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1 Motivation

As widely argued [Horrocks & Gough,1997; Sattler,1996],

transitive roles play an important rôle in the adequate rep-

resentation of aggregated objects: they allow these objects

to be described by referring to their parts without specifying

a level of decomposition. In [Horrocks & Gough,1997], the

Description Logic (DL) ALCH
R

+ is presented, which ex-

tends ALC with transitive roles and a role hierarchy. It is

argued in [Sattler,1998] that ALCH
R

+ is well-suited to the

representation of aggregated objects in applications that re-

quire various part-whole relations to be distinguished, some

of which are transitive. For example, a medical knowledge

base could contain the following entries defining two differ-

ent parts of the brain, namely the gyrus and the cerebellum.

In contrast to a gyrus, a cerebellum is an integral organ and,

furthermore, a functional component of the brain. Hence the

role is component (which is a non-transitive sub-role of

is part) is used to describe the relation between the brain

and the cerebellum:

is componentv is part

gyrus :=

(8consists:brain mass) u (9is part:brain)

cerebellum :=

organ u (9is component:brain)

However,ALCH
R

+ does not allow the simultaneous descrip-

tion of parts by means of the whole to which they belong and

of wholes by means of their constituent parts: one or other

is possible, but not both. To overcome this limitation, we

present the DL ALCHI

R

+ which extends ALCH
R

+ with

inverse (converse) roles, allowing, for example, the use of

has part as well as is part.1 Using ALCHI
R

+ , we can

define a tumorous brain as:

tumorous brain :=

brain u (tumorous t (9has part:tumorous))

�Part of this work was carried out while being a guest at IRST,
Trento.

yThis work was supported by the Esprit Project 22469 – DWQ.
1Note that has part is taken to be the inverse of is part.

and then to recognise that cerebellumutumorous is sub-

sumed by 9is component:tumorous brain.

Furthermore, ALCHI
R

+ allows for the internalisation of

general inclusion axioms [Horrocks & Gough,1997].

It could be argued that, instead of defining yet another

DL, one could make use of the results presented in [De

Giacomo & Lenzerini,1996] and use ALC extended with role

expressions which include transitive closure and inverse op-

erators. The reason for not proceeding like this is the fact

that transitive roles can be implemented more efficiently than

the transitive closure of roles (see [Horrocks & Gough,1997]),

although they lead to the same complexity class (EXPTIME-

hard) when added, together with role hierarchies, to ALC.

Furthermore, it is still an open question whether the transi-

tive closure of roles together with inverse roles necessitates

the use of the cut rule [De Giacomo & Massacci,1998], a rule

which leads to an algorithm with very bad behaviour. We

will present an algorithm forALCHI
R

+ without such a rule,

which, from the experiences made with an implementation of

ALCH

R

+

[Horrocks & Gough,1997], should behave well in

practice.2

2 Blocking

The algorithms which we will present use the tableaux

method, in which the satisfiability of a concept D is tested

by trying to construct a model of D. The model is repre-

sented by a tree in which nodes correspond to individuals and

edges correspond to roles. Each node x is labelled with a set

of concepts L(x) which the individual must satisfy and each

edge is labelled with a role name.

An algorithm starts with a single node labelled fDg, and

proceeds by repeatedly applying a set of expansion rules

which recursively decompose the concepts in node labels;

new edges and nodes are added as required in order to sat-

isfy 9R:C concepts. The construction terminates either when

none of the rules can be applied in a way which extends the

tree, or when the discovery of obvious contradictions demon-

strates that D has no model.

2Details that have been omitted in the interests of brevity can be
found in [Horrocks & Sattler,1998].
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L(x) = fA; : : :g

R

S

L(y) = f9R:>; 9P:>;8R:C;

8P:9R:>;8P:8R:C;8P:9P:>g

x

y

z

P 2 R

+

L(z) = L(y) ) z blocked by y

v

L(v) = fCg

where C := 8R

�

:8P

�

:8S

�

::A

w

Figure 1: A tableau where dynamic blocking is crucial.

In order to prove that such an algorithm is a sound and

complete decision procedure for concept satisfiability in a

given logic, it is necessary to demonstrate that the models it

constructs are valid with respect to the semantics, that it will

always find a model if one exists and that it always terminates.

The first two points can usually be dealt with by proving that

the expansion rules preserve satisfiability, and that in the case

of non-deterministic expansion (e.g., of disjunctions) all pos-

sibilities are exhaustively searched. For logics such as ALC,

termination is mainly due to the fact that the expansion rules

can only add new concepts which are strictly smaller than the

decomposed concept, so the model must stabilise when all

concepts have been fully decomposed.

Termination is not, however, guaranteed for logics which

include transitive roles, as the expansion rules can introduce

new concepts which are the same size as the decomposed

concept. In particular, 8R:C concepts, where R is a tran-

sitive role, are dealt with by propagating the whole concept

across R labelled edges. For example, given a leaf node x la-

belled fC; 9R:C;8R:(9R:C)g, where R is a transitive role,

the combination of the 9R:C and 8R:(9R:C) concepts would

cause a new node y to be added to the tree with an identical

label to x. The expansion process could then be repeated in-

definitely.

