
Matching in Description Logics:

Preliminary Results

Franz Baader

Theoretical Computer Science

RWTH Aachen

52074 Aachen, Germany

Alex Borgida

Dept. of Computer Science

Rutgers University

New Brunswick, NJ, USA

Deborah L. McGuinness

Arti�cial Intelligence Principles

AT&T Labs{Research

Florham Park, NJ, USA

Abstract

Matching of concepts with variables (concept

patterns) is a relatively new operation that has

been introduced in the context of concept de-

scription languages (description logics), origi-

nally to help discard unimportant aspects of

large concepts appearing in industrial-strength

knowledge bases. This paper proposes a new

approach to performing matching, based on a

\concept-centered" normal form, rather than

the more standard \structural subsumption"

normal form for concepts. As a result, match-

ing can be performed (in polynomial time) us-

ing arbitrary concept patterns of the descrip-

tion language FL

:

, thus removing restrictions

from previous work. The paper also addresses

the question of matching problems with addi-

tional \side conditions", which were motivated

by practical experience.

1 Introduction

The traditional inference problems for Description

Logic (DL) systems (like subsumption) are now well-

investigated. This means that algorithms are available

for solving the subsumption problem and related infer-

ence problems in a great variety of DL languages of dif-

fering expressive power. In addition, the computational

complexity of these inference problems has been investi-

gated in detail. It has turned out, however, that building

and maintaining large DL knowledge bases requires sup-

port by additional inference capabilities, which have not

been considered in the DL literature until very recently.

The present paper is concerned with such a new inference

service, namely, matching of concept descriptions.

Matching of Description Logic concepts was intro-

duced in the Classic system (version 2), under the

name of \�ltering", as a technique for specifying which

aspects of a concept should be selected for printing or

explanation. The need for this facility became appar-

ent when dealing with large knowledge bases, involving

concepts whose description spans multiple pages of out-

put: in many cases, such concepts carried details that

either were obviously true (e.g., the age of a person is

a number) or were intended for some internal function

(e.g., graphical display) rather than domain modeling.

In either case, both the printing and the explaining of

results provided by the more traditional inference ser-

vices [8, 7] required pruning. In projects using Classic,

pruning of the descriptions resulted in concepts that were

approximately an order of magnitude smaller. In small

applications such as [9], this actually saved 3{5 pages of

printout; in larger applications such as [11, 10] it might

save up to 30 pages.

This pruning mechanism was �rst formalized in [7]

as a purely syntactic match involving terms/concepts

with variables, and then given a semantics and a syn-

tactic implementation in [3]. Given a concept pattern

D (i.e., a concept description containing variables) and

a concept description C without variables, the matching

problem introduced in [3] asks for a substitution � (of the

variables by concept descriptions) such that C v �(D).

More precisely, one is interested in a \minimal" solution

of the matching problem, i.e., � should satisfy the prop-

erty that there does not exist a substitution � such that

C v �(D) @ �(D). For example, the minimal matcher

of the pattern D := 8research-interests:X against the de-

scription C:

8pets:Catu8research-interests:ArtIntu8hobbies:Gardening

assigns ArtInt to the variable X , and thus �nds the sci-

enti�c interests (in this case Arti�cial Intelligence) de-

scribed in the concept. (The concept pattern can be

thought of as a \format statement", describing what in-

formation is to be displayed (or explained), if the pattern

matches successfully against a speci�c concept. If there

is no match, nothing is displayed.)

In some cases, this pruning e�ect can be improved by

imposing additional side conditions on the solutions of

matching problems. For example, the information that

the research interests lie in the area of Arti�cial Intel-

1

ligence may not provide interesting information if our

knowledge base is concerned only with AI researchers. A

side condition stating that the solutions for the variable

X must be subsumed by KnowlRep would make sure that

matching succeeds only if the research interests belong

to (a sub�eld of) Knowledge Representation. Thus, the

description C from above no longer matches the pattern

D, whereas C

0

:

8pets:Cat u 8research-interests:DL u 8hobbies:Gardening

would still yield a solution (provided that DL is de�ned

by a description that is subsumed by KnowlRep). Side

conditions become especially useful once we have indi-

vidual role �llers that can match variables, since they

allow us to state complex conditions on the matching

individual.

In some cases we would like to have a matching process

which succeeds only if the variable X is substituted for

by a value that is strictly subsumed by some description

(or pattern). The utility of such strict side-conditions

might be more clearly seen in an example where the con-

cept Person is known to have Number restrictions on the

age attribute, and we are interested in seeing the value

restriction for age only if it represents some additional

(i.e., stricter) constraint. Another point worth noting

is that according to the standard Description Logic se-

mantics, every description is subsumed by all concepts of

the form 8R:>, where > denotes the universal concept.

Hence the pattern D above (concerning research inter-

ests) matches every concept. Side conditions requiring

the value substituted for a variable to be strictly sub-

sumed by > prevent such \trivial" matches.

