
Planning in Description Logics:

Deduction versus Satis�ability Testing

Liviu Badea

AI Research Lab

Research Institute for Informatics

8-10 Averescu Blvd., Bucharest, Romania

e-mail: badea@ici.ro

Abstract

Description Logics (DLs) are formalisms for tax-

onomic reasoning about structured knowledge.

Adding the transitive closure of roles to DLs also

enables them to represent and reason about ac-

tions and plans. The present paper explores several

essentially di�erent encodings of planning in De-

scription Logics. We argue that DLs represent an

ideal framework for analysing and comparing these

approaches. Thus, we have identi�ed two essen-

tially di�erent deductive encodings (a \causal" and

a \symmetric" one), as well as a satis�ability-based

approach.

While the causal encoding is more appropriate

for reasoning about precondition-triggered causal

events, the symmetric encoding is more amenable

to reasoning about possible outcomes of courses of

actions without actually executing them (while al-

lowing both progression and regression).

In the deductive approaches, the existence of a plan

corresponds to an inconsistency proof rather than

to a model of some formula. Viewing planning as

satis�ability testing addresses this problem by re-

ducing planning to model construction.

1 Introduction

Description Logics (DLs) [11, 3, 20] are formalisms for

taxonomic reasoning about structured knowledge. Like

their predecessors (semantic networks and frame lan-

guages), DLs have been used mainly for representing and

reasoning about the domain knowledge of a given prob-

lem, usually in the framework of a hybrid architecture.

In-depth theoretical investigations carried out in the

last decade [20] have uncovered an almost complete pic-

ture of the expressive power and computational complex-

ity of a wide range of Description Logics

1

and provided

a �rm starting point for considering various extensions.

Such extensions were mainly motivated by the limita-

tions of existing DLs in representing various types of

knowledge such as modalities and epistemic operators

[5, 7], higher-order constructs [9], non-monotonic fea-

tures [4, 19], Horn rules [25] and many others.

1

de�ned in terms of the constructs used.

Description Logics with the transitive closure of roles

[2, 30] have also been proposed as a unifying formalism

for various class-based representation languages [15] as

well as for representing tense [29, 31], epistemic opera-

tors, actions and plans [18, 1, 7].

Some of these approaches rely on Schild's correspon-

dence [30] between expressive description logics with

the transitive closure of roles and propositional dynamic

logic (PDL). Given that PDL has been conceived as a

formal approach to reasoning about actions and dynam-

ically evolving systems (such as programs), it may be

surprising that so little research has been carried out

towards representing planning in description logics.

2

However, representing and reasoning about actions

and planning in DLs is very important for modeling

dynamically evolving DL knowledge bases at the con-

ceptual level (as opposed to using an ordinary DL in

a hybrid architecture, where one is not able to reason

about actions in the DL, which is therefore incomplete).

Combining such an approach with epistemic operators

[8] may enable the design of DL-based intelligent agents.

The main goal of this paper is to present an in-depth

analysis of the various approaches to encoding actions

and planning in Description Logics. This issue is not

entirely straight-forward, since { contrary to a �rst im-

pression { there are several essentially di�erent ways of

encoding actions and planning problems in DLs. For ex-

ample, we can encode planning either as deduction or

as satis�ability testing. Viewed as a deduction problem,

we have identi�ed two essentially di�erent encodings of

planning: a \causal" and a \symmetrical" one.

Being asym-

metrical (non-reversible), the causal encoding is more

appropriate for reasoning about precondition-triggered

causal events (even non-deterministic ones). However, it

does not allow for a straight-forward approach to goal

regression.

2

We are considering description logics rather than plain

PDL for encoding actions for two important reasons. First,

description logics may provide additional constructs useful

for integrating a theory of action in a more extensive KR

framework. Second, in DLs it is possible to impose con-

straints on speci�c state instances (using assertional axioms).

This is not possible in PDL.



The symmetrical approach, on the other hand, is

more amenable to reasoning about possible outcomes

of courses of actions without actually executing them.

The symmetrical (reversible) form of this representation

allows both progressive (forward) and regressive (back-

ward) reasoning.

The above-mentioned deductive approaches to plan-

ning could be used together in a realistic setting in which

causal external events (even non-deterministic ones) as

well as actions under the control of intelligent agents co-

exist.

Planning viewed as deduction has its own problems

in the framework of Description Logics because the ex-

istence of a plan amounts to proving the validity of a

certain DL formula. But since the validity of a formula

is usually reduced in DLs to the inconsistency of the

negated formula, we reduce planning to proving inconsis-

tency. This may seem somehow counter-intuitive, since

we might have expected that a plan would correspond to

a DL model of some formula rather than to a proof that

no such model exists. Viewing planning as satis�ability

testing (in the spirit of [24]) addresses this problem by

reducing planning to model construction. A small dis-

advantage of this approach might be the requirement of

a completely speci�ed initial state, but any incompletely

speci�ed state can be easily completed.

A tableaux-based algorithm for checking consistency

in a DL with the transitive closure of roles [8] has been

developed and used for testing the SAT-based approach.

2 The ALC

?

Description Logic

Description logics are hybrid systems which separate the

described knowledge in two distinct categories: termino-

logical and assertional knowledge. The terminological

knowledge is generic (intensional) and refers to classes

of objects and their relationships, while the assertional

knowledge is extensional as it describes particular in-

stances (individuals) of these classes. Unless concept

rei�cation is allowed [9], these two levels are completely

disjoint since a given object cannot be at the same time

a concept and an instance.

Description logics further distinguish between two

kinds of terminological knowledge, namely concepts and

roles. Concepts are essentially unary predicates inter-

preted as sets of individuals, while roles represent bi-

nary predicates interpreted as binary relations between

individuals.

In the following, we consider the smallest descrip-

tion logic able to express actions and conditional plans,

namely the regular closure ALC

?

of Schmidt-Schau� and

Smolka's ALC language [32] extended with identities

id(C). Compared with other description logics, ALC

?

is quite expressive, since it allows the internalization of

general (possibly cyclic) concept de�nitions by means of

the transitive closure of roles.