This problem can be dealt with by blocking: halting the

expansion process when a cycle is detected [Baader,1991;

Buchheit et al.,1993]. For logics without inverse roles, the

general procedure is to check the label of each new node y,

and if it is a subset [Baader et al.,1996] of the label of an ex-

isting node x, then no further expansion of y is performed: x

is said to block y. The resulting tree corresponds to a cycli-

cal model in which y is identified with x.3 The validity of

3For logics with a transitive closure operator it is necessary
to check the validity of the cyclical model created by block-
ing [Baader,1991], but for logics which only support transitive roles

the cyclical model is an easy consequence of the fact that

the 9R:C concept which y must satisfy must also be satis-

fied by x, because x’s label is a superset of y’s. Termination

is guaranteed by the fact that all concepts in node labels are

ultimately derived from the decomposition of D, so all node

labels must be a subset of the subconcepts of D, and a cy-

cle must therefore occur within a finite number of expansion

steps.

Blocking is, however, more problematical when inverse

roles are added to the logic, and a key feature of the algo-

rithms presented here is the introduction of a dynamic block-

ing strategy using label equality instead of subset. With in-

verse roles, the blocking condition must be equality of node

labels, because roles are now bi-directional and additional

concepts in x’s label could invalidate the model with respect

to y’s predecessor. Taking the above example of a node la-

belled fC; 9R:C;8R:(9R:C)g, if the successor of this node

were blocked by a node whose label additionally included

8R

�

::C, then the cyclical model would clearly be invalid.

Another difficulty introduced by inverse roles is the fact

that it is no longer possible to establish a block on a once and

for all basis when a new node is added to the tree, because

further expansion in other parts of the tree could lead to the

labels of the blocking and/or blocked nodes being extended

and the block being invalidated. For example, consider the

example sketched in Figure 1. It shows parts of a tableau that

was generated for the concept

A u 9S:( 8P:9R:> u 8P:8R:C u 8P:9P:>

9R:> u 9P:> u 8R:Cu)

:

ForC as given in Figure 1, this concept is not satisfiable: w

has to be an instance of C, which implies that x is an instance

of :A—which is inconsistent with x being an instance of A.

the cyclical model is always valid [Sattler,1996].
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AsP is a transitive role, all universal value restrictions over

P are propagated from y to z, hence L(y) = L(z) and z is

blocked by y. Now, if the blocking of z would not be bro-

ken when 8P�

:8S

�

::A is added to L(y) from C 2 L(v),

then :A would be never added to L(x) and the inconsistency

would not be detected.

Moreover, it is necessary to continue with some expan-

sion of blocked nodes, because 8R:C concepts in their labels

could effect other parts on the tree: Again, let us consider

the example in Figure 1: After the blocking of z was bro-

ken and 8P

�

:8S

�

::A added to both L(y) and L(z), z is

again blocked by y. However, the universal value restriction

8P

�

:8S

�

::A 2 L(z) has to be expanded in order to detect

the inconsistency.

This problem is overcome by using dynamic blocking: al-

lowing blocks to be dynamically established and broken as

the expansion progresses, and continuing to expand 8R:C

concepts in the labels of blocked nodes.

3 Syntax and Semantics of ALCI
R

+

For ease of understanding, we start by introducing the De-

scription Logic ALCI

R

+ , which is the extension of the

well-known DLALC [Schmidt-Schauß & Smolka,1988]with

transitively closed roles and inverse (converse) roles. The set

of transitive role namesR
+

is a subset of the set of role names

R. Interpretations map role names to binary relations on the

interpretation domain, and transitive role names to transitive

relations. In addition, for any role R 2 R, the role R

� is

interpreted as the inverse of R.

In the next section, we describe a tableaux algorithm for

testing the satisfiability of ALCI
R

+ concepts and present a

proof of its soundness and completeness. The extension of

ALCI

R

+ by role hierarchies, ALCHI
R

+ , together with the

extended tableaux algorithm and corresponding proofs is then

described in Section 5.

Definition 1 Let N
C

be a set of concept names and letR be

a set of role names with transitive role namesR
+

� R. The

set of ALCI
R

+-roles is R [ fR

�

j R 2 Rg. The set of

ALCI

R

+ -concepts is the smallest set such that

1. every concept name is a concept and

2. if C and D are concepts and R is anALCI
R

+-role, then

(C uD), (C tD), (:C), (8R:C), and (9R:C) are con-

cepts.

An interpretation I = (�

I

; �

I

) consists of a set �I , called

the domain of I, and a function �I which maps every concept

to a subset of �

I and every role to a subset of �

I

� �

I

such that, for all conceptsC;D, the properties in Figure 2 are

satisfied.

A concept C is called satisfiable iff there is some interpre-

tation I such that CI

6= ;. Such an interpretation is called

a model of C. A concept D subsumes a concept C (written

C v D) iff CI

� D

I holds for each interpretation I. For an

interpretation I, an individual x 2 �

I is called an instance

of a concept C iff x 2 C

I .

In order to make the following considerations easier, we

introduce two functions on roles:

1. The inverse relation on roles is symmetric, and to avoid

considering roles such as R

��, we define a function

Inv which returns the inverse of a role. More precisely,

Inv(R) = R

� if R is a role name, and Inv(R) = S if

R = S

�.

2. Obviously, a role R is transitive if and only if Inv(R)

is transitive. However, this may be established by ei-

ther R or Inv(R) being in R
+

. We therefore define a

function Trans which returns true iff R is a transitive

role—regardless of whether it is a role name or the in-

verse of a role name. More precisely, Trans(R) = true

iff R 2 R

+

or Inv(R) 2 R

+

.