Matching algorithms for a DL containing most of the

constructs available in Classic are introduced in [7] and

[3]. These algorithms are based on the role-centered nor-

mal form

1

of concept descriptions usually employed by

structural subsumption algorithms. The main drawback

of these algorithms is that they cannot treat arbitrary

matching problems since they require the concept pat-

tern to be in structural normal form.

In [2], Baader and Narendran consider uni�cation of

concept descriptions in FL

0

, which allows for conjunc-

tion (u), value restriction (8R:C), and the top concept

(>). Matching modulo equivalence, i.e., the question

whether, for a given pattern D and a description C,

there exists a substitution � such that C � �(D), can be

seen as a special case of uni�cation where one of the de-

scriptions (namely C) does not contain variables. Since

C v �(D) i� C � �(C u D), matching modulo sub-

sumption (as introduced above) is an instance of match-

1

We call this normal form \role-centered" since it groups

sub-descriptions by role names, whereas the concept-centered

normal form used in this paper groups value restrictions by

concept names.

ing modulo equivalence. The polynomial matching al-

gorithm described in [2] does not impose restrictions on

the form of the patterns. However, it is restricted to the

small language FL

0

.

In the present paper, we show that this algorithm can

be extended to treat matching in languages allowing for

inconsistent concept descriptions, namely FL

?

, which

extends FL

0

by the bottom concept (?), and FL

:

,

which extends FL

?

by primitive negation (:A, where A

is an atomic concept). In addition, we consider match-

ing under additional conditions on the variable bindings,

which also arose in examples in [9, 7] and were respon-

sible for about 25% of our space savings in our deployed

example. In this paper, we consider two di�erent vari-

ants of these \side conditions": subsumption conditions

and strict subsumption conditions. Subsumption con-

ditions are of the form X v E, where X is a vari-

able and E is a pattern (i.e., it may contain variables),

and they restrict the matchers to substitutions � sat-

isfying �(X) v �(E). It should be noted that such a

side condition is not a matching problem since variables

may occur on both sides. We shall see, however, that

in many cases matching under subsumption conditions

can be reduced in polynomial time to matching without

subsumption conditions. In contrast, strict subsumption

conditions may increase the complexity of the matching

problem. Such conditions are of the form X @ E, where

X is a variable and E is a pattern, and they restrict the

matchers to substitutions � satisfying �(X) v �(E) and

�(X) 6� �(E). Even for the small languagesFL

0

, match-

ing under strict subsumption conditions is NP-hard.

Except for the proofs of the two main lemmas, which

provide us with our polynomial matching algorithm, we

omit all the proofs. Detailed proofs can be found in [1].

2 Formal preliminaries

In this section, we �rst introduce syntax and semantics

of the description languages considered in this paper.

Then, we formally introduce matching problems, and

state some simple results about matching problems and

their solutions.

De�nition 1 Let C and R be disjoint �nite sets repre-

senting the set of atomic concepts and the set of atomic

roles . The set of all FL

:

-concept descriptions over C

and R is inductively de�ned as follows:

� Every element of C is a concept description (atomic

concept).

� The symbols > (top concept) and ? (bottom con-

cept) are concept descriptions.

� If A 2 C, then :A is a concept description (atomic

negation).

� If C and D are concept descriptions, then C uD is

a concept description (concept conjunction).

2

� If C is a concept description and R 2 R is an atomic

role, then 8R:C is a concept description (value re-

striction).

In the sublanguage FL

0

of FL

:

, atomic negation and

? may not be used, whereas in FL

?

only atomic nega-

tion is disallowed.

The following de�nition provides a model-theoretic se-

mantics for FL

:

and its sublanguages:

De�nition 2 An interpretation I consists of a

nonempty set �

I

, the domain of the interpretation, and

an interpretation function that assigns to every atomic

concept A 2 C a set A

I

� �

I

, and to every atomic

role R 2 R a binary relation R

I

� �

I

� �

I

. The

interpretation function is extended to complex concept

descriptions as follows:

>

I

:= �

I

;

?

I

:= ;;

(:A)

I

:= �

I

nA

I

;

(C uD)

I

:= C

I

\D

I

;

(8R:C)

I

:= fd 2 �

I

j 8e 2 �

I

:

(d; e) 2 R

I

! e 2 C

I

g:

Based on this semantics, subsumption and equivalence

of concept descriptions is de�ned as follows: Let C and

D be FL

:

-concept descriptions.

� C is subsumed by D (C v D) i� C

I

� D

I

for all

interpretations I .

� C is equivalent to D (C � D) i� C

I

= D

I

for all

interpretations I .

� C is strictly subsumed by D (C @ D) i� C v D and

C 6� D.

