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EDM 2014 Extended Proceedings 
Preface 

This volume compiles the papers accepted for publication in the four workshops 
that take place in the 7th International Conference on Educational Data Mining 
(EDM 2014). For the first time in this conference series a call for workshops was 
published, resulting in a very positive response from the EDM community, as 
these proceedings show. 
 
The purpose of the EDM workshops is to provide an opportunity for participants 
from academia, industry, government, and other related parties to present and 
discuss novel ideas on current and emerging topics relevant to Educational 
Data Mining. EDM requires adapting existing approaches or developing new 
approaches that build upon techniques from a combination of areas, including 
but not limited to statistics, psychometrics, machine learning, information 
retrieval, recommender systems, and scientific computing. 
 
The workshops held in conjunction with EDM 2014 are the following: 
 

 Graph-based Educational Data Mining (G-EDM). Organizers: Collin F. 
Lynch, Tiffany Barnes 

 Non--Cognitive Factors & Personalization for Adaptive Learning 
(NCFPAL). Organizers: Steven Ritter, Stephen E. Fancsali 

 Approaching Twenty Years of Knowledge Tracing: Lessons 
Learned, Open Challenges, and Promising Developments (BKT20y). 
Organizers: Michael Yudelson, José P. González-Brenes, Michael Mozer 

 Feedback from Multimodal Interaction in Learning Management 
Systems (FFMI). Organizers: Lars Schmidt-Thieme, Ruth Janning 

 
We would like to thank all workshop organizers for their involvement and 
cooperation along the process, as well as their efforts in attracting contributions 
and participants to their workshops. 
 
 

Sergio & Olga 
June, 2014 
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Workshop on Graph-Based 

Educational Data Mining 
(G-EDM) 

 
Graph data has become increasingly prevalent in data-mining and data analysis 
generally. Many types of data can be represented naturally as graphs including social 
network data, log traversal, and online discussions. Moreover recent work on the 
importance of social relationships, peer tutoring, collaboration, and argumentation has 
highlighted the importance of relational information in education including: 

 Graphical solution representations such as argument diagrams and concept 
maps; 

 Graph-based models of problem-solving strategies; 

 User-system interaction data in online courses and open-ended tutors; 

 Sub-communities of learners, peer-tutors and project teams within larger 
courses; and 

 Class assignments within a larger knowledge space. 
 
Our goal in this workshop was to highlight the importance of graph data and its 
relevance to the wider EDM community. We also sought to foster the development of 
an interested community of inquiry to share common problems, tools, and techniques. 
We solicited papers from academic and industry professionals focusing on: common 
problems, analytical tools, and established research. We also particularly welcomed 
new researchers and students seeking collaboration and guidance on future directions. 
It is our hope that the papers published here will serve as a foundation for ongoing 
research in this area and as a basis for future discussions.  
 
The papers included here cover a range of topics. Kovanovic, Joksimovic, Gasevic & 
Hatala focus on evaluating social networks, and specifically on the development of 
social capital and high-status individuals in a course context while Catete, Hicks, 
Barnes, & Lynch describe an online tool designed to promote social network formation 
in new students. Similar work is also described by Jiang, Fitzhugh & Warschauer who 
focus on the identification of high-connection users in MOOCs.  
 
Other authors turned to the extraction of plan and hint information from course 
materials and user logs. Belacel, Durand, & Laplante define a graph-based algorithm 
for identifying the best path through a set of learning objects. Kumar describes an 
algorithm for the automatic construction of behavior graphs for example-tracing tutors 
based upon expert solutions and Dekel & Gal in turn consider plan identification to 
support automatic guidance. Two further papers by Vaculík, Nezvalová & Popelínský, 
and by Mostafavi & Barnes, apply graph analysis techniques to the specific domain of 
logic tutoring and, in particular, on the classification of student solutions and to the 
evaluation of problem quality.  
 
And finally several authors chose to present general tools for the evaluation of 
graphical data. Lynch describes Augmented Graph Grammars, a formal rule 
representation for the analysis of rich graph data such as argument diagrams and 
interconnected student assignments, and details an implementation of it. Sheshadri, 
Lynch, & Barnes present InVis a visualization and analysis platform for student 
interaction data designed to support the types of research described above. And 
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McTavish describes a general technique to support graph analysis and visualization 
particularly for student materials through the use of interactive hierarchical edges. We 
thank the included authors for their contributions to the discussion and look forward to 
continued research. 

 
 

The G-EDM workshop organizers 
Collin F. Lynch  

Tiffany M. Barnes 
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ABSTRACT 

This paper introduces a method based on graph theory and 

operations research techniques to optimize learning path 

discovery. In this method, learning objects are considered as 

nodes and competencies as vertices of a learning graph. A first 

step consists in reducing the solution space by obtaining an 

induced subgraph H. In a second step, the search of an optimal 

learning path in H is considered as a binary integer programming 

problem which we propose to solve using an exact method based 

on the well-known branch-and-bound algorithm. The method 

detailed in the paper takes into account the prerequisite and gained 

competencies as constraints of the optimization problem by 

minimizing the total competencies needed to reach the learning 

objective. 

Keywords 

Learning path, learning object recommendation, graph theory, 

clique, mathematical programming, binary integer programming, 

branch-and-bound algorithm. 

1. INTRODUCTION 
Global Positioning System (GPS) is a Global Navigation Satellite 

System (GNSS) that is massively used by car drivers. This large 

acceptance is easily understandable by the benefits that such a 

system can offer. Car navigation systems can dynamically 

calculate an itinerary between two points taking into account, 

depending on the system, several constraints like duration, 

distance, closed roads, traffic jams, etc....Drivers can focus 

exclusively on their driving limiting risks of accidents, stress, and 

losing their way. 

To some extent, the learning path followed by a student could be 

seen as an itinerary between several learning objects [9]. In this 

context, constraints on learning objects are not distance or time 

duration to go from one learning object to the other but rather 

prerequisite and gained competencies. As a result the itinerary or 

path between learning objects is regulated by competency 

dependencies that lead a learner from an initial to a targeted 

competency state. For example, a learner with solid grounds in 

integer arithmetic (starting location) willing to learn the solving of 

systems with multiple variables (destination) should be advised to 

previously learn to solve one variable linear equations (next step 

of the itinerary).   

Over the years, educational data mining and recommendation 

technologies have proposed significant contributions to provide 

learners with adequate learning material by recommending 

educational papers [18] or internet links [10], using collaborative 

and/or content-based filtering. These approaches usually aim at 

recommending learning material satisfying an immediate interest 

rather than fitting in the learner’s sequential learning process. 

Sequential pattern [28] and process mining [19] technologies have 

also been investigated. However, these technologies have been 

used to understand the learner’s interaction with content to 

discover general patterns and trends rather than to recommend 

adapted learning paths to learners.  

Other approaches, in the course generation research community, 

address the need for recommending not only the learning objects 

themselves, but sequences of learning objects. Sicilia et al. [17] or 

Ulrich and Melis [20] addressed learning design concepts and 

requirements through Course Generation. Though numerous 

solutions have been proposed, using statistical methods [13], 

decision rules [23], production rules [11], Markov processes [8] 

and Hierarchical Task Network Planning [17, 21, 22], most of 

them do not take into account eventual competency dependencies 

among learning objects and/or are not designed for large 

repositories of interdependent learning objects1. 

Therefore, we detailed in [7] a dynamic graph based model and a 

heuristic approach tailored to find a learning path in a graph 

containing millions of learning object nodes.  

This paper is an extension of this previous work and summarizes 

the model, the heuristic presented in [7], and proposes a major 

optimization to calculate a global optimum learning path. In the 

previous work [7], we applied a greedy heuristic algorithm to 

obtain a pseudo-optimal learning path from a set of cliques. 

Greedy heuristics are efficient, but they sometimes get stuck in a 

local solution and fail to find a global optimum [26]. They are 

based on an intimate knowledge of the problem structure and have 

no scope of incremental improvement. 

                                                                 

1 A more complete discussion can be found in [7]. 
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Therefore, in this work we slightly reformulate our model in order 

to fit as an integer programming problem and we propose an exact 

method based on the branch-and-bound algorithm. 

2. PROBLEM CONSIDERED 
In order to facilitate the understanding of the presented model, 

several key elements and assumptions need to be clearly defined. 

A competency can be seen as a knowledge component being part 

of a “model that decomposes learning into individual knowledge 

components (KCs)” [16]. In this paper, a competency is “an 

observable or measurable ability of an actor to perform a 

necessary action(s) in given context(s) to achieve a specific 

outcome(s)” [12]. A competency in our situation can be a 

prerequisite to the efficient completion of a learning object. 

According to Wiley [25], a learning object is “any digital resource 

that can be reused to support learning”. In the rest of the paper we 

define the learning object as any digital resource that can be 

reused to provide a competency gain. 

A learner is a dynamic user interacting with learning objects in 

order to increase his/her competencies from an initial set to a 

targeted set of competencies. We assume that a learner completing 

a learning object will gain the competencies targeted to be 

transmitted by the interaction with the learning object. We also 

assume that a learner who would not possess the prerequisite set 

of competencies required by a learning object should not attempt 

this learning object since this would result in a limited 

competency gain. 

Last but not least, we assume that the number of learning objects 

available is very large (millions to billions of learning objects) and 

that each learning object cannot provide the gain of a competency 

that is a pre-requisite to itself. 

2.1 Graph Theory Contribution 
Graph theory aims at studying mathematical structures composed 

of elements having relationships or connection between them. The 

use of directed graphs is not a novelty in e-learning systems [1, 3, 

24, 25]; however, we were unable to find a formal model for 

discussing learning path problems based on graph theory, 

especially one taking into account the dynamic nature of a 

learning environment. 

A directed graph, or digraph, G = (V, E) consists of: 

 A non-empty finite set V of elements called vertices or 

nodes, 

 A finite set E of distinct ordered pairs of vertices called 

arcs, directed edges, or arrows.  

Let G = (V, E) be a directed graph for a personalized learning 

path. Each vertex or node in G corresponds to a learning object. 

Two vertices are connected if there exists a dependency relation, 

such that one vertex satisfies the prerequisites of the other. So, 

each edge between two vertices    {   } means that the learning 

object   is accessible from  . The accessibility property required 

to define edges between vertices relies on post and pre-requisite 

competencies associated to each learning object. 

Considering    {   }, this edge means that after having 

completed the learning object u, the learner should have the 

required competencies to undertake resource v. By extension, each 

vertex v is represented by a pair (    ,      ) where: 

      is a set of the competencies required by vertex v 

       is a set of competencies offered by vertex v 

The relationship between learning objects and competencies is 

multidimensional [6]: a learning object can require several 

competencies and transmit more than one competency to the 

learner as well. The existence of an edge between two learning 

objects u and v can be formalized by the following formula: 

       ( )         ( )       {   }  

(           ) 

where     ( )         ( ) means that the competencies required 

by v are provided by learning object u. Condition 1 is sufficient 

but not necessary. For example, before having completed u, the 

learner might already have some or the totality of the 

competencies required by v. This means that we may have an arc 

between u and v even though none the competencies required by v 

are provided by u. In other words, edge set   also depends on the 

learner’s competency set at time t:    (        ( )) and 

        ( )  {       } where        are competencies which 

the learner possesses. As a result, graph G is a dynamic directed 

graph and condition 1 can be strengthened by the necessary and 

sufficient condition 2: 

    {   }        ( )         ( )          ( )  

(           ) 

2.2 Model Dynamicity 
The dynamicity of our model is due to the fact that a learning 

object can bring competencies that could be among the 

prerequisites of future learning objects. 

 

Figure 1. Edge dynamicity.  

 

For example, as shown in Figure 1, a learning object D could be 

accessible to a learner if he has acquired the competencies c1 and 

c2. Assuming that competency c1 is provided by learning objects 

A and C and competency c2 is provided by learning objects B and 

C; D is reachable if learning objects A and B are completed or if 

learning object C is completed. If a learner completes learning 

object A at time t and learning object B at time t+1, the learner 

will have the competencies required to reach D and according to 

the condition 2, a new edge between B and D will be created (red 

edge on Figure 1). 

3. INVESTIGATED SOLUTION 

3.1 Reducing the solution space 
Eliminating irrelevant learning objects is generally the first step of 

a course generation tool [1, 15]. In our case, as the learning object 

repository is supposed to be very large, the learning objects 
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cannot all be checked individually. The approach we chose 

consists in reducing the considered solution space by obtaining an 

induced subgraph H which consists of all the vertices and edges 

between the vertices in G that could be used in the learning path.  

The algorithm can be seen as a loop generating complete sub-

graphs, or cliques, until one such clique is generated whose 

prerequisites are a subset of the learner’s competencies. Cliques 

are generated in a top-down fashion where we begin with the 

target clique, which is composed of a single learning object (we 

create a fictitious learning object, β, whose prerequisite 

competencies correspond to the list of the learner’s target 

competencies). Cliques are then generated by finding every vertex 

where at least one output competency is found in the prerequisite 

competencies of the clique (the union of all prerequisite 

competencies of every learning object within the clique) to which 

it is prerequisite. As such, cliques contain the largest possible 

subset of vertices which satisfies the condition “if every learning 

object in the clique is completed, then every learning object in the 

following clique is accessible”. We simplify the stopping 

condition by adding a second fictitious object, α, into the dataset 

with no prerequisite competencies and with the learner’s current 

competencies as its output competencies. If a clique contains this 

object, the stopping condition is true. 

 β6 
 

v1 A6
5     E

6
3,5  

↑  6 

v2 T3,2,4
7  U

5
0   

↑  3,5 

v3 L0,7
8,9

   I7
9 K

0
8   

↑  0, 7 

 Α8,9  ↑  8, 9 

α: Fictitious LO with initial learner competency state 

β: Fictitious LO with targeted learner competency state 

LO list of gained competencies LO list of prerequisite competencies 

Figure 2. Induced sub-graph generation. 

 

Considering the target competency β as shown in Figure 2, all the 

vertices leading to those competencies (competency 6 in Figure 2) 

are selected in a set v1, then the learning objects leading to the 

prerequisites of set v1 (competencies 3 and 5) are selected from 

graph G to create the set v2. This mechanism continues until the 

prerequisite competencies of the set vn are all competencies which 

the learner has already acquired.  

 

 

Figure 3. G’ consists of connected cliques. 

 

As shown in Figure 3, G’, consisting of the vertices E of sets 

v1,…,vn, is an induced sub-graph of G. If the learner has 

completed all the vertices of vi, he/she will have access to all the 

vertices of vi+1, thus all subsets of vertices of vi can be considered 

to be a clique. 

In addition to reducing the solution space, clique generation is 

also an efficient way to check whether a solution learning path 

exists between α and β. If the algorithm is not able to generate 

cliques linking α and β, there is no need to proceed forward with 

an algorithm aiming at finding one of the possible solutions. 

3.2 Greedy Algorithm 
Once the induced sub-graph is obtained, we use a greedy 

algorithm that searches for a local optimum within each clique. 

The definition of such a local optimum, depending on the dataset 

and the results pursued, has to follow a specific heuristic or 

strategy.  

The shortest path strategy seems to be widely accepted in the 

literature [1, 27]. This strategy is not necessarily the best to adopt 

in any situation since the proposed learning path might lead to the 

learning of non–essential competencies and potentially cognitive 

overloads. For example a learning object could lead to 

competency gains that would not be required to reach the targeted 

learner competency state; there is no need to understand the proof 

of the Landau Damping to learn about the history of theoretical 

physics. Considering a learning object presenting an introduction 

to the perturbation theory and a second one introducing the theory 

and the proof of the Landau Dumping, it might make sense to 

choose the first one in order to minimize the cognitive load to the 

learner. Some might argue that using such “straight to the point” 

heuristic might limit too drastically the natural curiosity of the 

learner. As any heuristic, we agree that it is discussable but this is 

not the purpose of this paper. 

The greedy algorithm considered attempts to find a path by 

considering each clique one after the other and reducing it to a 

minimal subset of itself which still verifies the condition “if every 

learning object in the clique is completed, then every learning 

object in the following clique is accessible”. 

  

Published in CEUR-WS: 
G-EDM workshop (Lynch and Barnes) 
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

8



 β6  

v1 A
6
5     E

6
3,5 ↑  6 

v2 T
3,2,4

7  U
5
0 ↑  3,5 

v3 L
0,7

8,9
   
I
7
9 K

0
8 ↑  0,7 

 Α
8,9

 ↑  8, 9 

α: Fictitious LO with initial learner competency state 

β: Fictitious LO with targeted learner competency state 

LO list of gained competencies LO list of prerequisite competencies 

Figure 4. Illustration of the greedy algorithm execution 

 

The first clique considered will be the one leading to the targeted 

competencies (the clique satisfying the prerequisites of β). In the 

case of the three cliques v1 to v3 as illustrated by Figure 3, v1 will 

be considered first followed by v2 then by v3. 

For each clique, the local optimum is considered obtained when 

the minimum subset of vertices with a minimum “degree”, being 

the sum of the number of prerequisite competencies and output 

competencies of the vertex, are found. In other words, the greedy 

algorithm select in each clique a set of learning objects 

minimizing the number of competencies required and gained in 

order to locally limit the cognitive load of the selected material. 

The greedy algorithm locally optimizes a function called “deg” 

(for degree) detailed in the following section. 

For clique v1, the selected learning object is A since its number of 

prerequisites is smaller than that of E while they share the same 

competency gain. As A has been chosen in v1, only the objects in 

v2 respecting the new v1’s prerequisites is chosen. As a result, the 

algorithm chooses U in v2. In v3, K and L lead to v2’s prerequisite 

but K requires fewer prerequisites than L, therefore K is selected 

and the proposed learning path is      . 

4. OPTIMIZATION 
In this section we present our mathematical model for learning 

path discovery and then we introduce the algorithm for solving 

our mathematical model. 

After eliminating irrelevant learning objects in the first step, we 

generate the optimal solution from the obtained induced sub-graph 

as presented in Figure 4. For this purpose, we applied in [7] a 

greedy algorithm to obtain an optimal or pseudo-optimal learning 

path from a set of cliques. Greedy heuristics are computationally 

efficient, but they sometimes fail to find a global optimum as we 

explain in the following section. 

4.1  Notation and limits of the Greedy 

heuristic 
Let     ,     ,      the matrices representing the distribution of 

the   competencies that are prerequisite to the   items contained 

in the   cliques, the   competencies that are gained when the n 

items of the   cliques are performed, and the clique distribution of 

the n items. Note that the matrix      could be considered as a Q-

Matrix [5]. 

 

Considering our example (Example 1): 

   {             }    
   {                 }       
   {        }   

 

         

(

 
 
 
 
 

         
          
          
          
          
          
          
          )

 
 
 
 
 

 

 

         

(

 
 
 
 
 

         
          
          
          
          
          
          
          )

 
 
 
 
 

 

 

         

(

 
 
 
 
 

      
    
    
    
    
    
    
    )

 
 
 
 
 

 

 

From this example the solution sequence using the greedy 

algorithm is      .  

To check if we get an optimal solution or not, we have to calculate 

the objective function called deg. The objective function     
returns the total number of prerequisite and gained competencies 

of a set of learning objects.  

We can draw from the previous example the following conditions 

to check if we have an optimal solution or not.  

Let   {               } a solution set (   contains at least one 

learning object as in example 3).  

                                           ( ) 

                             (  ) 

            (  {               })  ∑∑(           )

 

   

   

   

  (   ) 

 

                          
     

    (   {  
    

      
      

 })     (  {               })   

(  ) 

Condition ( ) and (  ) mean that the competencies required by a 

clique set have to be covered by the gains of the previous clique 

set and two different clique sets cannot share the same clique.  

While condition (   ) defines the deg function, condition (  ) 
introduces the optimality condition. A learning path is optimal if 
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no other path with a lower degree exists. However this doesn’t 

apply at the clique level since the optimal   
  is not necessary the 

set of clique   having the lowest degree. The global optimum is 

not the sum of the local optima calculated by the greedy 

algorithm. 

The following example highlights this case where local optima 

obtained by the greedy algorithm lead to non-optimal solution. 

Example 2: 

 β6 
 

v1 M6
5     N

6,7
4  

↑  6 

v2 O5
3,4  P

4
8   

↑  4,5 

v3 T8
7
   R3.4

7  
↑  3, 4, 8 

 α7  ↑  7 

 

   (         )                

   (         )               

The solution obtained by the greedy algorithm is        
      and the associated value of the objective function 

deg (  ) is equal to 10. As the algorithm starts from  , it chooses 

in each clique the learning object with the lowest degree which is 

  and keeps going until it reaches  .  

The path               is an alternative that the 

algorithm did not find. It’s even a better alternative since 

    (  )         (  )      and the optimal solution. 

The following example highlights another case where local 

optima obtained by the greedy algorithm lead to a non-optimum 

solution. In this example, two learning objects are selected in one 

of the generated cliques.  

Example 3: 

 β6 
 

v1 M6
5     N

6,7
4  

↑  6 

v2 O5
3,9  P

4
8   

↑  4,5 

v3 
T8

7
   Y9

7,  Z
3

7  
↑  3, 9, 8 

 α7  ↑  7 

 

   (           )                  

The objective function of the path (         ) is 9, 

which means that the path (         ) is the optimal 

solution. 

In the following section, we use the notation introduced here to 

propose a mathematical formulation of our learning path 

optimization problem as an integer programming problem.  

4.2 Formulating the integer programming 

problem 
Let us consider n items or learning objects and m competencies; 

     is the matrix representing m prerequisite competencies for 

the n items and      is the matrix representing the   

competencies that are gained when the n items are performed. In 

other words, if     = 1 means that the item i has competency j as 

one of its prerequisite competencies; and      = 1, means that the 

competency   is gained when the item   is performed. The 

personalized learning path may then be formulated as a binary 

integer programming (BIP) as follows: 

Minimize: 

∑(∑(         )

 

   

  )

 

   

      ( )            ( ) 

Subject to: 

       (∑      

   

   

)                              ( ) 

                                        {   }  

 

X = {xi, i=1,...,n},  are the decision variables such that: 

    {
                                  
                                            

        ( ) 

 

We suppose that x1 = 1 and xn = 1, knowing that: 

                                          

                                         

 

The function (1) represents the total number of prerequisite and 

gained competencies to be minimized. The constraints (2) states 

that if the item i has competency j as one of its prerequisite 

competencies; the competency j should be gained from the items 

on the learning path (1,…, i-1). Our problem is to minimize the 

objective function (1) subject to (2) and (3).  

To find the optimal learning path we have to solve the BIP 

problem with (n+m) constraints and n decision variables xi=1,…n 

 {   }   

Considering example 3, the prerequisite and gain matrices Q and 

G can be written as follows: 

The competencies that are required by the items are represented 

by the matrix Q (9x7). 
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The competencies that are gained by the items are represented by 

the matrix G (9x7). 

  

(

 
 
 
 
 
 
 
 
 

     

  
                            

        
        
        
        
        
        
        
        
        

)

 
 
 
 
 
 
 
 
 

 

 

The BIP formulation of example 3 is given as follows: 

Minimize :  

deg (X) = x1+2x2+2x3+2x4+3x5+2x6+2x7+3x8+x9 

Subject to: 

x2 - x1    

x3 - x1    

x4 - x1    

x5 - x3    

x5 - x4    

x6 - x2    

x7 - x5    

x8 - x6    

x9 – x7- x8    

    {   }         

x1 is the fictitious learning object α with initial learner 

competency state. 

x9 is the fictitious learning object   with targeted learner 

competency state. 

Since x1 = x9 = 1, then our BIP becomes: 

Minimize :    

deg (X) = 2x2+2x3+2x4+3x5+2x6+2x7 +3x8 

Subject to: 

x5 - x3    

x5 - x4    

x6 - x2    

x7 - x5    

x8 -  x6    

- x7 - x8     

    {   }         

4.3 The Branch-and-Bound (B&B) method 

for solving the BIP problem 
Since the BIP problem is bounded, it has only a finite number of 

feasible solutions. It is then natural to consider using an 

enumeration procedure to find an optimal solution. However, in 

the case of large learning object repositories (millions of items), 

an enumeration procedure might be ill adapted (even after 

reducing the solution space); therefore, it is imperative to cleverly 

structure the enumeration procedure so that only a tiny fraction of 

feasible solutions need to be explored.  

A well-known approach called branch-and-bound technique 

(B&B) provides such a procedure. B&B traces back to the 1960s’ 

and the work of Land and Doig [14]. Since then, B&B algorithms 

have been applied with success to a variety of operations research 

problems. B&B is a divide and conquer method. It divides a large 

problem into a few smaller ones (This is the “Branch” part). The 

conquering part estimates the goodness of the solution that is 

obtained from each of the sub-problems; the problem is divided 

until solvable sub-problems are obtained (this is the “bound” 

part). 

For the bounding part we use a linear programming relaxation to 

estimate the optimal solution [26]. For an integer programming 

model P; the linear programming model obtained by dropping the 

requirement that “all variables must be integers” is called the 

linear programming relaxation of P. 

Figure 5. Branch and bound algorithm that traverses the tree 

by solving BIPs at every node of the tree. 

 

The general approach of a BIP B&B algorithm [26] is presented 

in the following steps (see also Figure 5): 

Initialization: Set deg* = + ∞.  

The initial step represents the root node of the B&B search tree. 

The root node corresponds to the continuous relaxation of the 

BIP(0≤ X ≤1), the solution value provides lower bound. 

Apply the bounding step, fathoming step, and optimality test 

described below. If not fathomed, classify this problem as the one 

remaining “subproblems” for performing the first full iteration 

below. 

Steps for each iteration: 

1. Branching: Among the remaining (unfathomed) 

subproblems, select the one that was created most 

recently (break ties by selecting the subproblem with the 

larger bound). Branch from the node for this 

subproblem to create two new subproblems by fixing 

the next variable (the branching variable) at either 0 or 1 

(see Figure 5).  

2. Bounding For each new subproblem, obtain its bound 

by applying the simplex method to its LP-relaxation and 

rounding down the value of deg for the resulting 

optimal solution. 

3. Fathoming (Pruning rules): The pruning rules for B&B 

BIP are based on optimality and feasibility of BIP. For 
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each new sub-problem, apply the fathoming tests and 

discard those sub-problems that are fathomed by any of 

the tests.  

Optimality test: Stop when there are no remaining sub-problems: 

 The current incumbent is optimal,  

 Otherwise, return to perform another iteration. 

A sub-problem is fathomed (dismissed from further consideration) 

if it verifies one of the following tests: 

1. The relaxation of the sub-problem has an optimal 

solution with deg < deg  where deg* is the current best 

solution (The solution is dominated by upper bound); 

2. The relaxation of the sub-problem (LP-relaxation) has 

no feasible solution; 

3. The relaxation of the sub-problem has an optimal 

solution that has all binary values. (If this solution is 

better than the incumbent, it becomes the new 

incumbent, and test1 is reapplied to all unfathomed sub-

problems with the new larger deg*). 

For example, the example 3 solved by B&B produces an optimal 

solution with deg* = 9 and x2=1, x6=1, x8=1 where the number of 

nodes explored is 1 because the first LP-relaxation at node 1 gives 

an integer optimal solution with deg*=9 and the 3rd fathomed test 

is true, so we do not need to branch anymore. 

Decision Variables x1 x2 x3 x4 x5 x6 x7 x8 x9 

LO α T Y Z O P M N   

X* 1 1 0 0 0 1 0 1 1 

Figure 6. Solution of example 3in the B&B algorithm. 

 

As illustrated in Figure 6, the optimal solution of the B&B 

algorithm is X*={1, 1, 0, 0, 0, 1, 0, 1, 1} and the optimal path is: 

         .  

5. CONCLUSION 
The clique based approach is an asset since it offers an efficient 

way to reduce the solution space and check the existence of a 

solution. However, a greedy search within the cliques to find a 

leaning path does not lead, in many cases, to the best learning path 

according to the criteria considered. 

Binary integer programming is a well-known mathematical 

optimization approach. While reformulating the conditions an 

optimal learning path should meet, we realised how we could 

benefit from expressing the constraints as a binary programming 

problem.  

Our preliminary implementation of the proposed optimization 

using the bintprog function (MATLAB), a function based on the 

branch- and-bound (B&B) algorithm, shows the accuracy of the 

proposed integer program model.   

In future work, we will apply the proposed binary integer model 

in order to build a learning design recommendation system in the 

case where learning objects are stored in very large repositories. 

Even though the B&B algorithm is highly accurate and somehow 

computationally efficient, it is not efficient enough to deal with 

very large size problem instances. In some cases, the bounding 

step of B&B is not invoked, and the branch and bound algorithm 

can then generate a huge number of sub-problems.  

Moreover, as mentioned in [7], the efficiency of reducing the 

solution space with the cliques’ mechanism is highly dependent 

on the dataset topology (average number of gain and prerequisite 

competencies per learning object). The solution space may remain 

large after the reduction 

Therefore, to deal with very large problems, we will implement a 

variant of the B&B algorithm such as Branch & Cut [2] or Branch 

& Price [4]. Applegate et al. [2] showed how Branch & Cut could 

get a global optimal for extremely large binary optimization 

problems. It will be then interesting to measure both in terms of 

computational time and accuracy how the greedy search compares 

to the B&B-like approach.  

6. ACKNOWLEDGMENTS 
This work is part of the National Research Council of Canada’s 

Learning and Performance Support Systems (NRC LPSS) 

program. The LPSS program addresses training, development and 

performance support in all industry sectors, including education, 

oil and gas, policing, military and medical devices. 

7. REFERENCES 
[1] Alian, M. Jabri, R. 2009. A shortest adaptive learning path in 

e-learning systems: Mathematical view, Journal of American 

Science 5(6) (2009) 32-42. 

[2] Applegate, D., Bixby, R., Chvatal, V. and Cook, W. 1998. 

On The solution of traveling salesman problems, in: Proc. 

Int. Congress of Mathematicians, Doc. Math. J. DMV, Vol. 

645. 

[3] Atif, Y., Benlarmi, R., and Berri, J. 2003. Learning Objects 

Based Framework for Self-Adaptive Learning, Education 

and Information Technologies, IFIP Journal, Kluwer 

Academic Publishers 8(4) (2003) 345-368. 

[4] Bamhart, C, Johnson, E. L., Nemhauser, G. L., Savelsbergh, 

M. W. P. and Vance, P. H. 1998. Branch-and-price: column 

generation for huge integer programs, Operations Research 

46:316. 

[5] Barnes, T. 2005. The Q-matrix Method: Mining Student 

Response Data for Knowledge. Proceedings of the Workshop 

on Educational Data Mining at the Annual Meeting of the 

American Association for Artificial Intelligence. 

[6] Carchiolo, V., Longheu, A., and Malgeri, M. 2010. Reliable 

peers and useful resources: Searching for the best 

personalised learning path in a trust- and recommendation-

aware environment, Information Sciences 180(10) (2010) 

1893-1907. 

[7] Durand, G., Belacel, N., and Laplante, F. 2013. Graph theory 

based model for learning path recommendation. Information 

Sciences. 251(10) (2013) 10-21.  

[8] Durand, G., Laplante, F. and Kop, R. 2011. A learning 

Design Recommendation System Based On Markov 

Decision Processes, Proc. 17th ACM Conference on 

Knowledge Discovery and Data Mining (SIGKDD) 

Workshop on Knowledge Discovery in Educational Data, 

San Diego, CA. 

[9] Durand, G., Downes, S. 2009. Toward Simple Learning 

Design 2.0. In: 4th Int. Conf. on Computer Science 

&Education 2009, Nanning, China, 894-897. 

[10] Godoy, D., Amandi, A. 2010. Link Recommendation in E-

learning Systems based on Content-based Student Profiles, 

In: Romero C., Ventura S., Pechenizkiy, M., Baker, R. 

(Eds.), Handbook of Educational Data Mining, Data Mining 

Published in CEUR-WS: 
G-EDM workshop (Lynch and Barnes) 
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

12



and Knowledge Discovery Series, Chapman & Hall/CRC 

Press, 273-286. 

[11] Huang, Y.M., Chen, J.N., Huang, T.C., Jeng, Y.L., and Kuo, 

Y.H. 2008. Standardized course generation process using 

Dynamic Fuzzy Petri Nets, Expert Systems with 

Applications, 34 (2008) 72-86. 

[12] ISO 24763/final version: Conceptual Reference Model for 

Competencies and Related Objects, 2011.  

[13] Karampiperis, P., Sampson, D. 2005.Adaptive learning 

resources sequencing in educational hypermedia systems. 

Educational Technology & Society 8 (4) (2005) 128-147. 

[14] Land, A. H., Doig, A. G. 1960. An automatic method of 

solving discrete programming problems. Econometrica 

28(3), 497–520. 

[15] Liu, J., Greer J. 2004. Individualized Selection of Learning 

Object, In: Workshop on Applications of Semantic Web 

Technologies for e-Learning, Maceió, Brazil. 

[16] Pavlik, P. I. Jr., Presson, N., and Koedinger K. R. 2007. 

Optimizing knowledge component learning using a dynamic 

structural model of practice, Proc. 8th International 

Conference on Cognitive Modeling. Ann Arbor, MI.  

[17] Sicilia, M.-A., Sánchez-Alonso, S. and García-Barriocanal, 

E. 2006. On supporting the process of learning design 

through planners, Proc. Virtual Campus Post-Selected and 

Extended, 81–89. 

[18] Tang, T.Y., Mccalla, G.G. 2010. Data Mining for Contextual 

Educational Recommendation and Evaluation Strategies, In: 

Romero C., Ventura S., Pechenizkiy, M., Baker, R. (Eds.), 

Handbook of Educational Data Mining, Data Mining and 

Knowledge Discovery Series, Chapman & Hall/CRC Press, 

Chapter 18,257-271. 

[19] Trcka, N., Pechenizkiy, M. and Van-Deraalst, W. 2010. 

Process Mining from Educational Data, In: Romero C., 

Ventura S., Pechenizkiy, M., Baker, R. (Eds.), Handbook of 

Educational Data Mining, Data Mining and Knowledge 

Discovery Series, Chapman & Hall/CRC Press, Chapter 9, 

123-141. 

[20] Ullrich, C., Melis, E. 2010. Complex Course Generation 

Adapted to Pedagogical Scenarios and its Evaluation, 

Educational Technology & Society, 13 (2) (2010) 102–115. 

[21] Ullrich, C., Melis, E. 2009. Pedagogically founded 

courseware generation based on HTN-planning, Expert 

Systems with Applications 36(5) (2009) 9319-9332. 

[22] Ullrich C. 2005. Course Generation Based on HTN Planning, 

Proc. 13th Annual Workshop of the SIG Adaptivity and User 

Modeling in Interactive Systems, Saarbrucken, Germany,74-

79. 

[23] Vassileva, J., Deters, R. 1998, Dynamic courseware 

generation on the www, British Journal of Educational 

Technology, 29(1) (1998) 5–14. 

[24] Viet, A., Si, D.H. 2006. ACGs: Adaptive Course Generation 

System - An efficient approach to Build E-learning, Proc. 

6th IEEE International Conference on Computer and 

Information Technology, Jeju Island, Korea, 259-265. 

[25] Wiley, D.A. 2002. Connecting Learning Objects to 

Instructional Design Theory: A Definition, a Metaphor, and a 

Taxonomy, In: The Instructional Use of Learning Objects, 

D. A. WILEY (Ed.), 3-23. 

[26] Winston, W.L., Venkataramanan, M. 2003. Operations 

Research: Introduction to Mathematical Programming. 

Thompson, 4th Edition. 

[27] Zhao, C., Wan, L. 2006. A Shortest Learning Path Selection 

Algorithm in E-learning, Proc. 6th IEEE International 

Conference on Advanced Learning Technologies, Kerkrade, 

The Netherlands, 94-95. 

[28] Zhou, M., Xu, Y., Nesbit, J.C. and Winne, P.H. 2010. 

Sequential pattern analysis of learning logs: Methodology 

and applications, In: Romero C., Ventura S., Pechenizkiy, 

M., Baker, R. (Eds.), Handbook of Educational Data Mining, 

Data Mining and Knowledge Discovery Series, Chapman & 

Hall/CRC Press, Chapter 8, 107-120. 

 

 

Published in CEUR-WS: 
G-EDM workshop (Lynch and Barnes) 
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

13



On-Line Plan Recognition in Exploratory Learning
Environments

Reuth Dekel and Ya’akov (Kobi) Gal
Dept. of Information Systems Engineering

Ben-Gurion University
Beer-Sheva 84105, Israel

ABSTRACT
Exploratory Learning Environments (ELE) are open-ended and flex-
ible software, supporting interaction styles by students that include
exogenous actions and trial-and-error. ELEs provide a rich edu-
cational environment for students and are becoming increasingly
prevalent in schools and colleges, but challenge conventional plan
recognition algorithms for inferring students’ activities with the
software. This paper presents a new algorithm for recognizing stu-
dents’ activities in ELEs that works on-line during the student’s
interaction with the software. Our approach, called CRADLE, re-
duces the amount of explanations that is maintained by the plan
recognition in a way that is informed by how people execute plans.
We provide an extensive empirical analysis of our approach using
an ELE for chemistry education that is used in hundreds of colleges
worldwide. Our empirical results show that CRADLE was able to
output plans exponentially more quickly than the state-of-the-art
without compromising correctness. This result was confirmed in a
user study that included a domain expert who preferred the plans
outputted by CRADLE to those outputted by the state-of-the-art
approach for the majority of the logs presented.

1. INTRODUCTION
This paper focuses on inferring students’ activities in educational
environments in which students engage widely in exploratory be-
havior, and present new approaches for plan recognition in such
settings that can outperform the state-of-the-art.

Our empirical analysis is based on students’ interactions with an
Exploratory Learning Environment (ELE) in which students build
scientific models and examine properties of the models by running
them and analyzing the results[1, 6]. Such software is open-ended
and flexible and is generally used in classes too large for teach-
ers to monitor all students and provide assistance when needed.
The open-ended nature of ELEs affords a rich spectrum of interac-
tion for students: they can solve problems in many different ways,
engage in exploratory activities involving trial-and-error, they can
repeat activities indefinitely, and they can interleave between activ-
ities.

These aspects significantly hinder the possibilities of making sense
of students’ activities without some sort of support. This paper
presents a new algorithm for recognizing students’ interactions with
ELEs in real time, which can support both teachers and students.
For teachers, this support takes the form of visualizing students’
activities during their interaction in a way that faciliteates their un-
derstanding of students’ learning. For students, this support can
take the form of machine generated intervention that guides their
learning and adapts to individual students’ needs based on their in-
ferred behavior.

The focus of this paper is on-line recognition that occurs during the
students’ actual interaction with the ELE, and outputs a hierarchy
of interdependent activities that best describe the student’s work at
a given point in time. Recognizing students’ activities this way is
challenging because the algorithm needs to reason about and main-
tain possible explanations for future (yet unseen) student activities.
The number of possible explanations grows exponentially with the
number of observations. As we show in the empirical section of
this paper, this significantly hinders the performance of the state-
of-the-art, even for very short interaction sequences.

Our algorithm, called CRADLE (Cumulative Recognition of Ac-
tivities and Decreasing Load of Explanations) builds on an exist-
ing approach for on-line plan recognition, but filters the space of
possible explanations in a way that reflects the style of students’
interactions in ELEs. The filtering aim is to produce complete, par-
simonious and coherent explanations of students’ interactions that
can be easily understood by teachers and education researchers.

Our empirical evaluations were based on comparing CRADLE to
the state-of-the-art approach for recognizing logs of students’ in-
teractions with a widely used ELE for chemistry education. We
evaluated both of the approahes in terms of computation speed and
correctness of the outputted explanation, as determined by a do-
main expert. Succeeding in both of these measures is criticial for
an on-line plan recognition approach to work successfully.

Our empirical results show that CRADLE was able to outperform
the state-of-the-art without compromising correctness. Specifically,
although the state of the art approach is (in theory) complete, it was
not able to terminate within an allocated time frame on many logs.
In contrast, CRADLE was able to produce correct explanations for
such logs. In addition, CRADLE significantly outperformed the
state-of-the-art both in terms of correctness and speed of recogni-
tion.

These results demonstrate the benefit of applying novel plan recog-
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nition technologies towards intelligent analysis of students’ inter-
actions in open-ended and flexible software. Such technologies
can potentially support teachers in their understanding of student
behavior as well as students in their problem solving, and lead to
advances in automatic recognition in other exploratory domains.

2. RELATED WORK
Our work relates to two strands of research, inferring students’ ac-
tivities in educational software, and on-line planning algorithms in
artificial intelligence. We relate to each of these in turn.

2.1 Inferring Students’ Activities in ELEs and
ITS systems

We first describe works that infer students’ plans from their inter-
actions with pedagogical software that assume the complete inter-
action sequence is known in advance. Gal et al. [11] and Reddy
et al. [10] used plan recognition to infer students’ plans from their
interactions with TinkerPlots, an exploratory learning environment
for statistics. Both of these approaches take as input a complete
interaction sequence of a student as well as recipes for ideal solu-
tions to TinkerPlots problems, and infer the plan used by the student
retrospectively. Reddy et al. [10] proposed a complete algorithm
which modeled the plan recognition task as a Constraint Satisfac-
tion Problem (CSP). The complexity of the CSP algorithm is ex-
ponential in the size of both the interaction sequence and the data
set containing the recipes. This approach requires that all possible
plans can be explicitly represented, and therefore does not support
recursive grammars which are needed to understand students’ ac-
tivities in VirtualLabs.

Other works have implemented plan recognition techniques to model
students’ activities in Intelligent Tutoring Systems (ITS) during
their interactions. In contrast to exploratory learning environments,
in intelligent tutoring systems the system takes an active role in
students’ interactions, as it tutors the student by providing feed-
back and hints. As an example, in the Andes physics tutor wrong
steps are marked by the tutor and the students may ask for a “what’s
wrong here?” hint from the tutor. In addition, students can ask for a
“what next?” hint to receive instruction when uncertain about how
to proceed [20]. These systems are typically more closed-ended
and less exploratory than ELEs. In the Andes physics tutor a prob-
abilistic algorithm was used to infer the solutions plan followed by
the student. For each Andes problem, a solution graph represent-
ing the possible correct solutions to the problem was automatically
generated and were modeled using a dynamic Bayesian network.
The algorithm observes students’ actions and updates the probabil-
ities of the different possible plans. The inferred plans were used
to generate hints and to update students’ cognitive models.

The tutors developed by the ACT-R group for teaching LISP, geom-
etry and algebra, performed plan recognition using a model-tracing
algorithm that tracked students’ solution plans [2, 9]. These tutors
maintained a list of production rules that can be triggered to accom-
plish the goal and sub-goals for solving a problem. The algorithm
infers students’ plans by identifying the production rules that were
triggered according to the actions students had taken. After each
observed action, the algorithm commits to a production rule that
it infers the student triggered to perform the action. The system
constrained students to remain on “correct paths” throughout their
session by providing feedback after each action taken by the stu-
dent. Moreover, ambiguities regarding the production rules being
used by students were resolved by querying the student. By com-

mitting to one production rule at a time and enforcing students to
remain on correct solution paths, the complexity of the plan recog-
nition task in intelligent tutoring systems is substantially reduced.

Lastly, we mention works that use recognition techniques to model
students’ activities in Intelligent Tutoring Systems [20, 7, 21]. Our
work is distinct from works on plan recognition in intelligent tu-
toring systems in several ways. First, ITS are more closed-ended
from ELEs. Thus, students’ activities with such software more con-
strained and less exploratory, and are easier to model and recognize.
In addition, the tutoring systems described above provided constant
feedback to students which helped them remain on correct solution
paths that are recognizable by the model used. Second, the tutoring
systems described above explicitly modeled all possible solution
plans for solving a specific problem. This is not possible in the
VirtualLabs domain, as there may be an infinite number of possible
plans for solving a problem.

2.2 On-line Plan Recognition in Artificial In-
telligence

We now discuss general work from Artificial Intelligence that is
concerned with plan recognition in general, rather than recognizing
students’ activities in pedagogical software. On-line plan recogni-
tion is a significantly more difficult task than its off-line variant.
The fact that the interaction sequence is not observed ahead of time
raises additional challenges to on-line plan recognition. Blaylock
et al. [4] developed an algorithm to infer the goal of users from
their actions in a Linux shell environment. Pynadath [19] proposes
a probabilistic inference of plan, but requires the observations to
be fully ordered. The approach by Bui [5] used particle filter-
ing to provide approximate solutions to on-line plan recognition
problems. Avrahami and Kaminka [3] presented a symbolic on-
line plan recognition algorithm which keeps history of observations
and commits to the set of possible plans only when it is explicitly
needed for querying. Geib and Goldman presented PHATT [14], a
probabilistic on-line plan recognition algorithm that builds all pos-
sible plans incrementally with each new observation. This algo-
rithm was applied to recognizing users’ strategies in real-time video
games [17].

All of these works have been evaluated on simulated, synthesized
problems [19, 3, 14] or on toy problems [4, 17]. These approaches
do not scale to the complexities of real-world domains. An ex-
ception is the work of Conati et al. [8, 18] who used on-line plan
recognition algorithms to infer students’ plans to solve a problem
in an educational software for teaching physics, by comparing their
actions to a set of predefined possible plans. Unfortunately, the
number of possible plans grow exponentially in the types of do-
mains we consider, making it unfeasible to apply this approach.

3. PLANS AND EXPLANATIONS
In this section we provide the basic definitions that are required for
formalizing the on-line plan recognition problems in ELEs. Through-
out the paper we will use an existing ELE for chemical education
called VirtualLabs to demonstrate our approach which is actively
used by students worldwide as part of their introductory chemistry
courses. VirtualLabs allows students to design and carry out their
own experiments for investigating chemical processes by simulat-
ing the conditions and effects that characterize scientific inquiry in
the physical laboratory [22]. We use the following problem called
“Oracle”, which is given to students:
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Figure 1: Snapshot of VirtualLabs

(a) MSD[s1 + s2, d]→ MSD[s1, d],MSD[s2, d]

(b) MIF[s1, d2]→ MSD[s1, d1],MSD[d1, d2]

(c) MSD[s, d]→ MIF[s, d]

(d) MSD[s, d]→ MS[s, d]

Figure 2: Recipes for VirtualLabs

Given four substances A,B,C, and D that react in a
way that is unknown, design and perform virtual lab
experiments to determine the correct reaction between
these substances.

The flexibility of VirtualLabs affords two classes of solution strate-
gies to this problem (and many variations within each). In the first
strategy, a student mixes all four solutions together, and infers the
reactants by inspecting the resulting solution. In the second strat-
egy, a student mixes pairs of solutions until a reaction is obtained.
A snapshot of a student’s interaction with VirtualLabs when solv-
ing the Oracle problem is shown in Figure 1.

3.1 Definitions
We make the following definitions taken from the classical plan-
ning literature [16]. We use the term basic actions to define rudi-
mentary operations that cannot be decomposed. These serve as the
input to our plan recognition algorithm. For example, the basic
“Mix Solution” action (MS1[s = 1, d = 3]) describes a pour from
flask ID 1 to flask ID 3. A log is the output of a student’s interac-
tion. It is a sequence of basic level actions representing students’
activities’. This is also the input to the plan recognition algorithm
described in the next section.

Complex actions describe higher-level, more abstract activities that
can be decomposed into sub-actions, which can be basic actions
or complex actions themselves. For example, the complex action
MSD[s = 1+5, d = 3] (as shown in Figure 3) represents separate
pours from flask ID 1 and 5 to flask ID 3.

A recipe for a complex action specifies the sequence of actions
required for fulfilling the complex action. Figure 2 presents a set of
basic recipes for VirtualLabs . In our notation, complex actions are
underlined, while basic actions are not. Actions are associated with

parameters that bind to recipe parameters. Recipe (a) in the figure,
called Mix to Same Destination (MSD), represents the activity of
pouring from two source flasks (s1 and s2) to the same destination
flask (d). Recipe (b), called Mix via Intermediate Flask (MIF),
represents the activity of pouring from one source flask (s1) to a
destination flask (d2) via an intermediate flask (d1).

Recipes can be recursive, capturing activities that students can re-
peat indefinitely. Indeed, this is a main characteristic of students’
use of ELEs. For example, the constituent actions of the complex
action MSD in recipe (a) decompose into two separate MSD ac-
tions. In turn each of these actions can itself represent a Mix to
Same-Destination action, an intermediate-flask pour (by applying
recipe (c)) or a basic action mix which is the base-case recipe for
the recursion (recipe (d)). Recipe parameters also specify the type
and volume of the chemicals in the mix, as well as temporal con-
straints between constituents, which we omit for brevity.

More generally, the four basic recipes in the figure can be permuted
to create new recipes, by replacing MSD on the right side of the
first two recipes with MIF or MS. An example of a derivation is the
following recipe for creating an intermediate flask out of a complex
Mix to Same Destination action and basic Mix Solution action.

MIF[s1, d2] → MSD[s1, d1],MS[d1, d2] (1)

These recipes may be combined to describe the different solution
strategies by which students solve problems in VirtualLabs (e.g.,
capturing students mixing all possible substance pairs versus mix-
ing all four pairs together).

A set of nodes N fulfills a recipe R if there exists a one-to-one
matching between the constituent actions in R and their parameters
to nodes in N . For example, the nodes MS3[s = 5, d = 4] and
MS5[s = 4, d = 3] fulfill the Mixing via an Intermediate Flask
recipe shown in Equation 1.

3.2 Planning
Planning is the process by which students use recipes to compose
basic and complex actions towards completing tasks using Virtu-
alLabs . Formally, a plan is an ordered set of basic and complex
actions, such that each complex action is decomposed into sub-
actions that fulfill a recipe for the complex action. Each time a
recipe for a complex action is fulfilled in a plan, there is an edge
from the complex action to its sub-actions, representing the recipe
constituents.

Figure 3 shows part of a plan describing part of a student’s inter-
action when solving the Oracle problem. The leaves of the trees
are the actions from the student’s log, and are labeled by their or-
der of appearance in the log. For example, the node labeled with
the complex action MSD[s = 1 + 5, d = 3] includes the activ-
ities for pouring two solutions from flask ID 1 and ID 5 to flask
ID 3. The pour from flask ID 5 to 3 is an intermediate flask pour
(MIF[s = 5, d = 3] ) from flask ID 5 to ID 3 via flask ID 4. The
root of the plan represents te complex action of pouring three sub-
stances from flasks ID 1, 5 and 6 to flask ID 3.

In a plan, the constituent sub-actions of complex actions may in-
terleave with other actions. This way, the plan combines the free-
order nature of VirtualLabs recipes with the exploratory nature of
students’ learning strategies. Formally, we say that two ordered
complex actions interleave if at least one of the sub-actions of the
first action occurs after some sub-action of the second action. For
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Figure 4: Example of an Explanation containing a Single Plan

Figure 5: Example of an Explanation containing Two Plans,
one of which has an open frontier

example, the nodes MS3[s = 5, d = 4] and MS5[s = 4, d = 3]
and MS2[s = 6, d = 8] and MS4[s = 8, d = 3] both fulfill the
Mixing via an Intermediate Flask recipe shown in Equation 1, but
they are interleaved in the log. This interleaving quality makes the
plan recognition task even more challenging.

4. ONLINE PLAN RECOGNITION
In this section we address the problem of on-line recognition in
which agents’ plans need to be inferred in real-time during exe-
cution. On-line recognition is essential for settings in which it is
necessary to generate interventions to users. In ELEs, such in-
tervention can provide feedback to students about their progress,
alerting them to recurring mistakes or giving them hints about next
steps during their exploration.

The fact that the interaction sequence is not known in advance re-
quires to maintain the set of all plans that can explain the observa-
tions, including leaving place-holders for actions in the plan that re-
late to unseen future activities. Following Geib and Goldman [12],
we define an explanation of actions O at time t a set of plans, such
that there is an injective mapping from each action in O to a leaf
in one of the plan instances. Each plan in an explanation describes
a non-overlapping subset of the actions O. Some leaves in an ex-
planation may not be included in O, and describe actions that are
expected to appear in the future. These leaves are called the open
frontier of the plan.

To illustrate, consider the recipes for VirtualLabs and the following
explanations: Figure 4 shows a possible explanation for the obser-
vation sequence SM [s = 2, d = 1], SM [s = 3, d = 1], SM [s =
5, d = 1], SM [s = 6, d = 1] in which all of the actions are con-
stituents of the complex action MSD.1 The explanation consists
of a single plan.

Figure 5 shows a possible explanation for the same observation se-
quence, but in this case, the explanation consists of two plans. Here,
the bold action SM [s = 1, d = ∗] represents a future (unseen) ob-
servation and is in the plan frontier. If the fifth observation turns
1For expository purposes we have omitted the parameters from
nodes above the leaves.

out to be an SM action with s = 1 (the parameter d does not hold
any constraints), then the algorithm will incrementally combine this
observation into the explanation. Otherwise, a third plan instance
will be added to the explanation that matches the new observation,
leaving SM [s = 1, d = ∗] in (and possibly adding new actions to)
the plan frontier. We note that the plan frontier may also include
complex actions, allowing to reason about future higher-level ac-
tivities for which none of the constituents have been observed. The
fact that the algorithm needs to maintain explanations for unseen
observations is a significant computational challenge, as the possi-
ble number of explanations grows exponentially with the number
of observations.

5. CRADLE AND PHATT
The purpose of this section is to describe the state-of-the art in on-
line plan recognition approach called PHATT, and our proposed
extension to this approach for recognizing students’ activities in
ELEs.

We define the on-line plan recognition as follows: Given a set of
observation at time t, output a set of explanations such that each ex-
planation in the set can be used to derive the observations. PHATT
is a top-down probabilistic algorithm that incrementally builds the
set of possible explanations for explaining an observation sequence.
PHATT works as follows: For each observation ot+1, it takes the
set of the possible explanations for the previous observations Ot,
and tries to incorporate the new observation into each of the expla-
nations in the set. This can be done either by integrating the new
observation into one of the existing plans of the explanation, or by
adding the observation as the first step of a new plan that will be
added to the forest of plans in the explanation.

5.1 Using Filters
We now describe the basis for our proposed extension to PHATT,
which is constraining the space of possible explanations in a way
that reflect students’ use of educational software. Our approach
is called CRADLE (Cumulative Recognition of Activities and De-
creasing Load of Explanations).2

Cradle extents the PHATT algorithm by constraining the space of
possible explanations. We designed several “filters” that reduce the
size of the explanation set in a way that reflects the intended use of
plan recognition in ELEs. Specifically, the filters aim to produce
complete, parsimonious and coherent explanations of students’ in-
teractions that can be easily understood by teachers and education
researchers. We detail these filters below:

Explanation size This filter prefers explanations with smaller num-
ber of plans. Specifically, we discard explanations in which
the number of plans is larger than a pre-computed threshold
(the average number of plans per explanation).

Aging This filter prefers explanations in which successive obser-
vations extend existing sub-plans in the explanation rather
than generate new plans. We discard explanations in which
observations have not extended an existing plan for a given
number of iterations.

2Also, cradle is the name of the mechanical contrivance used in
placer mining, consisting of a box on rockers and moved by hand,
used for washing out the gold-bearing soil, leaving only nuggets of
gold.
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Figure 3: A partial plan for a student’s log

Frontier size This filter prefers explanations which makes fewer
commitments about future observations. It measure the amount
of actions in the frontier that exist in each explanation, and
discard explanations where this amount is above the average.

Probability This filter prefers explanations with a higher likeli-
hood. It discards explanations whose probability of generat-
ing the observation sequence is lower than the average prob-
ability of the other explanations.

5.2 Augmenting PHATT
Figure 6 describes how CRADLE extends PHATT using the fol-
lowing methods, which we outline in some level of abstraction.

• Expand. Given a set of explanations that derive Ot, it is
given a new observation ot+1, this method creates all pos-
sible subplans in which ot+1 is a leaf, and tries to combine
each of these subplans in all possible ways to each explana-
tion. Each such subplan can be combined in two ways: (1)
combineInExistingTrees - if the root of the subplan matches
one of the plan frontier items, it replaces the frontier item
with the subplan (replacing the placeholder with a concrete
observation) or (2) extendWithANewTree - if the root of the
subplan matches a possible goal, it is adding the subplan as
the top levels of a new plan in the explanation’s forest of
plans.

• Filter. This function takes a set of explanations, calculates
the average age, frontier size and amount of trees per expla-
nation and filtered away all explanations with values above
average. This means it prefers explanations with small fron-
tier (less future expected observations), small age (observa-
tions continue existing plans instead of creating new ones)
and small amount of trees (observations related to the same
plan rather than describe different plans).

• Main. This is the main function of the new recognition pro-
cess. It is made out of the two previous described stages -

Extend and Filter - performed alternatly for each new obser-
vation encountered.

6. EMPIRICAL METHODOLOGY
The purpose of this section is to evaluate CRADLE to PHATT al-
gorithm for real-world data sets of students’ interactions with Vir-
tualLabs . The PHATT approach is representative of an array of
algorithms in the literature for performing on-line plan recognition
by maintaining sets of observations (see for example the ELEXIR
and YAPPR algorithm [13, 15]) and would behave similarly on our
ELE data sets.

Specifically, we sampled 16 logs of students’ interactions who solved
two problems. The first was the Oracle problem described earlier.
The second problem was called “Unknown Acid” and required stu-
dents to determine the concentration level of an unknown solution.
The length of the logs were chosen to have a wide range, between
4 to 152 actions.

6.1 Completeness and Run-time
The number of explanations maintained by the PHATT approach
grows exponentially in the number of observations. It can be shown
that for n observations and a set g of possible extensions for an
explanation, the number of possible explanations is bounded by
n ∗ |g|n. To illustrate, a 4 observation log outputted 142 differ-
ent explanations, and a log of 12 observations generated more than
10,000 explanations. Most of these explanations included an abun-
dance of plan instances with extremely large frontiers, clearly not
the most coherent descriptions of the students’ work.

Figure 7 shows the performance obtained using PHATT, augmen-
tation of PHATT with single filter, and CRADLE. The x-axis in the
figure corresponds to ranges of different log sizes. The y-axis de-
termines the success ratio by measuring whether the algorithm was
able to terminate and produce the explanations describing the stu-
dent’s activities within an upper bound of two hours of CPU time.
As shown by the figure, PHATT was not able to terminate on logs
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1: function EXPAND(o,Exps) . o: a new observation, Exps is
the set of all explanations until o

2: newExps = []
3: for all explanation e ∈ Exps do
4: newExps += e.combineInExistingTrees(o)
5: newExps += e.extendWithANewTree(o)
6: end for

return newExps
7: end function

8: function FILTER(Exps) . Exps is the set of all explanations
collected so far

9: filteredExps = []
10: for all explanation e ∈ Exps do
11: if e.age≤ averageAge & e.frontierSize≤ averageFron-

tierSize & e.trees ≤ averageTrees then
12: filteredExps += e
13: end if
14: end for

return filteredExps
15: end function

16: function MAIN(Obs) . Obs is the set of all observations
17: tempExps = [〈emptyExp〉] . Only one explanation - the

empty explanation
18: for all observation o in Obs do
19: allExps = Expand(o, tempExps)
20: filteredExps = Filter(allExps)
21: tempExps = filteredExps
22: end forreturn tempExps
23: end function

Figure 6: Main functions of the CRADLE algorithm

over 4 actions within this designated time frame. In contrast, CRA-
DLE was able to significantly increase the performance of PHATT
algorithm by applying the filters. Specifically, applying the differ-
ent filters independently allowed to improve the success ratio for
some of the logs, with the highest improvement attributed to the
CRADLE approach which applied the age, frontier size and expla-
nation size filters. Interestingly, there was not a single filter method
that outperformed all of the other methods for all log size.

Next, we compare the run-time of CRADLE and PHATT on frag-
ments of logs for which PHATT was able to terminate. Figure 8
shows the average run-time on each size of log, measured in sec-
onds, presented in a logarithmic scale. It can be seen that the aver-
age run-time of CRADLE is exponentially better than the average
run-time of PHATT for the aforementioned logs.

6.2 Domain Expert Evaluation
In this section, we show that although the CRADLE approach re-
duces the number of possible explanations that is maintained by the
plan recognition algorithm, it does not hinder the correctness of the
algorithm. To this end, we sampled 20 logs of the Oracle problem
and presented the output of the PHATT and CRADLE approach to
a domain expert.3. We ran the cut logs on PHATT and CRADLE
and collected the outputted set of explanations for each log. For

3Logs of length greater than 6 actions were cut arbitrarily at
6,7,9,10 and 11 actions, in order to simulate incomplete interac-
tion sequences and to allow PHATT to terminate on these logs in
reasonable time.

Figure 7: Performance of PHATT, CRADLE and Single Filter
Variants on Various Log Sizes

Figure 8: Runtime of PHATT and CRADLE

each of the approaches, we chose to present the domain expert with
the explanation that did not include an open frontier (that is, the ex-
planations provided a complete description of the activities of the
student). If there was no explanations without an open frontier, we
chose the most likely explanation as measured by its probability.

Out of the 20 examined logs, in 9 logs PHATT and CRADLE’s ex-
planations were the same (though CRADLE was able to output the
solution exponentially faster). We presented the explanations for
which CRADLE and PHATT different to a domain expert, who is
one of the developers of the VirtualLabs software, who compared
between the two explanations. We did not label the explanations
with the algorithm that generated them. In 8 out of these 11 logs,
the domain expert preferred explanations which were presented by
CRADLE over the explanations of PHATT. In one case, the do-
main expert said none of the explanations describe the activities of
the student correctly. To illustrate, Figure 4 shows the explanation
outputted by CRADLE for a particular log which included a mix of
4 substances into a single flas. Figure 9 shows the PHATT explana-
tion for that same log, using two plans to explains the observation
sequence. In this case, the domain expert preferred the CRADLE
explanation, which explained the observation sequence using a sin-
gle plan.

7. DISCUSSION AND FUTURE WORK
Our results show that the CRADLE approach was able to extend
the state-of-the-art (PHATT algorithm) towards successfully rec-
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Figure 9: Example of PHATT explanation

ognizing students’ activities in an ELE for chemistry education.
We showed that CRADLE was able to produce better explanations
than PHATT, and with exponentially faster running time. Specif-
ically, the ouputted explanations of CRADLE were as good as or
better than PHATT in 18 out of the 20 logs that we sampled, giving
CRADLE a success rate of 90% at an exponentially lower run-
time. The paper demonstrate that on-line plan recognition in ELEs
is a challening computational problem, and show the efficacy of
the CRADLE approach in addresssing these problems by reducing
the number of explanations maintaind by the algorithms in an in-
telligent way. We are currently pursuing work with CRADLE in
several directions. First, we are evaluating the scalability of the
CRADLE approach by evaluating it with different ELEs for statis-
tics education, as well as simulated data that simulates users’ in-
teractions with software. This ELE is significantly different than
VirtualLabs in that student’s interactions are more likely to engage
in trial-and-error, which we predict will further challenge the recog-
nition problem. Second, we are developing a formal langauge that
explains students’ activities with ELEs that will help us construct
more accurate grammars for the recognition algorithms.
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ABSTRACT
It is widely accepted that the social capital of students – developed
through their participation in learning communities – has a signif-
icant impact on many aspects of the students’ learning outcomes,
such as academic performance, persistence, retention, program sat-
isfaction and sense of community. However, the underlying social
processes that contribute to the development of social capital are
not well understood. By using the well-known Community of In-
quiry (CoI) model of distance and online education, we looked into
the nature of the underlying social processes, and how they relate
to the development of the students’ social capital. The results of
our study indicate that the affective, cohesive and interactive facets
of social presence significantly predict the network centrality mea-
sures commonly used for measurement of social capital.

General Terms
Social Network Analysis, Community of Inquiry, Social Presence

1. INTRODUCTION
Asynchronous online discussions have been frequently used both in
blended and fully online learning [41]. However, with the broader
adoption of social-constructivist pedagogies and the shift towards
the collaborative learning [2], they are viewed as one of the impor-
tant study tools for the computer-supported collaborative learning
(CSCL) within the online learning environments. Their use has
produced an enormous amount of data about the interactions be-
tween students and instructors [21]. The distance education and
CSCL research communities have tried to use these data for gain-

∗Corresponding Author

ing insights into the very complex nature of the learning phenom-
ena. Among the different ways of researching students’ social in-
teractions Quantitative Content Analysis (QCA) [38, 19] and Social
Network Analysis (SNA) [52, 46] represent two commonly used
methods.

A widely accepted model of distance education which makes a use
of QCA is the Community of Inquiry (CoI) model [28]. According
to Garrison and Arbaugh [30], it is one of the leading models of
distance education that describes the key constructs of the overall
educational experience. The CoI model provides the in-depth as-
sessment of teaching, cognitive and social dimensions of learning
phenomena, and how those three dimensions affect: i) the overall
success of the learning process, and ii) the attainment of learning
objectives [28]. Empirical research showed that the social dimen-
sion of learning plays an important role in the learning communities
by mediating the relationship between the teaching and cognitive
dimensions [31]. Still, the CoI model does not explicitly address
the question of student social networks, their structure, or the ef-
fects they have on the overall educational experience and learning
outcomes. Given the amount of evidence from the studies of stu-
dent social networks [46], this warrants further investigation.

One of the central aspects in the study of social networks is the
idea of the social capital [13, 12]. Generally speaking, social capi-
tal can be defined as a value resulting from occupying a particularly
advantageous position within a social network [12]. Over the years,
the study of social capital has become increasingly popular in the
field of education [14]. The large number of studies in the distance
education field indicated an important connection between the stu-
dents’ social capital and many important aspects of education and
learning including academic performance [33, 15, 7, 49, 43], re-
tention [23], persistence [50], program satisfaction [7], and sense
of community [17]. Still, research of the student social networks
have involved mostly isolated studies that were focused on the un-
derstanding of the relationship between a particular set of con-
structs selected by the researchers and the students’ network po-
sition. Likewise, the underlying mechanisms responsible for the
observed social structure are typically not addressed, which is un-
derstandable given the lack of educational theories that explicitly
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take into the consideration student social networks.

In this paper, we present the results of the study which explored
the links between the CoI model and the social network analysis
of student networks. With the current advancement within the CoI
research and most recent validations of the model [31], the model
is mature enough and empirically sound to provide this missing
theoretical foundation for understanding the structure of students’
social networks. Likewise, the understanding of the structure of
social networks can provide a more comprehensive overview of the
social dimension of learning that it is already accounted for in the
research of the CoI model.

Given the exploratory nature of this study, we focused on the re-
lationship between social capital and social processes which are
indicative of the student social presence development. The main
question we aim to answer, in this paper is which social processes,
and to what extent, are indicative of the development of the social
capital in a communities of inquiry? Given the detailed charac-
terization of social aspects of learning in the CoI model through
the construct of social presence, we explored how this construct
relates to the students’ social capital, as characterized by their po-
sition in social networks formed around communities of inquiry.
As the community of inquiry provides characterization of different
sociological processes that constitute social presence, we looked
how each of them contributed to the development of social capital
withing students’ social network.

2. THEORETICAL BACKGROUND
2.1 Social network analysis
2.1.1 Social capital

The study of social networks has attracted much attention in social
and behavioral sciences [17, 14]. The focus in social network anal-
ysis is on the study of relationships, also known as ties, between
a set of actors, or participants [14]. Through the relationships,
members of a network engage in sharing, exchange or delivery of
various resources including information [36]. Social network anal-
ysis draws much of its ideas from the mathematical graph theory
and the sociometric studies of the human relationships [52].

An important concept in the study of social networks is the idea of
relation strength [34], which is used to make a distinction between
strong social ties, which require a substantial commitment (e.g.,
family, close friends), and weak social ties which do not obligate a
strong commitment (e.g., acquaintances). Likewise, the idea of net-
work brokerage builds on the fact that in a large network, the den-
sity of relationships is not uniform, which indicates the existence of
smaller sub-communities within a large social network [12, 13]. In
his seminal paper, Granovetter [34] stressed the tremendous impor-
tance of weak social ties, as they provide access to novel informa-
tion from different parts of a social network and provide pathways
of information exchange between sub-communities. An individ-
ual who possesses a large number of weak ties in many different
sub-communities is able to take advantage by combining diverse
information coming from different sub-communities, and to even
control to a certain degree the spread of information from one sub-
community to another [12]. This ability to create a value from oc-
cupying a particular position in a social network is known as so-
cial capital [13]. To study and assess values of different network
positions, the principles of graph theory are the most commonly
used [52]. The notion of centrality is particularly important. This
notion captures the relative importance of individuals in social net-
works [52]. Given the complexity of measuring actors’ relative
importance, a large number of centrality measures were proposed
over the years out of which degree, closeness and betweenness cen-
tralities are the most frequently used [26].

2.1.2 Social network analysis in education
While social network analysis has been widely adopted in social
and behavioral sciences, its adoption in the field of education was
initially very limited [14]. According to Carolan [14], the main
reasons for this are “overemphasis on individual explanations of
educational opportunities and outcomes, a quest for scientific le-
gitimacy, and a preference for experimental designs that estimate
the causal effects of ‘educational interventions’ ” [14, 32]. Never-
theless, over the years, the number of studies that indicated the im-
portance of social connections on the overall academic experience
has grown considerably. A good example is the study of students’
overall academic experience from early 1990s by Astin [5] in which
he concluded that: i) the environment made by the instructors and
students is crucial, and ii) the single most important environmental
influence is peer group.

In the context of distance education, there have been many studies
recently that looked at the connection between several important
learning constructs and social capital of students. Likewise, in the
fields of educational data mining (EDM) [6] and learning analyt-
ics [40], the interest in SNA has been growing. The recent review
of the EDM field by Romero and Ventura [44] noted a growing in-
terest in SNA; likewise, in the learning analytics community, SNA
was recognized as one of the most important techniques of social
learning analytics [11, 25].

As expected, academic performance was the focus of a large ma-
jority of the studies [33, 50, 15, 7, 49, 43] that have found positive
effects of student positions in social networks on academic perfor-
mance. Still, academic performance was not the only construct that
was examined. The study of retention by Eckles and Stradley [23]
found that for each friend that leaves an academic degree program
makes a student five times more likely to leave as well, while ev-
ery friend who stays makes a student 2.25 times more likely to
also stay in college. The study of student persistence and integra-
tion by Thomas [50] found that students with a broader set of ac-
quaintances are more likely to persist in the academic program of
a higher education institution, and that students with a higher pro-
portion of ties outside their peer group also perform better academi-
cally. This is aligned with the findings of Dawson [17] who showed
that students’ sense of community membership was positively re-
lated to their closeness and degree centrality measures. Similarly,
in the study of a team-based MBA program by Baldwin et al. [7], it
was found that the high embeddedness in the friendship network in-
creased students’ perception of learning and enjoyment in the pro-
gram; as well, the centrality in the communication networks was
found to be positively linked with the student grades.

One important thing to notice is that the majority of the studies
did not draw their theoretical foundations of network formation
from the established educational theories. As pointed out by Riz-
zuto et al. [43], there is a lack of “theory of academic performance
that combines individual characteristics as well as social and in-
frastructural factors” (p180). The main exception is the use of
retention theories by Tinto [51] and Bean [8] in the study of stu-
dent persistence and retention. The other notable theories that are
adopted, such as Feld’s theory of focused choice [24], or Lin’s the-
ory of social resources [39] are general sociological theories that
do not take into the account the specific of learning processes and
educational contexts.

2.2 The community of inquiry (CoI) model
2.2.1 Overview

The Community of Inquiry (CoI) model is a general model of dis-
tance education which explains the constructs that contribute to the
overall learning experience. It is rooted in the social constructivist
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philosophy, most notably in the work of John Dewey [20], and is
particularly well suited for understanding different aspects of learn-
ing within the learning communities. The main goal of the CoI
model was to define the constructs that characterize a worthwhile
educational experience, and a methodology for their assessment.
The CoI model consists of the three interdependent constructs, also
known as presences, that together provide a comprehensive cover-
age of the distance learning phenomena:

1) Cognitive Presence explains different phases of students’ knowl-
edge construction process through social interactions within a
learning community [28].

2) Teaching Presence describes the instructor’s role in course de-
livery and during course design and preparation [3].

3) Social Presence explains the social relationships and the social
climate within a learning community that have a significant ef-
fect on the success and quality of social learning [45].

The CoI model is well-researched and widely accepted within the
distance learning research community as shown by a recent two-
part special issue of The Internet and Higher Education journal [1].
The model defines its own coding schemes that are used to assess
the levels of the three presences through the QCA in transcripts of
asynchronous online discussions. More recently, instead of rely-
ing on the QCA, a CoI survey instrument [4] was developed as an
alternative way of assessing the levels of the three presences.

2.2.2 Social presence
Social presence is defined as the “ability of participants in a com-
munity of inquiry to project themselves socially and emotionally,
as “real” people (i.e., their full personality), through the medium
of communication being used” [28, p3]. Critical thinking, social
construction of knowledge and the development of the cognitive
presence are more easily developed in the cases where the appro-
priate levels of social presence have been established [28].

Given the form of delivery in distance education, face-to-face com-
munication that is typical for more traditional forms of education
delivery is not possible. Hence, establishing and sustaining social
presence is more challenging. Distance education was often criti-
cized as being inferior to more traditional forms of education, par-
ticularly because of the inability to create social presence between
the members of a learning community [2]. However, according
to Garrison et al. [28], the form of communication is not the solely
factor determining the development of social presence. A key as-
pect of establishing social presence in face-to-face settings are vi-
sual cues, while participants in online communities use different
techniques – such as emoticons – to convey the affective dimension
of communication that lacks in typical text-based communications.

As described by Rourke et al. [45], the origins of social presence
can be found in the work of Mehrabian [42] and his notion of im-
mediacy which is defined as “the extent to which communication
behaviors enhance closeness to and nonverbal interaction with an-
other” [42, p203]. This, and the set of follow-up studies by com-
munication theorists, defined the theoretical background on which
the construct of social presence was based [45]. The social pres-
ence in the CoI model is defined as consisting of three different
dimension of communication:

1) Affectivity and expression of emotions: Since emotions are
strongly associated with motivation and persistence, they are
indirectly connected to critical thinking and communities of in-
quiry. More formally, emotional expression has been indicated
by the “ability and confidence to express feelings related to the
educational experience” [28, p99].

2) Interactivity and open communication: In order to promote
the development of higher-order critical thinking skills, the no-
tion that the other side is listening and attending is crucial [45].
Thus, activities such as praising of the student work, actions, or
comments contribute to the teacher immediacy, which in turn
leads to affective, behavioral and cognitive learning [45]. Sim-
ilarly, open communication is defined as “reciprocal and re-
spectful exchanges of messages” [28, p100] and together with
interactivity provide a basis on which productive social learning
can be established.

3) Cohesiveness: The activities that “build and sustain a sense of
group commitment” [28, p101] define cohesiveness. The goal
is to create a group where the members possess strong bonds
to both i) each other and ii) the group as a whole. This in turn
stimulates productive learning and the development of critical
thinking skills.

Given that there are three different dimensions of social presence,
the coding scheme for social presence (see Table 1) defines a list
of indicators for each dimension. By looking at the content and the
timing of each message, it is possible to see how the social climate
unfolded during the course delivery. This provides a way of un-
derstanding and evaluating the different pedagogical interventions
with respect to the development of a productive social climate in a
learning community which enables for the meaningful social inter-
actions [53].

2.3 Research Question: Characterization of
social capital through social presence

As indicated in the previous sections, there is a strong evidence that
social capital plays an important role in the shaping of the overall
learning experience. The main research question that we investi-
gate in this paper:

What is the relationship between the students’ social
capital, as captured by social network centrality mea-
sures, and students’ social presence, as defined by the
three categories in the Community of Inquiry model?

The higher the social capital of a learner is, the more capable the
learner is in terms of learning opportunities, information exchange,
or integration within the academic environment. Still, the origins
of social capital are not fully understood. Why certain students
occupy advantageous positions in social networks? What are the
social processes that enable them to take advantage of their social
relationships? As for now, not a single theory of learning addresses
the question of social capital directly, even though the impact of
social context on learning is widely acknowledged.

As indicated by the previous study by de Laat et al. [18], content
analysis techniques can be used in combination with SNA to pro-
vide a more comprehensive view of the social learning processes.
In this paper, we propose the use of the Community of Inquiry
model, given its holistic view of educational experience and exten-
sive empirical evaluation by the research community [29], with the
aim to characterize the origins of social capital in communities of
inquiry. The CoI model description of important behavioral indices
that contribute to the development of the positive social climate
could be used to interpret the observed differences among students
positions in a social network.

Likewise, the synergistic effect of using those two perspectives on
student interactions provide a value for the CoI model by emphasiz-
ing the effects of the theorized social processes. For example, are
interactivity and open communication important for the develop-
ment of social capital? Are the students who show group cohesion
the ones who take brokerage positions? Recently, there have been
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Table 1: Social Presence Categories and Indicators as defined by Rourke et al. [45]
Category Code Name Definition

Affective A1 Expression of emotions Conventional expressions of emotion, or unconventional expression of emotion,
includes repetitions punctuation, conspicuous capitalization, emoticons.

A2 Use of humor Teasing, cajoling, irony, understatements, sarcasm.
A3 Self-disclosure Presenting details of life outside of class, or express vulnerability.

Interactive or Open
Communication

I1 Continuing a thread Using reply feature of software rather than starting a new thread.
I2 Quoting from others’ messages Using software features to quote others entire messages or cutting and pasting

selections of others’ messages.
I3 Referring explicitly to others’ messages Direct references to contents of others’ posts
I4 Asking questions Students ask questions of other students or the moderator.
I5 Complementing, expressing appreciation Complimenting others or contents of others’ messages.
I6 Expressing agreement Expressing agreement with others or content of others’ messages.

Cohesive C1 Vocatives Addressing or referring to participants by name.
C2 Addresses or refers to the group using

inclusive pronouns
Addresses the group as we,us, our, group.

C3 Phatics, salutations Communication that serves a purely social function: greetings, closures.

some attempts [47, 48] that make use of SNA in conjunction with
the CoI model to provide insights into particular aspects of learn-
ing, such as self-regulation [9]. Still, the central question of social
capital is left unexplored and that is the goal in our study.