4 A Tableaux Algorithm for ALCI
R

+

Like other tableaux algorithms, the ALCI
R

+ algorithm tries

to prove the satisfiability of a concept D by constructing a

model of D. The model is represented by a so-called com-

pletion tree, a tree some of whose nodes correspond to in-

dividuals in the model, each node being labelled with a set

of ALCI
R

+-concepts. When testing the satisfiability of an

ALCI

R

+ -concept D, these sets are restricted to subsets of

sub(D), where sub(D) is the set of subconcepts of D.

For ease of construction, we assume all concepts to be in

negation normal form (NNF), that is, negation occurs only

in front of concept names. Any ALCI
R

+-concept can eas-

ily be transformed to an equivalent one in NNF by pushing

negations inwards.

The soundness and completeness of the algorithm will be

proved by showing that it creates a tableau for D. We have

chosen to take the (not so) long way round tableaux for prov-

ing properties of tableaux algorithms because—once tableaux

are defined and Lemma 1 is proven—the remaining proofs are

considerable easier.

Definition 2 If D is anALCI
R

+-concept in NNF andR
D

is

the set of roles occurring in D, together with their inverses, a

tableau T for D is defined to be a triple (S;L;E) such that: S

is a set of individuals,L : S! 2

sub(D) maps each individual

to a set of concepts which is a subset of sub(D), E : R

D

!

2

S�S maps each role in R
D

to a set of pairs of individuals,

and there is some individual s 2 S such that D 2 L(s). For

all s 2 S, C;E 2 sub(D), and R 2 R

D

, it holds that:

1. if C 2 L(s), then :C =2 L(s),

2. if C u E 2 L(s), then C 2 L(s) and E 2 L(s),

3. if C t E 2 L(s), then C 2 L(s) or E 2 L(s),

4. if 8R:C 2 L(s) and hs; ti 2 E(R), then C 2 L(t),
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(C uD)

I

= C

I

\D

I

; (C tD)

I

= C

I

[D

I

; :C

I

= �

I

n C

I

;

(9S:C)

I

= fx 2 �

I

j There exists y 2 �

I with hx; yi 2 S

I and y 2 C

I

g;

(8S:C)

I

= fd 2 �

I

j For all y 2 �

I , if hx; yi 2 S

I , then y 2 C

I

g;

For S 2 R : hx; yi 2 S

I iff hy; xi 2 S

�

I

; and

For R 2 R

+

: if hx; yi 2 R

I and hy; zi 2 R

I , then hx; zi 2 R

I

:

Figure 2: Semantics of ALCI
R

+-concepts

5. if 9R:C 2 L(s), then there is some t 2 S such that

hs; ti 2 E(R) and C 2 L(t),

6. if 8R:C 2 L(s), hs; ti 2 E(R) and Trans(R), then

8R:C 2 L(t), and

7. hx; yi 2 E(R) iff hy; xi 2 E(Inv(R)).

Lemma 1 An ALCI
R

+-concept D is satisfiable iff there ex-

ists a tableau for D.

Proof: For the if direction, if T = (S;L;E) is a tableau

for D with D 2 L(s

0

), a model I = (�

I

; �

I

) of D can be

defined as:

�

I

= S

for all concept names A in sub(D):

A

I

= fs j A 2 L(s)g

R

I

=

�

E(R)

+ if Trans(R)

E(R) otherwise

where E(R)

+ denotes the transitive closure of E(R). DI

6= ;

because s
0

2 D

I . Transitive roles are obviously interpreted

as transitive relations. By induction on the structure of con-

cepts, we show that, if E 2 L(s), then s 2 E

I . Let

E 2 L(s).

1. If E is a concept name, then s 2 E

I by definition.

2. If E = :C, then C =2 L(s) (due to Property 1 in Defi-

nition 2), so s 2 �

I

n C

I

= E

I .

3. IfE = (C

1

uC

2

), thenC
1

2 L(s) andC
2

2 L(s), so by

induction s 2 C

I

1

and s 2 C

I

2

. Hence s 2 (C

1

u C

2

)

I .

4. The case E = (C

1

t C

2

) is analogous to 3.

5. If E = (9S:C), then there is some t 2 S such that

hs; ti 2 E(S) and C 2 L(t). By definition, hs; ti 2 S

I

and by induction t 2 C

I . Hence S 2 (9S:C)

I .

6. If E = (8S:C) and hs; ti 2 S

I , then either

(a) hs; ti 2 E(S) and C 2 L(t), or

(b) hs; ti 62 E(S), then there exists a path of length n �

1 such that hs; s
1

i; hs

1

; s

2

i; : : : ; hs

n

; ti 2 E(S).

Due to Property 6 in Definition 2, 8S:C 2 L(s

i

)

for all 1 � i � n, and we have C 2 L(t).

In both cases, we have by induction t 2 C

I , hence s 2

(8S:C)

I .

For the converse, if I = (�

I

; �

I

) is a model of D, then a

tableau T = (S;L;E) for D can be defined as:

S = �

I

E(R) = R

I

L(s) = fC 2 sub(D) j s 2 C

I

g

It only remains to demonstrate that T is a tableau for D:

1. T satisfies properties 1–5 in Definition 2 as a direct con-

sequence of the semantics of ALCI
R

+ concepts.

