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1 Overview and Motivations

We believe that an automated support tool for Domain

Engineering (DE) should behave as an Intelligent Knowl-

edge Management Environment (IKME) and not as an

expert system. It should only help the analyst in the

discovery and in the explicitation of contradictions, re-

dundancies and hidden properties detected in the Do-

main Knowledge Base (DKB) under development and/or

analysis. In other words, it should not suggest modi�-

cations to (or worse, directly modify) the description of

concepts in the considered DKB.

Present IKMEs for Domain Engineering su�er, in our

opinion, from their mixing up two representation levels:

1. a user-oriented conceptual level, where domain-

speci�c elements are represented (e.g., data, pro-

cesses and 
ows in Data-Flow Diagrams [9, 11]);

2. an underlying logic-oriented epistemological level,

where inferences are drawn from general-purpose el-

ements (e.g., DL concepts and roles).

The explicit separation of operational tasks between hu-

mans and computer systems should imply a correspond-

ing separation of levels (1) and (2) in support tools.

We claim that in most of present IKMEs one of the

two above levels is not explicitly present, i.e., it is \em-

bedded" in the other level. A few IKMEs (e.g., [1]), di-

rectly implement specialized reasoning procedures based

on the distinct conceptual primitives of the modelled

domain, such as entities, relationships and so on. Con-

versely, the majority of IKMEs (e.g., [6, 2] directly \pro-

gram" general-purpose reasoners

1

. In other words, they

describe domain knowledge in terms of epistemological

primitives (such as concepts and roles, sets and relations,

nodes and arcs and so on). We believe that both ap-

proaches su�er from some drawbacks. In the direct im-

plementation of specialized reasoning procedures, only a

particular concept model is supported. This means that

variants of the (already existing) reasoning algorithms
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Here and in the following, general-purpose reasoners are

also called inferential engines or KR systems.

of general-purpose reasoners have to be re-implemented.

In the direct usage of general-purpose systems, the con-

ceptual level is implicit, making it di�cult to assess the

representation adequacy. Moreover, since modelling is

not performed in terms of domain-speci�c concepts, an

intelligent explanation of drawn inferences, which is part

of the support, must be separately built.

We propose an engineering approach to the develop-

ment of IKMEs for conceptual modelling and analysis

which explicitly deals with both representation levels at

the same time. This gives rise to a multilevel approach

which is more suitable from an engineering perspective.

More precisely, a support tool built following our ap-

proach allows for the explicit domain-dependent descrip-

tion of instances of di�erent conceptual primitives. Each

primitive is endowed with a speci�cation of its allowable

set of reasoning services. User-oriented descriptions are

transformed into a corresponding set of logic-oriented

ones, as well as domain-speci�c inferences are mapped

into general-purpose reasoning services. In this way, we

obtain IKMEs that can capture several widespread ex-

emplary concept models at once, performing at the same

time domain-speci�c KR&R at the user level. Di�erent

application domain aspects described in terms of the DE

models listed below can be thus merged and analysed in

a more uniform and integrated way. Popular DE mod-

els include both basic and extended entity-relationship

models (E-R and EER, [8]), functional models in Data

Flow-based Structured Analysis (SA, [11]) as well as

in the functional part of Object Modelling Technique

(OMT [9]) and object models (e.g., object-centered ap-

proaches or the object part of OMT).

Extending the approach introduced in [4], we exem-

plify our proposal by modelling Data-Flow Diagrams in

level (1) and by using a DL with a Closed Terminology

Assumption (CTA) [10] in level (2). The bene�t of our

approach lies in decoupling the conceptual level from the

underlying epistemological level, thus allowing for a more

open architecture of support tools for the construction

and the analysis of large domain models.



2 Engineering of IKMEs { our proposal

The engineering approach proposed in this paper for the

development of IKMEs explicitly deals with both repre-

sentation levels at the same time. It allows the domain-

dependent description of concepts in terms of di�erent

syntactical constructors (i.e. meta-concepts), each en-

dowed with its set of specialized inferences. These user-

oriented concept descriptions are transformed into a cor-

responding set of logic-oriented ones, as well as domain-

speci�c inferences are mapped into general-purpose ones.

A �rst consequence of the introduction of a multi-level

approach dealing with the two cited levels is the need

for an explicit structured description of concepts. These

structured descriptions should not be freely arranged,

but a di�erent syntactical constructor should be intro-

duced for each relevant group of domain concepts (e.g.

one constructor for data, one for processes, etc.). Each

syntactical constructor corresponds to a fundamental ab-

straction elicited in the application domain.

A second consequence of the introduction of a multi-

level approach is the need for a correspondence with the

underlying domain-independent level. This correspon-

dence can be either achieved introducing new inferences

in a programmable environment, such as in protodl,

or introducing emulators, as in our proposal.