3. METHODS
3.1 Dataset
For our study, we used the dataset consisting of six offers (Win-
ter 2008, Fall 2008, Summer 2009, Fall 2009, Winter 2010, Win-
ter 2011) of the masters level software-engineering course offered
through the fully online instructional condition at a Canadian open
public university. The course is 13 weeks long, research-intensive,
and focuses on understanding of current research trends and chal-
lenges in the area of software engineering. Students were requested:
i) to participate in online discussions for which they received 15%
of their final grade (see details in [32]), and ii) to work on a four
tutor marked assignments. Overall, 81 student created the total of
1747 discussion messages which were then used as the main data
source for this study. The total number of students and messages
for all six course offerings are shown in Table 2.

3.2 Social network measures
In order to measure students’ social capital we extracted student so-
cial network graphs from the interactions on the discussion boards.
We extracted directed social graphs, so that whenever a studentX1
responded to a message from another student X2, we created a di-
rect relationship between the two of them (X1 ⇒ X2). Since
two students can exchange more than one message, we extracted a
weighted graph where the weights corresponded to the number of
exchanges between a given pair of students. We created a separate
social graph for each of the course offerings independently and the
graph densities for each offering are shown in Table 2.

From the constructed social network graphs, we extracted the three
network centrality measures which are most frequently used for the
study of the educational social networks [14]:

1) Betweenness centrality captures brokerage opportunities of ac-
tors in a network and is the most directly related to the social
capital construct [13, 12]. For a given actor A, it is mathemat-
ically defined as the number of shortest paths between any two
other actors that “pass through” the actor A [26].

2) Degree centrality measures the total number of relationships
that each participant has [26]. Given that we constructed the di-
rected social graphs, we considered separately the in-degree and
out-degree centrality measures. They represent the total number
of incoming and outgoing relations for a given individual, re-
spectively. Degree is the simplest centrality measure, very easy

Table 2: Course offering statistics
Student count Message count Graph density

Winter 2008 15 212 0.52
Fall 2008 22 633 0.69
Summer 2009 10 243 0.84
Fall 2009 7 63 0.58
Winter 2010 14 359 0.84
Winter 2011 13 237 0.77

Average 13 291 0.71
Total 81 1747

Table 3: Descriptive statistics of social network metrics
Mean SD Min Max

Betweenness 9.04 14.51 0.00 74.20
In-degree 19.84 8.62 4.00 42.00
Out-degree 19.86 9.37 3.00 44.00
In-closeness 0.09 0.04 0.04 0.17
Out-closeness 0.08 0.04 0.03 0.18

to calculate, as it takes into account only the direct relationships
between the actors [52].

3) Closeness centrality represents the distance of an individual
participant in the network from all the other network partici-
pants [26]. It is defined as the inverse of the sum of the distances
to all other participants [14], and hence takes into account both
direct and indirect relationships [52]. Much like degree central-
ity, given that the student graphs are directed, we calculated the
in-closeness and the out-closeness centrality measures. For a
given actor A, in-closeness centrality measures how many indi-
rect steps are needed for all other actors to reach the actor A,
while out-closeness measures how many indirect steps the actor
A requires in order to reach all the other actors in the network.

Table 3 shows the descriptive statistics for all five extracted central-
ity measures. We can see that on average the students wrote around
20 messages, and also received on average around 20 responses.
This level of activity was expected, as by the course design the stu-
dents were expected to spend a significant amount of time on the
online discussions. Still, from the descriptive statistics reported in
Table 3, we can observe the large differences between the individ-
ual students in the case of all five centrality measures.

3.3 Message coding
In order to assess students’ social presence, all messages were man-
ually coded by two coders in accordance with the coding scheme
defined by Rourke et al. [45]. As the individual messages can
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Table 4: Social Presence Indicators
Category Code Indicator Count Percent

Agreement

Affective A1 Expression of emotions 288 (16.5%) 84.4
A2 Use of humor 44 (2.52%) 93.1
A3 Self-disclosure 322 (18.4%) 84.1

Interactive I1 Continuing a thread 1664 (95.2%) 98.9
I2 Quoting from others

messages
65 (3.72%) 95.4

I3 Referring explicitly to
other’s messages

91 (5.21%) 92.7

I4 Asking questions 800 (45.8%) 89.4
I5 Complementing, expressing

appreciation
1391 (79.6%) 90.7

I6 Expressing agreement 243 (13.9%) 96.6
Cohesive C1 Vocatives 1433 (82%) 91.8

C2 Addresses or refers to the
group using inclusive
pronouns

144 (8.24%) 88.8

C3 Phatics, salutations 1281 (73.3%) 96.1

Table 5: Social Presence Categories.
Category Count Percent Agreement

Affective 530 (30.3%) 80.8
Interactive
(Excluded I1 and I5)

1030 (59%) 86.2

Cohesive
(Excluded C1)

1326 (75.9%) 93.4

be simultaneously classified into more than one category of so-
cial presence, each message was coded with three binary codes
indicating whether the message belongs to a particular social pres-
ence category. However, early in the coding process, we observed
an extremely high frequency of some of the indicators in the co-
hesive and interactive categories. Because of this, almost all of
the messages could be classified as both interactive and cohesive,
which would limit the discriminatory power of those two cate-
gories. Thus, to resolve this issue, instead of coding on the levels
of categories, the coding was done on the levels of the individual
indicators, so that each message was coded with the twelve binary
codes (i.e., three indicators of the affective category, six indicators
of the interactive category and three indicators of the cohesive cate-
gory) each indicating an occurrence of a particular social presence
indicator within a given message. This enabled us to look at the
distribution of the individual indicators and to be more selective in
the type of the indicators that we wanted to investigate. Overall, the
coding agreement was high, with all of the indicators reaching per-
cent agreement of at least 84%, and all the coding disagreements
were resolved through discussion between the coders in a follow-
up meeting, after they first coded the messages independently. The
coding results are shown in Table 4. The results show that some of
the indicators were recorded in a disproportionately large number
of messages. Thus, in order to evaluate different aspects of social
presence captured by those three categories, we omitted some of the
indicators from our analysis: i) Continuing a thread, ii) Comple-
menting, expressing appreciation, and iii) Vocatives. We intention-
ally kept the “Phatics, salutations indicator” as its removal would
render the cohesive category in only 8.24% of the messages. By us-
ing the remaining nine indicators, we categories all of the messages
in the corpus, and the final results are shown in Table 5.

3.4 Statistical analysis
In order to investigate the relationships between the three cate-
gories of social presence, as defined by the CoI model, and so-
cial capital, as operationalized through the five network centrality
measures, we conducted backward-stepwise multiple linear regres-
sion analyses [35] for each of the five extracted network centrality

measures. To evaluate different regression models for a particular
centrality measure, we used the popular Akaike Information Crite-
rion (AIC) [35]. In order to control for the inflation of the Type-I
error rate due to multiple statistical significance testing, we used
the Holm-Bonferroni correction [37], also known as the sequential
rejective Bonferroni correction. It provides a control for Type-I er-
rors at a prescribed significance level – in our case α = 0.05 –
while providing a substantial increase in the statistical power over
the commonly used Bonferroni correction [22]. In the case of test-
ing the family of N null-hypothesis and significance level α, the
Holm-Bonferroni method proceeds as follows:

1) Hypothesis with the smallest observed p-value, is tested using
the adjusted significance level α′ = α/N , in the same manner
as in the traditional Bonferroni procedure.

2) However, the next smallest observed p-value is tested using dif-
ferently adjusted significance level α′ = α/(N − 1).

3) The same process repeats up to the hypothesis with the highest
observed p-value which is tested using the unadjusted signifi-
cance level α.

4) The important additional rule is that if any of the hypothesis in
the family gets rejected, then all the subsequent hypotheses are
rejected as well regardless of their observed p-values.

By using differently adjusted statistical significance levels, Holm-
Bonferroni method guarantees that the family-wise error rate is
kept at the prescribed level, while providing a significant increase
in the statistical power over the more commonly used simple Bon-
ferroni correction [22]. We used the Holm-Bonferroni correction
for testing the overall significance of the regression models, and for
testing the significance of the individual predictor variables. In our
case, with five hypothesis tests, the values of the adjusted statistical
significance levels were α = [0.01, 0.0125, 0.0167, 0.0250, 0.05].

We also inspected the QQ-Plots for the signs of the severe deviation
from the normality of residuals, and we assessed the multicollinear-
ity of the three predictor variables using the variance-inflation fac-
tors (VIFs). The QQ-Plots did not reveal deviations from the nor-
mality of the residuals and VIF values were substantially lower than
the typically used thresholds such as 4 or 10 [10]. Thus, we con-
sidered the use of the multiple linear regression appropriate for our
study.

4. RESULTS
The results of the regression analyses are shown in Table 6. The
models for betweenness, in-degree, out-degree and in-closeness
centralities were significant, while the model for out-closeness was
marginally significant.

In the case of betweenness centrality, the multiple regression model
explained 32% of the variability in the students scores of between-
ness centrality. The backwards-stepwise regression analysis selec-
tion using the (AIC) criterion resulted in a regression model con-
sisting of the affective and interactive categories of social presence,
and both variables were found to be statistically significant predic-
tors of betweenness centrality. In terms of their relative importance,
the interactive category had a slightly larger standardized β coef-
ficient than the affective category of social presence, indicating a
slightly larger effect on the students’ betweenness centrality scores.

With respect to degree centrality, the regression models explained
86% and 83% of the variability in the measures of in-degree and
out-degree centralities, respectively. All three predictors were pos-
itively associated with the degree centrality measures, and all three
reached the statistical significance. In terms of their relative impor-
tance, in both models, the interactive category of social presence
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Table 6: Regression results for selected centrality measures after stepwise model selection using AIC criterion.
Betweenness In-degree Out-degree In-closeness Out-closeness

β SE p β SE p β SE p β SE p β SE p

Affective 0.27 0.12 0.024 0.18 0.054 0.001 0.23 0.059 <0.001
Interactive 0.38 0.12 0.002 0.65 0.064 <0.001 0.65 0.07 <0.001 0.27 0.11 0.015 0.37 0.15 0.017
Cohesive 0.2 0.061 0.001 0.14 0.066 0.041 -0.23 0.15 0.137

F (3, 77) 19.6 <0.001 159 <0.001 130 <0.001 6.24 0.015 3.03 0.054
Adjusted R2 0.32 0.86 0.83 0.061 0.048

had the largest standardized β coefficient, while the affective and
cohesive categories had roughly the same standardized coefficients.

Regarding the two closeness centrality measures, the regression
model for in-closeness was statistically significant, explaining 6.1%
of the variability in the students’ in-closeness centrality scores,
while the model for out-closeness failed to reach the significance by
a very small margin. The model for in-closeness consisted of only
the interactive category, which was found to be a statistically signif-
icant predictor of in-closeness centrality. Similarly, the regression
model for out-closeness consisted of the interactive and cohesive
social presence categories, and explained 4.8% of the variation in
the students’ out-closeness centrality scores. In the model for out-
closeness centrality, the only statistically significant predictor was
the interactive category of social presence, while interestingly, the
cohesive category of social presence was negatively associated with
the change in the out-closeness centrality values, although statisti-
cally insignificantly.

5. DISCUSSION
One finding immediately stands out of the regression analyses re-
sults: Interactive social presence is the most strongly associated
with all of the network centrality measures, indicating a signifi-
cant relation with the development of the students’ social capital.
A possible explanation of this lies to some degree in the nature of
students’ social networks. Given that the primary goal of social
networks in online courses is to serve as a communication medium
for fostering of collaborative learning [27], it is reasonable to ex-
pect that interactivity in communication can explain a significant
proportion of the differences in network positions, and ultimately
the differences in the development of students’ social capital. The
reason why the interactive category is had the strongest associa-
tion might be that only after the students have gott familiar with
each other through focused, on-task interactions, and after they
have started developing trust within a learning community, the ex-
pression of emotions and the sense of group belonging begins to
emerge. This is aligned with the findings of Garrison [27] who sug-
gested that interactive social presence is dominant at the beginning
of a course, but decreases over time, while affective and cohesive
social presence increase over time [27]. However, as Garrison [27]
points out, too much of the interpersonal and affective interactions
undermine the productivity of the collaborative learning activities.
There is a certain amount of social interactions that is beneficial
for learning [27], and the focus of the instructional interventions
should be on: i) stimulating the right amount of the different social
interactions that support productive and purposeful collaborative
learning activities, and ii) the development of trust and the sense of
community among the group of learners [17].

One practical implication of these results is that they suggest the
effective way for fostering the productive social climate – and that
is focusing on the student interaction and open communication. In
order to guide the development of the social relationships in a learn-
ing community, it seems that the instructional emphasis should be
on the interventions that require engaging in an open exchange of

ideas and opinions, that would in turn lead to more affective expres-
sion, and eventually to the development of the sense of community
belonging. Still, this hypothesis warrants further investigation, and
in the future we plan to analyze the evolution of the students’ so-
cial presence and the corresponding social network structures over
time, which would shed new light on this important question.

The results of individual network centrality measures revealed that
both in-degree and out-degree centrality measures were significantly
predicted by all the three categories of students’ social presence.
By looking at the description (Section 2.2.2) and the indicators (Ta-
ble 1) of the interactive category of social presence, we can see
that interactive social presence is mainly about stimulating open
and direct communication between the students. Thus, the students
who exhibit a high level of interactive social presence have higher
chances of “provoking” a response from the other students. Activ-
ities such as asking questions, explicitly referring to other students
by name, quoting their messages, complementing them or agreeing
with their messages, are all activities associated with an interactive
and open communication, and can be used to elicit a response from
the other students. It would be interesting to further investigate the
relationship between different indicators of social presence and so-
cial capital, as certain indicators – such as I4 “Asking questions” –
seem to have more impact than the other indicators. Besides the in-
teractive category, the regression model revealed that the affective
and cohesive categories of social presence were also significant pre-
dictors of in-degree and out-degree centralities. These findings are
even more interesting, as affective and cohesive exchanges are not
directly stimulating discussions in the same manner as the interac-
tive category. Further investigation is needed to examine particular
time periods over the duration of a course in which those different
dimensions of social presence contribute to the degree centrality
measures of students.

With respect to betweenness centrality that is most closely related
to the notion of social capital [13, 12], the regression model was
statistically significant and explained 32% of the variability in the
betweenness centrality scores. This corresponds to Cohen’s f2 =
0.47 effect size, which is considered to be a large effect size [16].
Both the interactive and affective categories of social presence were
statistically significant predictors of the betweenness centrality, with
the interactive category having a bit greater standardized β coeffi-
cient. This might be due to the nature of student communication
networks and their focus on collaborative learning, which resulted
in the emphasis on information exchange. Still, these are very in-
triguing findings, given that betweenness centrality is not directly
related to the number of interactions the student has, but more to the
overall diversity of the interactions within a group of learners. In a
follow-up study, it would be very interesting to investigate whether
there are any particular ways in which the students with the high
betweenness centrality differ from the other students (e.g., asking
many questions or exhibiting higher self-disclosure).

Regarding the closeness centrality measures, the regression model
for in-closeness was also statistically significant. The model ex-
plained 6.1% of the variability, and the stepwise model selection
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using the AIC criteria resulted in a simple regression model with
only the interactive category of social presence. In contrast to de-
gree centrality, which considers only direct relationships, closeness
centrality also considers the indirect relationships. Such indirect re-
lationships could be the reason why only interactive category was
rendered as important. The affective and cohesive exchanges be-
tween students A and B, although very important, provide very lit-
tle, or no influence on the indirect relations of studentB and the rest
of the students. The similar findings we could see in the model for
out-closeness, which was marginally significant with the p-value of
0.054. However, it could be expected that the significance of this
model would be conformed in a larger replication study.

The major limitations of this study is the sample size and the use
of the single course from a single institution. Even though there
were six offerings of the course taught by the two instructors, there
might still be significant effects of the adopted pedagogical ap-
proach, which could have shaped a specific social dynamics, and
thus, potentially distort the findings of our study. Likewise, we con-
sidered all interactions among the students as contributing to their
social capital, it is very likely that the certain interactions (e.g.,
adversarial interactions) might have a negative effect on the stu-
dent social capital. In the future work, we plan on replicating our
findings on a bigger sample and with more diverse courses from
different subject matter domains. Finally, we plan to investigate
the temporal aspects of the relationship between social capital and
the social presence, which might give us a deeper insight into the
complexity of the social interactions in learning communities.

6. CONCLUSIONS
The study presented in this paper investigated some of the social
processes that can contribute to the development of students’ social
capital. We have looked at the relationship between students’ so-
cial presence, operationalized through the Community of Inquiry
model, and students’ social capital, operationalized through the
three network centrality measures. The implications of our findings
are twofold: First, our results indicate that a significant part of the
variability in network centrality scores can be explained using the
three dimensions of the social presence, and this in turn indicates
the existence of the relationship between the development of social
presence and social capital. All three categories of social presence
were significant predictors of in-degree and out-degree centrality
measures while interactive and affective categories were significant
predictors of the betweenness centrality. Also, interactive category
of social presence was significantly predictive of the in-closeness
and out-closeness centrality measures, although the overall regres-
sion model for out-closeness was marginally significant. A possible
explanation is that given the task-oriented nature of discussions in
online courses, students’ social presence develops mostly through
interactions focused on learning, and then over time, with the de-
velopment of trust among a group of learners, the other dimensions
of social presence start to emerge. Second, the study shows the
significant relationship between the interactive category of social
presence and betweenness, in-degree, out-degree, and in-closeness
network centrality measures. This provides an empirical basis for
fostering the productive social climate in discussions through inter-
ventions that increase interactivity and open communication among
the students. By engaging students to participate in discussions
with the clearly defined expectations, students develop social rela-
tionships which can in turn have positive impact on the attainment
of the learning objectives and their overall academic experience.
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ABSTRACT 

In our recent work, we have proposed the use of multiple solution 

demonstrations of a learning task to automatically generate a tutor 

model. We have developed a number of algorithms for this 

automation. This paper describes the application of these domain-

independent algorithms to three datasets from different learning 

domains (Mathematics, Physics, French). Besides verifying the 

applicability of our approach across domains, we report several 

domain specific performance characteristics of these algorithms 

which can be used to choose appropriate algorithms in a 

principled manner. While the Heuristic Alignment based 

algorithm (Algorithm 2) may be the default choice for automatic 

tutor modeling, our empirical finding suggest that the Path 

Pruning based algorithm (Algorithm 4) may be favored for 

language learning domains. 
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1. INTRODUCTION 

Wide-scale transition of Intelligent Tutoring Systems (ITS) to the 

real world demands a scalable ability to develop such systems. 

The past decade has seen the first instantiations of 

industrialization of ITS development in the form of commercial 

products for different learning domains as well as diverse user 

populations. In addition to addressing non-technical challenges 

such as designing robust production processes around 

multidisciplinary teams of domain and pedagogical experts [1], 

the industrialization of this technology is enabled by technical 

advancements such as the development of general purpose 

authoring tools [2] which has allowed a scalable workforce to 

contribute to ITS development. 

In this paper, we extend our recent work [3][4] on automatically 

developing Example-Tracing Tutors (ETTs) [5] using multiple 

behavior demonstrations. Conventionally, ETTs are developed in 

three stages by trained domain experts: (1) User Interface (UI) 

development, (2) Behavior demonstration, (3) Generalization and 

annotation of the behavior graph. As ITS are being deployed to a 

large active user pool, it is now possible to pilot the UI with a 

small sample of learners to collect multiple behavior 

demonstrations. We can significantly reduce the Stage 3 effort of 

ITS developers by using algorithms that can automatically create 

a generalized behavior graph from multiple demonstrations. 

Several algorithms to address this challenge have been proposed 

and evaluated [4]. 

In this paper, we will study the applicability and performance of 

these algorithms on publicly available datasets from three 

different learning domains. Section 3 summarizes the key 

characteristics of the four algorithms used in our study. Section 4 

describes learning domains and the corresponding datasets used in 

this work. Results and Analysis from our experiments are 

presented in Section 5. Before diving into the algorithms, the next 

section reviews related work on automation of tutor model 

development. 

2. RELATED WORK 

Automation of tutor model development process has been 

explored in different contexts using completely automated 

methods as well as augmentation of authoring tools [6][7]. For 

example, motivated by application in language learning, a series 

of workshops on the problem of automatic question generation [8] 

explored a number of information extraction and NLP techniques 

that employ existing linguistic resources. Barnes and Stamper [9] 

proposed a method that uses existing student solutions to generate 

hint messages for the Logic Proof tutor. Recently, Eagle et al. [10] 

have used clustering of interaction network states as an approach 

to the same problem. 

In the context of knowledge-tracing and example-tracing tutors, 

McLaren et al. [11] proposed the use of activity logs from novice 

users to bootstrap tutor model development. They developed 

software tools that integrate access to novice activity logs with 

authoring tools. The baseline algorithm (Interaction Networks) 

used in our work is similar to the integrated data view used in this 

prior work. Furthermore, the algorithms used in our work address 

some of the shortcomings of their work (e.g. inability to identify 

“buggy” paths). 

In addition to tutor modeling, recent work has investigated 

automated methods for improving domain and student models 

[12] [13]. Sudol et al. [14] aggregated solution paths taken by 

different learners to develop a probabilistic solution assessment 

metric. Johnson et al. [15] are creating visualization tools for 

interaction networks that combine learner traces from open-ended 

problem solving environments. They have developed an algorithm 

for reducing the complexity of combined networks to make them 

more readable/navigable. In a similar spirit, work by Ritter et al. 

[16] used clustering techniques to reduce the large feature space 

of student models to assist in qualitative model interpretation. 
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3. GENERATING BEHAVIOR GRAPHS 

Automatic Behavior Graph Generation (ABGG) algorithms 

analyze the similarities and difference between multiple solution 

demonstrations of a problem to induce a behavior graph that can 

serve as a tutor model for the problem.  

3.1 Behavior Graphs 

Behavior graphs [5] are directed graphs. The nodes in this graph 

correspond to valid solution states. Non-terminal nodes represent 

partial solutions. Edges in the graph represent solution paths some 

of which are correct and lead to the next state while other are 

incorrect and usually lead back to the same state. Edges are 

annotated with the conditions that a behavior event must meet to 

traverse the path. 

Behavior graphs may contain multiple paths between two nodes. 

Multiple paths are useful to facilitate learner’s exploration of 

alternate solutions to a problem especially in ill-defined learning 

domains. Behavior graphs may also include unordered groups. As 

the name suggests, states within an unordered group may be 

traversed in any order. 

Well-constructed behavior graphs have several desirable 

characteristics which motivate the design of metrics we use to 

evaluate ABGG algorithms. 

3.1.1 Effective 

Since the purpose of the behavior graphs is to serve as a tutor 

model, the primary metric for evaluating these models is their 

learning efficacy measured via use of the models by a relevant 

sample of learners. However, in this paper we focus only on the 

use of automated metrics that do not require access to a learner 

pool. Further, as we in section 5, the automatically generated 

behavior graphs are not perfect. They require checking and 

refinement by ITS developers before they can be used with 

learners. 

3.1.2 Readable 

One of the key characteristics of behavior graphs that makes them 

a popular model is that they are readable by ITS developers 

without requiring a deep understanding of computational or 

cognitive sciences. Automatically created behavior graphs should 

be editable with existing authoring tools to facilitate necessary 

manual annotation and modifications. Ideally, ABGG algorithms 

should create concise graphs without losing other desirable 

characteristics. This may involve collapsing redundant paths and 

even pruning spurious or infrequent edges. 

The conciseness of a graph can be measured using the number of 

nodes and edges in the graph. Our primary readability metric, 

Compression Ratio measures the rate at which an algorithm is 

able to reduce behavior events into behavior states (i.e. nodes) by 

finding similarities between events. 

3.1.3 Complete 

In order to minimize author effort, generated behaviors graphs 

should be as complete for creating an ETT as possible. As a 

minimal criterion, at least one valid path to the final solution 

should be included♦. Additionally, complete behaviors graphs are 

annotated with all the expected inputs by the learner. We use the 

Rate of Unseen Events in held out demonstrations as the primary 

metric to measure the completeness of our automatically 

generated behavior graphs. 

3.1.4 Accurate 

Behavior graphs should be error free. This includes being able to 

accurately capture the correct and incorrect events by learners 

depending on the current solution state. Edge accuracy measures 

the percentage of Correct & Incorrect edges that were accurately 

generated by the algorithm. Error Rate is a frequency weighted 

combination of edge accuracy that measures the fraction of learner 

events that will be inaccurately classified by the automatically 

generated behavior graph. We use the error rate of an automatically 

generate behavior graph on held out demonstrations as the primary 

accuracy metric. 

3.1.5 Robust 

One of the reasons for the success of expertly crafted ETTs is the 

ability to use them with a wide range of learners under different 

deployment conditions. Automatically generated behavior graphs 

should retain this characteristic; e.g., by identifying alternate paths 

and unordered groups. It is not unforeseeable that the use of a 

data-driven approach could contribute to creating behavior graphs 

that are more robust than those authored by a human expert. 

Branching factor is the average number of data values available at 

each UI element. A large branching factor indicates the capability 

to process a large variety of learner inputs at each state. Also, the 

number and size of unordered groups is indicative of flexibility a 

graph affords to learners to explore the solution paths of a 

problem. 

Note that readability and robustness are complementary 

characteristics of a behavior graph. For example, a highly 

complex behavior graph may be very robust but may not be very 

readable. 

3.2 ABGG Algorithms 

We use four algorithms, introduced in our previous work [4], to 

generate behavior graphs using multiple solution traces of a 

problem. The first algorithm (Algorithm 1) generates interaction 

networks by sequentially collapsing identical events in solution 

traces into a shared node and creating a branch whenever two 

different events are found. Interaction networks have been used in 

prior work [10][15]. 

Algorithm 2 uses a heuristic alignment technique [3] to align 

similar events across multiple solution traces. The alignment is 

used to obtain a sequence of traversal through the problem’s steps. 

Furthermore, this algorithm is able to use the positional entropy of 

a sequence of elements while obtaining the optimal sequence to 

identify unordered groups. 

Similar to the above algorithm, Algorithm 3 finds the optimal 

sequence between aligned events. However, this algorithm uses 

the Center Star Algorithm [17] to align the multiple solution 

traces instead of the heuristic used by Algorithm 2. The Center 

Star Algorithm is a foundational algorithm used for aligning more 

than two sequences of symbols. It is particularly suited for our 

application because it is polynomial time in computational 

complexity and it does not make any assumptions about the space 

and relationship of symbols comprising the sequence. 

First order transition matrix computed from solution traces can be 

used to represent a directed graph. Algorithm 4 considers ABGG 

as the process of finding multiple paths in a directed graph. 

Specifically, the longest (non-repeating) path in this directed 

graph represents the most likely path through the solution steps. 

Since, the problem of finding longest paths in general graphs is 

known to be NP-hard, we employ a combination of bounded 
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longest path finding and an algorithm for finding multiple shortest 

paths [18] in a transformed transition matrix to obtain a number of 

different paths through the directed graph. These paths are merged 

to construct a behavior graph similar to the process of 

constructing an interaction network. 

Algorithm 2, 3 and 4 assume that if two or more events within a 

trace were generated by the same UI element, the latter event 

corresponds to a correction of the data value input at the former 

events. In this case, we refer to the former events as retracted 

events and data values entered at these events are assumed to be 

incorrect values. Using this assumption, these three algorithms are 

able to automatically generate incorrect paths in behavior graphs 

unlike Algorithm 1. This assumption is not applied to Algorithm 1 

to compare our work against prior work [11] on extracting tutor 

models from multiple demonstrations. 

3.3 Discussion 

Table 1 characterizes the four algorithms described above based 

on their capabilities. Incremental addition of demonstrations to 

generate interaction networks does not identify incorrect input 

data values. However, using the assumption about retracted 

events, the other three algorithms are able to identify incorrect 

inputs. Johnson et al. [15] used a similar assumption in their work 

on reducing the visual complexity of interaction networks. We 

notice that the Algorithms 2 and 3 are complementary in terms of 

their ability to find alternate paths and unordered groups. 

Algorithm 4 on the other hand offers both of these abilities. 

Table 1. Comparison of Algorithm Capabilities 

Capability▼ Algorithm► 1 2 3 4 

Identifies incorrect answers N Y Y Y 

Generates alternate paths N N Y Y 

Finds unordered groups N Y N Y 

Generalizes beyond training demonstrations N Y Y Y 

Guarantees all training demnstrs. will pass Y N N N 

Finds atleast one path to final solution♦ Y Y Y N 

Discovers new/unseen data values N N N N 

None of the algorithms discussed in this paper are capable of 

discovering unseen inputs beyond those seen in the solution 

traces. This type of generative ability is particularly useful for 

learning tasks, such as language learning, where a large number of 

different inputs may be expected from the learners. In our ongoing 

work, we use a number of heuristics [7] as well as grammar 

induction techniques [6] to generate unseen inputs for certain 

nodes in the behavior graphs. 

4. DATASETS 

We use three datasets, accessed via DataShop1 [19], to study the 

cross-domain applicability of ABGG algorithms. These datasets 

were filtered to use only problems that had six or more traces and 

had at least two UI elements. Also, we eliminated all events, such 

as help requests, that did not correspond to user input at a solution 

step. In this way, the datasets were transformed into solution 

traces. As discussed in Kumar et al. [4], a solution 

                                                                 

1 PSLC DataShop is available at http://pslcdatashop.org 

trace/demonstration comprises of a sequence of user interface (UI) 

events. Each event is represented as a 2-tuple e = (u, d) that 

includes an identifier u of the UI element and data d associated 

with the event. A UI element may be visited any number of times 

within a trace. In general, data can include one or more attributes 

of the event such as the event type, user input, event duration, etc. 

In this paper, we assume single data attribute events where the 

data captures the learner input at the UI element. 

Table 2. Problems & Traces for the three learning domains 

 
Math. Physics French 

#Problems 1013 497 71 

Max. #Unique Elements 33 62 10 

Avg. #Unique Elements 4.6 9.7 2.5 

Avg. #Training Traces 76.0 26.6 12.1 

Avg. #Heldout Traces 38.0 13.3 6.1 

Avg. #Events Per Trace 5.3 8.9 4.7 

 

Figure 1. Example Math Problem from Assistments 
Source: www.assistments.org, April 2014 

Table 2 provides some statistics about the problem and traces for 

each of learning domains used in this work. The Mathematics 

traces were derived from three Assistments [20] datasets. 

Assistments is a web-based learning platform, developed by 

Worcester Polytechnic Institute (WPI), that includes a 

Mathematics intelligent tutoring system for middle & high school 

grades. Figure 1 shows an example math problem from the 

Assistments system. Together, these datasets are the largest of the 

three domains we use. Prior to filtering, these dataset comprised a 

total of 683,197 traces and 1,905,672 events from 3,140 problems. 

For our experiments, we treat the three datasets to be independent 
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of each other to account for change in UI designs of the problems 

common to the three datasets. 

We used 10 (out of 20) of the largest datasets released under the 

Andes2 project [22] to build the collection of Physics problems 

and traces. Andes2 is an intelligent tutoring system that includes 

pedagogical content for a two-semester long college and advanced 

high-school level Physics course. These ten datasets are based on 

logs from several semesters of use of the Andes2 system at the 

United States Naval Academy. Prior to filtering, these dataset 

comprised a total of 81,173 traces and 1,162,581 events from 

2,187 different problems. Note that, as is case with the Math 

dataset, we treat the ten Andes2 datasets independently. Note that, 

unlike typical domain independent example-tracing based tutor, 

the Andes2 systems uses a model-tracing approach for tracking 

learner’s solution of a problem and to provide feedback. The 

domain knowledge dependent model tracer is able to match highly 

inflected learner inputs (e.g. variable names) to its solution graph. 

Despite this difference in tutoring approach used by the Andes2 

system, we decided to include this domain in our experiments to 

study the performance of our algorithms on such solution traces. 

Finally, the French traces are based on two dataset from the 

“French Course” project on DataShop. These datasets were 

collected from logs of student’s use of the “French Online” course 

hosted by the Open Learning Initiative (OLI) [22] at Carnegie 

Mellon University. Figure 2 shows steps from couple of example 

problems from this course. These datasets comprised a total of 

37,439 traces and 253,744 events from 1,246 different problems. 

Note that a significantly larger fraction of French problems were 

eliminated due to the filtering criterion compared to Mathematics 

or Physics. 

 

Figure 2. Example Steps from Problem from the French 

Online Course Source: oli.cmu.edu, April 2014  

The datasets used in our experiments contain solution traces. 

Traces are paths through an existing behavior graph, unlike 

behavior demonstrations which are unconstrained by existing 

tutor models. In addition to the fact that these are the only 

available large scale collection of solution paths, we use these 

datasets in our experiments because these traces have been 

Table 3. Averaged Metrics for the Graphs Generated by ABGG Algorithms 
*indicates significant (p < 0.05) difference with the other algorithms (within the same dataset) 

 Mathematics (Assistments) Physics (Andes2) French (OLI) 

Algorithm ► 1 2 3 4 1 2 3 4 1 2 3 4 

#Nodes 79.2 5.4* 6.0* 6.6* 147.8 7.9* 11.5* 11.7* 25.6 3.8* 4.5* 4.5* 

#Correct Edges 148.0 12.9* 18.3* 17.5* 182.2 43.5* 76.4 34.5* 37.2 6.9 9.8 9.5 

#Incorrect Edges  23.9 33.5 19.5*  35.1 53.0 13.4*  4.2 11.0 8.0 

Compression Ratio 6.7 76.8* 66.8 60.2 2.3 31.6* 21.9 21.7 2.2 14.6 12.8 12.8 

% Accurate Correct Edges 39.1 41.9 42.5* 44.1* 61.4 80.2* 58.9 80.8* 22.5 27.7* 26.9* 29.8* 

% Accurate Incorrect Edges  99.9* 97.2 99.5*  92.5* 67.3 85.5  97.8* 86.1 87.2 

Training Error Rate 51.4 25.4 17.7* 17.5* 33.6 17.2* 25.8 24.3 75.2 56.1 22.3* 25.3* 

Heldout Error Rate 42.8 23.5 16.1* 15.7* 29.1 25.5* 33.3 30.8 45.3 35.9 19.9* 18.5* 

% Training Unseen Events 0.0* 10.7 2.2 6.8 0.0* 14.1 12.2 24.6 0.0* 13.4 5.2 4.5 

% Heldout Unseen Events 10.2* 19.1 11.5* 13.9 35.9* 41.7 38.4* 42.6 31.7* 40.7 34.4* 34.3* 

Branching Factor 2.2 10.9 12.6* 8.5 1.5 13.4* 12.9* 6.0 1.6 6.7* 9.4* 7.8* 

#Groups  0.5*  0.0  0.8  1.4*  0.3*  0.1 

Avg. Group Size  1.9*  0.0  2.0  2.0  0.6*  0.3 

% Group Coverage  31.8*  0.5  27.2  30.6*  15.4*  6.1 
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collected from a large set of real users. They contain realistic 

variations in learner inputs similar to demonstrations. 

5. EXPERIMENTS 

We use a three-fold cross validation design that splits the 

available traces into three different training and held out sets. The 

readability metrics (i.e. number of nodes, number of edges and 

compression ratio) as well as the robustness metrics (branching 

factor, number of unordered groups, average group size and 

coverage of graph within groups) are reported on the behavior 

graphs generated by the algorithms. On the other hand, some 

accuracy metrics such as the accuracy of correct and incorrect 

edges are measured on generated graphs whereas others such as 

error rate are measured on event sequences which could be the 

training traces; i.e., sequences used to generate the graphs, or held 

out traces. Similarly, our completeness metrics, i.e. the rate of 

unseen events in a sequence, can be measured on both training as 

well as held out traces. Note that the metrics computed on training 

traces used to generate the graphs may not accurately indicate the 

performance of an algorithm due to over-fitting. This is the 

motivation for choosing the cross validation based experimental 

design. 

5.1 Results  

Table 3 shows our results along 14 metrics for each of the four 

algorithms applied to the three learning domains under 

consideration. Reported metrics are averaged over three cross 

validation splits as well as over all the problems for each domain. 

The metrics are organized by the four desirable characteristics 

discussed earlier. Primary metric for each characteristic is 

highlighted. 

 

Figure 3. Compression Ratio of Algorithm 2 

5.1.1 Mathematics 

As expected, the interaction networks comprise of a large number 

of nodes and edges that lead them to have significantly smaller 

compression ratio. Algorithm 2 (Heuristic Alignment) 

outperforms all other algorithms on three of the readability 

metrics. On the other hand, Algorithm 4 (Path Pruning) 

significantly outperforms the other algorithms on three of the 

accuracy metrics for this dataset and is not significantly worse on 

the fourth metric. Because of their lossless nature, Algorithm 1 

(Interaction Network) performs the best on Completeness metrics 

(% unseen events). However, it is not significantly better than 

Algorithm 3 (Center-Star Alignment). We find evidence of over-

fitting of the algorithms to training traces on this metric as 

indicated by the approximately 9% higher rate of unseen events 

for held out traces for all the algorithms. Algorithm 3 significantly 

outperforms the other algorithms on the primary robustness metric 

(Branching Factor) for this domain. Algorithm 2 is better than 

Algorithm 4 for the metrics based on unordered groups. 

 

 

Figure 4. Heldout Error Rate of Algorithms 2 and 4 

5.1.2 Physics 

On the primary readability metric (Compression Ratio), Algorithm 

2 outperforms the others on the Physics dataset as was the case 

with Mathematics. This is consistent with prior conclusion [4] on 

the use of Algorithm 2 for readability. We note that the Physics 
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dataset has significantly lower compression ratio than the previous 

dataset. Figure 3 shows a scatter plot and domain-specific 

regression fits for the compression ratio of Algorithm 2 for 

different problems with different number of training traces and UI 

elements. We see that for equivalent number of training traces, the 

compression ratio for Physics is actually slightly better than 

Mathematics. However, as we know from Table 2, fewer training 

traces are available for the Physics problems on average. 

On the primary accuracy metric, we find that Algorithm 2 works 

best for Physics unlike the case with the Mathematics domain. We 

can note that the Algorithm 2 is significantly better on the 

accuracy of incorrect edges. Figure 4 shows the relationship 

between the error rate in heldout traces and the accuracy of 

incorrect edges. We also see that the percentage of unseen events 

in heldout traces is significantly higher for Physics. The lower 

incorrect edge accuracy and higher percentage of unseen events 

can be attributed to the differences in the tutoring approach 

underlying the Andes2 system which uses domain-specific 

knowledge to match a large variety of inputs from the learner at 

each step of the solution. Because of this, Andes2 elicits 

significantly diverse (& hence novel) inputs across traces. 

Algorithms 2 and 3 are not significantly different in terms of the 

primary robustness metric. 

5.1.3 French 

 

Figure 5. Accuracy of Correct Edges for Algorithm 4 

The results for our non-STEM domain are largely consistent with 

the Mathematics domain. This may be attributed to the similarities 

of the underlying tutoring approach for the Assistments system 

and the French Online course which has been developed using the 

Cognitive Tutor Authoring Tools (CTAT) [2]. However, we can 

notice two key differences. First, the accuracy of correct edges for 

this domain is significantly lower. Because the French Online 

Course is deployed on an publicly accessible platform, its likely 

that a large number of the solution traces were generated by 

beginners as well as non-serious users leading to the dataset 

containing many incomplete solution traces containing no correct 

answers. This is evidenced in Figure 5 as we see that correct edge 

accuracy dramatically degrades for long traces which is contrary 

to the case with the other two domains. 

Second, we expect the branching factor to be higher for a 

language learning domain, due to the high degree of linguistic 

variation in learner inputs. The results in Table 3 do not indicate 

this. However, Figure 6 verifies this intuition. Branching factor 

for the French behavior graphs is higher than those for the STEM 

domain for problems that have 10 or more traces. 

 

Figure 6. Branching Factor of Algorithm 3 

5.1.4 Automatically Generated Behavior Graphs 

Figures 7, 8 and 9 showcase several qualitative characteristics of 

automatically generated behavior graphs (truncated to fit) for the 

problems in the three datasets used in this work. We use the 

following visual convention: Circular nodes represent states and 

are labeled with identifiers u of the corresponding UI element. 

Edges are labeled with the data values d. Correct edges are labeled 

with green rectangles and incorrect edges are labeled with red 

rectangles. Unordered groups are shown using blue containers. 

Figure 7 shows graphs generated by two different algorithms for 

the same Mathematics problem in the Assistments dataset using 

241 solution traces by learners. The graph generated by Algorithm 

1 is dense and hardly readable due to the large number of nodes 

and edges in this graph. Also, as discussed in Section 3, this 

algorithm is unable to identify incorrect paths. Contrary to that, 

the graph in Figure 7b is composed of only 6 nodes. The various 

paths taken by learners are compressed into 46 correct and 39 

incorrect edges. We can notice that not all paths are accurate. 

However, the accurate paths are more frequent, as indicated by the 

thicker arcs associated with the edge. In our ongoing work, we are 

extending these algorithms to use this frequency attribute to 

eliminate inaccurate paths (either automatically, or by providing 

additional controls to model developers in authoring tools). 

A behavior graph from the Physics dataset is shown in Figure 8. 

As discussed earlier, the large variation in learner input at each 

state is depicted in the edge labels of this graph. We notice that for 

the last state (s6) which corresponds to the learners filling in the 

answer to a problem, many minor variations of the correct answer 

are accurately captured. Due to the domain independent nature of 

our algorithms, these answers are treated as different string. 

Integration of domain knowledge can lead to further compression 

of these answers into a single path. 
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The linguistic variation in the inputs to a problem in the French 

dataset is also noticeable in the two graphs for the same problem 

in Figure 9. We can see the several wrong answers are marked as 

correct answers (and vice versa), although the frequency-based 

edge notation identifies the correct answer as was the case in 

Figure 7b. In this problem, learners are asked to listen to an audio 

file and type in the French word they hear. Learners are allowed 

to go back and forth between these two steps. The first step has no 

wrong answer. We notice that our assumption to consider 

retracted events as incorrect fails in this case. 

 

Figure 7a. Behavior Graph: Mathematics, Algorithm 1 

 

Figure 7b. Behavior Graph: Mathematics, Algorithm 2 

It is particularly interesting to note the differences in the way 

Algorithm 2 and Algorithm 4 encode robustness into the learnt 

tutor model. While Algorithm 2 identifies an unordered group 

containing the listen and answer nodes which allows learners to 

traverse these nodes in any order, Algorithm 4 identifies that the 

listen step is optional and create two different way to reach the 

answer step based on the solution behaviors exhibited by learners 

in the traces. 

 

Figure 8. Behavior Graph: Physics, Algorithm 2 
 

 

Figure 9a. Behavior Graph: French, Algorithm 2 
 

 

Figure 9b. Behavior Graph: French, Algorithm 4 

6. CONCLUSIONS 

In this paper, we have shared results from an empirical analysis of 

application of ABGG algorithms to three different learning 

domains. Several similarities and differences between the 

performances of four algorithms on problems from these three 

domains were discussed in the previous section. 

We find that the accuracy of these algorithms suffers when they 

are applied to solution traces collected from a tutoring system that 

uses domain knowledge to process a large variety of inputs from 

learners. While in our previous work [4], we have recommended 

the use of Algorithm 2 as the default ABGG algorithm for use 

within authoring tools, we find that for language learning 

domains, Algorithm 4 may be preferable since it is the most 

accurate on the French dataset and not significantly worse than the 

other algorithms on the other primary metrics.  

We identified multiple potential improvements to the ABGG 

algorithms based on these analyses. There are several domain 

specific nuances to the UI elements that comprise the problems in 

each domain. For example, in the French domain, we found steps 

that do not have any wrong answer. For broad use, ABGG 

algorithms should identify these UI elements and selectively apply 

the powerful assumption about retracted events. Furthermore, the 

algorithms can exploit additional features computed from across 

the multiple traces, such as the frequency of a data value at a 

node, to improve the accuracy of the automatically generated 

behavior graphs. 

Finally, this paper extends our recent work on use of multiple 

behavior demonstrations to automatically generate tutor models 

using ABGG algorithms. While these algorithms can be improved 

in specific ways discussed above, we find evidence for their 

applicability to multiple domains. 
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ABSTRACT
The central goal of educational datamining is to derive cru-
cial pedagogical insights from student, course, and tutorial
data. Real-world educational datasets are complex and het-
erogeneous comprising relational structures, social connec-
tions, demographic information, and long-term assignments.
In this paper I describe Augmented Graph Grammars a ro-
bust formalism for graph rules that provides a natural struc-
ture for evaluating complex heterogeneous graph data. I also
describe AGG an Augmented Graph Grammar engine writ-
ten in Python and briefly describe its use.

Keywords
Augmented Graph Grammars, Graph Analysis, Argument
Diagrams, Complex Data, Heterogeneous Data

1. INTRODUCTION
The central goal of educational datamining is to draw peda-
gogical insights from real-world student data, insights which
can inform instructors, students, and other researchers. While
robust analytical formalisms have been defined for categor-
ical, numerical, and relational data most real-world educa-
tional data is complex and heterogeneous combining textual,
numerical, and relational features. In large course settings
such as a lecture course or MOOC, for example, students
may form dynamic working groups and collaborate on com-
plex assignments. They may also be given a flexible set
of reading, writing, or problem-solving tasks that they can
choose to complete in any order. This process data can be
encoded as a graph with nodes representing individual as-
signments and reading materials and arcs representing group
relationships or traversal order. In order to capture impor-
tant features of this rich graph data and to identify key
relationships between teamwork, written text, and perfor-
mance, it is necessary to apply a rule structure that can
capture them naturally.

Individual student assignments can also contain heteroge-
neous data. Argument diagrams, for example, have been
used to teach writing, argumentation, and scientific reason-
ing [10, 2, 19]. These structures reify real-world arguments
as graphs using complex node and arc types to represent
argumentative components such as hypothesis statements,
citations, and claims. These complex elements can include
types, text fields for short notes or free-text assertions, links
to external resources, and other data.

A sample student-produced argument diagram drawn from
my thesis work at the University of Pittsburgh is shown
in Figure 1. This work focused on the use of argument
diagrams to support students in developing written scien-
tific reports and in identifying pedagogically-relevant dia-
gram structures that can be used to predict students’ subse-
quent performance (see [8]). The diagram contains a central
claim node representing a research claim. This node has
a single text field in which the claim is stated. This is, in
turn, connected to a set of citation nodes representing re-
lated work via a set of supporting, opposing, and undefined
arcs colored green, red, and grey, respectively. The citation
nodes each contain two text fields, one for the citation in-
formation and the other for a summary of the cited work,
while the arcs contain a single text field for the warrant or
explanation of why the relationship holds. At the top of
the diagram there is a single disjoint hypothesis node which
contains two text fields: a conditional or IF field, and a
conditional or THEN field.

This diagram contains a number of pedagogically-relevant
issues. Some of them are purely structural such as the dis-
joint hypothesis node, and the fact that the supporting and
opposing arcs are drawn from the claim to the citations and
not vice-versa. It also contains more complex semantic is-
sues such as the fact that the text fields on the arcs contain
summary information for the cites not explanations of the
relationship, and the fact that the opposing citations, cita-
tions that disagree about the central claim node have not
been distinguished from one-another via a comparison arc.
Problems such as these can be detected via complex rules,
and I have previously shown that the presence of such prob-
lems are predictive of students’ subsequent performance [8,
10, 9]. This detection and remediation, however requires the
development of rules that can incorporate complex struc-
tural and textual information.
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Figure 1: A segment of a student-produced LASAD diagram representing an introductory argument. It
contains a central claim node surrounded by citation nodes. The isolated node is a hypothesis that has not
been integrated into the argument.

Automatic graph analysis is central to a number of research
domains including strategy transfer in games [4], automatic
recommendations [1], cheminformatics [12], and social net-
work detection [11]. Graph analysis algorithms have been
used to define educational communities [15, 16, 5]) and to
automatically grade existing datasets [8, 10, 9]. Graphical
structures have also been used in tutoring contexts to repre-
sent student work via argument diagrams of the type shown
above (see [14, 7] or to provide connection representations
[19] for student guidance.

My focus in the present work is on the development of graph
rules that is logical graph patterns that match arbitrary
graph structures based upon content and structure informa-
tion. While arbitrary graph matching is NP-Hard (see [18])
it is of practical importance, particularly in relational do-
mains such as argument diagrams or student groups where
our goal is to identify complex structures that may be evi-
dence of deeper pedagogical issues. To that end, I will intro-
duce Augmented Graph Grammars a robust rule formalism
for complex graph rules and will describe AGG and aug-
mented graph grammar engine for educational datamining.
Both were developed as part of my thesis work at the Uni-
versity of Pittsburgh.

2. AUGMENTED GRAPH GRAMMARS
Graph Grammars, as described by Rekers and Schürr, are
formal grammars whose atomic components are graphs or

graph elements, and whose productions transpose one graph
to another [17]. More formally, they define graph-grammars
and productions as:

Definition 3.6 A graph grammar GG is a tu-
ple (A;P ), with A a nonempty initial graph (the
axiom), and P a set of graph grammar produc-
tions. To simplify forthcoming definitions, the
initial graph A will be treated as a special case
of a production with an empty left-hand side.
The set of all potential production instances of
GG is abbreviated with PI(GG).

Definition 3.2 A (graph grammar) production
p := (L; R) is a tuple of graphs over the same
alphabets of vertex and edge labels LV and LE.
Its left-hand side lhs(p) := L and its right-hand
side rhs(p) := R may have a common (context)
subgraph K if the following restrictions are ful-
filled:

• ∀e ∈ E(K) ⇒ s(e) ∈ V (K) ∧ t(e) ∈ E(K)
with E(K) := E(L) ∩ E(R) and V (K) :=
V (L)∩V (R) i.e. sources and targets of com-
mon edges are common verticies of L and R,
too.
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• ∀x ∈ L∩R⇒ lL(x) = lR(x) i.e. common el-
ements of L and R do not differ with respect
to their labels in L and R.

Thus graph grammars are systems of production rules anal-
ogous to context-sensitive string grammars (see [18]). For
reasons of efficiency Rekers and Schürr restrict their focus
to layered graph-grammars where all productions must be
expansive with the left-hand-side being a subgraph of the
right. Classical graph grammars, like string grammars, as-
sume a fixed alphabet of simple statically-typed node and
arcs and can be used both to generate matching graphs pro-
grammatically or to parse matching graphs via mapping and
decomposition. My focus in the present work is on graph
matching which occurs via iterative mapping.

Let Gi =< {no, . . .}, {e(np, nq), . . .} > and Gj =< {mo, . . .},
{e(mk,ml), . . .} > be graphs and let M = {< na,M − b >
. . .} me a mapping from Gi to Gj that links nodes of the
two. In the context of a mapping, Gi and Gk are called the
source and target graphs respectively. A mapping MGi,Gj

from Gi to Gj is valid if and only if the following holds:

∀nx ∈ Gi : ∃ < nx,my >∈MGi,Gj

¬∃{< nx,my >,< nr,mk >} ⊆MGi,Gj : (x = r) ∨ (y = k)

∀e(nx, ny) ∈ Gi : {< nx,my >,< nr,mk >} ⊆MGi,Gj

: ∃e(my,mk) ∈ Gj

For the remainder of this paper all elements in a source
graph will be labeled alphabetically (e.g. a, Q) while ele-
ments in the target graphs will be referenced numerically

(e.g. 1, 2, e(2, 3),
−−−−→
e(4, 5)).

Augmented Graph Grammars are a richer formalism for graph
rules that treat nodes and arcs as complex components with
optional sub-fields including flexible text elements or other
types. Augmented graph grammars have been previously de-
scribed by Pinkwart et al. in [13]. There the authors focused
on the use of augmented graph grammars for tutoring. An
Augmented Graph Grammar is defined by: a graph ontol-
ogy that specifies the complex graph elements and functions
available; a set of graph classes that define matching graphs;
and optional graph productions and expressions that provide
for recursive class mapping and logical scoping. I will de-
scribe each of these components briefly below. For a more
detailed description see [8].

2.1 Graph Ontology
In a simple graph grammar of the type used by Rekers and
Schürr the set of possible node and arc types (

∑
) is fixed

with the elements being atomic, static, and unique. In order
to process complex structures such as the argument diagram
shown in Figure 1, a more complex structure is required.
Thus augmented graph grammar ontologies are defined by a
set of element types O = {N0, . . . Nm, E0, . . . , Ep} such that
each element has a unique list of fields and field types as well
as applicable functions over those fields. The ontology must
also specify appropriate relationships between the fields and
operations that can be used on them.

While showing a complete ontology is beyond the scope of
this paper an illustrative example can be found in Figure

{

Nodes:{

Citation:{

Cite(String)

Cite.Words(StringSet)

Summary(String)

Summary.Words(StringSet)

}

Hypothesis: {

If(String)

If.Words(StringSet)

Then(String)

Then.Words(StringSet)

}

}

Arcs:{

Comparison: {

...

Types: { String, StringSet }

...

Figure 2: An illustrative subset of a sample graph
ontology for scientific argument diagrams.

2. This illustrates the field definitions for the citation and
hypothesis nodes shown above. Both node types contain
two sub-fields of type String. For each of these fields an
additional function is defined ’*.Words’ which returns a set
of all the words found in the field.

2.2 Graph Classes
The core component of an augmented graph grammar is the
graph class. A class Ci is defined by a 2-tuple < Si, Oi >
where Si is a graph schema and Oi is a set of constraints.
A class defines a space of possible graphs which satisfy both
the schema and the constraints. Classes are not required
to be unique nor are the set of matching graphs for a given
pair of classes required to be disjoint. A sample named
class R07a is shown in 3. This class is designed to detect
instances of Related Uncompared Opposition in scientific ar-
gument diagrams. That is subgraphs where there exists a
pair of citation nodes a, and b that disagree about a shared
target node t, are not connected via a comparison arc c,
and which share some relevant textual content. As I noted
above, this type of structure can be found in Figure 1.

2.2.1 Graph Schema
A Schema is a graph structure that defines a space of pos-
sible graphs topologically. Schema are defined by a set of
ground nodes (e.g. t, a, & b in Figure 3) which must match
a single node in a target graph, a set of ground arcs that
must likewise match a single arc in the target graph (e.g.
c), and an optional set of variable arcs which must match a
nonempty subgraph defined by a graph production. By con-
vention, ground elements are denoted via lower-case names
while variable elements are denoted by capitalized names.

In addition to the ground and variable distinctions arcs within
a schema may be one of four types: directed (e.g. O, &
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a b

O S

¬ c

(R07a)


t.Type ∈ {“Hypothesis′′, “Claim′′}

a.Type = “Citation′′

b.Type = “Citation′′

c.Type = “Comparison′′

(a.summary.words ∩ b.summary.words) 6= ∅


Figure 3: Related Uncompared Opposition A simple
augmented graph grammar rule that detects related
but uncompared counterarguments. The rule shows
a two citation nodes (a, & b) that have opposing re-
lationships with a shared hypothesis or claim node
(t) and do not have a comparison arc (c) drawn be-
tween them. The arcs S and O represent recursive
supporting and opposing paths.

S), of unknown direction, undirected (e.g. c), and unde-
fined. Directed arcs will only match directed arcs in the
base graph oriented in the same direction. Thus, given a

base graph containing an arc
−−−−→
e(1, 2) and a schema with a

directed arc
−−−−→
e(n,m) the schema will only match cases where

{< n, 1 >,< m, 2 >} ⊆M . Unknown direction schema arcs
may match a directed arc oriented in any order but will not
match an undirected arc (e.g. e(2, 3)). Undirected arcs (e.g.
¬c) will not match a directed arc. And, undefined arcs may
match a directed or undirected arc in any order.

As the example shows arcs may be also be negated (e.g. ¬c)
in which case the schema matches a graph if and only if no
match can be found for the negated arc. Thus the schema
shown will only match ground graphs with no arc between
the elements assigned to a and b. More complicated cases of
negation may be formed using graph expressions which are
defined below.

The elements of a Schema must also be non-repeating that
is, no two elements in a schema may be matched to the same
element in the target graph. Thus each element in a schema
must match at least one unique node or arc with variable
elements possibly accounting for more than one element.

2.2.2 Constraints
Constraints represent individual bounds or limits on the
ground elements of a schema. Constraints are specified using
a set-theory syntax (e.g. t.Type ∈ {“Hypothesis′′, “Claim′′})
and may draw on any of the node or arc features, subfields,
or functions specified in the ontology. Unary Constraints ap-
ply to a single element (e.g. a.Type = “Citation′′). Binary
Constraints (e.g. (a.summary.words ∩ b.summary.words)
6= ∅) specify a relationship between two distinct ground ele-
ments.

a

c

S(SC)

a

b

c

Sq(SP1)

{
q.Type = “Supporting′′

}

a

c

q(SP2)

{
q.Type = “Supporting′′

}
−−−−→
S(a, c) = [ Sc ⇒ SP1

[2,∗]
| SP2 ]

Figure 4: A simple recursive rule production for S
that defines a supporting path.

2.3 Graph Productions
A graph production Cl ⇒ Cr1|Cr2... is a context-sensitive
production rule that maps from a graph class containing a
single production variable to one or more alternate expan-
sions. Graph productions are used to match layered sub-
graphs to the variable arcs. A simple recursive production

rule for the variable element
−−−−→
S(b, t) is shown in Figure 4.

The rule is defined by the context class SC , and the two pro-
duction classes SP1 and SP2. The context class is used as a
key for the production application. It must contain exactly
one variable arc, the production variable, and no constraints.
The ground nodes a and c are context nodes and are used to
ground the production for mapping. They must be present
in all of the production rules. All production rules must
be expansive with each of the production classes contain-
ing at least one ground element not present in the context
class. Recursive productions are thus handled by iteratively
grounding the mapping with additional context and, as per
the non-repeating requirement, these rules must consume
additional elements of the graph. Production rules are thus
mapped in a layered fashion like the grammars defined by
Rekers and Schürr.
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h(C0){
h.Type = “Hypothesis′′

}
h

c

O(C1)

{
h.Type = “Hypothesis′′

c.Type = “Supporting′′

}

∀C0|¬∃C1

Figure 5: A simple Graph expression that tests for
unopposed hypotheses.

2.4 Graph Expressions
Graph expressions are logical rules of the form:

S0C0 | S1C1 | . . . | SmCm

where each Ci is a graph class and each Si is a logical quan-
tifier from the set: {∀,¬∀, ∃,¬∃}. The expressions allow
for existential and universal scoping and arbitrary negation
of graph classes. The expressions represent chained logical
structures with each ’|’ being read as “. . . such that . . . ”. A
sample graph expression is shown in Figure 5. This sample
expression asserts that for all hypothesis nodes in the target
graph there exist no citation nodes that oppose the target
hypothesis. Thus it is a universal claim about a negated
existential item. As this example illustrates graph expres-
sions allow for more complex negation structures than are
supported by the graph schema.

Graph expressions must be expansive or right-grounded such
that the following constraints hold:

∀Cm≤i>0 ∈ E : Ci−1 ⊆g Ci

Sm ∈ {∃,¬∃}

That is, the schema component of class Ci must be a sub-
graph of all classes class Ci+n. This also holds true for
the constraints with all constraints present in class Ci be-
ing present in classes Ci+n. And the rightmost class in the
expression must also be an existential (∃) test with optional
negation.

3. AGG
AGG is a general-purpose augmented graph grammar en-
gine that implements recursive graph matching. The system
was developed in Python to support analysis of the student-
produced argument diagrams described above. As such it is
flexible, functions across platforms, and supports complex
graph ontologies and user-defined functions. The system
was designed in a modular fashion and can be linked with
third-party libraries such as the NLTK [6].

At present the system uses a straightforward depth-first
stack matching algorithm. Given a graph and a set of named
rules, defined by a single graph class or expression, the sys-
tem will first match all ground nodes and arcs in the leftmost
target class. Once each ground element has been matched
then the system will recursively match all variable elements
in the target. If at any point the system cannot continue to
match elements it will pop up the stack and repeat. Rule
matching is governed by the aforementioned restrictions of
expansiveness and non-repetition. If a rule is defined by a
graph expression then each class match will set the context
for subsequent rightmost matches. Rules defined by a single
class are complete once a single match is found. The sys-
tem is designed to find matches serially and can be called
iteratively to extract all matching items.

In addition to basic graph grammars the AGG toolkit has
the capacity to define named rules. These are named graph
expressions or individual classes that will be recorded if they
match. In my thesis work, I applied the AGG engine to de-
velop a set of 42 such rules the scientific argument diagrams.
These ranged in complexity from graph classes defined by
a single node to more complex recursive expressions that
sought to identify disjoint subgraphs and unsupported hy-
potheses. The example rules and expressions shown in fig-
ures 3 - 5 were adapted from this set. The rules were used for
offline processing of the graphs and for prediction of student
grades [10, 9].

As part of the analysis process the rules were evaluated on
a set of 526 diagrams containing between 0 and 41 nodes
each. While exact efficiency data was not retained the per-
formance of the rules varied widely depending upon their
construction. General recursive rules such as a test for dis-
joint subgraphs performed quite inefficiently while smaller
chained expressions were able to evaluate in a matter of sec-
onds on a quad-core system.

4. APPLICATIONS & FUTURE WORK
The focus of this paper was on introducing Augmented Graph
Grammars and the AGG engine. The formalism provides for
a natural and robust representation of complex graph rules
for heterogeneous datasets. In prior work at the University
of Pittsburgh I applied Augmented Graph Grammars to the
detection of pedagogically relevant structures like Related
Uncompared Opposition (see Figure 3) in argument diagrams
of the type shown in Figure 1. The focus of that study was
on testing whether student-produced argument diagrams are
diagnostic of their ability to produce written argumentative
essays. The study was conducted in a course on Psycholog-
ical Research Methods at the University of Pittsburgh.

The graph features examined in that study included chained
counterarguments which feature chains of oppositional infor-
mation, and ungrounded hypotheses which are unrelated to
cited works, and so on. The study is described in detail in [8],
and a discussion of the empirical validity of the individual
rules can be found in [9]. The rules were also used as the ba-
sis of predictive models for student grades described in [10].
The Augmented Graph Grammars were ideally-suited for
this task as they allowed me to define clear and robust rules
that incorporated the structural information in the graph,
textual information within the nodes and arcs, and the static
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element types. It was also possible to clearly present these
rules to domain experts for evaluation.

While the AGG system is robust more work remains to be
done to make it widely available, and several open problems
remain for future development. As noted above, arbitrary
graph parsing is NP-Hard. Consequently, many rule classes
are extremely inefficient. Despite this limitation, however,
real efficiency gains may be made via parallelization and
memoization. I am presently researching possible improve-
ments to the system and plan to test them with additional
datasets.
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ABSTRACT
We introduce a new method for analysis and evaluation of logic
proofs constructed by undergraduate students, e.g. resolution or
tableaux proofs. This method employs graph mining and outlier
detection. The data has been obtained from a web-based system
for input of logic proofs built at FI MU. The data contains a tree
structure of the proof and also temporal information about all ac-
tions that a student performed, e.g. a node insertion into a proof,
or its deletion, drawing or deletion of an edge, or text manipula-
tions. We introduce a new method for multi-level generalization
of subgraphs that is useful for characterization of logic proofs. We
use this method for feature construction and perform class-based
outlier detection on logic proofs represented by these new features.
We show that this method helps to find unusual students’ solutions
and to improve semi-automatic evaluation of the solutions.

Keywords
logic proofs, resolution, educational data mining, graph mining,
outlier detection

1. INTRODUCTION
Resolution method is, together with tableaux proof method, one of
the advanced methods taught in undergraduate courses of logic. To
evaluate a student solution properly, a teacher needs not only to
check the result of a solution (the set of clauses is or is not con-
tradictory) but also to analyse the sequence of steps that a student
performed—with respect to correctness of each step and with re-
spect to correctness of that sequence. We need to take into account
all of that when we aim at building a tool for analysis of students’
solutions. It has to be said that for an error detection (e.g. resolu-
tion on two propositional letters, which is the most serious one) we
can use a search method. However, detection of an error does not
necessarily mean that the solution was completely incorrect. More-
over, by a search we can hardly discover patterns, or sequence of
patterns, that are typical for wrong solutions.

To find typical patterns in wrong solutions, we developed a new
method for analysis of students’ solutions of resolution proofs [13,

14] and showed its good performance. Solutions were manually
rewritten into GraphML and then analysed. First, the frequent pat-
terns were found by Sleuth [16], which was suitable for this type
of data—unordered rooted trees. This algorithm finds all frequent
subtrees from a set of trees for a given minimum support value.
Such frequent subgraphs were generalized and these generaliza-
tions used as new attributes.

The main drawback of a frequent subgraph mining algorithm it-
self is its strong dependence on a particular task, i.e. on the input
set of clauses that has to be proved, or unproved, as contradictory.
Moreover, a usage of such an algorithm is quite limited, because
by setting the minimum support to a very small value, the algo-
rithm may end up generating excessively many frequent subtrees,
which consumes both time and space. The problem is that we wish
to include the infrequent substructures as well because they often
represent mistakes in students’ solutions.

In this paper we propose a novel way of subgraph generalization
that solves the problems mentioned above and is independent on
the input set of clauses. We show that by means of graph mining
and class outlier detection, we are able to find outlying students’
solutions and use them for the evaluation improvement.

The structure of this paper is following. Section 2 brings related
work. In Section 3 we introduce the source data. In Section 4
we introduce the improved method for construction of generalized
resolution graphs. In Section 5 we bring the main result—detection
of anomalous student solutions. Discussion and conclusion are in
Sections 6 and 7, respectively.

2. RELATED WORK
Overview of graph mining methods can be found in [5]. Up to
our knowledge, there is no work on analysis of student solutions of
logical proofs by means of graph mining. Definitely, solving logic
proofs, especially by means of resolution principle, is one of the
basic graph-based models of problem solving in logic. In problem-
solving processes, graph mining has been used in [15] for mining
concept maps, i.e. structures that model knowledge and behaviour
patterns of a student, for finding commonly observed subconcept
structures. Combination of multivariate pattern analysis and hid-
den Markov models for discovery of major phases that students go
through in solving complex problems in algebra is introduced in
[1]. Markov decision processes for generating hints to students in
logic proof tutoring from historical data has been solved in [2, 3,
12].
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Figure 1: A correct and an incorrect resolution proof.

3. DATA
By means of a web-based tool, each of 351 students solved at least
three tasks randomly chosen from 19 exercises. All solutions were
stored in a PostgreSQL database. The data set contained 873 dif-
ferent students’ solutions of resolution proofs in propositional cal-
culus, 101 of them being incorrect and 772 correct. Two examples
of solutions are shown in Fig. 1.

Common errors in resolution proofs are the following: repetition
of the same literal in the clause, resolving on two literals at the
same time, incorrect resolution—the literal is missing in the re-
solved clause, resolving on the same literals (not on one positive
and one negative), resolving within one clause, resolved literal is
not removed, the clause is incorrectly copied, switching the order
of literals in the clause, proof is not finished, resolving the clause
and the negation of the second one (instead of the positive clause).
For each kind of error we defined a query that detects the error. For
automatic evaluation we used only four of them, see Table ERRORS
described in appendix A. As the error of resolving on two literals at
the same time is very common and referred later in text, we denote
this error as E3.

All actions that a student performed, like adding/deleting a node,
drawing/removing an edge, writing/deleting a text into a node, were
saved into a database together with time stamps. More details on
this database and its tables can be found in appendix A.

In the data there were 303 different clauses occurring in 7869 ver-
tices, see frequency distribution in Fig. 2. Approximately half of
the clauses had absolute frequency less than or equal to three.

4. GENERALIZED SUBGRAPHS
In this section we describe feature construction from graph data.
Representing a graph by values of its vertices and edges is insuf-

ficient as the structure of the graph also plays a significant role.
Common practice is to use substructures of graphs as new features
[5]. More specifically, boolean features are used and the value of a
feature depends on whether the corresponding substructure occurs
in the given instance or not.
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Figure 2: Distribution of clause labels ordered by frequency.

As we showed earlier, a frequent subgraph mining algorihm is inap-
propriate. To overcome the discussed problems, we created a new
method for feature construction from our data. The idea of feature
construction is to unify subgraphs which carry similar information
but they differ in form. An example of two subgraphs, which differ
only in variable letters and ordering of nodes and literals, is shown
on the left side of Fig. 3. The goal is to process such similar graphs
to get one unique graph, as shown in the same figure on the right.
In this way, we can better deal with different sets of clauses with
different sets of variable letters. To deal with the minimum-support
problem, the algorithm for frequent subgraphs was left out com-
pletely and all 3-node subgraphs, which are described later, were
looked up.

4.1 Unification on Subgraphs
To unify different tasks that may appear in student tests, we defined
a unification operator on subgraphs that allows finding of so called
generalized subgraphs. Briefly saying, a generalized subgraph de-
scribes a set of particular subgraphs, e.g., a subgraph with parents
{A,¬B} and {A,B} and with the child {A} (the result of a correct
use of a resolution rule), where A, B, C are propositional letters,
is an instance of generalized graph {Z,¬Y}, {Z,Y} → {Z}, where
Y, Z are variables (of type proposition). An example of incorrect
use of resolution rule {A,¬B}, {A,B} → {A,A} matches with the
generalized graph {Z,¬Y}, {Z,Y} → {Z,Z}. In other words, each
subgraph is an instance of one generalized subgraph. We can see
that the common set unification rules [6] cannot be used here.

In this work we focused on generalized subgraphs that consist of
three nodes, two parents and their child. Then each generalized
subgraph corresponds to one way—correct or incorrect—of reso-
lution rule application.

4.2 Ordering on Nodes
As a resolution proof is, in principal, an unordered tree, there is
no order on parents in those three-node graphs. To unify two res-
olution steps that differ only in order of parents we need to define
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Figure 3: An example of pattern unification.

ordering on parent nodes1. We take a node and for each proposi-
tional letter we first count the number of negative and the number of
positive occurrences of the letter, e.g., for {¬C,¬B,A,C} we have
these counts: (0,1) for A, (1,0) for B, and (1,1) for C. Following
the ordering Ω defined as follows: (X ,Y ) ≤ (U,V ) iff (X < U ∨
(X = U ∧Y ≤ V )), we have a result for the node {C,¬B,A,¬C}:
{A,¬B,C,¬C} with description ∆ = ((0,1), (1,0), (1,1)). We will
compute this transformation for both parent nodes. Then we say
that a node is smaller if the description ∆ is smaller with respect to
the Ω ordering applied lexicographically per components. Contin-
uing with our example above, let the second node be {B,C,A,¬A}
with ∆ = ((0,1), (0,1), (1,1)). Then this second node is smaller than
the first node {A,¬B,C,¬C}, since the first components are equal
and (1,0) is greater than (0,1) in case of second components.

4.3 Generalization of Subgraphs
Now we can describe how the generalized graphs are built. After
the reordering introduced in the previous paragraph, we assign vari-
ables Z,Y,X,W,V,U,. . . to propositional letters. To accomplish this,
we initially merge literals from all nodes into one list and order it
using the Ω ordering. After that, we assign variable Z to the let-
ter with the smallest value, variable Y to the letter with the second
smallest value, etc. If two values are equal, we compare the cor-
responding letters only within the first parent, alternatively within
the second parent or child. For example, let a student’s (incorrect)
resolution step be {C,¬B,A,¬C},{B,C,A,¬A} → {A,C}. We or-
der the parents getting the result {B,C,A,¬A},{C,¬B,A,¬C} →
{A,C}. Next we merge all literals into one list, keeping multi-
ple occurrences: {B,C,A,¬A,C,¬B,A,¬C,A,C}. After reorder-
ing, we get {B,¬B,C,C,C,¬C,A,A,A,¬A} with ∆ = ((1,1), (1,3),
(1,3)). This leads to the following renaming of letters: B → Z,
C→ Y , and A→ X . Final generalized subgraph is {Z,Y,X ,¬X},
{Y,¬Z,X ,¬Y} → {X ,Y}. In case that one node contains more
propositional letters and the nodes are equal (with respect to the or-
dering) on the intersection of propositional letters, the longer node
is defined as greater. At the end, the literals in each node are lexi-
cographically ordered to prevent from duplicities such as {Z,¬Y}
and {¬Y,Z}.

4.4 Complexity of Graph Pattern Construc-
tion

Complexity of pattern generalization depends on the number of
patterns and the number of literals within each pattern. Let r be
the maximum number of literals within a 3-node pattern. In the

1Ordering on nodes, not on clauses, as a student may write a text
that does not correspond to any clause, e.g., {A,A}.

first step, ordering of parents must be done, which takes O
(
r
)

for
counting the number of negative and positive literals, O

(
r logr

)
for

sorting and O
(
r
)

for comparison of two sorted lists. Letter substi-
tution in the second step consists of counting literals on merged list
in O

(
r
)
, sorting the counts in O

(
r logr

)
and renaming of letters in

O
(
r
)
. Lexicographical reordering is performed in the last step and

takes O
(
r logr

)
. As construction of advanced generalized patterns

is less complex than the construction of patterns mentioned above,
we can conclude that the time complexity for whole generalization
process on m patterns with duplicity removal is O

(
m2 +m(4r +

3r logr)
)
.

4.5 Higher-level Generalization
To improve performance of used algorithms, e.g. outlier detection
algorithms, we created a new generalization method. This method
can be viewed as a higher-level generalization as it generalizes the
method described in previous paragraphs. This method uses do-
main knowledge about general resolution principle. It goes through
all literals in a resolvent and deletes those which also appear in at
least one parent. Each such literal is also deleted from the corre-
sponding parent or parents in case it appears in both of them. In the
next step, remaining literals in parents are merged into a new list
dropped and remaining literals in the resolvent form another list,
added. These two lists form a pattern of the higher-level general-
ization and we will write such patterns in the following format:

{Li1 ,Li2 , ...,Lin};{L j1 ,L j2 , ...,L jm}
(added) (dropped)

For example, if we take the generalized subgraph from the right
side of Fig. 3, there is only one literal in the resolvent, ¬Y . We re-
move it from the resolvent and both parents and we get dropped =
[Z,¬Z], added = [].

As a result, there may be patterns which differ only in used letters
and order of literals in lists dropped and added. For this reason
we then apply similar method as in the lower-level generalization.
Specifically, we merge lists dropped and added and compute num-
ber of negative and positive literals for each letter in this new list.
The letters are then ordered primarily according to number of oc-
currences of negative literals and secondly according to number of
occurrences of positive literals. In case of tie we check ordering
of affected letters only in added list and if needed, then also in
dropped list. If tie occurs also in these lists, then the order does
not matter. At the end, the old letters are one by one replaced by
the new ones according to the ordering and the new lists are sorted
lexicographically. For example, let dropped = [X ,¬X ], added =
[Y,Z,Z,¬Z]. Then merged = [X ,¬X ,Y,Z,Z,¬Z] and number of
occurrences can be listed as count(X, merged) = (1, 1), count(Y,
merged) = (0, 1), count(Z, merged) = (1, 2). Ordering on letters
can be expressed as Y ≤ X ≤ Z. Using letters from the end of
alphabet we perform following substitution according to created
ordering: Y → Z, X → Y , Z → X . Final pattern will have lists
dropped = [¬Y,Y ], added = [¬X ,X ,X ,Z], provided that ¬ sign is
lexicographically before alphabetic characters. Examples of pat-
terns with absolute support ≥ 10 are shown in Tab. 1.

4.6 Generalization Example
In this section we illustrate the whole generalization process by an
example. Assume that the following 3-node subgraph has to be
generalized:
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Table 1: Higher-level patterns with support ≥ 10

Pattern (added;dropped) Support
{};{¬Z,Z} 3345
{};{¬Y,¬Z,Y,Z} 59
{¬Z};{¬Y,Y} 18
{};{¬Z} 13
{};{} 10

P1 = {¬C,¬A,¬C,D,¬D},P2 = {¬D,¬A,D,C}→ {¬A,A,¬C}

First, the parents are checked and possibly reordered. For each
letter we compute the number of negative and positive literals in
either parent. Specifically, count(A, P1) = (1,0), count(C, P1) =
(2,0), count(D, P1) = (1,1), count(A, P2) = (1,0), count(C, P2) =
(0,1), count(D, P2) = (1,1). Obtained counts are lexicographically
sorted for both parents and both chains are lexicographically com-
pared:

((1,0),(1,1),(2,0))> ((0,1),(1,0),(1,1))

In this case, the result was already obtained by comparing the first
two pairs, (1,0) and (0,1). Thus, the second parent is smaller and
the parents should be switched:

P1′ = {¬D,¬A,D,C},P2′ = {¬C,¬A,¬C,D,¬D}→ {¬A,A,¬C}

Now, all three nodes are merged into one list:

S = {¬D,¬A,D,C,¬C,¬A,¬C,D,¬D,¬A,A,¬C}

Once again, the numbers of negative and positive literals are com-
puted: count(A, S) = (3,1), count(C, S) = (3,1), count(D, S) = (2,2).
Since count(A, S) = count(C, S), we also check the counts in the
first parent, P1’. As count(C, P1’) = count(C, P2) < count(A, P2) =
count(A, P1’), letter C is inserted before A. Finally, the letters are
renamed according to the created order: D→ Z,C→Y,A→ X . Af-
ter the renaming and lexicographical reordering of literals, we get
the following generalized pattern:

{¬X ,¬Z,Y,Z},{¬X ,¬Y,¬Y,¬Z,Z}→ {¬X ,¬Y,X}

Next, we want to get also the higher-level generalization of that
pattern. The procedure goes through all literals in the resolvent and
deletes those literals that occur in at least one parent. This step
results in a prunned version of the pattern:

{¬Z,Y,Z},{¬Y,¬Z,Z}→ {X}

Parents from the pruned pattern are merged into a new list dropped
and the resolvent is used in a list added. Thus, added = {X} and
dropped = {¬Z,Y,Z,¬Y,¬Z,Z}. Now it is necessary to rename

the letters once again. Lists added and dropped are merged together
and the same subroutine is used as before—now the lists can be
seen as two nodes instead of three. In this case, the renaming goes
as follows: X → Z,Y → Y,Z→ X . At the end, literals in both lists
are lexicographically sorted and the final higher-level pattern is:

{Z};{¬X ,¬X ,¬Y,X ,X ,Y}
(added) (dropped)

4.7 Use of Generalized Subgraphs
This section puts all the information from previous sections to-
gether and describes how generalized patterns are used as new fea-
tures. Input data in form of nodes and edges are transformed into
attributes of two types. Generalized patterns of the lower level can
be considered as the first type and the patterns of higher-level gen-
eralization as the second type. One boolean attribute is created for
each generalized pattern. Value of such attribute is equal to T RUE,
if the corresponding pattern occurs in the given resolution proof,
and it is equal to FALSE otherwise. Thus following this procedure,
the resolution proofs can be transformed into an attribute-value rep-
resentation as shown in Table 2. Such representation allows us to
use a lot of existing machine learning algorithms.

