
!"#$%"&'(")&*+"),$-+(./0+1
!"#$%&'()*$+,-+.)+$$()+.

!"#$%&"'("#)*+,-./(*%(%*0.11,0.(.2.+0("3(0&.(
4"+3.#.+4.(56789:(;<=>?(5,*@,?(A1"#,/*?(B:C?(

:.'0.@D.#(;E?(;<=>

!"#$%&'()*

/"(012"3,4(.5+)6$(1
F1.*+*(6D.#?(FGFH(I(B+,2.#%,0J("3(H"K1"K%.?(A#*+4.
L.*+I5,4&.1(M#K.1?(FGFH(I(B+,2.#%,0J("3(H"K1"K%.?(A#*+4.
C$%&*J(7*D&"1$*#?(N,@DK1*(F+4?(B:C
C+,#K//&*(O"$&*1.?(F:F:?(P*+/.#D,10(B+,2.#%,0J?(B:C
L*@.%(Q,11?(F+/,*+*(B+,2.#%,0JIRK#/K.(B+,2.#%,0J(F+/,*+*'"1,%?(B:C
5,4&*.1(A.1/.#.#?(B+,2.#%,0J("3(F++%D#K4$?(CK%0#,*
7*2,/(9K)*0"?(S8C?(A#*+4.

7(".(58,9"88)::$$
L.*+I5,4&.1(M#K.1?(FGFH(I(B+,2("3(H"K1"K%.?(A#*+4.
C$%&*J(7*D&"1$*#?(6#*41.?(B:C
7,#$(7#*&.,@?(B+,2.#%,0J("3(F++%D#K4$?(CK%0#,*
:0.2.+(7#*).#?(C,#(A"#4.(G.%.*#4&(9*D"#*0"#J?(B:C
G"D.#0(A#*+4.?(S"1"#*/"(:0*0.(B+,2.#%,0J?(B:C
5,4&*.1(A.1/.#.#?(B+,2.#%,0J("3(F++%D#K4$?(CK%0#,*
C+,#K//&*(O"$&*1.?(P*+/.#D,10(B+,2.#%,0J?(B:C
7*2,/(9K)*0"?(S8C?(A#*+4.
!,11,*@(54T..2.#?(C,#(A"#4.(G.%.*#4&(9*D%?(B:C
F1.*+*(6D.#?(FGFH(I(B+,2.#%,0J("3(H"K1"K%.?(A#*+4.
M.#+&*#/(GK@'.?(G!HQ(C*4&.+(B+,2.#%,0J?(O.#@*+J

Preface
Ileana Ober, Aniruddha Gokhale, James Hill, Jean-Michel Bruel, Michael
Felderer, David Lugato, and Akshay Dabholkar

1

Towards a solution avoiding Vendor Lock-in to enable Migration Between Cloud
Platforms
Alexandre Beslic, Reda Bendraou, Julien Sopena, Jean-Yves Rigolet

5

Modeling Cloud Architectures as Interactive Systems
Antonio Navarro Perez, Bernhard Rumpe

15

VehicleFORGE: A Cloud-Based Infrastructure for Collaborative Model-Based Design
Laszlo Juracz, Zsolt Lattmann, Tihamer Levendovszky, Graham Hemingway,
Will Gaggioli, Tanner Netterville

25

A Model-driven Approach for Price/Performance Tradeoffs in Cloud-based MapReduce
Application Deployment
Shashank Shekhar, Faruk Caglar, Kyoungho An, Takayuki Kuroda,
Aniruddha Gokhale, Swapna Gokhale

37

Towards Domain-Specific Testing Languages for Software-as-a-Service
Dionny Santiago, Adam Cando, Cody Mack, Gabriel Nunez, Troy Thomas,
Tariq M. King

43

Architecture Framework for Mapping Parallel Algorithms to Parallel Computing
Platforms
Bedir Tekinerdogan, Ethem Arkın

53

Model-Driven Transformations for Mapping Parallel Algorithms on Parallel Computing
Platforms
Ethem Arkin, Bedir Tekinerdogan

63

Table of content

Towards a solution avoiding Vendor Lock-in to
enable Migration Between Cloud Platforms

Alexandre Beslic ‡, Reda Bendraou ‡, Julien Sopena ‡, Jean-Yves Rigolet †

Department of Computer Science and Engineering, Pierre and Marie Curie
University, 4 place Jussieu 75017 Paris, France ‡

{alexandre.beslic,reda.bendraou.julien.sopena}@lip6.fr

IBM, 9 rue de Verdun 94250 Gentilly, France †
rigolet.j@fr.ibm.com

Abstract. The Cloud Computing paradigm is used by many actors,
whether companies or individuals in order to harness the power and
agility of remote computing resources. Because they target developers
and offer a smooth and easy way to deploy modern enterprise software
without dealing with the underlying infrastructure, there is a steadily in-
creasing interest for Platforms as a Service (PaaS). However, the lock-in
makes the migration to another platform difficult. If the vendor decides
to raise its prices or change its security policies, the customer may have
to consider to move to the competition or suffer from these changes.
Assistance and tooling to move to the competition at the PaaS layer
still does not exist thus requiring tremendous re-engineering effort. In
this regard, we propose an approach to the challenge of software migra-
tion between PaaS using Model-Driven Engineering coupled to Program
Transformation.

1 Introduction

Cloud Computing is now a popular paradigm, offering computing resources on a
”pay-as-you-go” basis. It allows a remote and on-demand access to a wide range
of services alleviating the need to own and maintain an internal infrastructure.
The service model is standardized by the NIST [16] and is divided into three
major layers. These layers vary in the amount of abstraction they provide to
the consumer. The more you climb this service model, the more you will face
restrictions.

Infrastructure as a Service (IaaS) provides the ability for consumers to provi-
sion fundamental computing resources such as processing power, storage capac-
ity or networks. They have control over the operating system and software stack
giving them the freedom to deploy any kind of software. Platform as a Service
(PaaS) came as an abstraction to the infrastructure layer. Because maintain-
ing and updating a whole infrastructure requires knowledge and time, platform
provides with a fully prepared runtime environment to deploy applications. It
targets developers to further fasten the development process and to focus on the

2nd
MDHPCL : Model-Driven Engineering for
High Performance and CLoud computing

Ileana Ober1, Aniruddha Gokhale2, James Hill3, Jean-Michel Bruel1, Michael
Felderer4, David Lugato5, and Akshay Dabholkar6

1
University of Toulouse - IRIT, France

2
Vanderbilt University, USA

3
Indiana University Purdue University at Indianapolis, USA

4
University of Innsbruck, Austria

5
CEA, France

6
Oracle, USA

1 Objectives and Scope

The important vitality of IT, recently increased the focus on technologies such
as cloud computing, high performance applications and parallelism architec-
tures. Industry needs help from the research community to succeed in its recent
dramatic shift ”. None of these technologies are traditional users of modeling
approaches. However, some results start to emerge on the use of modeling tech-
niques as a mean to help addressing issues related to the complexity of appli-
cations in these fields, the need for separation of concerns, or the demand for
abstracting from platform concerns.

One of the major common points between High Performance Computing
and Cloud Computing is that the two technologies aim at a solution that al-
lows to offer as the simplicity of regular desktop tools, while based on the power
of massively parallel computing, respectively complex data architectures and
their management. In both cases, the ultimate goal is about maximizing human
productivity, by allowing non-experts to create and evaluate complex models
quickly and easily. There are several ways to achieve this: by raising the level of
abstraction used in the design and development of the application, by decoupling
application specific from optimization driven choices, by ensuring a better sepa-
ration of concerns etc. The above mentioned strategies correspond to techniques
largely used and promoted by Model-Driven Engineering.

The purpose of this workshop is to bring together researchers and practi-
tioners, with experience in HPC, cloud computing and MDE and to explore
the strategies that would allow a wider use of MDE techniques in the above
mentioned application fields.

In spite of the obvious need for abstraction in HPC and cloud computing, the
use of MDE is marginal. This is partially due to subjective reasons, such as the
lack of MDE experts amongst the HPC and cloud computing teams, insufficient
communication between the two communities, reticence of the teams used to
intensively combine hardware specific code with application specific code for

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 1 -

optimization reasons. However, there are more fundamental obstacles in using
MDE, such as the problems in the scalability of the existing MDE solutions, the
insufficient support for collaborative work, etc.

This workshop aims to present existing work on applying modeling techniques
in cloud and high performance computing. Beyond offering a forum for current
and ongoing work on these topics, the workshop aims to open a discussion on
the challenges faced by these new fields, and how model-driven techniques could
be adapted to meet these challenges. We intend to find individual success stories
on the use of modeling on the fields addressed by this workshop and discuss on
the factors that may have contributes to the positive outcome, the difficulties
faced and how they were addressed.

This workshop targets researchers and practitioners who work in the area of
HPC or Cloud Computing and who feel the use of modeling techniques can be
beneficial to their respective fields, as well as to researchers and practitioners
in in the modeling area who have an interest in adapting their work to new
application domains.

2 Workshop Venue, Date and Program Committee

The workshop 1 was held as part of the IEEE/ACM MODELS 2013 conference
on September 29, 2013 in Miami Beach, FL, USA.

The program committee of this workshop comprised:

– Jean-Michel Bruel, IRIT - University of Toulouse
– Akshay Dabholkar, Nimbula, Inc., USA
– Dirk Draheim, University of Innsbruck, Austria
– Steven Drager, Air Force Research Laboratory, USA
– Robert France, Colorado State University
– Michael Felderer, University of Innsbruck
– Aniruddha Gokhale, ISIS, Vanderbilt University
– James Hill, Indiana University Purdue University at Indianapolis
– David Lugato, CEA, France
– William McKeever, Air Force Research Labs, USA
– Ileana Ober, IRIT - University of Toulouse
– Bernhard Rumpe, RWTH Aachen University

3 Why a Second Edition?

This is the second edition of a workshop that focuses on the use of modeling
in HPC and Cloud Computing. To our knowledge there was no other work-
shop on the same topic. The closest to our interest is the workshop ICSE 2011
Software Engineering For Cloud Computing Workshop. This workshop proved
that there is an important community receptive to applying software engineer-
ing techniques in cloud computing. There are two main differences between our
1
http://www.irit.fr/MDHPCL2013

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 2 -

workshop and the workshop held at ICSE: we intend to focus on the use of
model-driven techniques (and not on software engineering issues in general) and
we would like to look closer to their applicability to both Cloud Computing and
High-Performance Computing.

The number of submissions received for the first edition of our workshop was
not high (8), however the workshop attracted about 25 participants and gener-
ated a lot of discussions. During the discussion the participants asked explicitly
for a second edition of the workshop. Our analysis of this situation is that the
topic addressed by the workshop is of interest for a lot of people, there are many
emerging efforts in this area, although not many are mature enough to gener-
ate submissions. Moreover, these topics are also increasingly important to the
MODELS community as can be seen in the call for papers.

4 Selected Papers and Workshop Logistics

Two members of the organizing committee, Aniruddha Gokhale and James Hill,
moderated the proceedings of the workshop.

Prior to the day of the workshop, we made pre-proceedings of the work-
shop available online for participants and http://www.irit.fr/MDHPCL2013/

Proceedings_files/preproceedings_mdhpcl2013.pdf.
A total of 7 papers were selected to be presented of which 6 were long papers

and 1 short paper. The long papers got 20 mins (15 + 5 for Q&A); short papers
got 15 mins (12 + 3 for Q&A). Attendees were requested to hold off the most
interesting questions to the end for the panel discussion.

This half-day workshop selected the following papers for presentation at the
workshop:

1. Towards a Solution avoiding vendor lock-in to enable Migration between
Cloud Platforms

2. Modeling Cloud Architectures as Interactive Systems
3. VehicleForge: A Cloud-based Infrastructure for Collaborative Model-based

Design
4. A Model-driven Approach for Price/Performance Tradeoffs in Cloud-based

MapReduce Application Deployment (short paper)
5. Towards Domain-specific Testing Languages for SaaS
6. Architecture Framework for Mapping Parallel Algorithms to Parallel Com-

puting Platforms
7. Model-driven Transformations for Mapping Parallel
8. Algorithms to Parallel Computing Platforms

There were about 20 or more members in the audience. Each paper evoked
significant interest in the audience giving rise to some fruitful discussions. At the
end of the paper presentations, the audience discussed many long term ideas.
There was enough interest demonstrated by the audience that will justify a third
edition of this workshop at MODELS 2014.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 3 -

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 4 -

Towards a solution avoiding Vendor Lock-in to
enable Migration Between Cloud Platforms

Alexandre Beslic ‡, Reda Bendraou ‡, Julien Sopena ‡, Jean-Yves Rigolet †

Department of Computer Science and Engineering, Pierre and Marie Curie

University, 4 place Jussieu 75017 Paris, France ‡
{alexandre.beslic,reda.bendraou.julien.sopena}@lip6.fr

IBM, 9 rue de Verdun 94250 Gentilly, France †
rigolet.j@fr.ibm.com

Abstract. The Cloud Computing paradigm is used by many actors,

whether companies or individuals in order to harness the power and

agility of remote computing resources. Because they target developers

and offer a smooth and easy way to deploy modern enterprise software

without dealing with the underlying infrastructure, there is a steadily in-

creasing interest for Platforms as a Service (PaaS). However, the lock-in

makes the migration to another platform difficult. If the vendor decides

to raise its prices or change its security policies, the customer may have

to consider to move to the competition or suffer from these changes.

Assistance and tooling to move to the competition at the PaaS layer

still does not exist thus requiring tremendous re-engineering effort. In
this regard, we propose an approach to the challenge of software migra-

tion between PaaS using Model-Driven Engineering coupled to Program

Transformation

1 Introduction

Cloud Computing is now a popular paradigm, offering computing resources on a
”pay-as-you-go” basis. It allows a remote and on-demand access to a wide range
of services alleviating the need to own and maintain an internal infrastructure.
The service model is standardized by the NIST [16] and is divided into three
major layers. These layers vary in the amount of abstraction they provide to
the consumer. The more you climb this service model, the more you will face
restrictions.

Infrastructure as a Service (IaaS) provides the ability for consumers to provi-
sion fundamental computing resources such as processing power, storage capac-
ity or networks. They have control over the operating system and software stack
giving them the freedom to deploy any kind of software. Platform as a Service
(PaaS) came as an abstraction to the infrastructure layer. Because maintain-
ing and updating a whole infrastructure requires knowledge and time, platform
provides with a fully prepared runtime environment to deploy applications. It
targets developers to further fasten the development process and to focus on the

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 5 -

product features rather than configuring the underlying infrastructure. Software
as a Service (SaaS) is the highest level of the Cloud service model. The software

itself is provided as a service to the end-user.

While Infrastructure as a Service (IaaS) and Software as a Service (SaaS) are

still prevalent in the Cloud computing service model, Cloud platforms (PaaS)

are becoming increasingly used. According to the Gartner study on Cloud Com-

puting, the use of Cloud Platforms will increase at 43% in 2015 compared to 3%

in 2012. With a major struggle between cloud providers to dominate the PaaS

market, the use case of software migration between providers is to be considered.

But this task is far from being easy. Indeed, the platform layer suffers from a

well known issue: the vendor lock-in. Early platforms are providing tools and

libraries to use during the development process to access their own features thus

locking the application to this platform. The advent of NoSQL solutions with

data denormalization makes it even more difficult because of choices made on

the program’s design to ensure best performance. As a consequence, migrating

onto another platform requires tremendous re-engineering effort that a few are

able to provide.

The will to migrate is explained by several factors. The price is the first one

considering that computers are now a commodity that we need at the lowest

price, thus explaining the popularity of the Cloud Computing paradigm. Some

other factors are the Lock-in avoidance, an Increased Security, a Better avail-
ability (99,95% versus 100%), a Better Quality of Service (QoS guarantee), a

Major shift in technology trends or Legal issues (forced to move) among others.

As of today, no such tool exists to achieve this migration. Existing work like

mOSAIC [19] is taking the approach of the middleware abstracting cloud soft-

ware stacks or APIs. mOSAIC offers a thin layer of abstraction over software

stacks and data storage on PaaS in order to develop applications from scratch.

Thus it only supports newer applications and the user is still entangled by the

compatibility list of the middleware. Even if it tries to support a wide variety of

Cloud providers hence being a first step for Cloud platform interoperability, the

use of a middleware just moves around the lock-in and businesses are reluctant

to this.

In this regards, we present our approach to deal with this major issue of

software migrations between Cloud Platforms. The idea is to provide assistance

and tooling to re-engineer a software using the Model-Driven Architecture and

Refactoring approach. It is divided in several stages. The first one is the discov-

ery of a Cloud software deployed on a platform using MoDisco [12]. Follows the

Transformation on the program structure/layout using Model transformation

on the discovered model. Then fine grained transformations are defined between

an API and its counterpart on the targeted platform using a general purpose

transformation language such as TXL. Assistance on software transformation is

provided by applying these rules. The final step is the migration on the targeted

platform with offline and online tests suites validation to be sure that the soft-

ware runs as usual. In order to achieve this, as the number of scenarios is huge

(especially for the data storage part) and the cloud environment always evolv-

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 6 -

ing, we aim to provide the ability to add new knowledge for processing source

to target transformations using a dedicated DSL.

The paper is organized as follows. In section 2, we give examples of challenges

to be tackled when migrating a software tied to the provider’s data storage

solution or APIs. In section 3, we introduce our detailed approach to deal with

software migration between Cloud platforms. Section 4 discusses related work

and the limits of using middlewares to deal with this issue. Section 5 concludes

the paper and discusses future work.

2 Vendor lock-in issue

The Platform as a Service (PaaS) appeared shortly after the Infrastructure (IaaS)

and Software (SaaS) layers of Cloud Computing. Heroku, which has been in de-

velopment since 2007 is a owned subsidiary of Salesforce.com and is one of the

very first Platform as a Service provider. It provides a fully prepared stack to

deploy automatically Ruby, Node.js, Clojure, Java, Python and Scala applica-

tions and runs on top of Amazon Web Services (AWS). Since then many new

providers have entered the market as Google with its App Engine (GAE) plat-

form or Microsoft with Windows Azure both in 2008. These are three of the very

early platform providers but there are many others as of today creating a large

ecosystem of PaaS solutions. The particularity of Cloud platforms is that every

provider has its own set of features, frameworks or language supported.

With those early Cloud platforms, the customer is using a well defined set

of tools and libraries originating from the provider. Achieving best performance

is a result of using the providers data storage solution, not supported on other

platforms. Google App Engine is using BigTable while Windows Azure is using

Azure Table to store data. Both are categorized as NoSQL solutions meaning

that they differ drastically from classical RDBMS as MySQL or PostgreSQL

which are relational.

Both have a strikingly similar data structure, even if they have also subtleties

in their design like the way they handle fragmentation on servers, thus impacting

the design of the program. Both are schema-less and both are using two keys with

a timestamp to quickly query data using a distributed binary index. Both are

also categorized as Key-Value stores in their documentation (even if the right

definition for BigTable as defined in the white paper is a sparse, distributed,

persistent multi-dimensional sorted map [13]). Achieving best-performance on

both systems requires effort and knowledge. Thus and because they are exotic

in design compared to other platforms supported databases, you end-up being

locked in. These types of NoSQL databases are not represented elsewhere as a

true Storage as a Service offering. Your choices are to use similar solutions like

DynamoDB from Amazon, HBase (the open source implementation of BigTable)

on EMC (an IaaS provider), or try a migration from Azure Table to BigTable or

vice versa. The fact is that DynamoDB and HBase are not included as built-in

PaaS features but only at the Infrastructure layer. Moreover, they have different
properties in the way they handle the data compared to BigTable or Azure

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 7 -

Table. The data denormalization broadens the possibilities but trying to move
from a solution to another is a difficulty introduced recently with the advent
of NoSQL databases. Every NoSQL is used for a purpose and differs slightly or
completely from another solution. But as they offer the scaling properties that
relational databases couldnt offer, they are mandatory on PaaS to leverage best
performance and scalability.

Considering those design decisions, what if one of these two platforms on
which you deployed your application decides to raise its prices or do whatever
you disagree with as a customer? Either you accept these changes or you consider
moving onto another Cloud. But this will require tremendous efforts to adapt
your software that is locked-in by specific APIs and data storage proprietary
implementations.

As the lock-in became a sore point for customers willing to move on a plat-
form, companies are now taking the bet to offer Open Platforms as a Service.
Initiatives like TOSCA [7] to enhance the portability of Cloud applications have
been supported by several partners like IBM, Red Hat, Cisco, Citrix and EMC.
Red Hat with OpenShift, VMWare with CloudFoundry and IMBs SmartCloud
Application Services are three of the most known projects for portable PaaS
solutions. As of writing, CloudFoundry is still in beta while OpenShift has been
released. The idea behind Open PaaS is that being restricted to a framework
or library to develop an application is not offering the flexibility desired by the
developers. Instead they offer the widest range of languages, frameworks and
data storage to vanish the lock-in still present on older Platforms. These plat-
forms are extensible with new technologies or patterns (in the case of IBMs PaaS
solution).

