
Learning Composite Concepts

Patrick Lambrix and Pierpaolo Larocchia

Department of Computer and Information Science

Link�oping University

S-581 83 Link�oping, Sweden

e-mail: patla@ida.liu.se

Abstract

This paper proposes a framework to learn con-

cepts from di�erent kinds of observations. We

de�ne a language to describe meta-concepts,

that represent the sets of possible concepts that

can be the result of learning given a set of ob-

servations. The kinds of observations that we

have studied are subsumption, membership and

part-of. We exemplify the framework by show-

ing how composite concepts can be learned in a

speci�c description logic and we show that pre-

vious machine learning approaches in descrip-

tion logics can be reformulated in our frame-

work.

1 Introduction

In [LM96] the problem of learning composite concepts

was formulated in the framework of description log-

ics. Description logics are restricted variants of �rst-

order logic providing a form of logical bias that dates

back to semantic networks. Some recent work investi-

gates concept learning in the context of description logics

[CH94a, CH94b, FP94, KM94, LM96] with the motiva-

tion that given the fact that �rst-order logic has been re-

stricted in several ways for its use in the �eld of machine

learning, description logics seem to make another good

candidate as a learning framework. Also, having recog-

nized the importance of part-of hierarchies in common-

sense reasoning, researchers have started to incorporate

part-of reasoning into description logics (see overview in

e.g. [AFGP96, Lam96]). In [LM96] an attempt is made

to combine machine learning in description logics and

reasoning about part-of.

In this paper we extend this approach. We provide a

framework for learning concepts described in a concept

description language fromdi�erent kinds of observations.

These observations can be statements such as a speci�c

concept is more general than the concept to learn or the

concept to learn is part of another concept or an object

belongs to the concept to learn or not. The di�erent

kinds of observations may interact with each other. Our

framework consists of a meta-concept language that has

similarities to description logics. The learning task is

divided into two parts: a normalization part and a se-

lection part. In the normalization part a meta-concept

representing the observations (or learning examples) is

transformed into one of three canonical forms. The re-

sulting meta-concept represents the set of all possible

concepts that satisfy the observations. We show the use

of our framework by showing how concepts described in

a particular description logic that allows for represen-

tation of part-of can be learned. As description logics

also allow for representation of is-a and membership, we

have a language that allows for observations of di�erent

kinds. We also show that previous approaches in ma-

chine learning in description logics can be reformulated

in our framework.

The remainder of the paper is organized as follows. In

section 2 we describe the language we use for describing

concepts. The meta-concept language and the normal-

ization procedure are de�ned in section 3. We describe

our approach to learning in section 4. Related work is

found in section 5. The paper concludes in section 6.

2 Concept Description Language

The concept description language that we use in this

work is an extension of the description logic that was

used in [LM96] and was based on the framework pro-

posed in [PL94]. Description logics are languages tai-

lored for expressing knowledge about concepts and con-

cept hierarchies. They are usually given a Tarski style

declarative semantics, which allows them to be seen as

sub-languages of predicate logic. The main entities in

description logics are concepts, roles and individuals.

One starts with primitive concepts and roles, and can

use the language constructs (such as intersection, role

quanti�cation etc.) to de�ne new concepts and roles.

Concepts can be considered as unary predicates which

are interpreted as sets of objects of a domain whereas

roles are binary predicates which are interpreted as bi-

nary relations between objects. Individuals are inter-

preted as objects. The basic reasoning tasks are clas-

si�cation and subsumption checking. The description

logics in [PL94, LM96] were speci�cally designed to in-

clude the part-of relation. The languages introduce part

names which are similar to roles to represent di�erent

part-of relations. The syntax of the language we use is

as follows:

concept ::=

>

j ?

j atomic-concept

j (and concept

+

)

j (all role concept)

j (atleast number role)

j (atmost number role)

j (�lls role individual

+

)

j (allp part-name atomic-concept)

j (atleastp number part-name)

j (atmostp number part-name)

j (part-�lls part-name individual

+

)

j (pp-constraint role part-name part-name)

role ::= identifier

individual ::= identifier

atomic-concept ::= identifier

part-name ::= identifier

number ::= non-negative-integer

An interpretation of the language consists of a tuple

hD; "i, where D is the domain of individuals and " the

extension function. Let C be the set of atomic concepts,

R the set of roles and P be the set of part names. Then,

": (C ! 2

D

)[(R! 2

D�D

)[(P ! 2

D�D

). The seman-

tics for the di�erent terms in the language are de�ned

as follows. For convenience we write x <

n

y for hx,yi 2

"[n] where n 2 P.