2. If d 2 (8R:C)

I , hd; ei 2 R

I and Trans(R), then e 2

(8R:C)

I unless there is some f such that he; fi 2 R

I

and f =2 C

I . However, if hd; ei 2 R

I , he; fi 2 R

I

and R 2 R

+

, then hd; fi 2 R

I and d =2 (8R:C)

I . T

therefore satisfies Property 6 in Definition 2.

3. T satisfies Property 7 in Definition 2 as a direct conse-

quence of the semantics of inverse relations.

4.1 Constructing an ALCI
R

+
Tableau

From Lemma 1, an algorithm which constructs a tableau for

an ALCI
R

+-concept D can be used as a decision procedure

for the satisfiability of D. Such an algorithm will now be

described in detail.

The tableaux algorithm works on completion trees. This

is a tree where each node x of the tree is labelled with a set

L(x) � sub(D) and each edge hx; yi is labelled L(hx; yi) =

R for some (possibly inverse) role R occurring in sub(D).

Edges are added when expanding 9R:C and 9R�:C terms;

they correspond to relationships between pairs of individuals

and are always directed from the root node to the leaf nodes.

The algorithm expands the tree either by extending L(x) for

some node x or by adding new leaf nodes.

For a node x, L(x) is said to contain a clash if, for some

concept C, fC;:Cg � L(x).

If nodes x and y are connected by an edge hx; yi, then y

is called a successor of x and x is called a predecessor of y;

ancestor is the transitive closure of predecessor.

A node y is called an R-neighbour of a node x if either y

is a successor of x and L(hx; yi) = R or y is a predecessor

of x and L(hy; xi) = Inv(R).

A node x is blocked if for some ancestor y, y is blocked

or L(x) = L(y). A blocked node x is indirectly blocked
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if its predecessor is blocked, otherwise it is directly blocked.

If x is directly blocked, it has a unique ancestor y such that

L(x) = L(y): if there existed another ancestor z such that

L(x) = L(z) then either y or z must be blocked. If x

is directly blocked and y is the unique ancestor such that

L(x) = L(y), we will say that y blocks x.

The algorithm initialises a tree T to contain a single node

x

0

, called the root node, with L(x
0

) = fDg, where D is the

concept to be tested for satisfiability. T is then expanded by

repeatedly applying the rules from Figure 3.

The completion tree is complete when for some node x,

L(x) contains a clash or when none of the rules is applica-

ble. If, for an input concept D, the expansion rules can be

applied in such a way that they yield a complete, clash-free

completion tree, then the algorithm returns “D is satisfiable”,

and “D is unsatisfiable” otherwise.

4.2 Soundness and Completeness

The soundness and completeness of the algorithm will be

demonstrated by proving that, for an ALCI
R

+-concept D,

it always terminates and that it returns satisfiable if and only

if D is satisfiable.

Lemma 2 For eachALCI
R

+-conceptD, the tableaux algo-

rithm terminates.

Proof: Let m = jsub(D)j. Obviously, m is linear in the

length of D. Termination is a consequence of the following

properties of the expansion rules:

1. The expansion rules never remove nodes from the tree

or concepts from node labels.

2. Successors are only generated for existential value re-

strictions (concepts of the form 9R:C), and for any node

each of these restrictions triggers the generation of at

most one successor. Since sub(D) contains at most m

existential value restrictions, the out-degree of the tree

is bounded by m.

3. Nodes are labelled with nonempty subsets of sub(D).

If a path p is of length at least 2

m, then there are 2

nodes x; y on p, with L(x) = L(y), and blocking oc-

curs. Since a path on which nodes are blocked cannot

become longer, paths are of length at most 2m.

Together with Lemma 1, the following lemma implies

soundness of the tableaux algorithm.

Lemma 3 If the expansion rules can be applied to an

ALCI

R

+ -concept D such that they yield a complete and

clash-free completion tree, then D has a tableau.

Proof: Let T be the complete and clash-free tree con-

structed by the tableaux algorithm for D. A tableau T =

(S;L;E) can be defined with:

S= fx j x is a node in T that is not blockedg;

E(R) = fhx; yi 2 S� S j

1: y is an R-neighbour of x or

2:L(hx; zi) = R and y blocks z or

3:L(hy; zi) = Inv(R) and x blocks zg;

and it can be shown that T is a tableau for D:

1. D 2 L(x

0

) for the root x
0

of T and, as x
0

has no pre-

decessors, it cannot be blocked. Hence D 2 L(s) for

some s 2 S.

2. Property 1 of Definition 2 is satisfied becauseT is clash-

free.

3. Properties 2 and 3 of Definition 2 are satisfied because

neither the u-rule nor the t-rule apply to any x 2 S.

4. Property 4 in Definition 2 is satisfied because for all x 2

S, if 8R:C 2 L(x) and hx; yi 2 E(R) then either:

(a) x is an R-neighbour of y,

(b) L(hx; zi) = R, y blocks z, from the 8-rule C 2

L(z), L(y) = L(z), or

(c) L(hy; zi) = Inv(R), x blocks z, L(x) = L(z), so

from the 8-rule C 2 L(y).

In all 3 cases, the 8-rule ensures that C 2 L(y).

5. Property 5 in Definition 2 is satisfied because for all x 2

S, if 9R:C 2 L(x), then the 9-rule ensures that there is

either:

(a) a predecessor y such that L(hy; xi) = Inv(R) and

C 2 L(y). Because y is a predecessor of x it can-

not be blocked, so y 2 S and hy; xi 2 E(R).