The following concept and role constructors are avail-

able in ALC

?

:

C ::= CN j > j ? j C

1

^C

2

j C

1

_C

2

j :C j hRiC j [R]C

R ::= RN j id(C) j R

�

j R

1

_R

2

j R

1

�R

2

j R

�

where CN , RN are concept and role names respectively,

hRiC are existential restrictions (sometimes written as

9R:C), while [R]C are value restrictions (written also

as 8R:C). Role union (R

1

_R

2

), composition (R

1

�R

2

)

and re
exive-transitive closure (R

�

) allow for regular role

expressions, whereas the identity role construct id(C) is

useful for representing conditional plans. Role inverses

(R

�

) are needed for goal regression.

The semantics of the above constructors in the inter-

pretation I

3

is given by the following conditions:

>

I

= D

I

?

I

= ;

(C

1

^C

2

)

I

= C

I

1

\C

I

2

(C

1

_C

2

)

I

= C

I

1

[C

I

2

(:C)

I

= D

I

n C

I

(hRiC)

I

= fs 2 D

I

j 9s

0

2 D

I

:(s; s

0

) 2 R

I

^ s

0

2 C

I

g

([R]C)

I

= fs 2 D

I

j 8s

0

2 D

I

:(s; s

0

) 2 R

I

! s

0

2 C

I

g

id(C)

I

= f(s; s) j s 2 C

I

g

(R

�

)

I

= f(s

0

; s) j (s; s

0

) 2 R

I

g

(R

1

_R

2

)

I

= R

I

1

[R

I

2

(R

1

�R

2

)

I

= R

I

1

� R

I

2

(R

�

)

I

=

[

n�0

(R

I

)

n

Recall that the transitive closure of roles is not ex-

pressible in �rst-order logic (it requires at least �xpoint

logics). However it is essential not only for encoding gen-

eral terminological axioms, but also for our encodings of

planning in ALC

?

.

In order to represent the symmetric encoding, we will

need a more expressive DL, namely one that provides

explicit �xpoint constructors. The ALC

�

language [28,

13] is strictly more expressive than ALC

?

and provides

the following additional concept constructors:

C ::= �X:C j �X:C j X

where X is a \�xpoint variable" which can occur only

in the scope of the least/greatest �xpoint constructors

�X:C and �X:C respectively. And although ALC

�

ad-

mits no role constructors (besides role inverses), the

ALC

?

role constructors (occurring in existential or value

restrictions) can be expressed by means of �xpoints. For

instance,

hR

�

iC = �X:(X _ hRiC)

[R

�

]C = �X:(X ^ [R]C):

The terminological knowledge base (also called TBox)

consists of general concept implications of the formC

1

!

3

which associates a subset C

I

� D

I

of the interpretation

domain D

I

to each concept C and a binary relation R

I

�

D

I

�D

I

to each role R.



C

2

,

4

as well as validity axioms C (expressing the validity

of the concept term C). Their semantic interpretation

is C

I

1

� C

I

2

and C

I

= D

I

respectively. (Of course,

the implication C

1

! C

2

can be reduced to the validity

axiom :C

1

_ C

2

. On the other hand, validity axioms

C can be internalized in ALC

?

using role terms of the

form [R

�

]C where R is the disjunction of all role names

occurring in the knowledge base [2, 30].)

The assertional knowledge base (also called ABox)

consists of assertional axioms of the form

s : C (concept instance assertions)

(s; s

0

) : R (role tuple assertions)

which are interpreted semantically as s

I

2 C

I

and

(s

I

; s

0I

) 2 R

I

respectively.

An interpretation satisfying the terminological and as-

sertional axioms of a knowledge base (KB) is called a

model of the KB. A KB is called consistent i� it admits

a model and inconsistent otherwise.

A concept C is called satis�able w.r.t. a given KB i� it

admits a non-void extension C

I

in a model I of the KB.

C is valid in a KB whenever C

I

= D

I

in all models I

of the KB. C is valid i� its negation :C is unsatis�able.

Testing satis�ability (and therefore also validity) in

ALC

?

as well as ALC

�

is decidable, more precisely

EXPTIME-complete [21, 13].

3 Encoding actions and planning in

Description Logics

As we have mentioned in the introduction, Description

Logics with the transitive closure of roles like ALC

?

can

be used not only for representing taxonomic domain

knowledge, but also for describing actions and plans.

This can be achieved by regarding a DL role A as an

action which transforms states S from (the extension

of) the role's domain into states S

0

from (the extension

of) its range: (S; S

0

) 2 A

I

. Thus, the value restriction

[A]C can be interpreted as the necessary precondition

for action A to achieve the e�ect C.

Conditions (
uents) from our theory of action will be

represented in a DL by concepts, while actions will be

encoded as role names. Of course, (possibly conditional)

plans can be represented as complex role terms, the

role constructors _; � and � being interpreted as control

structures (nondeterministic choice, sequence and non-

deterministic iteration respectively). The identity role

constructor id(C) can be interpreted as a \test", which

can be used for expressing the usual structured control

primitives if , while and repeat :

if C then A

1

else A

2

= id(C) �A

1

_ id(:C) �A

2

while C do A = (id(C) �A)

�

� id(:C)

repeat A until C = A � (id(:C) �A)

�

� id(C)

In the following, we will deal with propositional

STRIPS actions A described in terms of the following

4

where C

1

and C

2

can be arbitrary concept terms. All

usual concept de�nitions, including cyclic and multiple de�-

nitions, are expressible using such general implications.

three condition sets (containing only non-negated atomic


uents):

� preconditions Pre(A) (the conditions necessary for

executing A)

� positive e�ects Add(A) (the 
uents added by A's

execution)

� negative e�ects Del(A) (the 
uents deleted/falsi�ed

by A's execution).