Still older Platforms have their benefit. Because the architecture is mature
and that they improve by offering the latest technologies to attract new cus-
tomers. There are a lot of examples of successful websites with a huge amount of
requests per day while newer platforms lacks such examples that could appease
new customers in their choice. Moreover, with the example of OpenShift, the
support is large but still limited to older versions of languages such as Python
used in its 2.6 version (while there is a 2.7 and 3 version of the language sup-
ported on many other platforms). It also misses built-in services present in other
PaaS like Redis, Memcached or RabbitMQ (some of them are available on carts,
which are pluggable components on OpenShift but are not straightforward to
use). Also proprietary implementations of database systems are still more scal-
able and BigTable is known to scale to petabytes of data with highly varied
data size and latency requirements which makes it particularly powerful for high
traffic websites. Given the diversity of configurations for developed applications,
Open platforms are not the general response to the vendor lock-in problem. Be-
cause the lock-in is traded off with the support of newer technologies and possi-
ble increased availability and security on other platforms. A dominant Platform
crushing the competition is unlikely to happen because of the wide range of cus-
tomers needs. As a consequence: How to offer the possibility to migrate from a
platform to another considering this ecosystem of PaaS providers?

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 8 -

While on the infrastructure layer, the migration was restricted in the study

of moving Virtual Machines from an Hypervisor to another [11], here the issue

is much larger. Because the diversity of modern applications is huge and that

finding a ”one-fits-all” answer is rather impossible. At least a way could be

found to assist the shift from a platform to another as for the migration of

legacy software to the Cloud.

3 Our Approach

In this section, we describe the details behind our approach to migrate appli-

cations between Cloud platforms. Given the similarities that could be found on

technologies of the same kind, we could define source to target transformations

by leveraging knowledge amongst the Cloud developer community as well as

Cloud vendors themselves. We strongly believe that assisting the migration of

applications between Cloud platforms using the re-engineering approach is more

flexible than the middleware approach because of the independence to any inter-

mediate technology that could be harmful in the future, in terms of performance

and support.

3.1 Overall Design

Fig. 1. PaaS migration workflow

Figure 2 shows our approach which contains three steps in the lifecycle of

a software about to be migrated on a new platform: Discovery, Transformation
and Migration. It also contains pluggable components: Pattern Definition with
Additional transformation rules.

The Discovery step includes the discovery on sources taken back from the

source platform. Because platforms generally have version control deployment

options using git, getting the sources is straightforward at this step. By having

a high level representation of sources, we have all the informations to transform

and adapt the software accordingly at an architectural level.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 9 -

Transformation step is going to adapt the software regarding the targeted
platform. It includes a Model Transformation step to address architectural (coarse
grained) violations that could prevent a successful migration. Because fine grained
transformations on sources from a given pattern to its counterpart on the tar-
geted platform are necessary as well, we include a Pattern recognition step. Pat-
terns are defined portions of code with a given semantic. Every pattern comes
with its counterpart for the targeted platform and mappings between method
calls and attributes are made to bridge the two representations. These mappings
are part of the Additional transformation rules that are provided by Cloud users
with a dedicated Domain Specific Language.

Migration is the last phase of the process, it tests the transformed application
prior to the deployment on the new platform and gets feedbacks at runtime. If
nothing goes wrong in the deployment and at runtime, we take back resources on
the ancient provider. But if something goes wrong after the resources are taken
back, rollback is applied on the ancient platform with the help of saved sources
and configurations. Specific insights on each phase are covered on subsections.

Discovery phase As we are treating of the use case of migration between
platforms, we assume that an existing project is already deployed on a PaaS.
Whatever the provider, as long as the sources are accessible by any mean, the
process can go further. With these sources, we get back a higher level representa-
tion of the software. For this, we use MoDisco [12] which is a reverse engineering
tool (the term of discoverer is more appropriate) that traduces sources to UML
models or even an Abstract Syntax Tree (AST). MoDisco is extensible by new
definitions of legacy software to discover. However in our case, the OMG’s Knowl-
edge Discovery Metamodel (KDM) [18] already provides the required metadata
for the source discovery. KDM is a standard providing ontology (a set of defi-
nitions) for system knowledge extraction and analysis. This KDM discoverer is
a built-in feature of MoDisco which takes away the complexity of the process.
The target KDM model gives insights of the technology used by the application.
It represents the project structure and overall design. At this state, the target
model as well as configuration options are saved for future purposes (Rollback
which is further explained in the migration section).

For a given configuration we could guide the user to a new platform that
has the same kind of technologies to reduce the work on the transformation
phase. This could be done by defining a configuration pattern for each provider
and match our configuration among these definitions. This choice could also be
guided by the price and other parameters taking inspirations from customer
needs. Given the diversity of platform providers, a right behavior is to forbid the
choice to a target provider with a completely different language with an opposed
data representation. Such a case will make the transformation step weaker and
likely to break the integrity of the sources. Otherwise, we could also find a perfect
matching configuration for our software. Not every software are locked in by a
specific API or data solution (especially on an Open Platform which promote

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 10 -

the use of open source software) thus enabling an easy migration to another

provider.

1 // Create a new student en t i t y .

2 StudentEntity student1 = new StudentEntity (”Foo” , ”Bar”) ;

3 student1 . setEmai l (” foo . bar@upmc . com”) ;

4 student1 . setPhoneNumber (”0102030405”) ;

5

6 // Create I n s e r t operat ion

7 TableOperation in s e r tS tudent1 = TableOperation . i n s e r t (student1) ;

8

9 // Submit the operat ion

10 t ab l eC l i e n t . execute (” people ” , i n s e r tS tudent1) ;

Listing 1.1. New entity on Azure Table

1 // Create a new student en t i t y

2 Entity student1 = new Entity (”Student ”) ;

3 student1 . se tProper ty (”name” , ”Foo”) ;

4 student1 . se tProper ty (” lastName” , ”Bar”) ;

5 student1 . se tProper ty (” emai l ” , ” foo . bar@upmc . com”) ;

6 student1 . se tProper ty (”phoneNumber” , ”0102030405”) ;

7

8 // Add the student en t i t y

9 data s to r e . put (student1) ;

Listing 1.2. New entity on BigTable

Transformation phase Transformation process takes place after the Discov-

ery step and benefits from the KDM model discovery. KDM provides a set of

abstraction layer to understand existing softwares. There are three main layers:

– Program Elements Layer: Code primitives and actions

– Runtime Resource Layer: Data, Events, UI and Platform

– Abstractions Layer: Conceptual, Build and Structure

All these layers are helpful to define the context of the migration, giving

us insights of the specific code portions, frameworks and APIs used, to higher

level details about runtime environment. The KDM model is used for two goals:

finding the best target platform and apply architectural changes to the project.

By architectural changes, the idea is to address project varying layouts forced

by some frameworks (mostly for web applications). Examples are project lay-

outs of Struts, JSF or the webapp lightweight framework of Google App En-

gine. Changes to the project configuration and deployment scheme are guided to

comply to the new provider as each offer different options of deploying on their

platform.

However, these architectural changes are not sufficient to adapt the software

for the new platform. As such, our approach focuses on the use of pattern-based

techniques so that fine grained transformations are realized on the sources. Pat-

terns are defined as a provider’s code portion with a meaningful semantic. As

every pattern comes with an associated transformation definition bridging the

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 11 -

methods and attributes to their counterparts in the targeted platform, transfor-
mation are made in a fine grain fashion. Thus the architectural changes mixed
to the program transformation depicts an hybrid way to adapt an application
to be migrated on a new platform, covering most of the re-engineering effort.

Listing 1.1 and 1.2 are showing Java code portions to store an entity respec-
tively on Azure Table and BigTable. The similarity between both source code is
striking, and a move from the one to the other is straightforward with manual
intervention. But doing this on large sources is tedious and error prone. Both
code are storing the same entity using the same scheme. Defining a strategy of
transformation between those two elementary operations is possible, and could
help to this re-engineering effort to enable a migration. Although differences
still remains between the two datastores by design (mostly on the way to handle
fragmentation over multiple servers), this variance could also be dealt within the
program transformation process. Developers are the first source of knowledge for
the huge amount of technology used across all this platform ecosystem. Thereby,
providing a DSL helping to define those sets of transformation could leverage
the potential of this approach. The DSL would come as an abstraction of tools
such as TXL and other general purpose transformation languages.

Fine grained transformations on specific method calls and class wise modi-
fications could be made using TXL [14], a Language processing transformation
on sources. It provides with rewrite rules, strategies to apply those rules with
support for context-sensitive transformations.

Migration phase Migration is the last step of the workflow. It moves the
transformed sources on the new provider. Prior to the deployment, some tests
are going to be applied on sources to avoid the case of applications that are not
providing a correct behavior. At this time, we are uncertain on the manner tests
are going to be handled. They will need to fit the targeted Cloud provider, then
adding complexity to the process for the developer that is going to write those
tests. After the application being validated, deployment on the target platform
could be launched. Runtime informations are caught after the deployment pro-
cess to validate the success of the migration. Then, we take back resources on the
ancient provider. Still, if something goes wrong we could rollback to the ancient
state, that was saved during the discovery phase.

4 Related Work

Existing work addresses the problem by using middlewares. mOSAIC is one of
those projects. However there are several reasons for us not to use the middleware
approach. First the Overall complexity: In order to support the widest amount
of technologies, middlewares are strongly tied to the software and often pro-
vides with configuration files and eventual cluttered logic. Also, it could cause a
Performance overhead during program execution. Cloud software are especially
developed to be accessed by a huge amount of users, generating an enormous
quantity of data to write and read. This makes considering a middleware to

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 12 -

support the portability for a potential migration a huge tradeoff. Finally, the
Compatibility list: The user is tied to the technology supported by the middle-

ware. In the case of a major shift in technology trends, the customer will always

face this transformation process if the middleware still dont offer support for

the targeted technology. Existing work are already relying on models to adapt

legacy software to be migrated on the Cloud through modernization (from the

companys infrastructure to a cloud infrastructure or platform) such as REMICS

[17], MODAClouds [9] and artist [1] amongst notable cloud migration projects.

These solutions are focusing on the provisioning or on the migration of legacy

software to the Cloud. None of these are actually dealing with the migration be-

tween PaaS. Another existing work is CloudMIG Xpress [15] which is also using

KDM to reverse engineer cloud software to check violations for the deployment

but does not try to correct those.

5 Conclusions and Future work

In this paper, we presented our approach to deal with software migration between

Cloud platforms. We introduced the overall design depicted in three phases: Dis-

covery, Transformation and Migration. We rely on program transformation to

enable the migration between PaaS solutions. The discovery on sources is per-

formed with MoDisco, which has a built-in KDM (Knowledge Discovery Meta-

model) discovery feature. This discovery provides insights on the software con-

figuration to help choosing the best target platform regarding numerous parame-

ters (price, availability, etc.). Instead of providing yet another middleware much

likely to cause a performance hit, we will build a system to provide the ability

to define transformation rules on cloud software. Those rules will be defined by

developers (and we may imagine, Cloud providers to attract new customers),

with the help of a dedicated Domain Specific Language. Transformations are

made at an architectural level using models and on source code using tools like

TXL, which is a language to define transformations.

Future work includes the realization of a dedicated Eclipse plugin. This plugin

will directly points to the changes to be made on a Java project to adapt for

the migration on a targeted provider. This work is also going to include insights

from the discovery phase to choose wisely platform that fits the best in terms

of technology and customer needs. Finally, we will go onward with the program

transformation support, validating the approach on real use cases. This part

being the heart of the contribution.

6 Acknowledgement

The author’s work is funded by the MERgE project (ITEA 2 Call 6 11011).

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 13 -

References

1. artist project. http://www.artist-project.eu/.
2. Google app engine. https://appengine.google.com/.
3. Heroku. https://www.heroku.com/.
4. Ibm smartcloud application services. http://www.ibm.com/cloud-computing/us/

en/paas.html.
5. Microsoft windows azure. http://www.windowsazure.com/.
6. Red hat openshift. https://www.openshift.com/.
7. Tosca. http://cloud-standards.org/wiki/index.php?title=Main_Page.
8. Vmware cloud foundry. http://www.cloudfoundry.com/.
9. Danilo Ardagna, Elisabetta Di Nitto, P Mohagheghi, S Mosser, C Ballagny,

F D’Andria, G Casale, P Matthews, C-S Nechifor, D Petcu, et al. Modaclouds:
A model-driven approach for the design and execution of applications on multiple
clouds. In Modeling in Software Engineering (MISE), 2012 ICSE Workshop on,
pages 50–56. IEEE, 2012.

10. Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A
view of cloud computing. Communications of the ACM, 53(4):50–58, 2010.

11. David Bernstein, Erik Ludvigson, Krishna Sankar, Steve Diamond, and Monique
Morrow. Blueprint for the intercloud-protocols and formats for cloud computing
interoperability. In Internet and Web Applications and Services, 2009. ICIW’09.

Fourth International Conference on, pages 328–336. IEEE, 2009.
12. Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot. Modisco:

a generic and extensible framework for model driven reverse engineering. In Pro-

ceedings of the IEEE/ACM international conference on Automated software engi-

neering, pages 173–174. ACM, 2010.
13. Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable: A
distributed storage system for structured data. ACM Transactions on Computer

Systems (TOCS), 26(2):4, 2008.
14. James R Cordy. The txl source transformation language. Science of Computer

Programming, 61(3):190–210, 2006.
15. Sören Frey and Wilhelm Hasselbring. Model-based migration of legacy software

systems to scalable and resource-efficient cloud-based applications: The cloudmig
approach. In CLOUD COMPUTING 2010, The First International Conference on

Cloud Computing, GRIDs, and Virtualization, pages 155–158, 2010.
16. Michael Hogan, Fang Liu, Annie Sokol, and Jin Tong. Nist cloud computing stan-

dards roadmap. NIST Special Publication, page 35, 2011.
17. Parastoo Mohagheghi and Thor Sæther. Software engineering challenges for migra-

tion to the service cloud paradigm: Ongoing work in the remics project. In Services

(SERVICES), 2011 IEEE World Congress on, pages 507–514. IEEE, 2011.
18. Ricardo Pérez-Castillo, Ignacio Garcia-Rodriguez De Guzman, and Mario Piattini.

Knowledge discovery metamodel-iso/iec 19506: A standard to modernize legacy
systems. Computer Standards & Interfaces, 33(6):519–532, 2011.

19. Dana Petcu. Portability and interoperability between clouds: challenges and case
study. In Towards a Service-Based Internet, pages 62–74. Springer, 2011.

20. Dana Petcu, Georgiana Macariu, Silviu Panica, and Ciprian Crăciun. Portable
cloud applications-from theory to practice. Future Generation Computer Systems,
2012.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 14 -

Modeling Cloud Architectures
as Interactive Systems

Antonio Navarro Perez and Bernhard Rumpe

Department of Software Engineering,

RWTH Aachen University,

Aachen, Germany

Abstract. The development and maintenance of cloud software is com-

plicated by complex but crucial technological requirements that are tightly

coupled with each other and with the software’s actual business function-

ality. Consequently, the complexity of design, implementation, deploy-

ment, and maintenance activities increases. We present an architecture

description language that raises the level of technological abstraction by

modeling cloud software as interactive systems. We show how its models

correspond to an architecture style that particularly meets the require-

ments of cloud-based cyber-physical systems. The result provides a ba-

sis for an architecture-driven model-based methodology for engineering

cloud software.

1 Introduction

The development and maintenance of cloud software is complicated by complex
but crucial non-functional requirements, for instance: deployment, distribution,
scalability, robustness, monitoring, multi-tenancy, and security [1]. These re-
quirements are tightly coupled with each other and with the software’s actual
business functionality. Consequently, the complexity of design, implementation,
deployment, and maintenance activities increases.

Arguably, one of the most complex representatives of cloud-based systems are
cyber-physical systems [2] with cloud-based components. In such systems, cloud
software interacts with the physical world by monitoring and controlling numer-
ous physical states and processes. Contemporary examples of such systems come
from domains such as smart homes [3], smart grids [4], and connected cars [5].
In these systems, cloud software acts as the “brain” of the system by organizing
multitudes of different clients, data streams, processes, and calculations. Signifi-
cantly, all these physical states of affairs are constrained by inherent concurrency,
reliability issues, and soft or hard time constraints [6].

In this paper, we introduce an architecture description language (ADL) [7] as
the core element of a model-based methodology for engineering cloud software.
This methodology understands and describes these systems as interactive sys-
tems [8]. In this context, our ADL describes the logical software architecture of
such systems. Thereby, it achieves a system representation that abstracts from
its mentioned technological requirements. The description of those is, in turn,

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 15 -

outsourced to other distinct modeling languages that integrate with the logical
software architecture model (e.g., infrastructure models that describe a concrete
cloud-based infrastructure setup). Moreover, our ADL supports an architecture
style similar to actor-based systems [9] that refines the notion of interactive
systems and is tailored to the domain of cloud software.

We hypothesize that (a) interactive systems adequately describe a relevant
class of cloud-based systems, that (b) our ADL and its underlying architecture
style adequately describes the essence of interactive cloud software, (c) that
the resulting overall system model is an adequate representation of the actual
system and can be used as a basis for generative techniques, and (d) that our
methodology thereby reduces the complexity of the engineering process of such
systems.

We begin with a brief overview of related work in Section 2. Subsequently,
we introduce the requirements of cloud-based cyber-physical systems in Section
3. We present our ADL and its supported architecture style in Section 4 and
discuss it briefly. We conclude with an outlook to future work.

2 Related Work

Interactive systems are a special class of reactive systems [10] and commonly de-
scribed as compositions of independent components (e.g. software, target hard-
ware, external devices) that interact with each other to achieve a common goal.
The literature on such systems is extensive. The FOCUS method provides a
general formal methodology to describe the architecture of interactive systems
through the input/output behavior of components that are statically connected
via communication channels. [8, 11] Practical model-based methodologies have
been developed that model the architecture of such systems, especially in the
domain of real-time embedded systems, for instance, ROOM [12], AADL [13],
and MARTE [14]. The ADL MontiArc [15] also models the architecture of such
systems according to the FOCUS semantics.

In general, development of cloud-software lacks a set of established stan-
dards and tools. [16] In the particular context of cyber-physical systems, Lee
et al. discuss a similar need for better specification methods and tools, men-
tioning modeling and actor-based systems among others. [2, 6] The actor-based
paradigm for specifying distributed systems [9, 17, 18] nicely mirrors the essence
of interactive systems, addressing in particular the challenge of distribution and
scale. Its application in the domain of cloud-based services is recently rising in
popularity with frameworks as Scala Akka [19] and Microsoft’s Orleans [20].

However, the integration of model-based methodology, actor-based architec-
ture styles, and cloud-based software has not yet been tackled.

3 Interactive Cloud Software

We define interactive cloud software as a class of software that drives cloud-based
systems. It shares many essential properties and requirements with software in

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 16 -

reactive systems, for instance, software in real-time distributed systems. Those

properties requirements are:

– Reactiveness: the software’s main logic is driven by reactions to events from

its environment (e.g., sensor signals) or internal events (e.g. interactions

between software units). Moreover, it must satisfy given time constraints

(e.g., to control an actuator device in time to react to an environmental

event).

– Statefulness: the software maintains a conversational state with the environ-

ment it interacts with (e.g., the current operational state of a device).

– Concurrency: events in the real world occur simultaneously and at any given

time. Consequently, the software has to have the capability to deal with

these events in time of their occurrence, that means, to deal with them

concurrently.

– Distribution: the software communicates with highly distributed clients over

networks with uncertain properties. Moreover, the software itself is running

on distributed cloud-based infrastructure.

– Scalability : to assure the requirements of timely and concurrent reactiveness,

the software has to able to scale dynamically to meet load demands.

– Reliability: the software controls aspects of the physical world and, hence,

has to meet high standards of reliability. Moreover, the quality of large,

distributed, heterogeneous systems is difficult to assure. This is especially

true for stateful systems as erroneous states might multiply over time in

absence of resetting or cleaning countermeasures.

4 Architecture Modeling

The cloudADL (cloud architecture description language) is a textual Compo-
nents & Connectors ADL [7] that describes architectures through hierarchically

decomposed, interconnected components. It is an extension of MontiArc [15] and

developed with the language workbench MontiCore [21]. It supports an archi-

tecture style tailored to systems as described in Section 3.

Architecture models in the cloudADL describe the logical architecture of the

system. The logical architecture describes the essential structure of the system

and the abstract, generalizable properties of its elements. However, it abstracts

from specific, non-generalizable implementation details. Thus, cloudADL models

do not explicitly define or constraint the technological implementation of mod-

eled concepts or the granularity of how modeled elements are mapped to their

counterparts in the real system. For instance, individual components (as intro-

duced in the following section) may represent small software modules (e.g., Java

classes), applications (e.g. web applications), or an entire integrated systems.