Table 2: Attribute-value representation of resolution proofs

Instance Pattern1 Pattern2 ... Patternm
1 TRUE FALSE ... FALSE
... ... ... ... ...
n FALSE FALSE ... TRUE

5. OUTLIER DETECTION
5.1 Mining Class Outliers
In this section we present the main result, obtained from outlier
detection. We observed that student creativity is more advanced
than ours, and that results of the queries for error detection must
be used carefully. Detection of anomalous solutions—either ab-
normal, with picturesque error, or incorrectly classified—helps to
improve the tool for automatic evaluation, as will be shown later.

Here we focus only on outliers for classes created from error E3, the
resolution on two literals at the same time, as it was the most com-
mon error. This means that the data can be divided into two groups,
depending whether the instances contain error E3 or not. For other
types of errors, the analysis would be similar. We also present
only results computed on higher-level generalized patterns. The
reason is that they generally achieved much higher outlier scores
than lower-level patterns.

The data we processed had been labeled. Unlike in common outlier
detection, where we look for outliers that differ from the rest of
"normal" data, we needed to exploit information about a class. That
is why we used weka-peka [9] that looks for class outliers [8, 10]
using Random Forests (RF) [4]. The main idea of weka-peka lies in
different computation of proximity matrix in RF—it also exploits
information about a class label [9]. We used the following settings:

NumberOfTrees=1000
NumberOfRandomFetaures=7
FeatureRanking=gini
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Table 3: Top outliers for data grouped by error E3

instance error E3 outlier score significant patterns significant missing patterns
[(AScore) added;dropped] [(AScore) added;dropped]

270 no 131.96 (0.96) looping (−0.99) {};{¬Z,Z}
396 no 131.96 (0.96) looping (−0.99) {};{¬Z,Z}
236 no 73.17 (0.99) {};{¬Y,¬Z,Y}
187 no 61.03 (0.99) {¬Z};{¬Y,Y}

(0.99) {};{¬Y,¬Z,Y}
438 yes 54.43 (1.00) {Z};{¬X ,¬Y,X ,Y} (−0.94) {};{¬Y,¬Z,Y,Z}
389 yes 52.50 (1.00) {};{¬Y,¬Z,Y} (−0.94) {};{¬Y,¬Z,Y,Z}

(−0.81) {};{¬Z,Z}
74 yes 15.91 (0.98) {¬Z};{¬X ,¬Y,X ,Y} (−0.94) {};{¬Y,¬Z,Y,Z}

(0.98) {};{¬X ,¬Y,¬Z,X ,Y,Z}
718 yes 15.91 (0.98) {¬Z};{¬X ,¬Y,X ,Y} (−0.94) {};{¬Y,¬Z,Y,Z}

(0.98) {};{¬X ,¬Y,¬Z,X ,Y,Z}

Figure 4: Drawings of the outlying instances from Table 3.

Table 4: Classification results for frequent subgraphs

Used attributes Algorithm Accuracy [%] Precision for incorrect proofs Recall
low-level generalization SVM (SMO) *95.2 0.94 0.61
both levels of generalization SVM (SMO) *96.9 0.95 0.74
both levels of generalization J48 96.1 *0.98 0.68
both levels of generalization E3 J48 *95.4 0.87 0.72
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MaxDepthTree=unlimited
Bootstrapping=yes
NumberOfOutliersForEachClass=50

Main results of outlier detection process are summarized in Table 3.
When analyzing the strongest outliers that weka-peka found, we
can see that there are three groups according to the outlier score.
The two most outlying examples, instances numbered 270 and 396,
significantly differ from the others. The second cluster consists of
four examples with the outlier score between 50 and 100, and the
last group is comprised of instances with the lowest score of 15.91.

As weka-peka is based on Random Forest, we can interpret an out-
lier by analyzing trees that classify given instance to a different
class than it was labeled. Such trees show which attribute or com-
bination of attributes lead to the resulting class. If we search for
repeating patterns in those trees, we can find the most important
attributes making the given instance an outlier. Using this method
to interpret the instance 270, we found out that high outlier score
is caused by not-applying one specific pattern (see Table 3). When
setting this attribute equal TRUE, outlier score decreases to -0,40.
Values of attributes of instances 396 and 270 are equal, it means
that also interpretation is the same as in previous case. Similary, we
found that outlierness of instance 236 is given by occurence of spe-
cific pattern in solution and non-occurence of another pattern. The
value of the corresponding attribute is the only difference between
instance 236 and 187. Occurence/non-occurence of this pattern is
therefore the reason why instance numbered 236 achieves higher
outlier score than instance 187. See again Table 3 for information
about particular patterns. We further elaborated this approach of
outlier explanation in the following section.

5.2 Finding Significant Patterns
As the outlier score is the only output information about the out-
liers, we created a simple method for finding the attributes with the
most unusual values. Let xi j denote the value of the jth attribute
of the ith instance, which is either T RUE or FALSE for the pattern
attributes, and cl(i) denote the class of the ith instance. Then for
instance i we compute the score of attribute j as:

AScore(i, j)=


|{k|k 6=i∧cl(i)=cl(k)∧xk j=FALSE}|

|{k|k 6=i∧cl(i)=cl(k)}| if xi j = T RUE

− |{k|k 6=i∧cl(i)=cl(k)∧xk j=T RUE}|
|{k|k 6=i∧cl(i)=cl(k)}| if xi j = FALSE

AScore expresses the proportion of other instances from the same
class which have different value of the given attribute. If outlier’s
attribute equals FALSE, then the only difference is in the sign of the
score. For example, consider our data set of 873 resolution proofs,
out of which 53 proofs contain error E3. Assume that one of the
53 proofs is an outlier with an attribute equal to T RUE and from
the rest of 52 proofs only two proofs have the same value of this
attribute as the outlier. Then the outlier’s AScore on this attribute
is approximately 50/52 = 0.96 and it indicates that the value of this
attribute is quite unusual.

In general, the AScore ranges from -1 to 1. If the outlier resolu-
tion graph contains a pattern which is unique for the class of the
graph, then the AScore of the corresponding attribute is equal to
1. On the other hand, if the outlier misses a pattern and all other
graphs contain it, then the AScore is equal to -1. An AScore equal
to 0 means that all other instances are equal to the outlier on the
specified attribute.

5.3 Interpretation of the Outliers
Using the AScore metrics we found the patterns which are interest-
ing for outliers in Table 3. Patterns, with AScore > 0.8 are listed in
the significant patterns column and patterns with AScore < -0.8 in
the significant missing patterns column.

All outliers from Table 3, except for the last one as it is almost
identical to the penultimate one, are also displayed in Fig. 4. Anal-
ysis of individual outliers let us draw several conclusions. Let us
remind that higher-level patterns listed in Table 3 are derived from
lower-level patterns consisting of three nodes, two parents and one
resolvent, and that the component added simply denotes literals
which were added erroneously to the resolvent and the component
dropped denotes literals from parents which participated in the res-
olution process. Two most outlying instances, numbered 270 and
396, also contain one specific pattern, looping. This pattern repre-
sents the ellipsis in a resolution tree, which is used for tree termi-
nation if the tree cannot lead to a refutation. Both instances contain
this pattern, but neither of them contains the pattern of correct us-
age of the resolution rule, which is listed in the significant missing
patterns column. The important thing is that these two instances do
not contain error E3, but also any other error. In fact, they are cre-
ated from an assignment which always leads to the looping pattern.
This shows that it is not sufficient to find all errors and check the
termination of proofs, but we should also check whether the student
performed at least few steps by using the resolution rule. Otherwise
we are not able to evaluate the student’s skills. Moreover, there may
be situations in which a student only copies the solution.

Instances with the outlier score less than 100 are less different from
other instances. In particular, instances number 236 and 187 are
more similar to correct resolution proofs than the instances dis-
cussed above. Yet, they both contain anomalous patterns such as
{};{¬Y,¬Z,Y}. This particular error pattern does not indicate er-
ror E3, as can be seen in Table 3. It is actually not marked as any
type of error, which tells us that it is necessary to extend our list of
potential errors in the automatic evaluator.

Continuing with outlier instances we get to those which contain er-
ror E3. Two of them exceed the boundary of outlier score 50, which
suggests that they are still relatively anomalous. The first outlier,
instance number 438, differ from other instances in an extra lit-
eral which was added into a resolvent. Specifically, the number 1,
which is not even a variable, can be seen at the bottom of the reso-
lution proof in Fig. 4. More interesting is the second instance with
number 389. Error E3 was detected already in the first step of res-
olution, specifically when resolved on parents {s, t} and {¬t,¬s}.
This would not be a strange thing, if the resolvent was not s. Such
a resolvent raises a question whether it is an error of type E3 or just
a typing error. The latter is a less serious error.

Last two outliers in the table are almost the same so only the in-
stance number 74 is depicted in Fig. 4. These two instances have
quite low outlier score and they do not expose any shortcomings of
our evaluation tool. Yet, they exhibit some outlying features such
as resolving on three literals at the same time.

6. DISCUSSION
As we observed it is not sufficient to detect only the errors but we
need to analyze a context in which an error appeared. Moreover,
there are solutions that are erroneous because they do not contain
a particular pattern or patterns. Outlier detection helped to find
wrong students’ solutions that could not be detected by the system
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of queries even though the set of queries has been carefully built
and tested on the test data. We also found a situation when a query
did not detected an error although it appeared in the solution. We
are convinced that with increasing number of solutions we will be
able to further increase performance of wrong solution detection.

As we stressed in the introduction, this method has not been devel-
oped for recognition of correct or incorrect solutions. However, to
verify that the feature construction is appropriate, we also learned
various classifiers of that kind. In previous work we used only gen-
eralized patterns as attributes for classification with allerrors class
attribute. However, these patterns were not sufficient for our cur-
rent data. Repeating the same experiments we got the best result for
SMO Support Vector Machines from Weka [7], which had 95.2%
accuracy, see Table 4. Precision and recall for the class "incorrect"
were 0.94 and 0.61, respectively. Minimum support for pattern se-
lection was 0% in this case. To improve performance of classifica-
tion we used the new level of generalization. Using the same set-
tings, but now with both levels of generalized patterns, we achieved
96.9% accuracy, 0.95 precision and 0.74 recall for the class "incor-
rect". Similar results were obtained when only the new level of
generalization was used, again with SMO. When ordered accord-
ing to precision, value 0.98 was achieved by J48, but the accuracy
and recall were only 96.1 and 0.68, respectively.

As one of the most common errors in resolution proofs is usage of
resolution rule on two pairs of literals at the same time, we repeated
the experiment, but now discarding all patterns capturing this spe-
cific kind of error. In this scenario the performance slightly dropped
but remained still high—J48 achieved 95.4% accuracy, 0.87 preci-
sion and 0.72 recall. For the sake of completeness, F1 score for
the class "correct" varied between 0.97 and 0.99 in all the results
above.

We also checked whether inductive logic programming (ILP) can
help to improve the performance under the same conditions. To
ensure it, we did not use any domain knowledge predicates that
would bring extra knowledge. For that reason, the domain knowl-
edge contained only predicates common for the domain of graphs,
like node/3, edge/3, resolutionStep/3 and path/2. We used Aleph
system [11]. The results were comparable with the method de-
scribed above.

7. CONCLUSION AND FUTURE WORK
In this paper we introduced a new level of generalization method
for subgraphs of resolution proof trees built by students. Gener-
alized subgraphs created by this special graph mining method are
useful for representation of logic proofs in an attribute-value fash-
ion. We showed how a class-based outlier detection method can
be used on these logic proofs by utilization of the generalized sub-
graphs. We also discussed how the outlying proofs may be used for
performance improvement of our automatic proof evaluator. This
method may also be used for other types of data such as tableaux
proofs.

As a future work we are going to analyse the temporal information,
which was saved together with the structural information of logic
proofs.
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APPENDIX
A. DESCRIPTION OF DATA
CLAUSE - list of nodes from all graphs
. idclause - ID of the node
. coordinatex - x position in drawing
. coordinatey - y position in drawing
. timeofcreation - when the node was created
. timeofdeletion - when the node was deleted (if not deleted, value is "NA")
. idgraph - in which graph the node appears
. text - text label

EDGE - list of (directed) edges from all graphs
. idedge - ID of the edge
. starting - ID of the node from which this edge goes
. ending - ID of the node to which this edge goes
. timeofcreation
. timeofdeletion
. idgraph

ERRORS - errors found in resolution graphs (found by means of SQL queries)
. idgraph - ID of the graph
. error3 - resolving on two literals at the same time (1 = error occurred, 0 = not occurred)
. error4 - repetition of the same literal in a set
. error5 - resolving on identical literals
. error8 - no resolution performed, only union of two sets
. allerrors - any of the previously listed errors occurred / not occured

GRAPH - list of graphs
. idgraph - ID of the graph
. logintime - start of graph creation
. clausetype - either set or ordered list
. resolutiontype - type of resolution, encoded by numbers (see table RESOLUTIONTYPES)
. assignment - textual assignment of task
. endtime - end of graph creation

MOVEMENT - list of coordinate changes of nodes
. idmovement - ID of the change
. idclause - ID of the node whose coordinates were changed
. coordinatex - new x coordinate
. coordinatey - new y coordinate
. time - time of the change

RESOLUTIONTYPES - encoding of resolution types
. typeid - ID (numeric encoding)
. typetext - textual value

TEXT - list of text (label) changes of nodes.
. idtext - ID of the change
. idclause - ID of the node whose text label was changed
. time - time of the change
. text - new text (label) value

TYPES - list of resolution type and clause type changes
. idtypes - ID of the change
. resolutiontype - new value of resolution type for specific graph
. clasetype - new value of clause type for specific graph
. timeofchange - time of the change
. idgraph - ID of the graph whose values were changed
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ABSTRACT
New conference attendees often lack existing social networks
and thus face difficulties in identifying relevant collaborators
or in making appropriate connections. As a consequence
they often feel disconnected from the research community
and do not derive the desired benefits from the conferences
that they attend. In this paper we discuss Snag’em, a social
network game designed to support new conference attendees
in forming social connections and in developing an appropri-
ate research network. Snag’em has been used at seven pro-
fessional conferences and in four student settings and is the
subject of active research and development. The developers
have sought to make the system engaging and competitive
while preventing players from ‘gaming’ it and thus accru-
ing points while neglecting to form real-world connections.
We briefly describe the system itself, discuss its impact on
users, and describe our ongoing work on the identification
of critical hub players and important social networks.

Keywords
Social Networks, Gamification, Conferences, Underrepresented
Populations

1. INTRODUCTION
Social networking is an essential task at any academic con-
ference or professional venue. One of the primary goals of
attendees is to seek out relevant work, identify potential
collaborators, and to maintain existing connections. Many
of these contacts are made by building upon existing re-
lationships and by expanding the attendees existing social
network. New conference goers however, particularly stu-
dents and historically underrepresented groups, lack these

foundational networks and thus face difficulties making con-
nections. Based on Tinto’s Theory of University Departure,
increased interaction with other students, faculty, staff and
community supporters can increase the retention rate of mi-
nority populations and sense of community within secondary
and post-secondary academic communities [7].

In academia, sense of community has a strong positive cor-
relation with retention [7]. Research indicates that students
who do not feel as if they are part of a larger academic com-
munity are less likely to participate in extracurricular activ-
ities and organizations. This leads to lower retention rates,
especially amongst minority students who suffer without a
strong student support group [7]. A feeling of community
can be nurtured with small group activities that augment
the individual’s role within a setting and helps students to
foster connections [8].

Snag’em was designed as a pervasive game to encourage
valuable professional networking and promote sense of com-
munity. The system’s pervasive features are designed to
help players translate their in-game networks directly into
real world peer groups. The system was originally created
for the 2009 Students and Technology Academia Research &
Service (STARS) conference. This conference is unusual in
that it is an academic conference designed specifically to en-
gage with minority and female undergraduates majoring in
computing fields. Students who attend the conference par-
ticipate in competitions and attend training sessions to sup-
port engagement and research. Studies conducted at prior
conferences has shown that while students were engaged in
the training sessions and vigorously involved in learning they
did not develop the lasting social connections that can arise
out of conferences. Snag’em was designed to engage stu-
dents in social networking through gamification of the pro-
cess. Prior research has shown that social games can help
people to engage in otherwise challenging or uncomfortable
situations [6, 4, 2, 3].

Snag’em functions as a large human scavenger hunt. Play-
ers are assigned a set of relevant tags (e.g. “I’m a games
researcher”, or “I’m interested in data-mining”). They are
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Figure 1: The browser interface for mission assign-
ments. Snag Snapshots highlight missions recently
completed.

then assigned a set of missions (e.g. “Find someone who spe-
cializes in HCI”) which they must complete by identifying
and engaging with an appropriate individual. The system
was developed in PHP with a MySQL backed and provides
a web-based front end for players to edit their profile and to
record interactions. We have also developed a mobile ver-
sion of Snag’em which allows players to access the game via
tablets and smartphones. The game itself is designed for
easy deployment to new conferences and we are presently
adding features that will allow us to automatically populate
the database with initial tags.

Figure 1 shows a snapshot of the mission browser screen from
the web version of Snag’em. Contact is registered when the
players enter a 4-digit ID from the other person. In addi-
tion to missions the systems also allows players to record
notes about one-another for future reference (e.g. “I should
e-mail my proposal to him after the conference”) and to send
one-another messages. A sample message from the mobile
interface is shown in Figure 2. Snag’em can also be con-
figured to suggest specific individuals that students should
make contact with based upon their mutual interests or so-
cial connections.

The system logs all player interactions including tag up-
dates, missions completed, notes made, messages, sent, con-
nections added, and so on. This provides a rich dataset of
information that we can use to analyze social patterns at
conferences and to improve the impact of the intervention.
In addition to the raw logs the game contains a number of
features to support easy analysis. The developers have cre-
ated a set of badges that allowed administrators to easily
track the number of people playing via the mobile or web
interfaces as well as the number of missions completed. The
badge system also provides a simple visual record of the
types of features (i.e. notes, tags, avatars) each player is us-
ing. The badge systems also allows administrators to note
the frequency of use, time of day that players are online and
so on.

Figure 2: Here is an example of a message sent in
game after a conversation between players.

To date, Snag’em has been used at seven academic confer-
ences. It has also been deployed to help incoming freshman
and transfer students connect at four academic institutions.
In 2009, for example, Snag’em was used by new students in
the College of Computing and Informatics at the University
of North Carolina at Charlotte. Students were able to play
the game during the freshman orientation week with kiosks
available for students to sign up located in the College of
Computing and Informatics. SNAG’EM was used alongside
other social activities to get students acquainted with each
other, the faculty, and the CCI campus.

2. PRIOR ANALYSIS
We have studied the impact of Snag’em on users and found
that playing the game improved conference attendees’ sense
of community [6, 1]. We have also analyzed the existing
dataset both to test the implementation of the Snag’em fea-
tures, and to identify hubs or critical players whose activity
predicts the behavior of others.

In analyzing the game mechanisms we have focused primar-
ily on the STARS 2009 dataset. As mentioned above STARS
is primarily targeted at undergraduate students specifically
females and underrepresented minorities. We deployed the
system via the conference infrastructure and set up a table
near the registration booth. The game was active during
the first two full days of the conference. The conference
had 280 attendees 60.0% of whom were female (N=168) and
70% of which (N=196) were students. Roughly 28% of the
conference-goers played the game (N=80) of whom 50% were
female. In previous analysis 35.0% of the players were clas-
sified as active. It is important to note that this data was
collected on an earlier version of SNAG’EM where players
could snag each other only once, and only a single mission
was available at a time. Because completing missions was
significantly more difficult in this version of the game, play-
ers were classified as active if they completed at least two
missions. An additional 50% of the players were classified
as Interested, meaning they did more than just register for
the game or that they completed one mission.
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Figure 3: Visualization of community center 4142,
with one of that user’s maximal cliques highlighted.

Our analysis of this data was focused primarily on the mis-
sion and scoring systems. In 2009 the mission system was
relatively simple and focused solely on guiding students to
locate a single individual with a desired tag. Players were
then guided to record the match via the ID system discussed
above. Both the missions generated and points received were
determined by the state of the current network. When gen-
erating missions we attempted to ensure that they were of
varying difficulty, and were relevant to the current user. In
this iteration of the system the missions could only be sat-
isfied by identifying someone whom the user had not previ-
ously snagged. The target tags were selected from the full set
listed in the system. Easy missions were assigned high fre-
quency tags (more than 1

2
of the non-adjacent users), while

medium missions were assigned tags that are present in 1
4

of
non-adjacent users and hard missions required tags present
in less than 1

4
of the non-adjacent community.

The difficulty of the mission determined the base score which
was then modified by a connectedness factor. This factor
was greater than 1 if adding this connection expanded your
“Friends of friends,” that is, the number of vertices less than
2 edges distant from the user. The connectedness factor was
less than 1 if you completed the mission using the ID of a
person you were already adjacent to, In this way we hoped
to encourage players to branch out.

When developing the system we had hoped that players
would develop social networks that exhibited breadth (i.e.
meeting lots of people), depth (i.e. getting to know some in-
dividuals well), and mutuality (i.e. snags in both directions).
We therefore hoped that users’ immediate neighborhoods
would be large and relatively dense with multiple snags be-
tween some people and bidirectional connections. When an-
alyzing the STARS 2009 dataset, however, we found that
this was not the case. Rather the game mechanics encour-
aged players to make a relatively large number of unrelated
connections which, in turn, produced relatively broad and
shallow social neighborhoods with very few inbound arcs. In
fact some players actually opted to hide their IDs so that no
other player could gain points by using them to complete a
mission. As a consequence the attendees were actually less

Figure 4: Correlation between active player hubs
and number of interactions.

likely to engage in the deep and meaningful conversations
required or to form lasting connections.

In response to these results we have overhauled the scor-
ing system. This included changing the connectivity bonus
to reward players based upon the size of the largest clique
that they participate in. Players are now rewarded more
for expanding this clique, thus deepening their social net-
works, than they are for adding an unrelated individual to
their friends of friends. We have also allowed players to re-
snag the same individual for multiple missions with a low
penalty for re-snags, and have begun to reward players with
points for allowing themselves to be snagged to help others
complete a mission. We have not yet analyzed the effects of
these changes on a the dataset.

We have used two measures of importance when identifying
critical players. The first is the simple interaction frequency
as measured by the number of outgoing arcs from a player in
the network. The second is membership in maximal cliques,
that is, cliques which are not part of a larger clique. Play-
ers that participate in a large number of maximal cliques
are hubs. We were able to identify three distinct user com-
munities in the STARS 2009 dataset that centered on these
hubs. A sample community graph is shown in Figure 3. We
also found that the activity of these hub players was highly
correlated with the activity of the other players in the com-
munity (r=0.827). A graph of these spikes is shown in Figure
4. More specifically, on any day where one or more of the
hub players were active, we observed spikes in the number
of interactions taking place across users. We were able to
observe a similar effect (r = 0.659) on days when the devel-
opers had a booth/kiosk available.

We also performed an analysis of hub players using the
UNCC Student Orientation dataset described above. In this
dataset 91 of the 1290 potential students registered to play
Snag’em of which 22% (N=20) were female [5]. This data
was collected on a version of Snag’em permitting multiple
missions and allowing players to connect with the same user
multiple times.We classified players as active if they com-
pleted 5 or more missions. In total, 9 users were active
users during this study. However, all of these players were
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moderators or members of the development team. In this
deployment almost all of the game interaction took place
at the registration table thus making the administrators re-
sponsible for most of the activity. We had hypothesized
that the moderators would only need to initiate the game
and then it would be self-sustaining. As our analysis shows
however, this was not the case. In general the players did
not think about the game outside of the advertised area.

3. OPEN QUESTIONS & FUTURE WORK
Our prior research has focused on identifying key players
using graph methods. We plan to continue examining these
key players in future work and to modify the mission se-
lection criteria to better engage players that have not been
active recently. Our chosen method of community detec-
tion, based upon maximal cliques, is both computationally
expensive on large networks and can change substantially
based upon small shifts in the network. Using a simpler,
less volatile measure to identify community centers would
allow us to adapt the gameplay based upon those communi-
ties more efficiently. This would in turn enable us to encour-
age new players to specifically seek out these active players
in an effort to better engage them from the start. Differ-
ent community detection algorithms might identify different
hub players, or provide different ways of scoring missions
that help to foster larger communities. Further develop-
ment in this area might facilitate play in the absence of an
instigating ‘active player’ or outside of areas with an active
game station or kiosk.

One open question is how to better identify hub players dur-
ing the game, and modify mission selection criteria to engage
inactive players or players who don’t need motivation to net-
work. These ‘social elites’ are important to attract, as they
are precisely who we should be encouraging our players to
network with. If we are better able to build and analyze our
networks, we may be able to offer features to these social
elites that would attract them to Snag’em as a system more
than the gamification aspects would. We hope to explore
techniques for reliably generating edges and tags for users
based on existing data sources like conference proceedings
or citations. This would reduce the burden of entry on new
players, particularly elites, and make it more likely for those
users to participate in networking (if not gameplay) using
SNAG’EM.

We also plan to expand our in-game evaluation of Snag’em
itself. We are presently adapting the system to poll play-
ers for their opinions as the system is used. This will bet-
ter help us to identify the immediate impact of the system
on users’ social connections. We will be deploying some of
these new features of the system during the 2014 Educa-
tional Datamining Conference in London as well as subse-
quent conferences in 2014 and 2014.
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ABSTRACT 
Literature indicates that centrality is correlated with learners’ 
engagement in MOOCs. This paper explores the relationship 
between centrality and performance in two MOOCs. We found 
one positive and one null correlation between centrality and grade 
scores at the end of the MOOCs. In both MOOCs, we found out 
that learners tend to communicate with learners in different 
performance groups. This suggests that MOOCs’ discussion 
forum serves to facilitate information flow and help-seeking 
among learners.  

Keywords 

MOOCs; Social Positioning; Performance 

1. INTRODUCTION 
Massive Open Online Courses (MOOCs) have attracted over 7 
million users in the past two years. In addition to offering videos 
and online quizzes that users can watch and take, a key feature of 
MOOCS is that they contain some platform for discussion among 
users. Indeed, discussion forums can even be considered a 
defining feature of a MOOC, because, without such forums, a 
MOOC is more like a collection of online instructional resources 
rather than an interactive course. 

Our own preliminary data analysis of 15 MOOCs offered at the 
University of California, Irvine, indicates that the number of posts 
in MOOC discussion forums significantly predicts the number of 
people who complete MOOCs. Online discussion forums serve an 
important role in the collaborative learning process of learners [9]; 
however, little research explores the relationship between social 
positioning in the forum and the performance at the end of the 
course in online learning environments. To better understand 
learners’ interaction patterns in MOOC discussions, we employed 
social network analysis to study the collaborative learning process 
in the discussions of two large MOOCs. Social network analysis 
is a methodology that identifies the underlying patterns of social 
relations of actors [11]. This paper compares the discussion forum 
activities of two MOOCs and examines three centrality metrics of 
online learners—degree centrality, betweenness centrality, and 
closeness centrality—and their relationship with learner 
performance. 

2. RELATED WORK 
Threaded discussion forums, an important component of computer  

 

 

 

 

 

 

assisted collaborative learning, allow learners to connect, 
exchange ideas, and stimulate thinking [3]. Social network 
analysis (SNA) is valuable for analyzing the dynamics of these 
discussions, as it emphasizes the structure and the relationship of 
actors [2]. SNA is thus a practical means for gaining insight into 
the relations and collaborative patterns of learners in the forum 
[8]. Learners’ behaviors measured by social network metrics (e.g. 
authority and hub) in discussion forums have been identified as 
positively correlated with learners’ engagement in MOOCs [12]. 
Previous research on online education indicates that network 
measures of centrality (out-degree) and prestige (in-degree) is 
strongly associated with learners’ cognitive learning outcomes 
[10]. Research in online collaborative learning community found 
out that central actors tend to have higher final grades and 
suggested that communication and social networks should be 
central elements in distributed learning environments [4].  

The embedded theory states that learners’ embeddedness in the 
social networks that pervades the educational programs predicts 
their satisfaction and performance [1]. We hypothesize that 
learners’ embeddeness in online learning environment is also 
positively correlated with their performance. Three centrality 
metrics, i.e.degree centrality, betweenness centrality and closeness 
centrality are proposed to reflect embeddness in the online 
learning networks.  

This paper explores whether the correlation between the three 
centrality metrics and academic performance exists in the MOOC 
settings. The study mainly focused on learners who took part in 
the discussion forum.  

3. DATASET 
The project focuses on two online courses named “Intermediate 
Algebra” and “Fundamentals of Personal Financial Planning” 
delivered via the Coursera platform. The Intermediate Algebra 
MOOC was 10 weeks long and developed by professors from 
University of California, Irvine. It was open for all to enroll for 
free. A total 63,100 learners registered in the course, among 
which 43,342 learners had a record in the gradebook and 23,662 
learners accessed course materials. The course consisted of lecture 
videos, weekly quizzes, and the final exam. The quizzes 
accounted for 20% of the final course grade while the final exam 
accounted for 80% of the final grade. Learners who obtained 65% 
or more of the maximum possible score were awarded with the 
Statement of Accomplishment, i.e. the Normal certificate. 
Learners who achieved 85% or more of the maximum possible 
score were rewarded the Statement of Accomplishment with 
Distinction, i.e. the Distinction certificate.  

The Financial Planning MOOC was 7 weeks long and developed 
by a certified financial planner practitioner from University of 
California, Irvine. Over 110,000 learners had enrolled in the 
course, among which 84,234 leaners have record in the gradbook 
and about 55, 000 learners accessed course materials. The course 
evaluation consisted of weekly quizzes (30%), one peer 
assessment (30%) and the final exam (40%). Learners who 
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received a minimum of 70% on all graded assignment received 
the Statement of Accomplishment; those who received a 
minimum of 85% of all graded assignment obtained the Statement 
of Accomplishment with Distinction.  

In the Algebra course, 2,126 learners participated in the forum 
during the 10 week course duration. Among them, 1,558 were 
identified as learners with an academic record, who can be found 
in the gradebook. It is unclear why a certain percentage of users 
who participated in the forum, but did not have a record in the 
gradebook. A possible explaination is that some are instructors 
and teaching assistants. The percentage of MOOC forum 
participation of the three performance groups is relatively 
constant, with 68% of forum participants as none-certificate 
earners. Table 1 shows the composition of forum participants. 

Table 1 Composition of Discussion Forum Participants 
Performance 

Group 
Algebra Financial Planning 

Distinction 311 20% 998 24% 

Normal 193 12% 337 8% 

None 1054 68% 2897 68% 

In total 1558 100% 4232 100% 

 

3.1 Network Descriptive 
To create each network we used the following procedure.  The 
forum consists of several sub-forums. Users can initiate a thread 
in a sub-forum, make posts to a thread, and make comments to a 
post. Each thread and post serves as a site of interaction among 
learners. Learners engage in a variety of actions: asking questions, 
seeking help, and providing assistance to fellow learners.  We 
treat individuals as tied if they co-participate in a thread or a post.  
These ties represent communication among learners.  Although 
one could create directed ties between individuals who address 
each other directly in the posts/comments, doing so would require 
extensive reading and coding of the data and tackling issues such 
as how to define direct communication (e.g., is implied 
communication sufficient, or must the alter be directly named?).  
Given the size of our data, such an approach is infeasible for our 
purposes. 

The Algebra course discussion network has 1,389 nodes, as not all 
1,558 individuals participated in the discussion forum have a 
record in the gradebook. The network has 3,540 edges.  We 
illustrate it below in Figure 1.  Nodes colored according to their 
performance groups.   The network is dominated by a large, dense 
component with a periphery of low-degree actors.  A few isolates 
and lone dyads are also present.  Nodes of different performance 
groups appear to be intermixed throughout the main component 
and the rest of the graph. 

Mean degree is 5.10, although mean degree varies slightly by 
performance group.  Those in the “none” category have the lowest 
mean degree (4.36) while those in the “normal” performance have 
a mean degree of 8.249 and individuals earning “distinction” have 
a mean degree of 5.502.  

More than twice as large as the algebra course discussion 
network, the financial planning course discussion network has 
3,317 nodes and 5,505 edges.  We depict the network in Figure 
2.  Like the algebra network, the financial planning network is  

 
Figure 1: Algebra Network 
 

 
Figure 2:  Financial Planning Network 
dominated by a large component with a mix of isolates and 
smaller components.  Although the financial planning discussion 
network is much larger than the algebra network, mean degree is 
lower.  The average degree is 3.32.  Like the algebra network, 
nodes with performance achievements of “normal” or 
“distinction” have higher degree than those in the “none” 
category.  Those in the “none” category have an average of 2.80 
ties, followed by the “normal” category with 4.15 ties, and 
“distinction” which has an average of 4.48 ties.   

4. METHOD 
Our analysis consists of analyzing the graph-level centralization 
and node-level centrality with permutation tests. 
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4.1 Centrality  
Among the most common structural indices employed in the 
analysis of networks are centrality indices.  These measures 
demonstrate the extent to which a node has a central position in 
the network [5][11].  Several measures of centrality exist and we 
utilize three of the most common measures in this paper: degree, 
betweenness, and closeness.  One of the simplest centrality 
indices, degree, measures the total number of alters to which a 
node is tied.  In the context of our MOOC network, this represents 
the number of other learners to which one is tied through 
participation in discussion forum threads.  Those with high degree 
have greater levels of participation in a variety of threads that put 
them in contact with other learners.   We also utilize betweenness, 
which measures the extent to which a node bridges other nodes by 
lying on a large number of shortest paths between them.  Nodes 
with high betweenness have been described as having some 
degree of control over the communication of others [5] as well as 
greater opportunities to exert interpersonal influence over others 
[11].  Nodes with high betweenness in these MOOCs participate 
in discussions in such a way to learners across multiple forum 
threads.  Finally, we measure closeness, which measures the 
extent to which a node has short paths to other nodes in the 
network.  Nodes with high closeness centrality are described as 
being in the “middle” of the network structure [2].  Because the 
standard definition of closeness does not accommodate networks 
with multiple components, we use the Gil and Schmidt 
[6]approach of measuring closeness of a node as the sum of the 
inverse distances to all other nodes. 

In addition to measuring node-level centrality, we also measure 
graph-level centralization.  Unlike the node-level centrality 
indices described above, these graph-level indices produce one 
measure for the entire graph.  These indices measure the 
difference between the most central node and the centrality scores 
for all other nodes in the network in order to provide a graph-level 
measure of the extent to which centrality is concentrated on a 
small portion of the network’s nodes.  We compute these 
centralization scores for the three aforementioned centrality 
measures: degree, betweenness, and closeness.  These measures 
demonstrate the extent to which centrality is dominated by a small 
number of learners in the discussion network. 

4.2 Permutation Test  
Because we cannot guarantee the normality assumptions required 
by many statistical tests, we use a variety of permutation tests to 
assess various features of the network.  While we use standard, 
non-parametric correlation tests, we also use non-parametric 
network methods.  These network methods uncover structural 
biases by using baseline models to determine the likelihood of 
observing particular structural traits[2].  The results demonstrate 
the extent to which the network deviates from a reasonable 
baseline network.  These tests allow us to test our hypotheses 
despite the statistical complexities of the network 
representation.  We use conditional uniform graph (CUG) tests to 
determine whether features of our observed graph occur at levels 
exceeding what we would expect by chance.  The CUG test 
conditions on a certain set of network features (typically, size, 
number of edges, or dyad census) and treats all graphs within that 
set as equally likely.  It then draws at random from this set of 
graphs and measures whether the statistic of interest is greater, 
less than, or equal to the measure from our original, observed 
graph.  To the extent that few graphs drawn from the set exceed 
our observed measure, the measure is higher than we expect by 
chance.  In our analyses, we measure whether the observed levels 

of centralization in the discussion network are greater than what 
we could expect from graphs of the same size with the same 
number of edges. 

The second non-parametric network method we employ is the 
matrix permutation test, often referred to as the quadratic 
assignment procedure or QAP test [7].  This test evaluates 
correlations between matrices by permuting rows and columns of 
the matrices, recalculating the test statistic, and measuring 
whether it is greater or less than the observed value.  This test 
controls for the structure of the network and allows us to 
determine whether the labels (i.e., categorical attributes) of the 
network explain its structure.  Where the correlation between the 
permuted graph rarely exceeds the observed test statistic, we find 
evidence that the observed statistic is greater than we would 
expect by chance.  We use this technique in our MOOC network 
to measure whether similarity in grades between any given pair of 
individuals is associated with the presence of a tie between those 
individuals. 

5. RESULTS 
To determine whether observed graph-level centralization exceeds 
levels we would expect by chance, we use conditional uniform 
graph (CUG) tests conditioned on the dyad census.  We hold 
constant the number of nodes and number of dyads (either mutual 
or null, given our undirected graph) when running the test.   In our 
algebra network, degree centralization (.164), betweenness 
centralization (.269), and closeness centralization (.0001) all 
exceed chance levels, with p-values less than .01.  These results 
are consistent with the financial planning course, where degree 
centralization (.354), betweenness centralization (.626), and 
closeness centralization (.001) were all significantly higher than 
baseline (p <.01).  These results indicate that both of our observed 
networks have much higher levels of centralization than we would 
expect by chance.  These networks are characterized by 
concentrations of centrality on a handful of nodes.  While certain 
nodes have high levels of centrality, others lack centrality in the 
network. 
We assess node-level centrality by relating our three centrality 
measures with attainment measures in the course.   For each of the 
nodes in the network, we calculate its degree, betweenness, and 
closeness and measure the correlation of centrality with the final 
grade in the course.  The correlation between the algebra course 
grade and degree (r=.043, p=.029), betweenness (r=.046, p=.018) 
are significant while closeness (r=.028, p=.125) failed to achieve 
significance in a non-parametric correlation test.  Those with high 
levels of degree and betweenness centrality have higher grades in 
the algebra course.   In the financial planning course we found no 
evidence of a significant correlation between course grade and 
degree (r=.003, p=.811), betweenness (r=-.002, p=.848), and 
closeness (r=-.006, p=.582).  Individuals who are more central in 
the financial planning discussion network did not appear to have 
notable differences in performance compared to those with lower 
centrality. Although we find that both these networks have a high 
level of centralization, we find discrepancies between the 
correlation between centrality and course grade.  While we find 
no relation between the two in the financial course, we find a 
weakly positive relation between centrality (except closeness) and 
grade in the algebra network. 
Finally, we look for an association between learners’ scores and 
their propensities to form ties with one another.  We use the 
matrix permutation test, or QAP test, to find an association 
between tie formation and similar performance in the classes, 
where performance is measured as the overall grade or end-of-
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course distinction status.  To measure this association, we 
correlate the sociomatrix with a similarity matrix m, such that the 
i,j cell in the matrix represents the similarity in final grade 
between individual i and individual j.  To produce this matrix we 
found the difference between i’s grade and j’s grade and 
subtracted it from 100, the maximum possible difference.  The 
resulting scores represent similarity, where smaller scores indicate 
similar final grades while larger scores indicate large 
discrepancies between their final grades.  We use the same 
approach to construct a distance matrix for achievement status, 
where learners who did not pass the class were scored as 0, while 
learners who passed received a 1.  In the algebra course we found 
a significant, negative correlation between the observed 
sociomatrix and grade (r=-.005, p=.01) and achievement (-.007, p 
< .01).  These results suggest that there is an association between 
tie formation and difference in achievement; that is, algebra 
learners with high achievement and high grades are more likely to 
be tied to learners with lower performance, and vice versa.  In the 
financial planning course we found similar results: negative 
correlations between grade similarity (r=-.002, p=.08) and 
achievement status (r=-.005, p < .01).  Although the relation is 
weak, it suggests that learners are more likely to form ties with 
learners who ended up with different achievement 
statuses.  Learners who failed were more likely to communicate 
with learners who passed, and vice versa.   

6. DISCUSSION AND CONCLUSTION 
The descriptive statistic shows that the discussion forum is mainly 
dominated by a small percentage of learners who contributed far 
more than the rest of learners. This group of opinion leaders or 
knowledge source helps to build up and maintain the network. It 
also implies that the MOOCs’ network is more an information 
network than a social network.  
According to literature, a likely hypothesis would be that learners 
who perform well in a MOOC are more central in online 
discussions. However, our data demonstrated mixed results. In 
one MOOC (Algebra) we found a significant relationship between 
centrality in online discussions and student performance, while in 
the other MOOC (Financial Planning) we found no relationship.  
It is worthwhile to consider why there might have been 
differences in outcomes between the two courses. Though our 
study was not designed to pinpoint the cause of these differences, 
they could be related to the differing purposes and audiences of 
the two MOOCs. The Algebra MOOC is more academically 
oriented and aims to prepare learners to succeed in higher 
education, whereas the Financial Planning MOOC is more geared 
toward assisting people in life skills. Due to the content of the 
Financial Planning MOOC, learners who were actively involved 
in the forum discussion may not have been very concerned about 
obtaining a certificate.  Further social network analysis among a 
larger corpus of MOOC courses could reveal more about the 
relationship of course content to forum participation; we have 
recently obtained a corpus of data from 15 Coursera MOOCs at 
UCI and will conduct follow up research in this area.  
Additionally, moving beyond permutation tests to model-based 
approaches such as ERGMs could provide further insight into the 
properties of these networks and the relations between individual 
positions and outcomes. 

In addition, we find in both networks a weak propensity for 
individuals to form ties with classmates with very different grades 
or attainment. This suggests that the discussion forum serves an 
important role in facilitating help seeking and promoting 
communication between the knows and the know nots.  
The study also has some limitations. For example, it mainly 
analyzed the behavior of learners who participated in the 
discussion forum, which only takes up a small proportion of 
learners in MOOCs. In addition, we did not consider passive 
forum participation, such as posts or comments viewing. The 
future research shall include the content analysis to analyze the 
cognitive engagement of MOOC learners.  
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ABSTRACT
Graphs visualizations can become difficult to interpret when
they fail to highlight patterns. Additionally, the data to be
visualized may be hierarchical in nature. Therefore, graphs
with hierarchical data need to offer means of telescoping
that collapse or expand subgraphs while aggregating their
data. In this paper, we demonstrate an interactive hier-
archical edge graph on book prerequisite data, which can
be generalized to a variety of hierarchical data. We illus-
trate the importance of ordering nodes (when possible) and
coloring by various features. We then demonstrate various
ways of performing exploratory data analysis by delivering
various pieces of information on mouseovers and utilizing
telescoping and filtering.

Keywords
Hierarchical edge bundling, prerequisite relationships

1. INTRODUCTION
When graphs contain many nodes and edges – especially dif-
ferent types of nodes and edges – they can quickly become
difficult to visually interpret [7]. The common term is “hair-
ball” as nodes and edges jumble into a tangled morass that
occlude any meaningful patterns. Force-directed graphs op-
erate to keep nodes with strong edges closer and nodes with
weak or absent edges further apart [2]. This layout can aid
in some contexts, but frequently exacerbates the hairball
phenomenon. There are two striking visualization designs
by Krzywinski and colleagues that aim at revealing inter-
pretable patterns in graphs. At the core of each is at least
one meaningful axis on which to align nodes. The first is Cir-
cos, which arranges sorted nodes along a circle [5]. Nodes
are often displayed as arcs along the circle and edges be-
tween the arcs are visualized as chords or ribbons that cut
through the middle of the circle. Circos has been used in
over 500 publications, many related to large-scale genomic
data. By arranging nodes along one axis in a circle, Circos
easily discriminates nearby and distant edges. The widths of

the nodes (length of the arc) can carry meaning and so can
the width of the chord between connected arcs. Nodes and
edges can also be colored to highlight features such as the
node type, the source, and the target. It is also common to
display many node features such as histograms of different
measures within an arc, for example, Figure 3 in [6].

The other design by Krzywinski is hive plots [4]. Hive plots
are comprised of multiple axes, each radiating from an inner
ring. A given node may exist on one or more axes, aligned
along the axis in some meaningful way. For example, an
axis might sort nodes by different graph features such as a
node’s closeness – the average distance between a node and
all others reachable from it. By placing nodes on various
axes, a representation of where a node resides along some
feature is captured. When edges are added, it may bring out
relationships between adjacently-placed features. For exam-
ple, anti-correlations of two features compared side-by-side
will have many criss-crossed edges. In short, ordering nodes
in some meaningful way(s) permits Circos and hive plots to
better reveal patterns. Circos and hive plots, however, do
not capture hierarchical relationships very well.

Hierarchical edge bundling is a visualization technique on hi-
erarchical data that skews edges toward their parent nodes,
which may be invisible in the graph [3]. The visual effect is
that edges are channeled into larger, striking swaths while
avoiding the direct clutter of the parent nodes. Any topol-
ogy can be employed, but simpler geometric structures are
most commonly used.

In this paper, we demonstrate an interactive hybrid of Circos
plots with hierarchical edge bundling on mathematical book
prerequisites. The books are structured hierarchically as a
table of contents with chapters, sections, objectives, and ex-
ercises. Prerequisites map between objectives. The goal was
to provide a means of highlighting prerequisites at the vari-
ous levels, to call out important objectives, and also reveal
holes. Through coloring, it is simple to discriminate chapters
or to highlight nodes by features such as learner interaction
frequency. Through telescoping, it is straightforward to de-
termine those prerequisites that map across chapters, within
a chapter, and within sections. Through filtering it is possi-
ble to display nodes and edges by their degree. Collectively,
by aligning a curriculum along a circle, we demonstrate how
this template can be used for displaying various relationships
and features of hierarchical, educational data.
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2. METHODS
Two higher education math books were selected that con-
tained a table of contents and prerequisites as mapped by
content matter experts. Interactivity data came from stu-
dents, largely from the U.S., who were enrolled in courses
spanning Fall semester 2012 through 2013 that used these
books and the accompanying Pearson MathXL R© homework
system. All data was translated into JSON format for use in
a web browser. The graph and its interactivity functionality
was programmed using D3.js [1].

3. DEMONSTRATION
Figure 1 shows a screen shot of the graph and user con-
trols. Displayed is a developmental math book with chap-
ters starting at 12 o’clock and progressing clockwise. Nodes
are colored by chapter and have ample spacing to easily
discriminate them. Most nodes displayed are at the objec-
tive level. Within a chapter, slight separations between the
nodes delineate the sections. Edges within a section are
shown as little arcs. Edges within the chapter have a larger
arc, and edges across chapters bend so that they bundle near
to where a chapter node would be. We see various features
at a glance. For example, the online appendix has no pre- or
post-requisites across chapters. This is because it is shared
across several books and is independent from this book.

Chapters 2, 11, and 13 are displayed at the chapter level hid-
ing all of their section and objective nodes, whereas chapters
4 and 7 are at the section level. Chapters can be shown or
hidden in the column of checkboxes on the right. For ex-
ample, some appendix items have been removed from this
display. The radio buttons correspond to the level of the
hierarchy to display.

In Figure 1, the user has centered the mouse over the Chap-
ter 2 node. The color of the node is green, so bold green
edges reveal other chapters to which Chapter 2 is a prereq-
uisite. Also shown are bold orange lines from Chapter 1
objectives coming into Chapter 2. The text of these pre-
and post-requisites are listed on the left. We see at a glance
that while Chapter 2 is prerequisite to Chapter 3, it links
to other sections and objectives in a punctate fashion, com-
pletely ignoring the middle chapters of the book.

Edges are colored by their outgoing node color. Of course,
they can be colored by their incoming node color or other
feature. We have also colored nodes by their degree, high-
lighting critical objectives and important chapters. We have
also colored nodes by performance measures such as the
frequency of user interactions. Coloring can be selected
through the pulldown menu on the top-left.

This utility also has some filtering capabilities to show/hide
edges within sections, within chapters, and across chapters.
Nodes can also be filtered out their degree or feature by
which they are colored. Similarly, edges can be filtered out
if they are below a weight threshold.

3.1 Limitations
While this visualization works well with book prerequisites,
making graphs interactive as we have demonstrated, lim-
its the quantity of nodes and edges because they have to
be large enough to be selectable. Additionally, while edge

bundling facilitates an interpretation of convergence, it also
makes it difficult to select or hover over any individual edge
for information. As presented, more than 3000 edges begins
to be problematic. Similarly, when there are over 500 nodes
along the circle, it can become difficult to select a node of
interest with a mouse.

3.2 Next steps
This plot and circos plots have only one axis. Avenues to
explore include reordering nodes along this axis by different
features. Alternatively, hive plots could be extended with
the ideas presented here, where various axes could utilize
hierarchical data by swapping child nodes with aggregated
parent nodes.

4. CONCLUSION
It is difficult to interpret graphs without an adequate visual-
ization. In this work, we demonstrated a template that can
be used on hierarchical data aligned along the axis of a circle.
At a glance, it can reveal a lot of features, but through filter-
ing, telescoping, and interactivity, exploratory data analysis
can be performed to reveal features at various scales. As a
template, it is quite useful for contrasting several graphs, or
alternatively, illuminating various features within a general
structure. For example, in our case using prerequisite data,
nodes and edges might be colored by difficulty, fraction cor-
rect, time-on-task, or other measures of students interacting
with these book objectives. Furthermore, this technique can
be generically applied to other datasets.
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Figure 1: Screen shot of the interactive, hierarchical edge bundling graph.
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ABSTRACT
The interactions of concepts and problem-solving techniques
needed to solve open-ended proof problems are varied, mak-
ing it difficult to select problems that improve individual
student performance. We have developed a system of data-
driven ordered problem selection for Deep Thought, a logic
proof tutor. The problem selection system presents prob-
lem sets of expert-determined higher or lower difficulty to
students based on their measured proof solving proficiency
in the tutor. Initial results indicate the system improves
student-tutor scores; however, we wish to evaluate problem
set difficulty through analysis of student performance to val-
idate the expert-authored problem sets.

Keywords
Problem Difficulty, Logic Proof, Data-driven Problem Selec-
tion

1. INTRODUCTION
Effective intelligent tutoring systems present problems to
students in their zone of proximal development through scaf-
folding of major concepts [3]. In domains such as deductive
logic, where the problem space is open-ended and requires
multiple steps and knowledge of different rules, it is difficult
to choose problems for individual students that are appro-
priate for their proof-solving ability. We have developed a
system that uses the data-driven knowledge tracing (DKT)
of domain concepts in existing student-tutor performance
data to regularly evaluate current student proficiency of the
subject matter and select successive structured problem sets
of expert-determined higher or lower difficulty.

We used an existing proof-solving tool called Deep Thought
to test the DKT problem selection system. The system was
integrated into Deep Thought and tested on a class of under-
graduate philosophy students who used the tutor as assigned
homework over a 15-week semester. Performance data from

Figure 1: A screen capture of the Deep Thought
tutor, showing given premises at the top, conclusion
at the bottom, and rules for application on the right.

this experiment were compared to data from previous use of
Deep Thought without the DKT problem selection system.
The results of the comparison indicate that the DKT prob-
lem selection system is effective in improving student-tutor
performance. However, we wish to evaluate the difficulty of
presented problems using student performance data to val-
idate the difficulty of expert-determined problem sets, and
improve the system for future students.

2. DEEP THOUGHT
Fig. 1 shows the interface for Deep Thought, a web-based
proof construction tool created by Croy as a tool for proof
construction assignments [1]. Deep Thought displays logical
premises, buttons for logical rules, and a logical conclusion
to be derived. For example, the proof in Fig. 1 provides
premises A→ (B ∧C); A∨D; and ¬D ∧E, from which the
user is asked to derive conclusion B using the rules on the
right side of the display window.

Deep Thought keeps track of student performance for the
purpose of proficiency evaluation and post-hoc analysis. As
a student works through a problem, each step is logged in
a database that records: the current problem; the current
state of progress in the proof; any rule applied to selected
premises; any premises deleted; errors made (such as illegal
rule applications); completion of the problem; time taken
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per step; elapsed problem time; knowledge tracing scores
for each logic rule in the tutor.

2.1 Problem Selection
The problem selection system in Deep Thought presents or-
dered problem sets to ensure consistent, directed practice
using increasingly related and difficult concepts. The system
presents set of problems at different degrees of difficulty, de-
termined through evaluation of current student performance
in the tutor.

Evaluation of student performance is performed at the be-
ginning of each level of problems. Level 1 of Deep Thought
contains three problems common to all students who use the
tutor, and provides initial performance data to the problem
selection model. Levels 2–6 of Deep Thought are each split
into two distinct sets of problems, labeled higher and lower
proficiency. The problems in the different proficiency sets
are conceptually identical to each other, prioritizing rules
important for solving the problems in that level. To pre-
vent students from getting stuck on a specific proof problem,
Deep Thought allows students to temporarily skip problems
within a level. A unique case occurs if a student skips a prob-
lem more than once in a higher proficiency problem set; the
student will be dropped to the lower proficiency problem set
in the same level, under the assumption that the student
was improperly assigned the higher proficiency set (See Fig.
2).

Figure 2: DT2 path progression. At each level, stu-
dents are evaluated and provided either the higher
or lower proficiency problem sets. Students can also
be switched from the higher to lower proficiency set
within a level.

2.2 Logic Proof Problems
The degree of problem solving difficulty between proficiency
sets is different, as determined by domain experts. The prob-
lems in the low proficiency set require fewer numbers of steps
for completion, lower complexity of logical expressions, and
lower degree of rule application than problems in the high
proficiency set (See Table 1).

3. DATA GRAPH REPRESENTATION

Table 1: An example of lower and higher proficiency
set problems from Deep Thought requiring the same
concepts: Level 4 Problem 3 from the lower profi-
ciency set (top); Level 4 Problem 2 from the higher
proficiency set (bottom). The prioritized rules re-
quired for these problems are Conjunction and Con-
structive Dilemma.
# Premise Derivation

1 (A→ B) ∧ (¬D → F ) Given
2 A ∨ ¬D Given
3 ¬A→ (D ∨G) Given
4 ¬A Given
5 B ∨ F 1,2/Constructive Dilemma
6 ¬D 2,4/Disjunctive Syllogism
7 D ∨G 3,4/Modus Ponens
8 G 6,7/Disjunctive Syllogism
9 (B ∨ F ) ∧G 5,8/Conjunction

# Premise Derivation

1 Z → (¬Y → X) Given
2 Z ∧ ¬W Given
3 W ∨ (T → S) Given
4 ¬Y ∨ T Given
5 Z 2/Simplification
6 ¬W 2/Simplification
7 ¬Y → X 1,5/Modus Ponens
8 T → S 3,6/Disjunctive Syllogism
9 (¬Y → X) ∧ (T → S) 7,8/Conjunction
10 X ∨ S 4,9/Constructive Dilemma

Deep Thought was used as a mandatory homework assign-
ment by students in a philosophy deductive logic course
(n = 47). Students were allowed to work through the prob-
lem sets at their own pace for the entire 15-week semester.
Problem Levels 1–6 were assigned for full completion of the
tutor, totaling 13–18 (out of the total tutor-set of 43) prob-
lems depending on proficiency path progression.

For the purpose of problem difficulty evaluation, progress
through the tutor can be expressed as a directed graph for
each individual student, with nodes in the graph each cor-
responding to a single problem. The node set for the graph
represents the problem space for the tutor, and is the same
for every student. Each problem node has the following
properties:

1. Tutor Level (1–6)

2. Proficiency (High or Low)

3. Problem Number (1–3)

4. Problem Complete (True or False)

5. Expert-Authored

(a) Required Rules

(b) Minimal Solution

6. Corresponding Step Logs (See Section 2)
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Directed edges between nodes correspond to movement be-
tween problems by the individual student, and are assigned
a numerical value, ordered by increasing time stamp. The
nodes and directed edges together give a map of the stu-
dent’s progression through the tutor. Connected nodes with
false Problem Complete status represent a skipped problem,
and the node adjacent to the highest numbered edge repre-
sents the student terminus point in the tutor. Isolated nodes
represent non-visited problems, and are therefore un-useable
for problem difficulty evaluation.

Logic proofs can also be represented as directed graphs, with
each node containing a proof premise, and each directed
edge indicating a node parent-child relationship, along with
an applied logic rule. For example, the top proof shown in
Table 1 can be represented as a graph with the premise in
each line as a node, with the directed edges into that node
corresponding to the derivation of that premise from parent
nodes. A proof premise can either be a variable (i.e. A),
a negated variable or expression (i.e. ¬A, or ¬(A ∧ B)), or
an operational expression in (variable/nested expression)-
operand-(variable/nested expression) form (i.e. A ∨ B, or
(A∧B)∨ (A→ B)). Nested expressions can be represented
in high level form. Therefore, node premises can be catego-
rized by their operand (conjunction, disjunction, negation,
implication, equivalence), the complexity of the expression
(single variable, simple expression, complex [nested] expres-
sion), and the rule used for derivation.

4. PROBLEM DIFFICULTY EVALUATION
The question at hand is how to best use the recorded data
to determine proof problem difficulty through student per-
formance. We wish to find both a classification of prob-
lem difficulty between proficiency sets in the same level, and
difficulty of all problems in the tutor, compared to expert-
determined classifications.

Because students follow different problem-solving paths, no
student can solve all available problems in the tutor, nor
are students likely to solve problems in both proficiency sets
within the same level. This makes student performance com-
parison over multiple problems difficult. We plan to use a
combination proof-problem properties weighted by student
performance metrics to evaluate problem difficulty; however,
we have not determined which combination of methods to
use. We are currently looking into weighted cluster-based
classification methods to apply to the problems. The hy-
pothesis presumed before applying one of these methods
would be that problems of similar difficulty would be placed
into the same clusters. Student performance metrics for each
problem could be used to determine distance, since it’s as-
sumed that students would react most similarly to problems
of similar difficulty. Eagle et al. applied network community
mining to this student log data in order to form interaction
networks [2]; a modified version could be applied here on a
student-per-problem level in order to determine prominent
similar behaviors that are correlated with problem perfor-
mance.

This would determine which problems are of similar diffi-
culty, but not necessarily which problems (or groups of prob-
lems) are more or less difficult. That determination could be
made by analyzing student rule scores across problems, or

even the difference in scores at the start and end of a prob-
lem. In particular, analyzing the difference in rule scores
would both standardize the scores (to account for the scores
being calculated at different points in the tutor) and give a
measure of forward or backward progress (a student’s rule
scores should not decrease after solving an easy problem).

Problem properties we feel are valuable to take into con-
sideration when evaluating problem difficulty per student
include:

• Classification of problems by operand/expressions

• Deviation of student solutions from expert solutions

– Number of steps taken

– Number and frequency of rules used

Student performance metrics that we feel are valuable to
take into consideration include:

• Path progression through the tutor, including

– Order of assigned proficiency sets

– Number and path location of skipped problems

– Terminus point in tutor

– Final tutor grade

• Knowledge tracing scores for each rule, prioritized by
problem requirements

• Step and elapsed time

• Type and number of errors committed

We would appreciate any literature recommendations, as
well as suggestions for how to use the data from our exper-
iment to measure and compare problem difficulty through
student performance.
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ABSTRACT
InVis is a novel visualization tool that was developed to
explore, navigate and catalog student interaction data. In-
Vis processes datasets collected from interactive educational
systems such as intelligent tutoring systems and homework
helpers and visualizes the student data as graphs. This vi-
sual representation of data provides an interactive environ-
ment with additional insights into the dataset and thus en-
hances our understanding of students’ learning activities.
Here, we demonstrate the issues encountered during the
analysis of large EDM data sets, the progressive features of-
fered by the InVis tool in order to address these issues and
finally establish the effectiveness of the tool with suitable
examples.

Keywords
EDM, visualization, graphs, student interaction data

1. INTRODUCTION
One of the central goals of Educational Datamining (EDM)
is to translate raw student data into useful pedagogical in-
sights. That is, educational dataminers seek to analyze stu-
dent interaction data such as user-system logs with the goal
of identifying: common errors, typical solutions and key
conceptual challenges among other things. This research
is of interest to learners, educators, administrators and re-
searchers [17]. In recent years, the increased adoption of
web-based tutoring systems, learning management tools and
other interactive systems has resulted in an exponential in-
crease in available data and increased demand for novel an-
alytical tools. The Pittsburgh Science of Learning Center’s
DataShop, for example, currently stores over 188 datasets,
encompassing 42 million student actions and 150,000 student
hours [19]. With the increase in available data has come a
corresponding increase in the insights EDM can provide and
in making analytical tools available to expert instructors.

EDM researchers have generally relied on statistical analy-
ses (see [14, 2, 1], formal rule induction (e.g. [12]), or other
modeling methods to extract these insights. While these an-
alytical methods are robust and have led to great progress in
model development and evaluation, the increased interest in
EDM by non-statisticians and practitioners has accentuated
the need for ”good visualization facilities to make their re-
sults meaningful to educators and e-learning designers” [16].

InVis was initially developed by Johnson, Eagle and Barnes
[11]. The present version has been expanded to include
changes to the visual editing system, export functions and
other features. An example graph is shown in Figure 1. The
graphical structure of InVis is designed to facilitate direct
exploration of student datasets and easy comparison of in-
dividual solution paths. InVis can render individual student
solutions or display the work of an entire class thus enabling
educators to identify and draw insights from common stu-
dent strategies and repeated mistakes [11]. InVis was in-
spired by the work of Barnes and Stamper [3] on the use of
graphical representations for logic problems. Similar work
has been done by Chiritoiu, Mihaescu and Burdescu who
developed the EDM Visualization tool. This tool generates
the student clustering models using k-means clustering algo-
rithm [5]. However unlike InVis, the resulting visualization
is non-interactive and non-graphical.

EDM researchers generally seek to answer questions such as:
What actions can predict student success? Which strategy
or solution path is more or less efficient and educationally
effective? What decisions indicate student progress? And
what are the features of a learning environment that pro-
mote learning? (see [15]). In a programming tutor, for
example, students might be given the task of implement-
ing an array-sorting algorithm for a large vector of integers.
The particular choice of algorithm and the implementation
details are left to the students to formulate using a vari-
ety of existing tools. This resulting code will proceed in
several stages including reading data from disk, sorting the
contents in memory, and returning the result. Our goal as
researchers is to classify the successful students, identify the
most commonly-chosen algorithms and flag individuals who
faced difficulties or failed to complete the assignment. In a
logic tutor such as Deep Thought [7] or a Physics tutor such
as Andes [20] we would like to make similar determinations
by focusing on the solutions chosen by the students and the
individually-critical steps.
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The graph representation provided by InVis allows us to
answer these questions by constructing and exploring inter-
active visualizations of the student dataset. By rendering a
graph of a class or key subgroup (e.g. low-performing stu-
dents), we can visually identify garden-path solutions over
long isolated chains, identify critical states through which
most students traversed and so on. These visualizations can
also be used to guide, or evaluate the output of automatic
analysis such as MDP models or path-detection algorithms.
In the remainder of this paper we will discuss the tool, de-
scribe key features of it in detail and illustrate the type of
insights it can provide.

2. DATA
We will illustrate the operation of InVis on a typical dataset.
For the purposes of the present paper we will use student
data collected from the Deep Thought tutor [6, 7]. Deep
Thought is a graph-based tutor for first-order logic. Stu-
dents using the system are presented with a problem defined
by a set of given components (e.g. ”A ∧ ¬B ∧C ⇒ B”) and
are tasked with proving some goal state (e.g. ¬C). Problem
solving proceeds through forward or backward-chaining with
students applying rules such as Modus Ponens or Modus
Tolens to draw new conclusions. For example, given the
conclusion B, the student could propose that B was derived
using Modus Ponens (MP) on two new, unjustified proposi-
tions: A → B,A. This is like a conditional proof in that, if
the student can justify A → B and A, then the proof is com-
plete. At any time, the student can work backwards from
any unjustified components, or forwards from any derived
statements or the premises [8].

The DT data thus has a number of key characteristics that
make it amenable to graphical display. The data is grouped
into fixed problems covered by many students. Each prob-
lem is defined by a static set of given information and a
clear goal. And the solutions are constructed via iterative
rule applications drawn from a fixed library. As a conse-
quence it is possible to define a fixed, albeit large, space of
solution states and to efficiently map the traversal between
them. While this seems restrictive this set of criteria applies
to data collected from many if not most Intelligent Tutoring
Systems. Andes, for example, defines problems by a set of
given values (e.g. ”Mcar = 2kg”) sets fixed variable goals
(e.g. ”Scar−t0”: speed of the car at t0) and groups student
actions into a fixed set of rule applications. Similar state rep-
resentations have also been applied to other datasets such
as code-states in the SNAP programming tutor [4].

The figures shown below are drawn from two InVis datasets.
We will focus in detail on a small dataset comparing the
work of three students on a single problem with a fixed set
of givens and two alternate goals. Such a small dataset is
designed to allow for efficient illustration but is not an upper
limit for analysis. We will also present some qualitative
discussion of larger scale analysis with a larger DT dataset
as shown in Figure 3.

3. FEATURES OF INVIS
InVis was developed with the Java Netbeans Framework and
employs the JUNG libraries for the rendering of the graphs
[13]. It provides an assortment of features that allow the
end user to interact with the visualizations and draw obser-

Figure 1: Network Display and Viewer

vations from the data set. The Network Display, Network
Viewer, Visual Editor and Export Dot Data are some of the
prominent features of InVis which will be illustrated with ex-
amples in the upcoming sections. InVis also supports MDP
calculation, between-ness calculation and frequency reduc-
tion which currently are under development and test phases.

3.1 Network Display and Viewer
The front-end of InVis is the The Network Display compo-
nent. It displays the interaction network generated by the
engine in a graphical format. The user is presented with a
cumulative overview of the processed input data. The var-
ious logic states of the DT tutor are represented by nodes
and the applied propositional logic transformations are rep-
resented by edges of the graph. Intermediate states are rep-
resented by blue circular nodes while the goal states are
represented by green square nodes. Error states in the DT
dataset are defined by logical fallacies and are represented
by red octagons for easy identification. The sample display
shown in Figure 1 contains 16 intermediate nodes arrayed
from the top to bottom of the network, one error state lo-
cated in the center, and two goal states at the bottom.

The Network Viewer component represents the InVis input
data in the form of a tree structure known as case-set. Each
primary node in the case-set represents a student and each
sub-node under it represents a transition state executed by
the student sequentially. Selecting a student in the Net-
work Viewer window highlights the corresponding path in
the Network Display window. Selecting a sub-node high-
lights the corresponding nodes and edges that were involved
in the transformation. Expanding a sub-node will cause the
system to display the pre-state and post-state information
from the nodes involved in that transition.

The path taken by a student to solve the given problem
can be detected by selecting the appropriate student in the
Network Viewer window. This will fade the non-path nodes
to bring the chosen path to the foreground. An example of
this highlighting is shown in Figure 2 where we have selected
a single student path within the demo dataset.

Published in CEUR-WS: 
G-EDM workshop (Lynch and Barnes) 
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

66



Figure 2: Tracing the path of a student

One common use of InVis is to identify frequently-occurring
error states. The system can also be used to analyze the dif-
ferent paths taken by students in order to achieve a common
goal and isolate the areas where the students face difficul-
ties in solving the given problem or took a garden path. A
garden path is an inefficient path from one target state to
another with many nonessential intermediate states. From
Figure 1, in the current data set, for example, one student
performed 11 transitions to achieve the goal, due in part
to cycles, whereas a separate student reached the goal with
5 transitions. Each transition is marked by an arc from
one state to another in the graph. Thus the Network Dis-
play provides an instructor with a cumulative analysis of
the input data and aids the instructor in identifying areas
of difficulty faced by students during the course of problem
solving.

Figure 3 shows the visualization generated by InVis for a
sample large dataset. The bold edges indicate the common
paths employed by the students in order to solve a given
problem. The graph also highlights the garden paths and
the succeeding action taken by students towards achieving
the goal states. From the rendered visualization it is clear
that the cloud space comprises of students who achieved the
goal, indicated in green and students who failed to reach the
final goal states. InVis can thus be employed to congregate
useful observations on large EDM datasets.

3.2 Visual Editor
The Visual Editor component of InVis controls the various
visual aspects of the graph displayed in the Network Display
window. The visual editor provides options for displaying
the node and edge data of the graph. InVis renders graphs
with the DAG tree layout as the default layout. The visual
editor provides options for rendering the graph in different
layouts. An ISOM layout of the originally generated graph
is shown in Figure 4.

Figure 3: InVis and large data sets

The Visual Editor also provides an option for normalizing
the edge widths based on the case frequencies. Case fre-
quencies are defined by the number of students who used the
same transition between the given set of states. When the
Normalize Width option is selected, InVis reloads the graph
with width of edges proportional to the case frequency. This
feature helps instructors in identifying the logic states and
transitions which are most used by the students.

The Visual Editor can be launched by clicking on the Visual
Editor icon in the toolbar. Options are provided in the Vi-
sual Editor window to control the display of node and edge
labels. A notable option provided by the visual editor is the
option to normalize edge widths. Normalizing edge widths
results in the modification of the edge widths of the graph
in proportion to the case frequencies.

Figure 5 displays the zoomed in version of the graph with
normalized edges. Edges with case frequency of 2 have
thicker connecting lines compared to the edges with case
frequency of 1. Thus the thickness of the edge offers a vi-
sual cue to the instructor in identifying the most commonly
traversed paths by students when achieving the given goal.

3.3 Exporting InVis Data
Graphviz is a heterogeneous collection of graph drawing tools
[9]. The software is available under open source license. The
input to the Graphviz tool is a description of the required
graph in a simple text language such as DOT. The tool pro-
cesses the input and renders output graphs in useful formats,
such as images and SVG for web pages; PDF or Postscript
for inclusion in other documents; or display in an interactive
graph browser [10]. Graphviz has many useful features for
concrete diagrams, options for colors, fonts, tabular node
layouts, line styles, hyperlinks, and custom shapes.

In order to leverage the graph design features offered by
Graphviz, InVis now features a new export option which
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Figure 4: Different graph layouts

Figure 5: Normalized width - Zoomed in

renders the input Deep thought data into a DOT format file.
The DOT file can be directly imported by Graphviz to gener-
ate static images such as PNG, JPEG or interactive formats
such as SVG. These visualizations will match those gener-
ated by the Network Display tool. Figure 6 shows a graph
generated by Graphviz using exported InVis data. Here the
arcs are annotated via a static ID number that helps in man-
ually identifying the states and transition information. This
data is captured as part of the export process.

4. DISCUSSION
The graphical rendering of EDM data via InVis can yield
unique insights into the student interaction data. Romero
and Ventura classified EDM objectives depending on the
viewpoint of the final user as learner, educator, administra-
tor and researcher [17]. InVis supports learners by provid-
ing visual feedback and recommendations to improve perfor-
mance. Students can compare their approach with that of
other students graphically. This can promote real time self-
assessment and adoption of better approaches to problem
solving.

Figure 6: Exported data loaded in Graphviz

Educators can use the tool to identify good and poor student
solutions and to better understand the students’ learning
processes which can, in turn, reflect on their own teaching
methods. The graphical summary presented by InVis gives
an overview, and allows for detailed exploration of, the paths
taken by students in achieving a solution to a given problem.

The presence of garden paths, loops and error states illus-
trate areas where the students have encountered difficulties
in deriving a solution to a given problem. This empowers re-
searchers with visual data to model suitable hint generation
techniques that can deploy automatic corrective actions [18].
InVis can assist administrators to reorganize institutional re-
sources based on visual evaluation of the effectiveness of a
teaching method adopted in a particular course.

In the case of the sorting example introduced in the earlier
section, by normalizing the edge width, we can identify the
most commonly used sorting algorithm. We can also identify
the optimal solution to the given problem comparing the
number of transition states between the start and end goal
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for each student. Finally the presence of error states, garden
paths can be visually identified and corrective actions can
be taken to aid students in achieving the goal. Thus the
visualizations help in the generation of real time feedback
and provides hints for modeling of dynamic hint generation
strategies.

InVis is currently limited to the analysis of deep thought
tutor data. We are actively working on InVis to extend its
capabilities to analyze data sets generated from fields such
as: state based games, feedback back based hint generation
and others. We are also actively improving the efficiency,
user interface, and automatic analysis features of the tool.
The InVis project provides the EDM community with a visu-
alization tool for enhanced and accelerated understanding of
education based systems. New features will be added to In-
Vis in future to support and sustain this goal. We solicit the
EDM community to provide us with additional suggestions
for, the InVis tool and help us to enhance the functionality
and usability of InVis for EDM applications.
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Workshop on Non-Cognitive Factors & 
Personalization for Adaptive Learning 

(NCFPAL) 
 
Many computer-based learning environments adapt to individual learners based on 
cognitive factors like skill mastery, but recently research has been increasingly directed 
at improving personalization and adaptation in such systems by harnessing non-
cognitive factors such as learner affect, motivation, preferences, self-efficacy, self-
regulation, and grit. This workshop brings together researchers studying non-cognitive 
factors in a variety of environments and contexts, using various experimental, 
measurement, and/or data mining and statistical methods. In addition to presenting on-
going research on specific non-cognitive factors and their impact of learning outcomes, 
speakers at the workshop will present various creative approaches to address 
methodological issues endemic to research on non-cognitive factors. 
 
Of one invited paper and five accepted papers, three papers explore non-cognitive 
factors in intelligent tutoring systems (ITSs) used in K-12 schools. Walkington and 
collaborators, in an invited paper, provide an account of various text-based features of 
mathematics word problems that are associated with learner performance in ITSs 
(specifically, Carnegie Learning’s Cognitive Tutor). While explanations that point to 
both cognitive and non-cognitive factors may account for this association, Bernacki and 
Walkington follow up this observational study by exploring an intervention in the same 
ITS wherein word problems are personalized based on learners’ out-of-school interests 
in areas like sports and music and find that personalization has benefits for both 
learner interest and measures of learning. A third study by Ostrow and colleagues 
considers an intervention in the ASSISTments system in which learners were 
presented with different types of “growth mindset” motivational messages (e.g., 
animations, audio, etc.). The impact of these messages on measures like persistence 
and learning are considered.  
 
The next three papers consider data from college-level courses and learners. Ezen-
Can and Boyer present an unsupervised method for classifying dialogue acts (e.g., ask 
a question, give a command) when learners interact with (human) tutors in a text-based 
dialogue environment; their method leverages gender and learner self-efficacy as 
noncognitive factors along which sub-populations of learners can be identified so that 
dialogue acts can be better classified. Next, Moretti and colleagues mine data about 
university computer science courses that are publicly available on the web to determine 
factors (e.g., choice of programming language and grading criteria) that are associated 
with learner feedback and other aspects of instruction. Finally, Gray and colleagues 
provide an analysis, using both classification and regression methods, of various 
psychometric measures of non-cognitive factors as predictors of whether students are 
“at risk” or likely to fail in their university courses.  
 
The papers that comprise these proceedings represent a diverse set of measurement 
and analytical approaches and of student populations and learning platforms to which 
they are applied. We take this as a sign of developments to come, especially as 
researchers and developers in the learning sciences, educational data mining, and 
learning analytics increasingly turn to non-cognitive factors as possible “levers” to 
adapt and personalize learning experiences in more and more sophisticated 
technology-enhanced learning platforms and environments. 
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ABSTRACT 
Intelligent tutoring systems (ITSs) that personalize 
instruction to individual learner background and 
preferences have emerged in K-16 classroom settings all 
over the world. In mathematics instruction, ITSs may be 
especially important for tracking mathematical skill 
development over time. However, recent research has 
pointed to the importance of text-based measures when 
solving mathematics word problems, suggesting that in 
order to accurately model the student it is important to 
understand how they respond to text characteristics. We 
investigate the impact of text-based factors (readability and 
problem topic) on the solving of mathematics story 
problems using a corpus of N = 3394 students working 
through an ITS for algebra, Cognitive Tutor Algebra. We 
leverage recent advances in computerized text-mining to 
automate fine-grained text analyses of many different word 
problems. We find that several elements of the text of 
mathematics word problems matter for performance – 
including the concreteness of the problem’s topic, the 
length and conciseness of the story’s text, and the words 
and phrases used. 

Keywords 

Intelligent tutoring system, readability, mathematics, word 
problems, personalization 

1. INTRODUCTION 
Since the 1980s, Intelligent Tutoring Systems (ITSs) have 
risen as an important instructional tool to support student 
learning in classrooms, especially in middle and high 
school. ITSs typically consist of at least three components: 
(1) the domain model of the appropriate steps needed to 
correctly solve each problem, (2) the student model, which 
captures the evolution of an individual student’s cognitive 
states as they relate to the domain model, and (3) the 
tutoring model which selects tutor actions based on the 

domain model and student model [1]. It is through the 
construction of the student model and its contribution to the 
tutoring model that ITSs can enact personalization where 
they adapt to the needs and backgrounds of individual 
learners. Here we explore cognitive and non-cognitive 
factors related to how students react to and understand the 
text of mathematics story problems. We argue that these 
non-mathematical factors may be an important element to 
consider for an ITS in secondary mathematics. In 
particular, we provide evidence suggesting that both the 
students’ reading level (a cognitive factor) and the students’ 
interests, preferences, and motivational outlooks (non-
cognitive factors) have the potential to influence how they 
respond to text-based mathematics problems situated in 
“real world” contexts. 

Cognitive Tutor Algebra (CTA; [2]) is a prominent 
mathematics ITS used in many schools across the United 
States. CTA uses model-tracing approaches to relate 
student actions to the domain model and provides 
individualized error feedback. CTA also uses knowledge-
tracing approaches to track students’ learning from one 
problem to the next, using this information to identify the 
students’ strengths and weakness in terms of production 
rules (i.e., knowledge components or skills). The software 
then uses this analysis to individualize the selection of 
problem tasks. However, missing from this tutoring model 
is a consideration of other non-mathematical characteristics 
of the story problem texts – including the reading difficulty 
of the text respective to students’ reading ability and 
preferences, and the real-world topic of the text respective 
to students’ interests and preferences. 