The following relationships between the above

condition-sets are assumed: Pre(A) \ Add(A) = ; and

Del(A) � Pre(A).

For example, the simple blocks-world action A =

move-X-Y-Z (which moves the block X from Y onto Z)

admits the following STRIPS description:

Pre(A) = {on-X-Y, clear-X, clear-Z}

Add(A) = {on-X-Z, clear-Y}

Del(A) = {on-X-Y, clear-Z}.

As we have already mentioned, there are several al-

ternative approaches to encoding and reasoning about

actions and plans in ALC

?

. The two main categories of

approaches are the deductive and the satis�ability-based

ones. We start by discussing the deductive approaches.

3.1 Deductive planning in Description

Logics

We have identi�ed two essentially di�erent encodings of

planning as deduction: a causal (asymmetrical) one and

a symmetrical one.

The causal (asymmetric) encoding

The causal encoding amounts to enforcing the existence

of an action execution A whenever the preconditions

Pre(A) of A are veri�ed:

[E�

DED�CAUS

] Pre(A)! hAiAdd(A)

(where condition sets appearing in logical formulae are

interpreted conjunctively).

The semantical interpretation of the above axiom

5

holds(Pre(A);S)! 9S

0

:do(A;S; S

0

) ^ holds(Add(A);S

0

)

shows that all actions A executable in state S (whose

preconditions are satis�ed in S) are actually executed in

S, leading to (separate) successor states S

0

. The causal

approach therefore encodes the entire search space (with

all possible action executions from a given state) in its

models.

Besides the explicit e�ects of action A, described by

axiom [E�

DED�CAUS

], it is necessary to describe the per-

sistence of the conditions (
uents) left unmodi�ed by A.

This is achieved by means of frame axioms of the form

6

5

We write holds(C;S) instead of S 2 C

I

and do(A;S; S

0

)

instead of (S;S

0

) 2 A

I

in order to emphasize the fact that

the interpretations of DL formulae are essentially situation

calculus formulae.

6

Since a given action typically a�ects only a small num-

ber of conditions, we will have to write O(A � C) such frame



[Fr

DED

] C ! [A]C

for all C 2 Conditions � (Del(A) [Add(A)):

Note that since we are in a deductive setting it is

not necessary to explicitly mention the deleted e�ects

in the consequent of the above axiom. In other words, a

stronger version like Pre(A)! hAi(Add(A) ^ :Del(A))

is not needed as long as the frame axioms do not allow

the persistence of deleted e�ects. Similarly, a stronger

version like Pre(A)! hAi> ^ [A]Add(A) is also unnec-

essary for deductive planning.

A planning problem is usually speci�ed by providing a

(possibly incomplete) initial state described by the con-

cept Initial (a conjunction of the concept names rep-

resenting the conditions initially true) and a �nal (goal)

state Final. For example, we can represent the Sussman

anomaly problem in the blocks world as

Initial = on-c-a ^ on-a-table ^ on-b-table

^ clear-c ^ clear-b

Final = on-a-b ^ on-b-c.

The most straight-forward approach to such a problem

would be to reduce it to proving a theorem of the form

Initial ! h?P laniFinal

involving a meta-variable ?P lan. Unfortunately, most

description logic theorem provers do not allow for role

variables (especially those with powerful role construc-

tors, like ALC

?

), so the simple approach above is not

directly feasible.

If we knew the role term representing the plan P lan =

A

i

1

�A

i

2

� . . . �A

i

n

, then the validity of the formula

Initial ! hP laniFinal (1)

would be equivalent with the validity of the plan.

However, since we do not know P lan, we need to try

proving (1) for all possible action sequences P lan. Un-

fortunately, this cannot be done e�ectively, since there

are in�nitely many such action sequences and therefore

in�nitely many theorems to try proving. Therefore, we

will consider reducing the problem to proving a single

formula containing a disjunction of all possible action

sequences:

Initial ! Final _ (2)

hA

1

iFinal _ hA

2

iFinal _ . . ._

hA

1

�A

1

iFinal _ hA

1

�A

2

iFinal _ . . ._

hA

2

�A

1

iFinal _ . . . :

Since a disjunction of existential restrictions can be

rewritten as an existential restriction hR

1

iq _ hR

2

iq =

hR

1

_R

2

iq, we can reduce (1) to

axioms. Their number can be reduced to O(C) by grouping

the actions A;A

0

; A

00

; . . . that leave C una�ected:

C ! [A _A

0

_ A

00

_ . . .]C:

Conditions is the (�nite) set of atomic conditions occurring

in the problem, C = jConditionsj and A the number of atomic

actions.

[Plan

DED�CAUS

] Initial ! hAny

�

iFinal

where Any = A

1

_A

2

_. . ._A

k

is the disjunction of all

atomic actions occurring in the problem (the \repertory

of actions") [6, 16]. Note that the role term Any

�

plays

the role of the meta-variable ?P lan.

The relationship between (1) and (2) is subtle and

requires some explanations. In general, a proof of (2)

does not entail the existence of a proof of (1) for some

P lan (although the reverse is true) because (2) requires

that for each state S verifying Initial we �nd a sequence

of actions P lan such that hP laniFinal holds { but P lan

need not be the same for all such states S!

The most straight-forward solution to this problem

(pursued for example in [16]

7

) would be to require com-

plete state speci�cations (that do not allow for essen-

tially di�erent states S) and to make sure that the ax-

ioms constrain the successor states to be also completely

speci�ed. This amounts roughly to combining the ax-

ioms from our deductive (causal and symmetric) and

SAT-based approaches. The problem with this approach

lies in the large number of axioms employed which may

signi�cantly slow down a theorem prover, especially be-

cause reasoning with complete state speci�cations may

be at a too �ne-grained level, i.e. very close to \blind

search" in the much too big space of complete state de-

scriptions.

What we would like to achieve is to be able to rea-

son with incomplete state speci�cations (for example

by propagating only \weakest preconditions" and/or

\strongest e�ects" instead of complete state informa-

tion).