Regardless of that, a component’s realization (which in the following is referred

to as a runtime component instance) always reflects the same basic, abstract

properties expressed by the architecture model.

Figure 1 shows the architecture of a simple cloud service that receives in-

coming data streams from internet-connected physical sensor devices and stores

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 17 -

them to a database. The Figure shows a graphical representations as well as the

textual syntax. We will describe this example in the following.

!"#$%&'%()&!"#$%&'%()&

'&*+(),-$**&.

!"#$#%&'()*

!"#$%&'%()&

!"#$%&/$.0#$%()

+,$(&#

-./

12%-&*%03$%()

!"#$%&4$*#.&)

011)#(%

+,$(&#

!"#$"%&!""#"$%&"#'()'*&'+

'(!)*+!""#"$%&"#',-)%$'#."/+

#)(!),&,+!0()'*&12%))($!3

!!!)*+

!!!!',!456%7(!856%7(9

!!!!)-+!."/+

!!#)(!),&,+!456%7(:%)6$(&!2%)6$(&+

!!#)(!),&,+!456%7(;%$,6%7*&!<%$,6%7*&+

!!#)(!),&,+!456%7(07*&(!'7*&(!./0+

!!#)(!),&,+!.872()7,"%7*&+

!!

!!#),,&#+!856%7(!12!2%)6$(͘%7(+

!!#),,&#+!856%7(!12!<%$,6%7*͘%7(+

!!!!"#$%&'('()"*+(($*,+-."+%',,$/

=

Fig. 1. The architecture of a cloud service that receives and stores data streams from
sensors.

4.1 Concepts and Semantics

In this Section we present the structural elements of the cloudADL. We also

informally describe their semantics. As an extension of MontiArc, it shares with

it the concepts of component types, subcomponents, and connectors, as well as

the underlying formalism from FOCUS [11]. Its most important additions to

these are replicating subcomponents, and contexts.

Components and Interfaces Components are the central building blocks

of architectures and represent distinct and independent units of functionality.

They interact with each other by asynchronous [22] message passing over di-

rected message channels that connect an outgoing and an incoming port of two

components. Ports are typed endpoints for channels and can either receive or

send typed messages. Taken together they form the import and export interface

of a component.

Channels are associated with streams. The notation of streams depicts se-

quences of messages that have been sent over these channels as seen from a

given point in time. Streams, hence, represent the histories of interactions a

component has conducted with other components over its incoming and outgo-

ing ports. Their entirety constitutes the visible behavior of a component.

The behavior of a component is the specification that defines how the com-

ponent reacts to incoming messages. It can react by changing an internal state,

by sending outgoing messages, by raising an error, or by doing nothing at all.

A component’s behavior can be defined through additional models (e.g., code of

a traditional programming language, or through automaton models) or through

decomposition. A decomposed component is internally divided into a network of

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 18 -

subcomponents that defines its behavior. Subcomponents are connected via di-

rected connectors between two ports, representing the message channels between

them.

In Figure 1 SensorChannel is a component with an incoming port that re-

ceives messages of type Update and an outgoing port that sends messages of type

Ack. It receives updates from sensor devices and responds with positive or neg-

ative acknowledgements. This behavior of SensorChannel is defined through

its decomposition into four subcomponents that are interconnected with each

other and with their parent component’s ports. UpdateHandler takes incoming

updates and organizes their processing by the other components. It passes the

update’s credentials to the Authenticator which, in turn, sends back an ap-

proval or a rejection. The UpdateValidator also receives the update message,

checks its payload for validity, and sends the result to the UpdateValidator. Fi-

nally, the UpdateStore takes accepted updates and writes them into a database.

Through collaboration, the network of subcomponents implements the function-

ality of SensorChannel.

Components are defined as types, each in its own model. The type definition

contains the declaration of the component’s ports, its subcomponents, and its

connectors. Subcomponent declarations are prototype instances of component

types which, in this case, are defined in other models. Likewise, port declarations

also refer to externally defined types from numerous sources (e.g., types defined

by Java classes, or types from UML/P class diagrams [23]).

The use of component types, with the clear distinction between a type’s defi-

nition and usage, as well as the mechanism of decomposition allows the modeler

to compose a concrete architecture by reusing components. This is further sup-

ported by the strong encapsulation of a component’s behavior. A component

type only exports its interface to other component. Its internal structure, be

it a network of subcomponents or any other behavior specification, is kept pri-

vate. Thus, component realizations can be replaced as long as the component’s

interface does not change.

Replication Subcomponents can be tagged as replicating subcomponents. By

default, a subcomponent correlates to exactly one runtime instance of that sub-

component’s realization in the actual system. Replicating subcomponents, how-

ever, may have a variable number of runtime instances. In this way, the archi-

tecture model accounts for parts of the software that can dynamically scale at

runtime according to dynamic parameters (e.g., the system’s current load) by

increasing or decreasing the number of those parts that correlate to a replicating

subcomponent. The actual replication strategy is left unspecified.

In Figure 1, the UpdateStore subcomponent is tagged as replicating. As

I/O operations on a database potentially block a system, it can dynamically

replicate itself, for instance, based on the frequency of incoming messages with

payload to be stored. Note that the component’s replicability remains an abstract

property and does not imply a particular technical replication mechanism from

instantiating new threads to launching new virtual machines.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 19 -

Message channels attached to replicating components guarantee that every

message is received by exactly one replica. Consequently, the sending endpoint

of that channel is agnostic about the eventual replicability of the receiver as,

in any case, a message is received by one component instance. However, out-

going ports may be tagged as replicating ports. Such ports reflect the number

of receivers on the other end of the channel and allow for the explicit selection

of receiving component instances. Thus, a component’s behavior specification is

able to implement alternate communication patterns like broadcasting.

Contexts The introduction of replicating components leaves the semantics of

message channels underspecified. Channels that connect one or two replicating

subcomponents do not give a concrete mechanism for selecting the receiving

replica of individual messages. This mechanism can be based on many viable

strategies (e.g., round robin), some of which cannot be specified on the level of

the logical software architecture (e.g., the selection of the first idle component).

In many scenarios, however, the selection of a particular replica is crucial.

For instance, cyclic paths of components and channels might represent a causal

chain of interactions in which messages originating at the end of the chain are

required to be received by the same component instance that caused the chain

in the first place. To give an example, in a web system a set of replicas might be

associated to a user session and, thus, require mutually exchanged messages to

be only delivered to other replicas of the same set.

Consider the example in Figure 2. A message being received by component

A might cause a chain of logically related messages being sent from A to B to

C, and from C back to A. Depending on the desired semantic of the message

channel between C and A, messages from C might be required to be received by

that concrete instance of A that caused the chain of messages in the first place.

Without further information, the selection of the concrete replica of A to receive

an individual message is ambiguous.

!"#$%&'(!#&)*+)(,-)*./*&%&'(!#&)*+)(,-)*

!"#$%&

'"(")*"&

!"#$%&

'"(")*"&
+

!"#$%&

'"(")*"&

!"#$%&

'"(")*"&
,-

.

Fig. 2. A set of subcomponents with receiver selection ambiguities.

Contexts are a concept to address these ambiguities. A context is a class of

context tokens that are valid in the scope of a decomposed component. It is de-

fined by a name and a set of opening and closing context gates. A message being

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 20 -

sent through an opening context gate is contextualized by having a new token

of that context assigned to it. Conversely, a message being sent over a closing

context gate has its respective token removed. Whenever a contextualized mes-

sage is received by a component instance, this instance is as well contextualized

with the message’s context token. Messages and component instances can be

contextualized in multiple contexts at the same time.

Contexts can be seen as a generalized mechanism to maintain conversational
states. A conversational state is a shared state between two or more communi-

cating entities that is defined by the history of communication between them.

In our case the entities are components and their communication history is the

set of messages they exchanged prior to a certain point in time.

Figure 2 shows two context gates attached to the “first” and “last” connector

in P. In this example, all messages received by P are assigned to a token of that

context. All messages sent by P have the respective context token removed.

Components that process messages and produce new messages in response

are supposed to handover context tokens from incoming messages to those out-

going messages that are logically caused by them. In other words, every outgoing

message may be the logical result of a set of previously received incoming mes-

sages. If this is the case, the outgoing message is contextualized to all contexts

of all the incoming messages that logically caused it to be sent.

Usually, the handover can be defined by a simple handover function. For

instance, if the behavior specification of a component defines a distinct sequence

of actions that are executed for every incoming message, all outgoing messages

that are caused by those actions can automatically be contextualized with the

context of that incoming message.

To summarize, contexts can be understood as a generalization of the session

and session token mechanism in most web systems with client interaction.

4.2 Architecture Style

The concepts of the cloudADL are reflected in the actual system in the form

of a particular architecture style. In essence, the hierarchy of components in the

model corresponds to a hierarchy of system parts—the runtime components—

, each of which is associated to a component in the model. Similarly, channels

between components correspond to interfaces between those system parts. More-

over, those system parts and interfaces all share common properties that are all

results of the concepts of the cloudADL.

Distribution By Default Runtime components are executed in their own

thread of control. Thus, they cannot mutually block or crash each other. They

influence each other only through asynchronous message passing over explicit

message channels with FIFO-buffers at the receiving endpoint. Their internals

are encapsulated and cannot be accessed directly.

Moreover, the behavior of runtime components is, with the exception of repli-

cating ports, agnostic about the interaction partners of its component and about

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 21 -

the technical realization of the component’s adjacent message channels. A com-

ponent’s behavior implementation receives and sends messages via ports but

cannot reflect on what is beyond its ports.

Consequently, the interaction semantics are, by default, of a distributed na-

ture. Functionally, it does not make a difference whether two interacting compo-

nents are actually distributed or whether they are executed in the same runtime

environment. Message channels can be implemented in numerous ways, from

local inter-thread communication to dedicated message queue servers. In any

case, interactions are always implemented as discrete, asynchronously exchanged

typed messages on channels connecting two runtime components. Moreover, the

preservation of the order of messages on an individual message channel is guar-

anteed.

As a result, the architecture style makes physical distribution and networking

transparent. The system can be functionally understood without taking its dis-

tribution into consideration. Moreover, the physical distribution can be changed

without influencing the functional properties of the system.

Supervisor Hierarchy The hierarchy of components in the model translates to

a hierarchy of supervision in the runtime system. Decomposed components rep-

resent management logic, so called supervisors. Supervisors monitor and manage

the component instances associated to their component’s immediate subcompo-

nents. These, in turn, can again be other supervisors or functional components.

Supervisors manage, in particular, the replication of runtime components asso-

ciated to replicating subcomponents, and error handling.

The supervisor’s error handling aims to deal with errors as locally as possible.

To this end, component instances can implement strategies to deal with internal

errors. If they fail, they escalate the error up the hierarchy to their supervisor

which, again, implements a strategy to deal with the error. This pattern applies

until the error is resolved (e.g., by resetting a component instance) or the root

of the hierarchy is reached.

Discussion This architecture style bears resemblance to actor-based systems.

[9] However, there are differences. For instance, actors can dynamically instan-

tiate other actors, whereas the general architecture of component instances is,

apart from replicating component instances, static. Moreover, actors have one

queue for incoming messages, whereas component instances have as many typed

queues as they have incoming ports.

Apart from that, our architecture style reflects the properties and require-

ments mentioned in Section 3 in a similar way. Distribution is addressed through

distribution transparency. Statefulness is implemented by the encapsulated state

of components. Concurrency is inherent to the system due to each component’s

independent thread of control. Scalability and reliability are given through su-

pervision. Finally, reactiveness is achieved as a combination of a concurrent,

non-blocking, fault-tolerant, and scalable software architecture.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 22 -

5 Conclusion and Future Work

We have presented an architecture description language that describes the logi-
cal software architecture of cloud software in terms of interactive systems. This
language is a Components & Connectors language that, most importantly, intro-
duces replication, contexts, and service interfaces as cloud-specific architectural
concepts. Furthermore, we have shown how this description maps to the ar-
chitecture style of distributed, hierarchically supervised components with asyn-
chronous, buffered message passing. We have argued that this architecture style
meets the requirements of the class of cloud software that drives cloud-based
cyber-physical systems.

We are employing this language in the context of a broader model-based,
generative methodology for engineering cloud software named CloudArc. This
methodology is developed in the context of the SensorCloud project [24] funded
by the German Federal Ministry of Economics and Technology, as well as in the
context of other projects.

This methodology centers around a logical architecture model and augments
it with additional modeling languages specific to other aspects of the overall sys-
tem. It employs generative techniques in the form of a code generator product
line. These code generators synthesize middleware that implements the architec-
ture style described in this paper on various technological infrastructures.

Deployment models are a crucial aspect of the modeling languages in Cloud-
Arc. These models describe an infrastructure architecture independent of the
logical software architecture and use a mapping model to relate the two. The
resulting deployment description is leveraged by the code generators to produce
a middleware implementation that reflects the software’s target infrastructure.
The system’s business logic is subsequently implemented through handwritten
code.

Test specification models allow for the model-based testing and simulation
of the system without the need to deploy it onto production infrastructure. Sce-
nario models and input/output specifications are employed to test the business
functionality on a particular variant of middleware that simulates a distributed
system but runs locally.

These concepts are currently under development. We plan to evaluate them
systematically in the future in the context of our projects.

References

1. Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A.: A View of Cloud Computing.
Communications of the ACM 53(4) (April 2010) 50

2. Lee, E.A.: Cyber-Physical Systems - Are Computing Foundations Adequate? Oc-
tober (2006)

3. Harper, R., ed.: The Connected Home: The Future of Domestic Life. Springer
London, London (2011)

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 23 -

4. King, C., Strapp, J.: Software Infrastructure and the Smart Grid. In: Smart Grid
Integrating Renewable Distributed Efficient Energy. Elsevier Inc. (2012) 259–288

5. Iwai, A., Aoyama, M.: Automotive Cloud Service Systems Based on Service-
Oriented Architecture and Its Evaluation. In: 2011 IEEE 4th International Con-
ference on Cloud Computing, IEEE (July 2011) 638–645

6. Lee, E.A.: Cyber Physical Systems : Design Challenges. Electrical Engineering
(2008)

7. Medvidovic, N., Taylor, R.N.R.: A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software
Engineering 26(1) (2000) 70–93

8. Broy, M., Stø len, K.: Specification and Development of Interactive Systems. Focus
on Streams, Interfaces and Refinement. Springer Verlag Heidelberg (2001)

9. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
Dissertation, Massachusetts Institute of Technology (December 1986)

10. Harel, D., Pnueli, A.: On the development of reactive systems. (February 1989)
477–498

11. Ringert, J.O., Rumpe, B.: A Little Synopsis on Streams, Stream Processing Func-
tions, and State-Based Stream Processing. Int. J. Software and Informatics 5(1-2)
(2011) 29–53

12. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling. Wiley
professional computing. Wiley (1994)

13. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL - An Introduction
to the SAE Architecture Analysis and Design Language. SEI series in software
engineering. Addison-Wesley (2012)

14. OMG: UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
Systems - Version 1.1. Technical report, Object Management Group (2001)

15. Haber, A., Ringert, J.O., Rumpe, B.: MontiArc - Architectural Modeling of Inter-
active Distributed and Cyber-Physical Systems. Technical report, RWTH Aachen
University, Aachen (2012)

16. Hogan, M., Liu, F., Sokol, A., Tong, J.: NIST Cloud Computing Standards
Roadmap. Technical report, National Institute of Standards and Technology (2011)

17. Armstrong, J., Virding, R., Williams, M.: Concurrent programming in ERLANG.
Prentice Hall (1993)

18. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the JVM platform.
In: Proceedings of the 7th International Conference on Principles and Practice of
Programming in Java - PPPJ ’09, New York, New York, USA, ACM Press (August
2009) 11

19. Haller, P., Odersky, M.: Scala Actors: Unifying thread-based and event-based
programming. Theoretical Computer Science 410(2-3) (February 2009) 202–220

20. Bykov, S., Geller, A., Kliot, G., Larus, J., Pandya, R., Thelin, J.: Orleans: A
Framework for Cloud Computing. (2010)

21. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: A Framework for Compositional
Development of Domain Specific Languages. International Journal on Software
Tools for Technology Transfer 12(5) (March 2010) 353–372

22. Liskov, B., Shrira, L.: Promises: linguistic support for efficient asynchronous pro-
cedure calls in distributed systems. ACM SIGPLAN Notices 23(7) (July 1988)
260–267

23. Schindler, M.: Eine Werkzeuginfrastruktur zur Agilen Entwicklung mit der
UML/P. Dissertation, RWTH Aachen University (2011)

24. : SensorCloud. http://www.sensorcloud.de/

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 24 -

VehicleFORGE: A Cloud-Based Infrastructure

for Collaborative Model-Based Design

Laszlo Juracz, Zsolt Lattmann, Tihamer Levendovszky, Graham Hemingway,
Will Gaggioli, Tanner Netterville, Gabor Pap, Kevin Smyth, Larry Howard

Institute for Software Integrated Systems

Vanderbilt University

Nashville, TN

Abstract. Recent increases in industrial adoption of Model-Based Engi-

neering has created demand for more advanced tools, environments, and

infrastructures. As a response to the Defense Advanced Research Project

Agency’s (DARPA) initiative in the Adaptive Vehicle Make (AVM) pro-

gram, we have designed and built VechicleFORGE, a collaborative en-

vironment tightly integrated with the AVM design tools. This paper

describes VehicleFORGE concepts and services facilitated by the cloud

computing foundation of the infrastructure.

1 Introduction

The VehicleFORGE [5] platform is designed and maintained to host the DARPA
Fast, Adaptable, Next-Generation Ground Vehicle (FANG) series of prize-based
design competitions as part of the AVM [1] portfolio. In the first FANG chal-
lenge, the AVM program set out to apply crowdsourcing practices to involve
a larger group of individuals in the design work. After registration, competi-
tors can form teams and gain access to the modeling and analysis tools and
modeling components being developed by the program. Although subsequent
competitions may be less open in terms of public participation, operating the
competition requires a centralized platform where participants can collaborate
and which serves as a location for distributing tools, design requirements and
components, documentation, sharing results and accessing compute resources.

VehicleFORGE provides the virtual environment and cloud infrastructure
which enables the management of the competitions, competitors, and the collab-
oration of geographically distributed design teams, as well as various cloud-based
analysis services and tools for the design work.

We develop and operate VehicleFORGE and the underlying cloud infrastruc-
ture using open source technologies. Both the web application and the monitor-
ing tools are designed to enable streamlined deployability and scalability to meet
changing utilization profiles and to satisfy security requirements set by DARPA.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 25 -

2 The Forge Framework

In the past decade, the success of crowdsourcing and the model of distributed

problem-solving and software production has been enabled by widely popular

open source software forges such as SourceForge.net [4]. After investigating the

available technologies, we decided to use the Allura application developed by

SourceForge.net as a basis for the development of VehicleFORGE.

2.1 Concepts of the Platform

Although the architecture of the application has greatly evolved, the organization

of the fundamental forge concepts in VehicleFORGE is derived from the core

Allura application.

Projects embody the collaborative spaces where members of a team of users

manage design work, create and share design artifacts and analysis results. Reg-

istered users can form new Projects or acquire membership in an existing one.

Projects are created based on pre-configured templates but in general, each team

controls how it utilizes the Project for its work.

Neighborhoods are collections of projects, usually representing a higher-level

real-word organizational concept (eg. competition) with which the teams of the

member projects are affiliated. Neighborhoods also offer similar collaboration

functionalities to the project spaces: they can have members, customized roles

and selected tools installed for neighborhood-level collaborative work.

Tools are provisioned in the project space and house the data and interfaces

for engaging in collaborative design work. Privileged project administrators can

freely install and administer new tools. Objects created during the collaborative

and design work in a tool are referred to as artifacts.
Among the various out-of-the-box tools, VehicleFORGE offers Subversion [15]

(SVN) and Git [25] repositories for sharing files created in desktop-based design

tools. Through a set of post-commit hooks, the forge processes newly added con-

tent to update its understanding of a project’s designs. Project members can

access web-based previews of each other’s work, and files and design artifacts

recognized this way can be cross-referenced with artifacts created in other Ve-

hicleFORGE tools. Thus, repositories work as the bridge between design work

done on the desktop and the web-based collaboration environment.

A major extension that VehicleFORGE offers to the basic forge concepts

found in software forges is the Component Exchange. It offers a globally readable

shared space in which users can publish, categorize, share and discover formally

characterized reusable design components outside of the scope of an individual

project.

VehicleFORGE implements customizable role-based access control : each project

can create permissions and user groups to match its requirements. The combi-

nation of groups and permissions are used to determine the access to artifacts

contained in a tool.