Domain Engineering activities involve some particu-

lar �ndings which were explicitly considered during the

development of our approach. Under a user-oriented

perspective, restrictions of KR languages only driven by

worst-case analysis are not useful. Although the intro-

duction of some language constructors can change the

inference problem, thus requiring a worst-case exponen-

tial time, a disciplined extension of the language gives

rise to a less demanding inference problem. During do-

main modelling, analysts introduce a large number of

concepts which are non-expressible because of language

restrictions. These concepts become primitive ones for

the IKME, i.e., they become a fake [7] for domain anal-

ysis as well as for the classi�cation algorithm. Indeed,

we believe that some reasonable fakes are necessary as

not every concept needs to be fully represented. We

thus introduce highly structured syntactical constructors

to represent domain concepts in a straightforward way.

These constructors play a strategic role in the achieve-

ment of an e�ective domain level.

The vagueness involved in conceptual activities, main-

ly due to incomplete knowledge [9], gives rise to a se-

rious question about the capability of DE in support-

ing systems which tolerate incomplete entailment. We

�rmly maintain that completeness and correctness must

be granted for every reliable inference system.

As DE does not require fast answers, but inference

utility [7], our approach explicitly deals with domain-

speci�c deductive services. Therefore, we are much more

interested in de�ning very useful inferences for a speci�c

application domain, than in obtaining slightly useful fast

responses. For instance, we consider inferences drawn

from a data 
ow assertion as a highly useful service for

domain analysis in Information Systems Engineering [4].

The tradeo� between expressiveness and complexity

makes us deal with the problem of obtaining IKMEs

which support real applications. In our opinion, a lan-

guage expressive enough to represent knowledge cap-

tured in every application domain is a vain hope. Con-

versely, a methodological approach based on formal re-

sults and characterized by an engineering perspective is

a concrete step towards the di�usion of IKMEs in the

industrial practice. This issue is close to the need for a

rational management of KR-based support tools already

pointed out in [7, 3].

2.1 Formalizing behaviors at the

conceptual level

As an example of our proposal at the domain-dependent,

user-oriented level, we extend and formalize Data Flow

Diagrams (DFDs) introduced in Structured Analysis [11]

and used in virtually any approach dealing with behav-

ioral aspects. We capture DFDs by way of the Engi-

neering Domain Description Language (EDDL), which

incorporates a DL to express the structure of data and

processes. The language discussed in this paper is a

signi�cantly enhanced version of the one �rst proposed

in [5]. Notably, the treatment of 
ow constraints was ab-

sent in the original proposal. Capturing (and extending)

in an integrated way DFDs together with data models

is an important issue in DE. In fact, DFDs represent

that behavioral aspect which is considered as relevant in

popular approaches dealing with the static component of

behaviors (i.e. processes and functions as black boxes),

including object-oriented approaches such as OMT [9].

The EDDL syntax for processes and 
ows

We use an alphabet P for processes and two alphabets

C

I

and C

O

for input and output channels respectively.

The syntax for declaring a process P is

P has input I output O ;

I and O are conjunctions of structures, whose syntax is

structure where ch is l : u C

Such a structure speci�es that at least l data (with

l � 1) and at most u data, all belonging to concept

C, 
ow through channel ch. We impose that ch 2 C

I

when the above structure appears in the input of a pro-

cess description. Similarly, we impose that ch 2 C

O

when the above structure appears in the output. We

assume that concept C, which describes the properties

of 
owing data, is expressed in terms of a suitable DL,

e.g., classic. Note that our approach is independent of



the chosen general-purpose DL system. We only assume

that the empty concept ? is expressible in that DL.

When a process P is speci�ed, we assume that all

channels not explicitly mentioned in its description are

absent. This is called Closed Terminology Assumption

(CTA) in [10]. Intuitively, for each channel ch 2 C not in

in the description of P, statement structure where ch

is 0 : 0 ? is always implicitly added to this description.

The 
ow declaration syntax between two processes is


ow F from P . s to Q . t ;

where F is the 
ow name, P is the source process and

Q is the target process. Data 
ow from output channel

s 2 C

O

of P to input channel t 2 C

I

of Q.

The EDDL semantics for processes and 
ows

All expressions in our EDDL language can be given a

set-theoretic semantics as follows. An interpretation I

is de�ned as a triple (" [ � ], �

C

, �

P

), where �

C

and �

P

are two disjoint sets of elements and " [ � ] is a mapping.

Function " [ � ] assigns to each atomic data concept C a

subset " [ C ] of �

C

, to each process P an element of �

P

and to each channel ch 2 C

I

[ C

O

a subset " [ch ] of

�

P

��

C

. Depending on the adopted DL, the semantics

of complex data follows from the I of atomic concepts.