As shown above, incomplete state speci�cations give

rise to situations in which a proof of (2) may construct

a di�erent P lan for each completion (state) S verifying

the incomplete initial state speci�cation Initial. This

ensures the existence of such a plan P lan

S

for each state

S, but a given P lan

S

may not be applicable in all states

7

De Giacomo and Lenzerini do not explicitly state that

the initial state should be completely speci�ed. However,

their approach of reducing planning to proving the validity of

Initial ! hAny

�

iFinal fails in the case of incompletely spec-

i�ed initial states due to their allowing actions with negated

preconditions.

For example, consider Initial = p, Final = q and an ac-

tion a with Pre(a) = f:qg, Add(a) = fqg, Del(a) = f:qg,

described by means of the following axioms

:q ! hai>

hai> ! :q

[a]q:

Initial is incompletely speci�ed since the value of q is not

mentioned. Therefore, two possibilities arise: either q is true

in Initial (case in which the empty plan Plan

0

= id is the

only solution), or :q holds in Initial (case in which Plan

00

=

a is the only solution), so there exists no \global" plan. But

the formula Initial ! hAny

�

iFinal (i.e. p ! ha

�

iq) is nev-

ertheless provable using the above axioms, showing that the

approach in [16] fails in this case.



S

0

verifying the incomplete speci�cation Initial. On the

other hand, the planning problem amounts to �nding a

plan that is guaranteed to work no matter what state we

are in.

8

Thus it may seem that it is impossible to reduce plan-

ning to proving a DL formula, so as to take advantage

of an existing DL theorem prover. Therefore, it may

seem we need to use a syntactical plan generation ap-

proach (like in [27]) by writing a specialized planning

algorithm on top of a Description Logic (or Dynamic

Logic) theorem prover. However, writing such a special-

ized planning algorithm external to the DL is somewhat

inappropriate in a KR formalism like Description Log-

ics, where we would like to be able to impose various

constraints on the plan.

Fortunately, we can avoid this by showing that, al-

though (1) and (2) are not equivalent in the general case,

we can nevertheless recover a \global" plan (i.e. a solu-

tion to (1)) from a proof of (2). In order to do this, we

shall single out a state S whose plan P lan

S

constructed

according to (2) is also applicable to all the other states

S

0

. The state S with this property is the completion of

the (incomplete) initial state speci�cation Initial (ob-

tained by conjoining to Initial a negated literal :C for

each action precondition C not speci�ed in Initial).

Due to our assumption that the precondition lists of

actions contain only positive literals

9

and by additionally

disallowing constraints (terminological axioms) involving

preconditions of actions, the negated literals in state de-

scriptions do not in
uence the executability of actions.

(Note also that in the deductive settings, negated condi-

tions are not propagated by frame axioms.) Therefore,

the plan P lan

S

for the completed state S will be appli-

cable in all other states as well and will be a \global"

plan. In our setting, (1) and (2) are therefore equivalent

and we can safely reduce the planning problem to �nding

a proof for (2).

The planning problem has thus been reduced to prov-

ing the ALC

?

theorem [Plan

DED�CAUS

]. But proving

the validity of such a formula is usually reduced in DLs

to proving the inconsistency of its negation:

[:Plan

DED�CAUS

] Initial ^ [Any

�

]:Final:

Drawing an analogy with the answer-set of a logic pro-

gramming query, we should be able to modify a DL the-

orem prover so that it returns a \falsifying interpreta-

tion" I for each inconsistent query [:Plan

DED�CAUS

].

This interpretation would be constructed while trying to

build a model of the formula [:Plan

DED�CAUS

]. When-

ever a plan exists, the latter formula is inconsistent due

to a clash involving the goal condition Final and the

plan can be reconstructed from the (inconsistent) inter-

pretation I built so far.

8

\Conditional" plans like Plan

S

may be interesting in

their own right, but we do not explore this issue further.

9

If an action had a negated literal :C as a precondition,

we could replace it by the precondition C

0

and de�ne C

0

=

:C as an axiom in the DL.

Note that unlike many planning systems which do

not have a sound and complete stopping criterion

10

, the

above approach to planning provides a decidable, sound

and complete planning algorithm. This is especially im-

portant for proving that no plan exists.

The above reduction of plan construction to an incon-

sistency proof may seem somehow counter-intuitive in

DLs, since we might have expected that a plan would

correspond to a model of some formula rather than to

a proof that no such model exists. This viewpoint will

be pursued in the satis�ability-based encoding presented

below.

The causal encoding presented above is more appro-

priate for reasoning about precondition-triggered causal

events of the environment (as opposed to actions under

the full control of agents { which may or may not choose

to execute them, even if the preconditions are satis-

�ed). It is also able to represent non-deterministic causal

events (events with multiple possible outcomes), as de-

scribed in more detail in section 4.1. But since causal

events are not necessarily reversible, the causal encoding

is asymmetrical in a certain sense, and it does not allow

a straight-forward representation of goal regression (i.e.

reasoning backward from the goals Final). Reasoning

in the causal encoding is therefore limited to progression

(forward reasoning from the initial state), which may

be ine�cient (but it is the only type of reasoning possi-

ble when dealing with such precondition-triggered causal

events).

The symmetrical encoding

The symmetrical encoding deals with representing the

reasoning about possible outcomes of courses of action

without actually executing the actions. More precisely,

we shall write axioms saying that whenever the precondi-

tions Pre(A) of action A are veri�ed and A is executed,

the positive e�ects ofAmust hold in the successor state:

[E�

DED�SYM

] Pre(A)! [A]Add(A):

This can be seen more easily in the semantic interpre-

tation:

holds(Pre(A); S) ^ do(A; S; S

0

)! holds(Add(A); S

0

):

Similarlywith the causal setting, we do not need to ex-

plicitlymention the deleted e�ects :Del(A) in the conse-

quent of the above axiom (because we are in a deductive

setting).