Every project (and neighborhood) space has an Admin Tool where team-

leaders can provision new project tools and configure the permissions. Each

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 26 -

VehicleFORGE deployment has a dedicated ForgeAdmin project which contains

services related to the entire forge. There are various tool-specific aggregation

and statistical interfaces available to monitor collaboration and design activities

in the team and neighborhood scope.

2.2 Customizability

The basic forge concept developed by software forges was designed primarily for

supporting work with source-code, however, VehicleFORGE is easily customiz-

able for collaboration in arbitrary domains, from cyber-physical system design

[3] to policy authoring [29]. Beyond the flexible project configuration and access-

control administered through web interfaces, VehicleFORGE supports multiple

levels of extensibility.

Visualizers provide a means for third party developers to implement new

visualization of domain-specific repository content. Visualizers are executed in

the user’s browser and they are not part of the main application code base,

however, they can be deployed along with custom post-commit hooks to do

server-side preprocessing of the files containing the information to be displayed.

The forge application and the project tools are written in the Python-based

TurboGears framework. Experienced developers can make significant capability

extensions by developing new forge tools or modifying parts of the open source

forge framework.

3 Services in the cloud

The VehicleFORGE cloud infrastructure facilitates the creation and operation

of multiple forge deployments and provides the flexibility to scale deployments

to changing loads. Its extensible pool of resources is available for virtualizing

various operating environments to extend VehicleFORGE platform capabilities

and to offer compute and analysis as a service through the forge to the AVM

community.

3.1 Scalability of Forge Deployments

The deployment architecture is designed so that every significant, load-bearing

service on the Forge is horizontally scalable. Various strategies are employed

on a service-by-service basis to enable this. The web server is run on multiple

processes across multiples instances. All requests are initially routed to a server

running a fast, lightweight load balancer service that distributes the requests

intelligently to the available web servers. A similar strategy is used to scale the

compute and repository services. To scale the database, index, and cache services

we use replication support built in to the specific software implementations.

The service infrastructure is designed to minimize response time and opti-

mize cloud resource utilization. Figure 1 depicts the service architecture for a

VehicleFORGE deployment. Most requests begin and end through a web server

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 27 -

Fig. 1. VF Service Artchitecture.

gated by the load balancer. To minimize latency, the web servers delegate longer-

running, more resource-intensive jobs to Task Servers that execute the jobs asyn-
chronously. In a similar vein, web servers communicate with the META Compute
Service to conduct the Testbench analyses. The Compute Service nodes are sepa-

rated from the main VehicleFORGE deployment to ensure that they have access

to the necessary resources for their intensive analysis tasks.

3.2 Test Bench Execution

Test benches, design spaces, components Within the AVM program, a

design tool chain (META tools) [23,38] is being developed for exploring de-

sign alternatives and analyzing designs under certain conditions. The META

tools provide the integration framework for components, designs, design spaces,

requirements and test benches. Components are atomic building blocks that

describe the dynamics behavior and the structural aspect of physical objects.

Designs and design spaces are built up from components, where a design has a

fixed architecture (composition of components) and a design space can encode

different component alternatives as well as different design architectures.

After a design or design space is created, test cases are defined against the

given requirement set. The test cases, which we term test benches, are executable
versions of the system requirements. From the test bench models, the META

tools can compose analysis packages over a design space for different domains

such as simulation of DAEs (differential algebraic equations), formal verifica-

tion, static analysis, and structural analysis. Examples include vehicle model

simulation using different drive cycles such as highway speed profile or urban

speed profile, cost of the design by aggregating the cost of the components, and

structural stress analysis on the composed CAD (3D) model of the design.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 28 -

Resource considerations Executing the test benches may require different
platforms; the execution time varies based on model size and analysis type.

Furthermore, the number of test bench executions depends on the number of

test benches and the design space size (i.e. number of designs). During this

project we used approximately 30 test benches and 400 design variations, which

evaluates to about 12k test bench executions. Additionally, we had to take into

account the size of the generated analysis results and provide for their storage.

Implementation and cloud usage Initially, all test benches were executed

sequentially within the same process, while we had only just 1-2 test benches

and 1-5 designs. As we increased the number of test benches and the complexity

of the designs, we switched to another solution. We implemented a client side job

manager (called META Job Manager) for running the test benches on multiple

CPUs using a single machine and limited the number of maximum parallel jobs

to the number of CPUs. As the execution time for a single test bench started

increasing because the complexity of the design increased, the 1-3 hour simula-

tion times were an unacceptable encumbrance on the user’s machine. For this

reason, we extended the META Job Manager with a remote execution service

that authenticated with VehicleFORGE.

Fig. 2. META VF infrastucture.

Figure 2 depicts the communication path between the client side job manager

and the server side services. The META Job Manager can be configured to

execute the test benches locally (in parallel) or post them to VF to be executed

on compute nodes. If the job manager is configured for remote execution, the

user provides the login information and logs in through the VF authentication

service. Then, the job manager is ready to accept jobs and post them to VF.

When a job is posted to the job manager, it calls a VF service to register the job,

uploads the analysis package to a cloud storage server, then indicates the job is

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 29 -

ready to execute. The job gets posted to the META server side job dispatcher

and is added to the queue. If there is a free executor on a compute node that has

all the tools required to execute the job, the job gets shipped to the compute

node and the execution begins. A compute node for a job is chosen based on

the version of the desktop tools that the user employed to create his/her design.

For example, we had different version of the META tools deployed on the client

machines and some of our compute nodes supported one version of the tool

chain, while others supported another version of the tools. The compute node

downloads the analysis package from the cloud storage, executes the analysis,

uploads the results to the cloud storage, and indicates that the job is complete

(successfully or with failures). The META Job Manager monitors the pending

jobs regularly. When the analysis is done, it downloads the results to the client’s

machine.

Optimization and cloud benefits Since the component models and their

artifacts are stored on VF, which are accessible through the VF component

exchange, the data transfer between the server and clients was reduced by send-

ing only links to components rather than the actual content. This significantly

improved the turnaround time for the CAD jobs.

Users do not need to install the analysis tools, if they only use remote execu-

tion. The remote compute nodes have all the tools set up and configured correctly

to perform the test bench executions. As a result of having compute nodes, the

load on the users machine was decreased and it requires only communication

with the server to send and receive test bench bundles.

Within 3 months the remote compute nodes served 1000 users (200 teams)

and ran 50000+ analysis jobs with 92 percent success1.

3.3 Monitoring the infrastructure

Operating a complex distributed application demands constant monitoring and

maintenance. The dynamic nature and virtualized deployment of the Vehicle-

FORGE application further complicate the problem of providing a cohesive un-

derstanding of its status. We have deployed a number of monitoring and manage-

ment tools into both the VehicleFORGE application and its underlying cloud

infrastructure in order to automate and simplify the tasks of monitoring and

managing operations.

The foremost requirement for application monitoring is simply to under-

stand the current state of the application. This requirement spans from low-level

checks, such as disk and memory usage on the virtual machines, to higher-level

needs, such as checking database flush times. The VehicleFORGE team selected

Nagios3 [33] for status monitoring, though excellent alternatives, such as Munin

[32] and Ganglia [28], exist. We chose Nagios because it provides a very large

library of built-in checks, is easily extensible for custom checks, and is resource

1 The job execution largely did not fail on server side, but the analysis results may or
may not have passed the requirements.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 30 -

efficient enough to execute all of our checks in very short intervals (less than a

minute in our case). A key aspect of status monitoring is the ability to reflect the

process topology of the deployment, i.e. which process is running on which ma-

chine. As our entire deployment process is based on modeling and automation,

it was a natural extension for us to develop a mapping from the deployment

blueprint to the Nagios monitoring configuration. As alterations are made to

a given deployment a new monitoring configuration can be easily synthesized.

In the production deployment of VehicleFORGE, Nagios performs 374 indepen-

dent status checks every minute. If any of these checks fail, an administrator is

notified immediately and can begin to remediate the issue.

While status monitoring helps to ensure the uptime of the application, very

frequently administrators and support personnel need to understand the histor-

ical context of a specific application operation or event. For example, why was

a particular user’s registration request rejected, or how many users logged in on

a particular day. For these types of operational questions it is best-practice to

instrument the application so that it logs all relevant events with some pertinent

information. Typically these logs reside on the local filesystem of each machine.

Standard Linux processes make extensive use of logging, too. It can be a non-

trivial problem in distributed applications to collect all of the desired logging

information, centralize it, process and analyze it, and archive it. Similar to sta-

tus monitoring, several open source alternatives exist for log handling, notably

LogStash [37] and Scribe [19]. After evaluating the alternatives, we chose to use

LogStash in conjunction with ElasticSearch [22] for log indexing, and Kibana

[20] for analysis and visualization. This combination is very easy to deploy and

configure and require minimal resources during operation. Every event occurring

in both the VehicleFORGE application and the underlying virtual machine it

logged, collected, indexed and archived. This provides our operations team with

tremendously powerful tools to understand both what is happening at any given

moment, and past historical trends. The volume of data generated by our logging

approach is non-trivial though. In an average hour of operation, the production

VehicleFORGE deployment generates over 4.3 million log records which con-

sume almost 5MB of disk space. In one year of operation, that equates to nearly

38 billion records and 40GB of data. A dedicated cluster of virtual machines is

needed to index the data and execute searches across these records.

Finally, both developers and operators need to understand what is happen-

ing “inside” of the application. This understanding is at a deeper level than is

typically provided by tools such as Nagios, Munin or Ganglia. The need is also

more “real-time” than is provided by analysis of historical log information. A

typical use of such real-time statistics is a operations dashboard. On this dash-

board may be a number of statistics that allow an operator to assess the internal

state of the deployment in a glance, for example, a real-time plot of the number

of active users. An event such as a DNS failure that sends a large share of traffic

away from the site would not be detected by either the monitoring system or log

analysis. Another example would be a software update roll-out that causes users

to start receiving errors. In both of these cases it necessary to have a deeper and

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 31 -

more immediate view into the state of the application. StatsD [27,26] is just such

a tool. The code of an application must be modified in order to support StatsD

collection, but once done, as specific events occur within the application a UDP

packet is sent to a daemon that receives and aggregates it over time. Within 10

seconds of an event occurring, operators see it appear on a plot that provides

significant insight into the internal state of the application. The VehicleFORGE

infrastructure makes use of StatsD and in the near future its support will be

built into the VehicleFORGE application too.

3.4 Operator tools

The maintenance of a distributed application can be greatly simplified through

the development of autonomic tools for configuring and managing a cloud de-

ployment. The complex inter-dependencies between subcomponents of the Ve-

hicleFORGE application and the services required to provision the application,

as well as the complexities inherent to managing a distributed application of

this scale, guided our development of Da Capo, a cloud provisioning and orches-

tration framework that we develop and maintain internally. Da Capo provides

an extensible framework into which we have injected a VehicleFORGE-specific

component that delineates the particulars of orchestrating our application. We

use Da Capo extensively in the development of VehicleFORGE to create and

manage both publicly accessible production deployments and short-lived, pri-

vate sandbox deployments for development and testing.

Da Capo greatly facilitates the creation and configuration of distributed ap-

plications. Using its API through a web interface contained in the lightweight

VehicleFORGE tool ForgeCloud, we are able to configure new VehicleFORGE

deployments. Configuration is performed through the definition of app-specific

parameters and services, persistent/long-running background processes (e.g. the

database) upon which the application depends. Through the ForgeCloud config-

uration interface, we can specify the number of instances in the deployment, the

size of those instances, the service(s) contained on each instance, and various

configuration parameters that define how the application will function. Da Capo

is aware of which services are required, limits to the number of a particular ser-

vice type that can exist in a functional deployment, and any inter-dependencies

between services. In short, it will ensure that a deployment specification will

result in a valid deployment before it is initialized.

Once the deployment specification is submitted, Da Capo provisions the nec-

essary resources by communicating with the OpenStack API [31]. When the

instances are ready, it installs and configures the application, services, and their

dependencies on the designated instances. It handles any requisite deployment-

specific and user-specified configuration. Finally, Da Capo initializes the services

and the application. Any errors that occur during this process are logged and

reported.

Da Capo additionally offers tools for monitoring and managing a running

deployment. It can create and restore backups for a deployment by running

the appropriate commands on the appropriate services (in our case Solr [35],

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 32 -

MongoDB [13], Swift [6], Git, SVN and Redis [21]). It can execute an operator-

inputted command on all instances of a deployment, or only instances running

specific services. It can stop, start, and restart specified services, display logs,

check the status of all services, detect and run necessary application migration

scripts, and perform an operating system upgrade. Further, Da Capo’s command

infrastructure is easily extensible, ensuring that any future automation needs will

be met.

4 Related Work

VehicleFORGE adopts cutting edge FORGE components that have proven them-

selves in textual language-based projects. Wiki pages [24] offer a convenient way

of sharing hypertext-based information, which are aided by other established

tools, many based on those of the Allura Project [2], to provide a collaboration

hub for distributed design teams.

Although there are several model-based collaboration environments in the

field of CAD and general domain-specific languages,[8,34,17,16,18,7]– literature

overview with analysis can be found in [11] and [9]–, VehicleFORGE offers a

number of novel concepts, including the Component Exchange, among others.

The tight integration with the META toolchain and the efficient use of state of

the art cloud computing and collaboration technologies also make it a unique in-

frastructure. The vision of combining model-driven engineering and cloud com-

puting has been proposed in existing publications [10,12,14], but as of yet no

publication details the creation of a functioning deployment.

A distributed collaborative design evaluation platform called DiCoDEv [30]

uses virtual reality techniques to implement real-time manufacturing design. The

focus of VehicleFORGE is broader than manufacturing and it provides several

offline services. In [36], the authors describe a collaboration environment with

source control management, forum, mailing list web sites, news, and project

categorization. As opposed to VehicleFORGE, it is restricted to textual content

written in the language R.

5 Conclusions and plans

In this paper, we have introduced VehicleFORGE, a cloud-based application

for collaborative model-based development. VehicleFORGE utilizes cutting edge

cloud computing technologies in order to maintain scalability for resource-intensive

design work. Various domain-specific tools that benefit from high computational

power and centralized resources, such as design space explorers, can use the Ve-

hicleFORGE cloud to great advantage. VehicleFORGE has been used in United

States-wide competitions, which was made possible by the monitoring and op-

erator tools. Development and maintenance on VehicleFORGE deployments is

enabled by custom platform as a service software developed in house.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 33 -

Fig. 3. User and Team registrations throughout FANG-I

There were 1048 competitors and 241 design teams registered on the main

VehicleFORGE website which served as the home for the FANG-I Design Chal-

lenge (see Figure 3). Besides this deployment, the VehicleFORGE Production

Cloud hosted the testbench analysis services, a Beta website for staging and

testing FANG Challenge resources and an internally used platform for manag-

ing the development of the system itself. There will be further forge instances

deployed for the AVM program in the upcoming period to the FANG-II Design

Challenge.

The Development Cloud hosts the Alpha VehicleFORGE website which is

maintained for educational purposes and several, on-demand sandbox-deployments

created for development and testing purposes.

In the meantime, we are working on the first release of the refactored, new

forge framework, which is designed for utilization by a greater open source

community–outside of the immediate scope of the AVM program.

6 Acknowledgments

This work was sponsored by DARPA, under its Adaptive Vehicle Make Program.

The views and conclusions presented are those of the authors and should not

be interpreted as representing official policies or endorsements of DARPA or the

US government.

References

1. Adaptive Vehicle Make. http://www.darpa.mil/Our_Work/TTO/Programs/

Adaptive_Vehicle_Make__(AVM).aspx.
2. Allura. http://sourceforge.net/projects/allura/.
3. Cyber-physical system. http://en.wikipedia.org/wiki/Cyber-physical_

system.
4. SourceForge. http://sourceforge.net.
5. VehicleFORGE. http://www.vehicleforge.org.
6. J. Arnold. Software Defined Storage with OpenStack Swift. SwiftStack, Inc., April

2013.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 34 -

http://www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__(AVM).aspx
http://www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__(AVM).aspx
http://sourceforge.net/projects/allura/
http://en.wikipedia.org/wiki/Cyber-physical_system
http://en.wikipedia.org/wiki/Cyber-physical_system
http://sourceforge.net
http://www.vehicleforge.org

7. O. Berger, C. Bac, and B. Hame. Integration of libre software applications to
create a collaborative work platform for researchers at get. International Journal

of Information Technology and Web Engineering (IJITWE), 1(3):1–16, 2006.
8. R. Bidarra, E. Van Den Berg, and W. F. Bronsvoort. Collaborative modeling with

features. In Proceedings of DET, volume 1, page 2001, 2001.
9. G. Booch and A. W. Brown. Collaborative development environments. volume 59

of Advances in Computers, pages 1 – 27. Elsevier, 2003.
10. H. Bruneliere, J. Cabot, F. Jouault, et al. Combining model-driven engineering

and cloud computing. In Modeling, Design, and Analysis for the Service Cloud-

MDA4ServiceCloud’10: Workshop’s 4th edition (co-located with the 6th European

Conference on Modelling Foundations and Applications-ECMFA 2010), 2010.
11. J. Cabot, G. Wilson, et al. Tools for teams: A survey of web-based software project

portals. Dr. Dobbs, pages 1–14, 2009.
12. J. Castrejón, G. Vargas-Solar, C. Collet, and R. Lozano. Model-driven cloud data

storage. Proceedings of CloudMe, 2012.
13. K. Chodorow. MongoDB: the definitive guide. O’Reilly, 2013.
14. C. Clasen, M. D. Del Fabro, M. Tisi, et al. Transforming very large models in

the cloud: a research roadmap. In First International Workshop on Model-Driven

Engineering on and for the Cloud, 2012.
15. B. Collins-Sussman, B. Fitzpatrick, and M. Pilato. Version control with subversion.

O’Reilly, 2004.
16. R. Frost. Jazz and the eclipse way of collaboration. Software, IEEE, 24(6):114–117,

2007.
17. J. Gallardo, C. Bravo, and M. A. Redondo. A model-driven development method

for collaborative modeling tools. Journal of Network and Computer Applications,
35(3):1086–1105, 2012.

18. C. Herrmann, T. Kurpick, and B. Rumpe. Sselab: A plug-in-based framework
for web-based project portals. In Developing Tools as Plug-ins (TOPI), 2012 2nd

Workshop on, pages 61–66, 2012.
19. R. Johnson. Facebook’s scribe technology. October 2008.
20. R. Khan. Kibana. http://kibana.org/.
21. J. A. Kreibich. Redis: The Definitive Guide: Data Modeling, caching, and messag-

ing. O’Reilly, 2013.
22. R. Kuc and M. Rogozinski. Elasticsearch Server. Packt Publishing, 2013.
23. Z. Lattmann, A. Nagel, J. Scott, K. Smyth, J. Ceisel, C. vanBuskirk, J. Porter,

T. Bapty, S. Neema, D. Mavris, and J. Sztipanovits. Towards automated evaluation
of vehicle dynamics in System-Level designs. In CIE, 2012.

24. B. Leuf and W. Cunningham. The wiki way: quick collaboration on the web. 2001.
25. J. Loeliger and M. McCullough. Version Control with Git: Powerful tools and

techniques for collaborative software development. O’Reilly Media, Inc., 2012.
26. I. Malpass. Measure anything, measure everything.

http://codeascraft.com/2011/02/15/measure-anything-measure-everything/,
February 2011.

27. I. Malpass. Statsd. StatsD Repository, July 2013.
28. M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed monitoring

system: design, implementation, and experience. Parallel Computing, 30(7):817–
840, 2004.

29. A. Nadas, L. Juracz, J. Sztipanovits, M. E. Frisse, and A. J. Olsen. Policyforge: A
collaborative environment for formalizing privacy policies in health care.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 35 -

http://kibana.org/

30. M. Pappas, V. Karabatsou, D. Mavrikios, and G. Chryssolouris. Development of
a web-based collaboration platform for manufacturing product and process design
evaluation using virtual reality techniques. International Journal of Computer

Integrated Manufacturing, 19(8):805–814, 2006.
31. K. Pepple. Deploying OpenStack. O’Reilly, 2011.
32. G. Pohl and M. Renner. Munin - Graphisches Netzwerk- und System-Monitoring.

Open Source Press, April 2008.
33. M. Schubert, D. Bennett, J. Gines, A. Hay, and J. Strand. Nagios 3 enterprise

network monitoring: including plug-ins and hardware devices. Syngress, 2008.
34. N. Shyamsundar and R. Gadh. Internet-based collaborative product design with

assembly features and virtual design spaces. Computer-aided design, 33(9):637–
651, 2001.