For example, a learner presented with a mathematics 
word problem that is difficult to read – with high-level 
vocabulary, complex sentence structure, etc. - may lack the 
reading ability to appropriately comprehend that problem. 
This cognitive element of the problem’s difficulty is not 
typically monitored by ITSs for mathematics learning. In 
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addition, such a problem may inhibit the students’ 
motivation – a non-cognitive factor. In particular, even if 
the learner is technically able to read the problem, they may 
be intimidated by the problem text, and request a hint 
instead of putting forth the effort of understanding the text 
of the problem. ITSs also do not typically monitor the 
learner motivation for reading and understanding text-based 
problems. 

Another non-mathematical element of the text of 
mathematics story problems is the real world topic – 
whether the story is about working at a part-time job or 
harvesting a field of grain.  The way in which students react 
to the topic of the story problem is also based on both 
cognitive and non-cognitive factors. Students may be 
unfamiliar with elements of the context that are important 
for fully comprehending the problem – for example, in a 
banking context, they may not know what “break even” 
means. In this way, they may lack the prior knowledge 
needed to interpret the story. Similarly, different real world 
topics may differ in the motivation they elicit from students 
– students may experience greater motivation when solving 
a problem about a familiar, interesting context than about a 
context they find boring or unfamiliar. 

 We next provide a theoretical framework that provides 
an explanation of how students comprehend story problems 
and how cognitive and non-cognitive factors may interact 
as they solve story problems. 

2. THEORETICAL FRAMEWORK 
2.1 Cognitive Factors 
Nathan and colleagues [3] proposed a model of 
mathematics story problem solving where students navigate 
three levels of representation as they comprehend and solve 
story texts: (1) a textbase containing the propositional 
statements made in the story problem, (2) a situation 
model, a qualitative representation of the actions and events 
in the story, and (3) a problem model, containing the formal 
mathematical equations, variables, and operands. Because 
mathematics word problems are stated in verbal language 
(rather than mathematics notation), we hypothesize that the 
reading difficulty and topic of the problem matters for the 
construction of the situation model and its successful 
coordination with the problem model.  

Various aspects of the reading difficulty, including 
readability measures, may be important in situation model 
construction. Readability measures often include the kinds 
of words used, the length of the story, and the structure of 
the sentences. These elements of the text’s structure may 
make it more difficult to comprehend, especially for 
students with weaker reading skills. 

Another aspect of reading difficulty is the topic of the 
problem – whether it is about, for example, farming or 
banking. Walkington and colleagues [4] proposed that story 
contexts that are related to topics that are familiar and 
accessible to students are easier for them to solve because 
these contexts can facilitate situation model construction 

because of their relatedness to learner prior knowledge. In 
related work [5], they also identified the prevalence of 
issues with verbal interpretation of mathematics story 
problems, finding that even high school students struggle to 
understand difficult vocabulary words and construct an 
accurate propositional textbase and situation model from a 
story problem’s text. 

2.2 Non-Cognitive Factors 
An important precursor to students’ motivation is their 
level of interest – defined as the state of engaging and the 
predisposition to re-engage with particular topics, ideas, or 
activities [6]. Two types of interest have been described in 
the literature. First, situational interest is an immediate, 
temporary state of heightened attention and affective 
engagement that stems from elements of a learning 
environment that are surprising, salient, evocative, 
challenging, personally relevant, etc. Situational interest 
can be triggered in response to a stimuli within a learning 
environment, and then may or may not become maintained 
over time [6]. A second type of interest is individual 
interest – learners’ enduring predispositions to engage with 
certain activities or topics over time. 

Elements of a story problem’s text have the potential to 
both trigger and maintain situational interest. In particular, 
story problems that are accessible, easy to read, and 
situated within the topics and contexts that a particular 
learner finds relevant and interesting may trigger and 
maintain interest. In the other hand, difficult reading 
passages disconnected from a learner’s experiences and 
interests may not trigger interest and may cause 
disengagement if interest has previously been triggered. 

2.3 Research Purpose 
If text-based measures like readability and problem 

topic matter for student performance, these might be 
important elements to add to future systems for 
personalized learning in mathematics. For example, an ITS 
might present weak readers with problems with simplified 
verbal language as these learners are initially mastering a 
new mathematical skill. As the student gains expertise with 
the mathematics by mastering skills, additional levels of 
verbal difficulty could be layered on by the ITS. Similarly, 
learners that lack motivation may be presented with story 
problems that are less intimidating to read and situated 
within their interests, with this support faded out over time. 
By neglecting to model this aspect of the user’s experience 
in the ITS, the system may be generating inferences about 
learner knowledge states that are inaccurate. 

3. LITERATURE REVIEW 

3.1 The Impact of Reading Difficulty on 
Solving Mathematics Story Problems 
Recent research has found that reading ability is especially 
important as students solve mathematics word problems 
[7]. Studies examining the association of reading difficulty 
of mathematics word problems and U.S. student 
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performance on large-scale assessments has found that 
problems that use words with multiple meanings, complex 
verbs, and mathematics vocabulary words are more 
difficult [8]; the effect is especially pronounced for students 
who speak English as a second language [9].  A small study 
of students working in CTA found that extraneous text that 
provided a real world context for the problem, as well as 
references to concrete people, places, and things, were 
associated with less concentration and more confusion in 
the tutor [10]. However, a similar study found that the 
extraneous text was also associated with fewer 
unproductive “gaming the system” behaviors in the tutor 
[11]. Converging evidence suggests text characteristics 
relating to reading difficulty are important when solving 
mathematics word problems, but studies are needed that 
address which elements of reading difficulty are most 
important. 

3.2 The Impact of Problem Topic on Solving 
Mathematics Story Problems 

The topic of mathematics story problems also has an 
important relationship to students’ prior knowledge and 
motivation. A study of high school students solving either 
standard story problems or story problems personalized to 
topics they were interested in (e.g., sports, video games, 
social networking) within one unit of CTA found that 
personalized stories were associated with higher 
performance. This performance gain was present in two 
tasks – labeling independent and dependent quantities 
given in algebra story problems, and writing algebraic 
expressions from the story scenarios [12]. It was 
hypothesized that during these two tasks, students are 
working closely with the problem text, constructing their 
situation model and coordinating it with a problem model. 
This study also found that students receiving problems in 
the context of their out-of-school interests were less likely 
to game the system – to exploit regularities in hints and 
feedback provided by CTA in order to avoid productive 
learning behaviors. Further, students who received 
personalization had stronger performance in future units 
where the problems were no longer personalized. 

In a recent follow-up study [13], story problems in four 
units of CTA were personalized to topics students were 
interested in, and students solving personalized problems 
were compared to a control group solving normal 
problems. Results showed that personalized problems both 
triggered students’ situational interest and enhanced 
students’ individual interest for learning algebra. 
Personalization was associated with greater learning gains 
than a control condition only when the personalization was 
matched to deep features of the students’ interest area. This 
was contrasted with personalization that was only matched 
surface features of the learners’ interests – i.e., 
modifications to the problems that simply involved 
inserting familiar pop-culture words rather than considering 
how learners might actually use relationships between 
quantities in their everyday activities. Thus converging 

evidence points to the importance of considering the real 
world topic of mathematics story problems and its 
relationship to students’ interests and experiences. 
However, more research is needed to determine which 
topics may be more or less likely to trigger and maintain 
students’ interest. 

3.3 Research Questions 
In the present study, we investigate the relationship 

between readability and topic measures and student 
performance on mathematics story problems. We examine 
these issues within an ITS for Algebra I, Cognitive Tutor 
Algebra (CTA), that tracks student hint requests in addition 
to whether they get problems correct or incorrect. We 
investigate two research questions: (1) How are readability 
and topic measures associated with correct answers and 
hint requests when students label independent and 
dependent quantities in stories in CTA? (2) How are 
readability and topic measures associated with correct 
answers and hint requests when students write algebraic 
expressions from stories in CTA? Answers to these 
questions could inform the design of future ITSs for 
personalized instruction. 

4. METHOD 
Data from N = 3394 students with active CTA accounts 
were collected from 9 high schools and 1 middle school 
that were diverse in terms of their socio-economic, racial, 
and achievement background (Table 1). Data were 
collected for students solving 151 distinct word problems 
accross the first 8 units of CTA; later units were not 
included because many students did not advance beyond 
these units. We collapsed for all analyses (i.e., treat as 
identical) problems containing an identical story but using 
slightly different numbers. On average, each problem had 
been solved by 742 students (SD = 495). Each problem 
included a story scenario that outlined one or more linear 
functions within a real world situation (Figure 1). The 
student was asked to complete steps in which they 
identified the independent and dependent quantities in the 
story,  wrote a linear algebraic expression for the story, and 
solved their expression for different x and y values; we 
consider only the first two skills. 

CTA log data from students in the selected schools 
were uploaded to DataShop (pslcdatashop.web.cmu.edu), 
an online repository of detailed student interaction data. 
These logs contained information on whether the student 
got each problem correct, incorrect, or requested a hint on 
their first attempt; because requesting a hint is a distinct 
outcome, correct and incorrect are not completely repetitive 
measures. Thus, for each problem, we compiled the 
percentage of students who had gotten the problem correct 
on the first attempt, incorrect, or requested a hint. This 
percentage was our dependent measure in three distinct 
regression models.We analyzed the text of the introduction 
to each story problem (i.e., the initial text that gives the 
linear rate of change and intercept; see Figure 1) with the 
Coh-Metrix and LIWC text-mining programs. Coh-Metrix 
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[14] measures a large number of aspects of text readability, 
including the amount semantic overlap between sentences, 
the number of verbs, use of concrete versus abstract words, 
the average sentence length, and others.  

 
Table 1. Demographic characteristics of schools in study 

 

 
Because some of our story introductions had only one 

sentence, measures that pre-supposed multiple sentences 
were ommitted. LIWC [15] was used to determine the topic 
of the story problems – this program counts how many 
words in the story fall into various word categories, 
including social processes (family, friends, people), 
affective processes (positive emotions and negative 
emotions), biological processes (body, health, ingestion), 
cognitive processes (insight, causation, discrepancy, 
tentativeness, certainty, inhibition, 
inclusive/exclusiveness), perceptual processes (see, hear, 
feel), relativity processes (motion, space, time), and 
personal concerns (work, achievement, leisure, home, 
money, religion). If a story contained any words that fell 
into one of these topic categories, that story was coded as a 
1 for that category; otherwise it was coded as a 0. 
 

 

 
Figure 1. Screenshot of algebra story problem in CTA with 

answer key superimposed 
 

For each category in Coh-Metrix and LIWC, the 
correlation was computed between the list of each 
problem‘s score on that category, and the percentage of 
students who got each problem correct, incorrect, or 
requested a hint. Correlations that were significantly 
different from 0 were tested for inclusion as fixed effects in 
regression models predicting the performance measures 
(hints, corrects, incorrects). These models included random 
effects that described various aspects of the problem’s 
mathematical structure, including the unit and section it 
came from in CTA, and the numbers it used. Models were 
initially fit using the lmer() command in R including all 
potential fixed and random effects. Then we used the step() 
command in R to perform backwards elimination on fixed 

ID Math 
Prof % 

State 
Prof % 

School 
Enrollment 

School 
Type 

1 88% 70% 797 Middle 
2 81% 47% 1,482 High 
3 95% 84% 2,163 High 
4 55% 46% 708 High 
5 27% NA 1,875 High 
6 68% 59% 986 High 
7 2% 31% 602 High 
8 76% 84% 1,333 High 
9 19% 39% 397 High 
10 68% 79% 800 High 

ID White Black Hispanic F/R Lunch 

1 72% 7% 15% 21% 
2 90% 4% 2% 4% 
3 84% 10% 3% 6% 
4 99% 1% 1% 41% 
5 20% 4% 72% 77% 
6 9% 2% 88% 41% 
7 1% 99% 1% 82% 
8 36% 60% 2% 48% 
9 100% 0% 0% 45% 
10 38% 51% 11% 62% 
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and random effects, leaving a model with only the effects 
that significantly improved the fit of the model. These 
analyses were carried out separately for a dataset that 
included only instances of students labeling independent 
and dependent quantities, and a dataset that included only 
instances of students writing algebraic expressions. 

5. RESULTS 

5.1 Labeling Independent and Dependent 
Variables 

Regression results showing the relationship between 
performance measures (% incorrect, hint, and correct) and 
readability and topic measures for labeling quantities in 
story problems are provided in Table 2. Table 2 shows that 
problems that use adverbial phrases (DRAP) were 
associated with fewer incorrect answers. Adverbial phrases 
are phrases that add on to verbs, answering the questions 
where, when, or how? In the present data set, adverbial 
phrases mostly answered when the action occured, and 
often included words like currently, already, next, first, 
every day/week, and not yet. However, some of these 
adverbs also answered the how question, relying 
information about quantities that might be useful to cue 
students to the constraints of the problem – examples of 
words used in this manner included only, completely, and 
evenly. These words may have given important details 
about how the quantities involved in the story were 
changing as the action in the story proceeded. 

Table 2. Regression tables relating performance 
measures on labeling quantities to readability/topic 

categories 
 Estimate Std. Err t value Pr(>|t|)  

% Incorrect      

(Intercept) 0.182 0.032 5.63 0.00018 *** 
DRAP -0.0008 0.0003 -2.34 0.02104 * 
motion 0.036 0.0137 2.65 0.00899 ** 
% Hint      

(Intercept) 0.045 0.014 3.21 0.01407 * 

inhibition 0.023 0.008 2.83 0.00543 ** 

% Correct      

(Intercept) 0.784 0.044 17.87 0.00000 *** 
motion -0.042 0.0182 -2.29 0.02370 * 
 

Stories that involve motion words (e.g., go, move, ran, 
arrive, come, enter, threw) are associated with more 
incorrect answers and fewer correct answers. These stories 
often incldued contexts where people were walking, biking, 
hot-air-balooning, driving, or actively constructing 
something. In terms of the quantities used, there was often 
a rate of change (e.g., per hour, per minute, a day) that 
involved this motion, and students had to identify the two 
quantities that made up this rate of change. Using more 

abstract physics quantities – like distance and speed – may 
have been more difficult for students than using quantities 
relating to specific concrete objects (e.g., accumulating 
cards, toys, or money). Finally, inhibition words were 
associated  with more hint requests. Inhibition words were 
often included in story problems that discussed safety 
issues or saving money. Students may have persieved these 
less concrete, finance- or safety-oriented contexts as less 
accessible, making them more likely to request a hint rather 
than attempt to write the labels. These problems often 
involved money as the dependent variable, but the label for 
this variable may have been complex because the actor in 
the story might have already saved or spent some money 
when the story started. Thus a label of simply money may 
not be appropriate, and the student would have to enter a 
label that captured that it was total money  or net money 
saved or spent. 

5.2 Writing the Algebraic Expression 
Regression results showing the relationship between 
performance measures and readability and topic measures 
for writing the expression are shown in Table 3. We again 
see that inhibition words – often associated with financial 
contexts – are more difficult for students – they are 
associated with more incorrect answers, more hint requests, 
and fewer correct answers. The conceptual difficulty of this 
topic area might become especially important as students 
move from formulating their situation model to 
coordinating their situation model with a problem model. 

Table 3. Regression tables relating performance 
measures on writing expressions to readability/topic 

categories 
 Estimate Std.  Err t value Pr(>|t|)  

% Incorrect      
(Intercept) 0.195 0.060 3.26 0.00167 ** 
WRDPOLc 0.0494 0.013 3.91 0.00014 *** 
inhibition 0.086 0.034 2.52 0.01286 * 

% Hint      
(Intercept) 0.055 0.014 3.95 0.00050 *** 
One sentence (ref.)     
Two sentences -0.045 0.016 -2.82 0.00548 ** 
Three Sentences -0.057 0.017 -3.48 0.00067 *** 
4 + Sentences -0.033 0.019 -1.77 0.07868  
RDL2 0.002 0.001 3.51 0.00061 *** 
family 0.030 0.015 2.05 0.04282 * 
inhibition 0.052 0.011 4.74 0.00001 *** 
motion 0.025 0.009 2.77 0.00637 ** 

% Correct      
(Intercept) 0.334 0.17478 1.91 0.05778  

LDTTRc 0.428 0.169 2.53 0.01242 * 
WRDPOLc -0.041 0.01469 -2.78 0.00609 ** 
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inhibition -0.128 0.03909 -3.28 0.00132 ** 

 
Another factor that stands out in the regression results 

is word polysemy (WRDPOLc) – or the number of different 
meanings that a word has (for example, in English, mine 
can be something you own or an explosive device). The 
results show that stories that contain words with more 
potential meanings are associated with more incorrect 
answers and fewer correct answers. Polysemous words 
have been found to make mathematics word problems more 
difficult to interpret accross other studies [8-9]. 

Results also showed that higher type-token ratios 
(LDTTRc) are associated with more correct answers. As 
type-token ratio increases, more unqiue words are being 
used in the story problem, and fewer words are being 
repeated. These results suggest that students have an easier 
time writing the expression in a story that is relatively 
concise with little reptition of ideas. While it makes sense 
that this type of story may be more amenable to translation 
into mathematics notation, this result contrasts with 
research in text comprehension in reading tasks [14] which 
generally finds that repitition and lower type-token ratios 
facilitate reading comprehension.  However, the story 
problems with high levels of word repetition frequently 
discuss complex topics of which students may lack 
familiarity, including operating capital,  business inventory, 
and wholesale prices.  In this way, a high type-token ratio 
may be indicative of a complex topic rather than increased 
readability in these story problems.   

Students‘ tendency to seek hints when writing the 
algebraic expression is associated with a number of 
different readability factors. First, we see an effect for the 
length of the story text; students are more likely to seek 
hints for one sentence story problems, compared to 
problems that have two or more sentences. Having only one 
single sentence in a story problem might not be enough to 
ground or fully describe a linear rate of change as it arises 
in a real-world situation, and these overly-sparse stories 
might consequently inhibit performance.  

In addition to greater difficulty of inhibition words, 
stories with family words and motion words were 
associated with greater hint-seeking. Only 13 of the 
problems involved family words, and these were often 
complex scenarios where multiple actors (e.g., a main 
character and his brother) were each contributing to the 
algebraic rate of change in their own way (e.g., 
saving/earning/splitting money together). Motion words 
often involved physics contexts (e.g., traveling in a car or 
plane) in which students had to track distance, rate, and 
time. This suggests that keeping track of multiple 
individuals engaging in mathematical actions and solving 
problems with physical distances and rates may be 
significant difficulty factors when writing expressions. 

Finally, the regression results showed that scoring 
higher on Coh-Metrix’s second language readability 

measure (RDL2) was associated with greater hint-seeking 
when writing expressions. This measure is calculated 
through measures of word frequency (with words that occur 
more frequently in the English language yielding higher 
scores), sentence syntax similarity (with sentences that 
have similar grammatical structures yielding higher scores), 
and word overlap (with words that share semantic meaning 
yielding higher scores; [16]).  Given that a higher second 
language readability score is typically associated with 
greater ease in comprehending the text [17], it is suprising 
that stories that score higher on this measure would be 
associated with students seeking more hints.  The 
explanation of this finding may be similar to that for our 
finding with type-token ratio; story problems that use 
similar words and sentence structures often use a lot of 
reptition as a way to present complex ideas. Stories that are 
simple and concise may be easier for students to solve. 

6. DISCUSSION  
Results indicate that readability and topic measures have 
important associations with students‘ performance when 
solving mathematics word problems in an ITS. In 
particular, it was more difficult for students to name the 
independent and dependent quanitities in problems relating 
to motion (physics) and inhibition (saving and safety), 
while adverbial cues facilitated this skill. When writing 
algebraic expressions, we again see that motion and 
inhibition topics are difficult, but also find other important 
readability measures that matter. Words with multiple 
meanings make story problems more difficult, which 
corresponds to previous findings in both mathematics and 
reading education.  

However, mathematics stories that use concise 
language with little repitition, which in terms of their 
readability level makes them technically less readable, are 
actually easier for students to solve. Thus measures of 
readability that stem from research on reading 
comprehension may need to be considered differently when 
working with mathematics problems. Results also suggest 
that while a story problem that includes only a single 
sentence is concise, it might present difficulty for students 
by not providing necessary context and information for 
them to feel they can respond without needing a hint. 

Overall, our results suggest that mathematics story 
problems that have story texts that are more accessible to 
students have several characteristics: (1) they are concise 
with little repetition, but not a single sentence only, (2) they 
use only a single actor performing actions, (3) they use 
simple words with clear meanings, (4) they avoid more 
abstract physics or financial contexts, instead focusing on 
familiar contexts involving accumulation or loss of 
concrete physical objects, and (5) they make use of 
adverbial cues. Story problems with these characteristics 
may allow students to more easily construct a situation 
model from a propositional textbase. They may promote 
situation-model construction by both increasing students‘ 
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ability to comprehend the semantics of the problem, and by 
increasing students‘ interest in working on the problem. 

7. CONCLUSION 
Future adaptive ITSs will be designed to model student 

characteristics at an extremely fine-grained level, as 
technology for personalized learning continues to advance. 
Here we argue that an important element of these future 
adaptive systems will be a consideration of the non-
mathematical text-based characteristics of the problem 
tasks they present to students. Making inferences about 
students‘ current level of mathematical knowledge or 
motivation without considering these characteristics may 
lead to misspecifications. 

Readability and topic measures may be an important 
consideration for ITSs to model in a variety of domains, 
including when considering tasks from history, social 
studies, and science. Future research should focus on the 
readability and topic measures that are most important for 
students of different age groups in different subject 
domains, and narrow down which characteristics are most 
critical to include in student and domain models as we 
build future ITSs. In current work, we are analyzing the 
mathematics problems on the National Assessment of 
Educational Progress (NAEP) and Trends in International 
Mathematics and Science Study (TIMSS) to examine how 
readability and topic measures impact the performance of 
4th and 8th graders in the United States, and how these 
factors interact with cognitive and non-cognitive student 
background characteristics. 
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ABSTRACT 
Personalization of learning environments to the background 
characteristics of learners, including non-cognitive factors, has 
become increasingly popular with the rise of advanced technology 
systems. We discuss an intervention within the Cognitive Tutor 
ITS where mathematics problems were personalized to the out-of-
school interests of students in topic areas such as sports, music, 
and movies. We found that relative to a control group receiving 
normal problems, personalization had benefits for interest and 
learning measures. However, personalization that included deeper 
connections to students’ interests seemed to be more effective 
than surface-level personalization. 

Keywords 

Personalization; interest; mathematics; intelligent tutoring systems 

1. INTRODUCTION 
The question of how to enhance the interest and motivation of 
adolescents has gained increasing prominence [1] especially in 
secondary mathematics [2]. Students often find mathematics, 
especially the math in middle and high school, to be disconnected 
from their interests, everyday lives, and typical ways of thinking 
about relationships and quantities [3]. At the same time, young 
people are using increasingly sophisticated and technology-driven 
ways to pursue and learn about their non-academic interests, and 
have become accustomed to a high level of customization, 
interaction, and control when seeking knowledge [4]. 

As a result, the idea of designing and advancing highly 
personalized systems for student learning has become a central 
focus for educational stakeholders [5]. Technology systems that 
enact personalized learning in the classroom have the potential to 
intelligently adapt to students’ prior knowledge, interests, 
preferences, and goals [4]. In mathematics, these systems can 
make explicit connections between the interests students pursue 
outside of school – like sports, video games, or social networking 
– and the academic concepts they are learning. Algebra in 
particular is a rich space for such connections to be made [6] – 
students experience mathematical concepts like rate of change as 
they gain points in their favorite video game, track their pace in 
cross country, or accumulate followers on Instagram. As Algebra 
is often considered to be a gatekeeper to higher-level mathematics 
[7], and a subject that adolescents struggle to see as relevant [3], it 
may be a particularly important area for the development of 
interventions for personalized learning. We posit that 1) using a 
technology-based system for personalization that grounds algebra 
problems in students’ out-of-school interests has the potential to 
elicit students’ interest in the mathematics content to be learned, 
and 2) that personalization to well-developed individual interests 
can have a long-term effect on students’ learning of algebraic 
concepts and their motivation to learn mathematics.  

2. THEORETICAL FRAMEWORK 
Interest has been defined as being both the state of engaging and 
the predisposition to re-engage with particular activities, events, 
and ideas over time [8]. Researchers have defined two types of 
interest. Situational interest is a state of heightened attention and 
increased engagement elicited by elements of an environment that 
are surprising, salient, evocative, or personally relevant. 
Situational interest can be triggered in response to stimuli, and 
becomes maintained over time as a learner engages further with 
the stimuli [8]. Individual interest is an enduring preference for 
certain objects or activities that persists over time and involves 
knowledge, value, and enjoyment; individual interest can be 
emerging or well-developed.  

Situational interest can also be subdivided into interest based on 
enjoyment of the activity and interest based on valuing of the 
activity with respect to other things the learner values. Value-
based situational interest has also been referred to as utility value 
– a learner’s awareness of the usefulness of a topic to their life 
and goals [9]. Interventions that are intended to trigger students’ 
situational interest are sometimes called “catch” interventions – 
the idea is to immediately grab students’ attention through salient, 
evocative, relevant, or surprising characteristics of the 
instructional materials. Interventions that are designed to promote 
maintained situational interested as sometimes called “hold” 
interventions – they often reveal the value of the content to 
students’ lives and goals, seeking to empower students [10-12]. 
For example, Mitchell [4] proposed that activities involving group 
work, computers, and puzzles function as “catch” mechanisms in 
the secondary mathematics classroom, while meaningfulness and 
involvement “hold” situational interest.   Research has shown that 
when individuals are interested in a task or activities, they engage 
in more productive learning behaviors and have improved 
learning outcomes [e.g., 13]. 

An important question, then, is how to elicit and develop learners’ 
interests for academic content areas. Personalization is a 
particular kind of intervention that can be used in learning 
environments to accomplish this goal. Personalization 
interventions identify topics for which learners have emerging or 
well-developed individual interest, and then connect these topics 
to academic content topics they are learning about in school (like 
algebra), for which they may have a lower level of interest. For 
example, consider a student who has a well-developed individual 
interest in music, but is not interested in Algebra. In their Algebra 
I class, they may engage with a variety of problems and projects 
that explore the mathematics behind musical pieces. Over time, 
the connection between these two areas might support her in 
developing situational interest based on her enjoyment of the 
incorporation of music as a context and the value perceived for 
music-themed problems, ultimately leading to the development of 
individual interest in Algebra [14]. By making explicit 
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connections to students’ interests, personalization interventions 
are hypothesized to trigger situational interest in the academic 
content being learned, which can be maintained over time and 
eventually develop into individual interest in that content area. 
Personalization can increase students’ engagement in the math 
task, improve their performance on personalized math tasks and 
future math tasks that are not personalized [15], and may even 
increase students’ interest in the math they now see as relevant to 
their personal interests. However, little research has investigated 
the mechanisms by which personalization promotes these learning 
outcomes. In this study, we test this situational interest hypothesis 
by monitoring students’ interest in math units via embedded self-
report surveys and examining whether personalization induces 
higher levels of situational interest, and whether this situational 
interest transforms into individual interest. Thus we test whether 
increased situational interest is an important mechanism through 
which personalization may gain its effect. 

In addition to possessing enjoyment and value components, 
Renninger, Ewen, and Lasher [16] accentuate that interest also 
involves knowledge. Learners tend to possess useful prior 
knowledge related to their areas of interest, but this knowledge 
may be intuitive and informal with respect to underlying 
principles, making connections to concepts being learned in 
school (like algebra) difficult to acknowledge or articulate. In 
addition to possessing the potential to spur enjoyment and value-
driven reactions to an academic content area, personalization is 
advantageously positioned to formalize students’ intuitive prior 
knowledge about their interests by explicitly connecting it to a 
concept learned in school. For example, a learner with substantial 
knowledge of musical composition may have implicit 
understandings of the mathematical or numerical underpinnings of 
music, and this knowledge can potentially act as a support when 
they are learning formal algebra. In mathematics education, this 
follows a “funds of knowledge” perspective [17], which 
accentuates that students bring with them to the classroom 
powerful quantitative ways of reasoning from their home and 
community lives. These informal, interest-based funds of 
knowledge are potential strengths that can be leveraged through 
thoughtful instructional approaches like personalization to develop 
students’ algebraic knowledge. In this study, we test the funds of 
knowledge hypothesis by examining whether solving personalized 
problems that incorporate deeper features of one’s interest (e.g., 
mechanics of a popular video game) elicit stronger effects on 
learning than problems personalized based on shallower features of 
a learner’s interest (e.g. passing reference to a game title in a 
problem about snacking) or non-personalized problems. Thus we 
test whether increased activation of prior knowledge is an important 
mechanism through which personalization gains its effect. 

Whereas outside interests can be leveraged by personalization, 
initial interest in mathematics may moderate the effectiveness of 
personalization interventions. Durik and Harackiewicz [10] found 
that an intervention designed to “catch” (i.e., trigger [8]) student 
interest (adding colorful, vivid decorations to instructional 
materials) was most effective for learners with low individual 
interest in mathematics (IIM), but hampered learners with high IIM. 
Conversely, they found that an intervention designed to “hold” (i.e., 
maintain based on value [8]) student interest (informing students of 
the value of the content being learned) was beneficial for high IIM 
students, and detrimental for low IIM students.  

In order for personalized instructional materials to successfully 
activate knowledge, trigger interest, and enhance perceptions of 
value, Walkington and Bernacki [14] identified three key features 

designers must consider. First is the depth of the intervention – 
whether the personalization draws upon surface level aspects of a 
learners’ interest (e.g., simply inserting familiar objects or names 
into an already-designed task), or whether the personalization 
involves deep, authentic connections to actual experiences the 
learner has pursuing an interest like music. Second is the grain 
size of the intervention – whether the personalization is targeted to 
the specific experiences of an individual, or to the generic 
experiences of an entire group. When considering grain size, it is 
important to remember that some topics will tend to tap into the 
interests of larger groups of students more than others – for 
example, a problem about the specifics of football may match the 
fine-grained interests of more ninth graders than a problem about 
field hockey. Use of these topics that relate to many students’ 
experiences may be a productive way to allow materials to be 
personalized at a finer grain size. Third is the ownership of the 
personalization – whether the students themselves take a role in 
generating the connections between the academic content area and 
their interests, or if teachers or curriculum developers control the 
personalization. In this study, we examined students’ interest in 
mathematics and algebra learning when exposed to a 
personalization intervention of medium grain size (i.e., 
personalized for local users based on interest interviews 
conducted at the same school in a prior year) versus a standard set 
of problems (i.e., broad grain size written by curriculum 
developers for all Algebra I students who use the curriculum). In 
the fourth unit of the intervention, we also varied the depth of 
problems by personalizing on surface or deep features of the 
problem to examine the effects of depth on interest and learning 
(i.e. the funds of knowledge hypothesis). No manipulation of 
problem ownership was conducted. 

In the present study, we pursue the following research questions 
by implementing a personalization intervention for Algebra I: 

1) What is the immediate impact of a personalization 
intervention on students’ situational interest in algebra 
instructional units? 

2) What long-term effect does personalization have on 
students’ individual interest in algebra?  

3) What is the impact of a personalization intervention on 
students’ learning of algebra concepts?  

4) How does depth influence the impact of personalization 
on interest and learning? 
 

Based on prior work examining the effects of personalization on 
learning [15] and theoretical assumptions about the development 
of interest [8] including the situational interest hypothesis, we 
hypothesize that 1) Personalized problems should trigger greater 
situational interest in algebra units than standard problems; 2) 
Students completing personalized problems that incorporate out of 
school interests will report greater individual interest in algebra; 
and 3) Students who complete personalized problem solving units 
will achieve greater increases in their algebra performance than 
students completing standard problem solving units. In 
accordance with the funds of knowledge hypothesis, we expect 4) 
that students who complete problems that are personalized based 
on deeper features of their interest area should outperform those 
completing problems personalized on surface features of the 
problems and standard problems.  

3. METHODS 
3.1 Participants and Environment 
Total participants included N = 152 ninth grade Algebra I students 
in the classes of two Algebra I teachers. Students attended a rural 
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Northeastern school that was 96% Caucasian with 21% of 
students eligible for free or reduced price lunch. In 2012, 71% of 
students passed the state standardized test in Mathematics, which 
is administered in the 11th grade. The sample was 51% female. 
Because one teacher at the school site did not administer the 
pretest before students began using the Cognitive Tutor, eighty-
three students completed pretest, posttest and all questionnaires 
delivered in the CTA software and compose the primary sample 
for this study.  

The school at which the study took place used the Cognitive Tutor 
Algebra (CTA) curriculum [18]. CTA is an intelligent tutoring 
system for Algebra I that uses model-tracing approaches to relate 
the students’ actions back to the domain model to provide 
individualized error feedback. CTA also uses knowledge-tracing 
approaches to track learning from one problem to the next, using 
this information to identify strengths and weakness in terms of 
production rules. CTA presents learners with algebra story 
problems where they must navigate tabular, graphical, and 
symbolic representations of functions (Figure 1). Students in 
schools that use CTA typically use the software 2 days per week.  

4.  Personalization Intervention 
Before entering the first unit in CTA (Unit 1), all participants 
were given an interests survey where they would rate their level of 
interest in 10 topic areas – music, art, cell phones, food, 
computers, games, stores, TV, movies, and sports. Participants 
were then assigned to one of two main conditions: (1) a Control 
Condition that received the standard algebra story problems in all 
units in CTA including Units 1, 3, 7, and 9 covering linear 
equations, (2) an Experimental Condition that received versions of 
these same problems with the same underlying structure that were 
matched to the interests they indicated on the interests survey for 
Units 1, 3, 7, and 9 (i.e. Personalization Condition). In unit 9, we 
tested the funds of knowledge hypothesis by further subdividing 
learners in the Personalization condition to (A) a Deep 
Personalization condition where they received personalized 
problems with greater depth – i.e., the personalized problems the 
Deep Personalization group received in Unit 9 were written to 
better correspond to ways that adolescents might actually use 
linear functions when pursuing their interests, and were intended 
to draw upon “funds of knowledge” more explicitly. The 
remaining students were assigned to (B) a Surface Personalization 
Condition where they received problems that contained stories 
with only superficial references to their identified interests. These 
problems should elicit situational interest, but not draw upon 
knowledge about one’s interests. 

In the first sample Control problem in Table 1, students must 
identify the relationship between dosage and weight. This 
relationship is grounded in a story that provides a context that 
likely to be of limited relevance to the student. In the Surface 
Personalization problem the structure of the problem remains 
consistent, but a topic that corresponds to the learners’ personal 
interests has been applied. In the Deep Personalization version, 
the personal interest is applied more intentionally. Like the 
surface-level personalization problem, The Clash of Clans 
problem matches students’ reported interest in games. However it 
is also intended to draw upon the learner’s knowledge of the 
game’s architecture to frame the underlying algebraic relationship 
to be learned in a deeply relevant context (i.e. it is actually useful 
to keep track of the relationship between elapsed time and how 
goals are accomplished, and this quantity is explicitly tracked and 
displayed for the player within the game interface). We consider 
this to be a deeper level of personalization compared to the 

Surface Personalization condition, as it seems less likely that 
despite an interest in games, a teen would care about or track 
exactly how frequently they consume snacks during play. 
Personalized problems were written based on surveys (N = 45) 
and interviews (N = 23) with Algebra I students at the school 
where they discussed their out-of-school interests. 

Deep Personalization problems were written to more closely 
correspond to quantitative information given by students in the 
interviews and open-ended surveys about their out-of-school 
interests, including interviews with Algebra I students at the 
school where the study was conducted. In these interviews, 
students discussed how they consider rate of change as they play 
video games, participate in sports, track their rate of texting and 
battery usage on their cell phone, engage in cooking, work at part-
time jobs, activities, and so on. (see [6] for a full analysis of 
student interviews).  

 

 
Figure 1. Screenshot of Cognitive Tutor Algebra environment 

with answer key superimposed 
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Table 1. Study Conditions 

 Control Surface 
Personalization  

Deep 
Personalization  

G
A

M
ES

 

The correct 
dosage of a 
certain medicine 
is two 
milligrams per 
25 pounds of 
body weight. 

While playing 
cards a person 
typically eats 
two snacks for 
every 25 
minutes of 
playing time in 
a card game. 

When playing 
Clash of Clans a 
player can build 
two barracks for 
every 25 minutes 
of playing time. 

SP
O

R
TS

 

Three out of 
every five 
people in a 
recent survey 
supported the 
President's 
Health Plan. 

Three out of 
five people have 
attended a 
Pittsburgh 
Steelers game in 
their lifetime. 

Three out of five 
free throws are 
successful for 
NBA players. 

FO
O

D
 

Directions for a 
swimming pool 
chemical that 
controls the 
growth of algae 
state that you 
should use six 
fluid ounces of 
chemical for 
every 500 
gallons of water. 

Looking 
through a 
collection of 
online recipes, 
there are six 
recipes that 
require 
powdered sugar 
for every 500 
recipes that you 
find online. 

In a family 
recipe you use 
six drops of hot 
pepper oil for 
every 500 
ounces of chili 
that is being 
cooked. 

 

Problems across the 3 conditions were written to hold constant 
factors like order of information given, numbers, sentence 
structure and length, mathematical vocabulary, readability, 
pronoun use, and distractor information. The personalized 
problems did not require that students have additional knowledge 
of specific numerical mathematical information in their interest 
area (e.g., knowing how many points a field goal is worth) – all 
information given was matched across problem types. 

All instructional units involved in the study involved linear 
functions. Of the core sample comprising most of our analyses, 31 
participants were assigned to the Control, 34 were assigned to 
Surface Personalization, and 27 were assigned to Deep 
Personalization. 

4.1 Measures 
We collected the following measures from all participants: 

4.1.1 Paper-Based Pre/Post Assessments 
At the beginning of the school year, prior to entering the tutor, all 
students completed a paper-based pre-test on linear functions. The 
test contained 4 story problems where a linear function was 
described that either had a slope and intercept (2 problems) or had 
only a slope (2 problems). Participants first were given an x value 
in the linear function and asked to solve for y, then they were 
given a y value in the linear function and asked to solve for x. 
Finally, they were asked to write the linear function using algebra 
symbols. A post-test was administered to all students around the 
midterm of their ninth grade year (i.e., four months later). The 
post-test contained 4 matched items containing slightly different 
wording and numbers. Students’ responses to each part of each 
problem were scored as correct or incorrect. 

4.1.2 Domain-Level Motivational Surveys 
Prior to entering Unit 1 (pre-) and Unit 10 (post-) in CTA, the 
software presented students with a survey asking them to rate their 
attitudes about algebra. Specifically, they rated their individual 
interest in mathematics (IIM), as well as their maintained 
situational interest–enjoyment and maintained situational interest-
value for mathematics. Subscales were adopted from a larger set 
of scales from Linnenbrink-Garcia et al. [19]. Sample items for 
each scale appear in Table 2. 

4.1.3 Unit-Level Motivational Surveys 
After each unit impacted by the personalization intervention 
(Figure 2; Units 1, 3, 7, and 9), participants were also given a 
unit-level motivational survey that assessed the degree to which 
that unit triggered their situational interest and maintained their 
situational interest in the CTA unit. These scales were adapted 
based on measures from Linnenbrink-Garcia et al. [19] with the 
math unit as the referent. Sample items for each scale appear in 
Table 2, as do Cronbach’s alphas for the initial administration of 
each survey. An overview of the survey measures and CTA units 
completed by participants in this study is provided in Figure 2.  

Table 2. Interest Measures 

Interest Measure Sample item α 

Individual Interest in 
Mathematics 

Thinking mathematically 
is an important part of 
who I am.  

.92
9 

Maintained Situational 
Interest in Math- Value 

What we are studying in 
math class is useful for me 
to know.  

.92 

Maintained Situational 
Interest in Math- Enjoyment 

I really enjoy the math we 
do in this class.  

 
 

.89 

Triggered Situational Interest 
in Math 

The topics in this unit 
grabbed my attention. 

.84 

Maintained Situational 
Interest in Unit - Value 

The math in this unit is 
useful for me to know.  

.90 

Maintained Situational 
Interest in Unit - Enjoyment 

In this unit, I really 
enjoyed the math. 

.84 

 

 
Figure 2. Measures 

 

5. RESULTS 
We report results as they address the first three research questions 
in section 2. We do not provide a separate section for research 
question 4 (impact of depth of personalization), and instead 
discuss the results for depth of personalization within each of the 
other three sections. 
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5.1 What is the impact of personalization on 
students’ situational interest in algebra units? 
To assess the effect of the personalization interventions on 
students’ situational interest, we conducted a series of analyses of 
covariance examining students’ reported triggered and maintained 
interest in CTA units. All students were given unit-level surveys 
assessing their level of interest in the instructional unit after each 
of the units impacted by the personalization treatment (Units 1, 3, 
7, and 9). We controlled for initial individual interest in 
mathematics (IIM) as indicated on the domain survey before Unit 
1 (Figure 2). 

Students in the two Personalization conditions (i.e., Surface 
Personalization and Deep Personalization are identical in Units 1, 
3, and 7) consistently reported significantly higher levels of 
triggered situational interest than students assigned to the Control 
condition (Table 3; Unit 1 F(1,80) = 5.19, MSe = .96, p = .03, 
Unit 3 F(1,80) = 5.31, MSe = .98, p = .02; Unit 7 F(1,80) = 3.82, 
MSe = .91, p = .05).  

Significant differences between any of the 3 groups in triggered 
situational interest were not obtained in Unit 9. The level of 
triggered situational interest reported by the Deep Personalization 
was consistent with prior units with the triggered interest for the 
Surface Personalization group was slightly lower. The Control 
group, however, reported greater triggered situational interest, and 
the inclusion of three groups (two with smaller Ns) further 
diminished the statistical power available to detect effects.  

No significant differences in maintained situational interest were 
found between groups on any of the four units observed, Fs < 
3.73, ps = ns. Directionally, measures of maintained situational 
interest generally favored the personalization groups.  

5.2 What effect does personalization have on 
students’ individual interest in algebra?  
All students were given domain-level surveys assessing their 
interest towards learning algebra prior to the intervention and after 
the final personalized unit (i.e., Unit 9). A repeated measures 
analysis of variance examining change in Individual Interest in 
Mathematics (i.e., Post-Pre) between the two Personalization 
conditions (i.e., Deep & Surface) versus Control was conducted to 
examine the main effect of Time and Interaction between Time X 
Condition. Results indicated a significant main effect of Time, F 
(1, 81) = 5.39, MSe = 1.75, p = .023. Overall, students’ individual 
interest in mathematics declined from pretest to posttest. Analyses 
also indicated a marginally significant interaction between Time 
and Condition, F (1, 81) = 3.73, p = .057. Students in the control 
group significantly reduced their rating of individual interest in 
algebra an average of 0.37 points over the 10-unit span (Table 3; 
t(29) = 3.21, p < .01), while students in the Deep and Surface 
Personalization groups maintained their individual interest in 
algebra (M = 0.04 decline). Thus personalization had a positive 
effect in that it preserved students’ individual interest in algebra. 
Within the Personalization condition, no differences were found 
between students who received Surface versus Deep 
Personalization. 

5.3 What is the impact of personalization on 
students’ learning of Algebra I concepts?  
The pre- and post- test scores on the algebra learning measures for 
each of the three conditions is shown in Table 4. A linear 
regression model predicting amount of absolute gain from pre- to 
post-test (i.e., post-test score minus pre-test score) was fit to the 

data, with students’ class period as a random effect. Adding a 
predictor for Condition significantly improved the fit of the model 
(χ2(2) = 6.39, p = 0.04), as did a control variable for students’ 
initial level of individual interest in mathematics (IIM) prior to the 
intervention (χ2(1) = 4.07, p = 0.04). The interaction of Condition 
and IIM also significantly improved the fit of the model (χ2(2) = 
14.43, p < .001). 

Table 3. Estimated Marginal Means Controlling for Individual 
Interest in Math 

Variable   Personalizationa Controlb   
  Unit EMM SE EMM SE   
Triggered 
Situational 
Interest 

1 
 

2.86 0.13 2.33 0.19 * 

3 
 

2.82 0.13 2.27 0.19 * 

7 
 

2.69 0.13 2.25 0.18 * 

9 Dc 2.82 0.18 2.55 0.19 
 

  Sd 2.56 0.20       
        Maintained 
Situational 
Interest - 
Value 

1 
 

2.95 0.13 2.77 0.19 
 3 

 
3.07 0.13 2.74 0.18 

 7 
 

2.76 0.13 2.76 0.18 
 9 D 2.84 0.19 2.82 0.18 
 

  S 2.70 0.17       
 

       Maintained 
Situational 
Interest - 
Enjoyment 

1 
 

2.76 0.12 2.46 0.17 
 3 

 
2.81 0.13 2.40 0.18 

 7 
 

2.66 0.12 2.35 0.17 
 9 D 2.62 0.19 2.50 0.18 
 

  S 2.33 0.17       
Individual 
Interest in 
Math 

Pre 2.87 .14 3.34 .20  

Post 2.83 .16 2.94 .22  
Notes. *- p < .05, EMM = Estimated Marginal Mean, SE = 
Standard Error, D = Deep personalization, S = Surface 
Personalization, a - N = 55, b - N = 28, c - N = 24, d - N = 31 
 

Table 4. Scores on Knowledge tests by Condition 
    Pretest Posttest 
Condition N M SD M SD 
Control 32 0.68 0.2 0.83 0.12 
Surface 
Personalization 29 0.73 0.15 0.82 0.15 

Deep personalization 32 0.63 0.22 0.84 0.18 
 

The regression output is shown in Table 5. The reference category 
is the Control Group, and we interpret all significant simple 
effects regardless of whether they are displayed in the table. The 
IIM control measure was dichotomized to separate students with 
high IIM (average rating of 3 or more) from low IIM (average 
rating less than 3) to aid interpretability and to be consistent with 
prior work [e.g., 14]. As can be seen from Table 5, for students 
with low individual interest in math, Deep Personalization was 
significantly more effective than Control (p < 0.05). Additional 
contrasts not shown in the table compared Surface Personalization 
to Deep Personalization, and found that for students with low IIM, 
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Deep Personalization was significantly more effective than 
Surface Personalization (B = 0.24, SE (B) = 0.07, p < 0.001). 
Finally, within the Deep Personalization condition, students with 
high IIM gained significantly less than students with low IIM (B = 
.17, SE(B) = .07, p = .01).  

 

Table 5. Regression Output for Pre/Post Learning Gains 

 B SE (B) t p 

 
(Intercept) .13 .07 1.81 .07 
Control  (ref.)    
Surface Personalization  -.10 .08 -1.33 .18 
Deep Personalization  .14 .07 1.97 .05 
Low IIM (ref.)    
High IIM .00 .07 -.07 .94 
Surface Personalization ×	
 	
  
High Initial Individual Interest 

.08 .10 .82 .41 

Deep Personalization ×	
 	
 	
  
High Initial Individual Interest 
 

-.17 .10 -1.71 .09 

 

6. DISCUSSION & CONCLUSION 
This study examined whether personalizing algebra problems to 
students’ out-of-school interests would increase their situational 
interest in CTA algebra problems, increase their interest in 
mathematics, and improve their acquisition of algebra knowledge 
(i.e., the situational interest hypothesis). It additionally tested 
whether solving problems that incorporated deep features of an 
interest into problems would produce greater benefits that solving 
problems that incorporated interests superficially or standard 
problems (i.e. the funds of knowledge hypothesis). Students who 
received problems personalized to their out-of school interests 
reported significantly higher triggered situational interest for CTA 
math units. Compared to a Control group that experienced a drop 
in their individual interest in mathematics, Personalization also 
had a preserving effect on students’ interest in mathematics. After 
accounting for students’ initial individual interest in mathematics, 
significant differences in learning gains were found between 
groups of students in the Deep Personalization, Surface 
Personalization and Control Conditions. These findings are next 
discussed in light of prior theory and research. 

6.1 Personalization and Situational Interest 
Students who completed algebra problems personalized to their 
interests reported greater triggered situational interest compared to 
students who completed standard CTA problems, however 
students who solved personalized problems did not report 
significantly greater maintained interest resulting from enjoyment 
or perceptions of value. The finding that personalization was 
effective in triggering situational interest is encouraging as we 
consider the Control condition to be a considerably strong control. 
That is, the standard problems included in tutor units might be 
considered to be personalized to student interests at a very broad 
grain size [11] – they were generally written by teachers and 
curriculum writers with this student population in mind (i.e., 
adolescent algebra learners). The personalized problems in the 
intervention, on the other hand, had a medium grain size – they 
were written for and provided to subsets of the student population 
that had particular topic interests (e.g., sports, video games). The 
change from a large to a medium grain size was sufficient to elicit 
changes in triggered situational interest, though additional effort 
may be necessary to elicit sufficient enjoyment or perception of 

value to maintain students’ situational interest. Indeed, in another 
personalization study [20], we found that a personalization 
intervention with a much smaller grain size where students wrote 
and solved problems that incorporated features of their personal 
interests produced increases in students’ maintained situational 
interest associated with perceived value. This intervention also 
involved a higher level of ownership of the personalization on the 
part of the students [14], which suggests that personalization at a 
medium grain size may successfully trigger situational interest, 
but a personalization at a smaller grain size with some level of 
ownership may be necessary to achieve more enduring situational 
interest in math units.  This type of intervention may be especially 
important given that it takes the burden of  generating fine-grained 
instructional materials away from teachers and curriculum 
developers and places it on students. 

6.2 Personalization and Individual Interest 
Despite a failure to elicit maintained situational interest, the 
Personalization intervention did have a significant effect on 
students’ individual interest in mathematics. Importantly, the 
individual interest items assessed how students felt about the 
domain of mathematics as a whole, rather than how they felt about 
the particular math class they were enrolled in or the particular 
units they were working on. This preservation of individual 
interest in algebra over half a year of high school coursework is a 
desirable outcome, given research that documents declines in 
interest in math over adolescence [21, 22]. In sum, the findings 
from the first two research questions support the situational 
interest hypothesis. We consider this finding in light of theory on 
interest development in section 6.4. 

6.3 Deep Personalization and Algebra Learning  
Walkington [12] found that a one-unit personalization 
intervention improved students’ long-term learning of algebra 
concepts within the CTA environment, relative to a control 
condition. This study extends that work and indicates that, when 
personalization incorporates deep features of students’ out-of-
school interests, it can also induce learning gains that transfer 
outside of an intelligent tutoring environment (i.e. to delayed, 
paper-based tests). However, these effects are moderated by 
students’ initial level of individual interest in mathematics, with 
Deep Personalization being beneficial mainly for low IIM 
students. Walkington [15] did not collect such interest measures in 
her study, but did find that personalization was most effective for 
students who were making slower progress through CTA– a 
variable known to track closely with interest in math [23]. We 
consider these findings in light of proposed hypotheses that 
personalization may obtain effects on learning by activating 
students’ funds of knowledge in their out-of-school interest, and 
that personalization may trigger greater situational interest in math 
tasks. The current study showed that Deep Personalization was 
significantly less effective for learners with high IIM, compared to 
learners with low IIM. This, along with the results that 
personalization triggers but does not maintain situational interest, 
suggests that even Deep Personalization may achieve its effects 
on learning as a “catch” intervention, immediately eliciting 
triggered situational interest. That is, solving personalized 
problems triggered students’ interests, but did not maintain them. 
This provides some promise as prior research has shown catch 
interventions that trigger interest to be beneficial primarily for 
learners with low IIM [10]. This is contrasted with a “hold” 
intervention that maintains situational interest, often by 
communicating the value of the content being learned. In this 
study personalization did not increase students’ perceptions that 
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algebra problems had value, but additional interventions aimed at 
boosting perceived value and relevance [11, 12] could potentially 
be incorporated to ITSs to also obtain this effect and its benefits 
for learning.  

Although we termed our Condition “Deep” Personalization, the 
connections made to learners’ actual experiences may not have 
been uniformly deep depending on students more specific 
interests within a topic area, and thus may not have elicited value-
based reactions from some students. This stems from issues with 
the grain size of the intervention – students merely indicated their 
level of interest in a broad topic (e.g., “sports”), and were then 
given problems that could cover the entire space of activities that 
fell within that topic (e.g., basketball, hockey, football), without 
considering students more specific interest in a subtopic (e.g., just 
hockey). Although attempts were made to use the “high-leverage” 
interest sub-topics that many students would have specific 
knowledge of (i.e., football rather than field hockey) this approach 
likely allowed for the personalization to have highly variable level 
of correspondence to students’ exact interests. The level of 
correspondence depended on the overlap between a student’s 
interest and the commonly reported interests by peers in surveys 
and interviews prior to problem development. Walkington and 
Bernacki [20] found significant increases in maintained situational 
interest (value) for students who authored problems about their 
specific interests, suggesting that the smaller grain size and 
increased ownership of the personalization intervention in that 
study allowed it to function more as a “hold” intervention. 

Finally, the current study showed that Deep Personalization was 
significantly more effective than Surface Personalization for 
students with low IIM. This suggested that personalization may 
need to have at least a moderate level of depth for it to be 
effective at all for supporting learning outcomes for any subgroup 
of students. Indeed, a number of recent personalization 
interventions that employed relatively surface-level 
personalization have reported null findings [24, 25]. Thus we 
conclude from all of these analyses that a personalization 
intervention with a moderate depth and grain size can potentially 
have long-term effects on student learning for students who begin 
with limited interest in mathematics. However, increasing depth 
and personalizing at an even smaller grain size may have more 
powerful effects, especially for students with higher IIM for 
whom value-based connections may be most critical. 

Although learning gains were produced for low IIM students who 
received Deep Personalization (rather than Surface 
Personalization), these students did not show differences in 
situational or individual interest measures within Unit 9 compared 
to the Surface Personalization group. There were also no 
differences between Surface and Deep in individual interest over 
the course of the entire intervention. This suggests that Deep 
Personalization may gain its effectiveness over Surface 
Personalization by connecting to students’ prior knowledge (funds 
of knowledge hypothesis) rather than triggering and maintaining 
differing levels of situational interest (situational interest 
hypothesis). However, ultimately comparisons between these two 
groups are of limited usefulness given the relatively small sample 
sizes. Thus we find limited but promising support for the funds of 
knowledge hypothesis. 

6.4 Theoretical Implications 
When viewed through the lens of interest development theory [8], 
the findings regarding personalization and interest development 
are somewhat puzzling. Per Hidi and Renninger’s  [8] theory, 

interest is 1) triggered by environmental stimuli and 2) maintained 
when engagement in the environment is enjoyable or confers 
value through consistent or repeated situational interest. This 
supports 3) the emergence of an individual interest, which 4) 
becomes well developed over time. In this study, analyses reveal a 
triggering of situational interest among students in the Surface and 
Deep Personalization conditions, no reported maintenance of 
situational interest via enjoyment or value, but a significant effect 
of Personalization on individual interest. Thus individual interest 
developed without being maintained during learning; this requires 
that we consider alternate explanations by which such effects on 
individual interest may have been obtained.  

One potential explanation is that the way instructors used 
Cognitive Tutor in the math classes may have reproduced some of 
the behaviors expected when students’ situational interest is 
maintained. In their model, Hidi and Renninger [8] describe that 
those who maintain interest in a topic tend to repeatedly engage 
with content involving the topic (e.g., a student who is interest in 
dolphins may seek more opportunities to learn about them by 
reading books about them in school or choose “dolphins” as a 
topic for school assignments). While students’ did not report that 
personalized Cognitive Tutor Algebra units maintained their 
interest to a degree that we would expect them to voluntarily seek 
out opportunities to learn using Cognitive Tutor, the compulsory 
use of the Cognitive Tutor in math class twice a week for many 
months effectively ensured repeated engagement in (personalized) 
problem solving via CTA use. Thus we could conclude that the 
continued exposure to math content personalized to one’s out-of-
school interests approximated behavioral outcomes of maintained 
situational interest and created an alternate pathway by which 
individual interest was preserved in Personalization conditions 
(i.e., no drop in interest), but not in the Control condition where 
there was no initially triggered interest. Much like the typical 
adolescent whose interest in math declines over time, students in 
the Control condition were required to complete math units that 
did not trigger situational interest and subsequently reported 
declines in their interest in mathematics. 

6.5 Conclusion 
The results obtained in this study provide important insight about 
the ways depth and grain size of personalization may impact the 
development of students’ interests in their math course, the 
domain of mathematics, and ultimately their long-term learning of 
algebra concepts. In future analyses, we will analyze additional 
data from students participating in this study, and look for 
difference in in behavior and performance within intervention and 
subsequent CTA units, including analyses of learning behaviors 
using log-files and automated detectors. 
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ABSTRACT 
When designing adaptive tutoring systems, a myriad of 
psychological theories must be taken into account.  Popular notion 
follows cognitive theory in supporting multi-channel processing, 
while working under assumptions that pedagogical agents and 
affect detection are of the utmost significance. However, 
motivation and affect are complex human characteristics that can 
muddle human-computer interactions. The following study 
considers the promotion of the growth mindset, as defined by 
Carol Dweck, within middle school students using an intelligent 
tutoring system. A randomized controlled trial comprised of six 
conditions is used to assess various delivery mediums of growth 
mindset oriented motivational messages.  Student persistence and 
mastery speed are examined across multiple math domains, and 
self-response items are used to gauge student mindset, enjoyment, 
and perception of system helpfulness upon completion of the 
assignment.  Findings, design limitation, and suggestions for 
future analysis are discussed. 

Keywords 

Motivational messages, growth mindset, pedagogical agents, 
multi-media learning principles, e-learning design. 

1. INTRODUCTION 
The optimal design of adaptive tutoring systems is a continuous 
debate for researchers in the Learning Sciences.  Decisions when 
authoring content can be immense, including not only the user 
interface and tutor material, but also the presence of adaptive 
feedback strategies such as hints or scaffolding, the use of affect 
detectors, and in growing popularity, the use of pedagogical 
agents.  While many adaptive tutors share designs rooted in 
cognitive theory, creators should also incorporate elements that 
improve student motivation, engagement, persistence, 
metacognition, and self-regulation skills.  These elements aid in 
the promotion of active learning, an experience that has been 
shown to heighten the creation of mental connections [10].  
However, successful adaptive tutoring systems are not just a 
random conglomeration of these learning goals.  All too often, 

adaptive tutors are designed under the assumption that students 
are ideal learners, driven and motivated, ready to employ a full 
range of self-regulation skills coupled with technological prowess 
[1].  Thus, researchers have recently undertaken a more thorough 
examination of how to universally encourage and motivate 
students while still promoting self-regulated learning skills and 
optimizing system design [3, 8]. 

Human motivation has historically been explained and argued 
by an array of theories, as intrinsic or as extrinsic, as static or as 
the constant flow of needs, emotions, and cognitions [13].  In a 
somewhat similar sense, recent research promoting affect 
detection within educational technology suggests that affect plays 
a primary role in learning success [2].  How can researchers 
incorporate deeply rooted human characteristics like motivation 
and affect into the design of an adaptive tutoring system?  A 
renowned leader in the field of psychology, Carol Dweck has 
helped to establish theories of intelligence that marry these 
complex constructs within the confines of learning studies [5]. 
Her research has shown that students approach learning tasks 
largely with one of two ‘mindsets.’ The fixed mindset is 
characterized by the notion that intelligence is somehow innate or 
immutable.  Students who live within this fixed realm generally 
emit lower learning and performance outcomes as well as higher 
attrition rates based in the notion that effort will not lead to 
intellectual advancement [6].  Much of American society is rooted 
in this view; strong emphasis is placed on standardized testing and 
zero sum competition, with the goal of comparing student 
intelligence rather than promoting learning. Alternatively, 
students with a growth mindset believe that intelligence is 
malleable and that effort and persistence can lead to success. 
While Dweck [7] argues that neither mindset is necessarily 
‘correct,’ she promotes the notion that mindset can be altered, and 
explains the growth mindset as offering a healthier mental 
lifestyle.  Altering mindset is best achieved by varying the type of 
praise students receive and by realigning their definition of 
successful learning.  By highlighting the learning process rather 
than the student’s intelligence or performance, ‘process praise’ 
and the promotion of malleable intelligence has led to positive, 
long-term learning gains [5]. Students trained in the growth 
mindset show increased enjoyment in difficult learning tasks as 
well as higher overall achievement and performance [6]. 

An expert in his own right, Richard Mayer has devoted much 
of his career to promoting a series of multi-media learning 
principles that enhance e-learning design.  These principles call 
for learning environments to be driven by active learning 
processes while considering the cognitive load and working 
memory of users [4].  As such, those authoring adaptive tutors 
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should utilize audio, animation, graphics, video, and other 
hypermedia elements to appease multiple sensory channels and 
thereby reduce the user’s overall cognitive load.  It is important to 
note that powerful design requires a fine balance of these 
resources, as exorbitance may serve to distract or disrupt learners. 
The evolution of pedagogical agents and learning companions 
within adaptive tutoring systems has served as a primary way to 
incorporate both multi-media elements and non-cognitive support. 
As guidelines for the design of human-computer interaction have 
followed those set forth by human-human interaction, the art of 
appropriating the cognitive and affective responses of pedagogical 
agents has been of major concern [9].  Agents are typically 
designed with the premise that they should respond happily to 
student successes and with a shared disappointment upon failures 
[9]. 

Considering the optimal design of adaptive tutoring systems 
and the incorporation of hypermedia and pedagogical agents to 
engage students in active learning, the current study seeks to 
analyze the promotion of Dweck’s growth mindset theory within 
ASSISTments, an adaptive mathematics tutor. The following 
research questions were derived from themes relevant to Dweck’s 
[6] work, in combination with adaptive tutoring structures unique 
to ASSISTments: 
1. Does the addition of motivational messaging within the 

tutoring system affect the likelihood of student persistence or 
attrition? 

2. Does the presence of motivational messaging within the 
tutoring system affect mastery speed as defined by how many 
items, on average, it takes for students to complete the 
problem set? 

3. Can specific elements within message delivery be pinpointed 
as significantly powerful? That is, can researchers isolate an 
element (e.g., the presence of a pedagogical agent, the audio 
component, static images, or a combination of these elements) 
that is responsible for the majority of variance in persistence 
and learning efficiency? 
It is hypothesized that students randomly assigned to a 

messaging condition will be more likely to show continued, 
persistent effort than those in the control condition.  Similarly, 
regardless of the delivery medium, researchers expect students 
who receive mindset messages to show improved mastery speed, 
with fewer items, on average, required to complete a problem 
set.  In the assessment of message delivery, it is hypothesized that 
motivational messages delivered using an animated version of 
Jane, a learning companion that originates from partnering tutor 
Wayang Outpost, will have a stronger effect on student 
persistence and learning efficiency than alternative message 
mediums. 

2. METHODS 
To determine appropriate math content for this study, the tutor’s 
database was queried to compile a historical record of usage data 
for a variety of problem sets that fit within Common Core State 
Standards across various grade levels.  All observed problem sets 
were of a style unique to the ASSISTments tutor, requiring 
students to answer three consecutive questions correctly in the 
same day in order to complete the assignment. If the student were 
to reach a preset ‘daily limit’ (i.e., ten problems) while attempting 
to solve three consecutive questions, they are prompted to consult 
with their teacher and try again tomorrow. 

Five problem sets were chosen based on high usage, with 
math content spanning grades four through seven. The skill topics 
assessed by these problem sets included finding missing values 
using percent on a circle graph, equivalent fractions, multiplying 

decimals, rounding, and order of operations.  The goal in 
designing multiple problem sets was three-fold: to increase data 
collection, to determine any significant effect for student skill 
level, and to determine if content was linked to student 
motivation, perhaps due to difficulty level.  Six conditions were 
then established for each problem set, as defined in Table 1.  
These conditions were designed following the principles set forth 
by Mayer [4], to test matched content messages across a variety of 
processing channels.   

The student experience for each problem set was formatted in the 
same manner.  An introductory ‘question’ explained the format of 
the problem set and alerted the student to turn on their computer 
volume and to use headphones if necessary. The second ‘question’ 
tested whether or not the student was able to see and hear the 
pedagogical agent Jane as she introduced herself as a problem-
solving partner. This question was included to test the 
compatibility of the HTML files that supported the pedagogical 
agent’s animation and sound conditions, thus serving as 
confirmation of fair random assignment.  Researchers then relied 
on a randomization feature unique to ASSISTments that randomly 
assigned students to one of the six conditions depicted in Table 1. 
Math content was isomorphic across conditions, and was thus 
considered comparable in difficulty.  A test drive of the student 
experience for each problem set can be found at [12]. 

Motivational message content, as depicted in Table 2, was 
matched across conditions to reduce confounding. These 
messages were validated in and derived from [1].  Each problem 
set was designed to randomly select questions from a pool of 
approximately 100 problems, containing two types of 
motivational message delivery: general attributions, in which the 
motivational message was presented with the primary question, 
and incorrect attributions, in which the motivational message was 
presented alongside content feedback if the student responded 
incorrectly or employed a tutoring strategy.  Following this design 
structure, students saw general attributions on approximately half 
of the questions, with the remaining half displaying incorrect 
attributions only to students who answered a problem correctly.  
Therefore, each student’s experience of motivational messaging 
may have differed slightly, even within each condition.  This 
design was established to reduce persistent message delivery and 
to avoid inundating students with messages on each question, with 
the goal of optimizing the effects of motivational messages while 
retaining a primary focus on math content. All visual motivational 
messages appeared within the tutor and remained until the student 
completed the problem; audio messages were played once upon 
loading the problem or tutoring strategy. 

Table 1. Motivational messaging conditions. 
Control ASSISTments as usual; no messages added 

Animation Jane, a female pedagogical agent, delivers 
messages with motion and sound 

Static Image with Text The agent is presented as a static image, 
with a speech bubble to deliver motivational 
text messages 

Static Image with Audio The agent is presented as a static image, 
supplemented by audio files to deliver 
motivational messages 

Word Art A speech cloud shows motivational text 
messages, with no agent involvement 

Audio The agent’s voice delivers motivational 
messages with no graphical changes to tutor 
content 
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At the end of each problem set, students were asked to partake in 
a series of four survey questions developed based on previously 
validated content from [11], to assess student mindset, goal 
orientation, and perceptions of enjoyment and system helpfulness. 
All students received these questions regardless of condition. All 
survey content can be accessed at [12]. 

3. PROCEDURE 
Teachers in the state of Massachusetts who frequently use 
ASSISTments with their students were approached with a brief 
presentation explaining the study and providing examples of the 
conditions, motivational messages, and math content. Teachers 
assigned one or more of the problem sets to their students in 
accordance with the teachers’ usual use of the tutoring system 
(i.e., as either classwork or homework).  Material was assigned as 
current content and/or review, for a total of 765 student 
assignments. Log data was compiled for each student’s 
performance.  Prior to analysis of persistence and mastery speed, 
students were removed if they had noted experiencing technical 
difficulties or if they failed to log enough progress to enter one of 
the six conditions.  Additional students were removed prior to 
survey analysis due to incompletion.  Students remaining after 
each step are examined across problem sets in Table 3. 

Table 3. Explanation of Students Remaining After Removals. 

Problem Set A1 MA* SA** 

Percent on a Circle Graph 87 69 62 

Equivalent Fractions 255 208 205 

Multiplying Decimals 62 48 47 

Rounding 253 208 205 

Order of Operations 108 88 86 

REMAINING 765 621 605 

A1 = Assigned.  MA = Math Analysis.  SA = Survey Analysis. 
*Students were removed prior to math analysis due to technical 
difficulties or failure to initiate a condition. 
**Additional students were removed prior to survey analysis due to 
incompletion. 

An ex post facto judgment of student gender was determined for 
570 students within the sample remaining for math content 
analysis.  Due to incompletion rates within this subset of students, 
gender was determined for 554 students within the sample 
remaining for survey content analysis. 

4. RESULTS 
Analyses of student persistence and mastery speed were 
performed at the condition level for each problem set, as well as 
for an aggregate of the five sets to serve as a composite analysis 
of the conditions across math content.  To determine if an effect 
existed within a particular processing channel, similar conditions 
were compiled based on delivery elements. For example, all 
conditions utilizing audio were compiled to assess the effect of 
audio (i.e., audio, animation, static image with audio). Similar 
analyses were performed to determine the effect of textual 
messages and the effect of the pedagogical agent’s presence. 
Researchers also compared a compilation of all conditions 
containing motivational messages to the control condition in order 
to determine the effectiveness of motivational messages in 
general.  Initial findings suggested that in general, the sample was 
too advanced for the math content as students were found to be at 
ceiling across many of the problem sets. Thus, secondary analyses 
examined gender differences and assessed the aforementioned 
variables for a subset of students operationally defined as 
“strugglers,” or those requiring more than three questions to 
complete their assignment. 

When considering student persistence, as defined by 
continuing until reaching completion, ANOVA results suggested 
null results (p > .05) across all problem sets except for multiplying 
decimals F (5, 42) = 2.57, p < .05, η2 = 0.23.  No significant 
results were observed when the problem sets were compiled or 
when specific delivery elements were isolated, and there was no 
significant difference between messaging conditions and the 
control.  For the full sample, gender was found to differ 
significantly on persistence, F (1, 568) = 3.84, p = 0.051, η2 = 
0.01, with girls showing significantly more persistence (M = 0.99, 
SD = 0.12) across conditions than boys (M = 0.96, SD = 
0.20).  While girls were found to be approaching completion in all 
conditions (p < .05), boys showed lower completion overall, with 
the lowest performance apparent in the control condition.  

When considering mastery speed, as defined by the number of 
questions required for problem set completion, ANOVA results 
suggested null results (p > .05) across all problem sets analyzed 

Table 2. Motivational message item content. 

General Attributions 

1. Did you know that when we learn something new our brain actually changes?  It forms new connections inside that help us 
solve problems in the future. Pretty amazing, huh? 

2. Did you know that when we practice to learn new math skills our brain grows and gets stronger?  That is so cool! 
3. Hey, I found out that people have myths about math… like that only some people are “good” at math.  The truth is we can 

all be successful in math if we give it a try. 
4. I think the most important thing is to have an open mind and believe that one can actually do math! 
5. I think that more important than getting the problem right is putting in the effort and keeping in mind the fact that we can 

all be good at math if we try. 

Incorrect Attributions 

1. Making a mistake is not a bad thing.  It’s what learning is all about! 
2. When we realize we don’t know why that was not the right answer, it helps us understand better what we need to practice. 
3. We may need to practice a lot, but our brains will develop with what we learn. 
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individually.  Further, no significant results were observed when 
problem sets were compiled or when specific delivery elements 
were isolated, and there was no significant difference between 
messaging conditions and control.  Although there was no 
significant difference in mastery speed across genders, trends 
suggested that girls had faster mastery speed in general, requiring 
consistently fewer questions to complete problem sets regardless 
of condition (M = 4.25, SD = 2.65) than boys (M = 4.43, SD = 
2.86).  Means and standard deviations for the full sample are 
presented in Table 4.  

ANOVA comparisons of the survey measures of mindset, 
enjoyment, and system helpfulness similarly conveyed null results 
within the full sample.  The “mindset” variable was established 
from an average of two binary survey questions, with a composite 
score scaled from 0-2 representing the spectrum from fixed 
mindset (0) to growth mindset (2).  The “enjoyment” variable was 
based on one question with Likert scale scores from 0-3, 
representing how much the student enjoyed their assignment.  The 
“helpfulness” variable is represented in the same manner, based 
on the student’s perception of how helpful the tutoring system was 
in completing their assignment.  Null results were found for all 
three measures across problem sets when analyzed individually, 
and no significant differences were observed between conditions 
when problem sets were compiled or when specific delivery 
elements were isolated.  Further, there was no significant 
difference between all messaging conditions and the control 
group.  Gender was found to have a significant effect on 
enjoyment, regardless of condition F (1, 552) = 19.50, p < .001, η2 
= 0.03, with girls measuring more enjoyment on average (M = 
1.84, SD = 0.81) than boys (M = 1.52, SD = 0.90).  As shown by 
Table 4, the Control was found to be the most enjoyable 
condition, while WordArt was enjoyed significantly less (p < 
.10).  Gender was also approaching significance on the mindset 
measure, F (1, 552) = 3.31, p = 0.069, η2 = 0.01, with boys 
exhibiting a lower mindset in general (M = 0.93, SD = 0.78) than 
girls (M = 1.05, SD = 0.77).  Gender was not found to have a 
significant effect on student’s perception of tutor helpfulness. 

In an attempt to answer our third research question, elements 
within message delivery were collapsed based on similarity to  
better understand if a certain processing channel (i.e., audio) was  
providing the main effect for messaging results.  As noted briefly 
in results for persistence, mastery speed, and survey measures, 
researchers were not able to isolate any significant differences 
among delivery elements (p > .05). 

While few significant findings were observed in the full 
sample, it became clear that many students were at ceiling in the 
math content and therefore showing high persistence (completion) 
in minimum mastery speed (three consecutive correct questions). 
When we reassessed the sample for students operationally defined 
as ‘struggling,’ or those who required more than three questions to 
complete their assignments, our analysis became a bit more 
informative.  Among 253 student assignments, no significant 
differences were found among conditions in persistence or 
mastery speed (p > .05).  However, findings suggested that it took 
struggling students less questions on average to reach mastery 
when in the audio condition (M = 5.59, SD = 2.00) compared to 
all other conditions, as shown in Table 5.  

When considering gender, struggling boys exhibited lower 
mastery in conditions including audio (p < .05) yet were found to 
persevere more when an image of Jane was present, while girls 
persevered less with the female presence (p < .05).  Survey results 
for struggling students suggested that boys exhibited the lowest 
mindset measures after experiencing the control condition (p < 
.05), and trends suggested that regardless of condition, girls 
exhibited the growth mindset more consistently (M = 1.00, SD = 
0.79) than boys (M = 0.91, SD = 0.75).  As with the primary 
analysis, trends suggested that boys exhibited the growth mindset 
after experiencing the animation condition (p < .10).  It was also 
found that regardless of condition, girls enjoyed their assignments 
(M = 1.72, SD = 0.87) significantly more than boys (M = 1.42, 
SD = 0.92), p < .05, and that girls consistently found the tutoring 
system more helpful in completing their assignment (M = 2.10, 
SD = 0.83) than did boys (M = 1.92, SD = 0.90). 

Table 4. Means and Standard Deviations for Persistence, Mastery Speed, and Survey Measures  
Across Control and Messaging Conditions for All Students. 

 
 Control 

(104a, 99b)  
All Messaging 

(517a, 506b)  
Animation 
(106a, 103b)  

Static Image 
 with Text 

(116a, 113b)  

Static Image  
with Audio 
(117a, 115b) 

Word Art 
(90a,b)  

Audio 
(88a, 85b) 

Analysis M SD  M SD  M SD  M SD  M SD  M SD  M SD 

Persistence 0.95 0.21  0.98 0.14  0.97 0.17  0.97 0.16  0.98 0.13  1.00 0.00  0.97 0.18 

Mastery Speed 4.74 3.35  4.32 2.67  4.24 2.69  4.62 2.83  4.32 2.42  4.28 3.33  4.09 1.91 

Mindset 1.06 0.81  0.96 0.78  1.01 0.80  0.96 0.77  1.02 0.77  1.00 0.79  0.78 0.75 

Enjoyment 1.83 0.80  1.67 0.89  1.74 0.87  1.66 0.90  1.77 0.82  1.49 0.91  1.67 0.96 

Helpfulness 1.99 0.85  1.94 0.86  1.86 0.89  2.01 0.89  2.01 0.77  1.82 0.79  1.95 0.95 

aSample size for Persistence and Mastery Speed. 
bSample size for Mindset, Enjoyment, and Helpfulness. 
Note. “Mindset” is measured by two questions (0 = Fixed Mindset, 1 = Growth Mindset) and scores are compiled.  “Enjoyment” 
is measured by one question (Likert Scale, 0-3).  “Helpfulness” is measured by one question (Likert Scale, 0-3). 
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Approximately 60% of students in the full sample exhibited the 
growth mindset in their survey responses, regardless of condition. 
Noting Table 4, students in the control condition actually reported 
the highest levels of growth mindset (M = 1.06, SD = 0.81), with 
those in the audio condition reporting the lowest levels (M = 0.78, 
SD = 0.75). Among struggling students, the highest levels of 
growth mindset were reported by students in the static image with 
audio condition (M = 1.04, SD = 0.82), while those in the word art 
condition reported the lowest levels (M = 0.82, SD = 
0.86).  Responses to measures of enjoyment and helpfulness 
followed normal distributions, with approximately 60% finding 
the assignments at least “somewhat” enjoyable, and 
approximately 78% finding the tutoring system at least 
“somewhat” helpful.  

5. DISCUSSION 
Within the current study, the addition of motivational messaging 
to the ASSISTments tutor did not significantly affect the 
likelihood of student persistence or mastery speed. Further, there 
was little evidence that the motivational messages had the 
intended effect on mindset within the full sample. Trends 
suggested that those in messaging conditions experienced a slight 
increase in persistence and a decrease in mastery speed in 
comparison to those in the control condition.  However, students 
in the messaging conditions also exhibited consistently lower 
levels for measures of mindset, enjoyment of the assignment, and 
perception of system helpfulness. A larger student population 
would be required to discern a truly significant effect within these 
trends. 

Interestingly, struggling students appeared to benefit from the 
presence of messages, showing an increase in persistence, a 
decrease in mastery speed, and slightly increased measures of the 
growth mindset.  It can be argued that struggling students, or 
those facing a challenge, are most in need of motivational 
interventions, and that they are more likely to respond to 
messaging, regardless of condition.  Motivational messages 
produced distinctly higher adoption of the growth mindset in 
struggling students who experienced the static image with audio 
condition.  Thus when designing motivational content for 

struggling students, current findings promote the addition of audio 
as an alternative processing channel to assist students.  
Researchers were not able to pinpoint an optimal processing 
channel for the delivery of growth mindset messages when 
targeting the general population.  

One participating teacher requested that her students use a 
feature within the tutoring system to comment on their experience 
while completing their assignment.  Feedback was predominantly 
negative, with students citing the messages as distracting or 
confusing.  One student specifically questioned why the animated 
learning companion simply repeated messages rather than helping 
to solve the problems.  This suggests that students are familiar 
with systems that utilize pedagogical agents, and that they have 
developed expectations for characters that are associated with 
learning.  This echoes the argument set forth by Kapoor, et al. [9] 
regarding the necessity for tutors to provide appropriate cognitive 
and affective responses, and aids in the design of tutoring systems 
hoping to incorporate learning companions. 