The frame axioms [Fr

DED

] are identical to the ones

used in the causal setting.

Finally, the validity of a plan P lan = A

i

1

� A

i

2

�

. . .�A

i

n

is equivalent to proving the theorem Initial !

[P lan]Final: However, since we do not know P lan, we

need to prove a formula containing a disjunction of all

possible action sequences

11

:

Initial ! Final _ (3)

10

They usually set an ad-hoc bound on the length of the

plan.

11

Similar considerations as in the case of the causal setting

apply here.



[A

1

]Final _ [A

2

]Final _ . . ._

[A

1

�A

1

]Final _ [A

1

�A

2

]Final _ . . ._

[A

2

�A

1

]Final _ . . . :

But unfortunately, the disjunction of value re-

strictions cannot be rewritten as a single value

restriction

12

, so we cannot reduce (3) to a formula like

Initial ! [Any

�

]Final (which would be the analog of

[Plan

DED�CAUS

]). In fact, formula (3) cannot be en-

coded in ALC

?

(or PDL) and not even in repeat-PDL.

In order to represent (3), we need the full expressive

power of the �-calculus, i.e. ALC

�

(which provides gen-

eral �xpoint constructors):

[Plan

DED�SYM

]

Initial ! �X:(Final _ [A

1

]X _ . . ._ [A

k

]X):

The validity of [Plan

DED�SYM

] is equivalent with the

inconsistency of

[:Plan

DED�SYM

]

Initial ^ �X:(:Final ^ hA

1

iX ^ . . .^ hA

k

iX):

Using a result of Niwinski (mentioned in [34]) say-

ing that the formula �X:(hA

1

iX ^ hA

2

iX) is not

expressible in repeat-PDL, we conclude that neither

[:Plan

DED�SYM

] nor [Plan

DED�SYM

] can be expressed

in ALC

?

(not even in its !-regular extension). Strangely

enough, the symmetric encoding requires more expres-

sive power than does the causal encoding. However,

reasoning in ALC

�

is just as hard/easy as reasoning in

ALC

?

(both are EXPTIME-complete).

Regression The above encoding of planning seems to

be more appropriate for progression (i.e. reasoning for-

ward from the initial state and looking for a sequence of

actions leading to the goal state). The following results

show however that the above axioms can be rewritten in

an equivalent form that is more appropriate for regres-

sion (backward reasoning from the �nal state by recur-

sively replacing goals with action subgoals until they are

satis�ed in the initial state). This shows the intrinsic

precondition-e�ect symmetry of the approach.

Proposition 1 The following axioms are equivalent

(1) p! [a]q (2) ha

�

ip! q and (3) :q! [a

�

]:p.

Proof. Since (2) and (3) are contra-positives, we need

to prove only the equivalence (1) () (3). Indeed,

p! [a]q is interpreted as

13

:

8S:p(S)! 8S

0

: (a(S; S

0

)! q(S

0

))

8S:8S

0

::p(S) _ :a(S; S

0

) _ q(S

0

)

8S

0

:8S::q(S

0

)! (a

�

(S

0

; S)! :p(S))

i.e. :q! [a

�

]:p 2

The \regressive" forms of the e�ect and frame axioms

are therefore:

12

Note that [R

1

]q _ [R

2

]q 6= [R

1

_R

2

]q = [R

1

]q ^ [R

2

]q:

13

for brevity, we write p(S) instead of holds(p; S) and

a(S; S

0

) instead of do(A;S; S

0

).

[E�

�

DED�SYM

] hA

�

iPre(A)! Add(A)

or equivalently :Add(A)! [A

�

]:Pre(A)

[Fr

�

DED

] hA

�

iC ! C

or equivalently :C ! [A

�

]:C:

3.2 Planning as testing satis�ability in

ALC

?

Viewing planning as satis�ability testing amounts to re-

garding a plan as a model of some formula rather than as

a proof that no such model exists (as in the deductive ap-

proaches). Planning is thus reduced to model construc-

tion, in the spirit of [24]. But unlike Kautz and Selman,

who reduce linear-time planning to propositional satis�-

ability, our approach reduces planning to ALC

?

satis�a-

bility. A model corresponds thus to a Kripke structure

rather than just a propositional truth assignment (as

in [24]). Since ALC

?

provides the transitive closure of

roles, we do not need to use (like [24]) iterative deepen-

ing over �xed-length planning problems. We addition-

ally ensure the completeness of the termination check

(our algorithms always terminate and in case they do

so without �nding a plan, then it is guaranteed that no

such plan exists).

The e�ect and frame axioms used in the deductive ap-

proaches are correct and complete w.r.t. deduction, but

they are not strong enough to rule out anomalous mod-

els. For example, they admitmodels in which actions are

executed despite the fact that their preconditions are not

satis�ed. Such models can be avoided by using axioms

of the form

[Pre

SAT

] hAi> ! Pre(A)

or equivalently [A

�

]Pre(A):

For precondition-triggered causal events, we impose

the executability axioms:

[Exec

SAT

] Pre(A)! hAi>:

The following axiom rules out models in which actions

are executed but their e�ects do not hold:

[E�

SAT

] [A]E� (A)

where E� (A) = Add(A) ^ :Del(A) are the e�ects of

action A

14

. Note that in the deductive setting, only

the positive e�ects Add(A) had to be enforced in the

successor states of A. Even if these states would have

been consistent with Del(A), this would not have been

su�cient for executing some other action whose precon-

ditions are in Del(A). Del(A) should have been valid in

those states and not just consistent with them.

The e�ect axiom in the symmetric deductive set-

ting [E�

DED�SYM

] is weaker than its SAT counterpart

[E�

SAT

] for two reasons:

14

:Del(A) represents the conjunction of the negated con-

ditions from Del(A).



� [E�

SAT

] explicitly enforces :Del(A) in the successor

states of A

� [E�

DED�SYM

] constrains the successor states of A

only if the current states veri�es the preconditions

Pre(A).