35. D. Smiley. Solr 1.4 Enterprise Search Server. Packt Publishing, 2009.
36. S. Theußl and A. Zeileis. Collaborative software development using r-forge. 2008.
37. J. Turnbull. The LogStash Book. Amazon, 2013.
38. R. Wrenn, A. Nagel, R. Owens, H. Neema, F. Shi, K. Smyth, D. Yao, J. Ceisel,

J. Porter, C. vanBuskirk, S. Neema, T. Bapty, D. Mavris, and J. Sztipanovits.
Towards automated exploration and assembly of vehicle design models. In CIE,
2012.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 36 -

1 2

1

2

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 37 -

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 38 -

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 39 -

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 40 -

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 41 -

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 42 -

Towards Domain-Specific Testing Languages for
Software-as-a-Service

Dionny Santiago, Adam Cando, Cody Mack, Gabriel Nunez,

Troy Thomas, and Tariq M. King

Ultimate Software Group, Inc.
2000 Ultimate Way, Weston, Florida 33326, USA

{dionny_santiago,adam_cando,cody_mack,gabriel_nunez,
troy_thomas,tariq_king}@ultimatesoftware.com

http://www.ultimatesoftware.com

Abstract. There continues to be a trend towards using the power of
cloud computing to tackle inherently large and complicated problem
domains. Validating domain-intensive cloud applications presents a sig-
nificant challenge because of the complexity of both the problem do-
main and the underlying cloud platform. In this paper, we describe
an approach that leverages model-driven engineering to improve test-
ing domain-intensive cloud applications. Our approach combines a set
of abstract test commands with various domain and configuration mod-
els to define a domain-specific testing language. We have developed a
prototype of our approach that provides language editing and platform
configuration tools to aid test specification, execution and debugging.

Keywords: Testing, Model-Driven Engineering, Domain-Specific Lan-
guages, Cloud Computing, Human Capital Management Software

1 Introduction

Validating software-as-a-service applications is difficult due to the large size of

the problem domain, coupled with the complexity of the underlying cloud plat-

form. Adequate functional testing is heavily dependent on domain expertise from

each product area, and typically requires extensive data setup. Since the soft-

ware is delivered as a service over the Internet, functional UI testing must be

performed using different browsers to ensure a good user experience. In addition,

engineers need to be able to set up tests to run on specific configurations of the

underlying cloud infrastructure.

Model-driven engineering (MDE) seeks to simplify software development by

raising the level of abstraction through domain modeling, while promoting com-

munication between groups working on the same system [1]. Researchers and

practitioners have developed a number of MDE tools and techniques, most of

which have focused on exploiting domain models for automatic code generation.

However, there has also been research on MDE approaches to enhance software

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 43 -

testing [2, 3]. A more recent interest that has arisen is the use of MDE to support
emerging paradigms such as adaptive and cloud computing [4].

In this paper, we describe an approach that leverages MDE to improve the
specification, execution, and debugging of functional tests for domain-intensive
cloud applications. Our approach is the result of investigating new and innovative
ways to test UltiPro, a comprehensive cloud-based human capital management
(HCM) solution [5]. Domain models and abstractions for common UI interac-
tions, data setup, environment and platform configurations are combined with
highly extensible testing frameworks [6–8]. The result is a powerful domain-
specific language (DSL) for creating automated functional tests. Our test au-
thoring DSL is supported by an editor that provides syntax checking and high-
lighting, intelli-sense, tooltips, and debugging features.

The major contributions of this research paper are as follows: (1) describes
a novel approach that integrates various domain and configuration models into
a test case specification language for cloud applications; (2) presents the design
of a prototype used to demonstrate the feasibility of the approach; and (3) dis-
cusses our experience developing the prototype, focusing on the lessons learned.
The rest of this paper is organized as follows: the next section motivates the
research problem. Section 3 describes our domain-specific test case specification
approach for cloud applications. Section 4 presents a prototype that implements
the proposed approach. Section 5 discusses the lessons learned from building the
prototype. Section 6 is the related work and Section 7 concludes the paper.

2 Motivation

Our research has been motivated by the challenges faced when testing UltiPro
[5]. Delivered on-demand as software-as-a-service in the cloud, UltiPro pro-
vides HCM functionality including recruitment, onboarding, payroll, payment
services, benefits, compensation management, performance management and re-
views, succession planning, and more. Data is available across all areas of HCM,
and can be accessed by department, division, or country. Several reporting and
analysis features are also available through UltiPro’s web-based portal.

The large size and complexity of the problem domain makes testing the
functionality of UltiPro challenging. Individual product areas (e.g., recruitment,
payroll) encompass so many features that each area could be considered as a
product itself. Adequately testing UltiPro requires each product area to be val-
idated, which is impossible without domain expertise. Although each product
area is large, UltiPro has been designed and developed as a unified solution
which seamlessly integrates all aspects of HCM. Validation of the overall prod-
uct therefore relies heavily on the collaboration of domain experts across all
product areas. This ensures that changes to one product area does not have an
adverse effect on other product areas.

Testing UltiPro is further complicated because of its development and de-
livery as a cloud application service. Cloud application services are hosted on
complex, distributed infrastructures with multiple servers and architectural lay-

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 44 -

ers that extend from the underlying network up to the web-based user interface.
To ensure a good user experience, functional UI testing must be performed using
different web browsers. Other non-functional factors such as high performance
and security requirements also make it difficult to test cloud applications. How-
ever, this paper limits the scope of the testing problem for cloud applications to
functional UI and platform compatibility testing.

3 Approach

Our approach defines a test specification language that can be used to develop
automated tests for a particular application domain. As shown in Figure 1, we
leverage abstract test commands, domain and platform models, and test automa-
tion frameworks for the purpose of creating a domain-specific language (DSL)
for testing cloud applications. The DSL allows us to provide test case editing,
execution, and debugging tools tailored for domain experts, test engineers, and
end users. Abstract tests defined using the DSL are translated into executable
scripts that run on the underlying testing tools and frameworks. For the remain-
der of this section, we describe the various test abstractions and models used in
our approach. Transformation of abstract tests into tool-specific testing scripts
is discussed as part of the prototype design in Section 4.

!"#$%&'(#$)*+# ,*+$-%.#)/'/(/-'"

0*1#%
23"($*+(/-'"

4-'($-5
23"($*+(/-'"

.*(*%6#(78

!"#$%&'(#$*+(/-'

!"#$%&'$()*#$(
+,--&./#

2+(/-'%
4-99*':"

2""#$(/-'%
4-99*':"

)*#$(+&#*(01*'232'&$2,.(4&.56&5*
;;%.-9*/'<68#+/)/+%==

4-')/17$*(/-'

05*()-$9

>'?/$-'9#'(

)*#$(+&#*(01*'232'&$2,.(4&.56&5*(7/2$,%

)*#$(!6$,-&$2,.(),,8#(&./(9%&-*:,%;#

<,/*8#

Fig. 1. A Domain-Specific Testing Language for Cloud Applications

3.1 Abstract Test Commands

At the core of the language is a set of abstract test commands. There are two
types of commands: Action Commands and Assertion Commands (left of Figure
1). Action commands apply inputs that exercise the system under test (SUT).
This includes stimulating UI controls such as textboxes, dropdowns, and buttons,
as well as database-related actions. On the other hand, assertion commands
perform UI and database checks to verify the behavior of the SUT. Table 1
describes some of the key test commands defined under our approach.

3.2 Application Domain Models

Domain concepts are introduced into our testing language through two types of
models: User Interface and Macro Definitions (right of Figure 1).

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 45 -

! Command Description

Actions

Blur Loses focus of an element
Clear Empties the value of an element
Click Presses and releases mouse button while hovering over an element
Mouse Over Hovers the mouse pointer over an element
Mouse Out Of Move the mouse pointer from within the hover area of an element
Set Assigns a value to an element

Assertions

Is Checks if the value of an element equals a given value
Is Like Checks if the value of an element contains a given value as a substring
Is Visible Checks if an element is visible
Is Enabled Checks whether an element used for input is enabled
Exists Checks if an element is present
Has Options Checks if a dropdown provides a specified list of values
Has Number Of Options Checks if the size of a dropdown list is equal to a specified value

!
"#$%&'!(')!"**+,$%&'!-&..(')*!&'!/+0!12!-&'$,&3*!456$$&'*7!-8+#90&:+*7!;,&<)&='*7!>,%)*7!?+:$0&:+*@!

!

! Command Description

 Actions

Add Rollback Set a restore point on the database
Clear Rollback Remove a restore point on the database
Rollback Restore previous database values
Execute Runs a database script

Assertions Match Checks whether two datasets are equal

!
"#$%&'!(')!"**+,$%&'!-&..(')*!&'!/+0!12!-&'$,&3*!456$$&'*7!-8+#90&:+*7!;,&<)&='*7!>,%)*7!?+:$0&:+*@!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Table 1. Web UI Abstract Test Commands

User Interface This model is a generalization of the user interface of the SUT.
For example, in the case of UltiPro the UI model consists of abstractions repre-
senting its web pages and controls. These page and control objects encapsulate
the CSS selectors used to identify web elements in the HTML source document
tree. Automated tests then reference these abstractions instead of the implemen-
tation details, which makes tests easier to maintain as the application changes
[8, 9]. Furthermore, page and control objects are named using domain-specific
concepts. For example, a grid control used for entering pay data would be named
PayDataEntryGrid. Using such terms allows domain experts and end users to
easily identify and specify various aspects of the SUT.

Macros A macro in computer science is a pattern that specifies how a sequence
of inputs is mapped to a replacement input sequence. Macros are often used
to make programming tasks less repetitive and less error-prone. Our approach
leverages the benefits of macros to improve test specification. Testers can define
frequently used test setup, input, or assertion command sequences, and store
them in a central location. These macros are then named using domain-specific
terms, and integrated into our testing language. Similar to our abstract test
commands, test macros can target user or database interactions.

3.3 Configuration Models

Several abstractions for configuring the underlying platform and environment
of the SUT are integrated into our language. These include abstractions for:
Server Environment Configuration – Application servers, web servers, database
servers, reporting servers that make up the test environment; OS/Platform Con-
figuration – Operating systems on which to test the desktop and mobile versions
of the cloud application; Web Browser Configuration – Clients to use during
cross-browser compatibility testing, e.g., Chrome, Firefox, Internet Explorer or
a combination thereof; and Test Harness Configuration – Modes and settings
that allow users to tweak aspects of test execution including timing characteris-
tics, logging, among others.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 46 -

!!"##$%&'''''

!!"#$%&'(''')*+,-*.(!/#0!"*1$&++!2(*.#$(!

!!3#.4&$'!!!5,&001!6*0.,*7&8!3-*9!:*0-&!

!!:&0;,7'!!!<=>?8!"*1$&++@AB!

()*+$%$,-./0!!''
C+.,"$&!'' 1+,-2%.'

''

!),"3''''''

!!D,E(0 F 6(.#%!*!"*1$&++!G<<<H! ! !

!!30-!+*#0I4!1+,-2%.'

!!30-!+&7,0!*'!*!"*1$&++!3-9,0,'.$*.&$!

J1!!!! !'(..,07!.4(!C'($=*9(?(K.J&K!.&!L*-9,0L8!

!!!!!!!!!!!!!!!!!!!"*''M&$-?(K.J&K!.&!L#+.,L!

30-!!!! !I+,IN,07!&0!.4(!O&7,0J#..&0!

!
'4)0,0

'' '6I(0*$,&P!"*1$&++!64&#+-!/#0!.&!:&9%+(.,&0

!!D,E(0! =*E,7*.(!.&!.4(!"*1$&++!QE($E,(MF! !!

!!R4(0!F!I+,IN!.4(!6.*$."*1$&++J#..&0!

!!?4(0!.4(!"$&I(''6.*.#'O*S(+!,'!L:&9%+(.(-<L!

!!30-!.4(!:$(*.(J*.I4('J#..&0!,'!(0*S+(-!

!

!

!

!

!

Fig. 2. Example Test Case Specification

3.4 Illustrative Example

Figure 2 presents an example test case specification defined using our approach.

The example test consists of four main blocks: Summary, Declarations, Setup,

and Tests. The summary block (Lines 1-4) holds meta information about the test,

which includes a purpose, authors, and various configurations. In Line 4, .NET
is a configuration that runs tests against the UltiPro desktop web application

using three browsers for compatiblity testing. On the same line, Payroll-14 sets

up the test to run on a server environment configured for payroll processing.

Applications and data that will be used throughout the test must appear

in the declarations block (Lines 6-7). In this block, automatic word completion

popups (i.e., intelli-sense) is filtered to a list of available application models and

database types. Line 7 of Figure 2 specifies that the UltiPro application model

will be referenced whenever the name UltiPro appears in the test.

The setup block (Lines 9-15) contains a set of preconditions for the test,

written using a behavioral-driven development (BDD) style syntax. Line 10 il-

lustrates the use of a database macro to Setup a Payroll. Note that elipses are

used to mask the actual parameters passed into the macro. Inline, users can de-

clare high-level test steps (Line 12), and define how those steps are implemented

as actions or assertions on the application model (Lines 13-15).

Test cases appear within the block named Tests (Lines 17-22). Line 18 pro-

vides a name for the single test in the example, while Line 19 demonstrates the

usage of a UI navigation macro. The click action command is illustrated in Line

20, while Lines 21 and 22 show the Is and Is Enabled assertion commands.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 47 -

4 Prototype

This section presents the setup, design and implementation of the Legend pro-
totype, which was developed to demonstrate the feasibility of the proposed ap-
proach. Legend primarily consists of tools for authoring, executing and debug-
ging tests written to validate UltiPro [5].

Legend has been developed in C# as a Visual Studio (VS) extension. The
VS 2010 SDK provides components for extending the VS Editor with a cus-
tom language service. The Legend language service supports many of the VS
SDK features including syntax coloring, error highlighting, intelli-sense, outlin-
ing, tooltips, and debugging. Integration of application and configuration models
using domain concepts is a novel feature of Legend that separates it from other
test specification languages and tools.

The underlying testing framework used to run Legend tests is an in-house
tool called Echo [8]. Echo was developed based on Selenium, a cross-browser
web UI automated testing framework [7]. Page and control abstractions for the
application domain model are defined using Echo, in accordance with the page
object pattern [9]. Frameworks such as MbUnit [6] are used to provide capabili-
ties such as test fixture setup and teardown, data-driven testing, and reporting.
The custom tooling developed for the prototype is divided into two categories:
Editing Tools and Configuration Tools.

Editing Tools Figure 3 provides a UML package diagram showing the de-
sign of Legend DSL Editor. As shown in Figure 3, the editor is comprised of
three major packages: EditorExtension, ApplicationModelIntegration and
CodeGeneration. Key classes from each package, along with their interdepen-
dency relationships are also shown in the diagram.

The EditorExtension subsystem (top of Figure 3) contains the components
that implement token colorization, syntax checking, block outlining, and intelli-
sense. This subsystem is the main point of interaction between the Visual Stu-
dio editor and the Legend code extensions. The classes with the stereotypes
Providers, Controllers, Taggers, and Sources are derived from the Visual
Studio SDK, and directly interact with the .NET Managed Extensibility Frame-
work (MEF) [10]. Classes stereotyped Augmentors and Services represent our
custom extensions. The LanguageService class coordinates several of the inter-
actions between the editor and the application models.

Integration with the application model is achieved via the Application-
ModelIntegration subsystem (bottom-left of Figure 3). It contains two types of
classes: ModelProviders and Models. The ModelProvider classes use reflection
to read the page objects, control objects, macros and elements that make up
the Models. It is also responsible for filtering intelli-sense on the model, given a
specific test context. For example, at the point where a test declares access to
a particular web page, the ModelProvider scopes the word completion picklist
for elements to include only elements that appear on that page.

Lastly, the CodeGeneration subsystem (bottom-right of Figure 3) provides
logic for translating the abstract tests written in Legend into code executable

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 48 -

Legend.CodeGenerationLegend.ApplicationModelIntegration

Legend.EditorExtension

+GetApplicationModels()

<<ModelProviders>>

<<Interface>>

IApplicationModelProvider

<<ModelProviders>>

ApplicationModelProvider

<<Services>>

LanguageService

<<Providers>>

TokenTaggerProvider

<<Taggers>>

TokenTagger

<<Augmentors>>

TokenTagAugmentor

<<Augmentors>>

LanguageAugmentation

<<Providers>>

CompletionSourceProvider

<<Sources>>

CompletionSource

<<Augmentors>>

<<Interface>>

ICompletionAugmentor

+GetCurrentCompletions()

+GetTags()

+UpdateSnapshotState()

<<Services>>

<<Interface>>

ILanguageService

<<Models>>

AutomationContext

<<Models>>

Element <<Models>>

ControlObject

<<Models>>

PageObject

+GenerateScript()

+GenerateAssembly()

<<Generators>>

EchoGenerator

<<Parsers>>

EchoCommandParser

<<Generators>>

EchoAssemblyBuilder

<<Generators>>

EchoTestBuilder

<<Models>>

Macro

<<Models>>

MacroCategory

Fig. 3. Diagram showing the package structure and class design of the prototype

by the Echo framework. In order to support debugging at multiple levels of

abstraction, the EchoGenerator has two modes of generation: Script – generates

test scripts written in the Echo syntax; and Assembly – generates a Common

Intermediate Language (CIL) representation of the Echo test. Our prototype

maps the CIL to the domain-specific test steps. A test can therefore be executed

and debugged at the level of the domain-specific test language, or the script

language of the underlying Echo testing framework.

Configuration Tools Abstractions for the test environment and platform con-

figurations are implemented in two distinct XML files called Environments.xml
and Parameters.xml. The environments XML contains a list of all the test

environments that are connected to a tool that can automatically request the

latest UltiPro build. The file is auto-generated and populated with the unique

identifiers used by each team to refer to their test environments. Information

related to the specific network and database servers, along with any credentials

for authentication are also stored in the Environments.xml file.

The Parameters.xml allows users to specify a range of configurations ranging

from desktop web settings such as browsers and languages, to mobile web settings

such as device screen size and orientation. Although each team can create their

own configurations, there are a set of fixed configurations that are available for

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 49 -

use across all teams during regression testing. The data in both the environments
and parameters XML files are passed directly to the Echo testing framework prior
to test execution.

5 Lessons Learned

A key factor that contributed to the successful development of the prototype
was having robust, highly extensible and configurable underlying testing frame-
works. Echo and Selenium provided the implementations to support many of the
abstractions described in the approach. Building the application models required
a collaborative effort among developers, testers and domain experts. Developers
would create the page objects and control objects, while testers and domain ex-
perts made sure they were named and exposed appropriately for testing. Macro
creation was primarily done by testers and domain experts, with occasional as-
sistance from the developers if necessary.

One of the more complex aspects of the prototype implementation was the
module for keeping track of the test context in order to filter intelli-sense. This
required the creation of a state-based rules engine to allow us to perform different
editor actions based on previously specified lines in the test. Although challeng-
ing to implement, this feature was necessary to provide meaningful intelli-sense
that guides testers during test creation. In other words, testers are only pre-
sented with commands, model elements, and other keyword suggestions if they
are applicable in the current context.

Based on initial responses to prototype demonstrations, a major benefit of
Legend is the ease with which test cases can be specified and reviewed by non-
technical users. The tool can therefore be leveraged by domain experts and
end users during acceptance testing. It also allows these stakeholders to assist in
debugging issues using a language they understand, and without being concerned
with the low-level implementation details of the test automation. Since tests are
specified in an english-like syntax, using Legend could reduce or eliminate the
need to maintain a separate inventory of test documentation. However, further
evidence through a case study or empirical evaluation is needed to be able to
fully validate these claims.

A limitation of the current prototype is the lack of an externalized point of
extension for the test commands and their syntax. Since domain experts, testers
and developers from several teams will be defining new model elements as the
application evolves, we need to provide a mechanism that allows new page or
control-specific commands to be easily added to the language. Web UI elements
with dynamically generated identifiers are also not supported by the prototype,
or the underlying Echo testing framework, but are planned for future releases.

6 Related Work

Although the use of domain modeling to support software engineering is not
new, only a few researchers have leveraged MDE and DSLs to support software

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 50 -

testing [2, 3, 11]. Kanstren and Puolitaival [3] present the OSMOTester approach
and tool that is very related to our work. OSOMOTester automatically generates
tests with domain-specific concepts. A domain expert is used to construct a
test model of the system, which is combined with a domain-specific modeling
language that constrains and guides test case generation.

Hernandez et al. [2] describe a model-driven technique for designing plat-
form independent tests for validating web-based applications. These platform
independent tests are then combined with a model of the web technologies used
to implement the application, and generate platform-specific tests [2]. Kuhn
and Gotzhein [11] present an approach that uses configurable simulations to do
platform-specific testing. They extend the UML testing profile to include plat-
form models for real deployments, and describe how to use these models to test
embedded systems by simulating various hardware configurations.