This study had a variety of limitations.  The ASSISTments 
math content chosen due to popular usage lead to a high 
percentage of ceiling effects within the sample. Teachers assigned 
multiple problem sets to their students, often as review. Thus, 
many students easily mastered the content intended for lower 
grades and thereby skewed rates of persistence and mastery speed. 
Further, the null effects found in the full sample raise important 
questions regarding the generalizability of mindset interventions 
outside of struggling student populations.  Within the context of 
an adaptive mathematics tutor, students who appear to be at 
ceiling in math content may not require motivational messaging, 
and it may become detrimental to the learning process.   

We also note that approximately 18.8% of students reported 
having technical difficulties and were removed prior to analysis.  
The incompatibility of simple HTML files serves as a reminder 
that many classrooms struggle to maintain up-to-date 
technological resources.  Students are often required to share 
computers or iPads that come equipped with outdated software 
and generally slow internet connections.  Future research should 
incorporate allowance for these issues within the experimental 
design, as incompatibilities may lead to selection bias. 

Table 5. Means and Standard Deviations for Persistence, Mastery Speed, and Survey Measures  
Across Control and Messaging Conditions for Struggling Students. 

 
 Control 

(46a, 45b)  
All Messaging 

(207a, 204b)  
Animation 
(42a, 41b)  

Static Image 
with Text 
(49a, 47b)  

Static Image 
with Audio 

(49a,b) 
Word Art 

(28a,b)  
Audio 
(39a,b) 

Analysis M SD  M SD  M SD  M SD  M SD  M SD  M SD 

Persistence 0.98 0.15  0.99 0.12  0.98 0.15  0.96 0.20  1.00 0.00  1.00 0.00  1.00 0.00 

Mastery Speed 7.07 3.95  6.34 3.32  6.17 3.48  6.84 3.24  6.14 2.88  7.11 4.95  5.59 2.00 

Mindset 0.93 0.75  0.95 0.78  1.00 0.81  0.89 0.73  1.04 0.82  0.82 0.86  0.92 0.70 

Enjoyment 1.60 0.86  1.58 0.94  1.76 0.92  1.45 1.00  1.71 0.79  1.43 1.07  1.51 0.97 

Helpfulness 1.98 0.92  2.01 0.87  1.98 0.94  1.98 0.82  2.04 0.87  2.00 0.82  2.05 0.94 

aSample size for Persistence and Mastery Speed. 
bSample size for Mindset, Enjoyment, and Helpfulness. 
Note. “Mindset” is measured by two questions (0 = Fixed Mindset, 1 = Growth Mindset) and scores are compiled.  “Enjoyment” 
is measured by one question (Likert Scale, 0-3).  “Helpfulness” is measured by one question (Likert Scale, 0-3). 
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It is also difficult to justify whether or not students 
consistently attended to the motivational messages.  As students 
were simply presented the messages and were not asked to 
respond in any manner, the levels of message internalization may 
be broad.  We also note that the duration of the intervention may 
have been too short to observe reliable differences among 
messaging conditions.  In much of her work, Dweck has provided 
longer interventions upfront, coupled with ‘reminders’ such as the 
messages used in the current study [7].  Further, her studies often 
run longitudinally across the course of a school year or more.  
Still, regardless of condition, the majority of students in our 
sample exhibited the growth mindset. Future research should 
include a pretest mindset survey to determine if these results can 
be credited solely to the motivational messages provided 
throughout the learning experience.  

Finally, it should be noted that researchers relied on the 
tutoring system to perform random assignment.  While prior 
research has suggested that this practice is sound, assignment for 
this study appears to have favored the static image with audio 
condition.  Future research using ASSISTments should take this 
bias into consideration. 

Future iterations of this study should focus on struggling 
students, or those undertaking challenging academic tasks.  Future 
research should also seek to assess these conditions in an even 
more adaptive environment. It seems as though students were not 
reaping the benefits of the "persona effect" found in prior research 
[1], due to a lack of bonding with the agent. A truly adaptive 
agent, one consistently present and building rapport, may be more 
effective in message delivery.  Rather than repeating the same 
select set of general and incorrect attributions, struggling students 
may require motivational messages linked with the tutor content 
and their progress.  Perhaps just as a pedagogical agent, these 
messages must be fine-tuned to a student’s cognitive and affective 
states. Alternative message delivery methods, including video 
feedback with human tutors used as hints, scaffolding, and 
misconception messages, should also be considered in future 
research. 
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ABSTRACT 
For tutorial dialogue systems, classifying the dialogue act (such as 
questions, requests for feedback, and statements) of student 
natural language utterances is a central challenge. Recently, 
unsupervised machine learning approaches are showing great 
promise; however, these models still have much room for 
improvement in terms of accuracy. To address this challenge, this 
paper presents a new unsupervised dialogue act modeling 
approach that leverages non-cognitive factors of gender and self-
efficacy to better model students’ utterances during tutorial 
dialogue. The experimental findings show that for females, 
leveraging learner characteristics within dialogue act classification 
significantly improves performance of the models, producing 
better accuracy. This line of investigation will inform the design 
of next-generation tutorial dialogue systems, which leverage 
machine-learned models to adapt to their users with the help of 
non-cognitive factors.   

Keywords 

Tutorial dialogue, learner characteristics, dialogue act 
classification, unsupervised machine learning, adaptive learning. 

1. INTRODUCTION 
Tutorial dialogue is a highly effective form of instruction, and 
much of its benefit is thought to be gained from the rich natural 
language dialogue exchanged between tutor and student [7, 17, 
36]. In order to model tutorial dialogue for the purposes of 
building tutorial systems or for studying human tutoring, dialogue 
acts, which capture both cognitive and non-cognitive aspects of 
dialogue utterances, provide a valuable level of representation. 
Dialogue acts represent the underlying intention of utterances (for 
example, to ask a question, agree or disagree, or to give a 
command) [3, 32]. Within the computational linguistics and 
dialogue systems literature, automatically classifying dialogue 
acts has been a focus of research for several decades [6, 14, 35]. 
For tutorial dialogue systems, dialogue act classification is crucial 
to understanding students’ utterances and developing tutorial 
strategies [8, 24].  

Today’s tutorial dialogue systems utilize a variety of dialogue act 
classification strategies, some rule-based and some statistical [13]. 
Historically when machine learning has been used to devise 
tutorial dialogue classifiers, these have been supervised 
classifiers, which require training on a manually labeled corpus. 
The same is true within the broader dialogue systems research 
community: dialogue act classifiers have historically either been 
handcrafted and rule-based, or learned with supervised machine 
learning techniques [11, 14, 22, 29]. However, supervised 
techniques face substantial limitations in that they are labor-

intensive due to the manual annotation and handcrafted dialogue 
act taxonomies that are usually domain-specific. To overcome 
these challenges, unsupervised dialogue act modeling techniques 
including hidden Markov models [20, 21, 30], Dirichlet Process 
clustering [12, 23], k-means clustering [31], and query-likelihood 
clustering [15] have been investigated in recent years.  

Despite this growing focus on developing unsupervised dialogue 
act classifiers, these models still underperform compared to 
supervised approaches in their accuracy for classifying according 
to manual tags. However, while unsupervised models to date have 
considered such things as lexical features (the words found in the 
utterance) and syntactic features (the structure of the sentence), 
they have not considered non-cognitive factors, such as gender 
and self-efficacy, which are believed to influence the structure of 
tutorial dialogue [10]. Cognitive factors such as skill mastery has 
been widely studied in learning environments. However, there is a 
smaller body of work on adaptive learning environments using 
non-cognitive factors. A variety of learner characteristics, 
including non-cognitive factors, play an influential role in 
learning, not only in tutoring but in classroom settings [1], and in 
web-based courses [19]. Prior work on learner characteristics has 
focused on building adaptive systems based on different user 
groups [16], tutorial feedback selection [9] and identifying 
students that need remedial support [27]. Identifying clusters of 
student characteristics is also an active area of research [4, 25–
27].  
This paper investigates whether the performance of an 
unsupervised dialogue act classifier can be improved by taking 
these factors into account. Because non-cognitive factors are 
shown to affect language, we believe that training dialogue act 
classifiers tailored to specific learner characteristics can help 
tutorial dialogue systems to understand students better. We utilize 
two learner characteristics: gender, as self-reported by students on 
a survey and domain-specific self-efficacy, as measured by a 
validated instrument for determining a student’s confidence in her 
own abilities. Specifically, we train unsupervised dialogue act 
models that are tailored to students of specific gender and self-
efficacy level, and we compare those models to corresponding 
ones trained without restricting by that learner characteristic. This 
unsupervised training is conducted entirely without the use of 
manual tags. We then test all of the models on held-out test sets 
within leave-one-student-out cross validation, and compare the 
resulting classification accuracy according to their previously 
applied manual tags. The results show that for female students, 
utilizing learner characteristics statistically significantly improves 
dialogue act classification models. For self-efficacy groups, 
improvement is observed but not at a statistically reliable level. 
This paper constitutes the first research toward incorporating non-
cognitive factors into unsupervised dialogue act classifiers for 
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tutorial dialogue with the overarching goal of providing 
personalized learning for students. We first administered a survey 
to collect these characteristics via self-report, and then learned a 
dialogue act classifier tailored to those characteristics. These 
results can inform the way that next-generation tutorial dialogue 
systems conduct their real-time dialogue act classification and 
language adaptation.  

2. RELATED WORK 
Dialogue act modeling is an important level of representation 
within dialogue systems. Following theories proposed several 
decades ago within philosophy and linguistics [3, 32], dialogue 
act classification aims to capture the intention of an utterance; for 
example, in tutoring some dialogue acts involve asking questions 
or giving or requesting feedback. While a long-standing line of 
investigation has focused on handcrafted or supervised machine 
learning techniques for dialogue act classification [11, 14, 22, 29], 
only recently is a body of work emerging on unsupervised 
approaches to this problem. Most of this work has been done 
outside of educational domains, with a proposed hidden Markov 
model in the domains of Twitter posts [30] and emails [21], 
Dirichlet Process Mixture Models for a train fare dialogue domain 
[12] and for navigating buildings [23], and a Chinese Restaurant 
Process approach for spoken Japanese [20].  

Another important difference between the current work and prior 
research is in the features used, namely the non-cognitive 
characteristics of gender and self-efficacy. Prior work has used a 
variety of features for performing supervised dialogue act 
classification, including prosodic and acoustic features which 
involve the profile of the sound signal itself [35], lexical features 
such as words and sequences of words [34], syntactic features 
including part-of-speech tags [6, 24], dialogue structure features 
such as taking the initiative and the previous dialogue act [33] as 
well as task/subtask features in tutorial dialogue [8, 18]. Within 
unsupervised dialogue act classification a subset of these features 
have also been used such as words [12], state transition 
probabilities in Markov models [23], topic words [30], function 
words [15], a smaller subset of words containing beginning 
portions of utterances [31], part-of-speech tags and dependency 
trees [21]. While a variety of experiments have demonstrated the 
utility of these features in several domains, no prior work has 
reported on an attempt to include the factors considered here, in 
order to improve the performance of an unsupervised dialogue act 
classifier. To investigate this, we build dialogue act classifiers that 
learn from utterances of specific learner groups and predict 
dialogue acts of students according to their learner characteristics.  

3. CORPUS 
The corpus used in this study consists of student-tutor interactions 
in an introductory computer science programming task [18]. 
Throughout the data collection, freshman engineering students 
and tutors communicated through a textual dialogue-based 
learning environment while working on Java programming. The 
ethnicity of students participated in this study is distributed as 
follows: 26 white, 9 Asian, 3 Latino, 2 African American, 1 
Middle Eastern and 1 Asian American. An excerpt from the 
corpus is shown in Table 1.  

Students were given a pre-survey that included survey items on 
computer science self-efficacy, such as ‘I am sure I can learn 
programming’. This self-efficacy scale was adapted directly from 
the Domain-specific Self-Efficacy Scale [5], with five items 
measured on a Likert scale from 1-5 (1 being lowest self-efficacy, 
5 being highest). Students also completed a demographic 

questionnaire from which gender was obtained. For self-efficacy, 
students were divided into classes based on the median score 
across all students on that scale. Along with gender, this produces 
two partitions of the 42 students: females (12) and males (30), low 
(24) and high self-efficacy students (18).  

Table 1: Excerpt of dialogue with a male student  
in the low self-efficacy group 

Role	
   Utterance	
  
Dialogue	
  

Act	
  
Tutor	
   You'll need to end every Java 

statement with a semi colon	
  
S 

Student	
   Got it!	
   ACK 
Tutor	
   This is to let Java know where each 

statement ends	
  
S 

Tutor	
   Ah no prompt!	
   S 
Tutor	
   Why do you think that is?	
   Q 
Student	
   I wish I knew...	
   A 
Student	
   I don't think I spelled anything wrong	
   S 
Tutor	
   Ah  it's actually pretty easy	
   S 
Tutor	
   The order of the lines matters	
   S 

 

The corpus containing 1640 student utterances was manually 
annotated with dialogue act tags in previous work [18] (Table 2). 
These dialogue act tags are not available during model training, 
but we use them for evaluation purposes to calculate accuracy on 
a held-out testing set.  

Table 2: Student dialogue acts and distributions 

Student Dialogue Act Example Distribution 
A (answer)  yeah I'm ready! 39.95% 

ACK 
(acknowledgement)  

Alright 21.31% 

S (statement) i am taking basic fortran 
right now never seen 

literal before 

21.20% 

Q (question) what does that mean? 15.15% 

RF (request feedback)  better? 0.98% 

C (clarification)  *html messing 0.79% 

O (other) haha 0.61% 
 

4. DIALOGUE ACT MODELING BASED 
ON LEARNER CHARACTERISTICS 
We hypothesize that dialogue act models built using unsupervised 
machine learning will perform substantially better when 
customized to specific learner groups. Specifically, we investigate 
whether by training a model only on students of a particular 
learner characteristic, that model would perform significantly 
better at predicting the dialogue acts of unseen students with the 
same learner characteristic compared to a model that was trained 
on students of all learner characteristics. 

We note that because the same corpus is being partitioned in two 
different ways, the same student will occur in one of the gender 
groups and in one of the self-efficacy groups. This choice to 
partition in 2-way splits rather than 2n-way splits where n is the 
number of learner characteristics is because of issues that arise 
with sparsity. This interdependence between partitions is a 
limitation to note; however, as discussed in Section 5, this 
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interdependence can be taken into account for making decisions 
within a tutorial dialogue system by employing a suite of 
classifiers within a voting scheme. 

4.1 Experimental Design 
For gender and self-efficacy, we will test whether an unsupervised 
dialogue act classifier trained only on students with that 
characteristic outperforms a classifier that is not specialized by 
this characteristic. In order to gather accuracy data across these 
characteristics, we conduct leave-one-student-out training and 
testing folds. The testing set for each of the n folds (where n 
varies depending on which learner group is being considered) 
consists of all of a single student’s dialogue utterances and the 
model is trained on the remaining n-1 students. The average 
number of utterances per student in the corpus is 36.8 (σ=12.07; 
min=16; max=64). These are therefore the average, minimum, and 
maximum number of utterances across the leave-one-student-out 
test sets.   

We compute the average test set performance of the model across 
all folds for each non-cognitive characteristic partition. The 
performance metric utilized in this study is accuracy compared to 
the manually labeled dialogue acts described in the previous 
section, where accuracy is computed as the number of utterances 
in the test set that were classified according to their manual label, 
divided by the number of utterances total in the test set. As 
described in 4.2, the process of labeling via unsupervised 
classification involves taking the majority vote within each 
cluster. 

For constructing the folds, we take an approach to balance the 
sample size available to model training. This balancing approach 
is needed to ensure that each model is trained on a similar size of 
data. Consider, for example, the partition of gender. Without a 
balanced sampling approach the leave-one-student-out testing 
folds for the un-specialized classifier for female students would 
include nfemale=12 test folds but the available data for each training 
fold would be ntotal-1 = 41. In contrast, the specialized classifier 
trained only on female students would still include nfemale=12 test 
points but the available data for each training fold would be 
nfemale-1 = 11. Therefore, each un-specialized classifier was trained 
on a randomly selected subset of the corpus. In the case of 
females, each of the 12 testing folds will utilize a model trained 
on 11 data points. The specialized classifier will use 11 female 
data points, and the un-specialized classifier will use 11 randomly 
selected data points. In this way, we investigate how well a model 
predicts dialogue acts of a student with and without utilizing 
learner characteristic information. 

4.2 Unsupervised Dialogue Act Models 
Our unsupervised dialogue act classification approach leverages 
the k-medoids clustering technique [28]. This approach groups 
similar utterances together, and is similar to the more familiar k-
means algorithm except that in k-medoids, the centroid of each 
cluster must be an actual data point within the corpus rather than a 
potentially artificial data point computed as the mean of distances. 
Our experiments with k-medoids have demonstrated that it 
outperforms a variety of other unsupervised machine learning 
approaches for the task of dialogue act classification in tutorial 
dialogue, although the results of such experiments are beyond the 
scope of this paper since our goal is to investigate the differential 
benefit of adding learner characteristic features to the model, not 
to compare different unsupervised approaches. 

The k-medoids algorithm requires seeding clusters at the 
beginning of each training fold and then proceeds by distributing 

data points to clusters according to their closest centroids until 
convergence upon the model. In the standard k-medoids 
algorithm, the seeds are randomly selected. However, we employ 
a greedy seed selection approach intended to mitigate the effects 
of the unbalanced distribution of dialogue acts in the corpus [2]. 
Within this greedy seed selection, an initial seed is randomly 
selected and then each of the subsequent seeds are selected by 
choosing the point that maximizes its distance from the already-
selected seeds. The goal in using this approach is to select the 
seeds from diverse utterances so the algorithm produces better 
clusters, and our initial experiments indicated that it substantially 
improves the model. 

In addition to its seeding approach, the k-medoids approach 
requires the number of clusters k to be set prior to model training. 
To discover the number of clusters, we experimented with X-
Means and Expectation Maximization clustering, both of which 
attempt to identify the optimal number of clusters. Both of these 
algorithms converged at four clusters as the optimal choice, so we 
proceed with k=4. However, perhaps in part due to the benefit of 
the greedy seed selection made possible by k-medoids, these 
models performed with substantially worse overall accuracy than 
k-medoids. 

The utterances were represented as vectors with each column 
matching a token (punctuation and words) in the corpus and each 
row matching an utterance. There were a total of 877 distinct 
tokens.  

With these parameters in place, first the clusters were formed 
using each training set, and then for each utterance of the student 
held out within the leave-one-student-out fold, we computed the 
closest cluster to that utterance as indicated by average cosine 
distance to each point in the cluster. The closest cluster was 
selected as the cluster to which the test utterance belongs, and the 
majority vote of the cluster was assigned to the test utterance as its 
dialogue act label. For each leave-one-student-out testing fold, the 
accuracy was computed by comparing these cluster-assigned 
labels to the manual dialogue act tags.  

4.3 Experimental Results 
This section presents experimental results for unsupervised 
dialogue act classification based on learner characteristics. We 
compare each model built separately by gender and self-efficacy 
level to the models that are built using utterances from randomly 
selected students, i.e. not utilizing learner characteristic 
information. Each comparison in this section is conducted with a 
one-tailed t-test with a post-hoc Bonferroni correction. The 
threshold for statistical reliability after the correction has been 
taken as α=0.05. 
Gender. As shown in Figure 1, the average leave-one-student-out 
cross-validation accuracy for the model built using female 
students’ utterances (nfemale=12) is higher than the model built on 
randomly selected students. In each test run, all of one female’s 
utterances were left out to be used as the test set, and the dialogue 
act model was built on the remaining eleven female students’ 
utterances. This process was repeated for each female student. 
Note that for each of the eleven students, all utterances from that 
student were considered. Average test set accuracy for the model 
with randomly selected students was 0.41 (σ=0.2), whereas the 
average test set accuracy for the dialogue act classification model 
that was built utilizing female students’ utterances only was 0.56 
(σ=0.19). After a Bonferroni correction this difference was 
statistically significant (pBonf<0.05). 
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For male students (nmale=30), the average accuracy is only slightly 
higher with the models tailored to males 0.43 (σ =0.13) than the 
models learned for randomly selected students 0.40 (σ =0.12), and 
this difference is not statistically significant (Figure 1). Looking 
more closely at the results, we find that for eight of the thirty 
males within the corpus, a tailored model outperformed the 
random model (with five of these seeing more than 10% increase 
in accuracy), while twenty-two of the cases saw no difference in 
accuracy between the random and tailored conditions. Two of the 
males saw a decrease in accuracy for the tailored condition.  
 
 
 
 
 
 
 

 
 
 
 

Figure 1: Leave-one-student-out test set accuracies for models 
by gender 

Self-efficacy. Models built using the self-efficacy learner 
characteristic predict the unseen utterances’ dialogue acts 
marginally more successfully than models that do not use this 
information, though these differences are not statistically reliable. 
For students with low self-efficacy (nlowEff=24) the average test set 
accuracy for dialogue act models that selected students randomly 
is 0.38 (σ=0.16) and it increases to 0.43 (σ=0.17) with dialogue 
act models that learn only from low-self-efficacy students’ 
utterances (Figure 2). In fifteen out of twenty-four cases the 
dialogue act models tailored to low self-efficacy groups 
outperform models that are trained on randomly selected students 
(eight of the cases with more than a 10% increase), while in seven 
of the cases the performance is decreased by utilizing the learner 
characteristic (five of them by more than a 5%) and in two of the 
cases the accuracy remains the same.  

The improvement obtained by utilizing learner characteristics in 
dialogue act classification task is also marginal for high-self-
efficacy students, where nhighEff=18. The average performance for 
the random model is 0.41 (σ=0.14) whereas the model achieves 
0.47 (σ=0.11) accuracy when trained only on utterances of high-
self-efficacy students. This improvement was statistically 
significant before Bonferroni correction but not afterward. In 
seven out of eighteen cases, models trained on utterances of high 
self-efficacy students improved test set accuracy (five of them 
above 15% improvement) and in two of the cases the learner 
characteristic decreases the performance (both of them below 5% 
decrease). Nine of the cases remained unaffected in their dialogue 
act classification accuracy. 

The average accuracies over the leave-one-student-out cross-
validation folds can be found in Table 3. Models tailored to 
learner groups uniformly outperform their counterpart, and the 
improvement is statistically significant for females. 

 
Figure 2: Leave-one-student-out test set accuracies for models 

by self-efficacy 
Table 3: Average test set accuracies for each learner 
characteristic (**p<0.05 after Bonferroni correction) 

Learner	
  
characteristic	
  	
  

group	
  

Model	
  restricted	
  
by	
  learner	
  

characteristic	
  

Model	
  built	
  on	
  
randomly	
  

selected	
  students	
  
Females	
   0.56**	
   0.41	
  
Males	
   0.43	
   0.40	
  
Low	
  self-­‐efficacy	
   0.43	
   0.38	
  
High	
  self-­‐efficacy	
   0.47	
   0.41	
  

5. DISCUSSION 
Dialogue act classification is a central task for tutorial dialogue 
systems. Without accurate dialogue act classification, systems 
cannot adapt and respond appropriately. Unsupervised machine 
learning approaches to dialogue act classification are a highly 
promising new area of study, and we have presented the first 
unsupervised dialogue act classifier tailored to learner 
characteristics. The experimental results demonstrated that 
dialogue act classifiers that leverage the non-cognitive factors of 
gender and self-efficacy outperform those that do not, and in the 
case of female students the improvement was statistically 
significant. This section presents some examples of the learned 
dialogue act clusters and discusses the implications of this work 
for tutorial dialogue systems. 
First, we examine clusters from the gender-tailored unsupervised 
dialogue act classifier. Table 4 displays a selection of utterances 
that were clustered together during the unsupervised training of 
the model, and afterward the clusters were labeled for testing 
purposes using the manual tags that comprise the majority of each 
cluster. For those in Table 4 the clusters were labeled as 
Acknowledgments and Questions. By examining the structure of 
these clusters we gain some intuition as to the types of regularities 
that help the tailored models to perform significantly better. We 
see females in this study tended to use acknowledgment phrases 
such as, “oh I see” and “makes sense,” while males tended to use 
the phrasing, “got it” more frequently. Within the cluster labeled 
as questions, we observe that females tended to request more 
feedback, an observation that also emerged in prior work within a 
different corpus in the same domain collected approximately six 
years earlier [10]. On the other hand, male students tended to ask 
more general questions. 

In addition, we observe some example clusters from the models 
based on self-efficacy in Table 5. Students with high self-efficacy 
tend to use more confident utterances such as “absolutely” 
compared to “ok” used by low-self efficacy students. We note that 
questions in the low self-efficacy group often make an implicit 
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request for reassurance within their task-based questions, such as, 
“and that is it?”. In contrast, students in the high self-efficacy 
group more often ask contentful questions.  
Table 4: Selected utterances from clusters tailored to gender 

 Females Males 

A
ck

no
w

le
dg

em
en

ts
 - oh I see 

- make sense 
- yup 
- aha! 
-hahaha its ok 

- got it 
- ok i got it 
- alright i got it 
- gotcha alrigth 
- cool 
- sure thing 

Q
ue

st
io

ns
 

-is this right? 
-does that work? 
-should I run it? 
-was i supposed to put that 
before something? 
-so for line number could i 
have typed system out 
println monopoly instead of 
println x if i wanted to? 

-so will testing always be 
related to running the 
program 
-so it is kinda like saying x 
number or something in 
algebra? 
-why does not it stop on 
the next line in this case 

 

Table 5: Selected utterances from clusters tailored to self-
efficacy 

 Low Self-Efficacy High Self-Efficacy 

A
ck

no
w

le
d

ge
m

en
ts

 - ok 
- yes there were a lot of 
things i felt like i had to 
switch around 
- that makes sense now 

-cool! 
-oh ok that works 
- yep got that 
- absolutely 

Q
ue

st
io

ns
 

-so what exactly am i 
supposed to be doing? 
- is there something 
specific i need to call my 
game 
- i finished reading should i 
click compile again? 
-and that is it? 

-what is the best way to 
do that? 
- ok so tell me if this 
makes sense string 
declares the variable 
and then line number 
tells me what that 
variable is value is? 

 

Limitations. The present work has several notable limitations. 
First, as mentioned previously, the partitions of the corpus are not 
independent; that is, the same student, and associated utterances, 
are present within one gender group and one self-efficacy group. 
Because these partitions are not independent, care must be taken 
when interpreting the findings. Furthermore, it is possible that the 
self-efficacy of students can change in the course of tutoring, 
which would not be handled by a classifier built using a one-time 
self-report. However, we believe that the current approach holds 
great promise for real-time tutorial dialogue classification. By 
building separate classifiers by learner characteristic, a suite of 
classifiers (each smaller and faster than one built on the entire 
corpus) can be run in parallel and can vote for the classification of 
a given students’ utterance. However, as is the case with the work 
presented here, splitting the corpus results in a substantially 
reduced sample size on which to train, which partially explains 
the lack of statistically reliable results observed here. Our work 
has begun to explore the use of intrinsic metrics for accuracy 
(rather than relying on manual tags), which has the potential to 
dramatically increase the available data to any dialogue act 
classifier and mitigate issues of sparsity that arise when splitting 
by learner characteristics. 

6. CONCLUSION AND FUTURE WORK 
More accurately understanding student natural language within 
intelligent tutoring systems is a critical line of investigation for 
tutorial dialogue systems researchers. The field has only begun to 
explore unsupervised approaches and to investigate the range of 
features that are beneficial within this paradigm. We have 
presented a first attempt to leverage non-cognitive factors within 
such a dialogue act classification model, achieving statistically 
significant improvements in dialogue act modeling for female 
students, and increasing the models’ performance by small 
margins for the self-efficacy groups.  
Building upon these first steps, there are several promising future 
directions. First, while sample size prohibited exploring some 
other learner characteristics here, other characteristics are likely 
highly influential and should be investigated. These may include 
ethnicity, personality, and other non-cognitive factors. 
Additionally, while the current work focused on analyzing 
dialogue, another aspect of the tutorial interaction that presents 
challenges in understanding is the task model. Models that aim to 
understand students’ problem-solving activities and infer their 
goals or plans may benefit substantially from leveraging learner 
characteristics. It is hoped that the research community can 
continue to build richer models of natural language understanding 
for students of all learner characteristics in order to improve the 
student experience and enhance learning by adaptation. 
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ABSTRACT
University professors of conventional offline classes are often
experts in their research fields, but have little training on
educational sciences. Current educational data mining tech-
niques offer little support to them. In this paper we propose
a novel algorithm, Analyzing CurrIculum Decisions (ACID),
that leverages collective intelligence to model student opin-
ions to help instructors of traditional classes. ACID mines
publicly available educational websites, such as student rat-
ings of professors and course information, and learns student
opinions within a statistical framework. We demonstrate
ACID to discover patterns in learner feedback and factors
that affect Computer Science instruction. Specifically, we
investigate the choice of a programming language for intro-
ductory courses, the grading criteria and the posting of a
publicly available online syllabus.

Keywords
offline teacher support, collective intelligence, web mining

1. INTRODUCTION
There are thousands of undergraduates in computer science
programs throughout the US, roughly 24% of whom will
switch majors to non-computing fields [7]. An essential
component of retaining students is the quality of instruc-
tion that students receive in introductory courses [7]. While
clear instruction and good pedagogy are widely acknowl-
edged as fundamental to retention, supports for instructors
to improve their educational practice are often based on old
data; the languages used in computer science courses quickly
evolve and old surveys are not useful. In this paper, we de-
velop a data mining technique that will help provide insight
into learner feedback which can be translated into changes
that affect course quality. In general, our approach is similar
to large scale surveys that attempt to be representative of
student populations. The benefits of our approach are that
it is rapid and inexpensive due to its use of publicly available
information on the Web.

The field of educational data mining has been cultivating
a strong interest in creating technologies to mine data col-
lected from sophisticated online systems such as intelligent
tutoring systems, virtual learning environments, and recently
from Massive Open Online Courses (MOOC). The merits
of these complex online systems have been demonstrated
empirically [2, 8] with controlled studies. MOOCs are a
powerful resource that allow educators to study student be-
havior and social learning in a controlled environment, how-
ever the scope of the impact of such technologies is lim-
ited. For example, a recent survey of active MOOC users
in 200 countries and territories revealed that an overwhelm-
ingly majority of students on these courses correspond to
the most educated elite of their respective countries [3]. It
is clear that improving basic education worldwide is neces-
sary before MOOCs can deliver their promise. Moreover,
because most education still happens offline, it is impor-
tant to provide educational technologies that can utilize the
power of internet to understand student behavior and to de-
liver these technologies to traditional offline classes. It is not
clear how existing educational data mining technologies can
help bridge this divide.

We discuss the Analyzing CurrIculum Decisions(ACID) [11]
methodology, which has been presented and applied briefly.
In this paper we elaborate on both our methodology and
statistical model and expand upon our results. ACID is an
algorithm that leverages collective intelligence within a sta-
tistical framework. ACID supports the decisions of instruc-
tors of traditional offline courses by extracting from the web
teaching syllabi data, and using crowd-sourcing to pair it
up with students’ course ratings, comments and sentiment
to analyze the relationship between the two.

This paper reports a case study of using the ACID method-
ology to explore three questions that instructors of com-
puter science courses face when designing their courses. In
addition we discuss ACID’s heuristic value within a larger
educational framework. We address the following questions:

1. What course activities and grading rubric cor-
relate with clear instruction? The question of how
to design a grading rubric and weight course activities
determines what students focus on within a course. It
is important for instructors to optimize course activ-
ities and grading criteria with respect to the student
experience.
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Algorithm 1 ACID pseucode

n universities to analyze, z reviews to analyze

procedure ACID

while |R| < z do

s← sample of n universities

s← Remove non-English speaking universities

R← Search The Web For Reviews(s)

R← ratings rated by more than ε students

Q← CrowdSource Questionnaire(R)

Analyze Data(Q)

2. For introductory classes, which programming
language(s) correlate with clear instruction? Aca-
demics and industry professionals disagree as to the
programming language that is best suited for begin-
ners [16]. For example, some argue that introductory
courses should use interpreted languages that allow for
a faster understanding of the applications of program-
ming rather than compiled languages that rely heavily
on language-specific syntax. Others believe that de-
veloping skill with compiled languages is necessary for
future work in computer science. The choice of a first
programming language likely affects students’ decision
to continue education within the field of computer sci-
ence.

3. Are students more interested in courses with
publicly available online syllabi? The choice to
make a syllabus publicly available adds to information
available to prospective students on the Web. We hy-
pothesize that the posting of an online syllabus can be
used as a proxy for factors including instructor orga-
nization and motivation, and that students will both
be more interested in and prefer these courses.

The rest of this paper is organized as follows. § 2 explains
the ACID methodology; § 3 describes three case studies of
evaluating teaching decisions using ACID; § 4 relates to prior
work; § 5 concludes.

2. ANALYZING CURRICULUM DECISIONS
Pseudocode for the ACID methodology is presented in Al-
gorithm 1. For a given number of reviews, we sample n
universities, remove the non-English speaking universities,
scrape and parse the relevant reviews from a ratings website
and retain ratings rated by more than a given number of
students. We then extract information from these courses
using crowd-sourcing, and analyze the data. We describe
the process in detail below.

To evaluate the relative impact of different course features,
we mine the web for data that reflect:

• Curriculum decisions University professors often up-
load information about their classes. This information
is targeted towards prospective or enrolled students.
This information includes syllabi with detailed descrip-
tions of course material such as textbooks, projects,

Figure 1: Two Examples from the Ratings Sample

Table 1: Statistics for the Ratings Sample

Easiness Helpfulness Clarity Interest
Mean 2.84 3.30 3.24 3.35
Std. Dev. 1.33 1.62 1.59 4.00
Median 3.00 4.00 4.00 1.38

home-works and exams. We make use of this data to
infer teaching strategies.

• Student perceptions of the course. We make use
of self-selected student evaluations collected from a
third-party website. The validity and usefulness of self-
selected online rating systems, have been assessed in
the literature [1, 12]. For example, evidence suggests
that online ratings do not lead to substantially more
biased ratings than those done in a traditional class-
room setting [1] and that online ratings are a proxy
to measure student learning [12]: student learning can
often be modeled as a latent variable that causes pat-
terns of observed faculty ratings. Researchers hypoth-
esize a non-linear or concave relationship between stu-
dent learning and the perceived difficulty level of a
course [12]; students learn most when a course is not
too difficult or too easy. Our work relies on self-selected
ratings as a metric to study learner opinion.

We use publicly available self-selected ratings of professors
from a third-party website, Rate My Professor1 (RMP).
This site allows students to rate the professors of the courses
they have taken. The database contains data from over 13
million ratings for 1.5 million professors. They collect rat-
ings on a 1—5 scale (being 1 the lowest possible score, and 5
the highest) under the categories of “easiness”, “helpfulness”
and “clarity.” Additionally students may fill out an “inter-
est” field in which they indicate how appealing the class was
before enrolling, and a 350 character summary of their class
experience. We focus on perceived clarity because of the
direct link between clarity and quality of instruction.

For the purposes of this paper, we focus on Computer Sci-
ence courses due to our familiarity with the content. Since
we do not have access to the ratings database, we develop
a process to sample data from the website. For this, we
first select a random sample of 50 international universities
that teach Computer Science from the Academic Ranking of

1ratemyprofessor.com

Published in CEUR-WS: 
NCFPAL workshop (Ritter and Fancsali) 
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

101



World Universities2 [14]. From this sample we only consider
the 41 universities are English speaking.

We find, scrape and parse the reviews of the ratings data-set
for all professors within the computer science departments of
the universities in our sample. We remove the ratings from
faculty that were rated by fewer than 30 students. More
than one professor can teach the same course. For our anal-
ysis, we describe one course listing taught by two different
professors as two separate courses. Table 1 shows the mean,
standard deviation and median of the ratings in our sample.
Figure 1 shows two sample ratings for one professor from our
sample. The professor name and course names are removed
for privacy.

We use Amazon Mechanical Turk, a crowdsourcing platform,
to find course features for each of the courses in our ratings
sample. We do this by asking respondents to fill out a sur-
vey. The survey requests to provide the URL for the online
syllabus that corresponds to the course and professor from
which we have ratings that is closest to the date of the stu-
dent review online. Then, using the syllabus, respondents
are asked to to provide the programming language(s) used,
the textbook(s) used, and the percentage of the grade that
was determined by homework, projects, quizzes, exams and
whether the course was taught online or in a blended format
(both face-to-face and online). However, when we reviewed
the responses to the blended format question, it appeared
that most syllabi did not provide enough information by
which to make an accurate response.

From our original sample of 1,112 courses taught by a unique
professor, respondents find an online syllabus matching the
professor for 342 courses (∼31%). We hypothesize three ex-
planations for the missing syllabi: (i) the syllabi may be
accessed only with a password through a course manage-
ment system, such as blackboard, (ii) the syllabi may not
be available only, or (iii) the respondents are not able to
find the syllabi.

3. DATA ANALYSIS: WHAT MAKES A BET-
TER CLASS?

We report our results of applying the ACID methodology to
evaluate teaching decisions. In § 3.1 we assess the quality of
the data collected by the crowd sourcing platform. In § 3.2
we discuss the statistical model we use. In § 3.3 we report
the results of using ACID.

3.1 Data Quality
We now report the how we attempt to collect high-quality
data through the use of crowd-sourcing and how we assess
the quality of our data.

Mechanical Turk provides a “master” qualification level to
respondents that are more reliable. Masters-level respon-
dents require higher compensation for crowd-sourcing tasks
than non-masters level respondents although their “accep-
tance rate,” or proportion of approved tasks is much higher.
We ran a preliminary experiment, to decide whether respon-
dents on master level qualification provide better quality

2Academic Ranking of World Universities is also known as
Shanghai Ranking shanghairanking.com

Table 2: Respondent Validation

Accuracy Interrater Agreement
Masters 100% 96.67%
non-Masters 85.56% 6.07%

data for our purposes. We ask respondents to find the syl-
labus corresponding to a random sample of 30 courses and
to answer a set of questions. Table 2 shows the accuracy
and interrater agreement of Masters and non-Masters level
respondents.

In the pretest we used a screening question to evaluate the
accuracy of respondents’ data on each task. We asked re-
spondents to find the URL of the website of a randomly se-
lected faculty member at Carnegie Mellon University from
a set of 8, from which we knew the answer. We compared
the URL they provided with the correct URL to assess ac-
curacy. Of the 13 responses of non-masters workers that
did not provide an exact URL match, five responses left the
validation question blank. We found that respondents with
master level qualification were significantly more accurate
(i.e. answered the validation item correctly) than the non-
Masters level respondents (p-value = 0.0002).

Additionally, we tested interrater agreement by asking 3
respondents to carry out the same task, i.e. finding the
same URL (for a total of 3x30 or 90 tasks). We used a
dummy variable to code whether the three respondents pro-
vided the same URL for the course syllabus. Our measure
of agreement is calculated by taking the proportion of total
responses in which all three respondents provide the same
URL. Masters-level respondents agreed (i.e. all three pro-
vided the same URL) 100% of the time, whereas the non-
Masters level respondents performed much worse – only 6%
agreed. As a result of these comparisons, we decided to hire
only Masters-level respondents to complete the crowdsourc-
ing experiment.

After collecting the data using Masters level respondents, we
performed a post-hoc analysis by examining the responses
to the screening question. From the final group of 342 re-
sponses that provided a link to an online syllabus, 325 re-
sponses (95.03%) provided the correct URL for the faculty
website. It should be noted that 13 of the 17 responses that
did not provide an exact URL match provided the website
for a different faculty member from the set of 8, suggesting
that they copied and pasted their previous response with-
out checking to see that the prompt had changed for the
new response. Two of the 17 responses provided a link to
the directory website for the faculty member rather than the
faculty member’s personal website. One response provided
the correct faculty member’s website within the department
of Statistics rather than the department of Computer Sci-
ence (the faculty member is in both departments).

3.2 Model
We describe our general linear mixed model. We provide
descriptive statistics and model selection criteria.
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Table 3: VPC and ICC Statistics
University Professor Course

VPC 0.0646 0.3365 0.2355
ICC 0.0728 0.3425 0.1982

We explore the relationship between student reviews and
features collected from online syllabus data using general
linear mixed modeling. Student reviews are organized at
three levels: by university, professor and course. It is im-
portant to note the non-independence of the student reviews
due to the hierarchical or clustered nature of the data. We
suspect that student ratings within each course, professor
and perhaps university are correlated. We begin by esti-
mating the amount of variance attributed to each of these
three levels. The simplest multilevel model does not yet
include explanatory variables:

yi,j = β0 + u0,j + εi,j (1)

The dependent variable yi,j is the clarity rating that student
i gave to level j. The term β0 represents the intercept or
mean student clarity rating across all observations. The
term u0,j represents the mean clarity rating for level j. The
term εi,j represents the error attributed to student rating i
at level j. For comparison we fit a null or single-level model:

yi,j = β0 + εi,j (2)

We calculate the percentage of variation in the data set that
is separately attributed to each of the three levels of the data.
Conventionally the variance partition coefficient (VPC) and
intraclass correlation coefficient (ICC) can be interpreted
similarly to an R-squared term and are reported in Table 3.

ρ = 1− σ2
e

σ2
e + σ2

u

(3)

The VPC and ICC are denoted by ρ, the residual variance
is denoted by σ2

e and the variance of the effect is denoted
by σ2

u. The ICC is a statistic that is similar to the VPC.
However, since the parameter values of the within and be-
tween level variance are estimated using sample data, there
may be bias due to sampling variation, particularly when
there are fewer observations within a given level. The ICC
as described by Bartko [1] corrects for this bias by making
a small computational adjustment.3 Observe that the ICC
term appears to give slightly less weight to the course effect.
It is clear from both statistics that the main effect is the
professor effect.

We examine the professor level-residuals and their associ-
ated standard errors to look for variation in clarity ratings
across professors. The caterpillar plot displays the professor
residuals in rank order together with 95% confidence inter-
vals. Wider intervals occur for professors with more student
reviews. Observe that the majority of the intervals do not
overlap and thus there are significant differences between
professors. The blue circles on the far left represent profes-
sors who are rated two standard deviations below the mean
clarity rating, whereas those on the far right are 1.5 stan-

3For a description of the computation of the ICC, see the
documentation and source code for the R library lme.
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Figure 2: 95% CI for Professor Residual Error

dard deviations higher than the mean clarity rating. The
red horizontal line refers to the “average” professor.

We calculate a Chi-squared likelihood ratio statistic by tak-
ing the difference between log likelihood values of two suc-
cessive models. We begin by comparing the null model and
the course level model to compare the significance of includ-
ing the course effect. We continue by adding each of the
additional effects. We do not report the values of the test
statistic although all additional levels of complexity are sta-
tistically significant. We consider the Bayesian information
criterion (BIC) and Akaike information criterion (AIC) as
model selection tools to avoid over-fitting the data. The
BIC and AIC penalize the log-likelihood of a model for the
inclusion of extra parameters. The parameters are estimated
using restricted maximum likelihood estimation (REML).

We choose the model with the minimum BIC. A two-level
mixed model including course effect and professor effect pro-
vides the optimal Bayesian information criterion value. Two
and three way interaction effects were considered although
they did not decrease the AIC or BIC of any of the mod-
els. While the log likelihood value is maximized by including
the university effect, a simpler model is preferable because
it involves fewer parameter estimates and is more likely to
generalize. The model can be written in matrix form:

Y = Xβ + Zν + ε (4)

Y denotes the response variable observations (student rat-
ings). The matrix β represents a vector of fixed-effects
parameters with a design matrix X. Z is a design ma-
trix of indicator variables denoting group membership across
random-effect levels and ν is a vector containing random-
effect parameters. ε is a vector of error terms.

3.3 Case Studies
We show the results of using the ACID methodology to an-
swer three course design questions.
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Table 4: Programming Language Statistics

Value Std.Err t-value Pr<|t| n
C 3.38 0.32 10.58 0.0000 109
C++ 3.30 0.31 10.65 0.0000 214
Java 3.62 0.19 19.33 0.0000 353
Python 3.70 0.26 14.50 0.0000 133
Scheme 4.06 0.47 8.61 0.0000 32
Scratch 3.91 0.84 4.67 0.0000 49

3.3.1 For introductory classes, which programming
language do students associate with clear in-
struction?

Professors teaching introductory level courses in computer
science choose between a number of programming languages
and textbooks. We make use of the data collected to provide
insights into which programming languages beginning stu-
dents associate with clear instruction. We filter the data to
only include introductory level courses (one which does not
require any prerequisite coursework in computer science).
Our restricted sample includes 1,024 reviews; 34.58% of all
reviews with syllabus data are of introductory courses. We
explore the relationship between clarity ratings and pro-
gramming language with random professor and course ef-
fects. Programming languages with less than 30 student re-
views are not reported4. Table 4 gives the estimates for stu-
dent ratings of clarity by programming language and their
associated p-values. An intercept is not modeled in order
to make the results easily interpretable. The mean clarity
rating for introductory courses is 3.599.

We found C and C++ had the lowest coefficients (i.e. com-
piled languages had the lowest perceived clarity ratings).
Scheme and Scratch have the highest clarity ratings followed
by Python and Java. We note that the standard errors are
largest for Scheme and Scratch and smallest for Java and
Python. This suggests that results for Java and Python
are stronger. Students in our sample associate clearer in-
struction with interpreted languages rather than compiled
languages. Also, both Python and Java are associated with
clearer instruction than C or C++.

3.3.2 What mix of course activities – exams, quizzes,
homework and projects – do students associate
with clear instruction?

To assess students’ course ratings of clarity based on the
percentage of the grade due to exams, quizzes, homework
and projects, we created a factor made up of four clusters
representing four ways of weighting homework, projects, ex-
ams, quizzes and miscellaneous (such as extra credit) for
the students’ grade. We begin by sorting the data to only
include observations in which the grading criteria (percent-
age of the grade determined by homework, projects, exams,
quizzes and miscellaneous) is available and sums to 100. Of
the 2,935 observations with syllabus data, there are 2,225 ob-
servations with full grading criteria. The difference in these
numbers represents 710 ratings for which the respondents

4SQL is a special purpose programming language used only
for relational databases and is not reported.
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Figure 4: Log Likelihood

Table 5: Cluster Statistics
HW Projects Exams Quizzes Other

Cluster1 18.11 2.36 76.66 0.61 2.25
Cluster2 20.59 7.90 48.90 12.46 10.15
Cluster3 7.00 40.18 46.23 3.51 3.08
Cluster4 42.93 0.76 54.61 0.70 2.00

Table 6: Grading Criteria Statistics

Clarity Std.Err t-value Pr<|t| n
Exam Heavy 3.23 0.12 26.91 0 726
Equal Mix 3.52 0.14 26.04 0 484
Exam Proj 3.65 0.13 27.76 0 610
Exam HW 3.12 0.13 23.53 0 415

were not able to find a complete grade breakdown from the
online syllabus.
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We use k-means clustering to partition the 2,225 observa-
tions with complete grading criteria information based on
the five aforementioned variables. We optimize k, our num-
ber of clusters, by examining how the BIC and AIC of the
mixture model change based on the number of clusters se-
lected. Figure 3 displays the information criterion and Fig-
ure 4 displays the log-likelihood values for each number of
clusters respectively. A solution involving two clusters min-
imizes the BIC of the model, whereas a four cluster solution
minimizes the AIC. The log likelihood is optimized with the
four cluster solution. We consider both two and four cluster
models as optimal and we find that they lend themselves to
similar interpretation. The cluster means for the four cluster
solution are presented in table 5.

The first cluster represents courses that are heavily weighted
towards exams with a smaller weight towards homework.
The second cluster represents a more even weighting of ex-
ams, homework, projects and quizzes. The third cluster rep-
resents an equal weighting towards exams and projects. The
fourth cluster represents courses that are heavily weighted
towards exams and homework. The cluster membership is
treated as a predictor variable and modeled using equation
4. Table 6 displays the estimated clarity ratings within each
group for the four cluster solution.

The exams and projects cluster has the highest estimate of
clarity. We find that weighting projects equally with exams
is associated with a clearer course experience. The equal
mix cluster also is associated with higher clarity estimates.
The exam heavy cluster and the exam and homework heavy
clusters are associated with lower student clarity ratings. We
find that a rubric that weights exams and projects evenly has
higher perceived clarity ratings to a rubric which is weighted
heavily towards exams and homework. This result extends
to both two and four cluster solutions.

3.3.3 Does the posting of a syllabus online translate
into higher ratings?

We hypothesize the posting of the syllabus online is a proxy
for organization, perhaps motivation or drive of the profes-
sor. We make use of all of the data collected to compare stu-
dent reviews of professors who have a publicly available syl-
labus and of those who do not. Many professors may choose
to only post a syllabus through course management systems
that require a password. Potential students of these courses
are unable to access the syllabus to determine whether the
course would be a good fit. We treat the posting of an online
syllabus as a factor and test for differences in clarity ratings
between the two groups using our model.

We find statistically significant differences between clarity,
helpfulness and interest ratings and report the clarity es-
timates for the two groups in Table 7. We note that the
difference in easiness ratings is not statistically significant.
We find evidence that students are more interested in pro-
fessors and courses in which the syllabus is made publicly
available. We note that the parameter estimates for the two
groups are within one standard error of one another which
suggests that the conclusions are modest.

4. RELATION TO PRIOR WORK

Table 7: Online Syllabi

Clarity Std. Err t-value Pr<|t| n
Available 3.33 0.07 44.48 0 2953
Not Found 3.26 0.07 46.03 0 7702

Research has recently focused on online faculty ratings with
mixed conclusions. Felton et al. [4] found that online instruc-
tor ratings were associated with perceived easiness, and that
a “halo effect” existed in which raters gave high scores to in-
structors perhaps because their courses were easier. We find
that student ratings of clarity and easiness are correlated
(ρ=0.45) although not as strongly associated as clarity and
helpfulness. We do find that student ratings of clarity and
helpfulness are highly correlated (ρ=0.84). We chose to fo-
cus on clarity ratings as we assumed these were less suscep-
tible to a “halo effect” and other bias relative to the overall
ratings of a course or professor. Otto et al [13] found issues
related to bias in online ratings stating that online ratings
are characterized by selection bias as anyone can enter fac-
ulty ratings at any time. Carini et al [1], Hardy [5], McGhee
and Lowell [6] had contradictory results finding that an on-
line format did not lead to more biased ratings. Otto et
al. [12] hypothesized that instructor clarity and helpfulness
as captured by Rate My Professor are more positively asso-
ciated with student learning than easiness.

Several approaches have been proposed to synthesize re-
sponses using crowd sourcing systems such as Amazon’s
Mechanical Turk. Majority voting is perhaps the simplest
way to combine crowd responses using equal weights irre-
spective of respondent experience. The results of our pre-
liminary analysis in accessing the accuracy of non-Masters
level respondents correspond to the steep drop in respon-
dent accuracy noted by Karger [9] when low-quality respon-
dents are present. Whitehill et al [15] proposed a proba-
bilistic model for combining crowd responses called Genera-
tive model of Labels, Abilities and Difficulties (GLAD). The
GLAD methodology makes use of the EM algorithm to cal-
culate parameter estimates of unobserved variables includ-
ing an approximation of the expertise of the rater. Khattak
and Salleb-Aouissi compared the accuracy and percentage
of bad responses using majority voting, probabilistic mod-
els, and their novel approach entitled Expert Label Injected
Crowd Estimation (ELICE) [10]. ELICE makes use of a few
“ground truth” responses and incorporates expertise of the
labeler, difficulty of the instance and an aggregation of la-
bels. Khattak and Salleb-Aouissi found that their approach
was robust and outperformed GLAD and iterative methods
even when bad labelers were present. Our simple approach
was to use Masters level respondents from Mechanical Turk
although GLAD and ELICE are alternative methods to re-
duce the number of expert level respondents required while
also obtaining high quality data.

5. CONCLUSIONS, LIMITATIONS AND FU-
TURE WORK

We demonstrate how the Analyzing CurrIculum Decisions
(ACID) methodology can be used to leverage collective in-
telligence and learn student preferences. In introductory
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computer science courses, we find that students that are
taught interpreted languages find their classes clearer. We
also that find students who are given an even weighting of
exams and projects find their classes clearer; and that in-
terest in a course corresponds to the availability of an on-
line syllabus. Our study does not necessarily suggest that
teachers should change their programming language. Fur-
ther research is needed before drawing causal inferences. We
argue that ACID is a beneficial tool to discover patterns in
student behavior. Syllabus data and course ratings data are
becoming increasingly available on the Web. This data is
used by millions of students and worthy of further research.

This study can be expanded in several ways. Student eval-
uations often include free form text where students can de-
scribe their experience in the course. Sentiment analysis is
a probabilistic approach for categorizing student comments
as being either positive or negative. One extension is to
regress text sentiment on course features. There is arguably
a strong association between comment sentiment and stu-
dent preference. Another way ACID can be applied is to
disciplines other than computer science, or to discover pat-
terns in syllabi across disciplines that can provide insight
into learner experiences.
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APPENDIX
A. SAMPLE OF UNIVERSITIES SELECTED

Country n Professors n Courses n Reviews
Colorado State USA 1 9 32
Carnegie Mellon University USA 3 21 102
North Carolina State USA 2 10 63
Pennsylvania State USA 12 74 938
Rensselaer Polytechnic Institute USA 3 22 131
Rutgers USA 8 30 468
Simon Fraser Canada 27 98 1873
SUNY Stony Brook USA 8 55 505
UC Davis USA 10 44 589
UNC Chapel Hill USA 1 4 49
University of Alberta Canada 2 6 69
University of Arizona USA 3 13 158
University of Delaware USA 15 56 806
University of Florida Gainsville USA 5 36 321
University of Illinois at Urbana USA 5 14 339
University of Massachusetts USA 6 39 405
University of Montreal USA 1 6 59
University of Toronto Canada 14 66 775
University of Utah USA 2 17 66
University of Virginia USA 3 19 131
University of Waterloo Canada 46 125 2700
Vanderbilt University USA 2 10 76
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ABSTRACT
This paper reports on an application of classification and
regression models to identify college students at risk of fail-
ing in first year of study. Data was gathered from three
student cohorts in the academic years 2010 through 2012
(n=1207). Students were sampled from fourteen academic
courses in five disciplines, and were diverse in their aca-
demic backgrounds and abilities. Metrics used included non-
cognitive psychometric indicators that can be assessed in the
early stages after enrolment, specifically factors of personal-
ity, motivation, self regulation and approaches to learning.
Models were trained on students from the 2010 and 2011 co-
horts, and tested on students from the 2012 cohort. Is was
found that classification models identifying students at risk
of failing had good predictive accuracy (> 79%) on courses
that had a significant proportion of high risk students (over
30%).

Keywords
Educational data mining, learning analytics, academic per-
formance, non cognitive factors of learning, personality, mo-
tivation, learning style, learning approach, self-regulation

1. INTRODUCTION AND LITERATURE RE-
VIEW

Learning is a latent variable, typically measured as academic
performance in continuous assessment and end of term ex-
aminations [33]. Identifying predictors of academic perfor-
mance has been the focus of research for many years [20,
34], and continues as an active research topic [6, 8], indicat-
ing the inherent difficulty in generating models of learning
[29, 46]. More recently, the application of data mining to
educational settings is emerging as an evolving and grow-
ing research discipline [40, 43]. Educational Data Mining
(EDM) aims to better understand students and how they
learn through the use of data analytics on educational data
[42, 10]. Much of the published work to date is based on ever-
increasing volumes of data systematically gathered by edu-

cation providers, particularly log data from Virtual Learn-
ing Environments and Intelligent tutoring systems [16, 2].
Further work is needed to determine if gathering additional
predictors of academic performance can add value to exist-
ing models of learning.

Research from educational psychology has identified a range
of non-cognitive psychometric factors that are directly or
indirectly related to academic performance in tertiary ed-
ucation, particularly factors of personality, motivation, self
regulation and approaches to learning [8, 9, 35, 39, 44, 25].
Personality based studies have focused on the Big-5 per-
sonality dimensions of conscientiousness, openness, extro-
version, stability and agreeableness [9, 22, 27]. There is
broad agreement that conscientiousness is the best person-
ality based predictor of academic performance [44]. For ex-
ample, Chamorro et al. [9] reported a correlation of r=0.37
(p<0.01, n=158) between conscientiousness and academic
performance. Correlations between academic performance
and openness to new ideas, feelings and imagination are
weaker. Chamorro et al. [9] reported a correlation of r=0.21
(p<0.01, n=158) but lower correlations were reported in
other studies (see Table 1) which may be explained by vari-
ations in assessment type. Open personalities tend to do
better when assessment methods are unconstrained by sub-
mission rules and deadlines [27]. Studies are inconclusive on
the predictive validity of other personality factors [44].

A meta-analysis of 109 studies analysing psychosocial and
study skill factors found two factors of motivation, namely
self-efficacy (90% CI [0.444,0.548]) and achievement motiva-
tion (90% CI [0.353, 0.424]), had the highest correlations
with academic performance [39]. Distinguishing between
learning (intrinsic) achievement and performance (extrin-
sic) achievement goals, Eppler and Harju [19] found learn-
ing goals (r=0.3, p<0.001, n=212) were more strongly cor-
related with academic performance than performance goals
(r=0.13, p> 0.05, n=212). Covington [13] however argues
that setting goals in itself is not enough, as ability to self-
regulate learning can be the difference between achieving, or
not achieving, goals set. Self-regulated learning is recognised
as a complex concept to define as it overlaps with a num-
ber of other concepts including personality, self-efficacy and
goal setting [4]. Ning and Downing [35] reported high corre-
lations between self regulation and academic performance,
specifically self-testing (r=0.48, p<0.001) and monitoring
understanding (r= 0.42, p<0.001). On the other hand, Ko-
marraju and Nadler [31] found effort management, includ-
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ing persistence, had higher correlation with academic perfor-
mance (r=0.39, p<0.01) than other factors of self-regulation
and found that self-regulation (monitoring and evaluating
learning) did not account for any additional variance in aca-
demic performance over and above self-efficacy, but study
effort and study time did account for additional variance.

Research into approaches to learning has its foundations in
the work of Marton & Säljö [32] who classified learners as
shallow or deep. Deep learners aim to understand content,
while shallow learners aim to memorise content regardless
of their level of understanding. Later studies added strate-
gic learners [18, pg. 19], whose priority is to do well, and
will adopt either a shallow or deep learning approach de-
pending on the requisites for academic success. Comparing
the influence of approaches to learning on academic perfor-
mance, Chamorro et al [9] reported a deep learning approach
(r=0.33, p<0.01) had higher correlations with academic per-
formance than a strategic learning approach (r=0.18, p<0.05).
Cassidy [8] on the other hand found correlations with a deep
learning approach (r=0.31, p<0.01) were marginally lower
than with a strategic learning approach (r=0.32, p<0.01).
Differences found have been explained, in part, by assess-
ment type [49], highlighting the importance of assessment
design in encouraging appropriate learning strategies.

Knight, Buckingham Shum and Littleton argued learning
measurement should go beyond measures of academic per-
formance [29], promoting greater focus on learning envi-
ronment and encouragement of malleable, effective learn-
ing dispositions. Disposition relates to a tendency to be-
have in a certain way [6]. An effective learning disposition
describes attributes and behaviour characteristic of a good
learner [6]. A range of non-cognitive psychometric factors
have been associated with an effective learning disposition
such as a deep learning approach, ability to self-regulate, set-
ting learning goals, persistence, conscientiousness and sub-
factors of openness, namely intellectual curiosity, creativity
and open-mindednesss [6, 29, 47]. A lack of correlation be-
tween such non-cognitive factors and academic performance
is in itself insightful, suggesting assessment design that fails
to reward important learning dispositions. It has been ar-
gued that effective learning dispositions are as important as
discipline specific knowledge [6, 29].

Statistical models have dominated data analysis in educa-
tional psychology [15], particularly correlation and regres-
sion [25]. Relatively high levels of accuracy were reported
in regression models of academic performance that included
cognitive and non-cognitive factors. For example, Chamorro-
Premuzic et al [9] reported a coefficient of determination
(R2) of 0.4 when predicting 2nd year GPA (based on essay
type examinations) in a regression model that included prior
academic ability, personality factors and a deep learning ap-
proach. Robbins [39] reported similar results (R2=0.34) in
a meta-analysis of models of cognitive ability, motivation
factors and socio-economic status. Models of non-standard
students were less accurate, for example Swanberg & Mar-
tinsen [44] reported R2=0.21 in models of older students
(age: m=24.8) based on prior academic performance, per-
sonality, learning strategy, age and gender. Lower accuracies
were also reported in studies not including cognitive ability.
Robbins [39] reported R2=0.27 in a meta-analysis of models

of factors of motivation. Komarraju et al. [30] predicted
GPA (R2=0.15) from variables of personality and learn-
ing approach, while Bidjerano & Dai [4] had similar results
(R2=0.11) with factors of personality and self-regulation.

Linear regression assumes constant variance and linearity
between independent and dependent attributes. There is
evidence to suggest variance is not constant for some non-
cognitive factors. For example, De Feyter et al. [14] found
low levels of self-efficacy had a positive, direct effect on aca-
demic performance for neurotic students, and for stable stu-
dents, average or higher levels of self-efficacy only had a
direct effect on academic performance. In addition, Van-
couver & Kendall [48] found evidence that high levels of
self-efficacy can lead to overconfidence regarding exam pre-
paredness, which in turn can have a negative impact on aca-
demic performance. Similarly, Poropat [38] cites evidence
of non-linear relationships between factors of personality
and academic performance, including conscientiousness and
openness. It is therefore pertinent to ask if data mining’s
empirical modelling approach is more appropriate for models
based on non-cognitive factors of learning.

A growing number of educational data mining studies have
investigated the role of non-cognitive factors in models of
learning [6, 41, 36]. Bergin [3] cited an accuracy of 82% us-
ing an ensemble model based on prior academic achievement,
self-efficacy and study hours, but due to the small sample
size (n=58) could not draw reliable conclusions from the
findings. The class label distinguished strong (grade>55%)
versus weak (grade<55%) academic performance based on
end of term results in a single module. Gray et al. [23] cited
similar accuracies (81%, n=350) with a Support Vector Ma-
chine model using cognitive and non cognitive attributes to
distinguish high risk (GPA<2.0) from low risk (GPA≥2.5)
students based on first year GPA. Model accuracy was con-
tingent on modelling younger students (under 21) and older
students (over 21) separately.

The focus of this study was to investigate if non-cognitive
factors of learning, measured during first year student in-
duction, were predictive of academic performance at the
end of first year of study. We evaluated both regression
models of GPA and classification models that predicted first
year students at risk of failing. Participants were from a
diverse student population that included mature students,
students with disabilities, and students from disadvantaged
socio-economic backgrounds.

2. METHODOLOGY
The following sections report on study participants and the
study dataset. Data analysis was conducted following the
CRoss Industry Standard for Data Mining (CRISP-DM) us-
ing RapidMiner V5.3 and R V3.0.2.

2.1 Description of the study participants
The participants were first year students at the Institute of
Technology Blanchardstown (ITB), Ireland. The admission
policy at ITB supports the integration of a diverse student
population in terms of age, disability and socio-economic
background. Each September 2010 to 2012, all full-time,
first-year students at ITB were invited to participate in the
study by completing an online questionnaire administered
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Table 1: Correlations with Academic Performance in Tertiary Education

Study N age AP Temperament Motivation Learning Approach Learning Strategy
Concient-
ious

Open Self Effi-
cacy

Intrinsic
Goal

Extrinsic
Goal

Deep Shallow Strategic Self Reg-
ulation

Study
Time

Study
Effort

[4] 217 m=22 self reported GPA 0.33** 0.0.23**
[8] 97 m=23.5 GPA 0.397*** 0.398** -0.013 0.316**
[9] 158 18-21 GPA 0.37** 0.21** 0.398* -0.15 0.18*
[17] 146 17-52 GPA 0.21 0.06 0.097 -0.054 0.153
[19] 212 m=19.2 GPA 0.3*** 0.13
[27] 133 18-22 GPA 0.46** -0.08
[30] 308 18-24 self reported GPA 0.29** 0.13*
[31] 257 m=20.5 GPA 0.3** 0.14* 0.31** 0.39**
[35] 581 20.48 GPA 0.0.24**
[39] meta analysis, 18+ GPA 0.496 0.179
[44] 687 m=24.5 single exam 0.16 -0.25

*p < .05, **p < .01, ***p < 0.001

during first year student induction. A total of 1,376 (52%)
full-time, first year students completed the online question-
naire. Eliminating students who did not give permission to
be included in the study (35) and invalid data (134) resulted
in 45% of first year full time students participating in the
study (n=1207).

Participants ranged in age from 18 to 60, with an average age
of 23.27; of which, 355 (29%) were mature students (over 23),
713 (59%) were male and 494 (41%) were female. There were
32 (3%) participants registered with a disability. Students
were enrolled on fourteen courses across five academic dis-
ciplines, Business (n=402, 33%), Humanities (n=353, 29%),
Computing (n=239, 20%), Engineering (n=172, 14%) and
Horticulture (n=41, 3%).

Academic performance was measured as GPA, an aggre-
gate score of between 10 and 12 first year modules, range
0 to 4, and was calculated on first exam sitting only. The
GPA distribution (profiled sample) was compared with the
GPA distribution of the full cohort of students for that
year (reference sample) using a Kolmogorov-Smirnov non-
parametric test. The recorded differences in the distribution
for 2010 (D=0.032, p=0.93), 2011 (D=0.036, p=0.90) and
2012 (D=0.042, p=0.69) were not statistically significant.
The distribution of GPA was also similar across the three
years of study. The largest difference was between the 2010
and 2012 profiled samples (D=0.063, p=0.37) and was not
significant. To pass overall, a student must achieve a GPA
≥ 2.0 and pass each first year module. 89% of students with
GPA > 2.5 passed all modules indication a low risk group
that can progress to year two. 84% of students with a GPA
< 2 failed three or more modules, indicating a high risk
group falling well short of progression requirements. Of the
students in GPA range [2.0, 2.49], 39% passed all modules,
36% failed one module, 18% failed two modules, and 7 %
failed more than two modules. This is a less homogenous
group in terms of academic profile, but could be generally
regarded as borderline, either progressing on low grades or
required to repeat one or two modules in the repeat exam
sittings. Figure 1 and Table 2 illustrate GPA distribution
by course.

2.2 The Study Dataset
Table 3 lists the psychometric factors included in the dataset,
collected using an online questionnaire developed for the
study (www.howilearn.ie). With the exception of learning
modality, questions were taken from openly available, val-
idated instruments, with some changes to wording to suit

Figure 1: Notched box plots for GPA by course

the context. Where two questions were similar on the pub-
lished instrument, only one was included. This choice was
made to reduce the overall size of the questionnaire, despite
the likely negative impact on internal reliability statistics.
Questionnaire validity and internal reliability were assessed
using a paper-based questionnaire that included both the re-
vised wording of questions used on the online questionnaire
(reduced scale), and the original questions from the pub-
lished instruments (original scale). The paper questionnaire
was administered during scheduled first year lectures across
all academic disciplines. Pearson correlations between scores
calculated from the reduced scale, and scores calculated from
the original scale, were high for all factors (>=0.9) except
intrinsic goal orientation and study time and environment,
confirming the validity of the study instrument for those fac-
tors. Internal reliability was assessed using Cronbach’s al-
pha. All factors had acceptable reliability (>0.7)1 given the
small number of questions per scale (between 3 and 6), with
the exception again of intrinsic goal orientation and study
time and environment. Learner modality data (Visual, Au-
ditory, Kinaesthetic (VAK) [21]) was based an instrument
developed by the National Leaning Network Assessment Ser-
vices (NLN) (www.nln.ie).

1While generally a Cronbach alpha of > 0.8 indicates good
internal consistency, Cronbach alpha closer to 0.7 can be
regarded as acceptable for scales with fewer items [12, 45].

Published in CEUR-WS: 
NCFPAL workshop (Ritter and Fancsali) 
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

109



Table 2: Academic profile by course

Course Name n GPA∗ high
risk

border-
line

low
risk

all participants 1207 2.1±1.1 28% 16% 46%
Computing (IT) 137 2.0±1.2 47% 11% 42%
Creative Digital Media 102 2.6±1.0 20% 8% 72%
Engineering common 73 1.1±0.9 79% 8% 13%
Electronic & computer eng. 52 1.8±1.2 52% 10% 38%
Mechatronics 27 1.6±1.2 63% 7% 30%
Sustainable Electrical &
Control Technology

20 2.8±1.1 30% 5% 65%

Horticulture 41 2.4±1.1 27% 2% 71%
Business General 183 1.7±1.1 56% 15% 29%
Business with IT 60 1.8±1.2 46% 22% 32%
Business International 64 2.2±1.1 41% 14% 45%
Sports Management 95 2.3±0.9 22% 24% 54%
Applied Social Care 146 2.5±0.7 15% 16% 69%
Early Childcare 80 2.4±0.6 20% 28% 52%
Social & Community De-
velopment

127 2.2±0.9 30% 27% 43%

∗GPA mean and standard deviation.

Prior knowledge of the student available to the college at
registration, namely age, gender and prior academic perfor-
mance, was also available to the study. Access to full time
college courses in Ireland is based on academic achievement
in the Leaving Certificate, a set of state exams at the end of
secondary school. College places are offered based on CAO2

points, an aggregate score of grades achieved in a student’s
top six leaving certificate subjects, range 0 to 600. Table 4
summarises participant profile by course.

3. RESULTS
Correlation and regression were used to analyse relationships
between study factors and GPA. Subsequent analysis used
classification techniques to identify students at risk of failing.
Unless otherwise stated, models are based age, gender and
non-cognitive factors of learning as listed in Table 3.

All non-cognitive factors of learning failed the Shapiro−Wilk
normality test which is common in data relating to educa-
tion and psychology [26]. However factors of personality
were normally distributed within each discipline except for
business. Intrinsic motivation and study effort were also nor-
mally distributed for engineering and computing students.
There were further improvements when analysing subgroups
by academic course. Factors of personality, self regulation
and intrinsic motivation were normally distributed for all
courses. With the exception of approaches to learning, learner
modality, preference for group work and GPA, other factors
were normally distributed for most courses. Table 4 illus-
trates the number of attributes that differed significantly
from a normal distribution by course. Larger groups were
more likely to fail tests of normality.

3.1 Correlations with Academic Performance
Correlations between study factors and GPA were assessed
using Pearson’s product-moment correlation coefficient (PP-
MCC). As some attributes violated the assumption of nor-
mal distribution, significance was verified with bootstrapped

2CAO refers to the Central Applications Office with respon-
sibility for processing applications for undergraduate courses
in the Higher Education Institutes in Ireland.

Table 3: Study factors, mean and standard deviation

Category & Instrument Study Factor
Personality: IPIP scales Conscientiousness (5.9±1.5)
(ipip.ori.org) [22] Openness (6.1±1.3)
Motivation: Intrinsic Goal Orientation (7.1±1.4)
MSLQ [37] Self Efficacy (6.9±1.4)

Extrinsic Goal Orientation (7.8±1.4)
Learning approach: Deep Learner (5.4±2.9)
R-SPQ-2F [5] Shallow Learner (1.3±1.9)

Strategic Learner (3.4±2.5)
Self-regulation: Self Regulation (5.9±1.4)
MSLQ [37] Study Effort (5.9±1.8)

Study Time & Environment (6.2±2.3)
Learner modality: Visual (7.2±2.1)
NLN profiler Auditory(3.3±2.2)

Kinaesthetic(4.5±2.4)
Other factors: Preference for group work (6.5±3.4)

Age (23.27±7.3)
Male=713 (59%), Female=494 (41%)

Note: All ranges are 0 to 10 apart from age.

Table 4: Participant profile based on prior knowl-
edge, means and standard deviation

Course Name n CAO
points

age %age
male

Z∗

Computing (IT) 137 232±67 24±8 91% 9
Creative Digital Media 102 305±79 23±7 68% 7
Engineering common 73 220±61 20±3 92% 8
Electronic & computer eng 52 232±53 22±7 92% 3
Mechatronics 27 238±46 21±3 85% 1
Sustainable Electrical &
Control Technology

20 199±97 27±7 95% 0

Horticulture 41 273±66 28±11 8% 4
Business General 183 256±57 21±5 54% 10
Business with IT 60 229±75 22±5 60% 6
Business International 64 248±51 21±5 24% 6
Sports Management 95 306±86 23±6 84% 8
Applied Social Care 146 259±84 28±9 32% 10
Early Childcare 80 308±78 22±5 6% 7
Social & Community De-
velopment

127 266±78 25±8 29% 9

∗Number of study factors differing significantly from a
normal distribution (p<<0.001).

95% confidence intervals using the bias corrected and accel-
erated method [7] on 1999 bootstrap iterations.

Bootstrap correlation coefficients are given in Table 5. With
the exception of learning modality, all non-cognitive factors
were significantly correlated with GPA. The highest corre-
lations with GPA were found for approaches to learning,
specifically deep learning approach (r=0.23, bootstrap 95%
CI[0.18, 0.29]), and study effort (r=0.19, bootstrap 95% CI
[0.13, 0.24] ). Age also had a relatively high correlation
with GPA (r=0.25, bootstrap 95% CI [0.19, 0.3]). A shallow
learning approach (r=-0.15, bootstrap 95% CI[-0.21, -0.09])
and preference for group work (r=-0.076, bootstrap 95% CI
[-0.14, -0.02]) were negatively correlated with GPA. Open-
ness had one of the weakest significant correlations with
GPA (r=0.08, bootstrap 95% CI [0.03, 0.14]). Correlations
were comparable with other studies that included a diverse
student population [4, 9, 28] with the exception of self ef-
ficacy (r=0.12, bootstrap 95% CI [0.06, 0.17])) which was
lower than expected. This may be reflective of the low entry
requirements for some courses.
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3.2 Regression models
Regression models predicting GPA from non-cognitive vari-
ables were run for the full dataset and for subgroups by
disciplines and by course. The coefficient of determination
(R2) is reported to facilitate comparison with other stud-
ies. However R2 is influenced by the variability of the un-
derlying independent variables. Consequently Achen [1, pg
58-61] argued that prediction error is a more appropriate
fitness measure for psychometric data. Therefore absolute
error mean and standard deviation is also reported.

A regression model for all participants (R2 = 0.14) was com-
parable with other reported models of non-cognitive factors
[4, 30]. However when modelling students by discipline and
by course, there were significant differences in model per-
formance. A chow test [11] comparing the residual error in
a regression model of all participants (full model) with the
residual errors of models by discipline (restricted models)
showed significant differences between the full and restricted
models (F(17,1098)=22.02, p=0). There was also significant
differences between models based on a particular discipline
(full model) and models of courses within that discipline
(restricted models). In computing, significant differences
of F(17,205)=2.22 (p=0.005) were found between the full
model and the two restricted models. Within engineering,
a model combining mechatronics with electronic & comput-
ing engineering was not significantly different from a model
of those two courses individually (F(17,79)=0.58, p=0.89),
but including either common entry students and/or sustain-
able electrical & control technology resulted in significant
differences between the full and restricted models. Sustain-
able electrical & control technology was therefore excluded
from further consideration because of the small sample size
(n=20). Significant differences were also found in models of
each of the three humanities courses compared with those
courses combined (F(17,302)=2.22, p=0.004). The least sig-
nificant differences were found in models of business students
provided sport management was excluded (F(17, 307)=1.95,
p=0.015). Adding sports management further increased the
difference in model residual errors (F(17,334)=8.36, p=0).
Table 6 gives model details by course and factors used in
each model. Electronic & computer engineering students
and mechatronic students were combined.

In general, models based on technical courses had a higher
R2 than models for non technical courses. For example, en-
gineering courses, computing (IT) and business with IT all
had R2 > 0.3. Absolute error for these courses was in the
range [0.63,0.8]. The difference between the highest abso-
lute error (m=0.8, s=0.563) and the lowest absolute error
(m=0.63, s=0.54) was not significant (t(15)=1.74, p=0.1).
Regression results for International Business was also rel-
atively good (R2=0.27). For the remaining non-technical
disciplines R2 was lower (range [0.12,0.17]) but the absolute
error was more varied. Early childcare had the lowest abso-
lute error (m=0.37, s=0.34) while general business had the
highest absolute error (m=0.9, s=0.53). The difference was
significant (t(15)=10.3, p<0.001) and may be explained by
the greater distribution of GPA scores in general business.

There was little agreement across models on which study

3m=mean, s=standard deviation

factors were most predictive of GPA. Approaches to learn-
ing and age were significant for models of all participants,
computing students and engineering students, but motiva-
tion and learning strategy were more significant for Busi-
ness with IT. Factors of motivation, learning strategy and
approaches to learning were also relevant to models in the
humanities courses. All regression models improved when
prior academic performance was included in the model. The
most significant increase was for sports management, R2 in-
creased from 0.16 to 0.30. Business with IT and applied
social care also increased by more than 0.1. For all other
regression models, R2 increased by between 0.05 and 0.09

3.3 Classification models
Classification models were generated using four classification
algorithms, namely Näıve Bayes (NB), Decision Tree (DT),
Support Vector Machine (SVM), and k-Nearest Neighbour
(k-NN). A binary class label was used based on end of year
GPA score, range [0-4]. The two classes were: high risk stu-
dents (GPA<2, n=459); and low risk students (GPA≥2.5,
n=558) giving a dataset of n=1017. Borderline students (2.0
≤ GPA ≤ 2.49) have not been considered to date. Gray et
al. [24] found that cross validation over-estimated model
accuracy compared to models applied to a different student
cohort. Therefore models were trained on participants from
2010 and 2011 and tested on participants from 2012. All
datasets were balanced by over sampling the minority class,
and attributes were scaled to have a mean of 0 and standard
deviation of 1. Significant attributes were identified by find-
ing the optimal threshold for selecting attributes by weight.
Attributes were weighted based on uncertainty4 for DT, k-
NN and Näıve Bayes models, and based on SVM weights
for SVM models. Table 6 shows the accuracies achieved and
factors used in each model.

k-NN had the highest accuracy for models of all students
(66%). Accuracies for DT (61%), SVM (62%) and Näıve
Bayes (62%) were similar. The most significance attributes
by weight were age, deep learning approach and study effort.
Including factors of prior academic performance improved
model accuracy marginally to 72%.

