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C-CLASSIC is a variant of CLASSIC in

which concept learning is theoretically

tractable (following the PAC-learning

settings). C-CLASSIC is an exten-

sion of C-CLASSIC with the connec-

tives (default) and (exception) al-

lowing to incorpore default knowledge

within concept de�nitions. Previous work

was concerned with both deductive as-

pects (semantics, subsumption) and in-

ductive aspects (PAC-learnability) of C-

CLASSIC . Our purpose here is to dis-

cuss practical aspects of concept learning

from instances within C-CLASSIC . We

present an algorithm learning a disjunc-

tive de�nition of a target concept from

positive and negative instances. Since the

bottom-up search of the concept space re-

lies on Least Common Subsumers compu-

tations, the way how instances are repre-

sented in C-CLASSIC is crucial. In this

paper we propose the use of a domain the-

ory divided into default rules and incoher-

ence rules in order to extend the descrip-

tions of instances with excepted proper-

ties such as . The presence of in the

description of an instance means �the in-

stance should have the A propery but has

not�.

Learning from instances,

Default knowledge.

One of the central problems studied in Machine

Learning is the task of inducing a de�nition of a

concept from a set of positive and negative in-

stances of this concept. The choice of an ap-

propriate representation formalism is very impor-

tant for learning since it should be expressive,

useful, applicable and e�cient. For these rea-

sons, Description Logics have been receiving in-

creased attention in the Machine learning commu-

nity (e.g.

[

Kietz and Morik, 1994; Frazier and

Pitt, 1996

]

). Thus, in

[

Cohen and Hirsh, 1994b;

1994a

]

, many results about learnability of DLs are

given. In

[

Cohen and Hirsh, 1994a

]

, the authors

describe which is

and consequently PAC-Learnable (i.e.

learning is e�cient in the Valiant's sense of PAC-

learnablity

[

Valiant, 1984

]

). It has been shown

in

[

Cohen and Hirsh, 1994b

]

that CLASSIC is

not PAC-learnable but that C-CLASSIC is. In

[

Ventos, 1996

]

, we presented C-CLASSIC which

extends C-CLASSIC with two non classical con-

nectives and introduced in the toy DL

[

Coupey and Fouqueré, 1997

]

). C-CLASSIC

makes it possible to express default and excepted

properties in the de�nition of concepts while keep-

ing concept classi�cation monotonic and polyno-

mial. In

[

Ventos , 1997

]

, we have proven that

C-CLASSIC is PAC-learnable. The goal of this

paper is twofold. On one hand, we describe how

it is possible to learn in C-CLASSIC . On the

other hand, we highlight the advantages of the

connectives and by comparing learning in C-

CLASSIC and learning in C-CLASSIC.

Learning of concept de�nitions, from positive and

negative instances, in C-CLASSIC requires four

steps. In the �rst two steps, the descriptions of

instances are extended by adding excepted proper-

ties, given a set of positive and negative instances

of a target concept to learn together with a nor-
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Let and be

two elements of C-CLASSIC , , i.e.

subsumes , i� .

Animal Has-teats Viviparous Animal

Wings Flies

Viviparous Oviparous Inapt-to-�y Flies

Student (publications

AT-LEAST 4) Age:MAX 27 publications

FILLS {JAIR,AI} publications:(

year:ONE-OF {94,95,96})

Ornithorynchus

Animal Vertebrate Oviparous

Has-teats With-beak Viviparous

Viviparous

Viviparous

Viviparous

Ornithorynchus

Mammal

A A A A

A

A A

A A e Animal Viviparous Vertebrate

Barks

e Animal Vertebrate With-beak

malization procedure and a domain theory. The

third step consists in applying a bottom-up learn-

ing algorithm, Elena , to the extended descrip-

tion of instances. This generally does not result in

a unique C-CLASSIC term but rather in a dis-

junction of such terms. During the last step, each

of these terms is inserted in the taxonomy of con-

cepts using classi�cation.

This paper is organized as follows: section 2 brie�y

presents C-CLASSIC . Section 3 presents learn-

ing in C-CLASSIC together with a comparison

with learning in C-CLASSIC.