In order to de�ne matching of concept descriptions, we

must introduce the notion of a concept pattern and of

substitutions operating on patterns. For this purpose,

we introduce an additional set of symbols X (concept

variables), which is disjoint from C [R.

De�nition 3 The set of all FL

:

-concept patterns over

C, R, and X is inductively de�ned as follows:

� Every concept variable X 2 X is a pattern.

� Every FL

:

-concept description over C and R is a

pattern.

� If C and D are concept patterns, then C u D is a

concept pattern.

� If C is a concept pattern and R 2 R is an atomic

role, then 8R:C is a concept pattern.

Thus, concept variables can be used like atomic con-

cepts, with the only di�erence being that atomic nega-

tion may not be applied to variables.

A substitution � is a mapping from X into the set of

all FL

:

-concept descriptions. This mapping is extended

to concept patterns in the obvious way, i.e.,

� �(A) := A and �(:A) := :A for all A 2 C,

� �(>) := > and �(?) := ?,

� �(C uD) := �(C) u �(D), and

� �(8R:C) := 8R:�(C).

For example, applying the substitution � := fX 7! A u

8R:A; Y 7! Bg to the pattern X u Y u 8R:X yields the

description A u (8R:A) uB u 8R:(A u 8R:A).

Obviously, the result of applying a substitution to an

FL

:

-concept pattern is an FL

:

-concept description.

2

An FL

0

-substitution maps concept variables to FL

0

-

concept descriptions. FL

?

-substitutions are de�ned

analogously.

Subsumption can be extended to substitutions as fol-

lows. The substitution � is subsumed by the substitution

� (� v �) i� �(X) v �(X) for all variables X 2 X .

De�nition 4 An FL

:

-matching problem is of the form

C �

?

D where C is an FL

:

-concept description and D

is an FL

:

-concept pattern. A solution or matcher of

this problem is a substitution � such that C � �(D).

A subsumption condition in FL

:

is of the form X v

?

E where X is a concept variable and E is an FL

:

-

concept pattern. The substitution � satis�es this condi-

tion i� �(X) v �(E).

A strict subsumption condition in FL

:

is of the form

X @

?

E where X is a concept variable and E is an

FL

:

-concept pattern. The substitution � satis�es this

condition i� �(X) @ �(E).

Matching problems and (strict) subsumption condi-

tions in FL

0

and FL

?

are de�ned analogously. Note

that also the solutions are then constrained to belong to

the respective sublanguage.

Instead of a single matching problem, we may also

consider a �nite system fC

1

�

?

D

1

; : : : ; C

m

�

?

D

m

g of

such problems. The substitution � is a solution of this

system i� it is a solution of all the matching problems

C

i

�

?

D

i

contained in the system. However, it is easy

to see that solving systems of matching problems can

be reduced (in linear time) to solving a single matching

problem.

Lemma 5 Let R

1

; : : : ; R

m

be distinct atomic roles.

Then � solves the system fC

1

�

?

D

1

; : : : ; C

m

�

?

D

m

g

i� it solves the single matching problem

8R

1

:C

1

u � � � u 8R

m

:C

m

�

?

8R

1

:D

1

u � � � u 8R

m

:D

m

:

2

Note that this would not be the case if we had allowed

the application of negation to concept variables.

3

Consequently, we may (without loss of generality) re-

strict our attention to single matching problems with or

without �nite sets of (strict) subsumption conditions.

In [3, 7], a di�erent type of matching problems has

been considered. We will refer to those problems as

matching modulo subsumption in order to distinguish

them from the matching problems modulo equivalence

introduced above.

De�nition 6 A matching problem modulo subsumption

is of the form C v

?

D where C is a concept description

and D is a pattern. A solution of this problem is a

substitution � satisfying C v �(D).

For any description language allowing conjunction of

concepts, matching modulo subsumption can be reduced

(in linear time) to matching modulo equivalence:

Lemma 7 The substitution � solves the matching prob-

lem C v

?

D i� it solves C �

?

C uD.

For FL

:

, and more generally for any description lan-

guage in which variables in patterns may only occur in

the scope of \monotonic" operators, solvability of match-

ing problems modulo subsumption can be reduced to

subsumption:

Lemma 8 Let C v

?

D be a matching problem modulo

subsumption in FL

:

, and let �

>

be the substitution that

replaces each variable by >. Then C v

?

D has a solution

i� �

>

solves C v

?

D.

Thus, solvability of matching problems modulo sub-

sumption in FL

:

and its sublanguages is not an inter-

esting new problem. This changes, however, if we con-

sider such matching problems together with additional

(strict) subsumption conditions. In fact, these condi-

tions may exclude the trivial solution �

>

. In addition,

one is usually not interested in an arbitrary solution of

the matching problem C v

?

D, but rather in computing

a \minimal" solution:

De�nition 9 Let C v

?

D be a matching problem mod-

ulo subsumption. The solution � of C v

?