Model accuracy improved when modelling each course sepa-
rately. In general, k-NN had either the highest accuracy,
or close to the highest accuracy, for all groups with the
exception of two courses, international business and early
childcare & education. Näıve Bayes had the highest accu-
racy for both those courses and their attributes of signif-
icance were normally distributed. Five courses had accu-
racies marginally higher than the model for all students,
social & community development (70%), applied social care
(68%), early childcare & education (69%), creative digital
media (67%) and sports management (70%). As illustrated
in Table 1, these courses were distinguished by a high av-
erage GPA and a low failure rate. Consequently, patterns
identifying high risk students may be under represented in
these groups. Accuracies for other courses were significantly
higher (≥ 79%). For example the difference between sports
management (70%) and the next highest accuracy (Engi-
neering other, 79%) was significant (Z=5.86, p<0.001)5.

4Symmetrical uncertainty with respect to the class label.
5Accuracy comparisons were based on the mean accuracy of
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Table 5: Bootstrap correlations of non-cognitive factors with GPA

Study Factors: Temperament Motivation Learning Approach Learning Strategy Other Modality
C O SE IM EM De Sh St SR ST StE Group Age Gen V A K

Correlation with
GPA (n=1207):

0.15
***

0.08
**

0.12
***

0.15
***

0.12
***

0.23
***

-0.15
***

-0.16
***

0.13
***

0.1
**

0.19
***

-0.08
**

0.25
***

0.09
**

0.06 0.02 0.06

*p < .05, **p < .01, ***p < 0.001; C:Conscientiousness; O:Openness; SE:Self Efficacy; IM:Intrinsic Goal Orientation; EM:Extrinsic Goal
Orientation; De:Deep Learner; Sh: Shallow Learner; St: Strategic Learner; SR: Self Regulation; ST:Study Time; StE: Study Effort; Group:Likes
to work in groups; Gen=Gender; V:Visual Learner; A:Auditory Learner; K:Kinaesthetic Learner.

Table 6: Regression and classification models by discipline, using non-cognitive factors only

Regression models: Temperament Motivation Approach Strategy Other Modality

Course N Absolute error R2 C O SE IM EM De Sh St SR ST StE G age In V A K

All 1207 0.83±0.56 0.125 + + + + *** **** *** *** ** *** *** **** * +

Computing 137 0.8 ±0.56 0.34 + + + ** + * **** *
Creative Dig Media 103 0.68±0.58 0.11 + + **** **** **** + + + + ***

Eng Common Entry 73 0.67±0.53 0.34 * + + + + + *** *** + +
Engineering other 99 0.72±0.5 0.43 + *** + + + ** ** ** * + * **** +

Horticulture 41 0.63±0.54 0.34 + + + + + **** **** **** + + + + * **** **

General Business 183 0.9±0.53 0.13 + + + + + + + + + ** +
Business With IT 60 0.67±0.52 0.48 + ** ** * + *** ** ** ** **
International Business 64 0.78±0.5 0.27 *** + + * + * **** +
Sports Management 95 0.64±0.53 0.16 + + + ** + ***

Applied Social Care 146 0.5±0.5 0.08 + + + + + + * * + + + + ****
Early childcare 80 0.37±0.34 0.17 + + + * ** + + + + +
Social & Comm Dev 127 0.63±0.5 0.12 + + + + ** + +

Classification models: Temperament Motivation Approach Strategy Other Modality
Course N Learner Accuracy Kappa C O SE IM EM De Sh St SR ST StE G age gen V A K

All 1017 11-NN 66% 0.33 X X X X X X X X X X X
Computing 122 SVM 81% 0.62 X X X X X X X X
Creative Dig Media 94 2-NN 67% 0.35 X X X X X X X
Eng Common Entry 73 SVM 94% 0.88 X X X X X X X X X
Engineering other 72 DT 79% 0.58 X X X
Horticulture 40 7-NN 86% 0.71 X X X X X X X X X X
Business General 156 5-NN 85% 0.69 X X
Business With IT 47 7-NN 83% 0.67 X X X X X X X X X
International Business 55 NB 80% 0.6 X X
Sports Mgmt 72 SVM 70% 0.39 X X X X X
Applied Social Care 122 4-NN 68% 0.37 X X X X X X X
Early childcare 58 NB 69% 0.38 X X X X
Community dev 93 2-NN 70% 0.39 X X X
Significant model coefficients: +p > .05, *p < .05, **p < .01, ***p < 0.001, ****p << 0.001; X: factors included in the classification model
C:Conscientiousness; O:Openness; SE:Self Efficacy; IM:Intrinsic Goal Orientation; EM:Extrinsic Goal Orientation; De:Deep Learner; Sh: Shallow
Learner; St: Strategic Learner; SR: Self Regulation; ST:Study Time; StE: Study Effort; G:Likes to work in groups; IN:Regression model intercept;
gen=Gender; V:Visual Learner; A:Auditory Learner; K:Kinaesthetic Learner; Engineering others: Mechatronics and Electrical & Computer Engineering.

It could be argued that the smaller sample size of course
groups over estimated model accuracy as smaller samples
may under represent the complexity of patterns predictive
of academic achievement. Therefore 30 samples randomly
generated from the full dataset (n=100) were also mod-
elled. Model accuracy for the random samples was nor-
mally distributed, with mean=63.12% (s=11%), which was
marginally lower than the model of all students (Z=2.68,
p=0.017).

There was little agreement across models on which study
factors were most predictive of high risk and low risk stu-
dents. Conscientiousness, study effort and a shallow learning
approach were used most frequently, followed by openness,
intrinsic motivation and age. There was no significant im-
provement in model accuracy when prior academic perfor-
mance was included in each model. For example, the largest
increase in accuracy was from 79% to 82% in a model of
Engineering students.

4. CONCLUSIONS
Results from this study suggest that models of academic per-
formance, based on non-cognitive psychometric factors mea-
sured during first year student induction, can achieve good
predictive accuracy, particularly when individual courses are
modelled separately. A deep learning approach, study effort
and age had the highest correlations with GPA across all
disciplines. These factors were also significant in both the

100 bootstrap samples from each group.

regression model and classification model of all students.
Extrinsic motivation, preference for working alone and self
regulation were also significant in the regression model, while
all factors except extrinsic motivation, preference for work-
ing alone and study time were significant in a classification
model of all students. Models of individual courses also dif-
fered in the range of factors used. The lack of consensus
in identification of significant factors may be explained by
an overlap in the constructs measured by each [24]. Open-
ness appeared frequently in both classification and regres-
sion models despite its relatively low correlation with GPA.

In general, regression models for students in technical dis-
ciplines, such as engineering, computing and business with
IT, had a higher coefficient of determination (R2) than mod-
els of non technical disciplines. However the coefficient of
determination did not reflect prediction error, highlighting
the underlying variability in independent variables. For ex-
ample, early childcare (R2=0.17) and sports management
(R2=0.16) had the same R2, but sports management had a
higher absolute error (0.64±0.53) than early childcare (0.37
± 0.34). The difference was significant (t(15)=3.996, p=0.001).
Prediction error was reflective of the GPA distribution for
each course regardless of discipline.

Classification models that distinguished between high and
low risk students based on GPA had good accuracy for both
technical and non technical disciplines, particularly for courses
with a significant proportion (>30%) of high risk students.
As with regression, models of individual courses outper-
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formed both models of the full dataset and models of random
samples taken from the full dataset. This would suggest
models trained for specific courses can outperform models
generalising patterns for all students. k-NN, a non-linear
classification algorithm, gave optimal or near optimal ac-
curacies for most course groups. This may be reflective of
non-linear patterns in the dataset.

Including a cognitive factor of prior academic performance
did not improve the accuracy of classification models sig-
nificantly. On the other hand, Gray et al. [23] reported
that predictive accuracy of models based on cognitive fac-
tors only (prior academic performance) increased marginally
when non-cognitive factors were included in the model. This
would suggest a high overlap in constructs captured by both
cognitive and non-cognitive factors of learning.

Model accuracies are based on a heuristic search of attribute
subsets. A more exhaustive search is needed to verify opti-
mal attribute subsets. Further work is also required to inves-
tigate principal components amongst non-cognitive factors.
In addition, results are based on full time students in a tra-
ditional classroom setting at one college. Further work is
needed to determine if these results generalise to students
in other colleges, and other delivery modes.
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Workshop Approaching Twenty Years of 

Knowledge Tracing (BKT20y) 
 
Knowledge Tracing is an extremely popular method for student modeling because of its 
capability to infer a student’s dynamic knowledge state in real time as the student is 
observed solving a series of problems (Corbett & Anderson, 1995). After its 
introduction in 1995, many extensions to the original technique have been proposed to 
improve its predictive accuracy. Variants include: fitting model parameters to 
individuals rather than populations (e.g., Lee & Brunskill, 2012; Yudelson, Koediger, & 
Gordon, 2010), contextualizing model parameters based on past and current usage of 
an intelligent tutoring system (Baker, Corbett, & Aleven, 2008, Baker et al., 2010; 
GonzálezBrenes, 2014; Pardos et al., 2010) and on latent characteristics of students 
and problems (Khajah et al, 2014), clustering similar students and sharing parameters 
among them (Pardos et al, 2012), soft sharing of parameters via hierarchical Bayesian 
inference (Beck & Chang, 2007; Beck, 2007), and considering knowledge state as a 
continuous variable (SohlDickstein, 2013; Smith et al., 2004).  
 
As we approach twenty years since the introduction of Knowledge Tracing, what 
lessons have we learned? This workshop's motivation is to open the floor for the 
discussion of the recent advances in Knowledge Tracing and student modeling in 
general, take stock of the promises and failures of current approaches, and work 
toward developing integrated approaches. 
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Choosing Sample Size for Knowledge Tracing Models ∗

Derrick Coetzee
University of California, Berkeley

dcoetzee@berkeley.edu

ABSTRACT
An important question in the practical application of Bayesian
knowledge tracing models is determining how much data is
needed to infer parameters accurately. If training data is
inadequate, even a perfect inference algorithm will produce
parameters with poor predictive power. In this work, we
describe an empirical study using synthetic data that pro-
vides estimates of the accuracy of inferred parameters based
on factors such as the number of students used to train the
model, and the values of the underlying generating param-
eters. We find that the standard deviation of the error is
roughly proportional to 1/

√
n where n is the sample size,

and that model parameters near 0 and 1 are easier to learn
accurately.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Measurement,Theory.

Keywords
Educational data mining,knowledge tracing,sample size

1. INTRODUCTION
Simple Bayesian knowledge tracing models a student’s ob-
served responses to a sequence of items as a Markov process,
with their knowledge state as a hidden underlying variable.
If values are given for the four standard parameters, learn-
ing rate, prior, guess, and slip, the likelihood of a particular
set of response sequences can be computed. Using standard
search procedures like expectation maximization (EM), the
parameter set giving the highest likelihood for a given set of
sequences can be determined, provided that the procedure
converges to the global maximum.

∗This work published at the BKT20y Workshop in conjunc-
tion with Educational Data Mining 2014. The author waives
all rights to this work under Creative Commons CC0 1.0.

However, even if the procedure identifies the global maxi-
mum correctly and precisely, the resulting parameters may
not reflect the actual parameters that generated the data;
this is a sampling error effect. It’s clearest with very small
samples, such as samples of size 1, but exists with larger sam-
ples as well. Empirical studies with synthetic data generated
from known parameters show that the inferred parameters
for a given data set can differ substantially from the gen-
erating parameters, and this same issue would arise in real
settings. An understanding of the magnitude of sampling
error in a particular scenario can help to explain why the
resulting model does or does not make effective predictions.
Moreover, by providing a means to describe the distribution
of possible generating parameter values, the uncertainty of
calculations based on those parameters such as predictions
can also be determined.

2. RELATED WORK
For simple problems, such as identifying the mean value of
a parameter in a population, or the proportion of the popu-
lation falling into a subgroup, there are simple and well-
understood statistical approaches for determining sample
size based on statistical power. Such analytic approaches
are not immediately applicable to the problem of minimiz-
ing the HMM error function because of its complexity and
high dimensionality.

Falakmasir et al [2] have noted that training time increases
linearly with the size of the training set. Choosing an ap-
propriate sample size for a certain desired level of accuracy
can thus help to reduce training time, which is important
both for research and in some real-time interactive tutor
applications.

Nooraei et al [3] found that using only the 15 most recent
data points from each student to train a knowledge trac-
ing model yielded root mean-square error during prediction
comparable to using the student’s full history. For one data
set, the most 5 recent items sufficed. Our study conversely
does not vary the number of items per student, but instead
varies the number of students and the four parameters gen-
erating the data. By allowing sample size to be reduced
to meet a desired accuracy, our work offers an orthogonal
method of further reducing training time.

De Sande [8] has suggested that as samples become larger,
models with small parameter sets may no longer be rich
enough to capture the sample’s complexity. Thus our exclu-
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Figure 1: Given the fixed model learn=0.2,
prior=0.4, guess=0.14, slip=0.05, we generated
10000 samples with 1000 students each, and for each,
inferred all four parameters using EM. The distribu-
tion of the inferred learning rate parameter over the
samples is above. The mean differs by 3× 10−6 from
the true generating parameter 0.2. The standard
deviation is 0.01121, and the orange line shows the
expected height of each bar if the proportions pre-
cisely followed a normal distribution. Scipy’s nor-
maltest [7] rejects that the distribution is perfectly
normal (p < 0.0002), and a small amount of negative
(left) skew is visible; the median is 0.00016 smaller
than the mean. But the distribution is close enough
to normal for our purposes.

sive reliance on a simple four-parameter BKT model even
for very large samples is a limitation of our approach.

3. METHODOLOGY
In our experiments we relied on a simple standard Bayesian
knowledge tracing model with four parameters: learning
rate, prior, guess and slip. There is only one value for
each parameter, and no specialization by student or prob-
lem. Each synthetic student responded to five items; we
do not vary this parameter in this study, since Nooraei et
al [3] report that increasing this parameter has diminishing
returns, but future work may investigate it.

We generate separate datasets for each of our experiments.
In each case, we enumerate a sequence of models (each spec-
ified by values for learn, prior, guess, slip, sample size), and
for each of those models, we generate a large number of
random samples consistent with that model. For example,
for a particular model, we may generate 1000 samples each
containing 1000 students.

We then run EM on each sample to find the parameter set
giving the maximum likelihood value. All parameters are
permitted to vary during the search. EM is run starting
at the generating parameters and run until fully converged
(within 10−12 or until 100 iterations are complete). Start-
ing at the generating parameters is not feasible in a realistic
setting, but here it allows EM to run quickly and consis-
tently reach the global minimum. As shown in Figure 1, the
parameter values inferred from these samples approximate
a normal distribution with a mean equal to the generating
parameter.

Finally, we take all samples generated from a single model
and, for each parameter, record the mean and standard devi-
ation of the inferred values for that parameter. We chose the
number of samples generated for each model large enough
so that these statistics remain stable under repeated runs.
Mean values for each parameter were consistently near the
generating parameter, typically within at most 0.1 standard
deviations. Standard deviation provides an estimate of vari-
ation in the inferred parameter values, and is plotted. Dif-
ferent models yield different standard deviation values.

Because of the very large number of large samples involved
in this approach, we use the fastHMM C++ BKT library
designed by Pardos and Johnson [5] to quickly generate
datasets and perform EM, invoked from a Matlab script.

3.1 Varying one parameter
In our first experiment, we start with typical, plausible val-
ues for all four parameters: learn=0.2, prior=0.4, guess=0.14,
slip=0.05. These values are consistent with prior work that
found large guess and slip values (> 0.5) to be implausible in
most scenarios [6], and in our 5-problem scenario, the chance
of learning the material by the end is about 67%, which is
reasonable.

Then, for each of the four parameters, we hold the other
parameters at their single plausible value, and vary the re-
maining parameter from 0 to 1 in steps of 0.01. This results
in 404 total parameter sets.

For each parameter set, we generate 1000 random samples
of 1000 students each. In this experiment, the number of
students is fixed at 1000, which is large enough to consis-
tently produce a standard deviation not exceeding 0.03 —
this avoids the boundary effects near 0 and 1 that would
occur for very small samples.

In this experiment, we focus on the variance of our estimates
of the parameter that is being varied, and don’t consider
variance of the other (fixed) parameters.

3.2 Interactions between parameters
In this experiment, similiar to the first, we hold three pa-
rameters fixed (learn=0.2, prior=0.4, guess=0.14), and vary
slip between 0 and 1 in steps of 0.01. This gives 101 pa-
rameter sets. For each, we generate 1000 random samples of
1000 students each. However, in this experiment we exam-
ine variance of our estimates of all four parameters, rather
than just the one being varied (slip). This experiment helps
to demonstrate to what extent varying one parameter can
affect the difficulty of accurately inferring other parameters.

3.3 Varying sample size
In our third experiment, we fix the value of all four pa-
rameters, but vary the sample size in powers of two from
2 to 2097152. For sample sizes below 10000, we generate
1000 samples of that size, while for those above we generate
100 samples. The parameter values are heuristically chosen
based on the prior experiments above to generate large error
values (but not necessarily the worst possible error). We ex-
amine how variation of our estimates of all four parameters
varies with sample size, and identify any trends.
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Figure 2: Variation of inferred parameters, based on
underlying generating parameter. For each curve,
all parameters other than one being examined are
fixed at plausible values. Values near 0 and 1 are
the easiest to infer accurately, and each parameter
exhibits a unique pattern.

3.4 Interaction between sample size and pa-
rameters

In our final experiment, we vary both the learning rate (from
0 to 1 in steps of 0.01) and the sample size (between the val-
ues 1000, 10000, 100000) at the same time. This enables us
to examine whether there is any interaction between param-
eters and sample size. For 1000 and 10000 students we use
1000 samples, while for 100000 students we use 100 samples,
to reduce runtime.

4. RESULTS
4.1 Varying one parameter
As described in section 3.1, in this experiment we vary each
parameter between 0 and 1 while holding the other parame-
ters fixed, and examined how the variation in our inference
of that parameter changed with its value. As shown in Fig-
ure 2, parameters with values near 0 or 1 are easier to ac-
curately estimate, while those with values in the 0.4 to 0.8
range are more difficult to infer. Each parameter exhibits a
unique pattern, with prior behaving worst for small values,
guess behaving worst for values in the middle, and learning
rate performing worst for the largest values. Slip is unique
in having two peaks in its curve near 0.5 and 0.8.

4.2 Interactions between parameters
As described in section 3.2, in this experiment we vary slip
between 0 and 1 while keeping the other parameters fixed,
and examine how the variation of all four inferred parame-
ters varies, as shown in Figure 3. All variance values exhibit
a strong, complex dependence on the slip parameter—in par-
ticular there is a dramatic and unexpected drop from large
variance to small variance around slip=0.85. We conclude
that the variance of an inferred parameter depends not only
on the value of that parameter, but also the values of other
parameters.

4.3 Varying sample size
We fix the parameters at the values empirically determined
in section 4.1 to give maximum variance (roughly based on
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Figure 3: As the slip parameter is varied and
the other parameters are held fixed (learn=0.2,
prior=0.4, guess=0.14), the error in our inference
of all other parameters varies in a strong and com-
plex fashion, indicating interactions in the inference
of different parameters.

the maximums of the curves, with prior and guess at 0.5, and
learning rate and slip at 0.67). Because section 4.2 suggests
that there are interactions between parameters, this may not
give the worst-case variance possible of all combinations, but
it is a reasonable starting point for realistic values.

As described in section 3.3, sample size is varied in powers of
two from 2 to 2097152. Figure 4 shows the result, suggesting
that (except for very small samples) the standard deviation
of the error is roughly proportional to n−0.5, or 1/

√
n, where

n is the sample size. For these particular parameter values,
slip is consistently inferred most accurately, learning rate is
inferred least accurately, and guess and prior are between
the two and are similar.

4.4 Interaction between sample size and pa-
rameters

In our final experiment, as described in section 3.4, we vary
both the learning rate and the sample size at the same time.
The standard deviation curves for the three sample sizes are
then plotted on the same plot, each divided by the 1/

√
n

factor, where n is the sample size, as shown in Figure 5.
The curves are nearly identical, and we find no evidence
of interaction between parameters and sample size, but we
can’t rule out interaction for other combinations of parame-
ter values. This also offers additional evidence for the 1/

√
n

trend from the previous section.

5. DISCUSSION
Because accuracy is good for parameter values near 0 and 1,
this implies that for large enough samples, boundary effects
(in which the distribution of error is skewed because values
outside of the 0-1 range are not permitted) are not a serious
concern.

Interactions between parameters are complex, suggesting
that attempting to characterize error in each parameter in-
dependently is unlikely to yield good predictions of error.
Moreover, attempts to model these interactions analytically
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Figure 4: Accuracy of inferred parameters, based on
sample size (training set size), with fixed parame-
ters (prior=guess=0.5, learning=slip=0.67). This is
a log-log plot, and (once the y = 0.1 level is reached)
the lines each remain straight and have slope of
roughly -0.5. This suggests that the standard de-
viation of the error is roughly proportional to 1/

√
n,

where n is the sample size.
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Figure 5: Here we vary learning rate from 0 to 1,
and also vary sample size between the values 1000,
10000, and 100000. The resulting standard devia-
tions are divided by 1/

√
n to normalize for improve-

ment in error due to increased sample size. The
resulting curves are nearly identical; the curve for
100000 students appears noisier only because of a
lower number of samples (100 instead of 1000). We
find no evidence of interaction between sample size
and the learning rate.

may be challenging because they cannot be fit well by low-
degree polynomials. A more viable strategy is to form a
conservative estimate of error by conducting a grid search
of parameter sets that are plausible in a given scenario. On
the other hand, once the range of variances at a particular
(sufficiently large) sample size is characterized, Figure 4 and
Figure 5 show that altering the sample size has a uniform
and predictable effect on the error.

The main result that standard deviation is proportional to
1/
√
n suggests that, in order to decrease the margin of error

in the estimate of a parameter by a factor of 2, an increase
in sample size by a factor of 4 is required. Additionally,
Figure 4 shows that achieving even a single valid significant
digit in the learning rate requires sample sizes of 1000 stu-
dents or more. This suggests that studies using BKT with
less than 1000 students should be considered carefully for
sampling error.

5.1 Confidence Intervals and Decreasing Train-
ing Time

As noted in Figure 1, provided that the sample size is large
enough, the distribution of samples is approximated well
by a normal distribution, and the standard deviations com-
puted in synthetic simulations such as the preceding ones
can be used to compute confidence intervals containing the
true generating parameters (e.g. 95% of possible values are
within two standard deviations). Parameters used in these
simulations can be set either by using domain knowledge,
and/or by conservatively selecting values that give poor ac-
curacy.

To use our results to decrease training time for a large data
set, one approach is to create many small samples (e.g. 100
of size 1000) by sampling uniformly randomly with replace-
ment from the full data set. By training on these, we can
estimate the variance of our estimates of each parameter at a
sample size of 1000. Then, given a desired level of accuracy
and a desired probability of achieving it, we can use 1/

√
n

to estimate the best final sample size. If the estimated sam-
ple size exceeds the data size, this suggests that more data
needs to be gathered.

6. IDENTIFIABILITY PROBLEM
Although we have in this work considered a particular gen-
erating parameter set to be the correct and desired param-
eters, BKT exhibits an Identifiability Problem [1] in which
there are an infinite family of four-parameter solutions that
make the same predictions. This creates the risk that a solu-
tion that appears to be far from the generating parameters
is actually very close to an equivalent parameter set (or an
equivalent solution is).

Van de Sande [9] more specifically characterized BKT (in
its HMM form) as a three-parameter system in which two
systems having the same slip, learning rate, and A value will
yield the same predictions, where A is given by

A = (1− slip− guess)(1− prior).

One way to address the issue is to perform both data gener-
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ation and parameter search in this reduced three-parameter
system; this would be similar to our current approach, but
error in the A parameter is more difficult to interpret. In-
tuitively, we expect search in a lower-dimensional space to
give better accuracy with the same amount of data. How-
ever, Van de Sande also notes that the algorithm form of
BKT has no analytic solution, and so the degree to which
BKT is underdetermined may depend on the specific appli-
cation.

Beyond the underdetermined nature of BKT, there are also
information-theoretic bounds that limit the accuracy of in-
ferring parameters regardless of the system. In particular,
given a collection of at least k different parameter sets, and
student data that can only take on < k values, there is
no procedure that can reliably infer the generating param-
eters without error. As the size of the data continues to
decrease, the minimum possible error increases. Although
these bounds are general, they typically apply only to very
small data sets.

7. CONCLUSIONS AND FUTURE WORK
We’ve only explored a small part of the space of input pa-
rameters that can affect inferred parameter accuracy; the
possible interactions between parameters are complex and
not fully understood. It would also be useful to examine
different sizes of problem sets, scenarios where different stu-
dents complete different numbers of problems, models where
parameters such as learning rate and guess/slip are per prob-
lem, and models where priors are measured per student (as
in Pardos and Heffernan [4]).

Although it seems intuitive that insufficient sample size can
lead to poor parameter estimates with poor predictive power,
this deserves verification: it’s not clear which errors will
damage prediction and which are benign. An empirical syn-
thetic study that examines prediction accuracy could assess
this cheaply. Going a step further, it would be useful to
simulate an interactive tutoring system and assess a cost
function that penalizes the system for both incorrect assess-
ment of mastery, and for failing to assess mastery when it
is reached. By applying weights to these error types, the
simulation could represent the real-world cost of inaccurate
parameters in such a system.

Another important direction is extending our results to real-
world data. There are a few approaches. One is to use a
very large real-world data set and use its inferred param-
eters as the ground-truth generating parameters, then ex-
amine smaller subsets to determine whether parameters are
inferred less accurately. If the BKT model is appropriate,
we expect to observe similar relationships between sample
size and variance as with our synthetic data. This approach
can be compared to one experiment of Ritter [6] (Figure 4),
in which they took a large real data set and computed mean-
squared error using the best-fit parameters on subsets with
smaller number of students ranging from 5 to 500.

There are other approaches to real-world validity. One would
be a survey of prior BKT applications, to identify whether
there is a consistent relationship between sample size and
reported prediction accuracy. A third approach would be a
controlled experiment in which two groups of very different

sizes each use an ITS, the BKT is trained on the result-
ing data, and then the groups continue to use the ITS and
their learning performance is examined (note however that
asymmetric group sizes limit statistical power).

Finally, an analytical model that can explain some of our
empirical results—such as the skewed normal distribution
of inferred parameter values, the improvements in parame-
ter inference near 0 and 1 parameter values, or the 1/

√
n

relationship between sample size and standard deviation—
would be a valuable contribution.
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ABSTRACT 
This paper defines 5 key dimensions of student models:  whether 
and how they model time, skill, noise, latent traits, and multiple 
influences on student performance.  We use this framework to 
characterize and compare previous student models, analyze their 
relative accuracy, and propose novel models suggested by gaps in 
the multi-dimensional space.  To illustrate the generative power of 
this framework, we derive one such model, called HOT-DINA 
(Higher Order Temporal, Deterministic Input, Noisy-And) and 
evaluate it on synthetic and real data.  We show it predicts student 
performance better than previous methods, when, and why. 

Keywords 

Knowledge tracing, Item Response Theory, temporal models, 
higher order latent trait models, multiple subskills, DINA. 

1. Introduction 
Morphological analysis [1] is a general method for exploring a 
space of possible designs by identifying key attributes, specifying 
possible values for each attribute, and considering different 
combinations of choices for the attributes.  Structuring the space 
in this manner compares different designs in terms of which 
attribute values they share, and which ones differ.  Characterizing 
the space of existing designs in terms of these attributes exposes 
gaps in the space, suggesting novel combinations to explore. 

Some prior work on student modeling has used this approach to 
characterize spaces of possible knowledge tracing models.  
Knowledge tracing (KT) [2] generally has 4 or 5 parameters:  the 
probability slip of failing on a known skill; the probability guess 
of succeeding on an unknown skill; the probability knew of 
knowing a skill before practicing it; the transition probability 
learn from not knowing the skill to knowing it; and sometimes the 
transition probability forget from knowing the skill to not 
knowing it, usually assumed to be zero. 

Mostow et al. [3] defined a space of alternative parameterizations 
of a given KT model, based on whether they assigned each 
knowledge tracing parameter a single overall value, a distinct 
value for each individual student and/or skill, or different values 
for different categories of students and/or skills.  Thus the number 
of values to fit is 4 if using a single global value for each 
parameter, but with separate probabilities for each <student, skill> 
pair, the number of values to fit is 4 × # students × # skills.  This 
work ordered the space of possible parameterizations of a single 

model by the number of values to fit.  

Xu and Mostow [4] factored the space of different knowledge 
tracing models in terms of three attributes:  how to fit their 
parameters, how to predict students’ performance from their 
estimated knowledge, and how to update those estimates based on 
observed performance.  We will use this factoring in Section 3.2. 

Section 2 introduces the proposed framework.  Section 0 describes 
HOT-DINA, a novel knowledge tracing method that the 
framework inspired.  Sections 4 and 5 evaluate HOT-DINA on 
synthetic and real data, respectively.  Section 6 concludes. 

2. A Unified 5-Dimensional Framework 
We characterize student models in terms of these five dimensions: 

Temporal effect: skills time-invariant vs. time-varying. 
• Static, e.g. IRT [5] and PFA [6] 
• 2 or more fixed time points, e.g. at pre- and post-test  
• Dynamic, e.g. KT [2] 

Skill dimensionality:  single skill vs. multiple skills at a step. 
Credit assignment: how credit (or blame) is allocated among 
influences on the observed success (or failure) of a step.   Mostow 
et al. [3] define a space of KT parameterizations.  Corbett and 
Andersen [2] originally fit KT per skill. Pardos and Heffernan [7] 
individualized KT and fit parameters per student. Wang and 
Heffernan [8] simultaneously fit KT per student and per skill. In 
contrast, multiple-skills models require combination functions to 
assign credit or blame among the skills.  Product KT [9] assigns 
full responsibility to each skill and multiplies the estimates. 
Conjunctive KT [10] assigns fair credit or blame to skills and 
multiplies the estimates. Weakest KT [11] credits or blames the 
weakest skill and takes the minimum of the estimates. LR-DBN 
[12] apportions credit or blame and performs logistic regression 
over the estimates.  We summarize credit assignment methods as: 

• Contingency table 
o Per student 
o Per skill 
o Per <student, skill> 
o Per student + per skill 

• Binary or probabilistic 
o Conjunctive (min) 
o Independent (product) 
o Disjunctive (max) 

• Other 
o Compensatory (+) 
o Mixture (weighted average) 
o Logistic regression (sigmoid) 

Higher order:  treat static student properties as latent traits or not. 
We say IRT [5] models “higher order” effects because it estimates 
static student proficiencies independent of skill properties such as 
skill difficulty in 1PL (1 Parameter Logistic), skill discrimination 
in 2PL, and skill guess rate in 3PL. De la Torre [13] first 
combined IRT with static Cognitive Diagnosis Models such as 
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NIDA (Noisy Inputs, Deterministic And Gate) [14-16] and DINA 
(Deterministic Inputs, Noisy And Gate), and proposed higher 
order latent trait models (HO-NIDA and HO-DINA). Xu and 
Mostow [17] used IRT to estimate the probability of knowing a 
skill initially in a higher order knowledge tracing model (HO-KT).  
Noise: how to represent errors in model, or discrepancies between 
what a student knows versus does.  KT assumes students may 
guess a step correctly even though they don’t know its underlying 
skill(s), or slip at a step even though they know its skill(s). Such 
“noise” is also characterized in other models, including single-
skill KT variants such as PPS (Prior Per Student) [7] and SSM 
(Student Skill Model) [8], and IRT models such as 3PL. NIDO 

and DINO respectively add noise either before or after combining 
estimates of multiple skills.  We refer to these noise modeling 
methods as: 

• None 
• Slip/Guess 
• NIDO (noisy input, deterministic output) 
• DINO (deterministic input, noisy output)  

Table 1 summarizes student models in the proposed unified 5-
dimensional framework. Note that we only discuss known 
cognitive models (e.g. Q-matrix) in this paper, so we omit 
methods that discover unknown cognitive models [18, 19]. 

Table 1. A unified 5-dimensional framework for student models 

Student models Temporal 
effect 

Skill 
dimensionality 

Credit 
assignment 

Higher order 
effect Noise model 

IRT 1PL (Rasch model) [5] 
IRT 2PL (2 Parameter Logistic) [5] 

Static 

Single skill Per student + 
per skill Latent trait None 

IRT 3PL (3 Parameter Logistic) [5] Slip/Guess 
LLM (Linear Logistic Model) [16] 

Multiple skills 

Sigmoid 
No latent trait 

None LFA (Learning Factor Analysis) [20]  
PFA (Performance Factor Analysis) [6] 
NIDA [14-16] Product NIDO 
DINA [14-16] DINA 
LLTM (Linear Logistic Test Model) [21] Sigmoid 

Latent trait 
None 

HO-NIDA [13] Product NIDO 
HO-DINA [13] DINO 
KT [2] 

Dynamic 

Single skill 

Per skill 
No latent trait 

Slip/Guess 
PPS (Prior Per Student) [7] Per student 
SSM (Student Skill Model) [8] 

Per student + 
Per skill HO-KT [17] Latent trait 

DIR (Dynamic IRT 1PL) [22] None 
KT+NIDA [23] 

Multiple skills 

Product 

No latent trait 
NIDO Product KT [9] 

CKT [10] 
Weakest KT [11] Minimum 
KT+DINA [23] Product DINO LR-DBN [12] Sigmoid 
HOT-NIDA [Section 0] Product Latent trait NIDO 
HOT-DINA [Section 0] DINO 

Table 2. Comparative framework to train, predict and update multiple-skills models   

Student models Train Predict Update 

CKT 

Train skills separately. 
Assign each skill full 

responsibility. 

Multiply skill estimates. 
Update skills together. Bayes’ 
equations assign responsibility. 

Product KT 

Update skills separately, each with 
full responsibility. 

Weakest KT 
(Blame weakest, 

credit rest) Minimum of skill 
estimates. 

Weakest KT 
(Update weakest 

skill) Update only the weakest skill. HOT-NIDA 
HOT-DINA 
[Section 3.2] 

Train skills together. 
Assign each skill full 

responsibility. 
Multiply skill estimates. 

KT+NIDA/DINA Update skills together, each with 
full responsibility. 

LR-DBN Train skills together. Logistic 
regression assigns responsibility. 

Logistic regression on 
skill estimates. 

Update skills together. Logistic 
regression assigns responsibility. 
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Table 2 (adapted from [4]) expands Credit assignment in terms 
of how to train, predict and update skills, e.g. to assign full 
responsibility to every skill, blame the weakest skill and credit 
the rest, update only the weakest skill, or use logistic function. 

The tables suggest transformations of models along the 
dimensions in the framework. For example, Dynamic IRT [22] 
varies student proficiency by time, transforming static IRT to 
dynamic.  KT+NIDA/DINA [23] varies skill estimates by time, 
transforming static NIDA/DINA to dynamic. HO-
NIDA/DINA/KT adds latent traits, transforming 
NIDA/DINA/KT to higher order.  LLM [16] and LLTM [21] 
change the combination function, transforming conjunctive 
models to logistic models.  In Section 0 we generate a novel 
student model by transforming HO-KT to a multi-skill model. 

3. A Higher-Order Temporal Student Model 
to Trace Multiple Skills: HOT-DINA 
Xu and Mostow [17] extended the static IRT model into HO-KT 
(Higher Order Knowledge Tracing), which accounts for skill-
specific learning by using the static IRT model to estimate the 
probability Pr(knew) of knowing a skill before practicing it. By 
generalizing to steps that require conjunctions of multiple skills, 
we arrive at a combined model we call HOT-DINA (Higher 
Order Temporal, Deterministic Input, Noisy-And). Note we can 
transform it into HOT-NIDA simply by changing its noise type. 

3.1 HOT-DINA = IRT + KT + DINA 
Let {Y(0), Y(1) , …, Y(t), …} denote a sequential dataset recorded 
by an intelligent tutor system, where Ynj

(t) = 1 iff student n 
correctly performs a step that requires skill j at time t. KT is a 
Hidden Markov Model (HMM) that models a binary hidden 
state K(t) indicating if the student knows the skill at time t. The 
probability of knowing the skill is knew at time t = 0, and then 
changes based on the student’s observed performance on the 
skill, according to the standard KT parameters slip, guess, learn, 
and forget (usually set to zero). 

KT can fit these four parameters (taking forget = 0) for each 
<student, skill> pair, but the resulting large number of values to 
fit is likely to cause over-fitting. Thus, Corbett and Andersen [2] 
originally proposed to estimate knew per student, and learn, 
guess and slip per skill. IRT assumes a latent trait that represents 
a student’s underlying proficiency in all the skills. For example, 
the Two Parameters Logistic (2PL) IRT model assumes that the 
probability of a student’s correct response is a logistic function 
of a unidimensional student proficiency θ with two skill-specific 
parameters: discriminability a and difficulty b (see Equation 1). 

𝑃 𝑌   =   1   =     
1

1 + exp  (−1.7𝑎(𝜃 − 𝑏))
 

Equation 1. The logistic function of 2PL model 
The two skill parameters determine the shape of the IRT curve. 
As a student’s proficiency increases beyond the skill difficulty, 
the student’s chance of performing correctly surpasses 50%. The 
skill discriminability reflects how fast the logit (log odds) 
increase or decrease when the proficiency changes. Thus IRT 
fits parameters individually on each dimension, without losing 
the information from the other. HO-KT uses 2PL to estimate 
knew in KT, by fitting student specific proficiency θn, skill 
discriminability aj and skill difficulty bj. It then uses KT to trace 
each skill, by fitting skill-specific learnj, guessj and slipj. Thus, 
HO-KT models students’ initial overall knowledge before they 
practice any skills; then it updates its estimates of students’ 

knowledge of each individual skill by observing additional 
practice on the skill. It also models two attributes of the skills, 
difficulty and discriminability, which are assumed to be 
constants that do not change over time. 

To incorporate DINA into HO-KT, we still model a hidden 
binary state in each step to indicate whether a student knows the 
overall skill used in the step, denoted as ηnj

(t) for student n with 
skill j at time t.  However, we also model a hidden binary state 
αnk

(t) to indicate whether student n knows skill k at time t. Given 
a matrix Q = {Qjk}, indicating whether the overall skill j 
requires skill k, we conjoin the skills as follows: 

𝜂!"
!   =    (𝛼!"

! )!!"
!

!  !  !

 

Equation 2. Conjunction of skills in HOT-DINA 
This formula gives us the DINA (Deterministic Input, Noisy-
And gate) structure [15], with the conjunction as the “and” gate 
and guess and slip as the noise. Thus by combining HO-KT with 
DINA, we obtain the HOT-DINA higher order temporal model 
to trace multiple skills.  Figure 1 shows how the plate diagram 
for HOT-DINA integrates IRT, KT, and DINA. 

 

 
Figure 1. Graphical representation of Higher-Order 

Temporal DINA (HOT-DINA) to trace multiple skills 
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Equation 3 shows the formula for using 2PL to estimate the 
probability knew of a student knowing a skill at time t = 0: 

𝑃 𝑘𝑛𝑒𝑤!"   =     𝑃 𝛼!"
(!)   =   1   

=   
1

1 + exp  (−1.7  𝑎!(𝜃! − 𝑏!))
 

Equation 3. 2PL to estimate knew in HOT-DINA 
Equation 4 shows the formula for tracing the skills with skill-
specific learn and zero forget:  

𝑃 𝛼!" !   =   1 𝛼!" !!!   =   0   =     𝑙𝑒𝑎𝑟𝑛! 

𝑃 𝛼!" !   =   0 𝛼!" !!!   =   1   =     𝑓𝑜𝑟𝑔𝑒𝑡!   =   0 

Equation 4. Knowledge tracing of skills in HOT-DINA 
Equation 5 shows the likelihood of a student’s performance 
given the hidden state η(t) and the skill-specific guess and slip: 

𝐿 𝑌!"
!   =   1|  𝜂!"

!   =   𝑔𝑢𝑒𝑠𝑠!
!!!!"

!
×(1 − 𝑠𝑙𝑖𝑝!)

!!"
!

 

𝐿 𝑌!"
!   =   0|  𝜂!"

!   =    (1 − 𝑔𝑢𝑒𝑠𝑠!)
!!!!"

!
×𝑠𝑙𝑖𝑝!

!!"
!

 

Equation 5. Likelihood in HOT-DINA 

3.2 How to Train, Predict, and Update 
Following the organization of Table 2, Section 3.2.1 details how 
HOT-DINA trains the skills together and assigns each skill full 
responsibility; Section 3.2.2 specifies how HOT-DINA predicts 
student performance by using a product of skill estimates; and 
Section 3.2.3 shows how HOT-DINA updates the weakest skill. 

3.2.1 Training the model with MCMC 
We estimate the parameters of HOT-DINA using Markov Chain 
Monte Carlo (MCMC) methods, which require that we specify 
the prior distributions and constraints for every parameter. We 
assume that student general proficiency θn is normally 
distributed with mean 0 and standard deviation 1. The skill 
discrimination an is positive and uniformly distributed between 0 
and 2.5, while the skill difficulty bn is also normally distributed 
with mean 0 and standard deviation 1. Learn has prior Beta 
(1,1), whereas guess and slip have uniform prior from 0 to 0.4.  

Thus, the priors on each parameter are: 

𝜃!    ~    𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

𝑏!      ~  𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) 

𝑎!      ~  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2.5) 

𝑙𝑒𝑎𝑟𝑛!      ~  𝐵𝑒𝑡𝑎(1, 1) 

𝑔𝑢𝑒𝑠𝑠!     ~  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 0.4) 

𝑠𝑙𝑖𝑝!     ~  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 0.4) 

We use the following conditional distributions for each node:  

𝛼!"
! |𝜃!    ~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖({1 + exp −1.7  𝑎! 𝜃! − 𝑏! }!!  ) 

𝛼!"(!)|  𝛼!" !!!   =   0  ~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑙𝑒𝑎𝑟𝑛!) 

𝛼!"(!)|  𝛼!" !!!   =   1  ~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1) 

𝑌!"
(!)|𝜂!" !   =   0    ~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑔𝑢𝑒𝑠𝑠!) 

𝑌!"
(!)|𝜂!" !   =   1    ~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑠𝑙𝑖𝑝!) 

Given η as a conjunction of α, the likelihood of Y given η, the 
conditional independence of α(0) given θ, and of α(t) given α(t-1), 
the posterior distribution of θ, a, b, α, η, learn (l), guess (g) and 
slip(s) given Y is 

𝑃 𝜽,𝒂,𝒃,𝜶,𝜼, 𝒍,𝒈, 𝒔 𝒀 ∝ 𝐿 𝒀 𝒈, 𝒔,𝜼,𝜶 𝑃 𝜶 ! 𝜽,𝒂,𝒃  

( 𝑃 𝜶 ! 𝜶 !!! , 𝒍 )𝑃 𝜽 𝑃 𝒂 𝑃 𝒃 𝑃 𝒍 𝑃 𝒈 𝑃(𝒔)
!

!  !  !
 

3.2.2 Predicting student performance 
For inference, we introduce uncertainty to ηnj, and rewrite the 
Equation 2 as follows:    

𝑃 𝜂!"
!   =   1   =     

1
exp −1.7𝑎! 𝜃! − 𝑏!

!!"!

!  !  !

 

𝑃 𝜂!"
!   =   1   =    (𝑃(𝛼!"

!   =   1))!!")!
!  !  !  for t = 1,2,3… 

Equation 6. Conjunction of skills in HOT-DINA inference 

Then we predict student performance by using Equation 7: 

𝑃 𝑌!"
!   =   1   =    1 − 𝑠𝑙𝑖𝑝! 𝑃 𝜂!"

!   =   1 + 𝑔𝑢𝑒𝑠𝑠!(1

− 𝑃 𝜂!"
!   =   1 ) 

Equation 7. Prediction in HOT-DINA 

3.2.3 Updating estimated skills 
We update the estimates of latent states η and α after observing 
actual student performance. The estimate of knowing a skill or a 
subskill should increase if the student performed correctly at the 
step. It is easy to update a skill by using Bayes’ rule, as shown in 
Equation 8. The posterior P(ηnj

(t) = 1|Ynj
(t) = 1) should be higher 

than P(ηnj
(t) = 1) if and only if (1-slipj) > guessj. 

𝑃 𝜂!"
!   =   1 𝑌!"

!   =   1   

=   
𝑃 𝑌𝑛𝑗

𝑡   =   1 𝜂𝑛𝑗
𝑡   =   1)  𝑃 𝜂𝑛𝑗

𝑡   =   1

𝑃 𝑌𝑛𝑗
𝑡   =   1

 

  =     
(!!!"#$!)  ! !!"

!   !  !

(!!!"#$!)  ! !!"
!   !  ! !!"#$$! !!  ! !!"

!   !  !
      

Equation 8. Bayes’ rule to update η in HOT-DINA 
Although we could update HOT-DINA by assigning full 
responsibility to each skill, it would be interesting to update the 
weakest (or say hardest) skill since HOT-DINA fits the 
parameter ‘difficulty’ for each skill. Thus, we update the skill 
that is the hardest among all the required skills in a step: 

𝑃 𝜂!"
!   =   1 𝑌!"

!   =   1   

=   𝑃 𝛼!"!
!   =   1|𝑌!"

!   =   1 𝑃(𝛼!"
!   

!!!!
=   1) 

for 𝑘   =   argmax!:  !!"  !  ! 𝑏!. 

Equation 9. Update the hardest skill in HOT-DINA 
In short, we extend HO-KT to the HOT-DINA higher order 
temporal model, which traces multiple skills. We use the 
MCMC algorithm to estimate the parameters, and update the 
estimates of a student knowing a skill given observed student 
performance. How well does the HOT-DINA model work?  To 
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evaluate it, we performed a simulation study.  Section 4 now 
describes the study and reports its results. 

4. Simulation Study 
To study the behavior of HOT-DINA, we generated synthetic 
training data for it according to the priors and conditional 
distributions defined in Section 3.2.1.  Section 4.1 describes the 
synthetic data.  One purpose of this experiment was to test how 
accurately MCMC can recover the parameters of HOT-DINA, 
as Section 4.2 reports.  It is important not only to test how well a 
method works, but to analyze when and why.  Thus another 
purpose was to determine how many students and observations 
are needed to estimate the difficulty and discriminability of a 
given number of skills, as Section 4.3 explains. 

4.1 Synthetic Data 
We use the following procedure to generate the synthetic data, 
with all the variables as defined in Section 3.2: 

1. We chose K = 4 and J = 14, which results in a 14 × 4 Q 
matrix. The Q matrix, as shown below, indicates that we 
generate the skills by combining all the possible skills. 
𝐐!   

=   

1 0 0
0 1 0

0 1 1
0 1 0

1 0 0 0 1 1 1 0
0 1 1 0 1 0 1 1

0 0 1
0 0 0

0 0 1
1 0 0

0 1 0 1 1 1 0 1
1 0 1 1 0 1 1 1

 

 

2. We randomly generated θn from Normal (0,1) for n = 1,..,N. 

3. We chose a, b and l as shown in Table 3. 

Table 3. True value of skill-specific discrimination, difficulty 
and learning rate in synthetic data simulation 

k 1 2 3 4 
a 1.5 1.2 1.9 1.0 
b -0.95 1.42 -0.66 0.50 

learn 0.8 0.6 0.5 0.3 
 
4. We randomly generated g and 1-s from Unif(0,0.4) and 

Unif (0.6,1) respectively, as shown in Table 4. 

Table 4. True value of skill-specific guess and not slip 
parameters in synthetic data simulation 

j 1 2 3 4 5 6 7 
guess 0.35 0.40 0.13 0.15 0.29 0.39 0.10 
1-slip 0.67 0.66 0.67 0.90 0.65 0.60 0.61 

j 8 9 10 11 12 13 14 
guess 0.40 0.15 0.16 0.38 0.11 0.26 0.35 
1-slip 0.81 0.74 0.76 0.73 0.83 0.89 0.85 

5. We chose N = 100, T = 100, randomly picked one skill at 
each step, and simulated sequential data with size of 10,000. 

4.2 Results 
We used OpenBUGS [24] to implement the MCMC algorithm 
of HOT-DINA. We chose 5 chains starting at different initial 
points. We monitored the estimates of skill discrimination 𝒂 and 
difficulty 𝒃 to check their convergence, when all the chains 
appear to be overlapping each other. As a result, we ran the 
simulation for 10,000 iterations with a burn-in of 3000.  

Table 5 reports the sample means and their 95% confidence 
interval for parameter estimates 𝒂, 𝒃  and le𝒂rn respectively. 
We also report the Monte Carlo error (MC error) and sample 

standard deviation (s.d.) to assess the accuracy of the posterior 
estimates for each parameter. MC error, which is an estimate of 
the difference between the estimated posterior mean (i.e. the 
sample mean) and the true posterior mean, should be less than 
5% of the s.d. in order to obtain an accurate posterior estimate. 

 

Table 5. Estimates of skill-specific discrimination, difficulty, 
and learning rate (N = 100, T = 100, K = 4, J = 14) 

k a 𝒂 (95% C.I.) s.d. MC_error 
1 1.50 1.33 (0.36, 2.43) 0.65 0.03216 
2 1.20 1.23 (0.12, 2.43) 0.72 0.03561 
3 1.90 1.85 (0.22, 2.73) 0.64 0.03146 
4 1.00 0.98 (0.19, 2.12) 0.58 0.02870 
k b 𝒃 (95% C.I.) s.d. MC_error 
1 -0.95 -0.95 (-2.15, -0.04) 0.50 0.02339 
2 1.42 1.51(0.90, 2.21) 0.45 0.01936 
3 -0.66 -0.69 (-1.81, -0.63) 0.42 0.01990 
4 0.5 0.5 (0.05,1.18) 0.38 0.01691 
k learn 𝒍𝒆𝒂𝒓𝒏 (95% C.I.) s.d. MC_error 
1 0.8 0.81 (0.48, 0.99) 0.13 0.006599 
2 0.6 0.60 (0.52, 0.70) 0.05 0.002132 
3 0.5 0.57 (0.38, 0.84) 0.11 0.005432 
4 0.3 0.29 (0.25, 0.33) 0.02 7.79E-04 
     
We calculated Root Mean Squared Error (RMSE) of the 
estimates of the continuous variables𝒈𝒖𝒆𝒔𝒔 , 1- 𝒔𝒍!𝒑 , and   
𝜽. We report the accuracy of recovering the true value of the 
latent binary variable α in Table 6. 

Table 6. Estimation RMSE of skill-specific guess, not slip, 
and student specific proficiency; Prediction accuracy of a 

student mastering a subskill (N = 100, T = 100, K = 4, J = 14) 

 𝒈𝒖𝒆𝒔𝒔  1-𝒔𝒍!𝒑 𝜽 
RMSE 0.0103 0.0196 0.9183 
 𝜶 
Accuracy 99.38% 

    
From the results, we can see that the MCMC algorithm 
accurately recovered the parameters we used in generating the 
synthetic data for HOT-DINA. In addition to seeing how 
accurately it can estimate the parameters, we are also interested 
in finding out how many observations would be sufficient for 
the training algorithm to recover the hidden variables. Therefore, 
we conducted the study we now describe in Section 4.3. 

4.3 Study Design 
HOT-DINA requires data from enough students to rate the 
difficulty and discriminability of each skill, and data on enough 
skills to estimate the proficiency of each student. So we fixed 
the number of skills at K = 4, and varied the number of students 
N or the number of steps observed from each student T, to 
discover how many observations would be sufficient to estimate 
the parameters. In particular, we evaluated each model on how 
accurately it estimated the latent binary state α¸ which indicates 
if a student masters a skill. We generated the data by using the 
same parameters as in Section 4.1. Besides the general HOT-
DINA model that accounts for multiple skills, we also studied 
the single-skill model by shrinking the number of skills J to 
equal K, and set Q as an identity matrix. Thus we specified the 
HOT-DINA model to be a HO-KT model alternatively.  

We increased N, the number of students, from 10 to 1000, and 
T, the number of observations per student, from 5 to 100. Table 
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7 and Table 8 respectively show the accuracy of estimating the 
latent state α in HO-KT and HOT-DINA. Both tables show a 
trend of increasing accuracy when N or T increases (though at 
the cost of longer training time, roughly O(N2×T)). 

Table 7. Accuracy of estimating the latent binary states α 
with different N and T (K = J = 4) 

T 
N 

5 10 20 50 100 

10 71.01% 80.81% 83.01% 93.11% 96.16% 

20 72.32% 82.74% 86.52% 94.06% 97.33% 

50 73.58% 83.79% 87.34% 95.27% 98.90% 

100 77.55% 84.43% 88.08% 95.81% 99.41% 

200 76.52% 84.02% 89.48%  97.26% NA  

500 78.13% 84.34% 92.50% NA  NA  

1000 80.10% 84.59%  NA NA  NA  
 
Due to the lack of sampling ability of OpenBUGS for high 
dimensional dynamic models, we have no available scores to 
show for N×T bigger than 10,000. We can see that the multiple 
skill model predicts better than the single-skill model because 
the average number of observations per skill in the former one is 
larger than the latter. As observed in both tables, it is more 
efficient to increase T, than N, to get a better estimate. Both of 
the models reach the best prediction accuracy score (> 99%) 
when N = 100 and T = 100. In order to obtain an accuracy > 
90% for K = 4 skills, the least amount of data we need for HO-
KT is N = 10 with T ≈ 50 observations as shown in Table 7, for 
HOT-DINA is N = 10 with T > 20 observations, as shown in 
Table 8. 

 
Table 8. Accuracy of estimating the latent binary states α 

with different N and T (K = 4, J = 14) 

T 
N 

5 10 20 50 100 

10 72.07% 75.57% 91.14% 96.90% 98.10% 

20 74.32% 83.60% 91.56% 97.46% 98.53% 

50 76.55% 84.71% 92.62% 97.52% 98.98% 

100 77.80% 86.82% 93.83% 97.67% 99.82% 

200 79.92% 88.78% 94.26% 99.41%  NA 

500 82.15% 89.95% 98.61%  NA  NA 

1000 83.58% 92.34%  NA  NA  NA 
 
Next we apply the proposed model to real data logged by an 
algebra tutor. We evaluate the model fit and compare it against 
two baselines. 

5. Evaluation on Real Data 
We apply HOT-DINA to a real dataset from the Algebra 
Cognitive Tutor® [25]. Because of limited time, we chose a 
subset of the data, by crossing out the “isolated” algebra tutor 
steps. An “isolated” step here means a step that requires one 
skill all its own. We grouped the remaining steps that require the 
same multiple skills into one skill, resulting in J = 15 distinct 
skills that require K = 12 subskills.  Following the study design 

in Section 4.3, we randomly chose N = 50 students with T = 100 
in order to obtain enough data for the MCMC estimation.  

Table 9. Data split of the Algebra Tutor data: training on I 
and IV, and testing on II and III  

 Skill group A Skill group B 
Student group A I II 
Student group B III IV 

We split the 50 students into two groups of 25, and split the 15 
skills into two groups of 8 and 7. As shown in Table 9, we 
combine data from I (student-group-A practicing on skill-group-
A) and IV (student-group-B practicing on skill-group-B) to 
obtain the training data. Accordingly, we combined the data 
from II and III to obtain the test data. As a benefit of the data 
split, we are able to test the models on unseen students for the 
same group of skills, and also test on the unseen skills for the 
same group of students. 

We compared HOT-DINA with the conjunctive minimum KT 
model [11] since it showed the best prediction accuracy among 
all the previous KT based methods [4]. It fits KT parameters by 
blaming each skill that is required at a step, predicts student’s 
performance by the weakest skill, and updates only the weakest 
skill. Accordingly, we updated the most difficult skill in HOT-
DINA as discussed in Section 3.2.3. As two baseline models, we 
fit per-skill KT and per-student KT. Comparing HOT-DINA 
with these two baselines also allows us to discuss some more 
interesting research questions later in this section.  

Table 10 and Table 11 respectively show the models’ prediction 
accuracy and log-likelihood on the test data. We report the 
majority class because of the unbalanced data. HOT-DINA beat 
the two baselines in predicting the student performance, and also 
obtained the maximum log-likelihood on the test data. The per-
student KT model obtained the worst scores on both measures. It 
predicted student performance almost as poorly as majority class 
because it misclassified almost all the data in the minority class. 

Table 10. Comparison of prediction accuracy on real test 
data 

 Overall 
Accuracy 

Accuracy on 
Correct Steps 

Accuracy on 
Incorrect Steps 

HOT-DINA 82.48% 96.63% 27.27% 
Per-skill KT  80.87% 94.02% 29.60% 
Per-student KT 79.63% 99.74% 1.20% 
Majority class 79.60% 100.00% 0.00% 

 
Table 11. Comparison of log-likelihood on real test data 

 Log-likelihood 
HOT-DINA -2021.04 
Per-skill KT  -2075.67 
Per-student KT  -2464.74 

     
We are also interested in three other hypotheses comparing 
HOT-DINA with KT. We describe them, test them, and show 
the results as follows. 

1. HOT-DINA should predict early steps more accurately than 
KT since its estimate of knew reflects both skill difficulty 
and student proficiency, not just one or the other.  In fact 
HOT-DINA beat KT throughout, as Figure 2 shows. 
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Figure 2. Accuracy on student’s 1st, 2nd, 3rd, … test steps 
2. HOT-DINA should beat KT on sparsely trained skills 

thanks to student proficiency estimates based on other 
skills.  As Figure 3 shows, HOT-DINA tied or beat KT 
throughout. 

Figure 3. Skills sorted by amount of training data 
3. HOT-DINA should beat KT on sparsely trained students 

thanks to skill difficulty and discriminability estimates 
based on other students.  As Figure 4 shows, HOT-DINA 
beat KT throughout. 

 
Figure 4. Students sorted by amount of training data 

Thus, HOT-DINA outperformed the two baselines in model fit. 
It also beat them as specified by the three hypotheses above. 

6. Contributions, limitations, future work 
In this paper we make several contributions.  We defined a 5-
dimensional framework for student models.  We showed how 
numerous student models fit into it.  We described the new 
combination of IRT, KT, and DINA it suggests in the form of 

HOT-DINA. We specified how to train HOT-DINA by using 
MCMC, how to test it by predicting student performance, and 
how to update estimated skills based on observed performance.   

HOT-DINA uses IRT to estimate knew based on student 
proficiency and skill difficulty.  Thus it does not need training 
data on every <student, skill> pair, since it can estimate student 
proficiency based on other skills, and skill difficulty and 
discriminability based on other students.  Likewise, it should 
estimate knew more accurately than KT for skills and students 
with sparse training data.  HOT-DINA uses KT to model 
learning over time, and DINA to model combination of multiple 
skills underlying observed steps (unlike conventional KT and 
with fewer parameters than CKT [10] or LR-DBN [12]).   

Tracing multiple skills underlying an observed step requires 
allocating responsibility among them for its success or failure.  
DINA simply conjoins them, a common method but inferior to 
others.  Future work includes using the best known method [4], 
which we didn’t use here because the logistic regression it 
performs is non-trivial to integrate with MCMC. 

We evaluated HOT-DINA on synthetic and real data, not only 
showing that it predicts student performance better than previous 
methods, but analyzing when and why. 

We reported a simulation study to test if training could recover 
model parameters, and to determine the amount of data needed. 
HOT-DINA requires data on enough students and skills to 
estimate their proficiency and difficulty, respectively.  We 
explored how its accuracy varies with the number of test steps 
and the amount of training data per student and per skill.  These 
analyses were correlational, based on variations that happened to 
occur in the training data.  Future work should invest in the 
computation required to vary the amount of training data to 
establish its true causal effect on accuracy. 

Evaluation on real data from an algebra tutor showed that HOT-
DINA achieved higher predictive accuracy and log likelihood 
than KT with parameters fit per student or per skill.  This 
evaluation was limited to a single data set and two baselines (not 
counting majority class).  Future work should compare HOT-
DINA to other methods – notably the Student Skill model [8], 
which is similar in spirit – and on data from other tutors. 

We assumed that student proficiency is one-dimensional.  Future 
work can test if k dimensions capture enough additional variance 
to make it worthwhile to fit k times as many parameters. 

Finally, our choice of 5 dimensions is useful but limiting.  
Additional dimensions may provide useful finer-grained insights 
into the models covered by the current framework, and expand it 
to encompass other types of student models, e.g. where the 
cognitive model is unknown and must be discovered [18, 19]. 
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ABSTRACT 

Intelligent Tutoring Systems (ITS) have been proven to be 

efficient providing student assistance and assessing their 

performance when they do their homework. Researchers have 

analyzed how students’ knowledge grows and predict their 

performance from within intelligent tutoring systems.  Most of 

them focus on using correctness of the previous question or the 

number of hints and attempts students need to predict their future 

performance, but ignore the sequence of hints and attempts. In 

this research work, we build a Sequence of Actions (SOA) model 

taking advantage of the sequence of hints and attempts a student 

needed for the previous question to predict students’ performance. 

A two step modeling methodology is put forward in the work and 

is a combination of Tabling method and the Logistic Regression. 

We compared SOA with Knowledge Tracing (KT) and Assistance 

Model (AM) and combinations of SOA/AM and KT. The 

experimental results showed that the Sequence of Action model 

has reliably better predictive accuracy than KT and AM and its 

performance of prediction is improved after combining with KT.  
Keywords 

Knowledge Tracing, Educational Data Mining, Student Modeling, 

Sequence of Action, Assistance Model, Ensemble. 

1. INTRODUCTION 
One of the student modeling tasks is to trace the student’s 

knowledge by using student’s performance. Corbett and Anderson 

(1995) put forward the well-known Knowledge Tracing (KT) 

based on their observation that the students’ knowledge is not 

fixed, but is assumed to be increasing. KT model makes use of 

Bayesian network to model students’ learning process and 

predicate their performance.  

A variety of extensions of KT model are put forward in 

recent years. Baker, Corbett, and Aleven (2008) build a contextual 

guess and slip model based on KT that provides more accurate 

and reliable student modeling than KT. Pardos and Heffernan 

extends KT four parameters model to support individualization 

and skill specific parameters and get better prediction of students’ 

performance. Qiu and Qi et al. find that forgetting is a more likely 

cognitive explanation for the over prediction of KT when 

considering the time students take to  finish their tasks.  

Alternative methods to KT model have been developed. For 

example, in order to generate adaptive instructions for students, 

Pavlik Jr., Cen, and Koedinger (2009) put forward the 

Performance Factor Analysis (PFA) model that can make 

predictions for individual students with individual skills. Gong, 

Beck, and Heffernan (2010) compared KT with PFA using 

multiple model fitting procedures and showed that there are no 

real differences in predictive accuracy between these two models.  

However, little attention is paid to the data generated when 

students interact with computer tutors. Shih, Koedinger, and 

Scheines (2010) utilize Hidden Markov Model clustering to 

discover different strategies students used while working on a ITS 

and predict learning outcomes based on these strategies. Their 

work is based on a dataset that consists of a series of transactions 

and each transaction is a <Student, Step, Action, Duration> tuple. 

This model takes into account both students’ action, attempt or 

help request, and action duration. The experimental results of 

their Stepwise-HMM-Cluster model shows that persistent 

attempts lead to better performance than hint-scaffolding strategy. 

Some papers have shown the value of using the raw number of 

attempts and hints. In fact, the National Educational Technology 

Plan cited Feng, Heffernan, and Koedinger’s work (2006) and the 

User Modeling community gave it an award for best paper for 

showing that the raw number of hints and attempts is informative 

in predicting state test scores. Wang and Heffernan (2011) built 

an Assistance Model (AM) and generated a performance table 

based on students’ behavior of doing the previous question. 

Hawkins et al.(2013) extended AM by looking at students’ 

behavior for the two previous questions.  

These educational data mining models that utilize the 

number of assistance students request and the number of attempts 

they make to predict students’ performance have ignored the 

sequencing of students’ interaction with ITS. Consider a thought 

experiment. Suppose you know that Bob Smith asked for one of 

the three hints and makes one wrong answer before eventually 

getting the question correct. What if someone told you that Bob 

first made an attempt then had to ask for a hint compared to the 

first requesting a hint and then making a wrong attempt. Would 

this information (whether he started with an attempt or a hint) add 

value to your ability to predict whether Bob will get the next 

question correct? We suspected that a student who first makes an 

attempt tends to learn by himself and has higher probability to 

master the knowledge and answer the next same question correct.  

In our previous work, we showed a Sequence of Action 

(SOA) model that made use of information about the action 

sequence of attempts and hints for a student in previous question 

better predicted the correctness of a current question.. We 

reported experimental results of an improvement upon the KT 

model. However, we later found a mistake in that experiment. So 

this paper serves as a correction of the previous results and as a 

formal presentation of the SOA model to the community. We 

present the SOA model and compare it to the KT model and the 

Assistance model, as well as the combined models to see if 

knowing sequence of action information does improve upon a 
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standard Knowledge Tracing model, or even upon knowing 

number of hints and number of attempts alone. 

The raw data and experiment result is available online: 

https://sites.google.com/site/assistmentsdata/projects/zhu2014. 

1.1 The Tutoring System and Dataset 
The data we used originated from the ASSISTments platform,  an 

online tutoring system for K12 students that gives immediate 

feedback to teachers, students, and parents. The ASSISTments 

gives tutorial assistance if a student makes a wrong attempt or 

asks for help. Figure 1 shows an example of a hint, which is one 

type of assistance. Other types of assistance include scaffolding 

questions and context-sensitive feedback messages, known as 

“buggy messages.” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 shows a student who asked for a hint (shown in 

yellow and also indicated by the button says “Show hint 2 of 4”), 

but it also shows that the student typed in eight and got feedback 

that this was wrong. Though Figure 1 shows the number of hints 

and attempts, interestingly you cannot tell whether the student 

asked a hint first or made an attempt first. This paper’s argument 

is that information is very important. 

ASSISTments records all the details about how a student 

does his or her homework and tests from which scientists can get 

valuable material to investigate students’ behavior and their 

learning process. These records include the start time and end 

time of a problem, the time interval between an attempt, if he or 

she asks for a hint, the number of attempts a student makes, the 

number of hints a student asks for, as well as the answer and result 

for each attempt a student makes. 

Figure 2 shows an example of a detailed sequence of action 

recorded by the system. The row in blue means that the answer is 

correct, the row in red means that the answer is wrong, and the 

row in orange means the student asked for a hint. We can see that 

this student answered correctly on his first attempt for the first 

problem PRAQM5U. The sequence of action is ‘a’ (‘a’ represents 

an attempt). For the second problem PRAQM2W, he asked three 

hints continuously before making the correct answer. The 

sequence of action is ‘hhha’ (‘h’ represents a hint). For the third 

problem PRAQM2F, he alternatively asked for hints and made 

attempts, and the sequence of action is ‘hahaha’. For the last 

problem PRAQZPN, he made one wrong attempt before making 

the correct answer and its action sequencing is ‘aa.’ 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

We used data from one Mastery Learning class. Mastery 

Learning is a strategy that requires students to continually work 

on a problem set until they have achieved a preset criterion 

(typically three consecutive correct answers). Questions in each 

problem set are generated randomly from several templates and 

there is no problem-selection algorithm used to choose the next 

question.  

Sixty-six 12-14 year-old, 8th grade students participated in 

these classes and generated 34,973 problem logs. We only used 

data from a problem set for a given student if they had reached the 

mastery criterion. This data was collected in a suburban middle 

school in central Massachusetts. Students worked on these 

problems in a special “math lab” period, which was held in 

addition to their normal math class. 

If a problem only has one hint, the hint is the answer of the 

problem and is called the bottom hint. After a student asks for a 

bottom hint, any other attempt is meaningless because he or she 

already knows the answer. In the experiment, we only consider 

the problem logs that have at least two hints. And the answer will 

be marked as incorrect if students ask for a hint or the first attempt 

is incorrect. Moreover, we excluded such problem logs where: 1) 

students quit the system immediately after they saw the question 

and the action logs were blank ,or 2) after they requested hints, 

but did not make any attempts and no answer was recorded.  

Here we only consider the question pairs that have the same 

skill and skills having only one question were removed because 

they do not help in predicting. Questions of the same skills were 

sorted by start time in ASSISTments. We split equally 66 students 

into six groups, 11 students in each, to run 6-fold cross validation. 

We trained the SOA model and the KT model on the data from 

five of the groups and then computed the prediction accuracy on 

the sixth group. We did this for all six groups.   

2. INDIVIDUAL MODELS 

2.1 KT 
Knowledge Tracing (KT) is one of the most common methods 

that are used to model the process of student’s knowledge gaining 

and to predict students’ performance. The KT models is an 

Hidden Markov Model (HMM) with a hidden node (student 

Figure 1. Assistance in ASSISTments. Which is first: 

asking for a hint or make an attempt? 

 

. 

 

 

Figure 2. Students’ action records in ASSISTments 

 

. 
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knowledge node) and an observed node (student performance 

node). It assumes that a skill has four parameters; two knowledge 

parameters and two performance parameters. The two knowledge 

parameters are: prior and learn. The prior knowledge parameter is 

the probability that a particular skill was known by the student 

before interacting with the tutor. The learn parameter is the 

probability that a student transits from the unlearned state to the 

learned state after each learning opportunity, i.e., after see a 

question. The two performance parameters are: guess and slip. 

Guess is the probability that a student will guess the answer 

correctly even if the skill associated with the question is in the 

unlearned state. Slip is the probability that a student will answer 

incorrectly even if he or she has mastered the skill for that 

question.  

The goal of KT is to estimate the student knowledge from his 

or her observed actions. At each successive opportunity to apply a 

skill, KT updates its estimated probability that the student knows 

the skill, based on the skill-specific learning and performance 

parameters and the observed student performance (evidence). It is 

able to capture the temporal nature of data produced where 

student knowledge is changing over time. KT provides both the 

ability to predict future student response values, as well as 

providing the different states of student knowledge. For this 

reason, KT provides insight that makes it useful beyond the scope 

of simple response prediction.  

2.2 Assistance Model 
Motivated by the intuition that students who need more assistance 

have lower probability possessing the knowledge, Wang and 

Heffernan (2011) built a purely data driven “Assistance” model to 

discover the relationship between assistance information and 

students’ knowledge.  

A parameter table was built in which rows represent the 

number of attempts a student required in the previous question 

and columns represent the number of hints the student asked for. 

Each cell contains the probability that the student will answer the 

current question correctly. The attempts are separated into three 

bins: one attempt, small number of attempts (2-5 times), and large 

numbers of attempts (more than five attempts). Hints are separated 

into four bins: no hint, small number of hints (1, 50%], large 

number of hints [50%, 100%), and all hints where students for all 

hints. Table 1 shows the parameter table gained from our dataset. 

As with Wang and Heffernan’s experimental results, the 

parameter table confirms that students requiring more assistance 

to solve a problem probably have less corresponding knowledge.  

Table 1. Assistance Model parameter table, average across six 

folds   

 
attempt= 1 0<attempt<6 attempt>=6 

hint_percent = 0 0.8410 0.7963 0.7808 

0<hint_percent<=.5 0.6286 0.6933 0.6741 

.5<hint_percent<1 0.4494 0.6290 0.6522 

hint_percent = 1 0.4293 0.6147 0.6218 

 

2.3 The Sequence of Action Model 
The Sequence of Action (SOA) model we present takes advantage 

of the order information about how students make attempts and 

ask for hints. Different students have different sequences of 

actions. Some students answered correctly only after one attempt 

and some students kept trying many times. Some students asked 

for hints and made attempts alternatively and we believe they 

were learning by themselves. In the data, there are 217 different 

sequences of actions. Intuitively, students’ actions reflect their 

study attitude and this determines their performance. Based on the 

assumption that students who make more attempts tend to master 

knowledge better than students who ask for more hints, we 

divided them into five categories or bins: (1) One Attempt: the 

student correctly answered the question after one attempt; (2) All 

Attempts: the student made many attempts before finally getting 

the question correct; (3) All Hints: the student only asked for hints 

without any attempts at all; (4) Alternative, Attempt First: the 

students asked for hints and made attempts alternatively and made 

an attempt at first; and (5) Alternative, Hint First: the students 

asked for hint and made attempts alternatively and asked for a hint 

first. Table 2 shows the division and some examples of the action 

sequences in each category.  

Table 2. Sequence of Action Category and Examples 

Sequence of Action Category/ 

Bin Name 
Examples 

One Attempt/Bin ‘a’ a 

All Attempts/Bin ‘a+’ aa, aaa, …, aaaaaaaaaaaa 

All Hints/Bin ‘h+’ ha, hha,…, hhhhhhha 

Alternative, Attempt First/Bin ‘a-

mix’ 
aha, aahaaha,…, aahhhhaaa 

Alternative, Hint First/Bin ‘h-

mix’ 
haa, haha,…, hhhhaha 

Notice that each sequence ends with an attempt because in 

ASSISTments, a student cannot continue to next question unless 

he or she fills in the right answer of the current problem. In Table 

2, ‘a’ stands for answer and ‘h’ stands for hint. An action 

sequence “ahha” means that a student makes an attempt and then 

asks for two hints before he or she types the correct answer and 

moves on to the next question.  

2.3.1 Sequence of Action Tabling 
After dividing all of sequence of actions into five categories, we 

use a Tabling method, which gets the next percent correct directly 

from the training data. For each fold, one table is generated by the 

tabling method by counting the number of total appearance and 

the number of next correct of each bin. After counting, a next 

correct percent is calculated by dividing Next Correct Count by 

Total Count of Bin.  

Table 2. Next correct percent table of training group of fold 1 

Bin 

Name 

Total 

Count 

Next Correct 

Count 

Next Correct 

Percent 

 ‘a’ 22964 19157 0.834 

‘a+’ 3538 2690 0.760 

 ‘h+’ 335 172 0.513 

 ‘a-mix’ 2030 1318 0.649 

‘h-mix’ 72 37 0.513 

Table 3 shows the table computed for fold 1. Tables for other 

folds are similar. From Table 3, we can see that the percent of 

next-question-correct is highest among students only using one 

attempt since they master the skill the best. They can correctly 
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answer the next question with the same skill. For students in ‘a+’ 

bin, they are more self-learning oriented, they try to learn the skill 

by making attempts over and over again. So they get the second 

highest next-question-correct percent. But for students in the ‘h+’ 

category, they do the homework only relying on the hints. It is 

reasonable that they don’t master the skill well or they don’t even 

want to learn, so their next-question-correct percent is very low. 

The alternative sequence of action reflects students’ learning 

process. Intuitively, these students have positive attitudes for 

study. They want to get some information from the hint based on 

which they try to solve the next problem. But the results for the 

two alternative categories are very interesting. Though students in 

these two categories alternatively ask for hints and make attempts, 

the first action somewhat decides their learning altitude and final 

results. For students who make an attempt first, if they get the 

question wrong, they try to learn it by asking for hints. But for 

students who ask for a hint first, they seem to have less confidence 

in their knowledge. Although they also make some attempts, from 

the statistics of action sequence, they tend to ask for more hints 

than making attempts. The shortage of knowledge or the negative 

study attitude makes their performance as bad as the students 

asking exclusively for hints first.  

2.3.2 Logistic Regression 
In this section, we are going to introduce the second part of the 

SOA model that makes use of a logistic regression model and 

information we get from the first part of SOA, i.e., tabling 

method. 

Even though the next correct percentage we get from the 

tabling method indicates that the action of sequence can reflect 

the trend of next correct percentage, the table is very rough and is 

not intelligent enough to be used to predict students’ performance. 

However, we can use it as a feature in our logistic regression 

prediction model.  

The dependent variable Next Correct of the logistic 

regression model has two states: correct and incorrect. The 

independent variables are Skill_ID and Credit (the next correct 

percentage generated by the tabling method). Skill_ID was treated 

as a categorical factor, while Credit was treated as a continuous 

factor. There are totally 51 skills of the data. As mentioned in 

before, there are six folds and each fold has their own next correct 

percentage table.  

We used Binary Logistic Regression in SPSS to train the 

model. Logistic coefficients are fitted through Expectation 

Maximization of at most 20 steps. Parts of coefficients of the first 

fold are shown in Table 4. 

Table 4. Coefficients of logistic regression model of fold 1 

Parameters Value 

β0(Intercept) -1.679 

β1,0(skill_id 16) 0.322 

β1,1(skill_id 17) -0.007 

β1,2(skill_id 24) 20.168 

……. …… 

β1,50(skill_id 371) 0.470 

β2(Credit) 3.286 

3. MODEL COMBINATION 
Since the SOA model uses completely different information from 

KT, we expected a potential improvement from combing SOA 

results with the predictions from KT. We combined models using 

two different methods. 

The first method was simply average the SOA and KT 

predictions. Presumably, if a group of models have high 

accuracies and uncorrelated errors, we can get lower error by 

averaging them. To compare with the combination of AM model 

and KT model, we also computed the average of these two 

models. 

The second method was a linear regression model with 

student performance as the dependent variable. This method takes 

into account the fact that different models’ predictions may have 

different weight in the final prediction. If one of the models is 

more useful than the other, this method will allow us to learn 

which model should be weighted more heavily. SPSS was used to 

train linear regression models. The function for KT and AM is:  

-0.322+0.639*AM_prediction+0.769*KT_prediction; 

The function for KT and SOA is: 

-0. 004+0. 687*SOA_prediction+0. 321*KT_prediction; 

We did not combine AM and SOA, because both of them use 

information about hints and attempts. From the functions, we can 

tell that SOA weights heavier than KT, which indicates that SOA  

is  more  useful  than  KT in making a prediction. 

4. EXPERIMENTAL RESULTS 

4.1 Compare AM, SOA and KT 
To evaluate how well each of the individual models (SOA, 

AM, KT) and the combined models fit the data, we used three 

metrics to examine the predictive performance on the unseen test 

set: Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE) and Area Under ROC Curve (AUC). Lower values for 

MAE and RMSE and higher values for AUC indicate better 

model fit.  

