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Abstract

We present work in progress on abstracting di-

alog managers from their domain in order to

implement a dialog manager development tool

which takes (among other data) a domain de-

scription as input and delivers a new dialog

manager for the described domain as output.

Thereby we will focus on two topics; �rstly,

the construction of domain descriptions with

description logics and secondly, the interpreta-

tion of utterances in a given domain.

1 Introduction

Current research on dialog management is guided by two

di�erent ideas: �rstly, to describe the discourse structure

that the dialog manager is able to handle by a �nite

automaton using possible utterances as transitions (e.g.

[10]), and secondly, to view the detection of discourse

structure as a parameter estimation problem and to use

statistical models for the description of discourse struc-

ture (e.g. [12], [8]).

Some serious problems remain with each of these ap-

proaches: �rst of all, they do not integrate a user model.

The �nite state method imposes hard restrictions on

\free dialog", as far as vocabulary, syntax and order of

utterances are concerned. The statistical approach, on

the other hand, su�ers from the sparse data problem and

does not give theoretical insight into discourse theory.

But as researchers point out (see e.g. [13], [2]), it is

important to explore the structure of discourse and the

interactions of dialog and user model in order to obtain

robust dialog systems. Studying the e�ect of natural

language expressions on the state of discourse this paper

tries to do a step in this direction by discussing the use

of description logics for de�ning dialog domains formally

and by describing how inference is performed on the basis

of such a framework.

Following Hjelmslev [7], Eco [4] de�nes two essential

ingredients for any semiotic system (and, in particular,

any natural language):

� Expressiveness: what is the vocabulary, phonetics,

and syntax of the language considered?

� Content: what knowledge can be expressed by a

given system? How (i.e. by which expressions) is

this knowledge organised in the semiotic system?

Obviously, the key problem is how to connect content

and expressions in order to capture the meaning of ex-

pressions. Russell [15] proposes to divide the vocabulary

into two classes:

� object words: de�ne basic notions (in a train infor-

mation scenario e.g. train, time, or station)

� dictionary words: can be de�ned using other words

with already de�ned meaning (e.g. departure time

or arrival station)

Trivially, there is an obvious analogy between object

words and primitive concepts in description logics and

dictionary words and derived concepts. We exploit this

analogy to describe the application domain for a dialog

manager by means of a terminology in DL. Doing this,

we can de�ne the meaning of basic and derived notions

that are relevant in the domain under consideration.

2 �-DRT and DL

A basic concept of any dialog system is a theory of dis-

course. We use Discourse Representation Theory (DRT)

as introduced by [9] to describe the discourse generated

during a dialog. DRT has simple semantics: A discourse

representation structure (DRS) K with
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This mapping shows that a DRS essentially de�nes a set

of assertions and thereby expresses extensional knowl-

edge declared throughout the discourse.



On the other hand, a terminology of a certain domain

can describe intensional knowledge used while construct-

ing DRS out of utterances: the linguistic parser has to

verify constraints imposed by subcategorization. E.g. a

train usually departs from a station, i.e., a city name is

a valid object of Depart if there exists a railway sta-

tion. To evaluate this constraint the parser makes use of

DL reasoning services while constructing the semantics

of the current utterance.

In this sense the incorporation of DL into our approach

to dialog theory is crucial to overcome some of the limita-

tions

1

of �rst order logic for describing natural language

semantics.

3 Partial Information in Dialogs

A key issue for dialogmanagement is the handling of par-

tial information provoked by \incomplete" utterances.

By this notion we mean the fact that in the shared knowl-

edge of the participants there is not enough information

available to, e.g., answer a question posed by the speaker.

For the sake of illustration, let us consider the query

When does a train leave to Rome?

The information given in this query is (only) partial as

it is incomplete or insu�cient for the hearer to answer it.

At least the station of departure is unknown and has to

be asked for by the hearer if he wants to give some rea-

sonable answer. Notably, the open world assumption of

DL does not su�ce to handle, because it does not allow

to make an assumption about a formula (representing a

query as above), not even by default.