We denote the cardinality of a set S as ]S. Given

a process P 2 �

P

and a channel ch, we denote with

" [ch ] (P) the data in
owing or out
owing P through

ch, i.e., the set fy 2 �

C

j (P; y) 2 " [ch ]g. The seman-

tics of a structure is thus as follows:

" [ structure where ch is l : u C ] =

= fP 2 �

P

j l � ] " [ch ] (P) � u and

and 8y 2 " [ch ] (P) : y 2 " [ C ] g (1)

where for each input structure, ch 2 C

I

as well as, for

each output structure, ch 2 C

O

. A conjunction of struc-

tures, i.e., I

1

and I

2

is interpreted as the intersection of

interpretations, i.e., " [ I

1

]\" [ I

2

]. A concept C is said to

be satis�able if there exists an interpretation (" [ � ], �

C

,

�

P

) such that " [ C ] 6= ;. Let C � C

I

[ C

O

denote the

union of channel alphabets and let C

P

� C denote the

channel names used in the description of a process P,

i.e., P has input I output O ; . Interpretation I satis-

�es the description of P if

" [ P ] 2 " [ I ] \ " [O ]

\

ch62C

P

f p 2 �

P

j " [ch ] (p) = ; g

Concepts I and O are interpreted as in (1), the term

in brackets expresses CTA and ch 62 C

P

means that

ch 2 C � C

P

. Once written in �rst-order logic, CTA

modi�es the speci�cation of P by adding (the �nite set

of) formulae 8y ( :ch (P; y) ) for each ch 62 C

P

. This

di�ers from role closure in classic, which operates on

ABox assertions.

We turn now to the interpretation of 
ow assertions,

which is a key feature of this example. An interpretation

I satis�es a 
ow assertion 
ow F from P . s to Q . t ;

from a source process P through its output channel s to

a target process Q through its input channel t if all the

elements which are output of P through s are input of Q

through t. In formulae, fx 2 �

C

j (" [ P ]; x) 2 " [ s ]g =

= fy 2 �

C

j (" [ Q ]; y) 2 " [t ]g.

Finally, an interpretation satis�es a DFD if it satis�es

at once all parts of the corresponding structured descrip-

tion, i.e., both process and 
ow descriptions, as well as

any constraint in the adopted DL. We call such an in-

terpretation a model of the considered description. We

thus say that a description is satis�able if it has a model.

The following DFD Theorem [4] holds:

A DFD is satis�able if and only if

1. 8 process description P has input I output O ;

the two conjunctions of I and O are satis�able

2. 8 
ow assertion 
ow F from P . s to Q . t ;

(a) source process P contains in its output

structure where s is l

s

: u

s

C;

(b) target process Q contains in its input

structure where t is l

t

: u

t

D;

(c) cardinalities of source and target channels are

mutually compatible, i.e., the two integer inter-

vals (l

s

;u

s

) and (l

t

;u

t

) have the non-empty

intersection ( max(l

s

; l

t

);min(u

s

;u

t

) );

(d) concept C and D is satis�able.

2.2 Linking the conceptual and

epistemological levels

To perform automated analysis of a domain-dependent

knowledge base, the user-oriented conceptual level must

be linked to the logic-oriented epistemological level,

where inferences are drawn from domain-independent

concepts. In order to accomplish this task, two di�er-

ent ways of linking the two levels be undertaken. First,

following the protodl approach originally introduced

in [2], speci�c inferences can be added to a general-

purpose DL system and reasoning is completely per-

formed at the epistemological level. In this case, cor-

rectness and completeness of the overall set of inferences

drawn by the extended system must be proved w.r.t. the

semantics of the conceptual level. Second, following the

approach originally introduced in [4], a set of emulating

concepts is added at the epistemological level. Part of

reasoning is directly performed at the conceptual level,

while a general-purpose DL system is used at the epis-

temological level. In this case, to each result of a logical

entailment in the conceptual model it corresponds the

same result of a di�erent entailment in the epistemolog-

ical model.



Linking the two levels with PROTODL

Following [2], we can extend a general-purpose DL sys-

tem with natural-deduction inference rules (see Tabs. 1

and 2) which axiomatize the inferences that the domain-

dependent application should draw. These rules have

been introduced to deal with the static part of behaviors

in EDDL-based conceptual modeling and analysis, tak-

ing CTA into account. In the following rules, the connec-

tive ")" denotes set inclusion. Elements whose details

are of no concern for understanding rules are denoted by

the underscore ( ) symbol. Note that, di�erently from

the protodl approach, the above rules are not the se-

mantics of our system. Instead, since this is given in-

dependently from the rules (see [4]), we must (and can)

prove that rules are sound and complete w.r.t. the pre-

viously given semantics. Moreover, protodl strictly

depends on the underlying classic DL system. This

means that no general-purpose DL reasoner other than

classic can be used, thus implicitly constraining the

expressive power of the epistemological level.

