
Generating Random Benchmarks for Description Logics

Quentin Elhaik(*), Marie-Christine Rousset(*), Bernard Ycart(**)

(*) L.R.I., URA C.N.R.S , University of Paris-Sud

Building 490, 91405, Orsay Cedex, France

fquentin, mcrg@lri.lri.fr

(**) LMC/IMAG, University of Grenoble

BP 53, 38041 Grenoble Cedex 9, France

Bernard.Ycart@imag.fr

1 Introduction

The computational complexity of Description Logics

(DL) reasoning problems has been extensively studied

(see e.g.

[

6

]

for a recent survey). Many results on the

worst-case time/space complexity for the correspond-

ing inference algorithms are now available. Those re-

sults show that, under worst-case conditions, testing sub-

sumption, classifying a Tbox, checking satis�ability of a

knowledge base (KB) composed of a Tbox and an Abox,

or answering queries over such a KB require runtime re-

sources that grow exponentially or even worse with the

size of the KB, for any reasonably expressive DL. How-

ever, despite their theoretical intractability, DL systems

have been used for real applications. This suggests that

worst-case examples are not realistic. Very few attempts

have been done to test runtime performance of imple-

mentations of DL algorithms on real or arti�cial KB's.

The comparative analysis of six DL systems described

in

[

8

]

outlines the di�culty of obtaining real KB's.

In this paper, we address the problem of generating

random benchmarks for DL systems. The advantage

of generating random benchmarks is twofold. First, it

is a way to provide a great number of arti�cial knowl-

edge bases whose structure and distribution can be tuned

in order to possibly account for some known real-world

distributions. Second, it makes it possible to perform

average-case complexity analysis for DL algorithms, also

called probabilistic analysis

[

7

]

. In particular, it is an

open question in the DL community how the inference

algorithms behave on average. The recent insights that

have been gained into the understanding of the SAT

problem were due to the performance analysis of ran-

dom instances of the problem

[

9

]

.

Average-case analysis requires precise models of the

distribution of input instances. Ideally, those models

should re
ect real-world distributions. However, since

we usually do not have a good understanding of real-

world distributions, average-case analysis has to rely on

random samples of inputs, which are generated according

to some probability distribution. When the set of possi-

ble inputs is �nite (e.g. Aboxes with k objects relative

to a �xed Tbox), it is natural to consider the uniform

distribution on that set, for which all elements of the set

are equally likely. If the set of possible inputs is in�nite,

or if the probability distribution has to be adjusted to �t

real data, then the uniform distribution cannot be used

anymore, and the probability of each element of the set

will depend on some parameters, to be arbitrarily �xed,

or statistically estimated from real data. This will be the

case in the generation of random Tboxes. Given a set

A of inputs and a probability distribution (P (A))

A2A

on that set, a random sample of size n is a n�tuple of

random elements of A, each distributed according to the

given probability distribution, and independent from the

others. In other words, it is an element of the carte-

sian product A

n

, distributed according to the product

probability distribution, for which the probability of the

n�tuple (A

1

; : : : ; A

n

) is P (A

1

)� : : :� P (A

n

).

Generating uniform random samples is easy when the

problem instances have a regular structure whose basic

building blocks are not interrelated. It is the case for the

SAT problem: the instances of SAT are clauses made of

literals which are either propositional variables or their

negations. In the so-called �xed-clause-length model

[

9

]

,

each clause is generated by randomly selecting k vari-

ables among n, each of which is negated with probability

0:5. This test model has been adapted to the setting of

propositional modal logic and its equivalent DL ALC (

[

4;

5

]

, and also

[

1

]

) in order to capture hard instances for

satis�ability checking. As will be seen in section 2, our

goal is to generate random Tboxes in a general and
ex-

ible way enabling the samples that are produced to be

tuned to possibly adjust a given real distribution.