We use First Order Partial Information Ionic Logic

(FIL), as introduced by Abdallah [1], to handle situa-

tions of partial knowledge. FIL is a �rst order language

whose interpretation function is partial, i.e. a formula

can have a unde�ned truth value. Of course, interpreta-

tion functions can be ordered partially by

I � J :() dom(I) � dom(J )

8x 2 dom(I) : J (x) = I(x)

In addition to �rst order formulae, FIL provides for-

mulae (so called ionic formulae) of the form

�(f�

1

; :::; �

k

g; �):

Given a partial interpretation I that satis�es a set of

standard �rst order formulae �, the ionic formula above

says that � is true in an extension of I as long as there

is no extension of I that assigns false to at least one �

i

.
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First order logic lacks a mechanism for constructing well-

de�ned terms from utterances. Its model theory is inten-

sionally and ontologically inadequate for natural language

expressions.

� = f�

1

; :::; �

k

g is called justi�cation set or justi�ca-

tion context. Stating the semantics of a ionic formula

more informally, we have that � is true (by default) as

long as there is no evidence to the contrary from justi�-

cation context �

2

.

4 Partial Information and Dialog Plans

As outlined above, the main characteristic of dialogs

is the fact that information is given stepwise in the

course of several utterances. For the design of a domain-

independent dialog manager it is therefore important to

develop an interpretation algorithm for utterances that

is able to interact with the user in order to collect the

neccessary information in any order.

Ionic formulae provide such a mechanism. Their jus-

ti�cation contexts allow for infering what information is

still missing while interpreting the current utterance. On

the other hand, a justi�cation context can be seen as a

set of default assumptions to be accepted or rejected by

the user later on.

From this point of view a justi�cation context is the

set of dialog goals to be ful�lled by the dialog manager

in order to compute an answer to the user's question.

5 Integrating FIL and DL

To combine the advantages of DL as a concept language

for domain modelling and FIL to describe partiality we

integrate domain models into the FIL based reasoning.

To do this, we have to characterize the part of a do-

main model that can cause situations of partial informa-

tion during a dialog. We state that any role that has the

concept User as domain or range is a source of \missing

information" as these roles describe the user's attitudes

eventually to be clari�ed in several dialog steps. There-

fore, we de�ne a set UserRel as follows:

UserRel = fR : dom(R) � User _ range(R) � Userg

For a formal description of the connection of DL and

FIL, we give a translation mapping � from DL to FIL

which is sort of sensitive toUserRel de�ned above. The

mapping, of course, resembles Borgida's [3] and the one

by [16] and is identical except of the names of roles:

�(R) =

�

�x; y: �(fR(x; y)g;R(x; y)); R 2 UserRel

�x; y:R(x; y); otherwise
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In fact, [1] explains that an interpretation function for �

can assign 1 to � (� is acceptable, written: + � �), or 0 (�

is inacceptable: � � �), or not assign 1 (� is not acceptable:

+��), or not assign 0 (� is not inacceptable: ���). This

is due to the fact that in a partial logic for a relation sym-
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This says that all role names of a given TBox marked

as partial are translated as ionic formulae. All other

symbols are translated to �rst order formulae as usual

by structural induction on the syntax of the DL. For

example, given roles R, S

1

, and S

2

with R = S

1

t S

2

,

the de�nition of � is:

�(R) = �x; y:�(S

1

)(x; y) _ �(S

2

)(x; y)
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2
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As it is shown by e.g. Borgida in [3], the mapping pre-

serves satis�ability of DL expressions that are translated

into a FIL formula, as FIL is an extension of First Order

Predicate Logic and the translation from FIL to FOPL

only uses the FOPL \sublanguage" of FIL. I.e. if a for-

mula has some model in DL, then it has one in FIL, too.

On the other hand, if a FIL expression is satis�able, then

it is in DL, too, if no ionic formula is contained (see [16]).

A ionic formula �(R(�; �); R(�; �)) is the translation

of some role R 2 UserRel whose justi�cation context

R(�; �) can have one of the following states of acceptance

� + �R(�; �) or ��R(�; �): I.e. for any model M it

is impossible that Mj6j= R(�; �) $M j= :R(�; �).

This observation implies that either M j= R(�; �)

or R(�; �) is unde�ned. So j= �(� :: R : �) =

�(R(�; �); R(�; �)) does not contradict j= � :: R : �.

� � �R(�; �) or +�R(�; �): in this case, analogously,

either Mj6j= R(�; �) or R(�; �) is unde�ned imply-

ing that � :: :R : � is satis�able.

In any case, � preserves satis�ability depending on the

state of acceptance of justi�cation contexts.

