
Description Logic Unplugged

Uwe Küssner

FR 6-10, Technische Universität Berlin

Franklinstr. 28/29, D-10587 Berlin,Germany

uk@cs.tu-berlin.de

1 Introduction

In [1], Bos introduces a general scheme of underspecification

for a wide range of logics. In his approach he breaks down

a formula into its parts and introduces variables, called holes,

on argument positions. Each part gets a unique handle, called

label. The possible connections of holes to labeled parts are

represented with a new type of scope constraint. A plugging

is a function that assigns a label to every hole. A plugging

is consistent if it does not contradict the set of scope con-

straints. The semantics of an underspecified formula is de-

fined to be the set of tuples of pluggings and denotations.

The main motivation for Bos’ work is to represent the scope

ambiguity of natural language(NL) expressions. His exam-

ple utterance “Do not sleep and pay attention, please!” has

two readings differing with respect to negation scope. In one

reading, the scope of “not” is “sleep”, and in a second read-

ing, “not” has scope over “sleep and pay attention”. An un-

derspecified representation is an expression denoting the set

of both possibilities. This form of underspecification is also

realized in the interface data structure VIT [2] of the NL pro-

cessing system VERBMOBIL [7]. For the task of disam-

biguation, each VIT is mapped to objects of the Description

Logic (DL) FLEX [5]. This mapping and the disambigua-

tion task are described in [4]. However, FLEX does not sup-

port representation and reasoning with scope ambiguity. In

this paper we fill this gap and adopt the approach of [1] to

DL. We only describe the task of representing scope ambi-

guity here; further investigation is necessary for disambigua-

tion. In general, it would be possible to introduce holes in

the TBox as well, resulting in an underspecified terminology.

But for now we restrict occurrences of holes to the ABox. In

contrast to [1], there is no need for labels, because the rele-

vant target entities already have names, namely those of ob-

jects. In the next section we present the syntax and semantics

of an Unplugged Description Logic (UDL), more precisely

a DL with a partly unplugged ABox. Then we present an

algorithm of a constraint solver for solving the consistency

problem of UDL. Because all interesting inferences can be

reduced to consistency, this yields algorithms for subsump-

tion and instance checking.

2 Syntax of UDL

We assume four disjoint alphabets of symbols: concept

names (A), role names (R) and holes (H) and object

names(O). Because the proposed extension is independent of

of the syntax of concept descriptions, we can use the standard

syntax of the language ALC [6] :

C;D ! A j (atomic concept

> j (top concept)

? j (bottom concept)

:C j (complement)

C uD j (conjunction)

C tD j (disjunction)

8R:C j (value restriction)

9R:C (existential qualification)

The following production rules define UDL-formulae.

 ! C v D j (concept subsumption)

C

:

= D j (concept equivalence)

O : C j (object description)

(O;O) : R j (relation description)

(O;H) : R j (underspecified relation description)

O � H (scope constraint)

C v D means that C is more specific than D; C
:

= D

means that C and D are equal. In the following we use

o

1

; o

2

; : : : for object names and r

1

; r

2

: : : for role names and

h; h

1

; : : : for holes. The expression (o

1

; o

2

) : r

1

describes

that the two given objects are in the relation r

1

. (o
1

; h) : r

1

introduces a relation description, where the second object is

underspecified. Instead of an object there is a hole. In case of

(o

1

; h) : r

1

the information about the unplugged object can

be found in the corresponding scope constraint for the hole

h . For example o

2

� h asserts that o
2

is in the scope of

the operator r
1

. This means that either o
2

is the filler, i.e.

(o

1

; o

2

) : r

1

, or that there is another object o
3

, such that

(o

1

; o

3

) : r

1

and (o

3

; o

2

) : r

2

holds. In this case o

2

is in-

direct in the scope of r
1

. This applies recursively. In the next

section we define the semantics of UDL.