[E�

DED�SYM

] is too weak for the SAT setting. How-

ever, the following intermediate version

[E�'

SAT

] Pre(A)! [A]E� (A)

is equivalent with [E�

SAT

] when combined with

[Pre

SAT

]. This can be proved using the following result.

Proposition 2 The three sets of axioms below are

equivalent:

(1) hai> ! p

p! [a]q

(2) hai> ! p

[a]q

(3) [a

�

]p

[a]q.

The frame axioms need to enforce the persistence not

only of the positive literals (as in the deductive setting)

[Fr-pos

SAT

] C ! [A]C

for C 2 Conditions � (Del(A) [Add(A))

but also of the negative literals

[Fr-neg

SAT

] :C ! [A]:C

for C 2 Conditions� (Pre(A) [Add(A)):

The crucial di�erence w.r.t. the deductive approach

consists in reducing the planning problem to testing the

satis�ability of the formula

[Plan

SAT

] Initial ^ hAny

�

iFinal

(or, equivalently, of its regressive variant

[Plan

�

SAT

] Final ^ h(Any

�

)

�

iInitial:)

Therefore, a plan will be recovered from a model of

the above formula. This requires practically no modi�-

cation to an existing ALC

?

consistency testing algorithm

since such algorithms work by constructing models. In

our tests, we have used the RegAL system described in

[8] for solving propositional STRIPS planning problems

encoded as satis�ability testing.

15

Note that the SAT-based approach requires a \com-

pletely speci�ed" initial state, in which either C or :C

holds for each action precondition C

16

. If neither C

15

An automated translation tool from STRIPS speci�ca-

tions toALC

?

axioms has been implemented for this purpose.

Then, the ALC

?

reasoning services are used for constructing

a plan, i.e. a model of some formula.

16

An incomplete initial state can be \completed" by adding

a negated literal :C for each unspeci�ed action precondition

C. This works since the condition sets Pre(A) contain only

positive literals.

nor :C holds in state S, then there may exist anoma-

lous models in which actions having C as a precondition

are executed in S. Fortunately, a \completely speci�ed"

initial state entails \completely speci�ed" intermediate

states.

4 Related work

4.1 The Frame Problem for

Nondeterministic Actions

Craig Boutilier and Nir Friedman [10] try to solve the

frame problem for non-deterministic actions in a mono-

tonic setting, drawing inspiration from Reiter's explana-

tion closure axioms developed for the deterministic set-

ting [26].

They argue that some of the main intuitions under-

lying Reiter's solution must be abandoned in a non-

deterministic setting due to the possible correlations

among e�ects. They therefore use a much stronger Pro-

cess Logic instead of the weaker Dynamic Logics (Pro-

cess Logics are not only more expressive than Dynamic

Logic, but they usually have a higher computational

complexity { doubly exponential or worse, whereas Dy-

namic Logic is worst-case EXPTIME-complete). How-

ever we show in the following that the recourse to Process

Logic is unnecessary, Dynamic Logic and ALC

?

being

su�cient for their purposes.

Boutilier and Friedman deal with non-deterministic

action speci�cations with multiple action clauses of the

form

a causes �

a

11

jj . . . jj�

a

1k

a

1

when D

a

1

. . .

a causes �

a

n1

jj . . . jj�

a

nk

a

n

when D

a

n

where the preconditions (discriminants) D

a

i

are exhaus-

tive

W

n

i=1

D

a

i

and pairwise exclusive :(D

a

i

^D

a

j

) for i 6= j.

Each possible e�ect �

a

ij

is a conjunction of literals. An

action clause

a causes �

a

i1

jj . . . jj�

a

ik

a

i

when D

a

1

(4)

says essentially that if the current state s veri�es the

precondition D

a

i

, then the action a is applicable in s

with the possible e�ects �

a

ij

for j = 1; . . . ; k

a

i

(if k

a

i

> 1,

the action is non-deterministic since there are several

possible outcomes).

A di�erent type of action clauses describing necessary

e�ects of actions is also available:

a necessarily causes �

a

i;nec

when D

a

i

(5)

Such an action theory (4,5) is interpreted in Dynamic

Logic (and therefore also in ALC

?

) as:

D

a

i

! hai�

a

i1

^ . . .^ hai�

a

ik

a

i

^ [a]�

a

i;nec

(6)

However (6) deals only with the explicit e�ects of a.

Frame axioms of the form

l ^ :Poss(a;:l)! [a]l (7)



have to be added for all literals l, where Poss(a; l) is the

disjunction of all discriminants of action clauses having

l in one of their possible e�ects lists

Poss(a; l) =

_

i

l2�

a

ij

for some j

D

a

i

In the case of deterministic action clauses, there is just

one possible outcome in each action clause (k

a

i

= 1), so

Poss(a; l) implies that l must be true after executing a

and therefore Reiter's solution is applicable in a straight-

forward fashion in this case.

More precisely, the e�ect axioms (6) reduce, in the

deterministic setting, to

D

a

i

! hai�

a

i

(8)

(assuming no \necessary" e�ects). Considering only

those axioms for which l 2 �

a

i

(for a given literal l),

we have that

hai�

a

i

! hail: (9)

(8) and (9) entail

Poss(a; l)! hail: (10)

The condition that a is deterministic amounts to

hail ! [a]l (11)

which can be combined with the completeness (exhaus-

tiveness) condition

17

haitrue (12)

to give

hail$ [a]l: (13)

(7), (10) and (13) entail the " " direction of the Re-

iter successor state axiom

hail $ Poss(a; l) _ (l ^ :Poss(a;:l)) : (14)

The \!"direction can be obtained from the \ " di-

rection for the negated literal :l

hai:l Poss(a;:l) _ (:l ^ :Poss(a; l))

which is equivalent with

[a]l ! :Poss(a;:l) ^ (l _ Poss(a; l))

i.e

[a]l ! (Poss(a; l) ^ :Poss(a;:l)) _ (l ^ :Poss(a;:l)) :

(15)

Since the e�ects of an action cannot be contradictory,

we have that : (Poss(a; l) ^ Poss(a;:l)), which entails

Poss(a; l) ^ :Poss(a;:l)$ Poss(a; l): (16)

Finally, (13),(15) and (16) entail the \!" direction of

(14).