D is called

minimal i� there does not exist a substitution � such

that C v �(D) @ �(D).

Lemma 10 Let C v

?

D be an FL

:

-matching problem

modulo subsumption. If � is the least solution of C v

?

D

w.r.t. subsumption of substitutions, i.e., � v � for all

solutions �, then � is also a minimal solution.

It should be noted that talking about the least solution

is a slight abuse of language since the least solution of a

given matching problem is unique only up to equivalence:

if � and � are both least solutions of the same matching

problem then they subsume each other, which means

that �(X) � �(X) for all variables X 2 X .

The converse of Lemma 10 need not hold. For exam-

ple, for the matching problem 8R:A v

?

8R:A u 8R:X ,

the substitutions � := fX 7! Ag and � := fX 7! >g

are both minimal solutions, but � obviously cannot be

a least solution. This example also demonstrates that

minimal solutions of a given matching problem need not

be unique up to equivalence.

3 Matching in FL

?

The purpose of this section is to show that solvability of

FL

?

-matching problems can be decided in polynomial

time. In addition, for matching problems modulo sub-

sumption we can compute a minimal solution in poly-

nomial time. Our algorithm is based on a \concept-

centered" normal form for FL

?

-concept descriptions.

First, let us recall the concept-centered normal form

for FL

0

-concept descriptions introduced in [2]. It is

easy to see that any FL

0

-concept description can be

transformed into an equivalent description that is ei-

ther > or a (nonempty) conjunction of descriptions of

the form 8R

1

: � � � 8R

m

:A for m � 0 (not necessarily dis-

tinct) atomic roles R

1

; : : : ; R

m

and an atomic concept

A 6= >. We abbreviate 8R

1

: � � � 8R

m

:A by 8R

1

: : : R

m

:A,

where R

1

: : : R

m

is considered as a word over the al-

phabet � := R of all atomic roles. In addition, in-

stead of 8w

1

:A u : : : u 8w

`

:A we write 8L:A where

L := fw

1

; : : : ; w

`

g is a �nite set of words over �. The

term 8;:A is considered to be equivalent to >. Using

these abbreviations, any pair of FL

0

-concept descrip-

tions C;D containing the atomic concepts A

1

; : : : ; A

k

can be rewritten as

C � 8U

1

:A

1

u : : : u 8U

k

:A

k

;

D � 8V

1

:A

1

u : : : u 8V

k

:A

k

;

where U

i

; V

i

are �nite sets of words over the alphabet of

all atomic roles. This normal form provides us with the

following characterization of equivalence of FL

0

-concept

descriptions [2]:

Lemma 11 Let C;D be FL

0

-concept descriptions with

normal forms as introduced above. Then C � D i� U

i

=

V

i

for all i; 1 � i � k.

This characterization can in turn be used to reduce

matching of FL

0

-concept descriptions to a certain for-

mal language problem, which can easily be shown to be

solvable in polynomial time (see [2] for details).

If we treat ? like an arbitrary atomic concept, FL

?

-

concept descriptions C;D can still be represented in the

form

3

C � 8U

0

:? u 8U

1

:A

1

u : : : u 8U

k

:A

k

;

D � 8V

0

:? u 8V

1

:A

1

u : : : u 8V

k

:A

k

:

3

We shall call this the FL

0

-normal form of the descrip-

tions.

4

However, equivalence of the descriptions no longer corre-

sponds to equality of the languages U

i

and V

i

. The rea-

son is that 8R

1

: � � � 8R

m

:? is subsumed by any value re-

striction of the form 8R

1

: � � � 8R

m

: 8R

m+1

: � � � 8R

m+n

:A.

This fact is taken into account by the following charac-

terization of equivalence of FL

?

-concept descriptions:

Lemma 12 Let C;D be FL

?

-concept descriptions with

FL

0

-normal forms as introduced above. Then

C � D i� U

0

��

�

= V

0

��

�

and

U

i

[U

0

��

�

= V

i

[V

0

��

�

for all i; 1 � i � k;

where �

�

is the set of all words over the alphabet of all

atomic roles and � stands for concatenation.

If D is an FL

?

-pattern containing the variables

X

1

; : : : ; X

`

, then its FL

0

-normal form is of the form

D � 8V

0

:? u 8V

1

:A

1

u : : : u 8V

k

:A

k

u

8W

1

:X

1

u : : : u 8W

`

:X

`

:

If we want to match D with the description C (with

normal form as above), we must solve the following \for-

mal language" equations (where X

j;i

are interpreted as

variables for �nite sets of words):

(?) U

0

��

�

= V

0

��

�

[W

1

�X

1;0

��

�

[: : : [W

`

�X

`;0

��

�

;

and for all i; 1 � i � k,

(A

i

) U

i

[U

0

��

�

= V

i

[W

1

�X

1;i

[: : :[W

`

�X

`;i

[U

0

��

�

:

Theorem 13 Let C be an FL

?