3 Semantic of UDL

An interpretation I = (�

I

; J�K

I

; J�K

I

P

) consists of a domain

of the interpretation �

I, an interpretation function J�K

I and

a plugging function J�K

I

P

. A plugging is a total and injec-

tive mapping from holes to objects. The interpretation func-

tion maps every atomic concept to a subset of �I and every

atomic role to a subset of �I

� �

I and object names injec-

tively into �I , in accordance with the following equations :

J>K

I

= �

I

J?K

I

= ;

J:CK

I

= �

I

n JCK

I

JC uDK

I

= JCK

I

\ JDK

I

JC tDK

I

= JCK

I

[JDK

I

J8R:CK

I

= fa 2 �

I

j 8(a; b) 2 JRK

I

: b 2 JCK

I

g

J9R:CK

I

= fa 2 �

I

j 9(a; b) 2 JRK

I

: b 2 JCK

I

g

Satisfaction of formulae is defined as follows :

I j= C v D iff JCK

I

� JDK

I

I j= C

:

= D iff JCK

I

= JDK

I

I j= O : C iff JOK

I

2 JCK

I

I j= (O

1

; O

2

) : R iff (JO

1

K

I

; JO

2

K

I

) 2 JRK

I

I j= (O;H) : R iff (JOK

I

; JJHK

I

P

K

I

) 2 JRK

I

I j= O � H iff O 2 range(JK

I

P

)

An interpretation I is a model of a formula
, iff I j=
.

Note that the constraints on a single o � h is rather unspe-

cific. In order to extend the definition from a single formula

to sets of formulae, some additional restrictions on pluggings

are necessary. Before be can define what a possible plugging

is, we need some definitions:

Definition 1 (p-objects,holes) Let � be a set of UDL formu-

lae. The set of objects, that is available for plugging is called

p-objects(�) :

p-objects(�) = fx j 9y : x � y 2 �g

The set of holes, that have to be plugged are :

holes(�) = fy j 9x : x � y 2 �g

Definition 2 (Subordination) Let � be a set of UDL formu-

lae. The �-induced relation of subordination is the smallest

relation such that :

1: x � x for all x 2 p-object(�) [holes(�)

2: x � y if x � y 2 �

3: x � y if (y; x) : R 2 � for some R, x 2 holes(�)

y 2 p-objects(�) and it is not the case that

y � x

4: x � y if there is a z such that x � z and z � y

The first clause expresses reflexivity, the second is the ex-

plicit way of defining subordination, the third one defines

subordination on relation descriptions with a hole as one ar-

gument. The fourth expresses transitivity. � is reflex-

ive, transitive and antisymmetric and therefore a partial order.

Note that � is not defined for all named objects but only for

the p-objects.

Definition 3 (Proper subordination) The �-induced subor-

dination relation � is proper iff for all x; y 2 holes(�) [

p-objects(�) there is a z such that x � z and y � z.

A proper subordination forms a join semi-lattice. Now we

can describe what a possible plugging is: A plugging is pos-

sible, if it does not contradict the given lattice. More formal:

Definition 4 (possible plugging) Let � be a set of UDL for-

mulae. Let I be an interpretation. Let

�

I

(x) =

�

JxK

I

P

if x 2 H

x if x 2 O

JK

I

P

is a possible plugging, iff for all x; y 2 holes(�) [

p-objects(�) there is a z such that: �
I

(x) � z and �
I

(y) �

z.

Now we can extend the definition of j= to sets of formu-

lae. An interpretation I is a model of a set of UDL formulae

� iff JKI
P

is a possible plugging and I is a model of every for-

mula in �. � implies a formula
 (written � j=
) iff every

interpretation that is a model of � is also a model of
.

4 Example

The german sentence “Ich würde lieber nicht kommen” has

two readings, which are in English “I would prefer not to

come” (would(i,prefer(not(to come)))) and “I would not pre-

fer to come” (would(i,not(prefer(to come)))). Both readings

can be represented as a single unplugged ABox.

