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Abstract

This paper introduces YAYA

1

, a Description

Logic system focused towards learning complex

interrelations among objects. YAYA Concept

Language (YCL) is quite restricted; although

it introduces a limited use of variables.

Language limited expressiveness in combina-

tion with a special inference mechanism allow

YAYA to achieve its main goal: to acquire a

model (TBox) from a set of examples that al-

lows it to complete the information of new sets

of (incomplete) examples from the same do-

main.

1 Introduction

Knowledge structuring and reasoning services provided

by Description Logics can be very useful for Machine

Learning tasks. Nevertheless, little attention has been

paid to de�ning Concept Languages suitable for acquir-

ing the model we will use for reasoning purposes. C-

CLASSIC

[

Ventos, 1996

]

is an example.

[

Cohen and

Hirsh, 1994

]

study learnability properties of CoreClas-

sic, proposing an e�ciently learnable subset of it.

In this paper we introduce a new Description Logic

system called YAYA that has been designed to solve

complex inference problems by learning from examples.

Using Description Logics, the problem gets reduced to

the acquisition or completion of a TBox from a set of

examples (the training ABox). The �nal TBox should

make YAYA able to infer as much information as possi-

ble in order to complete other incomplete ABoxes from

the same domain.

For example, if the problem to be solved is to obtain

the syntactic analysis for a set of sentences, the training

1

YAYA means Yet Another Yet Another. The name is

after YACC (Yet Another Compiler Compiler) and other less

famous YAxx.

�
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ABox would contain a set of sentences (sets of words re-

lated by the next and previous relations) with their cor-

responding analysis (sets of grammatical objects related

through syntactic roles). On the other hand, incomplete

ABoxes to be completed will contain only the text part.

YAYA Concept Language (YCL) is quite restricted.

Its syntax tries to represent complex interactions among

objects in an easy way. YCL has a special construct

that introduces variables. Although a general use of

variables could increase the complexity of the reasoning

algorithms (see

[

Borgida, 1996

]

), YCL syntax restricts

the use of variables to situations in which the complex-

ity is never increased. Regardless language restrictions,

YAYA is able to capture complex object interrelations

and makes possible to solve problems in complex do-

mains.

YAYA provides a learning algorithm that performs a

local search over the space of possible YCL terms and is

the responsible for acquiring/completing the TBox. In-

formation completion is performed by YAYA Inference

Engine (YIE), that uses the acquired TBox to incremen-

tally perform inferences and represent them explicitly on

the ABox.

2 YAYA Concept Language

Several decisions have in
uenced the design of YAYA

Concept Language. First, we take the epistemological

position that important knowledge is always and only at

concept level. No instances will appear in a YCL def-

inition. Secondly, we can learn only about knowledge

that we can represent at the instance level (nodes and

relations among them).

And �nally, we want our language to remain tractable

in reasoning and learning tasks. Learnability has not

been studied yet; but, as

[

Cohen and Hirsh, 1994

]

states,

having deductive reasoning tractability raises the possi-

bility that learning can also be done e�ciently. Regard-

ing deductive reasoning tractability, subsumption for a

DL language with disjunction or with the combination

of universal and existential quanti�cation is intractable



[

Donini et al., 1996

]

.

Intuitively, we choose to represent directly what we

see in a semantic network: chains of nodes and conjunc-

tions of them (corresponds to the following DL construc-

tors: concept name, conjunction and existential quanti�-

cation). We do not perform any abstraction over them.

This would result in the introduction of new DL con-

structors (negation, quanti�ed universal . . . ) that could

lead YCL to lose tractability properties). Cyclic def-

initions are not allowed. On the other hand, disjunc-

tion is not necessary for our purposes in the de�nition

of concepts; since a disjunctive de�nition can be simu-

lated (for our inference purposes) with a set of concepts

corresponding to the disjunction subterms.