The problem of generating uniform random samples

of Aboxes relative to a �xed Tbox is much more com-

plicated. The reason is that Aboxes are made of facts

that may logically depend on each other, because of the

de�nitions of the concepts and roles in the associated

Tbox. In section 3, we shall introduce a Markov Chain

Monte-Carlo (MCMC) algorithm that generates uniform

random samples of Aboxes. Due to their growing num-

ber of applications, MCMC methods have received a lot

of attention in the past ten years (see Fishman

[

3

]

for

a general reference). In particular, it has been shown

(cf. Sinclair

[

10

]

) that some NP-complete problems can

be approximately solved in polynomial time by such a

method. If a random sample of a probability distribu-

tion (uniform or not) is to be generated, the idea is to

express that distribution as the equilibriummeasure of a

Markov chain. A Markov chain is a sequence of random

variables, generated by an iterative algorithm resorting

at each step to a source of independent calls of a random

generator. If that Markov chain is run for long enough,

one can consider that the �nal output has the desired

probability distribution.

The paper is organized as follows. Section 2 describes

algorithms for the generation of randomTboxes, depend-

ing on the DL constructors. In section 3, the generation

of random Aboxes related to a given Tbox will be treated

by a MCMC algorithm.

2 Generating random Tboxes

Let L be a DL language de�ned by a set of constructors.

We de�ne a L-Tbox as a set of concept expressions that

are constructed on a given set of basic concepts and roles,

and the set of constructors available in L .

The various DL languages di�er from one another

by the set of constructors they allow. In this paper,

we consider DL languages whose constructors are con-

tained in the following list: conjunction (C u D), dis-

junction (C t D), negation (:C), universal quanti�ca-

tion (8R:C), existential quanti�cation (9R:C), number

restrictions ((� nR), (� nR), (� nRC), (� nRC)).

In particular, for sake of simplicity, we do not consider

role constructors or constructors involving individuals,

though most of the notions presented on this paper could

easily be extended to them.

The length of a concept expression is the number of

constructors it contains. It is de�ned as follows:

length(A) = 0 (if A is a basic concept)

length(� nR) = length(� nR) = 1

length(C

1

u C

2

) = length(C

1

t C

2

) =

length(C

1

) + length(C

2

) + 1

length(8 R:C) = length(9 R:C) = length(:C) =

length(� nRC) = length(� nRC) = length(C) + 1.

The depth of a Tbox is the maximal length of the

concept expressions that it contains.

The �rst observation is that there is an in�nity of

Tboxes that can be constructed on a given set of ba-

sic concepts and roles, and a given set of DL construc-

tors. However, there are only a �nite number of con-

cepts with a �xed maximal length. One could consider

natural to �x the depth of the desired Tbox, then to

choose it uniformly in the �nite set of all Tboxes with the

same depth. However, on a given set of basic concepts,

roles and contructors, the total number of concepts with

length i grows exponentially with i. Thus a random

Tbox uniformly distributed in the set of Tboxes with

depth d will contain nearly only concepts of length d.

For that reason, the uniform distribution cannot re
ect

the composition of Tboxes that are met in most applica-

tions. We propose instead to �x a priori the numbers of

concepts of each length that compose the Tbox. This is

a way to adjust the features of the arti�cially generated

Tboxes to a real one. We shall denote by d the depth

of the Tboxes to be generated, and for i = 0; : : : ; d, by

n

i

the number of concepts with length i. Thus the size

of the Tboxes will be n

0

+ � � �+ n

d

. We shall de�ne be-

low a procedure Gen(i) that generates a random concept

with length i. The algorithm for constructing the Tbox

will simply consist of calling independently n

i

times the

procedure Gen(i), for all i = 0; : : : ; d.

The procedure Gen(i) is recursive. Gen(0) is simply

the random choice with uniform distribution of a ba-

sic concept. For i � 1, the �rst step of Gen(i) is to

choose a contructor. With the same goal of
exibility

in the design of the sample, one parametrizes the pro-

portion of each constructor composing the di�erent con-

cepts at a given level. Let K = fK

1

; : : : ;K

`

g be the set

of available constructors. For each level i = 1; : : : ; d, let

fp

(i)

1

; : : : ; p

(i)

`

g be a probability distribution on the set

K. The probability p

(i)

j

represents the proportion of the

constructor K

j

used in the de�nition of concepts at level

i

1

. The general procedure is as follows.