� = f (o

0

; h

o

) : would;

(o

1

; h

1

) : not;

(o

2

; h

2

) : prefer;

o3 : to come;

(o

2

; o

4

) : arg;

o

4

: i;

o

1

� h

0

;

o

2

� h

0

;

o

3

� h

1

;

o

3

� h

2

g

’would’ is the role with widest scope, in both readings

’prefer’ and ’not’ are in the scope of ’would’, hence : o
1

�

h

0

and o

2

� h

0

. ’to come’ is in the scope of ’prefer’ and

’not’ : o
3

� h

1

; o

3

� h

2

.

There are two possible pluggings :

fh

o

7! o

1

; h

1

7! o

2

; h

2

7! o

3

g

fh

o

7! o

2

; h

1

7! o

3

; h

2

7! o

1

g

5 Terminology

A subsumption A v C where the left hand side is an atomic

concept is called concept specification. Concept specifica-

tions define necessary conditions. An equivalence A

:

= C

where the left hand side is atomic is called concept definition.

In this case necessary and sufficient conditions are given. A

terminology (TBox) consists of a set of concept specifications

and concept definitions with some additional restriction: On

the left hand side only atomic concepts are allowed. Every

atomic concept may appear at most once as a left side. Fur-

thermore we do not allow cycles in the TBox. A cycle-free

TBox can be transformed into an “equivalent” normalized

one. For details on what is meant with “equivalent” see [3]

A TBox T is normalized iff

1. T contains only concept definitions A
:

= C and

2. on the right hand side there are only concept names

which do not appear on the left hand side of other defi-

nitions and

3. every concept description is simple (see below)

The process of normalization of a TBox consists of the fol-

lowing three steps:

1. Elimination of specifications

Substitute every A v C with A
:

= C uA

�, where A� is

a new symbol.

2. Expansion

Substitute every concept name on the right hand side

which appears also on the left hand side with its right

hand side.

3. Simplification

A concept description is simple, if it contains only com-

plements of the form :A, where A is atomic. The fol-

lowing rewrite rules transforms a concept description

into an equivalent simple concept description.

:? ! >

:> ! ?

::C ! C

:8R:C ! 9R::C

:9R:C ! 8R::C

:(C uD) ! :C t :D

:(C tD) ! :C u :D

6 Inferences

There are several inference services, that can be offered from

a DL-system. The most common are:

Subsumption Problem Does a concept description C sub-

sume a concept description D?

Consistency Problem Has set of formulae a model?

Instance Problem Does a set of formulae imply o:C?

In [3] the consistency problem is identified as the basic in-

ference problem. The subsumption problem can be reduced

to the instance problem, which can be reduced to the consis-

tency problem:

Proposition 1 (Reduction of subsumption to instance checking)

Let � be set of formulae, C and D are concept descriptions.

� j= C v D iff � [fA
:

= C;B

:

= D; a : Bg j= a : A

where A,B and a are new symbols.

Proposition 2 (Reduction of instance checking to consistency)

Let � be a set of formulae, a : A an object description, and
�

A a new concept. Then :

� j= a : A iff � [f

�

A

:

= :A; a :

�

Ag has no model

Hence for all interesting services it is sufficient to have

a solution for the consistency problem. The next section

presents such an algorithm for UDL.

7 The Consistency Problem

A constraint system consists of a nonempty finite set of con-

straints and an alphabet of symbols which is a superset of the

objects and holes. In the following we use x; y; z for sym-

bols. A constraint is a syntactic object of one of the forms

x : C; x 7! y; x � y; x � y; xRy

Definition 5 (induced constraint system)

Let � be a set of normalized UDL-formulae. The

�-induced constraint system is defined as follows:

S = fx : C j x : A 2 �; A

:

= C 2 �g[

fxRy j (x; y) : R 2 �g[

fx � y; x � y j x � y 2 �g

An induced constraint system is consistent if there is an in-

terpretation I and I-assignment such that all constraints are

satisfied. For a detailed description of constraint-systems for

DL see [6] or [3].