Some researchers have proposed model-driven approaches that aid the devel-
opment of high-performance and cloud computing systems [12]. Palyart and
Lugato define a high-performance computing modeling language (HPCML).
HPCML provides constructs for specifying different concerns in high-performance
scientific computing such as mathematics, parallelism, and validation. Nagel et
al. [13] introduce a meta-model for specifying bindings between business pro-
cesses and cloud services considering service-level agreements. They further ex-
tend that meta-model to support dynamic adaptation of cloud-based services.

There are several general purpose behavioral-driven development (BDD) test-
ing tools that help to tie acceptance tests to business requirements [14–16].
Similar to Legend, such tools aim to bridge the gap between domain experts,
developers, and testers [16]. These tools typically work by creating and linking
two sets of files – specifications and step definitions [15]. Legend combines these
two activities into a single, domain-specific test authoring experience. Our re-
search on Legend extends previous work on the Echo Web UI Test Automation
Framework [8]. Echo provides a thin layer of abstraction on top of Selenium [7],
and adds several features including command timeouts, wait throttling between
commands, database interaction, and environment and test configuration.

7 Conclusion

The work in this paper presented an approach that applied model-driven engi-
neering to the development of a domain-specific test case specification language.
Our approach is general in the sense that it can be applied to any domain, but in
terms of technologies we focus on web-based applications which are deployed on
cloud computing platforms. We have implemented a prototype of the proposed
approach for a cloud-based human capital management solution. Developing the
prototype gave us first-hand experience on some of the benefits and challenges
associated with creating a DSL for testing UltiPro. Feedback from interactive
prototype demonstrations has been positive. Our next steps are to develop a full
implementation of Legend, and perform a case study using data from UltiPro.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 51 -

Acknowledgments. The authors would like to thank Jorge Martinez, Michael

Mattera, and members of the Virtual Team at Ultimate Software for their con-

tributions to this work. We also give thanks to the judges and participants of

the Summer 2012 Ultimate Software 48 Hours Project for their valuable feed-

back. Any opinions, findings, conclusions, or recommendations expressed in this

material are those of the authors, and do not necessarily reflect the views of the

Ultimate Software Group, Inc.

References

1. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Tech-
nology, Engineering, Management. John Wiley & Sons (2006)

2. Hernandez, Y., King, T.M., Pava, J., Clarke, P.J.: A meta-model to support re-
gression testing of web applications. In: SEKE. (2008) 500–505

3. Kanstrén, T., Puolitaival, O.: Using built-in domain-specific modeling support to
guide model- based test generation. In: MBT. (2012) 58–72

4. Brunelière, H., Cabot, J., Jouault, F.: Combining Model-Driven Engineering and
Cloud Computing. In: Modeling, Design, and Analysis for the Service Cloud -
MDA4ServiceCloud’10, Paris, France (June 2010)

5. Ultimate Software: Human Capital Management Solutions: Ultipro Enterprise
(July 2013) www.ultimatesoftware.com/solution.

6. Jeff Brown: MbUnit Test Framework http://mbunit.com/ (July 2013).
7. Stewart, S., Huggins, J.: Selenium - Web Browser Automation http://docs.

seleniumhq.org/ (July 2013).
8. Virtual Team: Echo Web UI Test Automation Framework. Technical report,

Ultimate Software Group, Inc. (October 2010)
9. Wilk, J.: Page Object Pattern (March 2012) http://blog.josephwilk.net/

cucumber/page-object-pattern.html (July 2013).
10. Microsoft: MSDN - Visual Studio: Extending the Editor (July 2013) http://msdn.

microsoft.com/en-us/library/dd885242.aspx.
11. Kuhn, T., Gotzhein, R.: Model-driven platform-specific testing through config-

urable simulations. In: Model Driven Architecture - Foundations and Applications.
Volume 5095 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2008) 278–293

12. Palyart, M., Ober, I., Lugato, D., Bruel, J.M.: HPCML: a modeling language
dedicated to high-performance scientific computing. In: Proceedings of the 1st
International Workshop on Model-Driven Engineering for High Performance and
Cloud computing. MDHPCL ’12, New York, NY, USA, ACM (2012) 6:1–6:6

13. Nagel, B., Gerth, C., Yigitbas, E., Christ, F., Engels, G.: Model-driven specification
of adaptive cloud-based systems. In: Proceedings of the 1st International Work-
shop on Model-Driven Engineering for High Performance and Cloud computing.
MDHPCL ’12, New York, NY, USA, ACM (2012) 4:1–4:6

14. Chelimsky, D., Myron Marston, M., Lindeman, A., Rowe, J.: RSpec - BDD frame-
work for the Ruby Programming Language (December 2010) http://rspec.info
(July 2013).

15. Hellesoy, A., Wynne, M.: The Cucumber Book: Behaviour-Driven Development
for Testers and Developers. Pragmatic Programmers. Pragmatic Bookshelf (2012)

16. Nagy, G., Bandi, J., Hassa, C.: SpecFlow: Pragmatic BDD for .NET (November
2009) http://www.specflow.org/specflownew/ (July 2013).

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 52 -

A rchitecture F ramework for Mapping Parallel A lgorithms
to Parallel Computing Platforms

Bedir Tekinerdogan1, 2

1Bilkent University, Dept. of Computer Engineering, Ankara, Turkey
!"#$%&'()!$*+",-)"#.)-%/
2Aselsan MGEO, Ankara, Turkey
"0%+$,&0("*(0,)'12)-%/

Abstract. Mapping parallel algorithms to parallel computing platforms requires
several activities such as the analysis of the parallel algorithm, the definition of the
logical configuration of the platform, and the mapping of the algorithm to the logical
configuration platform. Unfortunately, in current parallel computing approaches
there does not seem to be precise modeling approaches for supporting the mapping
process. The lack of a clear and precise modeling approach for parallel computing
impedes the communication and analysis of the decisions for supporting the mapping
of parallel algorithms to parallel computing platforms. In this paper we present an ar-
chitecture framework for modeling the various views that are related to the mapping
process. An architectural framework organizes and structures the proposed architec-
tural viewpoints. We propose five coherent set of viewpoints for supporting the map-
ping of parallel algorithms to parallel computing platforms. We illustrate the archi-
tecture framework for the mapping of array increment algorithm to the parallel com-
puting platform.

K eywords: Model Driven Software Development, Parallel Programming, High Per-
formance Computing, Domain Specific Language, Modelling.

1 Introduction

It is now increasingly acknowledged that the processing power of a single processor has
reached the physical limitations and likewise serial computing has reached its limits. To
increase the performance of computing approaches the current trend is towards applying
parallel computing on multiple nodes typically including many CPUs. In contrast to serial
computing in which instructions are executed serially, in parallel computing multiple pro-
cessing elements are used to execute the program instructions simultaneously.

One of the important challenges in parallel computing is the mapping of the parallel al-
gorithm to the parallel computing platform. The mapping process requires several activi-
ties such as the analysis of the parallel algorithm, the definition of the logical configuration
of the platform, and the mapping of the algorithm to the logical configuration platform.
Based on the analysis of the algorithm several design decisions for allocating the algorithm
sections to the logical configurations must be made. To support the communication among
the stakeholders, to reason about the design decisions during the mapping process and to
analyze the eventual design it is important to adopt the appropriate modeling approaches.
In current parallel computing approaches there does not seem to be standard modeling
approaches for supporting the mapping process. Most approaches seem to adopt conceptu-

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 53 -

mailto:bedir@cs.bilkent.edu.tr

al modeling approaches in which the parallel computing elements are represented using
idiosyncratic models. Other approaches borrow for example models from embedded and
real time systems and try to adapt these for parallel computing. The lack of a clear and
precise modeling approach for parallel computing impedes the communication and analy-
sis of the decisions for supporting the mapping of parallel algorithms to parallel computing
platforms.

In this paper we present an architecture framework for modeling the various views that
are related to the mapping process. An architectural framework organizes and structures
the proposed architectural viewpoints. We propose five coherent set of viewpoints for
supporting the mapping of parallel algorithms to parallel computing platforms. We illus-
trate the architecture framework for the mapping of parallel array increment algorithm to
the parallel computing platform.

The remainder of the paper is organized as follows. In section 2, we describe the back-
ground on software architecture viewpoints and define the parallel computing metamodel.
Section 3 presents the viewpoints based on the defined metamodel. Section 4 presents the
guidelines for using the viewpoints. Section 5 presents the related work and finally we
conclude the paper in section 6.

2 Background
In section 2.1 we provide a short background on architecture viewpoints which is nec-

essary for defining and understanding the viewpoint approach. Subsequently, in section
2.2 we provide the metamodel for parallel computing that we will later use to define the
architecture viewpoints in section 3.

2.1 Software A rchitecture V iewpoints

To represent the mapping of parallel algorithm to parallel computing platform it is im-
portant to provide appropriate modeling approaches. For this we adopt the modeling ap-
proaches as defined in the software architecture design community. According to ISO/IEC
42010 the notion of system can be defined as a set of components that accomplishes a
specific function or set of functions[4]. Each system has an architecture, which is defined

n-
ships to each other, and to the environment, and the principles guiding its design and evo-

 A common practice to model an architecture of a software intensive system is to
adopt different architectural views for describing the architecture according to the stake-

 [2]. An architectural view is a representation of a set of system elements
and relations associated with them to support a particular concern. An architectural view-
point defines the conventions for constructing, interpreting and analyzing views. Architec-
tural views conform to viewpoints that represent the conventions for constructing and
using a view. An architectural framework organizes and structures the proposed architec-
tural viewpoints [4]. The concept of architectural view appears to be at the same level of
the concept of model in the model-driven development approach. The concept of view-
point, representing the language for expressing views, appears to be on the level of meta-
model. From the model-driven development perspective, an architecture framework as
such can be considered as a coherent set of domain specific languages [9]. The notion of
architecture framework and the viewpoints plays an important role in modeling and docu-
menting architectures. However, the existing approaches on architecture modeling seem to

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 54 -

have primarily focused on the domain of traditional, desktop-based and sometimes distrib-
uted development platforms. Parallel computing systems have not been frequently or ex-
plicitly addressed.

2.2 Parallel Computing M etamodel
Fig. 1 shows the abstract syntax of the metamodel for mapping parallel algorithms to par-
allel computing platform. The metamodel consists of four parts including Parallel Algo-

rithm, Physical Configuration, Logical Configuration, and Code. In the Parallel Algorithm

part we can observe that an Algorithm consists of multiple Sections, which can be either
Serial Section or Parallel Section. Each section is mapped on Operation which on its turn
is mapped on Tile.

Physical Configuration represents the physical configuration of the parallel computing
platform and consists of Network and Nodes. Network defines the communication medium
among the Nodes. Node consists of Processing Unit and Memory. Since a node can consist
of multiple processing units and memory units we assume that different configurations can
be defined including shared memory and distributed memory architectures. Logical Con-

figuration represents a model of the physical configuration that defines the logical com-
munication structure among the physical nodes. LogicalConfiguration consists of a num-
ber of Tiles. Tile can be either a (single) Core, or Pattern that represents a composition of
tiles. Patterns are shaped by the operations of the sections in the algorithm. Pattern in-
cludes also the communication links among the cores. The algorithm sections are mapped
to CodeBlocks. Hereby, SerialSection is implemented as SerialCode, and ParallelSection

as ParallelCode. Besides of the characteristic of ParallelSection the implementation of
ParallelCode is also defined by Pattern as defined in the logical configuration. The overall
Algorithm is run on PhysicalConfiguration.

Physical Configuration

Code Logical Configuration

PhysicalConfiguration

LogicalConfiguration

models

Tile

CorePattern

Communication

from to

Parallel Algorithm

Algorithm

Section

SerialSection ParallelSection

CodeBlock

SerialCode ParallelCode

Implemented
as

Implemented
as

Implemented
as

Node Processing
UnitNetwork *

runs on

Memory

*
*

Data

Operation

maps on

* *

*

maps on

*

*

Bus

*

F ig. 1. Metamodel for Mapping Parallel Algorithm to Parallel Computing Platform

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 55 -

3 A rchitecture V iewpoints for Parallel Computing

Based on the metamodel of Fig. 1 we define the architecture framework consisting of a
coherent set of viewpoints for supporting mapping of parallel algorithms to parallel com-
puting platform. In section 3.1 we will first describe an example parallel algorithm and the
corresponding logical configuration. In section 3.2 we will present the algorithm decom-
position viewpoint. In section 3.3 we will present the physical configuration viewpoint.
Section 3.4 presents the logical configuration viewpoint, section 3.5 the algorithm-to-
logical configuration viewpoint, and finally, section 3.6 will present the algorithm-to-code
viewpoint.

3.1 Case Description

To illustrate the problem we will use the array increment algorithm as shown in Fig. 2
that will be mapped on a 4x4 physical parallel computing architecture. Given an array the
algorithm recursively decomposes the array into sub-arrays to increment each element
with one. The algorithm is actually composed of two different parts. In the first part the
array element is incremented with one if the array size is one (line 3). If the array size is
greater than one then in the second part the array is decomposed into two sub-arrays and
the algorithm is recursively called.

!" !"#$%&'"%#$%%&'()*+$,-.#)/0#
1" ()#)2!#*+%,#
3" ##4$#52#!#
6" %-.%#
7" ##$%%&'()*+$.#)81/#
9" ##$%%&'()*+$5)81.#)/#
:" %,&()#

F ig. 2. Array Increment Algorithm

3.2 A lgorithm Decomposition V iewpoint

In fact the array increment algorithm is a serial (recursive) algorithm. To increase the time
performance of the algorithm we can map it to a parallel computing platform and run it in
parallel. For this it is necessary to decompose the algorithm into separate sections and
define which sections are serial and which can be run in parallel. Further, each section of
an algorithm realizes an operation, which is a reusable abstraction of a set of instructions.
For serial sections the operation can be custom to the algorithm. For parallel sections in
general we can identify for example the primitive operations Scatter for distributing data
to other nodes, Gather for collecting data from nodes, Broadcast for broadcasting data to
other nodes, etc. Table 1 shows the algorithm decomposition viewpoint that is used to
decompose and analyze the parallel algorithm. The viewpoint is based on the concepts of
the Parallel Algorithm part of the metamodel in Fig. 1. An example algorithm decomposi-
tion view that is based on this viewpoint is shown in Fig. 3A. Here we can see that the
array increment algorithm has been decomposed into four different sections with two serial
and two parallel sections. Further, for each section we have defined its corresponding op-
eration.

3.3 Physical Configuration V iewpoint

Table 2 shows the physical configuration viewpoint for modeling the parallel computing
architecture. The viewpoint is based on the concepts of the Physical Configuration part of

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 56 -

the metamodel in Fig. 1. As we can see from the table the viewpoint defines explicit nota-
tions for Node, Processing Unit, Network, Memory Bus and Memory. An example physical
configuration view that is based on this viewpoint is shown in Fig. 3B. Here the physical
configuration consists of four nodes interconnected through a network. Each node has four
processing units with a shared memory. Both the nodes and processing units are numbered
for identification purposes.

Table 1. Algorithm Decomposition Viewpoint

Name Algorithm Decomposition Viewpoint
Concerns Decomposing an algorithm into different sections which can be either serial or

parallel. Analysis of the algorithm.
Stakeholders Algorithm analysts, logical configuration architect, physical configuration architect
Elements Algorithm represents the parallel algorithm consisting of sections.

 Serial Section a part of an algorithm consisting of a coherent set of instructions
that needs to run in serial

 Parallel Section a part of an algorithm consisting of a coherent set of instruc-
tions that needs to run in parallel

 Operation abstract representation of the set of instructions that are defined in the
section

Relations Decomposition relation defines the algorithm and the sections
Constraints A section can be either SER or PAR, not both
Notation

Index Algorithm Section Section Type Operation

Table 2. Physical Configuration Viewpoint

Name Physical Configuration Viewpoint
Concerns Defining physical configuration of the parallel computing platform
Stakeholders Physical configuration architect
Elements Node A standalone computer usually comprised of multiple CPUs/ /cores, memory,

network interfaces, etc.
 Network medium for connecting nodes
 Memory Bus medium for connecting processing units within a node
 Processing Unit processing unit that reads and executes program instructions
 Memory unit for data storage

Relations Nodes are networked together to comprise a supercomputer
 Processing units are connected through a bus

Constraints Processing Units can be allocated to Nodes only
 Memory can be shared or distributed

Notation

Processing Unit

Memory

NetworkNode

PU

Node

M

Network

Memory Bus
Bus

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 57 -

!"#$% &'()*+,-.%/01,+)"% /01,+)"%

2340%
540*6,+)"%

7% !"#$#%!&#!'()*+#
!*#$#%!'()*&#!'(+#

,-.# !"#$%&$'"(

8% /012304526#276#
15489339:1#

;!.#)#*++",(

9% <!#'$#"# ,-.# -.#,"%".+(
=# >?@@6A2#0(A36B6(28

6C#9339:#3615@21#
;!.# /*+0",(

A. Algorithm Decomposition View

Network

Node 1 Node 2

Node 4Node 3

PU2

M

PU4

Bus

PU1

PU3

PU2

M
PU4

Bus

PU1

PU3

PU2

M

PU4

Bus

PU1

PU3

PU2

M

PU4

Bus

PU1

PU3

B. Physical Configuration View

4,13,2

4,3 4,4

3,14,2

3,3 3,4

1,12,2

1,3 1,4

2,11,2

2,3 2,4

Tile

Logical Configuration

Scaling operation

x2

C . Logical Configuration View

!"#$% &'()*+,-.%%
/01,+)"%

:'6"%

"# !"$%!&#!'()*+#
!*$%!'()*&#!'(+#

.5(#?(#69A7#(?C6#

*# /012304526#276#
15489339:1#

#
D# <!#'$#"# !"#$%#$&'()$#%*&#
=# >?@@6A2#0(A368

B6(26C#9339:#
3615@21#

$

D . Algorithm-to-Logical Configuration View

;
5%

&'()*+,-.%/01,+)"% <)#0%=')1>%

"# !"$%!&#!'()*+#
!*$%!'()*&#!'(+#

!"#$#%!&#!'()=+#
!*#$#%!'()=&#!'()*+#
!D#$#%!'()*&#!'D()=+#
!=#$#%!'D()=&#!'(+#

*# /012304526#276#1548
9339:1#

E0@@#46#F6(63926C#

D# <!#'$#"# <!#'$#"#
=# >?@@6A2#0(A36B6(26C#

9339:#3615@21#
E0@@#46#F6(63926C#

E . Algorithm-to-Code View

F ig. 3. Views for the given case using the defined viewpoints

3.4 Logical Configuration V iewpoint

Table 3 shows the logical configuration viewpoint for modeling the logical configuration
of the parallel computing architecture. The viewpoint is based on the concepts of the Logi-
cal Configuration part of the metamodel in Fig. 1. The viewpoint defines explicit notations

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 58 -

for Core, Dominating Core, Tile, Pattern and Communication. An example logical config-
uration view that is based on this viewpoint is shown in Fig. 3C. The logical configuration
is based on physical configuration as shown in Fig. 3B and shaped according to the algo-
rithm in Fig. 3A. As we can observe from the figure the 16 cores in the four nodes of the
physical configuration are now rearranged to implement the algorithm properly. Each core
is numbered based on both the node number and core number in the physical configura-
tion. For example, core (2,1) refers to the processing unit 1 of physical node 2. Typically,
for the same physical configuration we can have many different logical configurations
each of them indicating different communication and exchange patterns of data among the
cores in the nodes. In our earlier paper we define an approach for deriving the feasible
logical configurations with respect to speed-up and efficiency metrics [1]. In this paper we
assume that a feasible logical configuration is selected. For very large configurations such
as in exascale computing [5] it is not feasible to draw this on the same scale. Instead we
define the configuration as consisting of a set of tiles which are used to generate the actual
logical configuration. In the example of Fig. 3C we can see that the configuration can be
defined as a tile that is two times recursively scaled to generate the logical configuration.
For more details about the scaling process we refer to our earlier paper [1].