(b) a successor y such that L(hx; yi) = R and C 2

L(y). If y is not blocked, then y 2 S and hx; yi 2

E(R). Otherwise, y is blocked by some z with

L(z) = L(y). Hence C 2 L(z), z 2 S and

hx; zi 2 E(R).

6. Property 6 in Definition 2 is satisfied because for all x 2

S, if 8R:C 2 L(x), hx; yi 2 E(R), and Trans(R), then

either:

(a) x is an R-neighbour of y,

(b) L(hx; zi) = R, y blocks z, and L(y) = L(z), or

(c) L(hy; zi) = Inv(R), x blocks z, hence L(x) =

L(z) and 8R:C 2 L(z).

In all 3 cases, the 8
+

-rule ensures that 8R:C 2 L(y).

7. Property 7 in Definition 2 is satisfied because for each

hx; yi 2 E(R), either:

(a) x is an R-neighbour of y, so y is an Inv(R)-

neighbour of x and hy; xi 2 E(Inv(R)).

(b) L(hx; zi) = R and y blocks z, so L(hx; zi) =

Inv(Inv(R)) and hy; xi 2 E(Inv(R)).

(c) L(hy; zi) = Inv(R) and x blocks z, so hy; xi 2

E(Inv(R)).
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u-rule: if 1. C

1

u C

2

2 L(x), x is not indirectly blocked, and

2. fC
1

; C

2

g 6� L(x) then L(x) �! L(x) [ fC

1

; C

2

g

t-rule: if 1. C

1

t C

2

2 L(x), x is not indirectly blocked, and

2. fC
1

; C

2

g \ L(x) = ; then, for some C 2 fC

1

; C

2

g, L(x) �! L(x) [ fCg

9-rule: if 1. 9S:C 2 L(x), x is not blocked, and

2. x has no S-neighbour y with C 2 L(y):

then create a new node y with L(hx; yi) = S and L(y) = fCg

8-rule: if 1. 8S:C 2 L(x), x is not indirectly blocked, and

2. there is an S-neighbour y of x with C =2 L(y) then L(y) �! L(y) [ fCg

8

+

-rule: if 1. 8S:C 2 L(x), Trans(S), x is not indirectly blocked, and

2. there is an S-neighbour y of x with 8S:C =2 L(y) then L(y) �! L(y) [ f8S:Cg

Figure 3: Tableaux expansion rules for ALCI
R

+

Lemma 4 If D has a tableau, then the expansion rules can

be applied in such a way that the tableaux algorithm yields a

complete and clash-free completion tree for D.

Proof: Let T = (S;L;E) be a tableau for D. Using T , we

trigger the application of the expansion rules such that they

yield a completion tree T that is both complete and clash-

free. We start withT consisting of a single node x
0

, the root,

with L(x
0

) = fDg.

T is a tableau, hence there is some s
0

2 Swith D 2 L(s

0

).

When applying the expansion rules to T, the application of

the non-deterministic t-rule is driven by the labelling in the

tableau T . To this purpose, we define a mapping � which

maps the nodes ofT to elements of S, and we steer the appli-

cation of the t-rule such that L(x) � L(�(x)) holds for all

nodes x of the completion tree.

More precisely, we define � inductively as follows:

� �(x

0

) = s

0

.

� If �(x
i

) = s

i

is already defined, and a successor y of

x

i

was generated for 9R:C 2 L(x

i

), then �(y) = t for

some t 2 S with C 2 L(t) and hs
i

; ti 2 E(R).

To make sure that we have L(x
i

) � L(�(x

i

)), we use the

t

0-rule given in Figure 4 instead of the t-rule.

t

0-rule: if 1. C
1

t C

2

2 L(x),

x is not indirectly blocked, and

2. fC
1

; C

2

g \ L(x) = ;

then L(x) �! L(x) [ fCg for some

C 2 fC

1

; C

2

g \ L(�(x))

Figure 4: The t0-rule

The expansion rules given in Figure 3 with the t-rule re-

placed by the t0-rule are called modified expansion rules in

the following.

It is easy to see that, if a tree T was generated using the

modified expansion rules, then the expansion rules can be ap-

plied in such a way that they yield T. Hence Lemma 3 and

Lemma 2 still apply, and thus using the t0-rule instead of the

t-rule preserves soundness and termination.

We will now show by induction that, if L(x) � L(�(x))

holds for all nodes x in T, then the application of an ex-

pansion rule preserves this subset-relation. To start with, we

clearly have fDg = L(x

0

) � L(s

0

).

If the u-rule can be applied to x inT with C = C

1

uC

2

2

L(x), then C

1

; C

2

are added to L(x). Since T is a tableau,

fC

1

; C

2

g � L(�(x)), and hence theu-rule preservesL(x) �

L(�(x)).

If the t0-rule can be applied to x in T with C = C

1

t

C

2

2 L(x), then C 2 fC

1

; C

2

g is in L(�(x)), and C is

added to L(x) by the t0-rule. Hence the t0-rule preserves

L(x) � L(�(x)).

If the 9-rule can be applied to x in T with C = 9R:C

1

2

L(x), then C 2 L(�(x)) and there is some t 2 S with

h�(x); ti 2 E(R) and C

1

2 L(t). The 9-rule creates a

new successor y of x for which �(y) = t for some t with

C

1

2 L(t). Hence we have L(y) = fC

1

g � L(�(y)).