"[>] = D

"[?] = ;

"[(and A

1

... A

m

)] =

T

m

i=1

"[A

i

]

"[(all r A)] = fx 2 D j 8 y 2 D: hx,yi 2 "[r] ! y 2 "[A]g

"[(atleast m r)] = fx 2 D j] fy 2 D j hx,yi 2 "[r]g � mg

"[(atmost m r)] = fx 2 D j] f y 2 D j hx,yi 2 "[r]g � mg

"[(�lls r i

1

... i

m

)] = fx 2 D j

<x,"[i

1

]> 2 "[r] ^ ... ^ <x,"[i

m

]> 2 "[r]g

"[(allp n A)] = fx 2 D j 8 y 2 D: y <

n

x ! y 2 "[A]g

"[(atleastp m n)] = fx 2 D j] fy 2 D j y <

n

xg � mg

"[(atmostp m n)] = fx 2 D j] fy 2 D j y <

n

xg � mg

"[(part-�lls n i

1

... i

m

)] = fx 2 D j

"[i

1

] <

n

x ^ ... ^ "[i

m

] <

n

xg

"[(pp-constraint r n

1

n

2

)] = fx 2 D j

8 y

1

,y

2

2 D: (y

1

<

n

1

x ^ y

2

<

n

2

x) ! hy

1

,y

2

i 2 "[r]g

Terminological axioms are used to introduce names for

concepts and de�nitions of those concepts. Let A be a

concept name (identifier) and C be a concept descrip-

tion, (concept), then terminological axioms can be of the

form: A

_

� C for introducing necessary conditions (prim-

itive concepts), or A

:

= C for introducing necessary and

su�cient conditions (de�ned concepts).

For instance, the terminological axiom standard-family

:

= (and (allp husband man) (atleastp 1 husband) (at-

mostp 1 husband) (allp wife woman) (atleastp 1 wife)

(atmostp 1 wife) (allp o�spring child) (atleastp 2 o�-

spring) (atmostp 2 o�spring) (pp-constraintmarried

husband wife) (pp-constraint mother wife o�spring)

(pp-constraint father husband o�spring)) describes the

concept of a standard-family which is de�ned as being

composed of one husband part (that belongs to the con-

cept man), one wife part (that belongs to the concept

woman), and two o�spring parts (that belong to the con-

cept child) with the constraints that the husband is mar-

ried to the wife, the wife is the mother of the o�spring

and the husband is the father of the o�spring.

Assertional axioms are used for describing information

about individuals. For instance, the assertional axiom

Jones :: (and standard-family (part-�lls wife Jane))

tells us that Jones is a standard family and Jane is the

wife part in this family.

The terminological axioms form a Tbox while the as-

sertional axioms form an Abox. A knowledge base con-

sists then of a Tbox and an Abox.

As we are going to learn concepts, observations for our

learning process are about relations between the concept

to learn and other concepts and relations between the

concept to learn and individuals. The relations that we

consider are:

� Subsumption between concepts. The usual de�ni-

tion in description logics states that C

1

subsumes

C

2

(notation: C

2

) C

1

) i� "[C

2

] � "[C

1

].

� Part-of between concepts. [LM96] If after normaliza-

tion (allp n A) occurs in the de�nition of B, then A

is a direct n-part of B. We say that A

0

is an n-part

of B (notation: A

0

<

n

B) i� (9A : (A is a direct

n-part of B) ^ (A

0

) A)).

Thus part-of and subsumption interact.

� Membership between an individual and a concept.

We say that an individual i belongs to a concept C

with respect to a knowledge base < Tbox;Abox >

(notation: i �! C) i� "[i] 2 "[C] for every model

of the knowledge base.

3 Meta-Concept Language

The meta-language de�nes how we can represent sets

of concepts and in the same way observations about a

concept to learn. The atomic observations de�ne which

kinds of learning examples we can use. In our case the

examples involve subsumption, part-of and membership.

