the language L

A

T

(A

0

; P )

represents exactly those value restrictions on P that

subsume A

0

, i.e., A

0

v

T

8W:P i� W 2 L

A

T

(A

0

; P ).

1

Since the inconsistent concept ? is expressible in ALN ,

the language L

A

T

(A

0

; P ) is no longer su�cient to cap-

ture all these value restrictions. In addition, one must

consider so-called A

0

-excluding words, i.e., words W

such that A

0

v

T

8W:?. A formal de�nition of the

set E(A

0

) of A

0

-excluding words can be found in [7].

Here, we just illustrate it using our example. Obviously,

RSS 2 E(A

0

) since this word leads to a state (in the

1

8R

1

� � �R

k

:P abbreviates 8R

1

: � � � 8R

k

:P .

powerset automaton) that contains both Q and :Q, i.e.,

any RSS-successor of an individual in A

0

must belong

both to Q and :Q, which is impossible. In addition,

RSSU 2 E(A

0

) for all words U , since the existence of an

RSSU -successor would imply the existence of an RSS-

successor. Finally, at-least restrictions can also force pre-

�xes of RSS to belong to E(A

0

): since RS leads to a

state containing (� 1 S), every RS-successor of an indi-

vidual in A

0

also has an RSS-successor; however, since

RSS 2 E(A

0

) means that individuals in A

0

cannot have

RSS-successors, this implies that they cannot have RS-

successors.

Since 8W:? is subsumed by 8W:P , A

0

-excluding words

yield additional value restrictions that are not explic-

itly represented by L

A

T

(A

0

; P ). Thus, in order to rep-

resent all value restrictions that are satis�ed by in-

stances of A

0

, we consider L

A

T

(A

0

; P ) [ E(A

0

) instead

of L

A

T

(A

0

; P ). In our example, the inclusion condi-

tion \L

A

1

(A;P ) � L

P(A

3

)

(A

0

; P )" for P is replaced by

\L

A

1

(A;P ) � L

P(A

3

)

(A

0

; P ) [ E(A

0

)." Consequently,

RS no longer violates the inclusion condition for P .

Structural subsumption algorithms for ALN

Structural subsumption algorithms deal with the prob-

lems caused by inconsistencies by applying additional

normalization rules when computing the canonical de-

scription graph [4, 5, 8]. These additional rules must

take care of nodes labeled by inconsistent sets, i.e., nodes

whose label contain fP;:Pg for some primitive concept

P or f(� l S); (� r S)g for numbers l > r. Such in-

consistent nodes and the edges leading to these nodes

are removed. In addition, if there was an edge labeled

R from node v to the inconsistent node, the label of v

is extended by (� 0 R). This is due to the equivalence

8R:? � (� 0 R). For the same reason, we remove sub-

graphs with root v if the label of the R-predecessor of v

contains (� 0 R).

Example 6 (Example 5 continued).

Applying these rules to the FL

0

-canonical description

graph

b

G

C

0

in Fig. 3 yields the ALN -canonical descrip-

tion graph

~

G

C

0

depicted in the same �gure: Since v

0

3

is

labeled by fQ;:Qg, the node v

0

3

and the edge v

0

2

Sv

0

3

are

removed, and (� 0 S) is added to the label of v

0

2

. Conse-

quently, v

0

2

is now labeled by f(� 1 S); (� 0 S)g, which

is again inconsistent. Thus, v

0

2

and the edge leading to

it are removed, and (� 0 S) is added to the label of v

0

1

.

The de�nition of more speci�c paths must be adapted

as well. In fact, due to number restrictions of the form

(� 0 R), even a path p that is shorter than q may be

more speci�c than q. To be more precise, if the label

of the last node v in p contains (� 0 R), then all value

restrictions on R expressed by an R-successor of the node

corresponding to v in q are trivially satis�ed. In our

example, the path with label R in

~

G

C

0

(Fig. 3) is thus
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S
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1
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21
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v
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;
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3
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Figure 3: The powerset automaton and canonical description graph of C

0

.

more speci�c than the one with label RS in G

C

(Fig. 2).

Consequently, the structural subsumption algorithm for

ALN also recognizes C

0

v C.

Comparing the approaches

A formal description of both approaches to subsumption

of ALN -concept descriptions as well as a detailed com-

parison can be found in [3]. Here, we can only point out

some of the main aspects of this comparison.

As before, there exists an \isomorphism" between the

automaton A and the description graph G correspond-

ing to an ALN -concept description C. Furthermore,

the correspondence between the FL

0

-canonical descrip-

tion graph

b

G and the deterministic automaton P(A) also

carries over.

In addition to this close relationship between the data

structures employed by the two approaches, there is also

a 1{1-correspondence between the additional normaliza-

tion rules on the one hand, and the de�nition of the set

of A

0

-excluding words on the other hand. When apply-

ing the normalization rules to the graph

b

G

C

0

in Exam-

ple 6, we have added (� 0 S) �rst to the label of the

RS-successor and then to the label of the R-successor

of the root. Both RSS and RS are A

0

-excluding words.

More generally, we show in [3] that adding (� 0 S) to the

label of the W -successor of the root in

b

G

C

corresponds

to the fact that WS is an A

0

-excluding word. Thus,

adding the set E(A

0

) to the right-hand side of the in-

clusion statements in the automata-theoretic approach

corresponds to the additional normalization steps and

the extended de�nition of more speci�c paths employed

by the structural approach.

7 Conclusion and future work

We have shown that structural subsumption algorithms

are special implementations of the language inclusion

tests required by the automata-theoretic characteriza-

tion of subsumption. This provides us with a more

abstract understanding of how structural subsumption

algorithms work. We will extend this comparison

to cyclic terminologies, by comparing the automata-

theoretic characterization of subsumption w.r.t. cyclic

ALN -terminologies [7] with the structural subsumption

algorithm for cyclic terminologies realized in K-Rep [6].

The comparison between the structural and the

automata-theoretic approach can also be extended to

other inference tasks such as computing the least

common subsumer (lcs) of ALN -concept descriptions.

Again, the algorithm for computing the lcs based on de-

scription graphs [5] can be seen as a special implementa-

tion of the automata theoretic characterization of the lcs

[2]. An advantage of the automata-theoretic approach is

that it easily carries over to computing the lcs for con-

cepts de�ned by cyclic terminologies [2].
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