Table 3. Logical Configuration Viewpoint

Name Logical Configuration Viewpoint
Concerns Modeling of the logical configuration for the physical configuration
Stakeholders Logical configuration architect
Elements Core model of processing unit

 Dominating Core the processing unit that is responsible for exchanging data
with other nodes

Relations Cores can be composed into larger tiles
 Tiles can be used to define/generate logical configuration

Constraints The number of cores should be equal to the processing units in the physical
configuration

 The numbering of the cores should match the numbering in the physical con-
figuration

Notation

Coren,p

Dominating Core

n - the id of the node in the physical configuration
p - the id of the processing unit in the physical
configuration

n,p

3.5 A lgorithm-to-Logical Configuration M apping V iewpoint

The logical configuration view represents the static configuration of the nodes to realize
the parallel algorithm. However, it does not illustrate the communication patterns among
the nodes to represent the dynamic behavior of the algorithm. For this the algorithm-to-
logical configuration mapping viewpoint is used. The viewpoint is illustrated in Table 4.
For each section we describe a plan that defines on which nodes the corresponding opera-
tion of the section will run. For serial sections usually this is a custom operation. For paral-
lel section the plan includes the communication pattern among the nodes. A communica-
tion pattern includes communication paths that consist of a source node, a target node and
a route between the source and target nodes. An algorithm-to-logical configuration map-
ping view is represented using a table as it is, for example, shown in Fig. 3D.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 59 -

Table 4. Algorithm-to-Logical Configuration Mapping Viewpoint

Name Algorithm-to-Logical Configuration Mapping Viewpoint
Concerns Mapping the communication patterns of the algorithm to the logical configuration
Stakeholders System Engineers, Logical configuration architect
Elements Section a part of an algorithm consisting of a coherent set of instructions. A section

is either serial or parallel
 Plan the plan for each section to map the operations to the logical configuration units
 Core model of processing unit
 Dominating Core the processing unit that is responsible for exchanging data with
other nodes

 Communication the communication pattern among the different cores
Relations Mapping of plan to section
Constraints Each serial section has a plan that defines the nodes on which it will run

 Each parallel section has a plan that defines the communication patterns among nodes
Notation

Index Algorithm Section Plan

Core

Dominating Core

communication

3.6 A lgorithm-to-Code V iewpoint

Once the logical configuration and the corresponding algorithm section allocation plan has
been defined, the implementation of the algorithm can be started. The corresponding
viewpoint is shown in Table 5. The viewpoint is based on the concepts of the Parallel
Algorithm and Code parts of the metamodel in Fig. 1. An example algorithm decomposi-
tion view that is based on this viewpoint is shown in Fig. 3E.

Table 5. Algorithm-to-Code Mapping Viewpoint

Name Algorithm-to-Code Mapping
Concerns Mapping the algorithm sections to code
Stakeholders Parallel Programmer, System Engineer
Elements Algorithm represents the parallel algorithm consisting of sections.

 Section a part of an algorithm consisting of a coherent set of instructions
 Code Block code for implementing the section

Relations Realization of the section to code
Constraints Each section has a code block
Notation

Index Algorithm Section Code Block

4 Guidelines for Adopting V iewpoints

In the previous section we have provided the architecture framework consisting of a co-
herent set of viewpoints for supporting the mapping of parallel algorithms to parallel com-

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 60 -

puting platforms. An important issue here is of course the validity of the viewpoints. In
general evaluating architecture viewpoints can be carried out from various perspectives
including the appropriateness for stakeholders, the consistency among viewpoints, and the
fitness of the language. We have evaluated the architecture framework according the ap-
proach that we have described in our earlier study [9]. Fig. 4 shows the process as a UML
activity for adopting the five different views. The process starts initially with the definition
of algorithm to decomposition view and the physical configuration view, which can be
carried out in parallel. After the physical configuration view is defined the logical configu-
ration view can be defined, followed by the modeling of the algorithm to logical view, and
finally the algorithm to code view. Among the different steps several iterations can be
required which is shown by the arrows.

!"#$%&'(#)(*%+,-./#-%#0%&'#
1,'2

3"#$%&'(#4.56,78(#
0%9:,*;+8-,%9#1,'2

<"#$%&'(#)(*%+,-./#-%#=%*,78(#
0%9:,*;+8-,%9#$8>>,9*#1,'2

?"#$%&'(#=%*,78(#
0%9:,*;+8-,%9#1,'2>%,9-#

@"#$%&'(#)(*%+,-./#
A'7%/>%6,-,%9#1,'2

F ig. 4. Approach for Generating/Developing and Deployment of Parallel Algorithm Code

5 Related Work
In the literature of parallel computing the particular focus seems to have been on paral-

lel programming models such as MPI, OpenMP, CILK etc. [8] but the design and the
modeling got less attention. Several papers have focused in particular on higher level de-
sign abstractions in parallel computing and the adoption of model-driven development.

Several approaches have been provided to apply model-driven development to high per-
formance computing. Similar to our approach Palyart et. al. [7] propose an approach for
using model-driven engineering in high performance computing. They focus on automated
support for the design of a high performance computing application based on abstract plat-
form independent model. The approach includes the steps for successive model transfor-
mations that enrich progressively the model with platform information. The approach is
supported by a tool called Archi-MDE. Gamatie et al. [3] represent the Graphical Array
Specification for Parallel and Distributed Computing (GASPARD) framework for mas-
sively parallel embedded systems to support the optimization of the usage of hardware
resources. GASPARD uses MARTE standard profile for modeling embedded systems at a
high abstraction level. MARTE models are then refined and used to automatically generate
code. Our approach can be considered an alternative approach to both GASPARD and
Archi-MDE. The difference of our approach is the particular focus on optimization at the
design level using architecture viewpoints.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 61 -

Several hardware/software codesign approaches for embedded systems start from high
level designs from which the system implementation is produced after some automatic or
manual refinements. However, to the best of our knowledge no architecture viewpoints
have been provided before for supporting the parallel computing engineer in mapping the
parallel algorithm to parallel computing platform.

6 Conclusion

In this paper we have provided an architecture framework for supporting the mapping of
parallel algorithms to parallel computing platforms. For this we have first defined the
metamodel that includes the underlying concepts for defining the viewpoint. We have
evaluated the viewpoints from various perspectives and illustrated it for the array incre-
ment algorithm. We were able to apply the viewpoint for the incrementing array algorithm.
We have adopted the approach also for other parallel algorithms without any problem.
Adopting the viewpoints enable the communication among the parallel computing stake-
holders, the analysis of the design decisions and the implementation of the parallel compu-
ting algorithm. In our future work we will define the tool support for implementing the
viewpoints and we will focus on depicting the design space of configuration alternatives
and the selection of feasible alternatives with respect to the relevant high performance
computing metrics.

References

1. Arkin, E., Tekinerdogan, B., Imre, K. 2013. Model-Driven Approach for Supporting the Map-
ping of Parallel Algorithms to Parallel Computing Platforms. Proc. of the ACM/IEEE 16th In-
ternational Conference on Model Driven Engineering Languages and Systems.

2. P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord, J. Staf-
ford. Documenting Software Architectures: Views and Beyond. Second Edition. Addison-
Wesley, 2010.

3. -Driven Design Framework for Massively Parallel Embedded
Systems. ACM Transactions on Embedded Computing Systems, 10(4), 1 36, 2011.

4. ISO/IEC 42010:2007] Recommended practice for architectural description of software-intensive
systems (ISO/IEC 42010), 2011.

5. Kogge, P. et al., Exascale Computing Study: Technology Challenges in Achieving Exascale
Systems. DARPA. (2008)

6. Object Management Group (OMG). http://omg.org, accessed: 2013.
7. M. Palyart, D.Lugato, I.Ober, and J.M. Bruel. MDE4HPC: an approach for using model-driven

engineering in high-performance computing. In Proc. of the 15th Int. Conf. on Integrating Sys-
tem and Software Modeling (SDL'11), Iulian Ober and Ileana Ober (Eds.). Springer-Verlag,
2011.

8. D. Talia. 2001. Models and Trends in Parallel Programming. Parallel Algorithms and Applica-
tions 16, no. 2: 145-180.

9. B. Tekinerdogan, E. Demirli. Evaluation Framework for Software Architecture Viewpoint
Languages. in Proc. of Ninth International ACM Sigsoft Conference on the Quality of Software
Architectures Conference (QoSA 2013), Vancouver, Canada, pp. 89-98, June 17-21, 2013.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 62 -

http://omg.org/

Model-Driven T ransformations for Mapping Parallel
A lgorithms on Parallel Computing Platforms

Ethem Arkin1, Bedir Tekinerdogan2

1Aselsan MGEO, Ankara, Turkey
!"#$%&'"(!)("&*+,-*.#/

2Bilkent University, Dept. of Computer Engineering, Ankara, Turkey
0!1%#'+(*0%)$!&.*!12*.#/

Abstract.One of the important problems in parallel computing is the mapping of the par-
allel algorithm to the parallel computing platform. Hereby, for each parallel node the cor-
responding code for the parallel nodes must be implemented. For platforms with a lim-
ited number of processing nodes this can be done manually. However, in case the parallel
computing platform consists of hundreds of thousands of processing nodes then the man-
ual coding of the parallel algorithms becomes intractable and error-prone. Moreover, a
change of the parallel computing platform requires considerable effort and time of cod-
ing. In this paper we present a model-driven approach for generating the code of selected
parallel algorithms to be mapped on parallel computing platforms. We describe the re-
quired platform independent metamodel, and the model-to-model and the model-to-text
transformation patterns. We illustrate our approach for the parallel matrix multiplication
algorithm.

K eywords: Model Driven Software Development, Parallel Computing, High Perfor-
mance Computing, Domain Specific Language, Tool Support.

1 Introduction
The famous Mo u-

bles every eighteen months is coming to an end due to the physical limitations of a single
processor [11]. To keep increasing the performance of the processing power the current trend
is towards applying parallel computing on multiple nodes. Unlike serial computing in which
instructions are executed serially, multiple processing elements are used to execute the pro-
gram instructions in parallel. An important challenge in parallel computing is the mapping of
the parallel algorithm to the parallel computing platform. The mapping of the algorithm re-
quires the analysis of the algorithm, writing the code for the algorithm and deploying it on the
nodes of the parallel computing parallel computing platform. This mapping can be done man-
ually in case we are dealing with a limited number of processing nodes. However, the current
trend shows the dramatic increase of the number of processing nodes for parallel computing
platforms with now about hundreds of thousands of nodes providing petascale to exascale
level processing power [8]. As a consequence mapping the parallel algorithm to computing
platforms has become intractable for the human parallel computing engineer.

Once the mapping has been realized in due time the parallel computing platform might
need to evolve or change completely. In that case the overall mapping process must be redone
from the beginning requiring lots of time and effort.

In this paper we provide a model-driven approach for both the mapping of parallel algo-
rithms to parallel computing platform, and the evolution of the parallel computing platform. In

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 63 -

mailto:earkin@aselsan.com.tr

essence our approach is based on the model-driven architecture design paradigm that makes a
distinction between platform independent models and platforms specific models or code. We
provide a platform independent metamodel for parallel computing platform and define the
model-to-model transformation patterns for realizing the platform specific parallel computing
platforms. Further we provide the model-to-text transformation patterns for realizing the code
from the platform specific models.

The remainder of the paper is organized as follows. In section 2, we describe the problem
statement. Section 3 presents the implementation approach for mapping the parallel algorithm
to parallel computing platform by the help of model transformations. Section 4 presents the
related work and finally we conclude the paper in section 5.

2 Problem Statement
To define a feasible mapping the parallel algorithm needs to be analyzed and a proper config-
uration of the given parallel computing platform is required to meet the corresponding quality
requirements for power consumption, efficiency and memory usage. To illustrate the problem
we will use the parallel matrix multiplication algorithm [10]. The pseudo code of the algo-
rithm is shown inFig.1a. The matrix multiplication algorithm recursively decomposes the
matrix into subdivisions and multiplies the smaller matrices to be summed up to find the re-
sulting matrix. The algorithm is actually composed of three different sections. The first serial
section is the multiplication of subdivision matrix elements (line 3), which is followed by a
recursive multiplication call for each subdivision (line 5-15). The final part of the algorithm
defines the summation of the multiplication results for each subdivision (line 13-16).

Given a physical parallel computing platform consisting of a set of nodes, we need to de-
fine the mapping of the different sections to the nodes. In this context, the logical configura-
tion is a view of the physical configuration that defines the logical communication structure
among the physical nodes. Typically, for the same physical configuration we can have many
different logical configurations [2]. An example of a logical configuration is shown inFig.1b.
In this paper we assume that a feasible logical configuration is selected and the mapping of the
code need to be realized.

!" #$%&'()$'*+,-$./0+)1-.213456*76*89:*
;" .<*8=!*->'?*
@" A*=*5*B*7*
C" '?(.<*
D" #E*=*+,-$./0+)1-.21345EE6*7EE6*80!9*
F" #!*=*+,-$./0+)1-.21345E!6*7!E6*80!9*
G" #;*=*+,-$./0+)1-.21345EE6*7E!6*80!9*
H" #@*=*+,-$./0+)1-.21345E!6*7!!6*80!9*
I" #C*=*+,-$./0+)1-.21345!E6*7!!6*80!9*
!E" #D*=*+,-$./0+)1-.21345!!6*7!E6*80!9*
!!" #F*=*+,-$./0+)1-.21345!E6*7E!6*80!9*
!;" #G*=*+,-$./0+)1-.21345!!6*7!!6*80!9*
!@" AEE*=*#E*J*#!*
!C" AE!*=*#;*J*#@*
!D" A!E*=*#C*J*#D*
!F" A!!*=*#F*J*#G*

a) b)
F ig.1.Matrix Multiplication Algorithm (a) to be mapped on (b) logical configuration platform

Fig.2 shows an example of a manually written C code for the matrix multiplication algorithm.
The code is implemented using the MPI [12], a widely used parallel programming library. For
simplicity, we assume that a 2x2 physical configuration is selected. Hence, the example code
is defined for a four node logical configuration. Before starting the code it is required to ini-
tialize the MPI configuration and related variables (line 3). For succinctness we have omitted
the code in the figure. The algorithm will run in parallel on four nodes. To distinguish among
the nodes the variable rank defines four different ids including 0, 1, 2, and 3. From line 4 to 8

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 64 -

the code for node 0 is defined which sends the sub matrices to the other nodes (1,2,3). Lines 9
to 14 define the code for receiving the matrices in node 1. A similar code is implemented for
the nodes 2 and 3 (not shown in the figure). Line 16 defines a so-called barrier to let the pro-
cess wait until all the sub-matrices have been distributed and received by all the nodes. After
the distribution of the sub-matrices to the nodes, each node runs the code as defined in line 17-
18 and, as such, multiplies, the received sub-matrices. Once the multiplication is finalized the
results are submitted to node 0, which is shown in line 19-22 for node 1 (code for node 2 and
3 is not shown). Line 23 to 25 defines again the collection of the results in node 0. Line 27
defines again a barrier to complete this process. Finally in line 28 to 33 the results are summed
in node 0 to compute the resulting matrix C.

!" #$%&'()*+,-.$"/,+
0" $%1+-2$%+
3" 455678+$%$1$2'$921$:%;+
<" $=>?2%@+AA+BC+4+
D" 678E8;*%)>FEBEBG+<G+678EHIJKLMG+!G+BG+678ENI66EOIPLHG+Q?*R(*;1CS+
T" 678E8;*%)>KEBEBG+<G+678EHIJKLMG+!G+BG+678ENI66EOIPLHG+Q?*R(*;1CS+
U" 678E8;*%)>FEBE!G+<G+678EHIJKLMG+!G+BG+678ENI66EOIPLHG+Q?*R(*;1CS+
V" 678E8;*%)>KE!EBG+<G+678EHIJKLMG+!G+BG+678ENI66EOIPLHG+Q?*R(*;1CSW+
X" $=>?2%@+AA+!C+4+
!B" 678E8?*&Y>FEBG+<G+678EHIJKLMG+BG+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CS+
!!" 678E8?*&Y>KEBG+<G+678EHIJKLMG+BG+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CS+
!0" 678E8?*&Y>FE!G+<G+678EHIJKLMG+BG+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CS+
!3" 678E8?*&Y>KE!G+<G+678EHIJKLMG+BG+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CSW+
!<" """+
!D" 678EK2??$*?>678ENI66EOIPLHCS+
!T" 55^MP8FL+^MN\8IZ+7FP\+>PJZ+IZ+FLL+ZIHM^C+
!U" NEB+A+FEB+_+KEBS+
!V" NE!+A+FE!+_+KE!S+
!X" $=>?2%@+AA+!C+4+
0B" 678E8;*%)>NEBG+<G+678EHIJKLMG+BG+0G+678ENI66EOIPLHG+Q?*R(*;1CS+
0!" 678E8;*%)>NE!G+<G+678EHIJKLMG+BG+0G+678ENI66EOIPLHG+Q?*R(*;1CS+
00" W+
03" $=>?2%@+AA+BC+4+
0<" 678E8?*&Y>7EBG+<G+678EHIJKLMG+0G+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CS+
0D" 678E8?*&Y>7E!G+<G+678EHIJKLMG+0G+678EFZ[E\F]G+678ENI66EOIPLHG+Q?*R(*;1CSW+
0T" """+
0U" 678EK2??$*?>678ENI66EOIPLHCS+
0V" 55+^MP8FL+^MN\8IZ+7FP\+>PJZ+IZ+`8P^\+ZIHMC+
0X" $=>?2%@+AA+BC+4+
3B" NBB+A+7EB+a+7E!+
3!" NB!+A+7E0+a+7E3+
30" N!B+A+7E<+a+7ED+
33" N!!+A+7ET+a+7EU+W+
3<" 678E`$%2'$9*>CSW+

F ig.2.Example parallel code of the matrix multiplication algorithm code

After the code implementation, we can allocate and deploy the developed code to the nodes
of the parallel computing platform. In our example we have assumed a simple configuration
consisting of four nodes. Here we could easily decide on the strategy for sending, receiving
and collecting the data over the nodes. However, one can imagine easily that the code for the
larger configurations such as in petascale and exascale becomes dramatically larger, the strat-
egy for the data distribution will be much more difficult [4] and likewise the effort to imple-
ment the code will be much higher. Because of the size and complexity implementing the
code is not trivial and can become easily error-prone. In case of platform evolution or change
the whole code needs to be substantially adapted or even rewritten from scratch.

3 Implementation Approach
To support the implementation and deployment of the code for the parallel computing algo-
rithm on the parallel computing platform we propose a model-driven development approach.
The approach integrates the conventional analysis of parallel computing algorithms with the

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 65 -

model-driven development approaches. The overall approach is shown inFig.3. In the first
step of the approach the parallel computing algorithm is analyzed to define and characterize
the sections that need to be allocated to the nodes of the parallel computing platform. In the
second step, the plan is defined for allocating the algorithm sections to the corresponding
nodes of the logical computing platform. In the third step the code for each serial section is
manually implemented. The fourth step includes the implementation or reuse of predefined
model transformations to generate the code for parallel sections. The final step includes the
deployment of the code on the physical configuration platform. The details of the steps are
described in the following sub-sections.

!"#$%&'()*#$'+,-./01

2"#3*4',(#/0*#5,6*#,%#/0*#70(8.9&'#
5,%:.+;-&/.,%#7'&/:,-1

<"#3*:.%*#/0*#7'&%#:,-#/0*#$'',9&/.,%#,:#
/0*#$'+,-./01#=*9/.,%8#

>"#?14'*1*%/@A*;8*#B,6*'#
C-&%8:,-1&/.,%8#/,#D*%*-&/*#5,6*

E"#?14'*1*%/#/0*#=*-.&'#5,6*#8*9/.,%8

F ig.3.Approach for Generating/Developing and Deployment of Parallel Algorithm Code

3.1 Analyze A lgorithm

The analysis of the parallel algorithm identifies the separate sections of the algorithm and
characterizes these as serial or parallel sections. Here, a section is defined as a coherent set of
instructions in the algorithm. A serial section defines the part of the algorithm that needs to
run serially on nodes without interacting with other nodes. A parallel section defines the part
of the algorithm that runs on each node and interacts with other nodes. For example the matrix
multiplication algorithm (Fig.1a) has four main sections as shown in Table 1.

Table 1.Analysis of algorithm sections
!"# $%&'()*+,#-./*)'0# -./*)'0#123.#
4# !"#$%"&'$()$*()#'&+,-$%".(#) /01)
5# 2)3)0)4)5) 671)
6# 2899(.$),-$%":),'9$";9<)%(#'9$#) /01)
=) 2>>)3)/>)?)/@)

2>@)3)/A)?)/B)
2@>)3)/=)?)/C)
2@@)3)/D)?)/E)

671)

The first section defines the distribution of the sub-matrices to the different nodes. This sec-
tion is characterized as a parallel section (PAR). The second section is characterized as serial
(SER) and defines the set of instructions for the multiplication of the sub-matrices. The third
section is a parallel section and defines the collection of the results of the matrix multiplica-
tions. Finally, the fourth section is characterized as serial and defines the summation of the
result to derive the final matrix.

3.2 Define the Plan for the A llocation of the A lgorithm Sections

The next step of the implementation approach is to define the plan for mapping the algorithm
sections to logical configurations. Usually many different logical configurations can be de-
rived for a given parallel algorithm and parallel computing platform. We refer to our earlier
paper [2] in which we define the overall approach for deriving feasible logical configuration
alternatives with respect to speed-up and efficiency metrics. In this paper we assume that a

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 66 -

feasible logical configuration has been selected and elaborate on the generation of the imple-
mentation of the algorithm sections.