Choose a constructor, say K

j

with probability p

(i)

j

.

� If K

j

is the negation constructor, let C be the out-

put of Gen(i� 1). Then Gen(i) returns :C.

� If K

j

is a binary constructor (u, t), then choose a

random integer, uniformly distributed on f0; : : : ; i�

1g. Let C

1

be the output of Gen(i

1

) and C

2

be

the output of Gen(i� i

1

� 1). Then Gen(i) returns

K

j

(C

1

; C

2

).

� If K

j

is a quanti�cation constructor ((8R:C) or

(9R:C)), then choose a random role R with uni-

form distribution on the set of basic roles, and let C

be the output of Gen(i � 1). Then Gen(i) returns

K

j

(R;C).

� If K

j

is a cardinality restriction, the additional dif-

�culty is to choose randomly the integer n. Choose

�rst a random role R with uniform distribution on

the set of basic roles. Now the integer n can be cho-

sen according to any of the classical distributions

1

For i � 2, p

(i)

j

= 0 for the constructors K

j

being (� nR),

(� nR), or the negation restricted to basic concepts.

on the set of integers (Geometric, Poisson, Bino-

mial and so on). It is possible (and even desirable)

to have the parameter of the distribution depend on

the role R. Once n has been chosen,

{ if K

j

is an unquali�ed number restriction ((�

nR), or (� nR)), i is necessarily equal to 1

and Gen(1) returns K

j

(n;R),

{ if K

j

is a quali�ed number restriction ((�

nRC), or (� nRC)), let C be the output of

Gen(i� 1). Then Gen(i) returns K

j

(n;R;C).

Remark 2.1: It has to be noted that, in contrast with

the random generation process described in

[

8

]

, we do

not force the subexpressions of the generated concepts

of length i to appear explicitly in the Tbox.

Remark 2.2: During the process of generating a Tbox,

even if the same concept might theoretically be gener-

ated several times, this is extremely unlikely considering

the orders of magnitude. However, it is necessary to

check that each generated concept is consistent.

Remark 2.3: We have supposed that the basic con-

cepts and roles were randomly chosen with a uniform

distribution. They could be chosen with another distri-

bution in order to favor some basic concepts and roles

or to adjust a given real distribution.

3 Generating random Aboxes

Let T be a Tbox and let O be a set of individuals. An

Abox relative to T and O is a set of facts of the form

C(a), or R(a; b), where C and R are respectively a con-

cept expression and a basic role appearing in T , and a,

b are individuals of O.

In this section, we address the problem of generating

uniform samples of admissible Aboxes relative to a given

Tbox and a set of individuals. The notion of admissi-

bility of an Abox varies depending on the purpose for

which the benchmarks are constructed. Indeed, it re-

ects the kinds of Aboxes that are signi�cant as inputs

of the algorithm or the analysis under consideration. For

a probabilistic analysis of satis�ability checking, one can

consider that any Abox is admissible, while for analyz-

ing a query-answering algorithm even if it consists of

checking the unsatis�ability of the Abox together with

the negation of the query., only satis�able Aboxes will

be considered as admissible inputs. In other cases, the

admissible Aboxes will be satis�able and not redundant

(i.e. not containing facts of the form C(a) and D(a)

where D subsumes C).

Let A be the set of admissible Aboxes relative to T

and O. Let c be the number of concept expressions in

T , r the number of basic roles appearing in T , and k the

number of individuals in O. The set A is �nite, with a

potentially large cardinality, actually bounded above by

2

ck+rk

2

. Enumerating that set in order to produce a uni-

formly distributed random sample is not feasible. In such

cases, one has to resort to a MCMC algorithm. The idea

is to de�ne an undirected graph structure, the vertices of

which are the elements of the set to be sampled. In our

case, the vertices will be Aboxes relative to a given Tbox

and a set of objects, and the edges will connect pairs

of Aboxes di�ering by a single fact. A natural Markov

chain (see e.g.