Table 5. Prediction accuracy of KT, SOA, AM and Ensemble 

 MAE RMSE AUC 

AM 0.3007 0.3844 0.5795 

SOA 0.2871 0.3767 0.6786 

KT 0.2939 0.3790 0.6735 

LR(AM, KT) 0.2874 0.3759 0.6824 

LR(SOA, KT) 0.2878 0.3762 0.6813 

AVG(SOA, 

KT) 
0.2876 0.3757 0.6836 

Table 5 shows values of the three metrics from a six-fold 

across validation, which are calculated by averaging 

corresponding numbers obtained from each validation. As with 

Wang and Heffernan’s results (Wang & Heffernan, 2011), the 

performance of linear regression combination of AM and KT, 

called as LR(AM, KT) is better than AM itself, which indicates 

information about the number of hints and attempts improves the 

prediction of KT model. Overall, the combination of any two 

models have higher prediction accuracy and this is especially true 
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that for the average ensemble of SOA and KT, called as 

AVG(SOA, KT), which has better accuracy than the other two 

combinations. Also, the linear regression of AM and KT has 

better prediction accuracy than linear regression combination of 

SOA and KT. However, from the two tailed paired t-test results 

shown in Table 6, the statistical difference between any two pairs 

of model combinations are not significant. 

To examine whether there is significant difference between 

these models, we performed a 2-tailed paired t-test. The p values 

are shown in Table 6. We observe that most of the differences 

between two models are reliable, except for when we compare 

some AM and KT combined models with SOA and KT combined 

models. Both SOA and AM use the information about students’ 

actions of hints and attempts. There might be a chance that SOA 

and LR(AM, KT) have some prediction overlap. 

Table 6. Reliability when compare KT, SOA, AM, and 

Ensemble 

 MAE RMSE AUC 

AM vs SOA 0.000 0.000 0.000 

AM vs KT 0.000 0.000 0.000 

AM vs LG(AM, KT) 0.000 0.000 0.000 

AM vs LR(SOA, KT) 0.000 0.000 0.000 

AM vs AVG(SOA, KT) 0.000 0.000 0.000 

SOA vs KT 0.000 0.000 0.037 

SOA vs LG(AM, KT) 0.298 0.030 0.083 

SOA vs LR(SOA, KT) 0.000 0.001 0.006 

SOA vs AVG(SOA, KT) 0.020 0.000 0.003 

KT vs LR(AM, KT) 0.000 0.000 0.000 

KT vs LR(SOA, KT) 0.000 0.000 0.000 

KT vs AVG(SOA, KT) 0.000 0.000 0.000 

LR(AM, KT) vs LR(SOA, KT) 0.265 0.296 0.469 

LR(AM, KT) vs AVG(SOA, 

KT) 
0.271 0.138 0.079 

LR(SOA, KT)vs AVG(SOA, 

KT) 
0.258 0.001 0.010 

 

4.2 Further Analysis for SOA and KT 
From the last section, we observed the best model is the 

AVG(SOA,KT) model. In order to better investigate this 

combination, we ran student level and skill level analysis. 

Tables 7 and 8 shows the student level result across 66 

students to account for the non-independence of their actions. 

Take MAE as an example, for each student; a MAE is calculated 

based on all data available for that student. Then an average value 

for MAE is computed based on MAE of all students. Table 8 

shows the t-test p value for each pair of these three models, where 

the remaining degrees of freedom on all the tests is 65. 

Table 7. Student Level accuracy of KT, SOA and Ensemble 

 MAE RMSE AUC 

KT 0.2939 0.3790 0.6738 

SOA 0.2871 0.3767 0.6786 

AVG(KT, SOA) 0.2905 0.3765 0.6811 

Table 8. Student level reliability of difference of KT, SOA and 

Ensemble 

 MAE RMSE AUC 

KT vs SOA 0.0000 0.0000 0.0551 

KT vs AVG 0.0000 0.0000 0.0000 

SOA vs AVG 0.0000 0.0698 0.0698 

Note that there is no significant difference of AUC between 

KT and SOA. We interpret these results by pointing out that 

RMSE and AUC are metrics that are optimized for measuring 

different things, and so this is quite possible.  

Table 9 and 10 shows the skill level result across all 51 

skills. From Table 9 we observe a very low AUC value for all the 

models, which indicates these models do not make a good 

classification at skill level. The t-test p value with remaining 

degrees of freedom 50 is shown in table 10. 

Table 9. Skill level accuracy of KT, SOA and Ensemble 

 MAE RMSE AUC 

KT 0.3064 0.3762 0.4675 

SOA 0.2942 0.3713 0.4769 

AVG(KT, SOA) 0.3003 0.3710 0.492 

Table 10. Skill Level reliability of difference of KT, SOA and 

Ensemble 

 MAE RMSE AUC 

KT vs SOA 0.0000 0.0136 0.3492 

KT vs AVG 0.0000 0.0002 0.0003 

SOA vs AVG 0.0000 0.3982 0.0059 

The student and skill level analysis generate similar 

conclusions, that SOA and ensemble outperform KT in all of the 

three metrics. When we compare the ensemble model with SOA 

alone, the result is not so clear. 

5. DISCUSSION AND FUTURE WORK 
In this paper, we put forward a Sequence Of Action model that 

makes use of sequence of students attempts to answer questions 

and asking for hints. The SOA model consists of two parts. First, 

the sequence of students’ actions are divided into five categories. 

A tabling method shows that students who only make attempts 

tend to answer the next question more correctly than students who 

only ask for hints. This could be caused by students who make 

more attempts are trying to figure problems out by themselves and 

it is an efficient way to master knowledge when  they are told the 

steps to answer these questions by asking for hints. Second, we 

built a logistic regression model with next question correct 

percentage as dependent variable and skill_id, credits of sequence 

of action bins as independent variables. 

We conducted six-fold cross validation experiments. The 

experimental result showed that SOA had reliably higher 

prediction accuracy than the Knowledge Tracing model and 

Assistance Model. The average combination of the SOA and KT 

had the highest prediction. In sum, the sequence of students’ 

actions provided important information in predicting students’ 

performance.  

This work is the beginning of utilizing the sequence of 

asking for hints and making attempts recorded by intelligent 

Published in CEUR-WS: 
BKT20y workshop (Yudelson, González-Brenes and Mozer) 
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

134



tutoring systems to better predict student performance. There are 

many open spaces for us to explore. For example, the 

experimental data we used is from ASSISTments, does SOA 

model still makes a big difference if use data from other 

intelligent tutor systems? How much can the performance of SOA 

model be improved if combined with other efficient prediction 

model such as PFA (Pavlik et al., 2009)? What is the SOA 

model’s performance if we use a student action sequence of 

several previous questions when we train the model? How does 

SOA perform after individualization? These are some of the 

questions that still need to be explored. 

6. CONTRIBUTION 
Predicting student performance is an important part of the student 

modeling task in Intelligent Tutoring Systems.  A large portion of 

papers at EDM have focused on this. Many models and 

techniques have been used to model and investigate students’ 

performance. However, little attention been paid to the temporally 

sequential actions of student when interacting with the tutoring 

system.  To our knowledge we are the first to use the temporal 

sequencing of hints and attempts.  It turns out that by paying 

attention to this we can better predict student performance. In this 

paper, we introduce the Sequence of Action model which makes 

use of the click-stream data of the sequence of making attempts 

and asking for hints when students do their homework using an 

Intelligent Tutoring System. Students’ actions can be very 

different from each other, but we found there are some useful 

patterns. 

We can think of several ways to improve upon this.  First, 

our five bins that we put students into were somewhat arbitrary.  

There could be more bins or fewer.  If we use more bins, we might 

have very different predictions. The downside is that for some of 

these bins we might not have enough data points to reliably fit the 

parameters.  One way to make the model better might be to split 

the “All Hints” bin into one that has “Reached Bottom out Hint” 

and one that is “All hints excluding those that reached the bottom 

out.” We could also try to pay attention to features like response 

time between hints or the response time after a hint in making an 

attempt.   

According to our six-fold cross validation experiments and 

paired two-tailed t-test, both on student level and skill level, our 

Sequence of Action model had reliably higher prediction accuracy 

than KT and AM, the later uses the number of hints students ask 

for and the number of attempts students make. Furthermore, we 

combined SOA and KT using average and linear regression 

methods, and the ensemble model’s prediction performance was 

much better than either SOA or KT. We also compared 

combination of SOA and KT with combination of AM and KT. 

The experimental result show that SOA contributes  more useful 

information than AM alone, which indicates that the sequential 

information of action does convey more information about 

students’ learning than the statistics information of actions 

students make. 
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ABSTRACT 

Bayesian Knowledge Tracing (BKT) is a popular student model 

used extensively in educational research and in intelligent tutoring 

systems. Typically, a separate BKT model is fit per skill, but the 

accuracy of such models is dependent upon the skill model, or 

mapping between problems and skills. It could be the case that the 

skill model used is too coarse-grained, causing multiple skills to 

all be considered the same skill. Additionally, even if the skill 

model is appropriate, having problems that exercise the same skill 

but look different can have effects on student performance. There-

fore, this work introduces a student model based on BKT that 

takes into account the similarity between the problem the student 

is currently working on and the one they worked on just prior to 

it. By doing this, the model can capture the effect of problem 

similarity on performance, and moderately improve accuracy on 

skills with many dissimilar problems. 

Keywords 

Student modeling, Bayesian Knowledge Tracing, Problem Simi-

larity 

1. INTRODUCTION 
Bayesian Knowledge Tracing (BKT) [3] is a popular student 

model used both in research and in actual intelligent tutoring 

systems. As a model that infers student knowledge, BKT has 

helped researchers answer questions about the effectiveness of 

help within a tutor [1], the impact of “gaming the system” on 

learning [5], and the relationship between student knowledge and 

affect [9], among others. Additionally, it has been used in the 

Cognitive Tutors [6] to determine which questions should be 

presented to a student, and when a student no longer needs prac-

tice on a given skill. 

However, BKT models are dependent upon the underlying skill 

model of the system, as a separate BKT model is typically fit per 

skill. If a skill model is too coarse-grained or too fine-grained, it 

can make it more difficult for a BKT model to accurately infer 

student knowledge [8]. 

Additionally, even when a skill model is tagged at the appropriate 

level, seeing similar problems consecutively as opposed to seeing 

dissimilar problems may have effects on guessing and slipping, 

two important components of BKT models. For example, if a 

student does not understand the skill they are working on, seeing a 

certain type of question twice or more consecutively may improve 

their chances of “guessing” the answer using a suboptimal proce-

dure that would not work on other questions from the same skill. 

Whether the skill model is not at the appropriate level or seeing 

consecutive similar questions helps students succeed without fully 

learning a skill, it may be important to take problem similarity 

into account in student models. In this work, we introduce the 

Bayesian Knowledge Tracing – Same Template (BKT-ST) model, 

a modification of BKT that considers problem similarity. Specifi-

cally, using data from the ASSISTments system [4], the model 

takes into account whether the problem the student is currently 

working on was generated from the same template as the previous 

problem. 

The next section describes the ASSISTments system, its template 

system and the data used for this paper. Section 3 describes BKT 

and BKT-ST in more detail, and describes the analyses we per-

formed on these models. The results are reported in Section 4, 

followed by discussion and possible directions for future work in 

Section 5. 

2. TUTORING SYSTEM AND DATA 

2.1 ASSISTments 
ASSISTments [4] is a freely available web-based tutoring system 

used primarily for middle and high school mathematics. In addi-

tion to providing a way for teachers to assess their students, AS-

SISTments also assists the students in a few different ways: 

through the use of series of on-demand hint messages that typical-

ly end in the answer to the question (the “bottom-out hint”), 

“buggy” or feedback messages that appear when the student gives 

a common wrong answer, and “scaffolding” questions that break 

the original question into smaller questions that are easier to an-

swer. 

While teachers are free to author their own content, ASSISTments 

provides a library of approved content, which includes problem 

sets called skill-builders, which are meant to help students prac-

tice a particular skill. While most problem sets contain a fixed 

number of problems that must all be completed for a student to 

finish, a skill-builder is a special type of problem set that assigns 

questions in a random order and that is considered complete once 

a student answers three consecutive questions correctly on the 

same day. 
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While requiring students to answer three consecutive questions 

correctly on the same day to complete a skill-builder ensures that 

they have some level of knowledge of the particular skill being 

exercised, it takes some students many problems to achieve this, 

meaning they may see the same problem more than once if the 

skill-builder does not contain enough unique problems. 

To ensure this does not happen (or at least make it highly unlike-

ly), ASSISTments has a templating system that facilitates creating 

large numbers of similar problems quickly. The content creator 

creates a question as normal, but specifies that it is a template and 

uses variables in the problem statement and answer rather than 

specific values. Then, they are able to generate 10 unique prob-

lems at a time from that template, where each problem is random-

ly populated with specific values as prescribed by the template. 

This is especially useful for skill-builders, whose problems should 

theoretically all exercise the same skill. Figure 1 shows an exam-

ple of a template (a) and a problem generated from it (b). 

 

Figure 1. A template (top image) and a problem generated 

from it (bottom). The variables ‘b’ and ‘c’ in the template are 

replaced by ‘8’ and ‘23’ in the generated problem. 

2.2 Data 
In this work, we used ASSISTments skill-builder data from the 

2009-2010 school year. This data set consists of 61,522 problem 

attempts by 1,579 students, spread across 67 different skill-

builders. A (student, skill-builder) pair was only included if the 

student attempted three or more problems on that particular skill-

builder, and a skill-builder was included if it was used by at least 

10 students and at least one of them completed it. 

3. METHODS 
In this section, we begin by describing Bayesian Knowledge Trac-

ing, and then move on to our modification of it, called Bayesian 

Knowledge Tracing – Same Template. Finally, we describe the 

analyses we performed using these two models. 

3.1 Bayesian Knowledge Tracing 
Bayesian Knowledge Tracing (BKT) [3] is a popular student 

model that uses a dynamic Bayesian network to infer student 

knowledge using only a student’s history of correct and incorrect 

responses to questions that exercise a given knowledge compo-

nent (or “skill”). 

Typically, a separate BKT model is fit for each skill. BKT models 

assume that there are only two states a student can be in for a 

given skill: the known state or the unknown state. Using a stu-

dent’s performance history on a given skill, a BKT model infers 

the probability that the student is in the known state on question t, 

P(Kt). 

Fitting a BKT model involves estimating four probabilities: 

1. Prior Knowledge – P(L0): the probability the student 

knew the skill before answering the first question 

2. Learn Rate – P(T): the probability the student will know 

the skill on the next question, given that they do not 

know the skill on the current question 

3. Guess Rate – P(G): the probability the student will an-

swer the current question correctly despite not knowing 

the skill 

4. Slip Rate – P(S): the probability the student will answer 

the current question incorrectly despite knowing the 

skill 

Note that forgetting is typically not modeled in BKT: it is as-

sumed that once a student learns a skill, they do not forget it. An 

example of a BKT model, represented as a static unrolled Bayesi-

an network, is shown in Figure 2. 

 

 

Figure 2. Static unrolled representation of Bayesian 

Knowledge Tracing. The Kt nodes along the top represent 

latent knowledge, while the Ct nodes represent performance. 

3.2 Bayesian Knowledge Tracing – Same 

Template 
The Bayesian Knowledge Tracing - Same Template (BKT-ST) 

model differs from the regular BKT model in one way: it takes 

into account whether the problem it’s about to predict was gener-

ated from the same template as the previous problem the student 

worked on. This is modeled as a binary observed variable that 

influences performance. 

This results in six parameters to be learned per skill: the initial 

knowledge rate, the learn rate, and two sets of guess and slip rates: 

one set for when the previous problem and current problem were 

generated from the same template (P(G|Same) and P(S|Same)), 

and one for when they aren’t (P(G|Different) and P(S|Different)). 

The model is shown in Figure 3. 
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Figure 3. Static unrolled representation of Bayesian 

Knowledge Tracing – Same Template. The only difference 

from BKT is the presence of the Dt nodes, which represent 

whether the previous question was generated by the same 

template as the current one. 

3.3 Analyses 
The first analysis in this work simply considers how well the two 

models fit the data compared to each other overall. This is deter-

mined by fitting separate BKT and BKT-ST models for each skill 

and then predicting unseen student data using five-fold student-

level cross-validation. Then, we evaluate each model’s ability to 

predict next question correctness by computing the mean absolute 

error (MAE), root mean squared error (RMSE) and area under the 

curve (AUC) for each student and then averaging across students 

for each type of model. Finally, two-tailed paired t-tests are used 

to determine the significance of the differences in the metrics. 

The second analysis considers what the metrics look like for each 

model based on how many templates were used for each skill-

builder problem set. This is done by splitting the predictions made 

in the first analysis by how many templates were used in the cor-

responding skill-builder. We did this to see when it would be 

worth using BKT-ST over BKT. 

Finally we consider the parameter values learned for the BKT-ST 

model to determine any effects that seeing problems generated by 

the same template consecutively has on guessing and slipping. 

The BKT and BKT-ST models used in these analyses are fit using 

the Expectation-Maximization (EM) algorithm in the Bayes Net 

Toolbox for Matlab (BNT) [7]. The initial values given to EM for 

BKT were 0.5 for P(L0) and 0.1 for the other three parameters. 

This was also true for BKT-ST, except the slip rate was set to 0.2 

when the current and previous problems were generated from the 

same template. 

4. RESULTS 
In this section, we first present the overall comparison of BKT 

and BKT-ST, then show how they compare to each other based on 

the number of templates used in each skill-builder. Finally, we 

examine the learned parameters for the BKT-ST model. 

4.1 Overall 
The overall results comparing BKT to BKT-ST are shown in 

Table 1. 

Table 1. Overall results of fitting BKT and BKT-ST models. 

 MAE RMSE AUC 

BKT 0.3830 0.4240 0.5909 

BKT-ST 0.3751 0.4205 0.6314 

 

According to these results, BKT-ST outperforms BKT in all three 

metrics. Statistical tests confirmed that these results were reliable 

(MAE: p < .0001, t(1578) = 9.939; RMSE: p < .0001, t(1578) = 

4.825; AUC: p < .0001, t(1314) = -11.095), though according to 

the values in the table, the only noticeable gain was in AUC. 

4.2 By Number of Templates 
Next, we considered how well each model did based on the num-

ber of templates a skill-builder contained. The results are shown 

in Figure 4. 

 

 

Figure 4. Graph of MAE, RMSE and AUC for the BKT and 

BKT-ST models, plotted against the number of unique tem-

plates per skill. 

Interestingly, both BKT and BKT-ST decline rapidly in terms of 

model goodness as the number of templates per skill-builder in-

creases. This is likely the case because those with more templates 

are more likely to have more than one skill being tested within 

them. Interestingly, although both models decline similarly in 

terms of MAE and RMSE, BKT-ST declines at a slower rate than 

BKT does in terms of AUC. In fact, BKT-ST outperforms BKT in 

terms of AUC for every group of skills with more than one tem-

plate. When grouping the skills by the number of templates they 

had, BKT-ST achieved an AUC of at least 0.0236 better than 

BKT for each group that had more than one template, and 

achieved AUC values that were 0.1086 and 0.0980 better than 

BKT for skills with five and 10 templates, respectively. Addition-

ally, while BKT performs worse than chance (AUC < 0.5) on 

skills with eight or more templates, BKT-ST never performs 

worse than chance. 

4.3 Parameter Values 
To analyze the parameters learned by BKT-ST, for each skill, we 

took the average value of each of the six parameters learned 

across the five folds from the overall analysis. 

First, we computed the average value of each parameter across all 

67 skills. These are shown in Table 2. 

Table 2. Means and standard deviations of BKT-ST parameter 

values learned across 67 skill-builders 

Parameter Mean SD 

P(L0) 0.6030 0.2617 

P(T) 0.2966 0.2500 
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P(G|Different) 0.1880 0.1655 

P(S|Different) 0.2941 0.1737 

P(G|Same) 0.3337 0.2495 

P(S|Same) 0.1514 0.0848 

 

From the results in Table 2, it appears that on average, seeing 

consecutive questions generated from the same template both 

increases the guess rate (p < .0001, t(66) = -4.516) and decreases 

the slip rate (p < .0001, t(66) = 7.186). 

Next, we examined how these parameters changed with respect to 

the number of templates used per skill-builder. The average values 

of the performance parameters (guess and slip rates for same and 

different templates) are shown in the graph in Figure 5. The re-

sults for skills with one template are omitted since the 

P(G|Different) and P(S|Different) parameters are meaningless in 

such cases. 

 

 

Figure 5. Average value of each performance parameter for 

the number of templates used per skill-builder. 

Although there is no clear pattern for any of the four performance 

parameters shown in the graph, the average value of P(G|Same) is 

always higher than that of P(G|Different), and that of P(S|Same) is 

always lower than that of P(S|Different), with respect to the num-

ber of templates used per skill. This appears to reinforce the no-

tion that seeing consecutive problems generated from the same 

template makes the latter easier to solve, whether this is due to the 

skill model being too coarse-grained or familiarity with a certain 

type of problem within a skill inflating performance. 

5. DISCUSSION AND FUTURE WORK 
From the results in this work, it appears that modifying Bayesian 

Knowledge Tracing to take similarity between consecutive prob-

lems into account moderately improves cross-validated predictive 

performance, especially in terms of AUC. Additionally, this work 

showed that seeing consecutive similar problems improves stu-

dent performance by both increasing the guess rate – the probabil-

ity of answering a question correctly despite not knowing the skill 

– and decreasing the slip rate – the probability of answering a 

question incorrectly despite knowing the skill. Regardless of the 

underlying reason for this, whether it is because the skill model is 

too coarse-grained or simply that familiarity with a type of prob-

lem within a skill improves performance, it appears important for 

student models to take the similarity of the problems students 

encounter into account when trying to model student knowledge. 

One direction for future work would be to try going back further 

in the problem sequence to see how the similarity of problems 

earlier in a student’s history affects their ability to answer the 

current problem. Additionally, it would be interesting to deter-

mine whether the effect changes in certain situations. For exam-

ple, what is the effect of seeing two similar problems in a row, 

followed by one that is different from both? 

Another area of interest would be to use a model that takes prob-

lem similarity into account when trying to predict a longer-term 

outcome, such as wheel-spinning [2], retention and transfer, as 

opposed to simply predicting next question correctness. 

Finally, applying this model and others like it to other learning 

environments and skill models of various grain sizes would be 

helpful for understanding when it is useful. Presumably, if a skill 

model is at the appropriate grain size, the difference in predictive 

performance between BKT and BKT-ST would be reduced. The 

same would be true of systems that fall to one of two extremes: 

those whose problem sets are highly repetitive, and those whose 

problem sets have a rich variety of problems. 

6. ACKNOWLEDGMENTS 
We acknowledge funding from NSF (#1316736, 1252297, 

1109483, 1031398, 0742503), ONR's 'STEM Grand Challenges' 

and IES (# R305A120125 & R305C100024). 

7. REFERENCES 
[1] Beck, J.E., Chang, K., Mostow, J., Corbett, A. Does help 

help? Introducing the Bayesian Evaluation and Assessment 

methodology. Intelligent Tutoring Systems, Springer Berlin 

Heidelberg, 2008, 383-394. 

[2] Beck, J. E., and Gong, Y. Wheel-Spinning: Students Who 

Fail to Master a Skill. In Artificial Intelligence in Education, 

pp. 431-440. Springer Berlin Heidelberg, 2013. 

[3] Corbett, A. and Anderson, J. Knowledge Tracing: Modeling 

the Acquisition of Procedural Knowledge. User Modeling 

and User-Adapted Interaction, 4(4), 253-278. 

[4] Feng, M., Heffernan, N.T., Koedinger, K.R. Addressing the 

assessment challenge in an Intelligent Tutoring System that 

tutors as it assesses. User Modeling and User-Adapted Inter-

action, 19(3), 243-266. 

[5] Gong, Y., Beck, J., Heffernan, N., Forbes-Summers, E, The 

impact of gaming (?) on learning at the fine-grained level. in 

Proceedings of the 10th International Conference on Intelli-

gent Tutoring Systems, (Pittsburgh, PA, 2010), Springer, 

194-203. 

[6] Koedinger, K.R., Anderson, J.R., Hadley, W.H., Mark, M.A. 

(1997). Intelligent Tutoring Goes To School in the Big City. 

International Journal of Artificial Intelligence in Education, 

8(1), 30-43. 

[7] Murphy, K. The bayes net toolbox for matlab. Computing 

science and statistics, 33(2), 1024-1034. 

[8] Pardos, Z. A., Heffernan, N. T., & Anderson, B., Heffernan, 

C. L. Using Fine-Grained Skill Models to Fit Student Per-

formance with Bayesian Networks. Proceedings of the Work-

shop in Educational Data Mining held at the 8th Interna-

Published in CEUR-WS: 
BKT20y workshop (Yudelson, González-Brenes and Mozer) 
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

139



tional Conference on Intelligent Tutoring Systems. (Taiwan, 

2006). 

[9] San Pedro, M., Baker, R.S.J.d, Gowda, S.M., Heffernan, 

N.T. Towards an Understanding of Affect and Knowledge 

from Student Interaction with an Intelligent Tutoring System. 

In Lane, H.C., Yacef, K., Mostow, M., Pavlik, P. (Eds.) 

AIED 2013. LNCS, vol. 7926/2013, pp.41-50. Springer-

Verlag, Berlin Heidelberg. 

 

 

 

Published in CEUR-WS: 
BKT20y workshop (Yudelson, González-Brenes and Mozer) 
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

140



Is this Data for Real? 
Rinat B. Rosenberg-Kima 

University of California, Berkeley 
rosenbergkima@berkeley.edu 

Zachary Pardos 
University of California, Berkeley 

pardos@berkeley.edu 
   

ABSTRACT 
Simulated data plays a central role in Educational Data Mining 
and in particular in Bayesian Knowledge Tracing (BKT) research. 
The initial motivation for this paper was to try to answer the 
question: given two datasets could you tell which of them is real 
and which of them is simulated? The ability to answer this 
question may provide an additional indication of the goodness of 
the model, thus, if it is easy to discern simulated data from real 
data that could be an indication that the model does not provide an 
authentic representation of reality, whereas if it is hard to set the 
real and simulated data apart that might be an indication that the 
model is indeed authentic.  In this paper we will describe initial 
analysis that was performed in an attempt to address this question. 
Additional findings that emerged during this exploration will be 
discussed as well.   

Keywords 

Bayesian Knowledge Tracing (BKT), simulated data, parameters 
space.  

1. INTRODUCTION 
Simulated data has been increasingly playing a central role in 
Educational Data Mining [1] and Bayesian Knowledge Tracing 
(BKT) research [1, 4]. For example, simulated data was used to 
explore the convergence properties of BKT models [5], an 
important area of investigation given  the  identifiability issues of 
the model [3]. In this paper, we would like to approach simulated 
data from a slightly different angle. In particular, we claim that 
the question,”given two datasets could you tell which of them is 
real and which of them is simulated?”, is interesting as it can be 
used to evaluate the goodness of a model and may potentially 
serve as an alternative metric to RMSE, AUC, and others. We 
would like to start approaching this problem in this paper by 
comparing simulated data to real data with Knowledge Tracing as 
the model.  
 

Knowledge Tracing (KT) models are widely used by cognitive 
tutors to estimate the latent skills of students [6]. Knowledge 
tracing is a Bayesian model, which assumes that each skill has 4 
parameters: two knowledge parameters including initial (prior 
knowledge) and learn rate, and two performance parameters 
including guess and slip. KT in its simplest form assumes a single 
point estimate for prior knowledge and learn rate for all students, 
and similarly identical guess and slip rates for all students.  
Simulated data has been used to estimate the parameter space and 
in particular to answer questions that relate to the goal of 
maximizing the log likelihood (LL) of the model given parameters 
and data, and improving prediction power [7], [8], [9].  

In this paper we would like to use the KT model as a framework 
for comparing the characteristics of simulated data to real data, 
and in particular to see whether it is possible to distinguish 
between the real and sim datasets. 
 

2. DATA SETS 
To compare simulated data to real data we started with 2 real 
dataset generated from the assisstment software1 (specifically, 
datasets G6.207-exact.txt with 776 students and G6.259-exact.txt 
with 212 students) from a previous BKT study [10]. Both of the 
datasets consist of 6 questions in linear order where all students 
answer all questions. Next, we generated synthetic, simulated data 
using the best fitting parameters that were found for the real data 
as the generating parameters. By this we generated a simulated 
version of dataset G6.207 and a simulated version of dataset 
G6.259 that had the exact same number of questions, number of 
students, and was generated with what appears to be the best 
fitting parameters. The specific best fitting parameters that were 
found for each dataset and were used to generate the simulated 
data are presented in table 1. 
 
Table 1. Best fitting parameters for each dataset. These 
parameters were used to generate the simulated datasets.  
 N Prior Learn Guess Slip 
G6.207 776 .453 .068 .270 .156 
G6.259 212 .701 .044 .243 .165 
 
 

3. METHODOLOGY 
We are interested to find out whether it is possible to distinguish 
between the simulated data and the real data. The approach we 
took was to calculate LL for the gird of all the parameters space 
(prior, learn, guess, and slip). We hypothesized that the LL pattern 
of the simulated data and real data will be different across the 
parameters space. For each of the matrices we conducted a grid 
search with intervals of .04 that generated 25 intervals for each 
parameter and 390,625 total combinations of prior, learn, guess, 
and slip. For each one of the combinations LL was calculated and 
placed in a four dimensional matrix. We used fastBKT [11] to (a) 
calculate the best fitting parameters of the real datasets, (b) 
generate simulated data, and (c) calculate the LL of the 
parameters space. Additional code in Matlab and R was generated 
to put all the pieces together2. In particular, we calculated the LL 
for all the combinations of two parameters where the other two 
parameters were fixed to the best fitting value. In an additional 
analysis, we let all parameters be free and took the average LL for 
all combinations of two parameters, collapsed over the space of 
the other two parameters not visualized. The motivation for this 
was to visualize the error space interactions in the four dimensions 
of the model.  

 

                                                                    
1 Data can be obtained here: http://people.csail.mit.edu/zp/ 
2 Matlab and R code will be available here: 
2 Matlab and R code will be available here: 

http://myweb.fsu.edu/rr05/ 
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Figure 1.a (left). Heat maps of LL of real assistment dataset G6-207 (k=776 students) and a corresponding simulated data that was 
generated with the best fitting parameters of the real dataset.  The two parameters not in each figure were fixed to the best 
parameters.  Blue areas indicate high LL, and red areas indicate lower LL. Circles indicate maximum LL of the given matrix, and 
triangles indicate the best fitting parameters to the real data (that were also used to generate the simulated data). In this case the 
triangles and circles fit the same point.  
Figure 1.b (right). Heat maps of delta LL between real dataset G6-207 and the corresponding simulated data that was generated 
with the best fitting parameters of the real dataset. The two parameters not in each figure were fixed to the best parameters. Blue 
areas indicate high difference between the real and sim LL, and red areas indicate lower difference. Circles indicate minimum 
absolute delta of the given matrix, and triangles indicate the best fitting parameters to the real data. 

4. DOES THE LL OF SIM vs. REAL DATA 
LOOK DIFFERENT? 
Our initial thinking was that as we are using a simple BKT model, 
it is not authentically reflecting reality in all its detail and 
therefore we will observe different patterns of LL across the 
parameters space between the real data and the simulated data. 
The LL space of simulated data in [5] was quite striking in its 
smooth surface but the appearance of real data was left as an open 
research question. 

4.1 Does the LL of sim vs. real data looks 
different across two parameters grids?  

First, we calculated the LL over all the combinations of two 
parameters for dataset G6.207 where the other two parameters were 
fixed to the best fitting value. For example, when we calculated LL 
for the combination of slip and prior (top right figure in figure 1.a), 
we fixed learn and guess to be .068 and .270 accordingly. To our 
great surprise, when we plotted heat maps of the LL matrices of the 
real data and the simulated data (Figure 1.a - real data is presented 
in the upper triangle and simulated (sim) data is presented in the 
lower triangle) we received what appears to be identical matrices 
(for example, the upper right heat map is the (slip x prior) LL 
matrix of the real data, whereas the lowest left heat map is the (slip 
x prior) LL matrix of the sim data).  

The extent of the similarity between the matrices was surprising 
and in order to get a better picture of the differences between them  

we plotted heat maps of the deltas between the real data and the 
simulated data (LL_RealData-LL_SimData) for each matrix. Even 
though the matrices appear to be identical, as can be seen in Figure 
1.b, there is in fact a difference between the LL of the matrices 
although it is not a big difference compared to the values of LL. 
Another surprising finding was that the LL of the real data was in 
many cases higher than the LL of the sim data. We expected that 
the model would better explain the sim data as there should not be 
additional noise as expected in reality, and therefore the LL of the 
sim data should be higher, yet the findings were not consistent with 
this expectation.  

Another interesting finding was that the location of the ground truth 
(the triangle) in most of the cases resulted in smaller delta between 
the real and the sim data although not in all cases (e.g., guess x 
slip). Note that the circles in Figure 1.b indicate the minimum 
absolute difference in LL between the real and the sim data, and 
this point is usually not located at the exact ground truth (except for 
learn x guess). 

Another interesting finding can be seen in Figure 1.a - slip vs. 
guess. Much attention has been given to this LL space which 
revealed the apparent co-linearity of BKT with two primary areas 
of  convergence, the upper right area being a false, or “implausible” 
converging area as defined by [3]. What is interesting in this figure 
is that despite what appears to be two global maxima, the point 
with the best LL in this dataset is in fact the lower region for both 
sim and real data.  
Next we conducted the same analysis with the second dataset.  
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Figure 2.a (left) Heat maps of delta LL between real dataset G6-259 (k=212 students) and the corresponding simulated data that 
was generated with the best fitting parameters of the real dataset. The two parameters not in each figure were fixed to the best 
parameters. Blue areas indicate high difference between the real and sim LL, and red areas indicate lower difference. Circles 
indicate maximum LL of the given matrix, and triangles indicate the best fitting parameters to the real data. 
Figure 2.b (right). Heat maps of delta LL between real assistment dataset G6-259 and the corresponding simulated data that was 
generated with the best fitting parameters of the real dataset. The average is across the two parameters not in each figure. Blue 
areas indicate high difference between the real and sim LL, and red areas indicate lower difference. Circles indicate minimum 
absolute delta of the given matrix, and triangles indicate the best fitting parameters to the real data. 
 
 

Even though the G6-259 dataset was significantly smaller than the 
first dataset, we received very similar results to the first dataset 
with surprisingly similar heat maps for the sim and real data (see 
Figure 2.a). Like in the first dataset, notice that even though the 
LL heat maps look very similar, there is a difference in the delta 
heat maps (see Figure 2.b). Nevertheless, there is an interesting 
difference between the two datasets. Concretely, unlike the bigger 
dataset (G6-207), in G6-259 the LL of the sim data was actually 
higher than the real data in most cases. 

4.2 What if we average LL over 2 parameters 
across all the combinations of the other 2 
parameters? 
We were interested to find out how will the heat maps look like if 
we do not fix the other two parameters to be best fit, but rather 
average the LL across the entire space of the other two 
parameters. For example, to calculate the matrix of guess and slip 
we practically calculated a matrix of guess and slip LL for each 
combination of learn and prior (25 x 25 = 625 matrices) instead of 
only one matrix for the best fit learn and prior. Then, we took the 
average of all these matrices for each combination of guess and 
slip (see Figure 3.a). The results are both surprising and 
interesting. As far as (guess x slip), we no longer receive the two 
maximum (global and local) that we received when learn and 
prior where fixed to best fit parameters. Another interesting 
finding is the relationship between the average maximum across 
the other two parameters and the overall best fit parameters for 

given two parameters. For example, if we look at the heat map of 
matrix (learn x prior) we can see that there is not a big difference 
between the average maximum point (white circle) and the overall 
best fit parameters (white triangle). This may indicate that 
changing guess and slip will not affect the value of learn and prior 
that maximizes the LL, therefore might suggest independency. If 
we look at (guess x learn), we see that changes in prior and slip 
will again not have an impact on the best fit value of guess, 
however, they will affect the value of learn.   Then again, if we 
look at the heat map of (prior x guess), we will see that both prior 
and guess are sensitive to changes in learn and slip. Yet again, the 
extremely surprising part of these results is that the sim data 
appear to be almost identical to the real data. It is possible to see 
from Figure 3.b though that indeed there are differences between 
the simulation data and the real data and like before, the LL of the 
real data is higher than that of the sim data in the larger dataset.  

Like for the fixed matrices, we received similar LL matrices for 
the smaller dataset (G6-259) (see table 4.a). In addition, as before, 
the LL of the sim data for this dataset was higher than that of the 
real data (the opposite direction of the larger dataset G6-207). 
Another interesting finding for this dataset can be seen in the 
(guess x slip) matrices (4.b).  Notice that while the sim data 
converged to the lower point of the blue area, the real data 
converged to the higher point. Nevertheless, this only happened in 
the averages matrices and not in the fixed ones.  
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Figure 3.a (left). Heat maps of average LL of real assistment dataset G6-207 (k=776 students) and a corresponding simulated data 
that was generated with the best fitting parameters of the real dataset.  The average is across the two parameters not in each figure. 
Blue areas indicate high LL, and red areas indicate lower LL. Circles indicate maximum LL of the given matrix, and triangles 
indicate the best fitting parameters to the real data (that were also used to generate the simulated data). 
Figure 3.b (right). Heat maps of delta LL between real assistment dataset G6-207 and the corresponding simulated data that was 
generated with the best fitting parameters of the real dataset. The average is across the two parameters not in each figure. Blue 
areas indicate high difference between the real and sim LL, and red areas indicate lower difference. Circles indicate minimum 
absolute delta of the given matrix, and triangles indicate the best fitting parameters to the real data. 

 

 
Figure 4.a (left). Heat maps of average LL of real assistment dataset G6-259 (k=212 students) and a corresponding simulated data 
that was generated with the best fitting parameters of the real dataset.  The average is across the two parameters not in each figure. 
Blue areas indicate high LL, and red areas indicate lower LL. Circles indicate maximum LL of the given matrix, and triangles 
indicate the best fitting parameters to the real data (that were also used to generate the simulated data). 
Figure 4.b (right). Heat maps of delta LL between real assistment dataset G6-259 and the corresponding simulated data that was 
generated with the best fitting parameters of the real dataset. The average is across the two parameters not in each figure. 
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5. DISCUSSION AND FUTURE WORK 
The initial motivation of this paper was to find whether it is 
possible to discern a real data from a sim data. If for a given 
model it is possible to tell apart a sim data from a real data then 
the authenticity of the model can be questioned. This line of 
thinking is in particular typical of simulation use in Science 
context, where different models are used to generate simulated 
data, and then if a simulated data has a good fit to the real 
phenomena at hand, then it may be possible to claim that the 
model provides an authentic explanation of the system [12]. We 
believe that it may be possible to generate a new matric for 
evaluating the goodness of a model by comparing a simulated data 
from this model to real data.  

In this work we explored similarities between simulated and real 
data. Nevertheless, we are yet to answer the question “is this data 
for real?”. In other words, what we still did not do in this work is 
come up with an algorithm that can take a dataset and determine 
whether it is real or simulated. Another way to think of it is to 
come out with an algorithm that can tell us whether it is possible 
to discern real and simulated data and use it as an indication of the 
goodness of the model. We found differences between the real 
and sim data, but are they strong enough to be noticed by such 
algorithm in a consistent way? In future work we plan to further 
investigate this question by creating a training set of multiple real 
datasets and sim datasets and use machine learning techniques to 
extract a learning algorithm from this training dataset that can take 
as input a dataset and determine whether it is real or sim. We 
argue that if such algorithm can be found, it is an indication that 
the underlying model can be improved.   In future work we also 
plan to compare different variations of the KT model and contrast 
their resulting simulated data with real data. In particular we plan 
to generate a more complex set of simulated data that is based on 
a more complex model (e.g., different learning rate for different 
types of questions), and then use it as “real” data with the (wrong) 
assumption that the model is simple (standard BKT model) to 
simulate a scenario where the real data is indeed grounded in 
more complex model than our assumptions and see what results 
would a learning algorithm that uses this “real” data in 
comparison to a sim data will yield.  

In addition, this paper raises interesting questions that we did not 
think of while trying to answer our initial question. For example, 
it seems like there is potential to dive deeper into the average LL 
(Figures 3&4) and find more about the relationships and 
dependencies between the different parameters. Another question 
that emerged is how could it be that the simulated data had lower 
LL than the real data in the bigger dataset yet lower in the smaller 
dataset? Further analysis is needed to answer these questions.  

Last but not least, given the remarkable resemblance between the 
sim data and the real data, these initial findings provide an 
indication that the BKT model is a model with a very strong hold 
in reality. 
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ABSTRACT
Knowledge tracing is a method which enables approximation
of a student’s knowledge state using a Bayesian network for
approximation. As the applications of this method increase,
it is vital to understand the limits of this approximation. We
are interested how well knowledge tracing performs when
students’ prior knowledge on the topic is extremely high or
low. Our results indicate that the estimates become more
erroneous when prior knowledge is extremely high (prior =
0.90).

Keywords
bayesian knowledge tracing, personalization, prior, parame-
ter estimation

1. INTRODUCTION
The Bayesian Knowledge-Tracing (BKT) algorithm was de-
veloped in 1995 in an effort to model students’ changing
knowledge state during skill acquisition [5]. The idea is to
interpret students’ knowledge – a hidden variable – based
on observed answers to a set of questions. The algorithm
tracks the change in this probability distribution over time
using a simple Bayes’ net. The model is often presented as
four parameters: prior, learn, guess and slip (see Figure 1).
Prior refers to the probability that the student knows the
material initially, before acquiring any skills, learn indicates
that the student did not have the skill initially but acquired
it through doing the exercise, guess refers to accidentally
answering the question correct and slip to answering acci-
dentally wrong.

Knowledge tracing is the most prominent method used to
model student knowledge acquisition and is used in most in-
telligent learning systems. These systems have been said to
be outperforming humans since 2001 [3] and have been used
in the real world to tutor students [4]. For these reasons it is

important to fully understand the strengths and limitations
of knowledge tracing before applying it more widely in the
classroom. As the parameters of the model are now known,
there is a need to estimate these parameters from the given
data. Previous research has demonstrated that the accuracy
of parameter estimation – and therefore knowledge tracing
– can be improved by applying different heuristics [17, 13]
or methods [16, 18] including personalizing the model for
each user [20, 8] or by extending the data used for analysis
[15, 6, 1].

Our work starts from a different premise: how robust is the
BKT approach to variation in the parameter space? Our
special interest is in the prior variable, which correlates to
a student’s knowledge of the topic before answering a ques-
tion. In any classroom, MOOC or otherwise, some students
will come in with a better understanding of the material
than others. Therefore it is important to study the effec-
tiveness of knowledge tracing on parameter estimation when
prior is extremely high or low.

If knowledge tracing models are inaccurate in modelling stu-
dents of a certain prior parameter, then smart tutors and
other systems designed to help those students learn will be
less effective. Especially if the students being modelled in-
accurately are those students doing poorly in the class, as
the smart tutors exist to help them the most.

Figure 1: The model of knowledge tracing
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2. PREVIOUS WORK
For the purposes of this work, here we shortly summarize
three methods previously applied to improve the prediction
capabilities of BKT models. However, these methods are in-
sufficient to address the practical problem described above,
resulting in a need for our own experiment.

2.1 Individualization
Yudelson et al. [20] experimented with individualization by
bringing student-specific parameters into the BKT algorithm
on a larger scale. They split the usual skill-specific BKT
parameters into two components: one skill-specific and one
student-specific. They then built several individualized BKT
models and added student-specific parameters in batches,
examining the effect each addition had on the model’s per-
formance. They found that student-specific prior parame-
ters did not provide a vast improvement. However, student-
specific learning provided a significant improvement to the
model’s prediction accuracy.

Pardos and Heffernan furthered the experiment by develop-
ing a method of formulating the individualization within the
Bayes’ Net framework [11]. Especially interesting in terms
of our work is the difference prior values and methods sug-
gested for this individualization. Pardos observes that mod-
els taking student spesific priors based on students’ prior
knowledge clearly outperform traditional knowledge trace
approach. This is a contrast Yudelson et al.’s findings [20]
but it still underscores the importance of individualization
in the BKT algorithm.

Related to individualization per user, there have been dis-
cussion on using different values per resources. It can be
argued that different exercises teach different topics [7, 14].
This can be further used to individualize the model for dif-
ferent topics, an approach which has gained initial support
on empirical studies [14].

2.2 Enhancing the data
The second approach to improve these methods is related
to enhanching the data used for prediction. In its most
simple form, this can be done by adding additional relevant
data, such as data from past years, to the analysis [15].
Others have explored the possibility of adding more data to
the general domain-related knowledge on the models, and
suggest that these indeed improve the estimates [6].

However, the current direction in enhanced data relates to
information available on user interaction – especially in MOOC
environments where it is possible to access this kind of data.
To illustrate, Baker, Corbett, and Aleven [1] explore interac-
tions with the learning system and other non-exercise related
data, such as time spent on answering and asking help, to
determine the difference between slips and guesses.

We applaud these efforts and acknowledge that data other
than just student responses may indeed help to detect both
the cases where initial knowledge (prior) is high and when
it is low, instead of tweaking the EM algorithm further.

2.3 Improving the methods
There are several heuristics currently used to enhance the
BKT algorithm. One such heuristic involves expecting the

Figure 2: The approach used in this study

sum of slip and guess to be less than or equal to 1 [17]. Other
work determined that one’s starting estimated parameters
could affect where the algorithm converged to. In order to
improve the accuracy of the convergence, it was suggested
that starting parameters be selected from a Dirichlet distr-
bution derived from the data set [2, 13].

There have also been efforts to explore other machine learn-
ing methods on educational data. Initial trials born in the
KDDCup competition use a medley of random forests and
other machine learning algorithms but these methods have
proven largely unsuccessful [16, 18].

The knowledge tracing community, while accepting the va-
lidity of some of these heuristics [9, 12], has criticized their
inability to provide any insight into the student learning
model. Individualization, however, has the potential to im-
prove the BKT algorithm while also providing a pedagogical
explanation for said improvements.

3. METHODOLOGY
We began by generating datasets with specific known ini-
tial parameters in order to simulate groups of students at
different knowledge levels. We then ran expectation max-
imization (EM) on these datasets and allowed knowledge
tracing to calculate its own estimated parameters. We then
compared these estimated parameters to the original ones
used for generation to determine if the accurency of the pa-
rameter estimation depends on the initial parameters.

Table 1: Ground Truth Parameter Sets

prior learn guess slip
Set 1.1 . . . 1.6 0.15 0.10 0.10 0.05
Set 2.1 . . . 2.6 0.30 0.10 0.10 0.05
Set 3.1 . . . 3.6 0.15 0.20 0.10 0.05

...
Set 48.1 . . . 48.6 0.90 0.20 0.20 0.10
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3.1 Generating the Data
As our goal was to determine how the prior ground truth af-
fects parameter estimation, we varied the prior used to syn-
thesize the data sets. We used six different priors (0.15, 0.30, . . . ,
0.75, 0.9), and two variations on learn, slip and guess1 each
(see Table 1); total of 48 variations of these parameters.
Each of these data sets consists of 10,000 students and 20
observations per student. To increase the variation, we gen-
erated 6 datasets per condition. This kind of simulated ap-
proach has been previously used to evaluate the success of
Bayesian machine learning methods [8].

3.2 Analysis Procedure
For each data set, we estimated the parameters using the
expectation maximization fitting (EM) algorithm using the
fastHMM implementation [10]. The parameter estimation
was conducted using a grid search with ten parameters, and
the best fitting model was selected using the log likelihood.

Using our 288 data sets, we can compare the estimates and
ground truths for each parameter and analyze the accuracy
of the estimates. We apply the standard methods of root-
mean-square error (RMSE) and other visualizations to do
our analysis. Using RMSE, we will be able to see if certain
ground truths lend themselves to more accurate estimations.

4. RESULTS
First, let us explore the parameter estimation in detail. The
avarage RMSE measurement in the data (Table 2) indicate
that the prediction quality decreases as the prior increases;
there is also increase of variance of the RMSE. This indi-
cates that the predictions with higher priors are first more
erronous and second, they converge in a larger area, result-
ing in variance. To confirm our observations, we conducted
a Wilcox-Mann-Whitney test to explore if the computed
RMSEs differented in statistically significant manner. As
shown in Table 3, both the RMSEs computed from the data
sets with priors 0.15 and 0.90 statistically differ significantly
from the other datasets (p < 0.05). Therefore we conclude
that the EM algortihm performs badly when prior is high.

To further understand this phenomena, we explore the esti-
mates per parameter. The errors per parameter are shown
in the Figure 3. The mean estimates are rather constantly
close by the zero, though a higher prior does affect variance.
As ground truth prior increases, the variance of guess and
learn increases while the variance of prior decreases. In the-
ory, a lesser variance on the prior prediction should imply
1Variations were 0.10 and 0.20 for learn and guess, and 0.05,
0.10 for slip.

Ground truth prior mean RMSE var RMSE
0.15 0.056639 0.000594
0.30 0.069073 0.001137
0.45 0.070005 0.000584
0.60 0.074044 0.001874
0.75 0.075946 0.002229
0.90 0.085257 0.004876

Table 2: The mean and variance of the root-mean-square
errors per prior

Figure 4: Log likelihoods with different parameters

a more accurate prior estimate. However, as we saw in Ta-
ble 2, this is not actually the case. The prior estimate gets
less accurate as the value of the ground truth prior increases.
In Figure 3 we can see again some of the results we saw in
Table 2: the prediction accuracy decreases when prior is 0.6
and continues to decrease as prior increases.

Figure 4 shows that the log likelihood for each of the param-
eter combinations we analyzed. We see a slight, but non-
significant increase in the log likelihoods, suggesting that
the model is performing better – even while our RMSE er-
ror indicator demonstrates otherwise. It is also noteworthy
to observe that that when slip is 0.10, all log likelihoods
range between -65500 and -65250 but when slip is 0.05, all
log likelihoods range between -40000 and -35750, indicat-
ing that the slip value had a dramatic effect on the model
estimation accurancy.

5. IMPLICATIONS
Our findings indicate that there are higher errors in the
parameter estimations when prior is high (0.90). This is
probably due to the lack of evidence available for the HMM
to attribute to the learn and guess parameters. One ap-
proach to examine the impact of these errors is to examine
the students’ subjective experience in different conditions
[19]. As our data is syntetic, we can not measure the time
consumed by students due to errors, as examined by Youdel-
son & Koedinger [19]. Instead we explore the difference on
the number of questions students’ need to answer to achieve
mastery learning – for our purposes knowledge above 95 %
and assuming that the students answer each question cor-
rectly.

Examining the case of high prior knowledge, and when the
true learning was 0.1, we observed that majority of students
needed to answer over 5 times to achieve mastery (or: from
the 168 predicted value sets available, only 24 achieved mas-
tery), and for the high learning (0.2) the situation was not

Table 3: Significant differences between the RMSEs

0.15 0.30 0.45 0.60 0.75 0.90
0.15 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
0.30 1 0.347 0.614 0.967 0.014
0.45 1 0.660 0.125 0.081
0.60 1 0.744 0.035
0.75 1 0.007
0.90 1
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Figure 3: Predicting parameters with different values of prior

significantly better – there 56 values achieved mastery with 5
responses. This indicates that the impact indeed was signif-
icant in terms of impact to students learning and highlights
the importance of this study.

6. CONCLUSIONS
We started this study with the motivation to explore how
well the knowledge tracing method performs when the prior
is high or low; this performance has practical implications
when applying this approach in a heterogenius classroom
where students arrive with highly different knowledge of the
domain. We studied this empirically by generating 288 dif-
ferent synthetic datasets and explored the difference between
the predicted parameters and the parameters used to gen-
erate the dataset.

Our results indicated a slightly increased in the estimation
error when prior was 0.90, which we mostly attribute to
higher error in learn and guess parameters. This observation
was statistically significant and most likely due to the fact
that students with higher priors produce less information
to be used by the HMM to estimate the guess and learn
parameters.

We explored the influence these errors had on the propabil-
ity of knowledge and observed that these errors significantly
reduced the speed students achieved mastery learning. This
result therefore implies that more work needs to be done to
detect those with high prior knowledge to cater their learn-
ing needs.
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ABSTRACT
Many different metrics are used to evaluate and compare
performance of student models. The aim of this paper is to
provide an overview of commonly used metrics, to discuss
properties, advantages, and disadvantages of different met-
rics, and to summarize current practice in research papers.
The paper should serve as a starting point for workshop
discussion about the use of metrics in student modeling.

1. INTRODUCTION
A key part of intelligent tutoring systems are models that
estimate the knowledge of students. To compare and im-
prove these models we use metrics that measure quality of
model predictions. Metrics are also used (sometimes implic-
itly) for parameter fitting, since many fitting procedures try
to optimize parameters with respect to some metric.

At the moment there is no standard metric for model eval-
uation and thus researchers have to decide which metric to
use. The choice of metric is an important step in the research
process. Differences in predictions between competing mod-
els are often small and the choice of metric can influence the
results more than the choice of a parameter fitting proce-
dure. Moreover, fitted model parameters are often used in
subsequent steps in educational data mining and thus the
choice of metric can indirectly influence many other aspects
of the research.

However, despite the fact that the choice of metric is im-
portant and that there is no clear consensus on the usage
of performance metrics, the topic gets very little attention
in most research papers. Most authors do not provide any
rationale for their choice of metric. Sometimes it is not even
clear what metric is exactly used, so it may be even difficult
to use the same metric as previous authors. The main aim
of this paper is to give an overview of performance metrics
relevant for evaluation of student models and to explicitly
discuss points that are in most papers omitted.

2. OVERVIEW OF METRICS
To attain clear focus we discuss only models that predict
probability of a correct answer. We assume that we have
data about n answers, numbered i ∈ {1, . . . , n}, correctness
of answers is given by ci ∈ {0, 1}, a student models provides
predictions pi ∈ [0, 1]. A model performance metric is a
function f(~p,~c). Note that the word “metric” is here used
in a sense “any function that is used to make comparisons”,
not in the mathematical sense of a distance function. Since
we are interested in using the metrics for comparison, mono-
tone transformations (square root, logarithm, multiplication
by constant) are inconsequential and are used mainly for
better interpretability (or sometimes rather for traditional
reasons).

2.1 Mean Absolute Error
This basic metric consider the absolute differences between
predictions and answers: MAE = 1

n

∑n
i=1 |ci − pi|. This is

not a suitable performance metric, because it prefers models
which are biased towards the majority results. As a simple
illustration, consider a simulated student which answers cor-
rectly with constant probability 0.7. If we compare differ-
ent constant predictors with respect to this metric, we get
that the best model is the one which predicts probability
of correct answer to be 1. This is clearly not a desirable
result. As this example illustrates, the use of MAE can lead
to rather misleading conclusions. Despite this clear disad-
vantage, MAE is sometimes used for evaluation (although
mostly in combination with other metrics, which reduces
the risk of misleading conclusions in published papers).

2.2 Root Mean Square Error
A similar metric is obtained by using squared values instead

of absolute values: RMSE =
√

1
n

∑n
i=1(ci − pi)2. Note that

from the perspective of model comparison, the important
part is only the sum of square errors (SSE). The square
root in RMSE is traditionally used to get the result in the
same units of as the original “measurements” and thus to
improve interpretability of the resulting number. In the
particular context of student modeling and evaluation of
probabilities, this is not particularly useful, since the result-
ing numbers are hard to interpret anyway. In order to get
better interpretability researchers sometimes use R2 metric:
R2 = 1−

∑n
i=1(ci−pi)2/

∑n
i=1(ci−c̄)2. With respect to com-

parison of models, R2 is equivalent to RMSE since here again
the only model dependent part is the sum of square errors.
In the context of the standard linear regression (where it is
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most commonly used) R2 has a nice interpretation as “ex-
plained variability”. In the case of logistic regression (which
is more similar to student models) this interpretation does
not hold and different “pseudo R2” metrics are used (e.g.,
Cox and Snell, McFadden, Nagelkerke). Thus a disadvan-
tage of R2 is that unless the authors are explicit about which
version of R2 they use (usually they are not), a reader cannot
know for sure which metric is reported.

In educational data mining the use of RMSE metric is very
common (it was also used as a metric in KDD Cup 2010
focused on student performance evaluation). In other ar-
eas, particularly in meteorology, mean square error (RMSE
without the square root) is called the Brier score [1]. The
Brier score is often decomposed into additive components
(e.g., reliability and refinement) which provide further in-
sight into the behaviour of the predictor. Moreover, in an
analogy to AUC metric and ROC curve (described below),
this metric can be interpreted as area under Brier curves.
These methods may provide interesting inspirations for stu-
dent modeling.

2.3 Metrics Based on Likelihood
The likelihood of data (the answers) given a model (pre-

dicted probabilities) is L =
∏n

i=1 p
ci
i · (1 − pi)

(1−ci). Since
we are indifferent to monotonic transformations we typically
work with the numerically more stable logarithm of the like-
lihood LL =

∑n
i=1 ci log(pi)+(1−ci) log(1−pi). This metric

can also be interpreted from information theoretic perspec-
tive as measure of data compression provided by a model [4].
The log-likelihood metric can be further extended into met-
rics like Akaike information criterion (AIC) and Bayesian
information criterion (BIC). These metrics penalize large
number of model parameters and thus aim to avoid overfit-
ting. In the context of student modeling it is typically much
better to address the issue of overfitting by cross-validation.
Since AIC and BIC provide a faster way to assess models
than cross-validation, they may be useful as heuristics in
some algorithms (e.g., learning factor analysis), but they
are not serious contenders for proper model comparison.

MAE, RMSE and LL have all the form of “sum of penalties
for individual errors” and differ only in the function which
specifies the penalty. For RMSE and LL values of penalty
functions are quite similar, the main difference is in the in-
terval [0.95, 1], i.e., in cases where the predictor is confident
and wrong. These cases are penalized very prohibitively by
LL, whereas RMSE is relatively benevolent. In fact the LL
metric is unbounded, so single wrong prediction (if it is too
confident) can ruin the performance of a model. This prop-
erty is usually undesirable and an artificial bound is used.
This corresponds to basically forcing a possibility of a slip
and guess behaviour into a model. After this modification
the penalties for RMSE and LL are rather similar. Never-
theless, the LL approach “penalize mainly predictions which
are confident and wrong” is reasonable thus it is rather sur-
prising that this metric is used only marginally in evaluation
of student models (it is used mostly in connection with AIC
or BIC).

2.4 Area Under an ROC Curve
Another popular metric is based on the receiver operating
characteristics (ROC) curve. If we want to classify pre-

dictions into just two discrete classes (correct, incorrect),
we need to select a threshold for the classification. For a
fixed threshold we can compute standard metrics like preci-
sion, recall, and accuracy. If we do not want to use a fixed
threshold, we can use the ROC curve, which summarises the
behaviour of the prediction model over all possible thresh-
olds. The curve has “false positive rate” on x-axis and “true
positive rate” on the y-axis, each point of the curve corre-
sponds to a choice of a threshold. Area under the ROC curve
(AUC) provides a summary performance measure across all
possible thresholds. It is equal to the probability that a
randomly selected correct answer has higher predicted score
than a randomly selected incorrect answer. The area under
the curve can be approximated using a A’ metric, which is
equivalent to the well-studied Wilcoxon statistics [2]. This
connection provides ways to study statistical significance of
results (but requires attention to assumptions of the tests,
e.g., independence).

The ROC curve and AUC metric are successfully used in
many different research areas, but their use is sometimes
also criticised [3], e.g., because the metric summarises per-
formance over all possible thresholds, even over those for
which the classifier would never be used in practice. From
the perspective of student modeling the main reservation
seems to be that this approach focuses on classification and
considers predictions only in relative way – note that if all
predictions are divided by 2, the AUC metric stays the same.

In the context of student modeling we are usually not in-
terested in classification, we are often interested directly in
absolute values of probabilities and we need these values
to be properly calibrated. The probabilities are often com-
pared to a fixed constant (typically 0.95) as an indication of
a mastered skill and the specific value is meant to carry a
certain meaning. Probabilistic estimates can be also used to
guide the behaviour of a system to achieve suitable challenge
for students, e.g., by choosing question of right difficulty or
modifying difficulty by number of options in multiple choice
questions.

Nevertheless, despite this disadvantage, AUC is widely used
for evaluation of student models, often as the only metric.
It seems that in some cases AUC is used as the only metric
for final evaluation, but the parameter fitting procedure uses
(implicitly) different metric (RMSE or LL). Particularly in
cases of brute force fitting this approach seems strange and
should be at least explicitly mentioned.
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ABSTRACT
In the knowledge-tracing model, error metrics are used to
guide parameter estimation towards values that accurately
represent students’ dynamic cognitive state. We compare
several metrics, including log-likelihood (LL), RMSE, and
AUC, to evaluate which metric is most suited for this pur-
pose. In order to examine the effectiveness of using each
metric, we measure the correlations between the values cal-
culated by each and the distances from the corresponding
points to the ground truth. Additionally, we examine how
each metric compares to the others. Our findings show that
RMSE is significantly better than LL and AUC. With more
knowledge of effective error metrics for learning parameters
in the knowledge-tracing model, we hope that better param-
eter searching algorithms can be created.

1. INTRODUCTION
In Bayesian Knowledge Tracing (BKT), one of the essential
elements is the error metric that is used for learning model
parameters: prior, learn, guess, and slip. Choice of a type
of error metric is crucial because the error metric takes a
role of guiding the search to the best parameters. The BKT
model can be fit to student performance data by using a
method which finds a best value calculated from the error
metric such as log-likelihood (LL), root-mean-squared error
(RMSE), or area under the ROC curve (AUC).

As a modeling method, grid search/brute force [1] is often
used to find the set of parameters with optimal values of
the error metric, and Expectation Maximization (EM) algo-
rithm [5] is also commonly used to choose parameters max-
imizing the LL fit to the data. Many studies have com-
pared different modeling approaches [1, 4]. However, the
findings are varied across the studies, and it has still been
unclear which method is the best at predicting student per-
formance [2].

Pardos and Yudelson compares different error metrics to in-
vestigate which one has the most accuracy of estimating the
moment of learning [6]. Our work extends this comparison

∗For more details of this work, please refer to the full tech-
nical report [3].
†Asif Dhanani, Seung Yeon Lee, and Phitchaya Mangpo
Phothilimthana contributed equally to this work and are
listed alphabetically.

by looking closer into the relationship between three popular
error metrics: LL, RMSE, and AUC, and particularly eluci-
dating the relationship to one another closer to the ground
truth point.

2. METHODOLOGY
To assess whether LL, RMSE, or AUC is the best error met-
ric to use in parameter searching for the BKT model, we
needed datasets with known parameter values in order to
compare these with the parameter values predicted by us-
ing different error metrics. Therefore, we synthesized 26
datasets by simulating student responses based on diverse
known ground truth parameter values.

Correlations to the ground truth. For each dataset, we
evaluated LL, RMSE, and AUC values on all points over the
entire prior/learn/guess/slip parameter space with a 0.05
interval. On each point, we calculated students’ predicted
responses (probability that students will answer questions
correctly). We then used these predicted responses with the
actual responses to calculate LL, RMSE, and AUC for all
points. To determine which error metric is the best for this
purpose, we looked at the correlations between values cal-
culated from error metrics (i.e. LL, RMSE, and AUC) and
the euclidean distances from the points to the ground truth.
We applied logarithm to all error metrics other than LL in
order to compare everything on the same scale. Finally, we
tested whether the correlation between the values calculated
by any particular error metric and the distances is signifi-
cantly stronger than the others’ by running one-tailed paired
t-tests comparing all three metrics against one another.

Distributions of values. We visualized the values of LL
and -RMSE of all points over the 2 dimensional guess/slip
space with a 0.02 interval while fixing prior and learn pa-
rameter values to the actual ground truth values. Using the
guess and slip parameters as the axes, we visualize LL and
-RMSE values by color. The colors range from dark red to
dark blue corresponding to the values ranging from low to
high.

Direct comparison: LL and RMSE. We plotted LL val-
ues and RMSE values of all points against each other in or-
der to observe the behavior of the two metrics in detail. We
then labeled each data point by its distance to the ground
truth with a color. The range of colors is the same as used
in the previous method.
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Comparision ∆ of correlations t p-value
RMSE > LL 0.0408 8.9900 << 0.0001
RMSE > AUC 0.0844 2.7583 0.0054
LL > AUC 0.0436 1.4511 0.0796

Figure 1: T-test statistics

(a) LL Heatmap (b) -RMSE Heatmap

Figure 2: LL and -RMSE values when fixing prior
and learn parameter values and varying guess and
slip parameter values. Red represents low values,
while blue represents high values. The white dots
represent the ground truth.

3. RESULTS
Correlations to the ground truth. The average LL, RMSE,
and AUC correlations were 0.4419, 0.4827, and 0.3983 re-
spectively. We define that an error metric A is better than
B if the correlation between values calculated by an error
metric A and the distances to the ground truth is higher than
that of B. By this definition, RMSE was better than LL on
all 26 datasets and better than AUC on 18 of 26 datasets.
This is validated by the one-tailed paired t-test shown in
Figure 1 revealing RMSE as statistically significantly better
than both LL and AUC.

Distributions of values. Figure 2 shows the heat maps of
LL and RMSE on a representative dataset. If we follow the
gradient from the lowest value to the highest value in the
LL heat map, we see that it is very high at the beginning
(far from the ground truth) and is very low at the end (close
to the ground truth). Conversely, in the -RMSE heat map,
the change in the gradient is low. Additionally, notice that
the darkest blue region in -RMSE heat map is smaller than
that in LL heat map. This suggests that we may be able to
refine the proximity of the ground truth better with RMSE.

Direct comparison: LL and RMSE. Figure 3 shows a LL
vs -RMSE graph from the most representative dataset. As
expected, LL values and RMSE values correlate logarithmi-
cally. Additionally, a secondary curve, which we will refer
to as the hook, is observed in varying sizes among datasets.
The hook converges with the main curve when the -RMSE
and LL values are both sufficiently high and the points are
very close to the ground truth.

Before this point, when we look at a fixed LL value with
varied RMSE values, most points in the hook have higher
-RMSE values and are closer to the ground truth than do the
points in the main curve. However, this same pattern is not
seen for a fixed RMSE value with varied LL values. After the
curve and hook converge, we can infer that both RMSE and
LL will give similar estimates of the ground truth. However,
for a portion of the graph before this point, RMSE is a better
predictor of ground truth values.

Figure 3: LL vs -RMSE of dataset 25 when prior =
0.564, learn = 0.8, guess = 0.35 , and slip = 0.4

4. CONCLUSION
In our comparison of LL, RMSE, and AUC as metrics for
evaluating the closeness of estimated parameters to the true
parameters in the knowledge tracing model, we discovered
that RMSE serves as the strongest indicator. RMSE has
a significantly higher correlation to the distance from the
ground truth on average than both LL and AUC, and RMSE
is notably better when the estimated parameter value is not
very close to the ground truth. The effectiveness of teach-
ing systems without human supervision relies on the ability
of the systems to predict the implicit knowledge states of
students. We hope that our work can help advance the pa-
rameter learning algorithms used in the knowledge tracing
model, which in turn can make these teaching systems more
effective.
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ABSTRACT 
Predicting the success of students as a function of different 

predictors has been a topic that has been investigated over the 

years. This paper explores the socio-demographic variables like 

gender, region lived and studied, nationality and high school 

degree that may influence success of students. We examine to 

what extent these factors help us to predict students’ academic 

achievement and will help to identify the vulnerable students and 

their need for extra tutoring or similar supportive services at an 

early time.  

We analyzed the data of the Epoka University students that have 

been enrolled from 2007 to 2013. The sample includes 1211 

undergraduate students where 716 did and were supposed to 

complete the three-year bachelor studies in the past six semesters.  

Based on the data mining techniques the most important 
predictors for student success were the students’ high school GPA 
and gender. For students with high school grades below average, 
females were found to have a higher percentage of success than 
boys. No significant correlation was found between the students’ 
success and the demographic information. 

Keywords 

Academic achievement, influence, classification tree, outcome 

1. INTRODUCTION 
Increasing the student graduation and decreasing the dropout rates 
is a long term goal of the higher education institutions. From the 
students’ perspective, a timely and successful graduation is vital 
as these two factors would strongly affect their employability rate. 
Employability rate has become an indicator in determining the 
ranking of higher education institution (HEI), thus HEIs are 
focusing more on increasing this rate [2]. 

Many of the students studying at the university face several 
difficulties during the first year and thus the performance of the 
first year has been identified as an important predictor of timely 
graduation rate.  In terms of keeping the students in the university, 
the retention rate is a factor that has been studied extensively. 
Mallincrodt and Sedlacek (1987) found that freshman class 

attrition rate were greater than the other academic years with 
numbers running up to 30%.[3] Therefore most researchers 
targeted the first year students. An early identification of the 
students at high risk of failing will enable a timely intervention 
with the necessary measures by the educators that would increase 

the graduation rate. Preventing students' failure depends on the 
identification of the factors affecting success.  

Here in this work we will analyze whether the background 
information has any effect on the success rate of regular students. 
The only data we collected during the registration period of Epoka 
University based on the registration form. The content of this 
form determined by the local authorities and University 
Administration. In this study we tried to get answers if we can use 
this data to predict student success. The main objective of our 
study is to determine the factors that may affect the study 
outcomes in Epoka University.  

2. DATA AND METHODOLOGY  
Epoka University student management system does not provide 
data in the format ready for a direct statistical analysis and 

modeling. Therefore a data preparation and cleaning were 
undertaken to prepare database for modeling.  

Table Descriptive statistics  – Study outcome (716 students) 

Descriptive 
    count % 

Domain F
A

IL
 

P
A

S
S

 

F
A

IL
 

P
A

S
S

 

T
o

ta
l 

GENDER 
M 221 189 53.9 46.1 57.3 
F 78 228 25.5 74.5 42.7 

COUNTR
Y 

ALB 238 372 39.0 61.0 85.2 
TUR 35 14 71.4 28.6 6.8 
KOS 14 17 45.2 54.8 4.3 
OTH 12 14 46.2 53.8 3.6 

NATION
ALITY 

ALB 256 382 40.1 59.9 89.1 
OTH 43 35 55.1 44.9 10.9 

REGION 
CITY 262 372 41.3 58.7 88.5 
VILL. 37 44 45.7 54.3 11.3 

HS_GPA 
UPPER 48 224 17.6 82.4 38.0 
INTER. 89 113 44.1 55.9 28.2 
LOWER 160 77 67.5 32.5 33.1 

 
2.1. Data and Methodology  
Outcome that we used in our analysis is for the outcome of the 
student at the end of three-year study. We measured only 
outcomes, labeled as: Pass and Fail. Students labeled ‘Pass’ 
successfully completed the program at the end of three years. 
Students labeled as ‘Fail’ include the withdrawn students from the 
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program voluntarily or by the academic registry for not fulfilling 
the regulations. Those students who stayed on the program until 
the end of the study but scored less than the graduation grade 
(2.00) were also allocated into this category.  

The data set with numeric continuous variable such as secondary 
school grade (HS GPA) was converted into a categorical variable 
with only three levels A (UPPER), B (INTERMEDIATE) or C 
(LOWER) denoting grades above 9 out of 10, grades between 8 
and 9 and grades less than 8 respectively. Other variables 
(nationality, citizenship, and region) were classified upon major 
groups.  

In this study we conducted three main types of data mining 
approaches. Descriptive approach which concerns the nature of 
the dataset such as the frequency table and the relationship 
between the attributes obtained using cross tabulation analysis. 
Predictive approach which is conducted by using four different 
classification trees and a comparison between these and Logistic 
regression to confirm the accuracy of the predictors. 

Classification tree models can handle a large number of predictor 
variables, are non-parametric, can capture nonlinear relationships 
and complex interactions between predictors and dependent 
variable.[1] 

Before generating the classification trees we classified the 
variables according to the study outcome, i.e. whether students are 
eligible to be graduated or not. We used attribute selection to rank 
the variables by their importance for further analysis. Then we 
generated the classification trees in four different growing 
methods.  

2.2. Summary Data Description  
We carried out a cross-tabulation for each variable and the study 
outcome after cleaning the data as shown in the table above. Table 

shows that the majority of the successful students are female (over 
57%) which is the result of the fact that 74.5% of the female 
students successfully completed the study. This suggests that 
female students are more likely to succeed than their male 
classmates. In terms of country and nationality it is clearly seen 
that Albanian population is leading the group.  

An expected result has been observed in secondary school 
degrees. We can say that high school degree graduation ratio is 
directly proportional to the university graduation ratio. While 82% 
of upper students were able to complete the study on time 56% of 
intermediate and 32% of lower group students were able to 
complete.  

2.3. Decision Trees  
Although the results of the attribute selection suggests continuing 
analysis with only the subset of predictors, we included all 
available predictors in our classification trees but only 2 variables 
were used in the diagrams: HS_GPA and GENDER. Even though 
some variables may have little significance to the overall 
prediction outcome, they can be essential to a specific record [1].  

Almost all growing methods, (CHAID, exhaustive CHAID, CRT 
and QUEST) generated exactly the same trees. The largest 
successful group consists of 272 (38%) students. HS_GPA of this 
group is over 90%. The largest unsuccessful group contains 237 
students (33% of all participants). They have a HS_GPA less than 
80%. The next largest group considered also as unsuccessful 
students are male students having lower HS_GPA.  

As the cross-validation estimate of the risk (0.309) indicates that 
the successful or unsuccessful students are predicted with an error 
of 30.9% of the cases which means the risk of misclassifying a 
student is approximately 31%. This result is consistent with the 
results in the CHAID classification matrix. The Overall 

percentage shows that the model only classified correctly 70% of 
students. The classification tables, however, reveal one potential 
problem with this model: for unsuccessful students, it predicts as 
successful for only 65.9% of them, which means that 34% of 
failing students are inaccurately classified with the passing 
students. 

2.4. Logistic regression 
The Variables not in the Equation table in block 0 shows that four 
of the five variables are individually significant predictors of 
whether a student is successful or not. Region is not a significant 
predictor. The variables not in the Equation table in block 1 shows 
that only high school grade point average and gender are 
significant predictors, but not the other variables. This result also 
confirms why these two were the only variables used in decision 
trees 

3. CONCLUSIONS 
This study examines the background information from enrolment 
data that impacts upon the study outcome programs at the Epoka 
University. Based on results, the classification accuracy from the 
classification trees was significantly high 71% in all tree methods. 
Although all the variables except the region individually 
significant predictors as described in attribute selection trees 
displayed only two variables Gender and secondary school 

degree. This outcome is also confirmed by the logistic regression. 
Block 0 classification implied that all except region were good 
predictors (p<,001) but block 1 classification highlighted that only 
gender and secondary school degree were significant. 
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ABSTRACT 

Knowledge tracing has been used to predict students’ knowledge 

and performance for almost twenty years. Recently, researchers 

have become interested in looking at students’ behaviors, 

especially those considered gaming behaviors. In this work, we 

attempt to leverage a variation of knowledge tracing to predict 

gaming behaviors without damaging the prediction of 

performance. We compare the predictions of this model to those 

of knowledge tracing and a separate engagement tracing model. 

Keywords 
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1. INTRODUCTION 
When Corbett and Anderson first published the knowledge 

tracing model in 1995, they claimed that their goal was “to 

implement a simple student modeling process that would allow 

the tutor to […] tailor the sequence of practice exercises to the 

student’s needs” [1]. While knowledge tracing is generally able 

to predict students’ performance “quite well,” it does not take 

into account the possibility of disengagement. Traditionally, 

knowledge tracing is used with the probability of transition from 

a learned to an unlearned state set at 0, so students who become 

disengaged are not presumed to be forgetting the skill. When the 

forgetting transition is allowed, models such as knowledge 

tracing can become confounded, mistaking disengagement for 

unlearning, as illustrated in Figure 1. 

 
Figure 1- Bayesian Knowledge Estimation of a student on 

one skill (bottom line) 

Figure 1 suggests that this student was un-learning, while after 

looking at the logs in detail, it was clear that, after the 7th 

problem, the student was just clicking through all the available 

multiple-choice answers without attempting to answer 

correctly.This type of behavior is defined by Baker et al as 

“gaming the system” [2] and is considered to be an indicator of 

disengagement or negative affect. Some work has been done in 

modeling engagement and affect in Intelligent Tutoring Systems 

[3], but relatively little research has focused on combining these 

methods with ways of tracking knowledge, such as knowledge 

tracing, in order to create a model that can predict both student 

performance and disengaged behavior and intervene 

appropriately. 

2. PREVIOUS WORK 
2.1 Bayesian Knowledge Tracing 

Corbett and Anderson’s Bayesian Knowledge Tracing (BKT) 

[1] (Figure 2) is a hidden Markov model. At each time step there 

is a latent node, knowledge, and an observed node, performance. 

The parameters for this model are P(L0), the probability that a 

student already knows the skill; P(T), the probability of learning 

the skill from one time-step to the next; P(G), the probability 

that a student who does not know the skill but correctly guesses; 

and P(S), the probability that a student who does know the skill 

slips and gets the answer incorrect. As mentioned in the 

introduction, P(F), forgetting, is traditionally set at 0, however 

for this work we allow forgetting in order to see if looking at 

behavior affects the amount of forgetting that students appear to 

do. 

 
Figure 2- Bayesian Knowledge Tracing 

2.2 HMM-IRT 

In 2006, Johns and Woolf proposed the Dynamic Mixture Model 

(DMM) for predicting student knowledge and engagement [4]. 

They used a hidden Markov model like BKT for tracing 

engagement, but paired it with an Item Response Theory-like 

model for predicting knowledge. Rather than predicting 

knowledge at each time step, there is a single knowledge node 

for every skill and students’ performance relies on that in 

addition to their engagement state. This allowed more accurate 

knowledge predictions than IRT alone, as disengagement, 

indicated by gaming behaviors, could explain away some 

incorrect attempts, rather than attributing those to knowledge. 