YCL without variables is a bit less expressive than

FLE

�

. So, FLE

�

has been taken as reference when

explaining YCL constructs in the following paragraphs.

The constructors are as follows:

:strc Allows us to de�ne basic structural properties;

that is, an ordered set of nodes linked each one

to the next. It is equivalent to a chain of quanti-

�ed existentials linked with conjunctions in FLE

�

.

For example: (: strc human

married�to

�! human

has�parent

�! human) corresponds to the FLE

�

term

human u 9(married � to:(human u 9(has �

parent:human))).

:and New structural properties can be de�ned as the

conjunction of simpler structural properties. This

constructor corresponds to the conjunction FLE

�

constructor (u).

:unify The previous constructs permit us to express a

subset of what

[

Woods, 1991

]

has called type I de-

scriptions. But this does not allow to express coor-

dination among nodes.

The :unify particle permits us to state that a node

appearing in a structural property should be the

same one that appears in another place of the struc-

tural property. This corresponds to a generalization

of the path reasoning idea introduced by SNePS

[

Shapiro, 1991

]

and of the SAME-AS CLASSIC

construct

[

Brachman et al., 1991

]

. Moreover, the

introduction of variables has been pointed out in

[

Borgida, 1996

]

. The :unify particle can be abbrevi-

ated by using : between the concept name and the

variable name.

Using the :unify particle we could try (see next sec-

tion) to express facts like: the father of my father is

my grandfather, through the following term

2

:

(: and (: strc human

father

�! human

father

�! human:x)

(: strc human

grandfa:

�! human:x) )

2

In fact, the term is only an approximation to the real

statement we want to represent (as explained later).

YCL TERM INTERPRETATION

C C

I

(: strc C

1

R

1

C

2

R

2

C

3

: : :)

f� j C

I

1

^ 9x:R

I

1

(�; x) ^ C

I

2

(x) ^ 9y:R

I

3

(x; y) ^

C

I

3

(y) : : :g

(: and C

1

C

2

) C

I

1

u C

I

2

Table 1: YCL semantics without variables.

SITUATION YCL TERM INTERPRETATION

no var (: strc : : : R

i�1

C

i

: : :) f� j : : : 9x:R

I

i�1

(y; x) ^

C

I

i

(x) : : :g

�rst v (: strc : : : R

i�1

(: unify C

i

v) : : :)

f� j : : :9z

v

:R

I

i�1

(y; z

v

) ^

C

I

i

(z

v

) : : :g

other v's (: strc : : : R

i�1

(: unify C

i

v) : : :)

f� j : : : 9x:R

I

i�1

(y; x) ^

C

I

i

(x) ^ z

v

= x : : :g

Table 2: YCL term interpretation with variables.

YCL semantics is given denotationally, using the no-

tion of interpretation I = < �

I

; (�)

I

>. I has a domain

of values �

I

and a mapping (�)

I

. This approach has

been largely used in Description Logics literature (for a

wider explanation see

[

Donini et al., 1996

]

).

In table 2 we can see semantic interpretation of YCL

constructors without variables. The interpretation of

YCL terms with variables implies technical di�culties

because a variable can appear in any subterm and the

interpretation of (: unify C x) depends on whether

it is the �rst time that the variable x appears or not.

Fortunately, variables will appear always inside a :strc

construction. This allows us to provide a general way

to deal with variables in term interpretations. Table 2

shows this. For both tables, variables x and y can be

used alternatively without loss of generality

[

Borgida,

1996

]

.

Is YCL expressive enough?

In fact, as we know that the :strc construct is equivalent

to a chain of quanti�ed existentials, the YCL term in the

:unify construct does not state that the father of my fa-

ther is my grandfather (supposing \I" has been inferred

to be an instance of the concept that corresponds to that

de�nition). Instead, we are stating: I have a father that

has a father that is one of my grandfathers. This is not

a precise statement of the concept we wish to represent.