17

This condition imposed by Boutilier and Friedman is not

justi�ed in the general case: not every action a is applicable

in every state { there may be conditions under which a is not

applicable.

As can be easily seen from the above considerations,

Reiter's solution (14) is not applicable in the case of non-

deterministic actions, mainly because the frame axioms

(7) are too weak (i.e. in a certain sense incomplete):

they do not say anything about the persistence or non-

persistence of the literal l in states verifying Poss(a;:l).

Such states, however, do not necessarily lead to states

verifying :l, they just might do so (since only some of

the possible outcomes of action a lead to :l). There-

fore we have to describe what happens to the literal l in

all possible outcomes of a. For this purpose, Boutilier

and Friedman use a Process Logic. However this may

lead to important complexity blowups as well as to more

complex and less understandable encodings. We argue

that such a recourse to Process Logic is unnecessary:

Dynamic Logic and ALC

?

would have been su�cient for

their purposes.

The main problem with writing frame axioms for non-

deterministic action clauses (4) (encoded as (6)) is that

we have to describe the persistence of some literal l w.r.t.

action a in a way that discriminates between the sev-

eral possible outcomes hai�

a

i1

; . . . ; hai�

a

ik

a

i

of the nonde-

terministic action. However, this discrimination is not

possible in Boutilier and Friedman's approach because

they use a formula like [a]l to express the persistence of

l (the formula [a]l leads to the persistence of l in all pos-

sible outcomes hai�

a

i1

; . . . ; hai�

a

ik

a

i

). (Boutilier and Fried-

man use the preconditions D

a

i

to discriminate between

the possible successor states in case of deterministic ac-

tions.) In order to be able to discriminate between the

possible outcomes of a nondeterministic action clause

(4):

a causes �

a

i1

jj . . . jj�

a

ik

a

i

when D

a

i

we shall encode each of the k

a

i

di�erent possible outcomes

�

a

ij

as the result of a di�erent action name a

j

D

a

i

! ha

1

i�

a

i1

^ . . .^ ha

k

a

i

i�

a

ik

a

i

^ [a]�

a

i;nec

(17)

(compare (17) with Boutilier and Friedman's encoding

(6)) and use the disjunction a = a

1

_ . . ._ a

k

a

i

in queries

and necessary e�ect axioms involving a.

The crucial bene�t of this encoding relies in the possi-

bility of writing frame axioms that discriminate between

the possible outcomes ha

j

i�

a

ij

of action a:

l ^ :Poss(a

j

;:l)! [a

j

]l (18)

given that (17) is equivalent with the conjunction of ax-

ioms of the form

D

a

i

! ha

j

i�

a

ij

^ [a]�

a

i;nec

corresponding to the deterministic action clauses:

a

j

causes �

a

ij

when D

a

i

:

Note that the frame axioms (18) can be rewritten as

l ^:D

a

i

! [a

j

]l if :l 2 �

a

ij

[ �

a

i;nec

l ! [a

j

]l if :l 62 �

a

ij

[ �

a

i;nec



or, in our representation:

l ^ :Pre(a)! [a

j

]l for l 2 Del(a

j

)

l ! [a

j

]l for l 62 Del(a

j

)

or even

l! [a

j

]l for l 2 Del(a

j

)� Pre(a)

l ! [a

j

]l for l 62 Del(a

j

)

i.e.

l ! [a

j

]l for l 2 Conditions� (Del(a

j

) \ Pre(a))

which coincide with our representation of the frame ax-

ioms (because Del(a

j

) � Pre(a) in our representation).

The above considerations therefore show that

Boutilier and Friedman's nondeterministic action clauses

can be encoded in our causal (asymmetric) deductive ap-

proach in an even simpler fashion than they originally

did (in ALC

?

rather than a more sophisticated Process

Logic).

4.2 Deductive planning using dynamic

logic

Dynamic logic has been used in the past to encode rea-

soning about actions and plans [27, 23], but a syntac-

tical planning algorithm implemented on top of a Dy-

namic Logic theorem prover was usually employed. In

the present paper we reduce planning to reasoning within

a Description Logic, by using exclusively the DL rea-

soning services (without any additional external algo-

rithms).

In [33], planning was reduced to proving theorems like

Initial ! h?P laniFinal in a tactical theorem prover for

First Order Dynamic Logic (KIV). There, strategies like

progression and regression were implemented by means

of tactics of the theorem prover, which may be a too low

level approach to the problem.

We argue that these approaches are inappropriate for

Description Logics for at least two important reasons.

First, Description Logics do not allow for variables in

formulae, so the goal formulae above are not express-

ible in DLs. Secondly, reasoning in First-Order Dynamic

Logic (FODL) is highly undecidable [22], thereby render-

ing any FODL theorem prover incomplete in principle.

Finally, strategies like regression and progression are

implemented by means of low level tactics of the the-

orem prover, rather than at the conceptual level. Our

approach addresses all the above problems successfully

by using a general role like Any

�

instead of role meta-

variables, by providing sound and complete reasoning

algorithms for solving the planning problem within the

DL (and without any external algorithms) and �nally

by being able to encode strategies like progression and

regression at the conceptual level.

4.3 The Robot-Tino Project

The Robot-Tino project at the University of Rome [17]

represents a related approach to planning using DLs with

a non-monotonic epistemic operator.

18

. The approach

is incomplete w.r.t. the planning problem, but the in-

completeness seems to be inessential, occurring only in

arti�cial special cases. On the other hand, due to the in-

creased expressivity of the (auto)epistemic operator, it is

applicable in more general cases than our approach (con-

straints involving action preconditions are dealt with, al-

beit incompletely).