A meta-concept is a combination of atomic observations.

The syntax for the language is as follows.

< meta� concept > ::=

MetaThing

j MetaNothing

j < atomic� observation >

j (and < atomic� observation >

+

)

< atomic� observation > ::=

j (is-more-general-than < concept >)

j (is-not-more-general-than < concept >)

j (is-more-speci�c-than < concept >)

j (is-not-more-speci�c-than < concept >)

j (has-member < individual >)

j (does-not-have-member < individual >)

j (has-as < part� name > part < concept >)

j (does-not-have-as < part� name > part < concept >)

j (is-not-a < part � name > part-of < concept >)

j (is-a < part� name > part-of < concept >)

j (is-one-of < concept >

+

)

< meta� concept� name > ::= < identifier >

< concept > is de�ned in the concept representation language

< individual > ::= < identifier >

An interpretation of the language consists of a tuple

hkb;Exti, where kb is a knowledge base and Ext the

extension function. Let C

kb

be the set of all concepts

that can be created using the constructors of the con-

cept description language, the primitive concepts, roles

and part names and the individuals in a knowledge base

kb. Then, Ext maps meta-concepts to sub-sets of C

kb

.

The semantics for the di�erent terms in the language are

de�ned as follows. The de�nitions rely on the availability

of subsumption, part-of and membership.

Ext[(and A

1

::: A

h

)] = Ext[A

1

] \ ::: \ Ext[A

h

]

Ext[MetaThing] = C

kb

Ext[MetaNothing] = ;

Ext[(is-more-general-than C)] = fC

?

2 C

kb

j C) C

?

g

Ext[(is-not-more-general-than C)] = fC

?

2 C

kb

j C 6) C

?

g

Ext[(is-more-speci�c-than C)] = fC

?

2 C

kb

j C

?

) Cg

Ext[(is-not-more-speci�c-than C)] = fC

?

2 C

kb

j C

?

6) Cg

Ext[(has-member i)] = fC

?

2 C

kb

j i �! C

?

g

Ext[(does-not-have-member i)] = fC

?

2 C

kb

j i 6�! C

?

g

Ext[(has-as n part C)] = fC

?

2 C

kb

j C <

n

C

?

g

Ext[(does-not-have-as n part C)] = fC

?

2 C

kb

j C 6<

n

C

?

g

Ext[(is-a n part-of C)] = fC

?

2 C

kb

j C

?

<

n

Cg

Ext[(is-not-a n part-of C)] = fC

?

2 C

kb

j C

?

6<

n

Cg

Ext[(is-one-of C

1

::: C

h

)] =

fC

?

2 C

kb

j C

1

� C

?

_ ::: _ C

h

� C

?

g

Observational axioms are used to introduce names for

meta-concepts and de�nitions of those meta-concepts.

Let MA be a meta-concept name (identifier) and MC

be a meta-concept description, (meta � concept), then

observational axioms are of the form MA
_
� MC.

3.1 Normalization of Meta-Concepts

Given the language above we can rewrite every meta-

concept description into an equivalent meta-concept de-

scription that is of one of three canonical forms. Two

meta-concepts are equivalent if their extensions are the

same for all interpretations. These canonical forms are:

(a) (and

(is-more-speci�c-than G)

(is-more-general-than S)

(is-not-more-speci�c-than G

1

) :::

(is-not-more-speci�c-than G

h

)

(is-not-more-general-than S

1

) :::

(is-not-more-general-than S

k

)

(has-as n

1

part D

1

) ...

(has-as n

l

part D

l

))

(does-not-have-as n

0

1

part D

0

1

) ...

(does-not-have-as n

0

m

part D

0

m

))

with h; k; l;m � 0

(b) (is-one-of C

1

::: C

l

)

with l>0

(c) MetaNothing

The normalization uses a number of rules involving

the properties of subsumption, part-of, membership and

their interactions. The rules use some functions de�ned

on concepts. The �rst function is a generalization func-

tion and calculates for two given concepts the least com-

mon subsumer (LCS). In a concept description language

where disjunction is available the LCS of two concepts

would just be their disjunction. In our language we use

an extended version of the LCS de�ned in [LM96] which

in itself was based on [CBH92]. The greatest common

subsumee (GCS) of two concepts is in our language de-

�ned as follows: GCS(C

1

,C

2

) = (and C

1

C

2

). GCS is

used for specializing concepts. The DOM function allows

for retrieving the domain for a particular part name for

a concept. The UPDATE function allows for replacing

the domain of a part name for a concept with another

domain.