[

10

]

) on a graph is the symmetric random

walk that explores the vertex set by choosing randomly

at each step the next state among the nearest neigh-

bors of the current state. It can easily be proved that

the symmetric random walk on an undirected connected

graph admits the uniform distribution on the vertex set

as its unique asymptotic distribution. Thus the output

of that random walk after a su�cient running time can

be considered as a uniformly distributed random variable

on the vertex set. The problem is to decide what `suf-

�cient' means, i.e. to de�ne an explicit stopping test.

A method for generating a random sample of Markov

chains, with an explicit stopping test has been proposed

in

[

11

]

. The counter-intuitive result is that the limiting

uniform distribution for the sample can be reached long

before the elements have spanned the whole state space.

Thus, the method can be actually implemented in spite

of the combinatorial explosion in the size of the state

space.

3.1 Markov Chain Monte-Carlo method

De�nition 3.1: Let G = (V;E) be an undirected con-

nected graph with (�nite) vertex set V and edge set E.

For each x 2 V , let N (x) be the set of neighbors of x.

N (x) = f y 2 V : fx; yg 2 E g :

Let d(x) be the degree of vertex x (cardinality of N (x)),

and d be the maximal degree of the graph (maximal value

of d(x)). The symmetric random walk on the graph G

is the sequence fX

m

; m � 0g generated by the following

algorithm, in which the successive random choices are

assumed to be independent.

m � 0

Initialize X

0

2 V

Repeat

Choose X

m+1

2 N (X

m

) with probability 1=d

or X

m+1

= X

m

with probability (1�d(x))=d.

m � m+ 1

Until stopping condition.

Theorem 3.1: Under the hypotheses of de�nition 3.1,

the uniform distribution on V is the unique stationary

distribution of the symmetric random walk fX

m

; m �

0g on the graph G. As m tends to in�nity, X

m

converges

in distribution to that stationary distribution.

In the classical presentation of MCMC algorithms, a

sample of size n is obtained by extracting n regularly

spaced values of fX

m

; m � 0g:

(X

m

0

; X

m

0

+m

1

; : : : ; X

m

0

+nm

1

) :

Even though several heuristics have been proposed, no

rigourous result at this day permits a clear choice for

m

0

and m

1

. An alternative was proposed in

[

11

]

, based

on running n independent versions of the algorithm, all

starting with the same initialization. This generates a

Markov chain on the product of n copies of the initial

state space. It has been proved that a cuto� phenomenon

occurs for this product Markov chain, in the sense that

it remains far from equilibrium before a certain cuto�

time, and very close after (propositions 3.1 and 3.2 of

[

11

]

). The advantage of this approach is that the cuto�

phenomenon yields a natural stopping condition for the

algorithm: the simulation should be run at least until

cuto�, while it is useless to run it for much longer after.

It should be noted that since the cuto� time grows only

as log(n), the method is reasonable from the point of

view of computing time. The practical interest of this ap-

proach is that the cuto� can be detected algorithmically.

Let W be a subset of V and assume that its probability

for the uniform distribution on V , jW j=jV j, is known or

has been statistically estimated. Let fZ

m

; m � 0g be

the product chain of n symmetric random walks on G.

Z

m

= (X

(1)

m

; : : : ; X

(n)

m

) ;

where the X

(i)

m

's are independent copies of the random

walk of de�nition 3.1, all starting from identical states.

Consider the proportion of elements in the sample that

are in W at time m:

S

m

(W) =

1

n

n

X

i=1

11

W

(X

(i)

m

) ;

where 11

W

(x) is the indicator function for x belonging to

W : 1 if it does, 0 else. As m tends to in�nity, the distri-

bution of the sample tends to the product of n copies of

the uniform distribution by itself. Thus S

m

(W) should

be asymptotically close to the limit probability jW j=jV j.

