
DLP System Description

Peter F. Patel-Schneider

Bell Labs Research, Murray Hill, NJ, U.S.A.

Abstract

DLP (Description Logic Prover) is an experimental de-

scription logic knowledge representation system. DLP

currently implements a superset of propositional dy-

namic logic as well as K

(m)

and KT

(m)

. Although

DLP is an experimental system, it nonetheless provides

a fast satis�ability checker for the above propositional

modal logics as well as a fast reasonder for knowledge

bases.

Introduction

There is an e�ort underway to build a next-generation

description logic system. This system will perform com-

plete reasoning over a very expressive description logic,

a logic that contains converse propositional dynamic

logic. As part of this e�ort, I have built an experimen-

tal description logic knowledge representation system

called DLP (for Description Logic Prover). DLP imple-

ments an expressive description logic, one that includes

propositional dynamic logic as a subset. DLP provides

a simple interface allowing users to build knowledge

bases of descriptions in this description logic, but, as

an experimental system, DLP does not have a full user

interface.

Because of the correspondence between description

logics and propositional modal logics, the description

logic reasoner in DLP can serve as a reasoner for sev-

eral propositional modal logics. As well as propositional

dynamic logic, the logic underlying DLP contains frag-

ments that are in direct correspondence to the propo-

sitional modal logics K

(m)

and K4

(m)

. DLP provides

an interface that allows direct satis�ability checking of

formulae in K

(m)

and K4

(m)

. Using a standard encod-

ing, the interface also allows satis�ability checking of

formulae in KT

(m)

and S4

(m)

.

One of the purposes in building DLP was to inves-

tigate various optimisations for description logic sys-

tems. A number of these optimisations have appeared

in various description logic systems

[

Baader et al., 1992;

Bresciani et al., 1995; Horrocks, 1997

]

. In fact, much

of DLP is a reimplementation of the ideas underlying

FaCT

[

Horrocks, 1997

]

. As there is still need to investi-

gate optimisations further and to develop new optimi-

sation techniques, DLP has a number of compile-time

options to select various description logic optimisations.

Most of the optimisations in DLP have to do with

optimising subsumption checking, and thus correspond

to potential optimisations for propositional modal logic

satis�ability checking. DLP concentrates on this sort of

optimisation and does not, as of yet, have a complete

suite of optimisations that have to do with avoiding

subsumption checking whenever possible, such as the

taxonomy optimisations in Kris.

Logic

DLP implements the following description logic.

Syntax Semantics

Concepts A A

I

� �

I

> �

I

? ;

:C �

I

�C

I

C uD C

I

\D

I

C tD C

I

[D

I

9R:C fd 2 �

I

: R

I

(d) \ C

I

6= ;g

8R:C fd 2 �

I

: R

I

(d) � C

I

g

>nP fd 2 �

I

: j R

I

(d) j � ng

6nP fd 2 �

I

: j R

I

(d) j � ng

Roles P P

I

� �

I

��

I

R t S R

I

[ S

I

R=C R

I

\ (�

I

� C

I

)

R � S R

I

� S

I

R

+

S

n�1

R

I

n

In the syntax chart A is an atomic concept; C and

D are arbitrary concepts; P is an atomic role; R and S

are arbitrary roles.

The semantics for DLP is a normal semantics for de-

scription logics, with a domain �

I

and an interpreta-

tion function

I

for concepts and roles.

DLP's reasoner is sound and complete for this logic,

modulo bugs in the implementation. It uses the now-

standard method for subsumption testing in description

logics, namely translating subsumption tests into sat-

is�ability tests and checking for satis�ability using an

optimised tableaux method.



Implementation

DLP was designed from the beginning to be an exper-

imental system. As a result, much more attention has

been paid to making the internal algorithms correct and

e�cient in the worst-case than to reducing constant fac-

tors. Similarly, the internal data structures have been

chosen for their 
exibility rather than having the abso-

lute best modi�cation and access speeds. Some care has

been taken to make the internal data structures reason-

ably fast, however|there is considerable use of binary

maps and hash tables instead of lists to store sets, for

example.

This has extended even to the choice of implementa-

tion language and implementation philosophy of DLP.

DLP is implemented in ML instead of a language like

C so that it can be more-easily changed. There is some

price to be paid for this, as ML does not allow some

of the low-level optimisations possible in languages like

C. Further, DLP is implemented in a mostly-functional

fashion. The only non-functional portions of the satis-

�ability checker in DLP have to do with unique storage

of formulae, and caching of several kinds of information.