We have divided the normalization rules into a number

of categories. The initial rephrasing rules translate one

kind of observation into another kind of observation. For

instance, it is easy to show that (is-a n part-of C) is

equivalent to (is-more-speci�c-than DOM(n,C)).

The single type synthesis rules rewrite combinations

of observations of the same kind into one observation

of this kind. For instance, we can show that (and (is-

more-general-than C

1

) (is-more-general-thanC

2

))

is equivalent to (is-more-general-than LCS(C

1

,C

2

)),

thereby generalizing the more speci�c concepts. Sim-

ilarly, (and (is-more-speci�c-than C

1

) (is-more-

speci�c-than C

2

)) is equivalent to (is-more-speci�c-

than GCS(C

1

,C

2

)), thereby specializing the more gen-

eral concepts.

The interaction synthesis rules allow for rewriting

combinations of di�erent kinds of observations. For in-

stance, it can be shown that (and (is-more-general-

than C

1

) (has-as n part C

2

)) can be rewritten as (and

(is-more-general-than UPDATE(C

1

,n,D) (has-as n

part D)) where D is de�ned as LCS(DOM(n,C

1

),C

2

).

In this case we have generalized a more speci�c concept

as well as generalized a more speci�c part.

The singleton rephrasing rules allow for deciding when

we can add a new is-one-of observation. For in-

stance, if we have both (is-more-general-than C) and

(is-more-speci�c-than C) the extension of the meta-

concept must be the singleton fCg and thus we can re-

move these observations and add (is-one-of C).

Finally, we have also rules that check whether the

meta-concept is incoherent, i.e. equivalent to MetaN-

othing. An example of such a rule is: if C

2

does not

subsume C

1

then (and (is-more-general-thanC

1

) (is-

more-speci�c-than C

2

)) is equivalent to MetaNoth-

ing.

For more rules, proofs of the rules and examples of all

these categories we refer to [Lar96].

In general all the normalization rules should be applied

until no more rule can be applied. However, we can show

that for our language the algorithm below computes the

canonical form of a meta-concept. In every step of the

algorithm we remove an observation, generalize a more

speci�c concept, specialize a more general concept, or

�nd a contradiction. Given the fact that we have a �nite

number of observations, and the fact that a �nite number

of observations only allows for a �nite number of LCS-

generalizations and GCS-specializations, the algorithm

terminates.

input meta-concept M

M

1

:= apply initial rephrasing rules to M

M

2

:= apply single type synthesis rules to M

1

if singleton rephrasing rule is applicable

then

M

3

:= apply the rule to M

2

(M

3

contains now (is-one-of C))

if C satis�es the other observations

then return (is-one-of C)

else return MetaNothing

else

M

3

:= apply interaction synthesis rules to M

2

if singleton rephrasing rule is applicable

then

M

4

:= apply the rule to M

3

(M

4

contains now (is-one-of C))

if C satis�es the other observations

then return (is-one-of C)

else return MetaNothing

else

if there is an inconsistency

then return MetaNothing

else return M

4

3.2 Example

In the following we show how the normalization of a

meta-description works. We assume that C

�

is a meta-

concept and that we have the following observations.

The de�nitions of all the concepts used in the obser-

vations are de�ned in the knowledge base.

� All concepts in C

�

are more general than standard-

family-with-adolescent-boys with standard-family-

with-adolescent-boys

:

= (and (allp husband man)

(atleastp 1 husband) (atmostp 1 husband) (allp

wife woman) (atleastp 1 wife) (atmostp 1 wife)

(allp o�spring adolescent-boy) (atleastp 2 o�-

spring) (atmostp 2 o�spring) (pp-constraint

married husband wife) (pp-constraint mother

wife o�spring) (pp-constraint father husband o�-

spring)).