If the 8-rule can be applied to x in T with C = 8R:C

1

2

L(x) and y is an R-neighbour of x, then h�(x); �(y)i 2

E(R), and thus C
1

2 L(�(y)). The 8-rule adds C
1

to L(y)

and thus preserves L(x) � L(�(x)).

If the 8
+

-rule can be applied to x inT with C = 8R:C

1

2

L(x), Trans(R) and y being an R-neighbour of x, then

h�(x); �(y)i 2 E(R), and thus 8R:C
1

2 L(�(y)). The 8
+

-

rule adds C
1

to L(y) and thus preserves L(y) � L(�(y)).

Summing up, the tableau-construction triggered by T ter-

minates with a complete tree, and since L(x) � L(�(x))

holds for all nodes x in T, T is clash-free due to Property 1

of Definition 2.

Theorem 1 The tableaux algorithm is a decision procedure

for the satisfiability and subsumption of ALCI
R

+-concepts.

6



Theorem 1 is an immediate consequence of the Lemmata 1,

2, 3, and 4. Moreover, since ALCI
R

+ is closed under nega-

tion, subsumption C v D can be reduced to unsatisfiability

of C u :D.

5 ALCI

R

+ Extended by Role Hierarchies

We will now extend the tableaux algorithm presented in

Section 4.1 to deal with role hierarchies in a similar way

to the algorithm for ALCH
R

+ presented in [Horrocks &

Gough,1997]. ALCHI

R

+ extends ALCI
R

+ by allowing,

additionally, for inclusion axioms on roles. These axioms can

involve transitive as well as non-transitive roles, and inverse

roles as well as role names. For example, to express that a

role R is symmetric, we add the two axioms R v R

� and

R

�

v R.

Definition 3 A role inclusion axiom is of the form

R v S;

for two (possibly inverse) roles R and S.

For a set of role inclusion axioms R, R+

:= (R [

fInv(R) v Inv(S) j R v S 2 Rg; v* ) is called a role hier-

archy, where v* is the transitive-reflexive closure of v over

R [ fInv(R) v Inv(S) j R v S 2 Rg.

ALCHI

R

+ is the extension of ALCI
R

+ obtained by al-

lowing, additionally, for a role hierarchyR+.

As well as being correct for ALCI

R

+ concepts, an

ALCHI

R

+ interpretation has to satisfy, for all roles R;S

with R v* S, the additional condition

hx; yi 2 R

I implies hx; yi 2 S

I

:

The tableaux algorithm given in the preceding section can

easily be modified to decide satisfiability of ALCHI
R

+-

concepts by extending the definitions of both R-neighbours

and the 8
+

-rule to include the notion of role hierarchies. To

prove the soundness and correctness of the extended algo-

rithm, the definition of a tableau is also extended.

Definition 4 As well as satisfying Definition 2 (i.e., being

a valid ALCI

R

+ tableau), a tableau T = (S;L;E) for an

ALCHI

R

+ -concept D must also satisfy:

60. if 8S:C 2 L(s) and hs; ti 2 E(R) for some R v* S with

Trans(R), then 8R:C 2 L(t),

8. if hx; yi 2 E(R) and R v* S, then hx; yi 2 E(S),

where Property 60 extends and supersedes Property 6 from

Definition 2.

For theALCHI
R

+ algorithm, the 8
+

-rule is replaced with

the 80
+

-rule (see Figure 5) and the definition of R-neighbours

is extended as follows:

Definition 5 Given a completion tree, a node y is called an

R-neighbour of a node x if either y is a successor of x and

L(hx; yi) = S or y is a predecessor of x and L(hy; xi) =

Inv(S) for some S with S v* R.

In the following, the tableaux algorithm resulting from

these modifications will be called the modified tableaux al-

gorithm. Due to this definition and the reflexivity of v* , the

8

0

+

-rule extends the 8
+

-rule.

To prove that the modified tableaux algorithm is indeed

a decision procedure for the satisfiability of ALCHI
R

+-

concepts, all 4 technical lemmata used in Section 4.2 to prove

this fact for the ALCI
R

+ tableaux algorithm have to be re-

proven for ALCHI
R

+ . In the following, we will restrict our

attention to cases that differ from those already considered for

ALCI

R

+ .

Lemma 5 An ALCHI
R

+-concept D is satisfiable iff there

exists a tableau for D.

Proof: For the if direction, the construction of a model of

D from a tableau for D is similar to the one presented in the

proof of Lemma 1. If T = (S;L;E) is a tableau for D with

D 2 L(s

0

), a model I = (�

I

; �

I

) of D can be defined as

follows:

�

I

= S

for all concept names A in sub(D)

A

I

= fs j A 2 L(s)g

R

I

=

(

E(R)

+ if Trans(R)

E(R) [

S

P v* R;P 6=R

P

I otherwise

The interpretation of non-transitive roles is recursive in or-

der to correctly interpret those non-transitive roles that have

a transitive sub-role. From the definition of RI and Prop-

erty 8 of a tableau it follows that if hx; yi 2 S

I , then ei-

ther hx; yi 2 E(S) or there exists a path hs; s
1

i; hs

1

; s

2

i; : : : ;

hs

n

; ti 2 E(R) for some R with Trans(R) and R v* S.

Property 8 of a tableau ensures that RI � S

I holds for all

roles with R v* S, including those cases where R is a transi-

tive role. Again, it can be shown by induction on the structure

of concepts that I is a correct interpretation. We restrict our

attention to the only case that is different from the ones in the

proof of Lemma 1. Let E 2 sub(D).