The main drawback seems to be the di�culty of rea-

soning in the non-monotonic logic associated to the

(auto)epistemic operator. Since no such theorem prover

has been implemented up to now, De Giacomo et al. use

the procedural rules of CLASSIC, leading to a rather

limited implementation.

Acknowledgments

Thanks are due to anonymous reviewers who pointed out

the related work [17].

References

[1] Artale A., Franconi E. A computational account for

a description logic of time and action. Proc. KR-94, 3-

14.

[2] Baader F. Augmenting concept languages by the tran-

sitive closure: An alternative to terminological cycles.

IJCAI-91, pp. 446-451, also DFKI RR-90-13.

[3] Baader F., Hollunder B. KRIS: Knowledge Repre-

sentation and Inference System { System Description.

DFKI TM-90-03.

[4] Baader F., Hollunder B. Embedding Defaults into

Terminological Knowledge Representation Formalisms.

Proc. KR-92, 306-317.

[5] Baader F., Laux A. Terminological Logics with Modal

Operators. IJCAI-95, pp. 808-814.

[6] Badea Liviu. A unitary theory and architecture for

knowledge representation and reasoning (in Romanian)

PhD Thesis, November 1994.

[7] Badea Liviu. A uni�ed architecture for knowledge rep-

resentation and reasoning based on terminological logics.

International Workshop on Description Logics, Roma

1995.

[8] Badea Liviu. A uni�ed architecture for knowledge rep-

resentation based on description logics. Proc. ECAI-96,

288-292.

[9] Badea Liviu. Reifying Concepts in Description Logics.

Proc. IJCAI-97.

[10] Boutilier C., Friedman N. Nondeterministic Actions

and the Frame Problem. AAAI Spring Symposium on

Extending Theories of Action, Stanford, March 1995.

[11] Brachman R.J., Schmolze J.G. An Overview of the

KL-ONE Knowledge Representation System. Cognitive

Science 9 (2) 1985.

[12] Bylander T. Complexity results for planning. IJCAI-

91, 274-279.

18

The necessity of dealing with state completions in our en-

codings also seems to imply that a non-monotonic approach

is needed in a more general setting.



[13] de Giacomo G., Lenzerini M. Concept Language with

Number Restrictions and Fixpoints, and its Relationship

with the Mu-calculus. Proc. ECAI-94, 411-415.

[14] de Giacomo G., Lenzerini M. Boosting the correspon-

dence between description logics and propositional dy-

namic logics. Proc. AAAI-94, 205-212.

[15] de Giacomo G., Lenzerini M. What's in an Aggre-

gate: Foundations for Description Logics with Tuples

and Sets. IJCAI-95, pp. 801-807.

[16] de Giacomo G., Lenzerini M. Enhanced Propositional

Dynamic Logic for Reasoning about Concurrent Actions.

Proc. AAAI Spring Symposium, 1995.

[17] de Giacomo G., Iocchi L., Nardi D., Rosati R.

Moving a Robot: The KR&R Approach at Work. Proc.

KR'96, pp. 198-209.

[18] Devanbu P.T., Litman D.J. Plan-based terminological

reasoning. Proc. KR-91, 128-138.

[19] Donini F.M., Lenzerini M., Nardi D., Schaerf A.,

Nutt W. Adding Epistemic Operators to Concept Lan-

guages. Proceedings KR-92, Boston.

[20] Donini F.M., Lenzerini M., Nardi D., Schaerf A.,

Nutt W. The Complexity of Concept Languages. Pro-

ceedings KR-91, Boston.

[21] Fischer M.J., Ladner R.E. Propositional Dynamic

Logic of Regular Programs. Journal of Computer and

System Science 18, pp.194-211, 1979.

[22] Harel D. Dynamic Logic. In Gabbay D., Guenther F.

(eds) Handbook of Philosophical Logic, Vol. 2, pp. 497-

604, Reidel Dordrecht, 1984.

[23] Kautz H. A �rst-order dynamic logic for planning.

Technical Report CSRG-144, University of Toronto,

May 1982.

[24] Kautz H., Selman B. Pushing the envelope: planning,

propositional logic, and stochastic search. Proc. AAAI-

96.

[25] Levy A., Rousset M.C. CARIN: A Representation

Language Combining Horn Rules and Description Log-

ics. Proc. ECAI-96, 323-327.

[26] Reiter R. The frame problem in the situation calcu-

lus: a simple solution (sometimes) and a completeness

result for goal regression. In V. Lifshitz (ed) Arti�cial

Intelligence and Mathematical Theory of Computation

(Papers in Honor of John McCarthy), pp. 359-380, 1991.

[27] Rosenschein S.J. Plan synthesis: a logical approach.

Proc. IJCAI-81.

[28] Schild Klaus. Terminological Cycles and the Propo-

sitional �-Calculus. DFKI Research Report RR-93-18,

1993.

[29] Schild Klaus. Combining terminological logics with

tense logic. Proc. EPIA'93.

[30] Schild Klaus. A correspondence theory for terminolog-

ical logics: preliminary report. IJCAI-91.

[31] Schmiedel A. A temporal terminological logic. AAAI-

90, 640-645.

[32] Schmidt-Schau� M., Smolka G. Attributive concept

descriptions with complements. Arti�cial Intelligence 48

(1), pp. 1-26, 1991.

[33] Stephan W., Biundo S. A New Logical Framework for

Deductive Planning. Proc. IJCAI-93, 32-38.

[34] Streett R.S. Fixpoints and Program Looping: Reduc-

tions from the Propositional Mu-Calculus into Propo-

sitional Dynamic Logic of Looping. In R. Parikh (ed),

Proceedings of the Workshop on Logic of Programs, Lec-

ture Notes in Computer Science, Vol. 193, pp. 359-372,

Springer Verlag, Berlin, 1985.