� All concepts in C

�

are more general than standard-

family-with-adolescent-girls with standard-family-

with-adolescent-girls

:

= (and (allp husband man)

(atleastp 1 husband) (atmostp 1 husband) (allp

wife woman) (atleastp 1 wife) (atmostp 1 wife)

(allp o�spring adolescent-girl) (atleastp 2 o�-

spring) (atmostp 2 o�spring) (pp-constraint

married husband wife) (pp-constraint mother

wife o�spring) (pp-constraint father husband o�-

spring)).

� All concepts in C

�

are more speci�c than family-

with-2-children with family-with-2-children

:

= (and

(allp husband man) (atleastp 1 husband) (at-

mostp 1 husband) (allp wife woman) (atleastp

1 wife) (atmostp 1 wife) (allp o�spring child)

(atleastp 2 o�spring) (atmostp 2 o�spring)).

� All concepts in C

�

are more speci�c than

married-family-with-children with married-family-

with-children

:

= (and (allp husband man) (atleastp

1 husband) (atmostp 1 husband) (allp wife woman)

(atleastp 1 wife) (atmostp 1 wife) (allp o�spring

child) (atleastp 1 o�spring) (pp-constraintmar-

ried husband wife) (pp-constraintmother wife o�-

spring) (pp-constraint father husband o�spring)).

� Young-child is an o�spring-part of all concepts in

C

�

.

These observations give us the following de�nition for

the meta-concept C

�

.

C

�

_
� (and

(is-more-general-than

standard-family-with-adolescent-boys)

(is-more-general-than

standard-family-with-adolescent-girls)

(is-more-speci�c-than family-with-2-children)

(is-more-speci�c-thanmarried-family-with-children)

(has-as o�spring part young-child))

Following the algorithm the �rst normalization rules

that we apply are the initial rephrasing rules. In

this example there are no such rules applicable.

In the next step we apply the single type synthe-

sis rules. We can apply the rules for is-more-

general-than and is-more-speci�c-than that were

given as examples in section 3.1. We therefore need

to compute the following: LCS(standard-family-with-

adolescent-boys,standard-family-with-adolescent-girls) =

(standard-family-with-adolescent-children

:

=) (and (allp

husband man) (atleastp 1 husband) (atmostp 1 hus-

band) (allp wife woman) (atleastp 1 wife) (atmostp 1

wife) (allp o�spring adolescent-child) (atleastp 2 o�-

spring) (atmostp 2 o�spring) (pp-constraintmarried

husband wife) (pp-constraint mother wife o�spring)

(pp-constraint father husband o�spring)). We as-

sume here that for our knowledge base LCS(adolescent-

girl,adolescent-boy) = adolescent-child.

1

We also need to compute the GCS of two con-

cepts: GCS(married-family-with-children,family-with-2-

children) = (and (allp husband man) (atleastp 1

husband) (atmostp 1 husband) (allp wife woman)

(atleastp 1 wife) (atmostp 1 wife) (allp o�spring

child) (atleastp 2 o�spring) (atmostp 2 o�spring)

(pp-constraintmarried husband wife) (pp-constraint

mother wife o�spring) (pp-constraint father husband

o�spring)). This is exactly the de�nition of standard-

family as given in section 2.

Applying the rules gives us then:

C

�

_
� (and

(is-more-general-than

standard-family-with-adolescent-children)

(is-more-speci�c-than standard-family)

(has-as o�spring part young-child))

We cannot apply a singleton rephrasing rule, such

that we go on with the interaction synthesis rules. The

1

This would have to have been derived from the de�nitions

of adolescent-girl and adolescent-boy in our knowledge base.

interaction synthesis rule given in section 3.1 allows

for rewriting the meta-concept. To apply the rule we

�rst need to compute DOM(o�spring,standard-family-

with-adolescent-children) = adolescent-child. Then we

need to �nd the LCS of this concept and young-child.

We assume that LCS(adolescent-child,young-child) =

child. Updating the o�spring-part of standard-family-

with-adolescent-children gives us: UPDATE(standard-

family-with-adolescent-children,o�spring,child) = (and

(allp husband man) (atleastp 1 husband) (atmostp

1 husband) (allp wife woman) (atleastp 1 wife) (at-

mostp 1 wife) (allp o�spring child) (atleastp 2 o�-

spring) (atmostp 2 o�spring) (pp-constraintmarried

husband wife) (pp-constraint mother wife o�spring)

(pp-constraint father husband o�spring)), which is the

de�nition of standard-family as given in section 2. Ap-

plying the rule gives then the following.