-concept description and

D an FL

?

-concept pattern with FL

0

-normal forms as

introduced above. Then the matching problem C �

?

D

has a solution i� the formal language equations (?) and

(A

1

); : : : ; (A

k

) are each solvable.

Example 14 As a running example, we will consider

the problem of matching the pattern

D := X

1

u (8R:X

1

) u (8S:X

2

)

against the description

C := 8R:((8S:A

1

) u (8R:?)) u 8S:8S:?:

The FL

?

-normal forms of C and D are

C � 8fRR;SSg:?u 8fRSg:A

1

;

D � 8;:?u 8;:A

1

u 8f";Rg:X

1

u 8fSg:X

2

:

Thus, the matching problem C �

?

D is translated into

the following two equations:

(?) fRR;SSg��

�

= ;��

�

[f";Rg�X

1;0

��

�

[

fSg�X

2;0

��

�

(A

1

) fRSg [fRR;SSg��

�

= ; [f";Rg�X

1;1

[

fSg�X

2;1

[fRR;SSg��

�

If we want to utilize Theorem 13 for deciding matching

problems in FL

?

, we must show how solvability of the

equations (?), (A

1

), ..., (A

k

) can be tested. First, we

address the problem of solving equation (?).

Lemma 15 Equation (?) has a solution i� replacing

X

j;0

��

�

by the sets

\

w2W

j

w

�1

�(U

0

��

�

)

solves equation (?).

4

Proof. To show the only-if direction, we assume that

the assignment X

1;0

:= M

1;0

; : : : ; X

`;0

:= M

`;0

solves

equation (?).

First, we prove that M

j;0

��

�

�

T

w2W

j

w

�1

�(U

0

��

�

)

holds for all j; 1 � j � `. Thus, let v 2 M

j;0

��

�

and

w 2 W

j

. Since W

j

�M

j;0

��

�

� U

0

��

�

, we know that

wv 2 U

0

��

�

, and thus v 2 w

�1

�(U

0

��

�

). This shows

that M

j;0

��

�

� w

�1

�(U

0

��

�

) for all w 2 W

j

, and thus

M

j;0

��

�

�

T

w2W

j

w

�1

�(U

0

��

�

).

As an immediate consequence, we obtain

U

0

��

�

= V

0

��

�

[W

1

�M

1;0

��

�

[: : : [W

`

�M

`;0

��

�

� V

0

��

�

[W

1

�

\

w2W

1

w

�1

�(U

0

��

�

) [: : : [

W

`

�

\

w2W

`

w

�1

�(U

0

��

�

):

It remains to be shown that the inclusion in the other

direction holds as well. Obviously, we have V

0

��

�

�

U

0

��

�

since there exists a solution of (?). To conclude

the proof of the only-if direction, assume that u 2 W

j

and v 2

T

w2W

j

w

�1

�(U

0

��

�

). We must show that uv 2

U

0

��

�

. Obviously, u 2 W

j

implies v 2 u

�1

�(U

0

��

�

), and

thus uv 2 U

0

��

�

.

To prove the if direction, it is su�cient to show that

there exist �nite sets of words L

j;0

(j = 1; : : : ; `) such

that L

j;0

��

�

=

T

w2W

j

w

�1

�(U

0

��

�

). This is an immedi-

ate consequence of the fact that languages of the form

L��

�

for �nite L are closed under (binary) intersection

and left quotients (see (1) and (2) of Lemma 16 below).

Lemma 16 Let U; V be �nite languages and w a word.

1. There exists a �nite language L

1

such that L

1

��

�

=

w

�1

�(U ��

�

).

2. There exists a �nite language L

2

such that L

2

��

�

=

U ��

�

\ V ��

�

.

3. U ��

�

[V ��

�

= (U [V)��

�

and U �(V ��

�

) =

(U �V)��

�

.

4

For a word w and a set of words L we have w

�1

�L :=

fu j wu 2 Lg. This language is called a left quotient of L.

5

For the matching problem of Example 14, we replace

X

1

��

�

by

R

�1

�(fRR;SSg��

�

) \ "

�1

�(fRR;SSg��

�

) =

fRg��

�

\ fRR;SSg��

�

= fRRg��

�

and X

2

��

�

by

S

�1

�(fRR;SSg��

�

) = fSg��

�

:

It is easy to see that this replacement solves the equa-

tion. The �nite languages L

j;0

are de�ned as L

1;0

:=

fRRg and L

2;0

:= fSg:

Now, let us consider the equations (A

i

) for 1 � i � k.

Lemma 17 Equation (A

i

) has a solution i� replacing

the variables X

j;i

by the sets

b

L

j;i

:=

T

w2W

j

w

�1

�(U

i

[

U

0

��

�

) yields a solution of (A

i

).