Under some technical assumptions, the �rst instant m

at which S

m

(W) reaches the limit value is a converg-

ing estimate of the cuto� time (Proposition 4.1 of

[

11

]

).

This determines the desired stopping condition for the

generating algorithm.

3.2 Uniform samples of Aboxes

In the graph structure that we de�ne on V = A, edges

connect pairs of admissible Aboxes di�ering by a single

fact. A priori, the number of possible neighbors of a

given Abox is ck+rk

2

. It is indeed the number of neigh-

bors of the empty Abox. Thus the maximal degree of

the graph structure is d = ck + rk

2

. Due to possible in-

compatibilities or redundancies, the degree of a general

Abox can be notably smaller. This is re
ected in the

algorithm, through the admissibility test.

In order to apply theorem 3.1, one has to check that

the graph structure so de�ned is connected. Let A be an

admissible Abox. Then any Abox obtained by removing

a fact from A, is still admissible. Thus there exists a

path connecting any admissible Abox to the empty one.

Hence the connectedness of the graph.

The algorithm for generating a uniform sample of n

admissible Aboxes relative to a given Tbox and a given

set of individuals is the following:

[A

1

; : : : ; A

n

] � [;; : : : ; ;]

Repeat

For i = 1 to N:

Choose concept fact

with probability ck=(ck + rk

2

)

or role fact

with probability rk

2

=(ck + rk

2

)

If concept fact Then

Choose a concept expression C

with probability 1=c, and

Choose an individual o

with probability 1=k

If C(o) 2 A

i

Then A

i

 � A

i

n fC(o)g

Else If A

i

[fC(o)g admissible

Then A

i

 � A

i

[fC(o)g

If role fact Then

Choose a role R

with probability 1=r and

Choose a couple of individuals (o; o

0

)

with probability 1=k

2

If R(o; o

0

) 2 A

i

Then A

i

 � A

i

n fR(o; o

0

)g

Else If A

i

[fR(o; o

0

)g admissible

Then A

i

 � A

i

[fR(o; o

0

)g

EndFor

Until jfA

i

: F 2 A

i

gj � np[F].

In the stopping condition, F is a given fact, and p[F]

is the probability that a random Abox contains F : p[F]

can be estimated on a smaller sample.

It has to be noted that this algorithm calls several

times the admissibility test. In theory, this test might

be very costly since it consists of checking satis�ability

or redundancy of Aboxes. However, in the setting of

our algorithm, this admissibility test is always checked

on Aboxes that di�er from an admissible Abox by one

single fact. It can be expected that checking the admis-

sibility of such Aboxes is less costly than checking ad-

missibility in general without a priori knowledge about

the Aboxes. It is indeed the case when the admissi-

bility test can be focused on the fact that is added to

an admissible Abox. In the setting of the DL language

(referred to as core-CLASSIC) having the constructors

u;8; (� nR); (� nR) and : (on basic concepts only),

we have implemented the following algorithm for test-

ing whether satis�ability is preserved when a new fact is

added to a satis�able Abox.

� If the fact F to be added to A is C(o),

{ if C has the form (8R

1

: : :8R

n

:D), for each R

1

-

: : :-R

n

-successor

2

s of o, if it exists D

0

(s) 2 A

such that D and D

0

are disjoint, or if D has

the form (� nR) and s has more than n R-

successors in A, then A[F is not admissible,

{ for each R

1

-: : :-R

n

-predecessor p of o such that

(8R

1

: : :8R

n

:D)(p) 2 A, if C andD are disjoint

then A [F is not admissible.

� If the fact F to be added to A is R(o; o

0

),

{ for each R

1

-: : :-R

n

-predecessor

3

p in A of o

such that (8R

1

: : :8R

n

:(� nR))(p) 2 A, if o

has n R-successors in A then A [F is not ad-

missible,

{ for each (8R:8R

1

: : :8R

n

:C)(o) 2 A, for

each R

1

-: : :-R

i

-successor s of o

0

such that

(8R

i+1

: : :8R

n

:D)(s) 2 A, if C and D are dis-

joint then A [F is not admissible.