All this caching is monotone, i.e., it does not have be

undone during a proof, or even between proofs.

Nonetheless, DLP is quite fast on several problem

sets, including the Tableau'98 propositional modal logic

comparison benchmark and several collections of hard

random formulae in K. This was somewhat surprising

to me, but probably just serves to con�rm that in sat-

is�ability checking is it more important to avoid work

than to work fast.

Optimisation Techniques

Most of the optimisation techniques in DLP have al-

ready appeared in various description logic systems.

The most complete description of these optimisations

can be found in Ian Horrocks' thesis

[

Horrocks, 1997

]

.

The basic algorithm in DLP is a simple tableau al-

gorithm that searches for a model that demonstrates

the satis�ability of a description logic description or,

equivalently, a propositional modal logic formula. The

algorithm incorporates the usual control mechanism to

guarantee termination, including a check for equality

of nodes to guarantee termination for transitive roles

(modalities).

The optimisations in DLP include lexical normalisa-

tion, semantic branching, boolean constraint propaga-

tion, dependency-directed backtracking, caching, and

heuristic guidance search.

Lexical Normalisation: Before the subsumption al-

gorithm in DLP starts, incoming formulae are con-

verted into a normal form, and common sub-formulae

are uniquely stored. This conversion detects analyti-

cally satis�able sub-formulae. It also allows values to

be e�ciently given to any sub-formula in the formula,

not just propositionally atomic formulae. This can re-

sult in clashes being detected much earlier than would

otherwise be the case.

Semantic Branching Search: DLP performs se-

mantic branching search. This means that when DLP

decides to branch on a formula, it picks an element of

the formula and assigns that formula to true and false in

turn instead of picking the elements of the formula and

assigning them to true in turn. For example, semantic

branching on D

1

t D

2

will result in branches contain-

ing D

1

; D

1

t D

2

and :D

1

; D

1

t D

2

. Under syntactic

branching the two branches would contain D

1

and D

2

.

Semantic branching is guaranteed to explore each sec-

tion of the search space at most once, as opposed to syn-

tactic branching, and this is important in propositional

modal logics as the generation and analysis of succes-

sors can result in large overlap in the search space when

using syntactic branching.

Boolean Constraint Propagation: DLP performs

simple boolean constraint propagation, looking for dis-

juncts in unexpanded disjunctions whose value is con-

strained due to values being known for the other dis-

juncts in the disjunction. For example, boolean con-

straint propagation deduces D

2

from D

1

tD

2

and :D

1

,

without branching on the disjunction. This technique

can result in dramatic reductions in the search space,

particularly in the presence of semantic branching.

Dependency Directed Backtracking: For every

sub-formula, including clashes, DLP keeps track of

which choice points lead to the deduction of that sub-

formula. When backtracking to a choice point, DLP

checks to see if the clash depends on that choice; if

it does not, the alternative branch need not be con-

sidered, as it would just lead to the same clash. This

technique, often called backjumping

[

Baker, 1995

]

, can

dramatically reduce the search space, but does have

some overhead.

Caching: During a satis�ability check many sucessor

nodes are generally created. These nodes can look con-

siderably alike, so DLP caches and reuses their status.

The caching in DLP is more complete than in other

description logics systems, including FaCT.

Care has to be taken to ensure that caching does

not interfere with the rest of the algorithm, particu-

larly the determination of dependencies and loop anal-

ysis. Caching does require that information about each

node generated be retained for a longer period of time

than required for a basic depth-�rst implementation of

the satis�ability checker. However, caching can produce

dramatic gains in speed, particular for non-random for-

mulae.

Heuristic Guided Search: There are many heuris-

tic techniques that can be used to determine which

sub-formula to branch on �rst. However, these tech-

niques require considerable information to be kept or

computed for each sub-formula of the unexpanded dis-

junctions. As DLP is implemented in a functional man-

ner, it has to recompute this information whenever it

wants to determine the best branch formula. Further,

the heuristic techniques available have mostly been de-



vised for non-modal logics and are not necessarily suit-

able for modal logics.

Nonetheless, DLP includes some simple heuristics to

guide its search. These heuristics include the heuristics

present in earlier description logic systems, but also in-

clude some new heuristics designed to interact better

with DLP's other optimisations.

Performance

DLP has not been used in any actual applications, and

as an experimental system, it is unlikely to receive any

such use. DLP has been used to classify the Galen

medical knowledge base

[

Rector et al., 1997

]

with the

portions it cannot represent removed. DLP performed

capably on this knowledge base, creating the subsump-

tion partial order in 210 seconds on a Sparc Ultra 1-class

machine. FaCT also takes about 200 seconds for this

task on a comparable machine.