Proof. The proof of the only-if direction is very sim-

ilar to the proof of this direction for Lemma 15. In

particular, one can show that any assignment X

1;i

:=

M

1;i

; : : : ; X

`;i

:= M

`;i

that solves (A

i

) satis�es M

j;i

�

b

L

j;i

.

To prove the if direction, it is su�cient to show that

there exist �nite sets of words L

j;i

such that W

j

�L

j;i

[

U

0

��

�

=W

j

�

b

L

j;i

[U

0

��

�

.

We have

b

L

j;i

=

T

w2W

j

(w

�1

�U

i

[w

�1

�(U

0

��

�

)).

By applying distributivity of intersection over union,

this intersection of unions can be transformed into

a union of intersections. Except for the intersection

T

w2W

j

w

�1

�(U

0

��

�

), all the intersection expressions in

this union contain at least one language w

�1

U

i

for a

word w 2 W

j

. Since U

i

is �nite, this shows that

T

w2W

j

w

�1

�(U

0

��

�

) is the only (possibly) in�nite lan-

guage in the union. Consequently, if we de�ne L

j;i

:=

b

L

j;i

n

T

w2W

j

w

�1

�(U

0

��

�

), then L

j;i

is a �nite language.

In order to prove that W

j

�

b

L

j;i

[U

0

��

�

= W

j

�L

j;i

[

U

0

��

�

, it is su�cient to show that u 2 W

j

and v 2

b

L

j;i

n L

j;i

implies uv 2 U

0

��

�

. By de�nition of L

j;i

, we

know that v 2

T

w2W

j

w

�1

�(U

0

��

�

), and thus u 2 W

j

implies uv 2 U

0

��

�

.

For the matching problem of Example 14, we have

b

L

1;1

= R

�1

�(fRSg [fRR;SSg��

�

) \

"

�1

�(fRSg [fRR;SSg��

�

)

= (fSg [fRg��

�

) \ (fRSg [fRR;SSg��

�

)

= fRSg [fRRg��

�

;

b

L

2;1

= S

�1

�(fRSg [fRR;SSg��

�

)

= fSg��

�

:

Again, it is easy to see that replacing the variables X

j;1

by

b

L

j;1

yields a solution of equation (A

1

). The �nite

languages L

j;1

are de�ned as L

1;1

:= fRSg and L

2;1

:=

;.

Lemma 15 and 17 provide us with a polynomial algo-

rithm for deciding solvability of matching problems in

FL

?

.

Theorem 18 Solvability of matching problems in FL

?

can be decided in polynomial time.

The proofs of Lemma 15 and 17 also show how to

compute a matcher of a given solvable FL

?

-matching

problem in polynomial time. In fact, if the matching

problem is solvable, then the following substitution � is

a matcher:

� := fX

1

7! 8L

1;0

:? u

k

u

i=1

8L

1;i

:A

i

;

: : : ;

X

`

7! 8L

`;0

:? u

k

u

i=1

8L

`;i

:A

i

g;

where the languages L

j;0

(1 � j � `) are de�ned

as in the proof of Lemma 15, and the languages L

j;i

(1 � j � `, 1 � i � k) are de�ned as in the proof of

Lemma 17. It should be noted that the language L

j;i

=

b

L

j;i

n

T

w2W

j

w

�1

�(U

0

��

�

) is a subset of

S

v2W

j

v

�1

U

i

,

and thus its size is polynomial in the size of the match-

ing problem.

For the matching problem of Example 14, we thus ob-

tain the matcher

fX

1

7! (8R:8R:?)u (8R:8S:A

1

); X

2

7! 8S:?g:

Lemma 19 Assume that the given FL

?

-matching prob-

lem C �

?

D is solvable. Then the substitution � de�ned

above is the least solution of C �

?

D.

This lemma, together with Lemma 10, immediately

implies the following theorem:

Theorem 20 Let C v

?

D be a solvable matching prob-

lem modulo subsumption. Then the least solution of

C �

?

C u D is a minimal solution of C v

?

D, and

this solution can be computed in polynomial time.

4 Matching in FL

:

The results for matching in FL

?

can easily be extended

to the language FL

:

. In principle, negated atomic con-

cepts are treated like new atomic concepts. The fact that

Au:A is inconsistent (i.e., equivalent to ?) is taken care

of by extending the language in the value restriction for

the concept ? appropriately.

To be more precise, let C;D be FL

?