6 Discussion of an Example

In the train information application that is considered

throughout this paper, an appropriate terminology could

include the following concepts and roles:

� Train, Depart, Time, Station

� At : Train�Time

To : Train�ArrStation

From : Train�DepStation

DepartFrom : User� Station

DepartFrom is in UserRel and therefore mapped as:

�u; s:�(fDepartFrom(u; s)g;DepartFrom(u; s))

Among many others we have the concepts

DepStation = 9DepartFrom

�1

:User

\Station

TrainFrom = 9From:DepStation

\Train \Depart

TrainAtFrom = 9At:Time \TrainFrom

TrainAtFromTo = 9To:Station

\TrainAtFrom

This terminology is translated to FIL follows (variables

all-quanti�ed):

DepStation(s) () DepartFrom

�1

(s; u)

^User(u) ^ Station(s) (1)

TrainFrom(t) () From(t; s) ^ DepStation(s)

^Train(t) ^ Depart(t) (2)

TrainAtFrom(t) () At(t; d) ^ Time(d)

^TrainFrom(t) (3)

TrainAtFromTo(t) () To(t; s) ^ ArrStation(s)

^TrainAtFrom(t) (4)

On the basis of the terminology above the utterance

When does a train depart to Rome?

has the discourse representation structure (DRS)

�x:
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This structure is built up relying on DL reason-

ing: Rome is contained in the (linguistic lexicon) as

CityName(Rome). In this example, the preposition to

is mapped onto To as de�ned above. In order to com-

bine train, to, and Rome, one has to check whether

Rome 2 9HasArrStation:Station which is evaluated

by the data base to be true for Rome. This results in

ArrStation(Rome). Generally, DRS are constructed by

means of instance checking that expands type uni�ca-

tion.

To infer TrainFrom(t) on the basis of the information

available from the utterance, it is necessary to determine

the truth value of �(s) = �s:DepartFrom

�1

(s; u) (see eq.

1; variable u is bound to constant u 2 User). A �rst

order approach would answer false, because its interpre-

tation function is total and there is no information in

the DRS above in order to substitute a station name for

s (making � true). But in FIL we have (see above):

DepartFrom

�1

(s; u) () �(fDepartFrom(u; s)g;

DepartFrom(u; s))



Based on this rule, we can conclude immediately that

�(s) be true i� �(s) = �s:DepartFrom(u; s) is true unless

there is information to the contrary (see Sect. 3).

As �'s justi�cation context still contains an unbound

variable, the dialog manager interprets it as a question

to be posed to the user (no default assumptions can be

made). Therefore, the discourse plan will be updated

and the dialog manager will react with

Where do you depart to from?

because s 2 Station. The answer

From Milan.

adds DepartFrom(u;Milan) to the shared knowledge so

that the dialog manager can bind s to Milan. After

that, we can infer by eq. 3 and eq. 4 TrainAtFromTo(t)

substituting x by d and d by all constants c for whom

At(t; c) ^ Time(c) is true.

The dialog plan is based on a speech act model

3

.

Speech acts are determined by reasoning on the user's

attitudes, grammatical information from, and coherence

of utterances.

7 From Notions to Vocabulary

To make a dialog system understand the user it has to

know how expressions in natural language are connected

to the abstract notions of the domain modell.

Natural languages normally o�er the possibility to ex-

press the same notion by di�erent synonyms. For exam-

ple, one can say: When does the train leave to Rome?

or, alternatively When does the train depart to Rome?

In both cases, the notion of train departure is expressed.

When we inspected the EVAR

4

corpus of train infor-

mation dialogs, we could see that synonyms occur fre-

quently, even in relatively simple domains as train in-

formation. Our hypothesis is that in much larger more

complicated domains that allow for a greater variabil-

ity of expressions and vocabulary there are even more

synonyms for a certain abstract notion.

To handle this phenomenon, we have to extend our

domain description by adding formulae like

Syn

C

1

(x) _ � � � _ Syn

C

n

(x) =) C(x)

for any concept C and and its synonymic expressions

Syn

C

i

(x) and, equally,

Syn

R

1

(x; y) _ � � � _ Syn

R

n

(x; y) =) R(x; y)

3

For information dialogs we assume as minimal the set

finform, query, suggest, accept, rejectg. This set can be ex-

tended to �t the needs of a certain application. See [11] for

details.
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EVAR is a publicly accessible information system on Ger-

man Railway InterCity connections ([5]). The existing corpus

of more than 1100 annotated dialogs contains samples of \real

world" data with \naive" users.

for any role R and its synonyms Syn

R

i

(x; y).