The set of connectives of C-CLASSIC is the

union of the set of connectives of C-CLASSIC

[

Cohen and Hirsh, 1994b

]

and the connectives

and . Example:

de-

scribes students who generally have at least four

publications, are less than 27 years old, have at

least one publication in JAIR and AI, and whose

publications have been published in the years 94,

95 or 96.

The connective intuitively represents the com-

mon notion of default. For instance, having

Viviparous as a conjunct in the de�nition of the

concept Mammal states that mammals are gener-

ally viviparous. The connective is used to rep-

resent a property that is not present in the de-

scription of the concept or of the instance but that

should be. For instance, the de�nition of an or-

nithorynchus in C-CLASSIC is

. The

property expresses the fact that

should be in the de�nition of ornitho-

rynchus since it is an animal having teats and gen-

erally such animals are viviparous. The presence

of in the de�nition of ornithorynchus

makes it possible to classify un-

der the concept . Indeed, in this framework,

a concept is subsumed by a default property if its

de�nition contains either the default property, the

strict property or the excepted property (i.e. for

all concept , subsumes both and , more

precisely is the most speci�c concept subsum-

ing both and ). Concepts whose de�nition does

not mention anything (strict, default or exception)

about a property are not subsumed by .

In

[

Ventos, 1996

]

, we have provided C-CLASSIC

with an semantics based on an equa-

tional system which determines the proper-

ties of the C-CLASSIC connectives. In this se-

mantics, concepts are characterized by a

of their properties (this approach is simi-

lar to

[

Dionne , 1993

]

) rather than by the

set of their instances. In

[

Ventos, 1997

]

, it has

been shown that intensional semantics coincides

with the classical model-theoretic semantics C-

CLASSIC for the non-default part.

EQ makes it possible to de�ne the subsumption

in C-CLASSIC as follows. Let denote the

equality (modulo EQ axioms) between two

of C-CLASSIC .

The goal of learning is to induce a de�nition of a

concept from individuals of C-CLASSIC which

are known to be positive or negative instances of

the concept to learn. Such a de�nition should sub-

sume every positive instances and no negative one.

In order to achieve this task, we designed Eléna

(see section 3.3) whose core operation is the Least

Common Subsumer (LCS) computation consisting

in �nding the largest expressible set of common

properties between two concepts. For the purpose

of the LCS algorithm, the description of positive

and negative instances needs to be normalized and

extended (see section 3.2). Learning operations are

illustrated using an example introduced in section

3.1. Finally, we compare in section 3.4 learning in

C-CLASSIC and learning in C-CLASSIC.

Let S+={e , e , e , e } be a set of positive in-

stances of the concept to learn and S-={ce } a

set of negative instances of this concept. Let T

be a domain theory made of two sets R and I.

R={ ,

} is a set of default rules meaning

that generally animals having teats are viviparous

and that generally animals having wings �y. I

={ , }

is a set of incoherent concepts meaning that an in-

stance can not be both oviparous and viviparous

and that it is impossible to �y and to be inapt to

�y. We explain in the next section the way to use

these sets. We give now the description of the in-

stances in C-CLASSIC .

.
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3.2 Normalization and extension of

the instances

A rule is applicable if its premisse subsumes the

instance.

We consider C-CLASSIC and not C-CLASSIC as

incoherences are only meaningful for strict properties.

See

[

Ventos, 1997

]

for more details.

Applying this procedure on an incoherent term

leads to normalize the term by which denotes

incoherences.

The algorithm is given in appendix.

Oviparous Has-teats

e Animal Vertebrate Flies

Quacks

e Animal Vertebrate

Lives-in-Africa Wings Big-feet

Inapt-to-fly

ce Animal Vertebrate

Lives-in-the-sea Scales

P P P

P

e NF-e NF-e Animal

Animal Vertebrate Vertebrate

With-beak With-beak Oviparous

Oviparous Has-teats Has-teats

child AT-LEAST 2

child AT-MOST 1

R AT-LEAST m R AT-MOST n

NF-e

Viviparous NF-e

Viviparous NF-e

partial satura-

tion

R is composed of n rules called

R , ,R such that R = Premisse Conclusion

where Premisse is a term of C-CLASSIC and

Conclusion a term of C-CLASSIC where concept

conjunctions are only allowed in the value restric-

tion of roles.