-concept descrip-

tions, and A

1

; : : : ; A

k

the atomic concepts occurring in

C;D. By treating the negated atomic concepts :A

i

like

new atomic concepts, we can transform C and D into

6

their FL

0

-normal forms:

C � 8U

0

:? u 8U

1

:A

1

u : : : u 8U

k

:A

k

u

8U

k+1

::A

1

u : : : u 8U

2k

::A

k

;

D � 8V

0

:? u 8V

1

:A

1

u : : : u 8V

k

:A

k

u

8V

k+1

::A

1

u : : : u 8V

2k

::A

k

:

If we de�ne

b

U

0

:= U

0

[

k

[

i=1

(U

i

\U

k+i

) and

b

V

0

:= V

0

[

k

[

i=1

(V

i

\V

k+i

);

then Lemma 12 can be generalized to FL

:

as follows:

Lemma 21 Let C;D be FL

:

-concept descriptions with

FL

0

-normal forms as introduced above. Then

C � D i�

b

U

0

��

�

=

b

V

0

��

�

and

U

i

[

b

U

0

��

�

= V

i

[

b

V

0

��

�

for all i; 1 � i � 2k;

where �

�

is the set of all words over the alphabet of all

atomic roles.

Consequently, all the results for matching in FL

?

carry over to FL

:

: we simply have to replace k by 2k

and the sets U

0

; V

0

by

b

U

0

;

b

V

0

.

Theorem 22 Let C �

?

D be an FL

:

-matching prob-

lem. Solvability of C �

?

D can be tested in polynomial

time. If C �

?

D is solvable, then a least solution of

C �

?

D can be computed in polynomial time.

5 Matching under side conditions

In this section, we �rst consider strict subsumption con-

ditions, and then brie
y mention some results for (non-

strict) subsumption conditions.

Strict subsumption conditions

Recall that a strict subsumption condition is of the form

X @

?

E whereX is a concept variable and E is a concept

pattern. If the concept patterns of a set of strict sub-

sumption conditions do not contain variables (i.e., the

expressions E on the right-hand sides of the strict sub-

sumption conditions are concept descriptions), then it

is su�cient to compute a least solution of the matching

problem, and then test whether this solution also solves

the strict subsumption conditions.

Theorem 23 Let C �

?

D be an FL

:

-matching prob-

lem, and X

1

@

?

E

1

; : : : ; X

n

@

?

E

n

be strict subsump-

tion conditions such that E

1

; : : : ; E

n

are FL

:

-concept

descriptions. Then solvability of C �

?

D under these

conditions is decidable in polynomial time.

If the right-hand sides of strict subsumption condi-

tions may contain variables, then solvability becomes

NP-hard, even for the language FL

0

. This can be shown

by reducing 3SAT [5] to the matching problem under

strict subsumption conditions.

Theorem 24 Matching under strict subsumption con-

ditions is NP-hard, even for the small language FL

0

.

It should be noted that our reduction of 3SAT to

matching under strict subsumption conditions depends

on the fact that we consider matching modulo equiva-

lence, rather than matching modulo subsumption. Thus,

it is still open whether the NP-hardness result also holds

for matching modulo subsumption under strict subsump-

tion conditions.

Theorem 24 provides us only with a hardness result for

matching under strict subsumption conditions. Another

open question is how to extend the matching algorithm

for FL

:

to an algorithm that can also handle strict sub-

sumption conditions.

Subsumption conditions

If the subsumption conditions do not introduce cyclic

variable dependencies, then a matching problem with

subsumption conditions can be reduced to an ordinary

matching problem. To be more precise, the sequence

of subsumption conditions X

1

v

?

E

1

; : : : ; X

n

v

?

E

n

is

acyclic i� for all i; 1 � i � n, the pattern E

i

does not

contain the variables X

i

; : : : ; X

n

. Given such an acyclic

sequence of subsumption conditions, we can de�ne a sub-

stitution

5

� inductively as follows:

�(X

1

) := Y

1

uE

1

and

�(X

i

) := Y

i

u �(E

i

) (1 < i � n);

where the Y

i

are new variables. We can show that

the matching problem C �

?

D is solvable under the

subsumption conditions X

1

v

?

E

1

; : : : ; X

n

v

?

E

n

i�

C �

?

�(D) is solvable without subsumption conditions.

Unfortunately, the new pattern �(D) may be exponen-

tially larger than the original matching problem with

subsumption conditions. However, we conjecture that

a compact representation of �(D) may be used to ob-

tain a polynomial algorithm for matching under acyclic

subsumption conditions in FL

:

.

The reduction we have just described is independent

of the DL used for constructing the patterns and descrip-

tions. For FL

0

, we can go one step further: cyclic sub-

sumption conditions can here be reduced to acyclic ones.

Let us illustrate this by two examples: (1) If � satis�es

X

1

v

?

X

2

u E

0

1

; X

2

v

?

X

1

u E

0

2

, then �(X

1

) � �(X

2

),

5

Strictly speaking, this is not a substitution as introduced

in Section 2 since variables are mapped to patterns, and not

just to descriptions. It should be clear, however, that the

notion of a substitution can be extended appropriately.

7

which means that we can identify both variables; (2) If

� satis�es X v

?

8R:X , then �(X) � >, and thus X can

be replaced by >.