For the two questions above we would introduce

leave(x) _ depart(x) =) Depart(x)

\mapping" the verbs leave and depart to Depart.

8 Pragmatics of Concepts and Roles

Except of constructing a linkage between a domain

model in terms of DL and a language model for the given

domain, a con�gurable dialog manager must de�ne an

interface between its logical domain model and an ar-

bitrary (mostly non-logical) problem solving component

for the domain.

The reasoning mechanisms of the dialog manager and

the problem solver, respectively, can be linked as follows:

The problem solver evaluates relations between (i.e. roles

of) discourse referents that are instantiations of concepts

according to the previous utterances.

In the example outlined above, t can be asserted

TrainAtFromTo only if the query

At(t; x) ^ From(t;Milan) ^ To(t;Rome)

can be evaluated successfully (e.g. as a query to a

database) and returns a list of connections fromMilan to

Rome. They can serve as data for continuing the dialog.

In the way outlined we can de�ne an interface between

dialog management and the pragmatics of the applica-

tion which is by nature independent of a speci�c do-

main and therefore allows for abstraction of the dialog

manager from its underlying domain-dependent problem

solving component, linguistics, and discourse structure.

9 Con�guring a Dialog Manager

For the practical purpose of adapting a dialog manager

for a speci�c task it is of great importance to observe that

dialogs consist of a domain-independent and domain-

dependent utterances.

Domain independence is related to establishing mu-

tual understanding, dialog segmentation, and reference

resolution. It is very important to consider these phe-

nomena as they can be expressed in natural language:

e.g. \Could you repeat that?", \Pardon?", \Next I want

to ask you ...". Not to take such expressions into account

would result in poor understanding capabilities of the di-

alog manager. Intentions, speech acts, and obligations

can be expressed explicitly as well

5

.

A model of these domain independent notions forms

the basic capabilities of the dialog manager to engage in

natural language conversation. To con�gure it for a cer-

tain application, one has to expand the model describing

application-speci�c (i.e. domain-dependent) notions by

5

By modifying this dialog model, one can in
uence the

planning of the dialog manager (c.f. footnote in Sect. 6).



1. Adapting, extending, and specializing the given DL

model so that it de�nes all notions of importance

for the application. DL systems support the phase

of designing a domain model by means of testing

the satis�ability of terminologies. This is a major

practical advantage for ensuring the robustness of

the dialog manager compared to other approaches

to domain modelling.

2. De�ning the interface between the problem solving

component and the dialog manager. I.e. de�ning

what concept and role symbols will be evaluated by

what functions of the problem solver.

10 Conclusions

We have established a connection between DL and FIL

in terms of satis�ability via a mapping between formulae

of each language. The correctness of inferences is assured

by FIL (see [1]). This allows to conclude the correctness

of reasoning with DRS as they can be mapped onto FIL

formulae (see [9] and 2). We consider the combination

of DL's knowledge representation facilities and FIL's in-

ference mechanism for partial knowledge a well-founded

basis for utterance interpretation and the description of

mixed initiative dialogs in order to implement the \core

engine" of an adaptive, con�gurable, and domain inde-

pendent dialog manager. In this way we can separate

linguistics and discourse theory from the knowledge en-

gineering task to describe the application domain. This

task can be performed by an application expert even

without deep knowledge of dialog managers.

11 Future Research

Evidence from a number of experiments shows that

humans perform domain reasoning while incrementally

matching the speaker's utterances with their own expec-

tations (see e.g. [14, 18]). Following this line of research,

we are studying the use of domain descriptions and DL

reasoning services to model how dialog participants es-

tablish mutual beliefs on the basis of utterances.

Secondly, cooperating industrial partners we want to

generate domain models for di�erent domains. For the

acquisition of \synonym knowledge" we will apply learn-

ing techniques from corpora of example dialogs collected

by our partners. General work on DL learning (see e.g.

[6]) as well as work on the combination of DL and linguis-

tic processing (as done in [17]) will have to be considered.

Finally, we are working on user-friendly tools to de-

�ne interfaces between domain models and its related

problem solving components.
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