I is composed of m incoherences

expressed as terms of C-CLASSIC (C , ,C )

Inapt-to-�y Flies

Animal Has-teats Viviparous

Viviparous Oviparous

.

.

.

.

The extension of the description of instances is per-

formed in two steps: a normalization step followed

by an extension of the normal forms thereby ob-

tained.

The �rst step consists in computing a normal form

of each instance using a normalization algorithm

described and shown to be polynomial in

[

Ventos,

1997

]

. Note that the normalization strategy cho-

sen leads the addition of implicit information. This

normalization strategy is a kind of

, a proceeding which is often used in machine

learning to make easier LCS computation (see for

instance

[

Bisson, 1992

]

). We illustrate this step

on the example described section 3.1. The com-

putation of the normal forms of e , e , e , e and

ce is very simple as far as they are only described

with primitive concepts. The normalization con-

sists therefore in adding for each primitive con-

cept the property thanks to the fact that

subsumes . We give below the normal form of

the instance (called ):

.

The second step consists in extending normal

forms of instances by adding excepted properties.

To achieve this task, we use a domain theory made

of two sets: a set R of default rules in the form C

D meaning that if a concept is subsumed by C,

it generally has the D property, together with a set

I of incoherent concepts.

The connective can be viewed as a marker of an

incoherence between properties of the instance and

a default knowledge of the domain. The main goal

of the step is therefore to detect a potential inco-

herence between the description of an instance and

the conclusion of an applicable rule . The detec-

tion of an incoherence allows us to add an excepted

property to the description of the instance as we

explain in the following. First of all, we describe

more precisely what are incoherences and how to

detect them. We distinguish two kinds of incoher-

ences: incoherences of type 1 and incoherences of

type 2.

An incoherence of type 1 corresponds to an inco-

herence linked to one or more general axioms con-

cerning the connectives of the language (here C-

CLASSIC ). For instance,

is incoherent and more gener-

ally for all role R,

is incoherent if m > n. To detect this kind of in-

coherences, we apply the normalization procedure

de�ned for C-CLASSIC in

[

Ventos, 1997

]

.

An incoherence of type 2 corresponds to an in-

coherence linked to a background knowledge (e.g.

is incoherent). Such incoher-

ences are listed in I. Consequently, I is scanned in

order to detect them.

We give now a sketch of the algorithm allowing to

extend the normal forms of instances: let e be an

instance described in C-CLASSIC , NF-e its nor-

mal form and ENF-e the extended normal form

searched for. For each default rule, if the instance

veri�es the premisse of the rule and if the con-

clusion of the default rule is incoherent with the

description of the instance (i.e. if it leads to inco-

herences of type 1 or 2), the conclusion is excepted

and added to ENF-e. Note that in this framework,

default rules are only used to add excepted proper-

ties. If no incoherence is detected, the conclusion

of the rule is not added to the description of the

instance. Thus, we avoid problems caused by mul-

tiple extensions of the instances.

We illustrate now the algorithm on an instance of

the example.

satis�es (i.e. is subsumed by) the premisse

of the rule . The

addition of to leads to an inco-

herence ( I). The prop-

erty is added to . Thanks to the
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3.3 Eléna

3.4 Learning in C-CLASSIC vs

C-CLASSIC
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(Viviparous ) Viviparous

NF-e

Viviparous

e

Learned-concept

T T T

LCS(e ,e )

Animal Animal Viviparous

Vertebrate Vertebrate

Animal Viviparous Vertebrate

e e

e e

(Animal Viviparous Vertebrate)

(Animal Flies Vertebrate)

Animal Vertebrate

Lives-in-Australia Wings Big-feet

Inapt-to-fly

Animal Flies Vertebrate

Note that this property does not belong to the LCS

computed from the non extended normal forms of e

and e . Now, this property is crucial since it prevents

the negative instance to be subsumed (let us remind

that ce has the properties Animal Vertebrate).

an instance e described in C-CLASSIC , NF-e its nor-

mal form, a set R ={R , ,R } of �default rules�, a

This algorithm allows to learn disjunctions of C-

CLASSIC terms.

normalization and

are also added to .

Adding the property makes it possi-

ble to highlight that is in con�ict with

. This information can

be useful during the learning process. The normal

forms obtained are called extended normal forms.