Table 2.Plan for allocating sections to nodes
!"# $%&'()*+,#-./*)'0# -./*)'0#123.# 4%50#
!" #$%&'$()&*"&+*"%)(,-.&'$/*%" 012" [-1,0] [0,0]

[1,1][0,1]
"

3" 4"5"1"6"7" 892" 2):";:"*./+":;<*"
=" 4;>>*/&"-.&'$?"-)>&$@>A"

'*%)>&%"
012" [-1,0] [0,0]

[1,1][0,1]
"

B" 4CC"5"0C"D"0!"
4C!"5"03"D"0="
4!C"5"0B"D"0E"
4!!"5"0F"D"0G"

892" 2):";:"*./+":;<*"

The allocation of the sections to the nodes depends on the type of the sections. The plan for
the matrix multiplication algorithm is shown in the fourth column of Table 2. Here we assume
that each serial section runs on each node (section 2 and 4). The plan for allocating the parallel
sections is defined as a pattern of nodes. The rectangles represent the nodes; the arrows repre-
sent the interactions (distribution or collection) among the nodes. Further, each node is as-
signed an id defining the coordinate of the node in the logical configuration. For section 1 the
distribution of the data is represented as a pattern of four nodes in which the dominating node
is the node with coordinate (0, 0). The arrows in the pattern show the distribution of the sub-
matrices from the dominating node to the other nodes. For section 3 the pattern represents the
collection of the results of the multiplications to provide the final matrix.

In the given example we have assumed a logical configuration consisting of four nodes. Of
course for larger configurations defining the allocation plan becomes more difficult. Hereby,
the required plan is not drawn completely but defined as a set of patterns that can be used to
generate the actual logical configuration. For example, scaling the patterns of Table 2can be
used to generate the logical configuration ofFig.1b. For more details about the generation of
larger logical configurations from predefined patterns we refer to our earlier paper [2].

3.3 Implement the Serial Code Sections

Once the plan for allocating the algorithm sections to the logical configuration is defined we
can start the implementation of the algorithm sections. Hereby, the code for the serial sections
is implemented manually.

Table 3.Implementation of the serial sections
!"# $%&'()*+,#-./*)'0# 6,3%.,.0*5*)'0#
!" #$%&'$()&*"&+*"%)(,-.&'$/*%" H$>>"(*"I*:*'.&*<"
3" 4"5"1"6"7" 4C"5"1JC"6"7JC"

4!"5"1J!"6"7J!"
=" 4;>>*/&"-.&'$?"-)>&$@>A"'*%)>&%" H$>>"(*"I*:*'.&*<"
B" 4CC"5"0C"D"0!"

4C!"5"03"D"0="
4!C"5"0B"D"0E"
4!!"5"0F"D"0G"

4CC"5"0JC"D"0J!"
4C!"5"0J3"D"0J="
4!C"5"0JB"D"0JE"
4!!"5"0JF"D"0JG"

The code for the parallel sections are generated using the model-transformation patterns as
defined in the next sub-section. The third column of Table 3 shows the implementation of the
serial sections of the matrix multiplication algorithm. Note that the implementation is align-
ment with the complete implementation of the algorithm as shown in Fig.2.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 67 -

3.4 Model T ransformations

After analyzing the algorithm, implementing the code for serial algorithm sections and defin-
ing the plan for mapping these sections to the logical configuration, the code for the parallel
sections will be generated. To support platform independence this code generation process is
realized in two steps using model-to-model transformation and model-to-text transformation.
These transformation steps are described below.
Model-to-Model T ransformation.

For different parallel computing platforms, there are several parallel programming lan-
guages such as, MPI, OpenMP, MPL, CILK [15]. According to the characteristic of the paral-
lel computing platforms, different programming languages can be selected. Later on in case of
changing requirements a different platform might need to be selected. To cope with the plat-
form independence and the platform evolution problem we apply the concepts as defined in
the Model-Driven Architecture (MDA) paradigm [13]. Accordingly, we make a distinction
between platform independent models (PIM), platform specific models (PSM) and the source
code. The generic model-to-model transformation process is shown in Fig.4.

!"#"$$%$&'$()#*+,-&
."//*0(&.%+"-)1%$

!"#"$$%$&'$()#*+,-&
."//*0(&.)1%$

2)03)#-4&+)

!"#"$$%$&5)-/6+*0(&!$"+3)#-&
7/%2*3*2&.%+"-)1%$

!"#"$$%$&5)-/6+*0(&!$"+3)#-&
7/%2*3*2&.)1%$

2)03)#-4&+).8.
9#"043)#-"+*)0

F ig.4.Model-to-model transformation.

Here the transformation process takes as input a platform independent model called, paral-
lel algorithm mapping model. This model defines the mapping of the algorithm sections to the
logical configuration. The model conforms to the parallel algorithm mapping metamodel
which we will explain later in the section. The output of the transformation process is a plat-
form specific model, called parallel computing platform specific model. Similarly this model
conforms to its own metamodel, which typically represents the model of the language of the
platform (e.g. MPI metamodel). The platform specific model will be later used to generate the
code using model-to-text transformation patterns.

!"#$%&'()*+,-.'&'/,+.0)-+1+23+,4,56-7'&$.6819-7'&$.:;+,<,=+
9-7'&$.*,0>6'%07'+-.'&'/,+.0)-+1+23+,4,56-7'&$.6819-7'&$.:;+,<,=+
9-%&0"9-7'&$.*+
++,-.'&'/,+.0)-+1+23+5,-?'-.@6,+6AB-%C/B-+1+D!"#$%&'E;F+,4,7$@-+1+9CG2HI+,<,=+
J0%0""-"9-7'&$.*+
++,-.'&'/,+.0)-+1+23+5,-?'-.@6,+6AB-%C/B-+1+D!"#$%&'E;F+,4,'&"-6+81+J0''-%.:,<,=+
K$#&70"L$.M&#A%0'&$.*,-.'&'/,+.0)-+1+23+,4,5'&"-681C&"-:;,<,=+
C&"-*,0>6'%07'+-.'&'/,+.0)-+1+23+,4,,<,=+
L$%-*,-.'&'/,+.0)-+1+23+5,-?'-.@6,+6AB-%C/B-+1+D(%)"E;F,4,&+1+2HCN+1+2HC+,<,=+
J0''-%.*,-.'&'/,+.0)-+1+23+5,-?'-.@6,+6AB-%C/B-+1+D(%)"E;F+
,4,+'&"-6+81+C&"-:@$)&.0'&$.#6+81+C&"-7$))6+81+L$))A.&70'&$.:+
?6&O-+1+2HC/6&O-+1+2HC,<,=+
L$))A.&70'&$.*,-.'&'/,+.0)-+1+23+,4,+
++++M%$)+1+L$%-'$+1+L$%-"-#6&O-+1+2HCM%$)30'0+1+30'0'$30'0+1+30'0+,<,=+

F ig.5.Concrete Syntax of the Parallel Algorithm Mapping Metamodel (PAMM)

The grammar for the parallel algorithm mapping metamodel is defined in XText in the
Eclipse IDE and shown in Fig.5. Here, Algorithm consists of Sections, which can be either a
ParallelSection or SerialSection. Each section can itself have other sections. In the grammar
the serial sections are related to code implementations in the code block. The parallel sections
include the data about the mapping plan that is determined with the logical configuration.
Logical Configuration consists of Tile entity which can be either a single Core (processing

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 68 -

unit) or a Pattern with tiles and communications between these tiles. The assets related with
the logical configuration with cores and patterns compose the plan for mapping algorithm to
logical configuration.

Fig.6 shows, for example, the parallel algorithm mapping model for the matrix multiplica-
tion algorithm. In the figure two serial sections MultiplyBlock and SumBlock are defined. In
the MultiplyBlock section the matrices are divided into sub-matrices and scattered by using the
B2S pattern. The B2S pattern is a predefined pattern in the toolset indicating the pattern for
section 1 as defined in the fourth column of Table 2. This multiply block also contains a Mul-
tiply serial section which contains the serial implementation of the multiply operation. In the
SumBlock section, the resulting matrices are gathered by the pattern B2G which is predefined
for section 3 as shown in the fourth column of Table 2. The SumBlock serial section contains
the serial code for summation of the resulting sub-matrices.

F ig.6.Parallel Algorithm Mapping Model for the Matrix Multiplication Algorithm

Once the platform independent parallel algorithm mapping model is defined we can trans-
form it to the required platform specific model. We assume, for example, that the aim is to
generate a MPI model. Fig.7shows the grammar of the MPI metamodel that is again defined
using XText. In the metamodel each MPI model consists of a group of entities, which include
MPISection, Process, Node, and Communication. Each section consists of processes and
communication among these processes. Each Process allocates to a Node. Each communica-
tion defines the destination and target process.

!"#!$%&'()&*+#+,)-*./&-0-12-)3)456$7"890!"#:6$7";<)=)>-
!"#:6$7"()&*+#+,)-*./&-0-12-)3)48&?+#$*890!"#@&?+#$*;<4*$%&890A$%&<)=)>-
!"#@&?+#$*()&*+#+,)-*./&-0-12-)3)-
----48&?+#$*890!"#@&?+#$*;<4"6$?&88&890B6$?&88;<-
----4?$//7*#?.+#$*890C$//7*#?.+#$*;<?$%&-0-@DE1A:)=)>-
B6$?&88()&*+#+,)-*./&-0-12-)3)6.*F-0-1AD.''$?.+&80A$%&)=)>-
A$%&()&*+#+,)-*./&-0-12-)3))=)>-
C$//7*#?.+#$*()&*+#+,)-*./&-0-12-)3)G6$/-0-B6$?&88+$-0-B6$?&88-)=)>-

F ig.7.Grammar of the MPI Metamodel

The model-driven transformation rules refer to elements of both the PAMM and the paral-
lel computing platform specific metamodel, in this case the MPI Metamodel. The M2M trans-
formation rules are implemented using the ATL [1] transformation language. The transfor-
mation rules are shown in Fig.8. As shown in the figure we have implemented four different
rules which define the transformations of mapping patterns to MPI sections, cores to processes
and communications to MPI communications.

The rule Algorithm2MpiModel, is defined as the main rule of the transformation. The rule
Pattern2Section transforms the algorithm pattern sections to MpiSection within the MpiGroup.
The rule Core2Process transforms the cores as defined in the patterns to the processes in
MpiSection. Each process is transformed from the core with the data of rank calculated from

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 69 -

the index values of the core. Similarly, Comm2Comm transforms the communications that are
defined in the patterns, to the communications in MPISection.

!" !"#$#$%&'()*+,-./).'01%#2#
-" %%&!'(#3%&'()*+,4#53(3%%1%.'01%6$%&'()*+,)'#,/),'01%4#./).'01%6./).'01%#7#
8" 93,1:;3%&'()*+,"93,1<#&('=/>:;?(01(10@1*2,/)A('=/BC<#
D" ##,/)A('=/4#./).'01%6./)A('=/793,1:;3%&'()*+,"93,1<#
E" ###>1F*)'9>:;3%&'()*+,"&1*53**1(9>7CCB#
G" !"#$#53**1(9-@1F*)'9#2#
H" %%&!'(#/3**1(94#53(3%%1%.'01%653**1(9)'# >1F*)'94#./).'01%6./)@1F*)'9#7#
I" ####93,1:;/3**1(9"93,1</('F1>>1>#:;#/3**1(9"&1*J'(1>7C<#
K" ####F',,=9)F3*)'9>:;/3**1(9"&1*J',,=9)F3*)'9>7CCB#
!L" !"#$#J'(1-5('F1>>#2&!'(#F'(14#53(3%%1%.'01%6J'(1#)'#/('F1>>4#./).'01%65('F1>>#7#
!!" ####(39M:;F'(1")",'07F'(1"&1*A%'N3%@)O17CCPF'(1"&1*A%'N3%@)O17C#Q#
!-" ##########F'(1",'07F'(1"&1*A%'N3%@)O17CC<CB#
!8" !"#$#J',,-J',,#2&!'(%/RF',,=9)F3*)'9453(3%%1%.'01%6J',,=9)F3*)'9##
!D")'#F',,=9)F3*)'9#4#./).'01%6J',,=9)F3*)'9#7#
!E" ####S(',:;/RF',,=9)F3*)'9"S(',<#*':;/RF',,=9)F3*)'9"*'<CB#

F ig.8.Transformation rules from PAMM to MPI metamodel

The MPI model which is the result of the model-to-model transformation is shown in Fig.9.
The MPI model includes the MpiSection with processes that will run on each node, communi-
cations from a destination process to target process and the serial code section implementa-
tion. This MPI model is now ready for model-to-text transformation to generate the final MPI
source code.

F ig.9.Part of the MPI model generated by model-to-model transformation

Model-to-Text T ransformation
The generated PSM includes the mapping of the processes specific to the parallel computing
platform. Subsequently, this PSM is used to generate the source code. The model-to-text
transformation pattern for this is shown inFig.10.

!"#$!%&'()*%+

!"#$!)*%+

,)-.)/(0$
&)

!"#$
1)2/,%$3)*%

!45
5/'-0.)/('&6)-

F ig.10.Example model transformation chain of MPI model

Fig.11 shows the implementation of the model-to-text transformation for which we used the
XPand [18] transformation language. To map the sections to the parallel computing platform,
for each section the communication operations for the data is generated for target and destina-
tion process ranks (line 6 to 11). Subsequently, the serial code implementation is imported to
the source code in line 13. For each section, a barrier code is implemented to synchronize the
section processes (line 14). The resulting code of the transformation is the code as defined in
Fig.2.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 70 -

!" #!"#$%&'$%&'(
)" (
" #($%)+,(+,-.%/(*-(+,-.%'(
0" #($%)*+,'+,-.%"/123&-4/(*-(/123&-4'(
5" #($%)*+,'/123&-4"2-$$.4&263&-4/(*-'2-$$'(
7" &89,64:(;;(#2-$$"8,-$",64:'<(=(
>" ?@ABA/14C9#2-$$"8,-$D636"46$1'E#2-$$"8,-$D636"/&F1'E?@AB#2-$$"8,-$D636"3G%1'E(
H" ((((((((((#2-$$"3-",64:'E#2-$$"8,-$",64:'E?@ABIJ??BKJLMDEN,1O.1/3<PQ(
R" &89,64:(;;(#2-$$"3-",64:'<(=(
!S" ?@ABA,12T9#2-$$"3-D636"46$1'E#2-$$"8,-$D636"/&F1'E?@AB#2-$$"3-D636"3G%1'E((
!!" ((((((((((#2-$$"8,-$",64:'E?@ABUVWBXUYE?@ABIJ??BKJLMDEN,1O.1/3<PQ(
!)" #)./($%)*+,'(
!*" #/123&-4"2-C1'(
!0" ?@ABZ6,,&1,9?@ABIJ??BKJLMD<P(
!5" #)./($%)*+,'#)./($%)*+,'(
!7" (

F ig.11. Transformation template from MPI metamodel to MPI source code

3.5 Deploy Code on Physical Configuration

The resulting code of the previous steps needs to be deployed on the physical configuration.
The deployment can be done manually or using tool support in case of large configurations. In
the literature various tools can be found which concern the automatic deployment of the code
to the nodes of a parallel computing platform. We refer to, for example, [8][15][4] for further
details.

4 Related Work
Several papers have been published in the domain of model-transformations for parallel com-
puting. Palyart et. al. [14] propose an approach for using model-driven engineering in high
performance computing. They focus on automated support for the design of a high perfor-
mance computing application based on the distinction of different domain expertise like phys-
ical configuration, numerical computing, application architecture etc.

Bigot and Perez [3] adopt HLCM a hierarchical and generic component model with con-
nectors originally designed for high performance applications. The authors represent on their
experience with metamodeling and model transformation to implement HLCM.
[7] introduced the GASPARD design framework systems that use model transformations for
massively parallel embedded systems. They refined the MARTE models based on Model
Driven Engineering paradigm. They provide tool support to automatically generate code with
high-level specifications. Taillard et.al [16] implemented a graphical framework for integrat-
ing new metamodels to GASPARD framework. They used MDE paradigm to generate
OpenMP, Fortran or C code.

Similar to our approach the above studies generate source code for high performance com-
puting. The main difference of our approach is focus on the mapping of algorithm sections to
parallel computing platforms.

5 Conclusion
In this paper we have described the model transformations needed to implement the mapping
of a parallel algorithm to a parallel computing platform. In alignment with the MDA paradigm
the approach is based on separating the platform independent parallel computing model from
the platform specific parallel computing model and the source code. The model transfor-
mations do not only helps the parallel programming engineer to generate code but it also pro-
vides support for easier portability in case of platform evolution. We have illustrated the ap-
proach for the MPI platform but the approach is generic. In our future work we will elaborate
on the application of model-driven approaches to parallel computing platform and focus on
optimizing the values for metrics which are important for mapping parallel algorithms to par-
allel computing platforms.

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 71 -

References
1. ATL: ATL Transformation Language. http://www.eclipse.org/atl/
2. Arkin, E., Tekinerdogan, B., Imre, K. Model-Driven Approach for Supporting the Mapping of Par-

allel Algorithms to Parallel Computing Platforms. Proc. of the ACM/IEEE 16th International Con-

ference on Model Driven Engineering Languages and Systems. (2013)
3. Bigot, J., Perez, C. On Model-Driven Engineering to implement a Component Assembly Compiler

(2011)

4. Cumberland, D., Herban, R., Irvine, R., Shuey, M., and Luisier, M. Rapid parallel systems deploy-
ment: techniques for overnight clustering. In Proceedings of the 22nd conference on Large installa-

tion system administration conference (LISA'08). USENIX Association, Berkeley, CA, USA, 49-
57. (2008)

5. Foster, I. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software En-
gineering. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. (1995)

6. Frank, M.P. The physical limits of computing. Computing in Science &Engineering , vol.4, no.3,
pp.16,26, May-June 2002. (2002)

7.
Model-Driven Design Framework for Massively Parallel Embedded Systems. ACM Trans. Embed.
Comput. Syst. 10, 4, Article 39. (2011)

8. Hoffmann, A., Neubauer, B. Deployment and configuration of distributed systems. In Proceedings

of the 4th international SDL and MSC conference on System Analysis and Modeling (SAM'04),
Daniel Amyot and Alan W. Williams (Eds.). Springer-Verlag, Berlin, Heidelberg, 1-16. (2004)

9. Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzon,
P., Harrod, W., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R., Richards, M., Scarpelli, A.,
Scott, S., Snavely, A., Sterling, T., Williams, R.S., Yelick, K., Bergman, K., Borkar, S., Campbell,
D., Carlson, W., Dally, W., Denneau, M., Franzon, P., Harrod, W., Hiller, J., Keckler, S., Klein, D.,
Williams, R.S., and Yelick, K., Exascale Computing Study: Technology Challenges in Achieving

Exascale Systems. DARPA. (2008)
10. Li, K.Scalable parallel matrix multiplication on distributed memory parallel computers. Parallel

and Distributed Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th International , vol.,
no., pp.307,314. (2000)

11. Moore, G.E.Cramming More Components Onto Integrated Circuits. Proceedings of the IEEE ,
vol.86, no.1, pp.82,85. (1998)

12. MPI: A Message-Passing Interface Standart, version 1.1. http://www.mpi-forum.org/docs/mpi-11-
html/mpi-report.html.

13. Object Management Group (OMG). Model Driven Architecture (MDA), ormsc/2001-07-01.
14. Palyart, M., Lugato, D., Ober, I., and Bruel, J. MDE4HPC: an approach for using model-driven en-

gineering in high-performance computing. In Proceedings of the 15th international conference on

Integrating System and Software Modeling (SDL'11), Iulian Ober and Ileana Ober (Eds.). Springer-
Verlag, Berlin, Heidelberg, 247-261. (2011)

15. Stawinska, M., Kurzyniec, D., Stawinski, J., Sunderam, V., Automated Deployment Support for
Parallel Distributed Computing, Parallel, Distributed and Network-Based Processing, 2007. PDP

'07. 15th EUROMICRO International Conference on , vol., no., pp.139,146. (2007)
16. Taillard, J., Guyomarc'h, F.,Dekeyser, J. A Graphical Framework for High Performance Computing

Using An MDE Approach. In Proc. of the 16th Euromicro Conference on Parallel, Distributed and

Network-Based Processing (PDP '08). IEEE Computer Society, Washington, DC, USA, 165-173.
(2008)

17. Talia, D. Models and Trends in Parallel Programming. Parallel Algorithms and Applications 16, no.
2: 145-180. (2001)

18. Xpand, Open Architectureware. http://wiki.eclipse.org/Xpand.
19. Zheng, G., Kakulapati, G., Kale, L.V. BigSim: a parallel simulator for performance prediction of

extremely large parallel machines. Parallel and Distributed Processing Symposium, 2004. Proc..
18th International , vol., no., pp.78,, 26-30. (2004)

2nd International Workshop on Model-Driven Engineering for High Performance and Cloud computing (MDHPCL 2013)

- 72 -