The point is that inferring that an ABox object holds

a YCL term is not enough to infer links from that ob-

ject to other objects in the ABox, as we would like. For

example, in the syntactical analysis problem, we would

like to infer the creation of the nodes and links corre-

sponding to the analysis. The problem is that there are

several ways an ABox object can be modi�ed in order to

hold a YCL term (so, we do not know which one is the

correct one).

In order to solve this problem, YAYA provides an ex-

plicit inference engine (YIE) that chooses one of the dif-

ferent ways in which an object description can be mod-



i�ed to hold a YCL term. The criteria used by YIE

tries to minimize the amount of information added to

the TBox. We intuit that this criteria works quite well

for most domains (we have tested it empirically for the

domains used in the experiments in section 6).

So, YIE allows us to maintain YCL this simple. This

is quite useful to maintain the complexity of the learning

process as low as possible.

3 Incidental Properties

In addition to YCL capabilities, YAYA stores a summary

of information for every concept called concept descrip-

tion. It is made up of a set of YCL terms each one of

them has an associated probability. The probability cor-

responds to the percentage of known concept instances

that hold the YCL term. The set of YCL terms stored

in the summary corresponds to what

[

Brachman et al.,

1991

]

calls incidental properties.

In this way, the combination of concept de�nitions

and concept descriptions provides a set of conditional

probabilities. For any de�ned concept, we will have

a pair constituted by its de�nition and its description

< def; f< p

1

; �

1

>;< p

2

; �

2

>; : : : ; < p

n

; �

n

>g. This

provides n probabilistic rules to YAYA that can be sum-

marized by the following equation:

Prob(p

i

(x)jdef(x)) = �

i

(1)

Probabilistic rules can be converted to non-

probabilistic rules if a threshold �

r

is introduced; and

then, only rules with probability above it are taken into

account

3

.

YCL terms taking part in concept descriptions con-

stitute only a small subset of YCL terms considered by

YAYA. The learning process decides which YCL terms

are set as important properties (see next section).

The combination of concept de�nitions and descrip-

tions is useful to:

� De�ne a set of heuristics to guide the learning pro-

cess based on statistical information about concept

instances. Concept descriptions can be seen as a

generalization of COBWEB probabilistic concept

representation

[

Fisher, 1987

]

.

� Serve as a set of probabilistic (or non-probabilitic)

rules that will form the basic knowledge used by

YIE (this is similar to PDL inclusion coe�cients

[

Bonifati et al., 1997

]

).

3

Rules with probability under 1 � �

r

can be seen as

Prob(:p

i

(x)jdef(x)) = 1 � �

i

. So, they can be used to

remove inconsistencies just as the \positive" rules are used

to remove incompleteness. This point has not been studied

yet.

4 Learning

The learning algorithm performs a local search over the

space of possible YCL terms. The goal of the search

is to �nd as many interesting correlations among YCL

terms as possible. These correlations are stored in the

TBox as the conditional probabilities stored in concept

descriptions. The information used to establish them is

the Abox constituting the training set (the stored prob-

abilities are an estimation of the real ones). So, only

positive examples are used by YAYA.

The local search is guided by a set of operators and

heuristics. Operators are triggered when an event oc-

curs in the learning environment. For example when a

new concept is introduced in the TBox, an important

property is taken into account, or equally when a prim-

itive TBox concept is set as a valid node to take part in

YCL terms

4

. These operators generate new YCL terms

that are heuristically evaluated. Depending on the eval-

uation, the terms are de�ned as TBox concepts and/or

introduced as important properties (or none of them).

The YAYA learning process is closely related to ILP

techniques such as FOIL

[

Quinlan, 1990

]

. Similar to

FOIL, the local search is a generate and test iterative

method. On the contrary, no negative examples are used

by YAYA. In addition, YAYA builds (or completes) the

overall model (TBox) incrementally; instead of building

one rule at a time (as FOIL does).