They are used as inputs of the algorithm Eléna

described in the next section.

C-CLASSIC containing only a limited kind of

disjunction (the ONE-OF connective), many tar-

get concepts of pratical interest cannot be ex-

pressed using a single term of C-CLASSIC . One

way to overcome this limitation is to consider al-

gorithms which learn a disjunction of terms rather

than a single term. This is the case of Eléna de-

signed in

[

Ventos, 1997

]

. Eléna learns concepts

whose de�nition is such that

where T 's are terms of C-

CLASSIC . More precisely, each T (called proto-

type) is the Least Common Subsumer of a subset

of positive instances and is such that it does not

cover any negative instance. Eléna is a bottom-

up algorithm based on the algorithm described in

[

Brézellec and Soldano, 1993

]

. It uses a standard

�greedy set covering algorithm� that at each iter-

ation i removes from the learning set the positive

instances covered by the selected prototype T .

In order to illustrate the behavior of Eléna ,

let us go back to our example. The �rst

prototype learned by Elena is

(i.e.

equivalent modulo

EQ to ).

The instances and are removed from

the learning set. The next learned proto-

type is the LCS of and which covers

these two positive instances and no negative

instances. As the current learning set con-

tains no more positive instances, Elena re-

turns the disjunction of the two previous proto-

types

.

In C-CLASSIC, the descriptions of the �ve in-

stances of the example presented in section 3.1 are

the same as in C-CLASSIC . The normal forms of

these instances are identical to their initial descrip-

tions since no default property can be expressed in

C-CLASSIC.

As in C-CLASSIC , Elena computes the

Least Common Subsumer of di�erent subsets of

positive instances. Now, all the computed LCS

cover the negative instance. No generalization can

be done without covering the negative instance.

Elena returns the disjunction of the four pos-

itive instances (e e e e ). Note that

applying the algorithm LCSLearnDISJ de�ned in

[

Cohen and Hirsh, 1994b

]

also returns the disjunc-

tion of the four positive instances.

The concept learned in C-CLASSIC is too

speci�c to have a good predictive power.

Thus, the new positive instance whose descrip-

tion is the following:

is recognized by the de�nition

learned in C-CLASSIC (the instance satis�es

the disjunct af-

ter normalization and extension of its description)

but it is not recognized by the de�nition learned

in C-CLASSIC.

The paper mainly focuses on practical aspects of

learning in C-CLASSIC . We propose here a

learning procedure including a prior extension of

instance descriptions. This extension is obtained

thanks to the extensive use of default knowledge

and incoherence rules. A simple bottom-up learn-

ing algorithm is presented allowing to learn target

concepts as disjunctions of C-CLASSIC terms

which can further be inserted in the taxonomy.

>From an inductive point of view, extending C-

CLASSIC with default connectives results in the

following advantages:

- The expressive power of C-CLASSIC being

greater than the expressive power of C-CLASSIC,

it is possible to learn more concepts by using C-

CLASSIC than by using C-CLASSIC.

- When the concepts to learn can be expressed

using default knowledge, the disjunctive concepts

learned in C-CLASSIC have less disjuncts than

the concepts learned in C-CLASSIC.

The extension algorithm is as follows :
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set I = {C , ,C } of incoherent terms.

ENF-e the extended normal form of e.

Remove (d): transforms a term d of C-CLASSIC

in a term of C-CLASSIC by removing default and ex-

cepted properties of d (since incoherences concern only

strict properties).

Subsume(C,D): returns if C subsumes D, C and D be-

ing two terms of C-CLASSIC.

NF'(d): computes the normal form of a term d of C-

CLASSIC.

NF(d): computes the normal form of a term d of C-

CLASSIC .

ENF-e NF-e

e' Remove (e)

R of R such that Premisse Conclusion and

Subsume(Premisse ,e')

Add {* Add is true if an excepted property has

been added *}

NF'(e' Conclusion ) = {* Conclusion is incoher-

ent with the description of e *}

ENF-e ENF-e (Conclusion )

Add

Add then if there exists in I a term C such that Sub-

sume(C,e' Conclusion )

ENF-e ENF-e (Conclusion )

ENF-e NF-e then ENF-e NF(ENF-e) {* Normal-

ization of the modi�ed description *}
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