It enabled us to implement the above MCMC genera-

tion algorithm in order to obtain random uniform bench-

marks to evaluate a saturation algorithm of databases

encoding core-CLASSIC-Aboxes

[

2

]

.

4 Conclusion and Perspectives

In this paper, we have presented the foundations for gen-

erating random Tboxes and Aboxes. In particular, we

have shown the usefulness of MCMC methods for gen-

erating uniform samples of Aboxes relative to a given

Tbox and a set of individuals. In the setting of the

core-CLASSIC language, we have implemented an al-

gorithm for generating random Tboxes and a MCMC

simulation algorithm for generating random satis�able

Aboxes. Those algorithms have been run to generate,

�rst, a Tbox having 10 roles and 100 concepts (includ-

ing 80 % of basic concepts or negation of basic concepts),

second, a sample of 100 Aboxes relative to that Tbox and

to 100 individuals.

This preliminary work is the beginning of a broad

program which will consist of performing a probabilis-

tic analysis of the structure of the random Tboxes and

Aboxes, and of the DL inference algorithms. Two levels

2

If the role chain is empty, (8R

1

: : : 8R

n

:D) is D and o is

its own and only R

1

-: : :-R

n

-successor.

3

If the role chain is empty, o is its own and only R

1

-: : :-

R

n

-predecessor.

will have to be distinguished in this probabilistic analy-

sis. The �rst one will consider random Aboxes relative

to a �xed Tbox, the second one will analyze random

Aboxes relative to Tboxes that will themselves be ran-

domly generated.

It will be interesting to check whether zero-one laws

are observed in the DL setting as they occur for random

graphs or boolean satis�ability. Zero-one laws are a uni-

versal feature of asymptotic random phenomenons. If a

random event is de�ned on a structure of very large size

with a high degree of built-in independence, then it can

be expected in general that its probability is either close

to 0 or close to 1. Such phenomenons are common in

random graphs.

In an analogous way, one should expect concentration

results for many variables of practical interest. The

interest of a true probabilistic analysis is to give not only

an average for the quantities of interest (costs, size . . .),

but also a precision, or con�dence interval around those

average values.

References

[

1

]

P. Bresciani, E.Franconi, S.Tessaris. Implementing

and testing expressive Description Logics: a prelim-

inary report. In Proceedings of DL-95, 1995.

[

2

]

Q. Elhaik and M-C. Rousset. Making an Abox per-

sistent. In Proceedings of DL'98, 1998.

[

3

]

G.S. Fishman. Monte-Carlo concepts algorithms and

applications. Springer-Verlag, New York, 1996.

[

4

]

F. Giunchiglia, R.Sebastiani. A SAT-based decision

procedure for ALC. In Proceedings of KR'96, 1996.

[

5

]

F. Giunchiglia, M. Roveri, R.Sebastiani. A new

method for testing decision procedures in modal and

terminological logics. In Proceedings of DL'96, 1996.

[

6

]

D. Nardi F.M. Donini, M. Lenzerini, and A. Schaerf.

Reasoning in description logics. In Principles of Arti-

�cial Intelligence. G.Brewska (ed.), Springer-Verlag,

New York, 1995.

[

7

]

M. Hofri. Probabilistic analysis of algorithms.

Springer-Verlag, New York, 1987.

[

8

]

B. Nebel, J. Heinsohn, D. Kudenko, and H.J. Prof-

itlich. An empirical analysis of terminological repre-

sentation system. Arti�cial Intelligence, 1994.

[

9

]

B. Selman. Stochastic search and phase transitions:

AI meets physics. In Proceedings of AAAI-94, 1994.

[

10

]

A. Sinclair. Algorithms for random generation and

counting: a Markov chain approach. Birkh�auser,

Boston, 1993.

[

11

]

B. Ycart. Cuto� for samples of Markov chains. Re-

search report MAI number 51, available on web site

http://www-lmc.imag.fr/MAI, 1998.