Linking the two levels with emulators

Emulators are generic concepts (pseudoconcepts) intro-

duced at the domain-independent level in order to repro-

duce the results of specialized deductive services using

generic deductive services. In this way, there is no need

of developing specialized inference procedures, which are

in any case limited to a speci�c meta-concept. Moreover,

there is not even any need of programming modularly


exible generic reasoners, without knowing the decid-

ability, correctness and completeness properties of the

underlying formal calculus. In other words, a minimal

set of inferences and a minimal expressive power in terms

of concept constructors is needed. This means that dif-

ferent DL reasoners can be used in an interchangeable

way. However, di�erently from the protodl case, there

is no general mechanism for building emulators. Each

time an entailment at the conceptual level has to be em-

ulated by a general-purpose DL system, pseudoconcepts

must be developed from scratch.

The usage of emulators introduces an explicit partition

and distinction in the way automated reasoning is per-

formed within an IKME. In the general case, including

the above protodl approach, all reasoning is performed

semantically. Given a domain knowledge base at the con-

ceptual level, this is rewritten at the epistemological level

in such a way that all epistemological assumptions are

satis�ed. Conversely, in the emulator-based approach,

part of reasoning is performed syntactically. In this way,

it is not necessary to overload the translation of a domain

knowledge base at the conceptual level with fragments

arising from speci�c epistemological assumptions.

As an exemplary case of the above two di�erent ways

of reasoning, we show how processes and 
ow constraints

Every process with an inconsistent

Input/Output is inconsistent

I ) ?

 

has

input I

output ;

!

) ?

O ) ?

 

has

input

output O ;

!

) ?

Rules for the CTA

 

P has

input

output O ;

!

, ch 2 C � C

P

0

B

@

P has

input

output O and

structure where

ch is 0 : 0 ? ;

1

C

A

 

Q has

input I

output ;

!

, ch 2 C � C

Q

0

B

@

Q has

input I and

structure where

ch is 0 : 0 ?

output ;

1

C

A

Table 1: Sequent rules for processes and CTA

can be emulated using the classic language. Let all the

channel names in the DKB be C=f r, s, t g, and let us

consider two process descriptions and a 
ow assertion ex-

pressed at the conceptual level (again, symbol \ " stands

for a structure whose details are of no concern):

P has input output structure where s is 2 :1 C ;

Q has input structure where t is 1 : 7 D output ;


ow F from P . s to Q . t ;

In classic, we can use individuals P and Q to emulate

processes, roles r,s,t for channels, concept FLOW and

role flow to emulate the 
ow assertion.

If fully semantical reasoning is performed, speci�c con-

cept constructors must be added to satisfy CTA. No-

tably, these constructors must assert that all channels

which are not explicitly part of a process de�nition have

to be considered as semantically absent. In practice, this

means that their cardinality is at most 0 in our example.

We can thus write



A 
ow assertion is inconsistent when

number restrictions of input and output are incompatible

0

B

@

P has

input

output and

structure where

s is L

s

:U

s

;

1

C

A

,

0

B

@

Q has

input and

structure where

t is L

t

:U

t

output ;

1

C

A

,

(l

s

;u

s

) \ (l

t

;u

t

) = ;

 


ow

from P . s

to Q . t ;

!

) ?

A 
ow assertion is inconsistent when

the intersection of exchanged data is empty

0

B

@

P has

input

output and

structure where

s is : X ;

1

C

A

,

0

B

@

Q has

input and

structure where

t is : Y

output ;

1

C

A

,

X and Y ) ?

 


ow

from P . s

to Q . t ;

!

) ?

Table 2: Sequent rules for 
ows

( individual P ( and ( all s C ) ( atleast 2 s )

( atmost 0 r ) ( atmost 0 t ) ) )

( individual Q ( and ( all t D ) ( atleast 1 t )

( atmost 7 t ) ( atmost 0 r )

( atmost 0 s ) ) )

( conceptdef F ( and ( all flow ( and C D ) )

( atleast 1 flow ) ( atleast 2 flow )

( atmost 7 flow ) ) )

Note that CTA is emulated (i) in P by the two fragments

( atmost 0 r ) and ( atmost 0 t ) and (ii) in Q by the

two fragments ( atmost 0 r ) and ( atmost 0 s ).

If partially syntactical reasoning is performed, no kind

of speci�cal concept constructor must be added to satisfy

CTA. It is su�cient to check that all channels which are

part of the 
ow constraint really belong to the processes

linked by the 
ow itself. In both cases, we can prove that

to check whether the process descriptions and the 
ow

assertion are satis�able is su�cient to check whether the

individuals P and Q and the concept FLOW are satis�able.
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