C

�

_
� (and

(is-more-general-than standard-family)

(is-more-speci�c-than standard-family)

(has-as o�spring part young-child))

Now we can apply a singleton rephrasing rule and get:

C

�

_
� (and

(is-one-of standard-family)

(has-as o�spring part young-child))

There are no inconsistencies such that the �nal result

is:

C

�

_
� (is-one-of standard-family)

4 Learning

The learning task that we want to tackle is formulated

as follows:

Given:

- a knowledge base expressed in a speci�c description

logic

- observations expressed in an observation language (the

observations may belong to di�erent kinds of observa-

tions and may interact with each other)

- a selection criterion

Find:

a concept description that satis�es the observations and

the selection criterion.

The learning of concepts proceeds in a number of

steps. All background information is de�ned in a knowl-

edge base <Tbox,Abox>. In the knowledge base all con-

cepts and individuals that are used are de�ned. Other

information may be available as well. The steps are the

following:

1. Translate learning examples (observations)

into a meta-concept description.

2. Normalize the meta-concept description.

3. Select a concept that is an instance of the

normalized meta-concept description.

If we want to �nd all possible concepts that satisfy

the observations, we can stop after step 2. Step 3 is

used to retrieve one concept satisfying the observations.

In the case the normalized meta-concept is MetaNoth-

ing, there is no solution to the learning problem. In the

case we have (is-one-of C) the only concept that we

can retrieve is C. In the other case there may be dif-

ferent possibilities. One selection criterion could require

the most speci�c concept that satis�es the observations.

This concept is found in the normalized meta-concept in

the is-more-general-than observation. Another selec-

tion criterion may require the most general concept that

satis�es the observations. This concept is found in the

normalized meta-concept in the is-more-speci�c-than

observation.

In the remainder of this section we show how the LCS-

Learn algorithm in [CH94b] applied to our language can

be seen as a special case of our learning algorithm. In

LCSLearn the positive and negative examples are sub-

sumption statements that can be reformulated in our

framework using is-more-general-than and is-not-

more-general-than observations respectively. If there

are no positive examples LCSLearn returns ?. Other-

wise, if there are inconsistent observations the algorithm

aborts with failure. In the other case the LCS of all

positive examples is returned. The fact that LCSLearn

returns the LCS of the positive examples can be seen as

having a selection criterion that requires the most spe-

ci�c concept that satis�es the observations.

In our framework LCSLearn is translated into the al-

gorithm below. The single type synthesis during the nor-

malization of the meta-concept computes the LCS of the

positive examples and stores this LCS in the is-more-

general-than observation. The case where the normal-

ized meta-concept is of the form (is-one-of C) cannot

occur with observations that are only of the kinds is-

more-general-than and is-not-more-general-than.

1. Translate observations into meta-concept M

2. Normalize M

3. if the normalized meta-concept

is of the form MetaNothing

then return failure

else if the normalized meta-concept does not

contain a is-more-general-than observation

then return ?

else return the concept

in the is-more-general-than observation

5 Related Work

The work that is closest to our work is [LM96]. The au-

thors propose a learning algorithm that learns composite

concepts. The language that was proposed is a sub-set of

our language. The learning examples that were proposed

also included the module relation that is a relation with

part-of intuition. Our work can be seen as an extension

of [LM96] by introducing a framework in which the prob-

lem of [LM96] can be reformulated. Our meta-concept

language also gives a clear and intuitive way to describe

learning examples and manipulate them. Further, our

learning algorithm distinguishes between the normaliza-

tion phase and the selection phase. This distinction was

not clear in [LM96].

In [CH94a, CH94b] concepts are learned in the de-

scription logic system CLASSIC (e.g. [BBMR89]). The

language is more expressive than the standard part of the

language (i.e. without constructs for part-of) we use, but

there are no constructs to deal with part-of. Learning

examples are concepts. A concept is a positive example if

it is subsumed by the concept to learn and negative oth-

erwise. It is shown that a restriction of CLASSIC, called

C-CLASSIC is PAC-learnable. The algorithm is based

on the LCS version in [CBH92]. Learning from individu-

als is done by generalizing the individuals into concepts.