60. If E = (8S:C) and hs; ti 2 S

I , then either

(a) hs; ti 2 E(S) and C 2 L(t), or

(b) hs; ti 62 E(S), then there exists a path of length n �

1 such that hs; s
1

i; hs

1

; s

2

i; : : : ; hs

n

; ti 2 E(R) for

some R with Trans(R) and R v* S. Due to Prop-

erty 6

0, 8R:C 2 L(s

i

) for all 1 � i � n, and we

have C 2 L(t).

In both cases, we have t 2 C

I .

7



8

0

+

-rule: if 1. 8S:C 2 L(x), x is not indirectly blocked, and

2. there is some R with Trans(R) and R v* S,

3. there is an R-neighbour y of x with 8R:C =2 L(y) then L(y) �! L(y) [ f8R:Cg

Figure 5: The new 8

+

-rule for ALCHI
R

+ .

For the converse, if I = (�

I

; �

I

) is a model of D, then a

tableau T = (S;L;E) for D is defined like the one defined in

the proof of Lemma 1.

It remains to demonstrate that T is a tableau for D:

1. T satisfies properties 1–5 in Definition 2 as a direct con-

sequence of the semantics of ALCHI
R

+-concepts.

2. If d 2 (8S:C)

I and hd; ei 2 R

I for R with Trans(R)

and R v* S, then e 2 (8R:C)

I unless there is some f

such that he; fi 2 R

I and f =2 C

I . In this case, if

hd; ei 2 R

I , he; fi 2 R

I and Trans(R), then hd; fi 2

R

I . Hence hd; fi 2 S

I and d =2 (8S:C)

I—in con-

tradiction of the assumption. T therefore satisfies Prop-

erty 60 in Definition 4.

3. Since I is a model of D, hx; yi 2 R

I implies hx; yi 2

S

I for all roles R;S with R v* S. Hence T satisfies

Property 8 in Definition 4.

Lemma 6 For each ALCHI

R

+ -concept D, the modified

tableaux algorithm terminates.

Proof: Identical to the one given for Lemma 2.

Lemma 7 If the expansion rules can be applied to an

ALCHI

R

+ -concept D such that they yield a complete and

clash-free completion tree, then D has a tableau.

Proof: The definition of a tableau from a complete and

clash-free completion tree, as presented in the proof of

Lemma 3, has to be slightly modified. A tableau T =

(S;L;E) is now defined with:

S = fx j x is a node in T that is not blockedg

E(S) = fhx; yi 2 S� S j

1: y is an S-neighbour of x or

2: There exists a role R with R v* S and

a: L(hx; zi) = R and y blocks z or

b: L(hy; zi) = Inv(R) and x blocks zg

and, again, it is shown that T is a tableau for D:

1. Since the expansion rules were started with L(x

0

) =

fDg, D 2 L(x

0

) for some x
0

2 S.

2. Properties 1-3, 5 and 7 in Definition 2 are identical to

the proof of Lemma 3.

3. Property 4 in Definition 2 is satisfied because for all x 2

S, if 8S:C 2 L(x) and hx; yi 2 E(S) then either:

(a) x is an S-neighbour of y,

(b) for some role with R v* S, either

i. L(hx; zi) = R, y blocks z, hence from the 8-rule

C 2 L(z), and L(y) = L(z), or

ii. L(hy; zi) = Inv(R), x blocks z, hence L(x) =

L(z) and therefor 8S:C 2 L(z).

In all cases, the 8-rule ensures C 2 L(y).

4. Property 6’ in Definition 4 is satisfied because for all

x 2 S, if 8S:C 2 L(x), hx; yi 2 E(R) for some R with

Trans(R) and R v* S, then either:

(a) y is an R-neighbour of x, or

(b) there is some role R0 with R0 v R and

i. L(hx; zi) = R

0, y blocks z and L(y) = L(z), or

ii. L(hy; zi) = Inv(R), x blocks z and L(x) =

L(z), hence 8S:C 2 L(z).

In all three cases, 8R:C 2 L(y) follows from the 80
+

-

rule.

5. Property 8 in Definition 4 follows immediately from the

definition of E.

Lemma 8 If ALCHI
R

+-concept D has a tableau, then the

expansion rules can be applied in such a way that the tab-

leaux algorithm yields a complete and clash-free completion

tree for D.

The proof of Lemma 8 is identical to the one presented

for Lemma 4. Again, summing up, we have the following

theorem.

Theorem 2 The modified tableaux algorithm is a deci-

sion procedure for the satisfiability and subsumption of

ALCHI

R

+ -concepts.

5.1 General Concept Inclusion Axioms

In [Baader,1991; Schild,1991; Baader et al.,1993], the in-

ternalisation of terminological axioms is introduced. This

technique is used to reduce reasoning with respect to a (pos-

sibly cyclic) terminology to satisfiability of concepts. In
[Horrocks & Gough,1997], we saw how role hierarchies can

be used to reduce satisfiability and subsumption with respect

to a terminology to concept satisfiability and subsumption. In

the presence of inverse roles, this reduction must be slightly

modified.