6 Future Work

Our goal is to extend the results on matching to cover

languages at least as expressive as the DL considered

in [3]. This requires extending the language to include

range constructors (min and max), an individual set

constructor (one-of), number restrictions (at-least and

at-most), and a �lls constructor. For the constructors

min, max, and one-of, this mainly requires an appro-

priate treatment of disjointness, which we have already

achieved by our treatment of primitive negation. Num-

ber restrictions and the �lls construct are more challeng-

ing extensions; however, we expect to be able to ex-

ploit the characterization of subsumption in cyclicALN -

terminologies provided in [6] for our purposes.

Another motivation for investigating matching mod-

ulo equivalence may be found in merging heterogeneous

databases. Consider a situation where there is a master

ontology along with new database schemas that need to

be integrated into the master ontology. In this situation,

the integrator would like to know how the new schemas

may be mapped onto the master ontology. Our idea is

to represent the ontology and the schemas in an appro-

priate DL, and to view the problem of �nding such a

mapping as a matching problem of the concepts of the

new schema onto the concepts of the master ontology.

7 Conclusion

We have been motivated by the need to prune compli-

cated structures in order to provide manageable object

presentations and explanations. The pruning problem

can be viewed as a matching problem where there is a

comparison between a pattern describing the interesting

portions of the object and the larger object itself. Only

those portions of the object that match the pattern of

interest should be presented. We began with the �ltering

work introduced in Classic and the theoretical work on

the uni�cation of concept terms and generated a formal

treatment of matching in the description logic language

FL

?

. We presented results concerning the solvability of

the problem including polynomial decidability and (for

solvable problems) polynomial computability of a least

solution. We also extended the work to include matching

under additional side constraints on the variables in the

matching patterns. We showed that matching modulo

equivalence with strict side conditions is NP-hard even

for the small language FL

0

.

References

[1] F. Baader, A. Borgida, and D. L. McGuinness.

Matching in description logics: Preliminary results.

In M.-L. Mugnier, M. Chein, editors, Proceedings

of the Sixth International Conference on Concep-

tual Structures (ICCS'98), Lecture Notes in Arti�-

cial Intelligence. Springer-Verlag, 1998. To appear.

[2] F. Baader and P. Narendran. Uni�cation of con-

cept terms in description logics. In H. Prade, ed-

itor, Proceedings of the 13th European Conference

on Arti�cial Intelligence (ECAI-98), pages 331{335,

Brighton, UK, 1998. John Wiley & Sons Ltd. An

extended version has appeared as Technical Report

LTCS-98-06.

[3] A. Borgida and D. L. McGuinness. Asking queries

about frames. In Proceedings of the Fifth Interna-

tional Conference on Principles of Knowledge Rep-

resentation and Reasoning, KR'96, pages 340{349,

Cambridge, MA (USA), 1996.

[4] R. J. Brachman, D. L. McGuinness, P. F. Patel-

Schneider, L. A. Resnick, and A. Borgida. Liv-

ing with CLASSIC: When and how to use a KL-

ONE-like language. In J. Sowa, editor, Principles of

Semantic Networks, pages 401{456. Morgan Kauf-

mann, San Mateo, Calif., 1991.

[5] M. R. Garey and D. S. Johnson. Computers

and Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman and Company, New

York, 1979.

[6] R. K�usters. Characterizing the semantics of ter-

minological cycles in ALN using �nite automata.

In Proceedings of the Sixth International Confer-

ence on Principles of Knowledge Representation

and Reasoning (KR'98), Trento, Italy, 1998.

[7] D. L. McGuinness. Explaining Reasoning in De-

scription Logics. Ph.D. thesis, Department of Com-

puter Science, Rutgers University, October 1996.

Also available as a Rutgers Technical Report LCSR-

TR-277.

[8] D. L. McGuinness and A. Borgida. Explaining sub-

sumption in Description Logic. In Proceedings of the

14th International Joint Conference on Arti�cial

Intelligence, IJCAI'95, pages 816{821, Montr�eal,

Canada, 1995. Morgan Kaufmann.

[9] D. L. McGuinness, L. Alperin Resnick, and C. Is-

bell. Description Logic in practice: A classic

application. In Proceedings of the 14th Interna-

tional Joint Conference on Arti�cial Intelligence,

IJCAI'95, pages 2045{2046, Montr�eal, Canada,

1995. Morgan Kaufmann. Video Presentation.

[10] D. L. McGuinness and J.R. Wright. An industrial

strength Description Logic-based con�gurator plat-

form. IEEE Expert, Special Issue on Con�guration,

1998. To appear.

8

[11] J. R. Wright, E. S. Weixelbaum, G. T. Veson-

der, K. Brown, S. R. Palmer, J. I. Berman, and

H. H. Moore. A knowledge-based con�gurator that

supports sales, engineering, and manufacturing at

AT&T network systems. AI Magazine, 14(3):69{80,

1993.

9