A number of experiments have been performed.

Other work that uses CLASSIC in a machine learning

setting is described in [FP94]. The authors show that

CLASSIC sentences are learnable in polynomial time in

the exact learning model using equivalence and mem-

bership queries (e.g. [Ang88]). The membership queries

in the description logic setting are actually subsumption

queries. They also show that both kinds of queries are

necessary for e�cient learning.

KLUSTER [KM94] starts from a knowledge base of

individuals linked together by roles. The �rst step in

KLUSTER's learning is to build a basic taxonomy which

is expressed in a sub-language of the description logic

system BACK (e.g [Neb90]). This sub-language is the

same as the standard part of our language except for the

fact that KLUSTER allows role constructs. The learn-

ing problem for KLUSTER is to build discriminating

concept de�nitions starting from the basic taxonomy.

6 Discussion and Conclusion

In this paper we have presented a framework that can

be used for learning from di�erent kinds of observations.

This is done by introducing a meta-concept description

language. We have shown how we can rewrite descrip-

tions in this language into one of three canonical forms.

The learning is performed by rewriting observations as

a meta-concept, normalize this meta-concept and select

an instance of the normalized form. We have shown that

other approaches can be reformulated in our framework.

References

[Ang88] D. Angluin. Queries and Concept Learning.Ma-

chine Learning, 2:319-342, 1988.

[AFGP96] A. Artale, E. Franconi, N. Guarino and L.

Pazzi. `Part-Whole Relations in Object-Centered Sys-

tems: An Overview', Data and Knowledge Engineer-

ing, 20(3):347-383, 1996.

[BBMR89] A. Borgida, R. Brachman, D. McGuinness

and L. Resnick. CLASSIC : A Structural Data Model

for Objects'. Proceedings of the International Confer-

ence on Management of Data - SIGMOD 89, pp 59-67,

1989.

[CBH92] W. Cohen, A. Borgida and H. Hirsh. Comput-

ing Least Common Subsumers in Description Logics.

Proceedings of the National Conference on Arti�cial

Intelligence - AAAI 92, pp 754-760, 1992.

[CH94a] W. Cohen and H. Hirsh. The Learnability of

Description Logics with Equality Constraints. Ma-

chine Learning, 17:169-199, 1994.

[CH94b] W. Cohen and H. Hirsh. Learning the CLAS-

SIC Description Logic: Theoretical and Experimental

Results. Principles of Knowledge Representation and

Reasoning: Proceedings of the Fourth International

Conference - KR 94, pp 121-133, 1994.

[FP94] M. Frazier and L. Pitt. CLASSIC Learning. Pro-

ceedings of the International Conference on Computa-

tional Learning Theory - COLT 49, pp 23-34, 1994.

[KM94] J.-U. Kietz and K. Morik. A Polynomial Ap-

proach to the Constructive Induction of Structural

Knowledge. Machine Learning, 14:193-217, 1994.

[Lam96] P. Lambrix. Part-Whole Reasoning in Descrip-

tion Logics, Ph.D. thesis, Department of Computer

and Information Science, Link�oping University, Swe-

den, 1996.

[LM96] P. Lambrix and J. Maleki. Learning Composite

Concepts in Description Logics: A First Step. Proceed-

ings of the 9th International Symposium on Method-

ologies for Intelligent Systems - ISMIS 96, LNAI 1079,

pp 68-77, 1996.

[Lar96] P. Larocchia. Learning Composite Concepts in

Description Logics, M.Sc. Thesis, Department of

Computer and Information Science, Link�oping Uni-

versity, Sweden. LiTH-IDA-Ex-9657.

[Neb90] B. Nebel. Reasoning and Revision in Hybrid

Representation Systems, LNAI 422, Springer-Verlag,

1990.

[PL94] L. Padgham and P. Lambrix. A Framework for

Part-of Hierarchies in Terminological Logics. Prin-

ciples of Knowledge Representation and Reasoning:

Proceedings of the Fourth International Conference -

KR 94, pp 485-496, 1994.