DLP has also been tested on two sets of benchmarks,

the Tableaux'98 comparison benchmarks

[

Heuerding

and Schwendimann, 1996

]

and a collection of hard ran-

dom modal formulae due to Hustadt and Schmidt

[

Hus-

tadt and Schmidt, 1997

]

. DLP outperformed the exist-

ing description logic systems on the Tableaux'98 bench-

marks and was competitive with FaCT, the fastest de-

scription logic system on the random formulae. More

detail on DLP's performance is available in a paper dis-

cussing the performance of the various optimisations in

DLP

[

Horrocks and Patel-Schneider, 1998

]

.

Summary

As it is an experimental system, I did not expect DLP to

be particularly fast on hard problems. It was gratifying

to me that it is competitive with existing propositional

modal reasoners including FaCT andKsat

[

Giunchiglia

and Sebastiani, 1996

]

.

DLP is under continuing development. It currently

handles propositional dynamic logic and may be ex-

tended to handle converse propositional dynamic logic.

The ideas underlying DLP will be incorporated into a

new description logic system that is currently being de-

signed by a group of researchers including Enrico Fran-

coni, Ian Horrocks, and myself. DLP is available via

the WWW under

http://www-db.research.bell-labs.com/user/pfps.

References

[

Baader et al., 1992

]

F. Baader, E. Franconi, B. Hol-

lunder, B. Nebel, and H.-J. Pro�tlich. An empirical

analysis of optimization techniques for terminological

representation systems or: Making KRIS get a move

on. In B. Nebel, C. Rich, and W. Swartout, editors,

Principles of Knowledge Representation and Reason-

ing: Proceedings of the Third International Con-

ference (KR'92), pages 270{281. Morgan-Kaufmann

Publishers, San Francisco, CA, 1992. Also available

as DFKI RR-93-03.

[

Baker, 1995

]

A. B. Baker. Intelligent Backtracking on

Constraint Satisfaction Problems: Experimental and

Theoretical Results. PhD thesis, University of Ore-

gon, 1995.

[

Bresciani et al., 1995

]

P. Bresciani, E. Franconi, and

S. Tessaris. Implementing and testing expressive de-

scription logics: a preliminary report. In Gerard El-

lis, Robert A. Levinson, Andrew Fall, and Veronica

Dahl, editors, Knowledge Retrieval, Use and Storage

for E�ciency: Proceedings of the First International

KRUSE Symposium, pages 28{39, 1995.

[

Giunchiglia and Sebastiani, 1996

]

F. Giunchiglia and

R. Sebastiani. A SAT-based decision procedure for

ALC. In L. C. Aiello, J. Doyle, and S. Shapiro, ed-

itors, Principles of Knowledge Representation and

Reasoning: Proceedings of the Fifth International

Conference (KR'96), pages 304{314. Morgan Kauf-

mann Publishers, San Francisco, CA, November

1996.

[

Heuerding and Schwendimann, 1996

]

A. Heuerding

and S. Schwendimann. A benchmark method for

the propositional modal logics k, kt, s4. Technical

report IAM-96-015, University of Bern, Switzerland,

October 1996.

[

Horrocks and Patel-Schneider, 1998

]

I. Horrocks and

P. F. Patel-Schneider. Comparing subsumption op-

timisations. In E. Franconi, G. De Giacomo, R. M.

MacGregor, W. Nutt, C. A. Welty, and F. Sebastiani,

editors, Collected Papers from the International De-

scription Logics Workshop (DL'98), 1998. To appear.

[

Horrocks, 1997

]

I. Horrocks. Optimising Tableaux De-

cision Procedures for Description Logics. PhD thesis,

University of Manchester, 1997.

[

Hustadt and Schmidt, 1997

]

U. Hustadt and R. A.

Schmidt. On evaluating decision procedures for

modal logic. Technical Report MPI-I-97-2-003, Max-

Planck-Institut F�ur Informatik, Im Stadtwald, D

66123 Saarbr�ucken, Germany, February 1997.

[

Rector et al., 1997

]

A. Rector, S. Bechhofer, C. A.

Goble, I. Horrocks, W. A. Nowlan, and W. D.

Solomon. The Grail concept modelling language

for medical terminology. Arti�cial Intelligence in

Medicine, 9:139{171, 1997.