The local search performed by YAYA is neither a gen-

eralization nor a specialization. There are around 15

di�erent operators. Some of them modify syntactically

YCL terms in di�erent ways in order to build new ones.

Others modify the learning environment (adding new

valid nodes, for example). Most of them use information

in the training ABox to decide which syntactic modi�-

cations can be useful.

Heuristic Measures

YAYA uses two kind of heuristics. The �rst one tries to

restrict the generated YCL terms in a syntactical way

(restricting the set of nodes taking part in a YCL term,

for example). The second type tries to value the infer-

ence power added to the learned model by performing an

action (de�ning a concept, adding an important property

or making a concept a valid node). These heuristics use

statistical information taken from the description asso-

ciated to the corresponding YCL term

5

.

4

YAYA restricts the set of nodes that can appear in a valid

YCL term. An initial set of valid nodes can be set manually.

From that point on, the learning process itself introduces new

valid concepts in certain situations when it discovers useful

YCL terms that contain a non-valid node.

5

Descriptions can be computed for any YCL term; as all

we need is a set of objects (in this case, those holding the

YCL term)



The Extension Hierarchy

Concepts and important properties should be discovered

in order to provide a good knowledge model. Sometimes

the gap between existing knowledge and knowledge to be

discovered is too big to be covered by the local search.

In order to solve this problem, another hierarchy of

concepts is built by YAYA. This new hierarchy is based

on the conditional probabilities introduced in section

3. It is called the extension hierarchy (EH) because it

is computed from information taken from concept in-

stances (concept descriptions); opposed to the subsump-

tion hierarchy, which is an intensional one.

In order to build the EH, a threshold �

EH

is de-

�ned; and when a concept is created, and its descrip-

tion contains a stored conditional probability such that:

Prob(p(x)jdef(x)) � �

EH

; then:

1. Two concepts are created in the EH, one corre-

sponding to p and the other corresponding to def (if

they have been already created, nothing happens).

2. The concept corresponding to def is set as a

subconcept of the one corresponding to p (as

Prob(p(x)jdef(x)) � �

EH

).

Both EH concepts can be directly or indirectly re-

lated. Even so, both YCL terms can be represented

by the same EH concept. All this depends on other

conditional probabilities relevant to them.

We have observed empirically for arti�cially generated

domains that EH is very similar to the original hierarchy

used to generate the training set. For the NL experi-

ments performed, the EH seems to provide an accurate

hierarchy of di�erent behaviour showed by objects in the

training set. In addition, the EH is totally understand-

able.

So, the EH can be considered a higher level source

of information than that provided by the subsumption

hierarchy. It is quite similar to the initial basic taxonomy

induced in

[

Kietz and Morik, 1994

]

; although YAYA's

EH contains representations for non-primitive concepts,

and is updated throughout the learning process.

There are a subset of operators specially designed to

bene�t from the EH.

5 The Inference Engine (YIE)

As it has been said before, YIE is an inference engine

that explicitly modi�es the ABox. That is, YIE creates

nodes and links between nodes. When one of the rules

introduced in section 3 (either probabilistic or not) tells

YAYA that an ABox object a should hold a YCL term p,

YIE starts a process that adds information to the ABox:

a) it adds new links between objects; and b) it creates

new objects when necessary. When the process ends, the

ABox contains enough information to know a holds p.

As we have said before, YIE tries to add the minimum

amount of information to the ABox. Intuitively, when

there is some rule saying that an object a should hold

a YCL term p; it looks for the most speci�c YCL terms

held by a that subsumes p. Then, it tries to reach p

from those subsumers. Figure 1 shows an example of a

simple inference performed by YIE. See

[

Alvarez, 1998

]

for a formal de�nition of all this.

A C DB

strc1

B1

A1
C1 new-D

def:

description:

(:strc A rab B)

.....