8



Definition 6 A terminology T is a finite set of general con-

cept inclusion axioms,

T = fC

1

v D

1

; : : : ; C

n

v D

n

g;

whereC
i

; D

i

are arbitraryALCHI
R

+-concepts. An inter-

pretation I is said to be a model of T iff CI

i

� D

I

i

holds for

all C
i

v D

i

2 T . C is satisfiable with respect to T iff there

is a model I of T with CI

6= ;. Finally, D subsumes C with

respect to T (C v

T

D) iff for each model I of T we have

C

I

� D

I .

The following lemma shows how general concept inclu-

sion axioms can be internalised using a “universal” role U .

This role U is a transitive super-role of all relevant roles and

their respective inverses. Hence, for each interpretation I,

each individual t reachable via some role path from another

individual s is an UI-successor of s. All general concept in-

clusion axioms C
i

v D

i

in T are propagated along all role

paths using the value restriction 8U::C tD.

Lemma 9 Let T be terminology and C;D be ALCHI
R

+-

concepts and let

C

T

:= u

C

i

vD

i

2T

:C

i

tD

i

:

Let U be a transitive role with R v U , Inv(R) v U for each

role R that occurs in T ; C, or D.

Then C is satisfiable with respect to T iff

C u C

T

u 8U:C

T

is satisfiable. D subsumes C with respect to T (C v

T

D)

iff

C u :D u C

T

u 8U:C

T

is unsatisfiable.

Remark: Instead of defining U as a transitive super-role of

all roles and their respective inverses, one could have defined

U as a transitive super-role of all roles and, additionally, a

symmetric role by adding U v U

� and U�

v U .

The proof of Lemma 9 is similar to the ones that can be

found in [Schild,1991; Baader,1990]. One point to show is

that, if anALCHI
R

+ -conceptC is satisfiable with respect to

a terminology T , then C; T have a connected model, namely

one whose individuals are all related to each other by some

role path. This follows from the definition of the semantics of

ALCHI

R

+ -concepts. The other point to proof is that, if y is

reachable from x via a role path (possibly involving inverse

roles), then hx; yi 2 U

I , which is an easy consequence of the

definition of U .

Decidability of satisfiability and subsumption with respect

to a terminology is an immediate consequence of Lemma 9

and Theorem 2.

Theorem 3 The modified tableaux algorithm is a decision

procedure for satisfiability and subsumption of ALCHI
R

+-

concepts with respect to terminologies.

6 Future work

We intend to extend the logic with functional roles. Func-

tional roles are useful, not only for the representation of ag-

gregated objects, but also in general because they provide a

weak form of number restrictions.

The combination of a role hierarchy with transitive, con-

verse and functional roles adds a further level of complexity

because satisfiable concepts are no longer guaranteed to have

(possibly cyclical) finite models [Schild,1991]. An example

of such a concept is:

:C u 9F

�

:C u 8R

�

:(9F

�

:C)

where F is functional, R is transitive and F is a sub-role of

R. Any model of this concept must have an infinite sequence

of F� successors, each satisfying C and 9F�

:C, the 9F�

:C

term being propagated along the sequence by the transitive

super-role R. Attempting to terminate the sequence in a cy-

cle causes the model to collapse into a single node due the

functionality of F , and this leads to an obvious contradiction

as the node label will contain both C and :C.

This problem can be overcome by “unravelling” cyclical

models to generate infinite models in which blocked nodes

are replaced by copies of the blocking node and its sub-tree.

However, to guarantee that local correctness is preserved by

the copying process, both the predecessor of a blocked node

and the role which connects it to its predecessor, must be the

same as those of the blocking node. If this is not the case,

then concepts in the label of the blocking node which were

satisfied by its predecessor may no longer be satisfied when it

is copied onto the blocked node. To ensure that this condition

is met, a further enhancement to the blocking strategy must be

introduced. Instead of considering single nodes, the enhanced

strategy, called pair-wise blocking, considers pairs of nodes

and the role which connects them, only establishing a block

when a matching node-role-node pattern is found.

The complexity of satisfiability and subsumption of these

new extensions of ALCH
R

+ is another open problem. From

results in [Sattler,1996], it follows that these problems are

ExpTime-hard for ALCHI
R

+ and PSpace-complete for

ALC

R

+ . Whether these problems are still in PSpace for

ALCI

R

+ is an open question.

Although ALCHI
R

+ and ALC with the transitive closure

and inverse roles are both ExpTime-hard, there are two hints

why ALCHI

R

+ should have better computational proper-

ties than ALC with the transitive closure and inverse roles:

First, the tableaux algorithm for ALCHI
R

+ does not have

an equivalent of the cut rule—a rule which is strongly re-

sponsible for the bad computational behaviour of ALC with

the transitive closure and inverse roles. Intuitively, when a

9



new node x is generated for some 9R:C concept, this rule

non-deterministically chooses a set of concepts from the sub-

concepts of the initial concept and adds this set to L(x). We

can think of this set as consisting of those concepts which

are possibly added to the labelling of x due to universal

value restrictions on successors of x. As this set is chosen

non-deterministically from exponentially many possibilities,

it should be clear that this rule leads to a bad computational

behaviour.

Second, the implementation of ALCH

R

+ in FaCT
[Horrocks & Gough,1997] behaves quite well in realistic

application—even though ALCH
R

+ , too, is ExpTime-hard.

Furthermore, this algorithm is amenable to a range of optimi-

sation techniques. We hope that both, this good behaviour and

the optimisation techniques, carry over to ALCHI

R

+ . To

verify this assumption, the modified tableaux algorithm will

be implemented in a descendant of FaCT [Horrocks,1998].
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