Proposition 3 Let S be a constraint system induced by �. �

has no model iff S is inconsistent.

Definition 6 (plug) The application of a single plug leads to

a modified constraint system

S

x 7!y

= faRy j 9a;R : aRx 2 Sg[fX j X 2 S;X 6= aRxg

For consistency checking a set of propagation rules are ap-

plied to the induced system. The propagation rules are:

S !

u

fx : C

1

; x : C

2

g [S

if x : C

1

u C

2

is in S and

x : C

1

and x : C

2

are not both in S

S !

t

fx : Cg [S

if x : C

1

t C

2

is in S and neither x : C

1

nor x : C

2

are in S and C = C

1

or C = C

2

S !

7!

fx � yg [S

if z 7! y is in S and for some x with x 6= y

there is x � z in S and x � y is not in S or

if z 7! x is in S and z � y is in S and

x 6= y and x � y is not in S

S !

9

fxRy; y : Cg [S

if x : 9R:C is in S and there is no z such that

xRz and z : Care in S

S !

�

fx 7! yg [S

x 7!y

if x 2 hole(S)(i.e. x � z is in S) and

y 2 p-object(S) and x 7! z is not in S for

any z

S !

�

fx � yg [S

if x � z and z � y is in S and x � y is not in S

S !

R

fx � yg [S

if yRx is in S and y 2 hole(S) and x � y is

not in S

S !

8

fy : Cg [S

if x : 8R:C and xRy are in S and

y : C is not in S

S !

?

f?g

if x : A and x : :A are in S, or

if x � y and y � x are in S or

if x 7! y and x � y are in S

The rules !
u

;!

t

;!

9:

;!

8:

are the standard ones ([3]).

For the gives rule set, we assume that the �-induced subor-

dination relation is proper. In this case we call the constraint

system itself proper. Only under this assumption the propa-

gation rules construct the graph of a possible plugging with

the constraints of the form x 7! y. The test for proper-

ness can be done in a preprocessing step. Note that the rules

!

t

;!

�

are nondeterministic. A constraint system is com-

plete, if no propagation rule applies. A clash is a constraint

system of the form fx : ?g.

Proposition 4 (consistency) A constraint system is consis-

tent iff it is proper and there exists a complete system, which

is no clash. Otherwise it is inconsistent.

8 Conclusion

We have presented an underspecified description logic, which

can be used to represent scope ambiguities of natural lan-

guage expressions. Instead of explicitly telling the fillers, a

set of scope constraints is added. The next interesting step

would be the integration of a preference relation on models

for disambiguation. In the NLP context usually there is a ‘de-

fault’ plugging, based on syntactic information. If no other

rules are specified this default model would be the prefered

one.

References

[1] J. Bos Predicate Logic Unplugged Tenth Amsterdam Collo-
quium, 1995

[2] M. Dorna The ADT PACKAGE for the Vermobil Interface Term

VERBMOBIL Report 104, 1996

[3] B. Holunder Hybrid Inferences in KL-ONE-based Knowledge
Representation Systems DFKI Report RR-90-06 1990

[4] U. Küssner Applying DL in Automatic Dialogue Interpreting

International Workshop on Description Logics Gif sur Yvette
(Paris) 1997

[5] J.J. Quantz, G. Dunker, F. Bergmann, I. Kellner, The FLEX Sys-

tem, KIT Report 124 Technische Universität Berlin, 1995

[6] M. Schmidt-Schauß, G. Smolka Attribute Concept descriptions

with complements SEKI Report SR-88-21 Universität Kaiser-
slautern 1988 (and in Artificial Intelligence 48(1991) 1-26)

[7] W. Wahlster, Verbmobil : Übersetzung von Verhandlungsdialo-

gen VERBMOBIL Report 1,DFKI Saabrücken, 1993