.....
<p =(:strc A rac C rcd D),alpha =1.0>i i

INSTANCE LINKS

PREEXISTENT LINKS

INFO. CREATED BY YIE

is-a

rab

rac rcd

instance

p’=(:strc A rac C)

Figure 1: From strc1 description we know that A in-

stances should hold p

i

. As p

i

is not held by a

1

, YIE

looks for the most speci�c p

i

subsumer held by a

1

. That

subsumer is p

0

. p

i

is reached from p

0

by generating a new

node (new �D) and relating c

1

to it by rcd.

Information added by YIE to the ABox can be broken

down into �ve basic types of atomic inference: the addi-

tion of a link, the removal of a link (for inconsistencies),

the creation of a new node, being the instance of a con-

cept, and the uni�cation of two nodes (YIE can realize

that two nodes represent the same object).

It can happen that YIE creates a node and later it

realizes that the created node corresponds to a node that

already was in the ABox. This forces YIE to introduce

the node uni�cation basic inference, and to relax unique

name assumption while YIE is working (see �gure 2).

A

strc1
C DB

A1
C1

B1

new-D

INSTANCE LINKS

PREEXISTENT LINKS

INFO. CREATED BY YIE

q’=(:and (:strc A rac C rcd D)
(:strc A rab B rbd D))

is-a

rac rcd

strc2
is-a

rab
1Drbd

def:

description:
.....

(:strc A rab B rbd D)

<q =(:and (:strc A rac C rcd D:x)
(:strc A rab B rbd D:x)),beta =1.0>

j

j
.....

Figure 2: Suppose that after the process in �gure 1,

the rbd link between b

1

and d

1

has been added by YIE.

Then, a

1

is classi�ed as an strc2 instance. There is a

rule telling YIE that a

1

should hold q

j

. YIE looks for the

most speci�c q

j

subsumer held by a

1

. This corresponds

to the YCL term q

0

. So, YIE infers that d

1

and new�D

represent the same object.

6 Experiments

Some basic experiments using several hundreds arti�-

cially generated objects from several models have been



performed. Results have been promising and have served

to �ne tune the learning algorithm.

A natural language experiment using the training set

de�ned in

[

McClelland and Kawamoto, 1986

]

and reused

later by

[

Zelle and Mooney, 1993

]

has been performed.

The training set contains the text for 1500 simple sen-

tences and their corresponding semantic interpretation.

Only 126 sentences have been used in the experiment

(those corresponding to the verb eat). YAYA tried to

learn restrictions among word senses and semantic roles.

This kind of information can later be very useful in Word

Sense Disambiguation tasks.

The initial TBox contained a simple language model

(only primitive concepts), and the hierarchy of word

senses taken from WordNet

[

Miller et al., 1991

]

(a lin-

guistic ontology with over 90000 word senses). Words in

the training set have been manually disambiguated.

The TBox resulting from the learning process con-

tained all the restrictions in the 126 sentences, and no

useless information. The experiment has demonstrated

that the YAYA learning process is able to use quite a

large ontology as background knowledge.

7 Conclusion

A Description Logic System called YAYA has been pre-

sented. It has been designed to acquire models from

sets of examples in complex domains. The goal of the

acquired model is to allow YIE to complete the infor-

mation of new sets of examples from the same domain.

Relying on all this, YCL, the heuristics used to guide

the learning process and YIE have been designed.

YCL has been designed to easily capture structures

appearing in a semantic network. No abstraction other

than that provided by the concept taxonomy is allowed.

YCL syntax allows a limited use of variables.

YAYA provides also a learning algorithm and an ex-

plicit inference mechanism that works by introducing ba-

sic inferences into the ABox. The combination between

unique name assumption relaxation and node uni�ca-

tion basic inference simpli�es the work to be done by

YIE and, makes it more robust.

Some successful but \small" experiments have been

performed. The next step is to scale up the learning

process and make it able to deal with real noisy domains.
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