P(L) 

P(F) 

P(L) 

P(F) 
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Figure 3- Dynamic Mixture Model 

2.3 The KAT Model 

In our previous work [5], we proposed the knowledge and affect 

tracing (KAT) model (Figure 5), which combines two hidden 

Markov models, BKT and the engagement tracing piece of 

DMM. As in DMM, affect influences performance. This model 

was able to predict both performance and behavior better than 

the dynamic mixture model, but did not predict performance as 

well as standard BKT, perhaps due to over-parameterization [5]. 

 

Figure 4- The KAT Model 

3. THE KTB MODEL 
We propose the “Knowledge Tracing with Behavior” (KTB) 

model. This model has only one latent node, which we call 

“knowledge”-- although in reality is a combination of both 

knowledge and engagement-- and two observables, performance 

and gaming behaviors. This model is shown in Figure 5. 

 
Figure 5- KTB Model 

This model has fewer parameters than the dynamic mixture 

model or KAT model, but still can predict both performance and 

disengaged behavior of the students. 

The variable called Gaming Behavior (B) is defined as either 

gaming or normal. See our definition for “gaming” in this 

context in our previous work [5]. 

4. BAYESIAN ENGAGEMENT TRACING 
Since the performance prediction of the KTB model can be 

compared to that of Bayesian Knowledge Tracing, it is 

necessary to have a model of engagement tracing to compare the 

behavior predictions. To that end, we include a model of 

“Bayesian Engagement Tracing” (BET) in this work, which is 

the same as the HMM part of Johns and Woolf’s model or the 

engagement piece of the KAT model, but not connected to any 

other model (top part of figure 4). 

5. DATASETS AND METHODS 
The data and methods used in this work was the same as that 

used in [5]. The data came from two tutors for middle and high 

school mathematics, ASSISTments and Wayang Outpost. For 

details, please see [5] in the main conference proceedings. 

6. RESULTS AND ANALYSIS 
While KT and KTB both outperform KAT and DMM in all 

predictions, in seven of the nine knowledge components, KTB 

was better able to predict performance than standard knowledge 

tracing, although the only significant difference between the two 

was in the ASSISTments skill “Circle Graph” (p=0.03). 

Interestingly, the Bayesian engagement tracing model was better 

able to predict students’ behavior than KTB in eight of the nine 

knowledge components, although the differences are again not 

significant, except in two cases, “Box and Whisker,” and 

“Triangles” (p=0.02). 

7. DISCUSSION 
We have proposed a new model, knowledge tracing with 

behavior, which can predict both student performance and 

behavior, and have shown that it can do so at least as well as 

BKT and a separate Bayesian engagement tracing, at predicting 

future behaviors (correctness at responding math problems and 

gaming behaviors). KTB seems to stop the false forgetting effect 

that is recorded by KT when forgetting is not allowed to be zero. 
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ABSTRACT 

We use the Additive Factors Model to drive the evaluation of the 

student model of an Intelligent Tutoring System. Using data from 

the Andes Physics Tutor, applying the simple location heuristic 

and implementing the Additive Factors Model tool in the 

Pittsburgh’s Science of Learning Center’s DataShop, we discover 

possible ways to improve the student model of the Andes 

Intelligent Tutor. 
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1. INTRODUCTION 
The quality of student models drive many of the instructional 

decisions that automated tutoring systems make, whether it is 

what feedback to provide, when and how to sequence topics and 

problems in a curriculum, how to adapt pacing to the needs of 

students and even what problems and instructional materials are 

necessary [1]. We used the Additive Factors Model (AFM) tool in 

the Pittsburgh’s Science of Learning Center’s (PSLC) DataShop 

to identify areas for improvement in the curriculum for the 

ANDES Intelligent Tutoring System. 

1.1 BACKGROUND 
Learning curves derived from student models drive evaluation, 

revision and improvement of the Intelligent Tutor. The AFM is a 

statistical algorithm which models learning and performance by 

using logistical regression performed over the “error rate” 

learning curve data [1]. If a student is learning the knowledge 

component (KC) or skill being measured, the learning curve is 

expected to follow a so-called “power law of practice” [2]. If such 

a curve exists, it presents evidence that the student is learning the 

skill being measured or conversely, that the skill represents what 

the student is learning. 

While use of learning curves is now a standard technique for 

assessing the cognitive models of Intelligent Tutors, the technique 

requires that a method is instated for attributing blame to skills or 

KCs. This simply means that each error a student makes must be 

blamed on a skill or set of skills. Four different heuristics for error 

attribution have been proposed and tested. These heuristics are 

guided by whether the method is driven by location – the simple 

location heuristic (LH), the model-based location heuristic 

(MLH); or by the temporal order of events – the temporal 

heuristic (TH), the model-based temporal heuristic (MTH); and 

whether the choice of the student model is leveraged (MLH, 

MTH) [3]. 

2 EVALUATING THE STUDENT MODEL  

2.1Adapting the Andes Log data for the AFM 

Algorithm 
The log data used for this work was obtained from the Andes 

Intelligent Tutor [4] and encompassed four problems in the area 

of electric field, across 102 students. The data was collected in 

Spring 2005 at the US Naval Academy during its regular physics 

class and as part of the PSLC’s LearnLab facility that provides 

researchers, access to run experiments in or perform secondary 

analyzes of data collected from one of seven available technology-

enhanced courses running at multiple high school and college 

sites (see http://learnlab.org). 

Prior to using the AFM tool on the dataset, the simple location 

heuristic (LH) was applied to error transactions in the Andes log 

data which had missing KCs. That is, when the Andes failed to 

assign blame to a KC on an error transaction, the LH will select 

the first correctly implanted KC in the same location as the error. 

The LH was applied to about 44% of the original data. Table 1 

depicts a summary of the LH data.  

2.2 Generating Model Values using AFM 
The Datashop’s AFM algorithm was used to compute statistical 

measures of goodness of fit for the model - Akaike Information 

Criterion (AIC) and Bayesian Information criterion (BIC), as well 

as to generate learning curves for the Andes log data.  

 

3 RESULTS AND DISCUSSION 
We found that there were 5 groups of KCs – “Low and Flat”, “No 

learning”, “Still high”, “Too Little data” and “Good”. The “Low 

and Flat” group indicated KCs where students likely received too 

much practice. It appears that although students mastered the KCs 

they continued to receive tasks for them. It may be better to 

reduce the required number of tasks or change Andes’ knowledge 

tracing parameters so that students get fewer opportunities with 

these KCs. The “Still high” group suggests KCs, which students 

continued to struggle with. Increasing opportunities for practice 

for these KCs might improve the student model. The “No 

learning” group indicated KCs where the slope of the predicted 

learning curve showed no apparent learning. A step towards 

improving the student model could be to explore whether each of 

these KCs can be split into multiple KCs. The new KCs may 

better reflect the variation in difficulty and transfer of learning 

that may be happening across problem steps, which are currently 

labeled by each KC. The KCs in the “Too Little data” group seem 

to be KCs for which students were exposed to insufficient practice 

opportunities for the data to be meaningful. For these KCs, adding 
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more tasks or merging similar KCs might provide data that is 

interpretable. The KCs that appeared “Good” may reflect those in 

which there was substantial student learning. Table 2  shows the 

different group of KCs, their frequencies and AIC and BIC scores. 

Figures 1a – 1d show the different groups of KCs. Intercept (logit) 

and intercept (probability) both indicate KC difficulty. Higher 

intercept values indicate more difficult KCs. The slope parameter 

indicates the KC learning rate. Higher values suggest students will 

learn such KCs faster. 

 

Table 1. LH Data Summary 

Number of Students 102 

Number of Unique Steps 125 

Total Number of Steps 5,857 

Total Number of Transactions 71,300 

Total Student Hours 107.02 

# of Knowledge Component Model 34 

 

Table 2. KC Groups and Statistical Scores 

Low 

and 

Flat 

No 

Learning 

Still 

High 

Too  

Little data 

Good 

2 2 4 24 2 

# of Knowledge Components  34 

AIC 6532.75 

BIC 7668.14 

 

 

 

KC Name Intercept 

(logit) 

Intercept 

(probability) 

Slope 

define-constant-

charge-on-obj-var   

1.77 0.85 0.120 

write-known-value-eqn  0.63 0.65 0.037  

 

 

 

Figure 1a – “Good” 

 

   

Figure 1b – “Low and Flat” 

 

KC Name Intercept 

(logit) 

Intercept 

(probability) 

Slope 

draw-efield-vector   0.06 0.52 0.000 

 

Figure 1c – “No Learning” 

 

  

KC Name Intercept 

(logit) 

Intercept 

(probability) 

Slope 

compo-parallel-axis   -0.28 0.43 0.000 

draw-electric-force-

given-field-dir   

-0.01 0.50 0.000 

 

Figure 1d – “Still High” 

 

4  CONCLUSION AND FUTURE WORK 
This paper presented how the AFM can be used to evaluate the 

student model of the Andes Physics Tutor. Refining four of the 

five groups of KCs identified, might improve the Andes student 

model. A further approach would to use Learning Factors 

Analysis [1] algorithm to automatically find better student models 

by searching through a space of KC models. The next step is to 

explore these options and measure their effect. 
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ABSTRACT
Emotions play a significant role in students’ learning be-
haviour. Positive emotions can enhance learning, whilst
negative emotions can inhibit it. This paper describes a
Wizard-of-Oz (WoZ) study which investigates the potential
of Automatic Speech Recognition (ASR) together with an
emotion detector able to classify emotions from speech to
support young children in their exploration and reflection
whilst working with interactive learning environments. We
describe a unique ecologically valid WoZ study in a class-
room. During the study the wizards provided support using
a script, and followed an iterative methodology which lim-
ited their capacity to communicate, in order to simulate the
real system we are developing. Our results indicate that
there is an effect of emotions on the acceptance of feedback.
Additionally, certain types of feedback are more effective
than others for particular emotions.

Keywords
Affect, emotions, intelligent support

1. INTRODUCTION
Our aim is to build a learning platform for elementary ed-
ucation which integrates speech recognition for children in
order to enable natural communication. This paper reports
from on a Wizard-of-Oz study which explores the effect of
emotions deduced from speech on different feedback types.

The importance of language as both a psychological and
cultural tool that mediates learning has long been recog-
nised; from as early as Vygotsky to modern linguists such
as Pinker. From a Human Computer Interaction (HCI) per-
spective, speech recognition technology has the potential to
enable more intuitive interaction with a system, particularly
for young learners who reportedly talk aloud while engaged
in problem solving (e.g. [11]).

Finally, speech provides an additional cue for drawing infer-
ences on students’ emotions and attitude towards the learn-
ing situation while they are solving tasks. By paying atten-
tion to tone and pitch of speech in conjunction with other
auditory signs like sighs, gasps etc., we can provide learners

with even more individualized help, by detecting emotions
and providing support specifically tailored to the emotional
state.

As described in [15] emotions interact with and influence the
learning process. While positive emotions such as awe, sat-
isfaction or curiosity contribute towards constructive learn-
ing, negative ones including frustration or disillusionment
at realising misconceptions can lead to challenges in learn-
ing. The learning process includes a range and combination
of positive and negative emotions. For example, a student
is motivated and expresses curiosity to explore a particular
learning goal, however s/he might have some misconceptions
and needs to reconsider her/his knowledge. This can evoke
frustration and/or disappointment. However, this negative
emotion can turn into curiosity again, if the student gets a
new idea on how to solve the learning task.

[9] categorised emotions based on facial expressions. These
included, joy, anger, surprise, fear, and disgust/contempt.
However, these emotions are not specific to learning. [22]
classified achievement emotions that arise in a learning situ-
ation. Achievement emotions are emotions that are linked to
learning, instruction, and achievement. Emotions are clas-
sified into prospective, retrospective and activity emotions.
They can be positive or negative. For example, a prospective
positive emotion is hope for success, while a negative emo-
tion is anxiety about failure. Retrospective emotions are for
example, the positive emotion pride or the negative emo-
tion shame, which the student experienced after receiving
feedback of an achievement. Activity emotions arise dur-
ing learning, such as positive emotions like enjoyment, or
negative emotions like anger, frustration, or boredom.

We focus on on a subset of emotions identified by Pekrun and
Ekman: enjoyment, surprise, frustration, and boredom. We
also add confusion as an emotion, which is placed between
enjoyment and frustration.

As described in [29] students can become overwhelmed (very
confused or frustrated) during learning, which may increase
cognitive load for low-ability or novice students. However,
appropriate feedback can help to overcome such problems.

Published in CEUR-WS: 
FFMI workshop (Schmidt-Thieme and Janning) 
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

163



Effective support or feedback needs to answer four main
questions: when, what, how, and why: (i) when to provide
the support during learning. (ii) It needs to be decided what
the support should contain; (iii) how it should be presented;
and (iv) why the feedback needs to be provided.

In this paper we focus on what (ii) and why (iv) support
or feedback should be provided based on the student’s emo-
tion. In the area of intelligent tutoring systems or learning
environments, the only research we are aware of specifically
targeting the question of responding to student affect is [29]
and [2]. [29] describes how an embodied pedagogical agent is
able to provide different types of interventions, such as prais-
ing or mirroring the student’s emotional state. [2] looks at
the effect of cognitive-affective states on student’s learning
behaviour. In contrast, in this paper, we investigate the im-
pact of emotions on the effectiveness of different feedback
types.

The structure of the paper is as follows: The next section
overviews related work on detecting and adapting to emo-
tions in the educational domain. This is followed by a de-
scription of the Wizard-of-Oz study, which investigated the
effect of emotions on different feedback types. We then dis-
cuss the different feedback types. After this, we provide
results and discuss the results of the study in respect to
adaptive support based on student’s emotion. We conclude
by outlining directions for future research.

2. BACKGROUND
Different computational approaches have been taken into ac-
count in order to detect emotions. These include for exam-
ple, speech-based approaches (e.g. [6, 27]), using informa-
tion from facial expressions (e.g. [14]), keystrokes or mouse
movements [10], physiological sensors (e.g. [16, 28, 21]), or
a combination of these [7].

In the area of education [5] developed a model of emotions
(Dynamic Bayesian network) based on students’ bodily ex-
pressions for an educational game. The system uses six emo-
tional states: joy, distress, pride, shame, admiration and re-
proach. A pedagogical agent provides support according to
the emotional state of the students and the user’s personal
goal, such as wanting help, having fun, learning maths, or
succeeding by oneself.user’s personal goal, such as wanting
help, having fun, learning maths, or succeeding by oneself.

Another example, is [25] who also used Bayesian Networks
to classify students’ emotions. Here biophysical signals, such
as heart rate, skin conductance, blood pressure, and EEG
brainwaves, for the classification of emotions. These include:
interest, engagement, confusion, frustration, boredom, hope-
fulness, satisfaction, and disappointment.

As described earlier, [29] developed an affective pedagogical
agent which is able to mirror students’ emotional state, or
acknowledge a student’s emotion if it is negative. They use
hardware sensors and facial movements to detect students
emotion. The system discriminates between seven emotions:
high/low pleasure, frustration, novelty, boredom, anxiety,
and confidence. Different machine learning techniques were
applied for the classification, including Bayesian Networks
and Hidden Markov models.

[17] developed a physics text-based tutoring system called
ITSPOKE. It uses spoken dialogue to classify emotions. Acoustic-
prosodic and lexical features are used to predict student
emotion. They apply boosted decision trees for their classifi-
cation. Three emotion types are detected: negative, neutral
and positive emotions.

Another example is the AutoTutor tutoring system [7], which
holds conversations with students in computer literacy and
physics courses. The system classifies emotions based on
natural language interaction, facial expressions, and gross
body movements. The focus is on three emotions, namely
frustration, confusion, and boredom. The classification is
used to respond to students via a conversation.

Most of the related work in the educational domain focusses
on detecting emotions based on different input stimuli, rang-
ing from spoken dialogue to physiological sensors. However,
little research has been done on how those detected emotions
can be used in a tutoring system to enhance the learning
experience. One exception is [29] who describes how an af-
fective pedagogical agent can support students in particular
emotional states. Additionally, [2] investigated the impact
of student’s cognitive-affective states on how they interacted
with the learning environment. They found that certain
types of emotions, such as boredom, were associated with
poor learning and gaming the system. In contrast, we in-
vestigate the implications of emotions for different feedback
types. We conducted a WoZ study where different kinds of
feedback were provided to students in different emotional
states. The next section describes the WoZ study in more
detail.

2.1 Aims
One of our research aims is to provide adaptive feedback to
students during a learning activity which enhances the learn-
ing experience by taking into account students’ emotion. We
were specifically interested in the following questions, which
we aimed to address in the WoZ studies:

• Is there an effect of different emotion types upon reac-
tion towards feedback?

• Which interventions were most successful given a par-
ticular emotional state?

In order to address these questions we ran an ecologically
valid WoZ study which investigated the effect of emotions
on different feedback types at different stages of the task.

2.2 Methodology
The studies reported on this paper are part of a method-
ology referred to as Iterative Communication Capacity Ta-
pering (ICCT). This can be used to inform the design of
intelligent support for helping students in interactive educa-
tional applications [18]. During the first phase, the facilita-
tor gradually moves from a situation in which the interaction
with the student is close, fast, and natural (i.e. face-to-face
free interaction) towards a situation in which the interaction
is mediated by computer technologies (e.g. voice-over-ip or
similar for voice interaction, instant messaging or similar for
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textual interaction) and regularised by means of a script. In
the second phase, the script is crystallized into a series of
intelligent components that produce feedback in the same
way that the human facilitator formaly did. The gradual re-
duction of communication capacity and the iterative nature
of the process maximise the probability of the computer-
based support being as useful as the facilitator’s help. In this
paper, we are already starting the second phase, i.e. gradu-
ally replacing humans by a computer-based system. Experts
(‘wizards’) are not physically near enough to the students to
observe them directly, and therefore must observe them by
indirect mediated means: the students’ voice was heard by
using microphones and headsets and their screen was ob-
served by a mirror screen. The wizards did not have direct
access to the students’ screens (so e.g. could not point to
anything on the screen to make a point), could not see the
students’ faces (for facial cues), and could not communicate
to students by using body language, only by means of the
facilities provided by the wizard-of-oz tools that resemble
those of the final system.

2.3 Participants and Procedure
After returning informed consent forms signed by their par-
ents 60 Year-5 (9 to 10-year old) students took part in a
series of sessions with the learning platform configured for
learning fractions through structured tasks from the intelli-
gent tutoring system, together with more open-ended tasks
offered by the exploratory learning environment. The ses-
sions were designed to first familiarise all students with the
environment, and then to allow them to undertake as many
tasks as possible (in a study which has goals outside the
scope of this paper). In parallel, we were running the WOZ
study by asking two students in each session to work on dif-
ferent computers as described below. In total 12 students
took part in the WOZ study but due to data errors we were
able to analyse the interaction of only 10 students. At the
end of the session the students who participated in the WOZ
joined in a focus group discussing their experience with the
learning platform. We were particularly interested in stu-
dents’ opinions about the different feedback types provided.

2.4 Classroom setup
The ecological validity of the study was achieved by follow-
ing the setup depicted in Figure 1, 2 and Figure 3. The
classroom where the studies took place is the normal com-
puter lab of the school in which most of the computers are
on tables facing the walls in a II-shape, and a few are on
a central table. This is the place where the WOZ study
took place, while, for ecological validity, the rest of the class
was working on the other computers. The students were
only told that the computers in the central isle were de-
signed to test the next version of the system and were thus
also responding to (rather than just recording as the rest
of the computers) their speech. The central isle has two
rows of computers, facing opposite directions, and isolated
by a small separator for plugs etc. In the central isle the
students worked on a console consisting on a keyboard, a
mouse, and a screen. Usually, those components are con-
nected to the computer behind the screen; for these studies,
they were connected to a laptop on the wizards’ side of the
table. This allowed the wizard to observe what the stu-
dents were doing. As the learning platform is a web-based
system, and all the students’ see is a web browser, the op-

erating system and general look-and-feel of the experience
was equivalent to the one that the rest of the students were
using. When the wizards wanted to intervene, they used the
learning platform’s WOZ tools to send messages to the stu-
dent’s machine. These messages were both shown on screen
and read aloud by the system to students, who could hear
them on their headset.

Figure 1: The layout. The Wizard-of-Oz studies
took place on the central isle while the rest of the
students worked on a version of the system which
only sequences tasks and provides minimal support.

Figure 2: The classroom. The children being wiz-
arded in front with wizards at the back.

2.5 The wizard’s tools
In line with the ICCT methodology mentioned above, the
wizards restricted their ‘freedom’ in addressing the students
by employing a pre-determined agreed script in which the
expected interventions had been written. Figure 4 shows a
high-level view of this script, the end-points of which require
further decisions also agreed in advance in a protocol but
not shown here for simplicity. In this study, we limited our-
selves to written interventions that could be selected from
an online document appropriate for being read aloud by the
system. There were no other kinds of interventions (such as
sounds, graphical symbols on screen etc.). The intervention
had a set of associated conditions that would fire them thus
resembling very closely the system under development.

2.6 Feedback types
As outlined in the script (figure 4) different types of feedback
were presented to students at different stages of their learn-
ing task. The feedback provided was based on interaction
via keyboard and mouse, as well as speech.

From an HCI perspective speech production and recogni-
tion can provide potentially more intuitive interaction. In
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Figure 4: Flowchart representing the wizard’s script for support.

Figure 3: Wizard-of-oz setup. Each student speaks
on a headset (mic) which is connected to the wiz-
ard’s headset (1). The student interacts with a con-
sole (i.e. keyboard, mouse, screen) connected to a
laptop on the wizard’s side (2,3) so that the latter
can witness their interaction. The wizard can send
messages (4) by using some ad-hoc wizard tools.
These messages arrive at the student laptop (5) and
are shown on the screen of the student’s monitor
and read aloud on the student’s headset (6).

particular, spoken language input can enable students to
communicate verbally with an educational application and
thus interact without using human interface devices such as
a mouse or keyboard. The following different feedback types
were provided:

• PROBLEM SOLVING - task-dependent feed-
back
This feedback based mainly on the interaction with
mouse and keyboard with the learning environment.
Here the feedback involved providing support in solv-
ing a particular maths problem.

• TALK MATHS - using particular domain spe-
cific maths vocabulary
The importance of students’ verbal communication in
mathematics in particular becomes apparent if we con-
sider that learning mathematics is often like learning
a foreign language. Focusing, for example, on learning
mathematical vocabulary, [3] encouraged students to
talk to a partner about a mathematical text to share
confusions and difficulties, make connections, put text
into their own words and generate hypotheses. This
way, students were able to make their tentative think-
ing public and continually revise their interpretations.

• AFFECT - affect boosts
As described in [29] affect boosts can help to enhance
student’s motivation in solving a particular learning
task. Higher motivation also implies better perfor-
mance.

• TALK ALOUD - talking aloud
With respect to learning in particular, the hypothesis
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that automatic speech recognition (ASR) can facili-
tate learning is based mostly on educational research
that has shown benefits of verbalization for learning
(e.g., [1, 3, 20]).

The possible verbalization effect could be enhanced
with ASR since cognitive load theory [26] and cogni-
tive theory of multimedia learning [19] predict that a
more natural and efficient form of communication will
also have positive learning gains.

The few existing research studies have found mixed
results with respect to whether the input modality
(speaking vs. typing) has a positive, negative or no
effect on learning. In [8], for example, the authors
investigated whether student typing or speaking leads
to higher computer literacy with the use of AutoTutor.
They reported mixed results that highlight individual
differences among students and a relationship to per-
sonal preferences and motivation.

• REFLECTION - reflecting on task performance
and learning
For further consideration is the research about self-
explanation; an efficient learning strategy where stu-
dents are prompted to verbalize their thoughts and
explanations about the target domain to make knowl-
edge personally meaningful. Previous research [13]
found that the amount of self-explanation that stu-
dents generated in a computer environment was sup-
pressed by having learners type rather than speaking
and the studies. Moreover, some students are natu-
ral self-explainers while others can be trained to self-
explain [24]. Even when self-explanation is explicitly
elicited, it can be beneficial [4] but requires going be-
yond asking students to talk aloud by using specific
reflection prompts [24].

Self-explanation can be viewed as a tool to address
students’ own misunderstandings [4] and as a ’window’
into students’ thinking. While it may be early days for
accurate speech recognition to be able to highlight spe-
cific errors and misconceptions, undertaking carefully-
designed tasks can help identify systematic errors that
students make. For example, [12] explores how naming
and misnaming involves logic and rules that often aid
or hinder students’ mathematical learning and relate
to misconceptions.

A lack of mathematical terminology can also be no-
ticed and prompts made to students to use appropriate
language as they self-explain.

Table 1 shows examples of the different feedback types. We
were interested to explore how emotions impact on the ef-
fectiveness of those different feedback types.

3. RESULTS
From the WoZ study we recorded students’ screen display
and their voices. From this data, we annotated emotions
and whether students reacted to feedback.

For the annotation of the emotions and students reactions
towards the feedback, we used a similar strategy as described
in [23] where dialog between a teacher and a student was

Feedback type Example

AFFECT It may be hard, but keep trying.
If you find this easy, check your work
and change the task.

TALK ALOUD Remember to talk aloud, what
are you thinking? What is the task
asking you to do?

TALK MATHS Can you explain that again using the
terms denominator, numerator?

PROBLEM
SOLVING

You can’t add fractions with differ-
ent denominators.

REFLECTION What did you learn from this task?
What do you notice about the two
fractions?

Table 1: Examples of feedback types

annotated according to different feedback types. Also,[2]
describe how they coded different cognitive-affective states
based on observations of students interacting with a learning
environment. Similarly, we annotated student’s emotion and
if they reacted for each type of feedback provided. Another
researcher went through the categories and any discrepancies
were discussed and resolved before any analysis took place.

In total 170 messages were sent to 10 students. The raw
video data was analysed by a researcher who categorised the
emotions and feedback messages. Table 1 shows the different
types of messages send to students and the emotions that
occurred while the feedback was given. It can be seen that
most frequent messages were reminders to talk aloud (66).
This was followed by problem-solving feedback (55), and
feedback according to students emotions (31). The least
frequent messages relates to reflection (13) and using maths
terminology (5).

It is not surprising that most of the problem solving feed-
back was provided when students were confused (35 out of
55). Most of the affect boosts were provided when students
enjoyed the activity (15 out of 31), closely followed by stu-
dents’ being confused (11 out of 31). Most of the reflection
prompts were given when students enjoyed the activity (10
out of 13). Talk aloud reminders were mainly given when
students were confused (30 out of 66). Talk maths prompts
were mainly given when students enjoyed the task (3 out of
5) or when they were confused (2 out of 5).

The emotions that were detected by students when feedback
was provided and whether students reacted can be seen in
figure 5.

Students reacted to all of the feedback when they were bored
or surprised (100%).This was followed by reactions to feed-
back when students were confused (83%) or enjoyed the ac-
tivity (81%). Students responded the least if they were frus-
trated (69%).

Looking in more detail at emotions and whether students
reacted to the different feedback types, figures 6, 7, and 8
show the percentage of student’s reaction towards feedback
type for enjoyment, confusion, and frustration.
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emotion
Feedback type enjoyment boredom confusion frustration surprise total

PROBLEM SOLVING 8 3 35 8 1 55
TALK MATHS 3 0 2 0 0 5
AFFECT 15 2 11 3 0 31
TALK ALOUD 21 1 40 4 0 66
REFLECTION 10 1 1 1 0 13
Total 57 7 89 16 1 170

Table 2: Feedback types, including emotion that occurred while the feedback was provided.

Figure 5: Student’s reaction according to feedback
types and emotion.

Figure 6: Students’ reaction according to feedback
types if they enjoyed the activity.

Figure 7: Students’ reaction according to feedback
types if they were confused.

Figure 8: Students’ reaction according to feedback
types if they were frustrated.
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It is interesting to see that while students enjoyed their ac-
tivity, they responded very well to talk maths (100%) or to
reflect on what they have done (100%). The least reaction
was given if students were prompted to talk aloud (71%).

If students were confused they responded well again on talk
maths (100%) or reflection prompts (100%), followed by
problem solving feedback (89%). Surprisingly, least reac-
tions were given when affect boosts were provided (64%).

If students were frustrated most reactions were given for re-
flection (100%) and prompts to talk aloud (75%). Least re-
sponses were given if problem solving feedback was provided
(63%).

4. DISCUSSION
The key findings with respect to impact of emotions on the
effect of feedback types are listed below in relation to our
research aims.

4.1 Is there an effect of different emotion types
upon reaction towards feedback?

The results show that for certain types of emotions, such as
boredom, any type of feedback is reacted to. This indicates
that students may welcome a distraction from their learning
and react to feedback if they are bored. As boredom indi-
cates a reduction in learning [2], the feedback provided to
students when they are bored should aim to motivate and
support the student to continue with the learning task.

Also in most of the cases students reacted to the feedback
when they were confused. This implies that students wel-
come feedback that will help them to get out of their con-
fused state. In designing feedback for learning environments
students should be provided with feedback that enables them
to overcome their confusion, such as task-dependent prob-
lem solving feedback, or feedback to reflect on their learning,
which might help to identify and overcome misconceptions.

Additionally, students mainly reacted to feedback when they
were enjoying their activity. This is an interesting finding,
as in theory this seems to interrupt their learning flow. Here,
it seems students’ motivation is high and they did not mind
being interrupted. Students particularly reacted positively
on feedback to reflect.

In contrast, when students were frustrated, they reacted to
feedback in only 69% of the cases. This indicates that frus-
tration can reduce motivation and may also increase cog-
nitive load. Here feedback that might help to decrease the
frustration, such as reflecting on the difficulty of the learning
task might help to motivate the student.

4.2 Which interventions were most successful
given a particular emotional state?

The results indicate that for different emotional states, dif-
ferent feedback types are more effective than others.

It is interesting to see that although students enjoyed their
activity and reacted to feedback in 81% of the cases, re-
sponse to talk aloud was only 71%. This was similar when
students were frustrated (75%). In contrast when students

were confused in 83% of the cases students followed the rec-
ommendation to talk aloud. It looks like as if talking aloud
might help to identify the problem and might resolve the
confusion.

The highest reaction was given to problem solving feedback
if students were confused (89%). This is not surprising as
students were happy to receive help to perform the task.
However, in only 75% of the cases was problem solving feed-
back reacted to while students enjoyed the activity. This
might be because they were interrupted in their learning
flow and they needed to switch to a new strategy of answer-
ing the learning task based on the problem solving feedback.
The number drops even more when students were frustrated
(63%). As discussed above, students’ motivation might be
low when frustrated and also there might be increased cogni-
tive load. Providing problem solving feedback when students
are frustrated does not seem to be a very effective strategy.

Providing affect boosts was most effective when students
enjoyed their activity (80%). In contrast, students only re-
acted to affect boosts in 67% of the cases when they were
frustrated or 64% when they were confused. From the focus
group with the students it emerged that although some stu-
dents did not react to the emotional boosts when they were
confused or frustrated, they liked the encouragement, and
that it helped with their motivation to continue to work on
the particular learning task.

Providing prompts to talk maths and reflection were very
effective across the emotion types. Despite the fact that 5
talk maths prompts and 13 reflection prompt were provided,
students seemed to respond to them very well whether con-
fused or frustrated. This implies that reflecting on one’s own
strategy of solving a task is motivating even if confused or
frustrated. We noticed that it may also helped students to
identify misconceptions or lead to new ideas on how to solve
the learning task.

5. CONCLUSION AND FUTURE WORK
We explored the impact of students’ emotional state upon
different feedback types. The results indicate that certain
types of feedback are more effective then others according to
the emotional state of the student. While for some emotional
states, such as boredom, a variety of feedback types worked
well, for other emotional states, like frustration, only a few
types of feedback seem to be effective.

We are now developing and integrating the automatic speech
and emotion recognition in our learning platform. Addition-
ally the adaptive support that is able to provide the different
feedback types for particular emotional states is under devel-
opment. At the next stage of our research we are interested
to explore how the presentation of the feedback (e.g. high or
low intrusive) affects students being interrupted in perform-
ing the task and if the presentation has an effect on reaction
towards the feedback.
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ABSTRACT
The performance prediction and task sequencing in tradi-
tional adaptive intelligent tutoring systems needs informa-
tion gained from expert and domain knowledge. In a for-
mer work a new efficient task sequencer based on a perfor-
mance prediction system was presented, which only needs
former performance information but not the expensive ex-
pert and domain knowledge. In this paper we aim to sup-
port this approach by automatically gained multimodal in-
put like for instance speech input from the students. Our
proposed approach extracts features from this multimodal
input and applies to that features an automatic affect recog-
nition method. The recognised affects shall finally be used to
support the mentioned task sequencer and its performance
prediction system. Consequently, in this paper we (1) pro-
pose a new approach for supporting task sequencing and
performance prediction in adaptive intelligent tutoring sys-
tems by affect recognition applied to multimodal input, (2)
present an analysis of appropriate features for affect recog-
nition extracted from students speech input and show the
suitability of the proposed features for affect recognition for
adaptive intelligent tutoring systems, and (3) present a tool
for data collection and labelling which helps to construct an
appropriate data set for training the desired affect recogni-
tion approach.

Keywords
multimodal input, affect recognition, feature analysis, speech,
adaptive intelligent tutoring systems

1. INTRODUCTION
Learning management systems like intelligent tutoring sys-
tems are an important tool for supporting the education of

students for instance in learning fractional arithmetic. The
main advantages of intelligent tutoring systems are the pos-
sibility for a student to practice any time, as well as the
possibility of adaptivity and individualisation for a single
student. An adaptive intelligent tutoring system possesses
an internal model of the student and a task sequencer which
decides which tasks in which order are shown to the student.
Originally, the task sequencing in adaptive intelligent tutor-
ing systems is done using information gained from expert
and domain knowledge and logged information about the
performance of students in former exercises. In [12] a new
efficient sequencer based on a performance prediction sys-
tem was presented, which only uses former performance in-
formation from the students to sequence the tasks and does
not need the expensive expert and domain knowledge. This
approach applies the machine learning method matrix fac-
torization (see e.g. [1]) for performance prediction to former
performance information. Subsequently, it uses the output
of the performance prediction process to sequence the tasks
according to the theory of Vygotsky’s Zone of Proximal De-
velopment [14]. That is the sequencer chooses the next task
in order to neither bore nor frustrate the student or in other
words, the next task should not be too easy or too hard for
the student.

In this paper we propose to support the task sequencer and
performance prediction system of the approach in [12] in a
new way by further automatically to get and process mul-
timodal information. One part of this multimodal informa-
tion, which is investigated in this paper, is the speech input
from the students interacting with the intelligent tutoring
system while solving tasks. A further part will be the typed
input or mouse click input from the students, which will be
reported in upcoming works. The approach proposed in this
paper extracts features from the mentioned multimodal in-
formation and applies to that features an automatic affect
recognition method. The output of the affect recognition
method indicates, if the last task was too easy, too hard or
appropriate for the student. This information matches the
theory of Vygotsky’s Zone of Proximal Development, hence
it is obviously suitable for supporting the performance pre-
diction system and task sequencer of the approach in [12].
However, for the proposed approach we need a large amount
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of labelled data. For this reason we developed a tutoring tool
which (a) records students speech input as well as typed in-
put and mouse click input and (b) allows the students to
label by themselves how difficult they perceived the shown
tasks. This tool is presented in the second part of this pa-
per and will be used to conduct further studies to gain the
desired labelled data.

The main contributions of this paper are: (1) presentation
of a new approach for supporting performance prediction
and task sequencing in adaptive intelligent tutoring systems
by affect recognition on multimodal input, (2) identification
and analysis of appropriate and statistically significant fea-
tures for the presented approach, and (3) presentation of a
new tutoring tool for multimodal data collection and self-
labelling to gain automatically labelled data for training ap-
propriate affect recognition methods.

In the following, first we will present some preliminary con-
siderations along with state-of-the-art in section 2. Subse-
quently, we will describe in section 3 the real data set used
for the feature analysis and investigate in section 4 for the
data set the correlation between students affects and their
performance. In section 5 we will propose and analyse ap-
propriate features for affect recognition and in section 6 we
will explain how to support performance prediction and task
sequencing in intelligent tutoring systems by affect recogni-
tion applied to multimodal input. Before we conclude, we
will describe in section 7 the mentioned tool for multimodal
data collection and self-labelling.

2. PREPARATION AND RELATED WORK
Before an automatic affect recognition approach can be ap-
plied, one has to clarify three things: (1) What kind of fea-
tures shall be used, (2) what kind of classes shall be used and
(3) which instances shall be mapped to features and labelled
with the class labels. After deciding which features, classes
and instances shall be considered, one can apply affect recog-
nition methods to these input data. In the following subsec-
tions we will present possible features, classes, instances and
methods for affect recognition supporting performance pre-
diction and task sequencing in adaptive intelligent tutoring
systems along with the state-of-the-art.

2.1 Features
The first step before applying automatic affect recognition is
to identify useful features for this process. For the purpose
to recognise affect in speech one can use two different kinds
of features ([13]): acoustic and linguistic features. Further,
one can distinct linguistics (like n-grams and bag-of-words)
and disfluencies (like pauses). If linguistics features are used,
a transcription or speech recognition process has to be ap-
plied to the speech input before affect recognition can be
conducted. Subsequently, approaches from the field of sen-
timent classification or opinion mining (see e.g. [10]) can be
applied to the output of this process. However, the methods
of this field have to be adjusted to be applicable to speech
instead of written statements.

Another possibility for speech features is to use disfluencies
features like it was done in [17], [7] and [4] for expert iden-
tification. The advantage of using such features is that in-
stead of a full transcription or speech recognition approach

only for instance a pause identification has to be applied
before. That means that one does not inherit the error of
the full speech recognition approach. Furthermore, these
features are independent from the need that students use
words related to affects. For using this kind of features one
has to investigate, which particular features are suitable for
the special task of affect classification in adaptive intelligent
tutoring systems. Because of the mentioned advantage of
disfluencies features in this work we focus on features ex-
tracted from information about speech pauses as one part
of the multimodal input for affect recognition.

As mentioned in the introduction the other part of the mul-
timodal input will be features which are gained from infor-
mation about typed input or mouse click input from the
students. This kind of features is similar to the keystroke
dynamics features used in [2]. In [2] emotional states were
identified by analysing the rhythm of the typing patterns of
persons on a keyboard.

2.2 Classes
The second step before applying automatic affect recogni-
tion is to define the classes corresponding to emotions and
affective states, which shall be recognised by the used af-
fect recognition approach. According to [6], [5] and [16] it is
possible to recognise in intelligent tutoring systems students
affects like for instance confusion, frustration, boredom and
flow. As mentioned above, we want to use the students
behaviour information gained from speech and from typed
input or mouse click input for supporting the performance
prediction system and task sequencer of the approach in [12],
which is based on the theory of Vygotsky’s Zone of Proximal
Development [14]. That means that the goal is to neither
bore the student with too easy tasks nor to frustrate him
with too hard tasks, but to keep him in the Zone of Proximal
Development. Accordingly, we want to use the output of the
automatic affect recognition to get an answer to the question
“Was this task too easy, too hard or appropriate for the stu-
dent?”, or with other words we want to find out if the student
felt under-challenged, over-challenged or like to be in a flow.
However, the mapping between confusion, frustration, bore-
dom and under-challenged, over-challenged is not unambigu-
ous as one can infer e.g. from the studies mentioned in [16].
Hence, we will use instead of the above mentioned affect
classes three other classes for supporting performance pre-
diction and task sequencing by automatic affect recognition:
under-challenged, over-challenged and flow. One could sum-
marise these classes as perceived task-difficulty classes, as we
aim to recognise the individual perceived task-difficulty from
the view of the student.

2.3 Instances
The third step before applying automatic affect recognition
is deciding which instances shall be mapped to features and
labelled with the class labels. If the goal of the affect recog-
nition is to provide a student motivation or hints according
to his affective state like e.g. in [16], then instances can be
utterances. For supporting performance prediction and task
sequencing by affect recognition instead one needs at the end
of a task the information, if the task overall was too easy,
too hard or appropriate for the student. The reason is that
this information shall help to choose the next task shown
to the student. Hence, an instance for supporting perfor-
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mance prediction and task sequencing by affect recognition
has to be instead of an utterance the whole speech input of
a student for one task.

2.4 Methods
The possible methods for an automatic affect recognition
depend on the kind of the features used as input. As men-
tioned above, for speech we distinct two kinds of features:
linguistics features and disfluencies. Linguistics features are
gained by a preceding speech recognition process and can
be processed by methods coming from the areas sentiment
analysis and opinion mining ([10]). Especially methods from
the field of opinion mining on microposts seem to be appro-
priate if linguistics features are considered. State-of-the-art
approaches in opinion mining on microposts use methods
for instance based on optimisation approaches ([3]) or Naive
Bayes ([11]).

The process of gaining disfluencies like pauses is different
to the full speech recognition process. For extracting for
instance pauses usually an energy threshold on the decibel
scale is used as in [4] or an SVM is applied for pause clas-
sification on acoustic features as in [9]. Appropriate state-
of-the-art methods for automatic emotion and affect recog-
nition on disfluencies features as well as on features from
information about typed input or mouse click input are –
as proposed e.g. in [13] and [6] – classification methods like
artificial neural networks, SVM, decision trees or ensembles
of those.

3. REAL DATA SET
After identifying features, classes, instances and methods
for affect recognition for supporting performance prediction
and task sequencing like above one can collect data for a
concrete feature analysis and a training of the chosen affect
classification method. We conducted a study in which the
speech and actions of ten 10 to 12 years old German stu-
dents were recorded and students affective states as well as
the perceived task-difficulties were reported. The labelling
of these data was done on the one hand concurrently by
the tutor and on the other hand retrospectively by a second
reviewer. Furthermore, a labelling per exercise (consisting
of several subtasks) and an overall labelling per student as
an aggregation of the labels per exercise was done. During
the study a paper sheet with fraction tasks was shown to
the students and they were asked to paint (with the soft-
ware Paint) and explain their observations and answers. We
made a screen recording to record the painting of the stu-
dents and an acoustic recording to record the speech of the
students. The screen recordings were used for the retrospec-
tive annotation. The speech recordings shall be used to gain
the input for affect recognition. The mentioned typed input
or mouse click input information we will collect and investi-
gate in further studies with the self-labelling and multimodal
data collection tutoring tool described in section 7.1. In this
paper we focus on speech features and hence in section 5 we
will propose and analyse possible features extracted from
speech pauses. But first we will investigate in the following
section 4 the correlation between perceived task-difficulty
labels and the performance of the students in the real data
set.
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Figure 1: Mapping of the perceived task-difficulty
labels to the scores of the students in the real data
set.

4. CORRELATION OF PERCEIVED TASK-
DIFFICULTY LABELS AND SCORE

Before we present speech features for recognising perceived
task-difficulty, we want to show that there is a correlation
between the proposed perceived task-difficulty labels and
the performance of the students, to underline the suitabil-
ity of supporting performance prediction and task sequenc-
ing by the proposed affect recognition approach. Hence,
we mapped the overall perceived task-difficulty labels to
the overall score of the students (see figure 1). For this
mapping we encoded the different overall perceived task-
difficulty class labels as follows:

• 0 = over-challenged

• 1 = over-challenged/flow

• 2 = flow

• 3 = flow/under-challenged

• 4 = under-challenged

The overall score of a student i is computed by

nci

nti

, (1)

where nci is the number of correctly solved tasks of student
i and nti is the number of tasks shown to student i. In figure
1 one can see that there is a clear correlation between per-
ceived task-difficulty labels and score. To substantiate this
observation we applied a statistical test by conducting a lin-
ear regression and measuring the p-value, indicating the sta-
tistical significance, as well as the R2 and Adjusted R2 value,
indicating how well the regression line can approximate the
real data points. This approach delivers a p-value of 0.0027,
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Figure 2: Graphic of the decibel scale of an example
sound file of a student. The two straight horizontal
lines indicate the threshold.

a R2 value of 0.6966, and an Adjusted R2 value of 0.6586.
The small p-value indicates a strong statistical significance.
The significant correlation between perceived task-difficulty
labels and scores, which demonstrate the performance, indi-
cates that it makes sense to support performance prediction
and task sequencing by perceived task-difficulty classifica-
tion.

5. SPEECH FEATURE ANALYSIS
The features we propose and analyse in this section are
gained from speech pauses. Hence, first one has to iden-
tify pauses within the speech input data. The most easy
way is to define a threshold on the decibel scale as done
e.g. in [4]. For our preliminary study of the data we also
used such a threshold, which we adjusted by hand. More ex-
plicitly, we extracted the amplitudes of the sound files and
computed the decibel values. Subsequently, we investigated
which decibel values belong to speech and which ones to
pauses (see figure 2). In larger data and in the application
phase later on, one has to learn automatically the distinction
between speech and pauses by either learn the threshold or
train an SVM, which classifies speech and pauses.

5.1 Single Feature Analysis
Before we can introduce the features we want to investigate,
we have to define some measurements:

• m: number of students

• pi: total length of pauses of student i

• si: total length of speech of student i

• npi : number of pause segments of student i

• nsi : number of speech segments of student i

• p
(x)
i : xth pause segment of student i

• s
(y)
i : yth speech segment of student i

• nti : number of tasks shown to student i

• nci : number of correctly solved tasks by student i

• Overall score for student i:
nci
nti

Table 1: p-value, R2 and Adjusted R2 for the feature
Length of maximal pause segment mapped to score
as well as to label.

Mapped to p-value R2 Adjusted R2

Score 0.1156 0.2802 0.1902
Label 0.0678 0.3577 0.2774

Our data set exists of acoustic recordings from m students,
each of which saw nti tasks and solved nci tasks correctly.
The overall score of a student i in this case is the number
of correctly solved tasks nci divided by the number of seen
tasks nti . After applying the above mentioned threshold to
the data, we get for each student i the total length of pauses
pi and the total length of speech si in his acoustic recoding.
Furthermore, we can count connected pause and speech seg-
ments to get the number of pause segments npi and speech
segments nsi of a student i. The xth pause segment is then

p
(x)
i and the yth speech segment s

(y)
i . By means of these

measurements and their combination we can create a set of
features useful for affect recognition supporting performance
prediction and task sequencing:

• Ratio between pauses and speech ( pi
si

)

• Frequency of speech pause changes (
npi

+nsi
maxj(npj

+nsj
)
)

• Percentage of pauses of input speech data ( pi
(pi+si)

)

• Length of maximal pause segment (maxx(p
(x)
i ))

• Length of average pause segment (
∑

x p
(x)
i

npi
)

• Length of maximal speech segment (maxy(s
(y)
i ))

• Length of average speech segment (
∑

y s
(y)
i

nsi
)

• Average number of seconds needed per task ( (pi+si)
nti

)

The ratio between the total length of pauses and the total
length of speech indicates, if one one them is notable larger
than the other one, i.e. if the student made much more
speech pauses than speaking or vice versa. The frequency
of speech and pause segment changes indicates, if there are
many short speech and pauses segments or just a few large
ones and it is normalised by dividing it by the maximal sum
of pause and speech segments over all students. From the
percentage of pauses one can see if the total pause length
was much larger than the total speech part, i.e. the student
did not speak much but was more thinking silently. The
length of maximal pause or speech segment indicates if there
was e.g. a very long pause segment where the student was
thinking silently or a very long speech segment where the
student was in a speech flow. The length of average pause
or speech segment give us an idea of how much on average
the student was in a silent thinking phase or a speech flow.
The average number of seconds needed per task indicates
how long a student on average needed for solving a task.

To investigate, if these features are suitable to describe per-
ceived task-difficulty as well as performance in our real data
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Table 2: p-value, R2 and Adjusted R2 for the best
combinations of features (with a p-value smaller
than 0.05) of a set with 6, 5, 4 or 3 features mapped
to the score.

p- Adj.
# Features val. R2 R2

Frequency of changes,
seconds per task,

6 max. length of pause, 0.0439 0.9516 0.8548
average length of pause,
max. length of speech
average length of speech
Frequency of changes,
seconds per task,

5 max. length of pause, 0.0105 0.9496 0.8867
average length of pause,
average length of speech
Frequency of changes,

4 seconds per task,
average length of pause, 0.0415 0.8207 0.6773
average length of speech

3 Frequency of changes,
frequency of changes, 0.0431 0.719 0.5786
average length of speech

set, we mapped the values of each feature to the score as well
as to the perceived task-difficulty labels. Subsequently, we
applied a linear regression to measure the p-value as well as
the R2 and Adjusted R2 value. However, as expected, single
features are not very significant. The feature with the best
values for p-value, R2 and Adjusted R2 – mapped to score as
well as to labels – is the Length of maximal pause segment.
The statistical values for this feature are shown in table 1.
These values are not very satisfactory, as one would desire
a p-value smaller than 0.05 and values for R2 and Adjusted
R2 which are closer to 1. A more reasonable approach is
to combine several features instead of considering just one
feature. Hence, in the following section we will investigate
different combinations of features.

5.2 Feature Combination Analysis
We analysed different combinations of features by applying
a multivariate linear regression to them to gain the p-value,
R2 and Adjusted R2 for these combinations. The investi-
gated combinations are combinations where all features are
not strongly correlated, i.e. whenever we had two correlated
features we put just one of them into the feature set for that
combination. In further steps we removed from the con-
sidered feature sets feature by feature. Furthermore, in the
multivariate linear regression we mapped the features on the
one hand to the score and on the other hand to the labels.
The results of the best combinations, i.e. such with a p-value
at least smaller than 0.05, are shown in table 2 and 3. For
the score there were no combinations with only 2 features
with a p-value smaller than 0.05, hence in table 2 we just
listed the best combinations with 3 up to 6 features. For
the labels instead there were no such combinations, which
have a p-value smaller than 0.05, with 6 features, so that
in table 3 we only listed the best combinations of 2 up to 5
features. For both (score and labels) there are statistically
significant feature combinations. That means that our pro-

Table 3: p-value, R2 and Adjusted R2 for the best
combinations of features (with a p-value smaller
than 0.05) of a set with 5, 4, 3 or 2 features mapped
to the labels.

p- Adj.
# Features val. R2 R2

Ratio pause speech,
frequency of changes,

5 seconds per task, 0.0284 0.9158 0.8106
average length of pause,
average length of speech
Ratio pause speech,

4 frequency of changes,
average length of pause, 0.0154 0.8818 0.7872
average length of speech

3 Ratio pause speech,
frequency of changes, 0.0117 0.8207 0.7311
average length of speech

2 Frequency of changes,
average length of speech 0.0327 0.6238 0.5163

posed features are able to describe the score as well as the
labels.

6. SUPPORTING PERFORMANCE PREDIC-
TION AND SEQUENCING

As mentioned in the introduction, our goal is to support the
performance prediction system and task sequencer of the ap-
proach in [12] by affect recognition, or by multimodal input
respectively. Hence, in the following we will propose how
to realise this support. In figure 3 a block diagram of the
approach of supporting performance prediction and task se-
quencing by means of affect recognition is presented. The
approach in [12] is represented in figure 3 by the non-dotted
arrows: the performance prediction gets input from former
performances and computes by means of the machine learn-
ing method matrix factorization predictions for future per-
formances, which are the input for the task sequencer. The
task sequencer decides based on the theory of Vygotsky’s
Zone of Proximal Development from the performance pre-
diction input which task shall be shown next to the student.
This process can be supported by the multimodal input as
follows:

(1) The additional input for the performance predictor can
be the output of the affect recognition, i.e. the per-
ceived task-difficulty labels. In this case the perfor-
mance predictor can take the perceived task-difficulty
of the last task (T (t)) to use the following rules for de-

ciding how difficult the next task (T (t+1)) should be:

– If T (t) was too easy (label under-challenged or

flow/under-challenged), then T (t+1) should be harder.

– If T (t) was appropriate (label flow), then T (t+1)

should be similar difficult.

– If T (t) was too hard (label over-challenged or over-

challenged/flow), then T (t+1) should be easier.

(2) The values of the features gained by feature extrac-
tion from speech, typed input and mouse click input
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Figure 3: Approach for supporting performance pre-
diction and task sequencing by means of multimodal
input and affect recognition.

can be fed directly into the performance prediction
without applying an affect recognition. That means
that the features are mapped to scores instead of per-
ceived task-difficulty classes. That this makes sense
was shown in section 4 and 5. The performance pre-
dictor can then compare e.g. the differences between
performances, expressed as score, and the scores com-
puted by means of the features (ŝcore). This differ-
ence indicates outliers like if a student felt to be in
a flow or under-challenged but his score is worse, i.e.
ŝcore > score. In this case the student may not fully
understand the principles of the considered task al-
though he thinks so. Hence, next the system should
show the student rather tasks which explain the ap-
proach of solving such kind of tasks.

In our studies we observed the behaviour of students de-
scribed in (2), i.e. the student was labelled as to be in a
flow or under-challenged, although he performed worse, as
he just thought to understand how the tasks should be solved
but he was wrong. In figure 4 this behaviour is indicated by
the outliers.

7. LABELLING AND DATA COLLECTION
As mentioned in section 3 the labels of our real data set come
from two sources: (a) a concurrent annotation by the tutor
and (b) a retrospective annotation by another external re-
viewer on the basis of the tasks sheet, the sound files and the
screen recording. However, in the literature one can find fur-
ther labelling strategies like self-labelling of the students (see
e.g. [5], [6], [8]). The advantage of self-labelling is that one
can gain automatically a labelled data set for a subsequent
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Figure 4: Mapping of the perceived task-difficulty
labels to the scores of the students in the real data
set (a) with outliers indicated by surrounding rect-
angles (top) and (b) without outliers (bottom).

training of an affect recognition method. Furthermore, as
we want to recognise the perceived task-difficulty from the
view of the student, a label from the student himself seem to
be more appropriate than labels from another person only
reviewing the behaviour of the student. Hence, for further
studies we developed a tool for collecting speech data and
typed input and mouse click input data, labelled automati-
cally with the task-difficulty perceived by the student. This
tool will be further described in the following section.

7.1 Self-Labelling Fractional Arithmetic Tu-
tor for Multimodal Data Collection

To be able to conduct studies in which the students them-
selves label the task-difficulty which they perceived, we de-
veloped a tutoring tool (self - self-labelling fractional arith-
metic tutor for multimodal data collection) written in Java.
However, for little children it might be difficult to analyse
themselves (see e.g. [8]). Hence, self-labelling is often ap-
plied in experiments with at least college students as for
instance in [5]. Therefore, we will conduct the experiments
with this tool first with older students and more challenging
tasks. Later on we will investigate if there is a way to adapt
the tool so that a self-labelling is possible also with younger
students. Nevertheless, conducting experiments with older
students has several advantages besides the possibility of a
reasonable self-labelling: older students are able to focus on
the tasks longer than young students and the privacy issues
are not such strong as for younger students. Both facts lead
to more data. Hence, besides investigating the possibility of
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adapting self for younger students, we have to identify dif-
ferences and similarities of the data from older and younger
students to find out how to exploit older students data to
recognise affects from multimodal input from younger stu-
dents.

In figure 5 one can see the graphical user interface of our self-
labelling multimodal data collection tool self. To gain more
background information, in the beginning self asks some
information from the students as course of studies, number
of terms, age and gender. Subsequently, an instruction with
hints how to behave is shown to the students, which they can
have a look at also while interacting with the tool (button
”Anleitung“). self speaks to the students to motivate them
to speak with the system and records the speech input of the
students. The speech output of self is generated by means
of text to speech realised by the library MARY developed
at the DFKI ([18]). While interacting with the system, the
student can type in numbers, ask for a hint (button ”Hilfe”),
skip the task because it is too easy or because it is too hard
(left buttons) or submit the solution (button ”Endergebnis
überprüfen”). Every action of the student, like asking for
a hint or submitting the answer, is written – together with
a time stamp – into a log file immediately after the action,
enabling also the extraction of typed input or mouse click
input features. Also a score depending on the number of
requested hints hr and the number of incorrect inputs w is
computed according to the approach in [15] and written into
the log file. The formula for this score is

1 − (
hr

ht
+ (w · 0.1)) , (2)

where ht is the total number of available hints for the con-
sidered task. The meaning behind the formula is that each
wrong input w(j) is punished with a factor of 0.1 and every

request of a hint h
(k)
r is punished with a factor of 1

ht
, so that

if every hint was seen the score will be 0. After the student
submitted the correct answer, he is asked to evaluate, if this
task was too easy, too hard or appropriate for him (see pop-
up window in figure 5). The tasks implemented in self for
older students cover the following areas:

• Reducing fractions with numbers and variables

• Fraction addition with and without intermediate steps
and with numbers and variables

• Fraction subtraction with and without intermediate
steps and with numbers and variables

• Fraction multiplication with and without intermediate
steps and with numbers and variables

• Fraction division with and without intermediate steps
and with numbers and variables

• Distributivity law with and without intermediate steps

• Finite sums of unit fractions

• Rule of Three

After developing self, the next step will be to conduct fur-
ther studies with students to collect an adequate amount of

automatically labelled speech input, typed input and mouse
click input data for training an affect recognition method
and supporting performance prediction and task sequencing.
Furthermore, we will investigate if there is a way to adapt
self so that also younger students can label themselves.

8. CONCLUSIONS
We proposed a new approach for supporting performance
prediction and task sequencing in adaptive intelligent tutor-
ing systems by affect recognition on features gained from
multimodal input like students speech input. For this ap-
proach we proposed and analysed appropriate speech fea-
tures and showed that there are statistically significant fea-
ture combinations which are able to describe students affect,
or perceived task-difficulty respectively, as well as the perfor-
mance of a student. Furthermore, we proved the possibility
of supporting performance prediction and task sequencing
by perceived task-difficulties by demonstrating that there is
a correlation between perceived task-difficulty and perfor-
mance. Next steps will be to conduct more studies with
students by means of the presented self-labelling and multi-
modal data collection tool to enable a training of an appro-
priate affect recognition method for supporting performance
prediction and task sequencing in adaptive intelligent tutor-
ing systems.
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ABSTRACT
In this paper we introduce an automated assessment service
for online learning support in the context of communities of
learners. The goal is to introduce automatic tools to support
the task of assessing massive number of students as needed
in Massive Open Online Courses (MOOC). The final as-
sessments are a combination of tutor’s assessment and peer
assessment. We build a trust graph over the referees and use
it to compute weights for the assesments aggregations. The
model proposed intends to be a support for intelligent online
learning applications that encourage student’s interactions
within communities of learners and benefits from their feed-
back to build trust measures and provide automatic marks.

1. INTRODUCTION
Self and peer assessment have clear pedagogical advantages.
Students increase their responsibility and autonomy, get a
deeper understanding of the subject, become more active in
the learning process, reflect on their role in group learning,
and improve their judgement skills. Also, it may have the
positive side effect of reducing the marking load of tutors.
This is specially critical when tutors face the challenge of
marking large quantities of students as needed in the in-
creasingly popular Massive Open Online Courses (MOOC).

Online learning communities encourage different types of
peer-to-peer interactions along the learning process. These
interactions permit students to get more feedback, to be
more motivated to improve, and to compare their own work
with other students accomplishments. Tutors, on the other
hand, benefit from these interactions as they get a clearer
perception of the student engagement and learning process.

Previous works have proposed different methods of peer as-
sessment as part of the learning process with the added ad-
vantage of helping tutors in the sometimes dauting task of
marking large quantities of students [7, 3].

The authors of [7] propose methods to estimate peer relia-

bility and correct peer biases. They present results over real
world data from 63,000 peer assessments of two Coursera
courses. The models proposed are probabilistic and they
are compared to the grade estimation algorithm used on
Coursera’s platform, which does not take into account in-
dividual biases and reliabilities. Differently from them, we
place more trust in students who grade like the tutor and
do not consider student’s biases. When a student is biased
its trust measure will be very low and his/her opinion will
have a moderate impact over the final marks.

[3] proposes the CrowdGrader framework, which defines a
crowdsourcing algorithm for peer evaluation. The accuracy
degree (i.e. reputation) of each student is measured as the
distance between his/her self assesment and the aggregated
opinion of the peers weighted by their accuracy degrees. The
algorithm thus implements a reputation system for students,
where higher accuracy leads to higher influence on the con-
sensus grades. Differently from this work, we give more
weight to those peers that have similar opinions to those of
the tutor.

In this paper, and differently from previous works, we want
to study the reliability of student assessments when com-
pared with tutor assessments. Although part of the learning
process is that students participate in the definition of the
evalution criteria, tutors want to be certain that the scor-
ing of the students’ works is fair and as close as possible to
his/her expert opinion.

Our inspiration comes from a use case explored in the EU-
funded project PRAISE [1]. PRAISE enables online virtual
communities of students with shared interests and goals to
come together and share their music practice with each other
so the process of learning becomes social. It provides tools
for giving and receiving feedback, as feedback is considered
an essential part of the learning process. Tutors define lesson
plans as pedagogical workflows of activities, such as upload-
ing recorded songs, automatic performance analysis, peer
feedback, or reflexive pedagogy analysis. The goal of any
lesson plan is to improve student skills, for instance, the per-
formance speed competence or the interpretation maturity
level. Assessments of students’ performances have to eval-
uate the achievement of these skills. Once a lesson plan is
defined, PRAISE’s interface tools allow students to navigate
through the activities, to upload assignments, to practice, to
assess each other, and so on. The tools allow tutors to mon-
itor what students have done and to assess them. In this
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work we concentrate on the development of a service that
can be included as part of a lesson plan and helps tutors
in the overall task of assessing the students participating in
the lesson plan. This assessment is based on aggregating
students’ assessments, taking into consideration the trust
that tutors have on the students’ individual capabilities in
judging each others work.

To achieve our objective we propose in this paper an au-
tomated assessment method (Section 2) based on tutor as-
sessments, aggregations of peer assessments and on trust
measures derived from peer interactions. We experimentaly
evaluate (Section 3) the accuracy of the method over differ-
ent topologies of student interactions (i.e. different types of
student grouping). The results obtained are based on sim-
ulated data, leaving the validation with real data for future
work. We then conclude with a discussion of the results
(Section 4).

2. COLLABORATIVE ASSESSMENT
In this section we introduce the formal model of the method
and the algorithms for collaborative assessment.

2.1 Notation and preliminaries
We say an online course has a tutor τ , a set of peer students
S, and a set of assignments A that need to be marked by the
tutor and/or students with respect to a given set of criteria
C.

The automated assessment state S is then defined as the
tuple:

S = 〈R,A, C,L〉

R = {τ}∪S defines the set of possible referees (or markers),
where a referee could either be the tutor τ or some student
s ∈ S. A is the set of submitted assignments that need to
be marked and C = 〈c1, . . . , cn〉 is the set of criteria that as-
signments are marked upon. L is the set of marks (or assess-
ments) made by referees, such that L : R×A→ [0, λ]n (we
assume marks to be real numbers between 0 and some maxi-
mum value λ). In other words, we define a single assessment

as: µρα = ~M , where α ∈ A, ρ ∈ R, and ~M = 〈m1, . . . ,mn〉
describes the marks provided by the referee on the n criteria
of C, mi ∈ [0, λ].

Similarity between marks. We define a similarity function
sim : [0, λ]n×[0, λ]n → [0, 1] to determine how close two ass-
esments µρα and µηα are. We calculate the similarity between
assessments µρα = {m1, . . . ,mn} and µηα = {m′1, . . . ,m′n} as
follows:

sim(µρα, µ
η
α) = 1−

n∑
i=1

|mi −m′i|

n∑
i=1

λ

This measure satisfies the basic properties of a fuzzy simi-
larity [6]. Other similarity measures could be used.

Trust relations between referees. Tutors need to decide
up to which point they can believe on the assessments made
by peers. We use two different intuitions to make up this
belief. First, if the tutor and the student have both assessed
some assigments, their similarity gives a hint of how close
the judegements of the student and the tutor are. Similarly,
we can define the judgement closeness of any two students by
looking into the assignments evaluated by both of them. In
case there are no assigments evaluated by the tutor and one
particular student we could simply not take that student’s
opinion into account because the tutor would not know how
much to trust the judgement of this student, or, as we do
in this paper, we approximate that unknown trust by lookig
into the chain of trust between the tutor and the student
through other students. To model this we define two differ-
ent types of trust relations:

• Direct trust : This is the trust between referees ρ, η ∈ R
that have at least one assignement assessed in common.
The trust value is the average of similarities on the
assessments over the same peers. Let the set Aρ,η be
the set of all assignments that have been assessed by
both referees. That is, Aρ,η = {α | µρα ∈ L and µηα ∈
L}. Then,

TD(ρ, η) =

∑
α∈Aρ,η sim(µρα, µ

η
α)

|Aρ,η|

We could also define direct trust as the conjunction of
the similarities for all common assignments as:

TD(ρ, η) =
∧

α∈Aρ,η

sim(µρα, µ
η
α)

However, this would not be practical, as a significant
difference in just one assessment of those assessed by
two referees would make their mutual trust very low.

• Indirect trust : This is the trust between referees ρ, η ∈
R without any assignement assessed by both of them.
We compute this trust as a transitive measure over
chains of referees for which we have pair-wise direct
trust values. We define a trust chain as a sequence of
referees qj = 〈ρi, ..., ρi, ρi+1, . . . , ρmj 〉 where ρi ∈ R,
ρ1 = ρ and ρmj = η and TD(ρi, ρi+1) is defined for
all pairs (ρi, ρi+1) with i ∈ [1,mj − 1]. We note by
Q(ρ, η) the set of all trust chains between ρ and η.
Thus, indirect trust is defined as a aggregation of the
direct trust values over these chains as follows:

TI(ρ, η) = max
qj∈Q(ρ,η)

∏
i∈[1,mj−1]

TD(ρi, ρi+1)

Hence, indirect trust is based in the notion of transi-
tivity.1

1TI is based on a fuzzy-based similarity relation sim pre-
sented before and fulfilling the ⊗-Transitivity property:
sim(u, v)⊗ sim(v, w) ≤ sim(u,w), ∀u, v, w ∈ V , where ⊗ is
a t-norm [6].

Published in CEUR-WS: 
FFMI workshop (Schmidt-Thieme and Janning) 
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

180



Ideally, we would like to not overrate the trust of a tutor on
a student, that is, we would like that TD(a, b) ≥ TI(a, b) in
all cases. Guaranteeing this in all cases is impossible, but we
can decrease the number of overtrusted students by selecting
an operator that gives low values to TI . In particular, we
prefer to use the product

∏
operator, because this is the t-

norm that gives the smallest possible values. Other opertors
could be used, for instance the min function.

Trust Graph. To provide automated assessments, our pro-
posed method agregates the assessments on a given assign-
ment taking into consideration how much trusted is each
marker/referee from the point of view of the tutor (i.e. tak-
ing into consideration the trust of the tutor on the referee
in marking assignments). The algorithm that computes the
student final assessment is based on a graph defined as fol-
lows:

G = 〈R,E,w〉

where the set of nodes R is the set of referees in S, E ⊆
R × R are edges between referees with direct or indirect
trust relations, and w : E → [0, 1] provides the trust value.
We note by D ⊂ E the set of edges that link referees with
direct trust. That is, D = {e ∈ E|TD(e) 6= ⊥}. An similarly,
I ⊂ E for indirect trust, I = {e ∈ E|TI(e) 6= ⊥}\D. The w
values will be used as weights to combine peer assessments
and are defined as:

w(e) =

{
TD(e) , if e ∈ D
TI(e) , if e ∈ I

Figure 1 shows examples of trust graphs with e ∈ D (in
black) and e ∈ I (in red —light gray) for different sets of
assessments L.

2.2 Computing collaborative assessments
Algorithm 1 implements the collaborative assessment method.
We keep the notation (ρ, η) to refer to the edge connecting
nodes ρ and η in the trust graph and Q(ρ, η) to refer the set
of trust chains between ρ and η.

The first thing the algorithm does is to build a trust graph
from L. Then, the final assessments are computed as fol-
lows. If the tutor marks an assignment, then the tutor mark
is considered the final mark. Otherwise, a weighted average
(µα) of the marks of student peers is calculated for this as-
signment, where the weight of each peer is the trust value
between the tutor and that peer. Other forms of aggrega-
tion could be considered to calculate µα, for instance a peer
assessment may be discarded if it is very far from the rest
of assessments, or if the referee’s trust falls below a certain
threshold.

Figure 1 shows four trust graphs built from four assessments
histories that corresponds to a chronological sequence of as-
sessments made. The criteria C in this example are speed
and maturity and the maximum mark value is λ = 10. For

Algorithm 1: collaborativeAssessments(S = 〈R,A, C,L〉)
� Initial trust between referees is zero

D = I = ∅;
for ρ, η ∈ R, ρ 6= η do

w(ρ, η) = 0;
end

� Update direct trust and edges
for ρ, η ∈ R, ρ 6= η do

Aρ,η = {β | µρβ ∈ L and µηβ ∈ L};
if |Aρ,η | > 0 then

D = D ∪ (ρ, η);
w(ρ, η) = TD(ρ, η);

end
end

� Update indirect trust and edges between tutor & students
for ρ ∈ R do

if (τ, ρ) 6∈ D and Q(τ, ρ) 6= ∅ then
I = I ∪ (ρ, η);
w(ρ, η) = TI(τ, η);

end

end
� Calculate automated assessments

assessments = {};
for α ∈ A do

if µτα ∈ L then
� Tutor assessments are preserved

assessments = assessments ∪ (α, µτα)
else

� Generate automated assessments
R′ = {ρ|µρα ∈ L};
if |R′| > 0 then

µα =

∑
ρ∈R′ µ

ρ
α ∗ w(τ, ρ)∑

ρ∈R′ w(τ, ρ)
;

assessments = assessments ∪ (α, µα);
end

end

end
return assessments;

simplicity we only represent those referees that have made
assessments in L. In Figure 1(a) there is one node represent-
ing the tutor who has made the only assessment over the as-
signment ex1 and there are no links to other nodes as no one
else has assessed anything. In (b) student Dave assesses the
same exercise as the tutor and thus a link is created between
them. The trust value w(tutor,Dave) = TD(tutor,Dave) is
high since their marks were similar. In (c) a new assessment
by Dave is added to L with no consequences in the graph
construction. In (d) student Patricia adds an assessment on
ex2 that allows to build a direct trust between Dave and
Patricia and an indirect trust between the tutor and Patri-
cia, through Dave. The automated assessments generated
in case (d) are: 〈5, 5〉 for exercise 1 (which preserves the tu-
tor’s assessment) and 〈3.7, 3.7〉 for exercise 2 (which uses a
weighted aggregation of the peers’ assessments).

Note that the trust graph built from L is not necessarily con-
nected. A tutor wants to reach a point in which the graph
is totally connected because that means that the collabora-
tive assessment algorithm generates an assessment for every
assignment. Figure 2 shows an example of a trust graph of
a particular learning community involving 50 peer students
and a tutor. When S has a history of 5 tutor assessments
and 25 student assessments (|L| = 30) we observe that not
all nodes are connected. As the number of assessments in-
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(a) L={µtutorex1
=〈5,5〉} (b) L={µtutorex1

=〈5,5〉,µdaveex1
=〈6,6〉}

(c) L={µtutorex1
=〈5,5〉,µdaveex1

=

〈6,6〉,µdaveex2
=〈2,2〉}

(d) L={µtutorex1
=〈5,5〉,µdaveex1

=

〈6,6〉,µdaveex2
=〈2,2〉,µpatriciaex2

=〈8,8〉}

Figure 1: Trust graph example 1.

creases, the trust graph becomes denser and eventually it
gets completely connected. In (b) and (c) we see a complete
graph.

3. EXPERIMENTAL PLATFORM AND EVAL-
UATION

In this Section we describe how we generate simulated so-
cial networks, describe our experimental platform, define our
benchmarks and discuss experimental results.

3.1 Social Network Generation
Several models for social network generation have been pro-
posed reflecting different characteristics present in real social
communities. Topological and structural features of such
networks have been explored in order to understand wich
generating model resembles best the structure of real com-
munities [5].

A social network can be defined as a graph N where the set
of nodes represent the individuals of the network and the
set of edges represent connections or social ties among those
individuals. In our case, individuals are the members of the
learning community: the tutor and students. Connections
represent the social ties and they are usually the result of
interactions in the learning community. For instance a social
relation will be born between two students if they interact
with each other, say by collaboratively working on a project
together. In our experimentation, we rely on the social net-
work in order to simulate which student will assess the as-
signment of which other student. We assume students will
assess the assignments of students they know, as opposed
to picking random assignments. As such, we clarify that
social networks are different from the trust graph of Sec-
tion 2. While the nodes of both graphs are the same, edges

(a) |L| = 30 (b) |L| = 200

(c) |L| = 400

Figure 2: Trust graph example 2

of the social network represent social ties, whereas edges in
the trust graph represent how much does one referee trust
another in judging others work.

To model social networks where relations represent social
ties, we follow three different approaches: the Erdős-Rényi
model for random networks [4], the Barabási-Albert model
for power law networks[2] and a hierarchical model for clus-
ter networks.

3.1.1 Random Networks
The Erdős-Rényi model for random networks consists of a
graph containing n nodes connected randomly. Each possi-
ble edge between two vertices may be included in the graph
with probability p and may not be included with probability
(1− p). In addition, in our case there is always an edge be-
tween the node representing the tutor and the rest of nodes,
as the tutor knows all of its students (and may eventually
mark any of those students).

The degree distribution of random graphs follows a Poisson
distribution. Figure 3(a) shows an example of a random
graph with 51 nodes and p = 0.5 and its degree distribution.
Note that the point with degree 50 represents the tutor node
while the rest of the nodes degree fit a Poisson distribution.

3.1.2 Power Law Networks
The Barabási-Albert model for power law networks base
their graph generation on the notions of growth and pref-
erential attachment. The generation scheme is as follows.
Nodes are added one at a time. Starting with a small num-
ber of initial nodes, at each time step we add a new node
with m edges linked to nodes already part of the network.
In our experiments, we start with m+ 1 initial nodes. The
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edges are not placed uniformly at random but preferentially
in proportion to the degree of the network nodes. The prob-
ability p that the new node is connected to a node i already
in the network depends on the degree ki of node i, such
that: p = ki/

∑n
j=1 kj . As above, there is also always an

edge between the node representing the tutor and the rest
of nodes.

The degree distribution of this network follows a Power Law
distribution. Figure 3(b) shows an example of a power law
graph with 51 nodes and m = 16 and its degree distribution.
The point with degree 50 describes the tutor node while the
rest of the nodes closely resemble a power law distribution.
Recent empirical results on large real-world networks often
show, among other features, their degree distribution follow-
ing a power law [5].

3.1.3 Cluster Networks
As our focus is on learning communities, we also experiment
with a third type of social network: the cluster network
which is based on the notions of groups and hierarchy. Such
networks consists of a graph composed of a number of fully
connected clusters (where we believe clusters may represent
classrooms or similar pedagogical entities). Additionally,
as above, all the nodes are connected with the tutor node.
Figure 3(c) shows an example of a cluster graph with 51
nodes, 5 clusters of 10 nodes each and its degree distribution.
The point with degree 50 describes the tutor while the rest
of the nodes have degree 10, since every student is fully
connected with the rest of the classroom.

3.2 Experimental Platform
In our experimentation, given an initial automated assess-
ment state S = 〈R,A, C,L〉 with an empty set of assessments
L = {}, we want to simulate tutor and peer assessments
so that the collaborative assessment method can eventually
generate a reliable and definitive set of assessments for all
assignments.

To simulate assessments, we say each students is defined by
its profile that describes how good its assessments are. The
profile is essentially defined by the measure, or distance, dρ ∈
[0, 1] that specifies how close are the student’s assessments
to that of the tutor.

We then assume the simulator knows how the tutor and each
student would assess an assignment. This becomes necessary
in our simulation, since we generate student assessments in
terms of their distance to that of the tutor’s, even if the
tutor does not choose to actually assess the assignment in
question. This simulator’s knowledge of the values of all
possible assessments is generated accordingly:

• For every assignment α ∈ A, we calculate the tutor’s
assessment, which is randomly generated according to
the function fτ : A → [0, λ]n. This assessment essen-
tially describes what mark would the tutor give α, if
it decided to assess it.

• For every assignment α ∈ A, we also calculate the
assessment of each student ρ ∈ S. This is calculated
according to the function fρ : A → [0, λ]n, such that:

(a) Random Network (aprox graph density 0.5)

(b) Power Law Network (aprox graph density 0.5)

(c) Cluster Network (aprox graph density 0.2)

Figure 3: Social Network generation examples

sim(fρ(α), fτ (α)) ≥ dρ We note that we only need
to calculate ρ’s assessment of α if the student who
submitted the assignment α is a neighbour of ρ in N .

We note that the above only calculates what the assessments
would be, if referees where to assess assignments.

3.3 Benchmark
Given an initial automated assessment state S = 〈R,A, C,L〉
with an empty set of assessments L = {}, a set of student
profiles Pr = {ds}∀s∈S , and a social network N (whose
nodes is the set R), we simulate individual tutor and stu-
dents’ assessments. When does a referee in R assess an as-
signment in A is explained shortly. However we note here
that the value of each generated assessment is equivalent to
that calculated for the simulator’s knowledge (see Section 3.2
above).

In our benchmark, we consider the three types of social net-
works introduced earlier: random social networks (with 51
nodes, p = 0.5, and approximate density of 0.5), power law
networks (with 51 nodes, m = 16, and approximate density
of 0.5), and cluster networks (with 51 nodes, 5 clusters of 10
nodes each, and approximate density of 0.2). Examples of
these generated networks are shown in Figure 3.
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We say one assignment is submitted by each student, re-
sulting in |S| = 50 and |A| = 50. The range that a referee
(tutor or student) may mark a given assignment with re-
spect to a given criteria is [0,10]. And the set of criteria is
C = 〈speed,maturity〉. The criteria essentially measure the
speed of playing a musical piece, and the maturity level of
the student’s performance.

An assessment profile is generated for each student ρ at the
beginning of the execution, resulting in a set of student pro-
files Pr = {ds}∀s∈S , where d ∈ [0, 0.5]. We consider here two
cases for generating the set of student profiles Pr. A first
case where d is picked randomly following a power law dis-
tribution (Figure 4(a)) and a second case where d is picked
randomly following a uniform distribution (Figure 4(b)).

With simulated individual assessments, we then run the col-
laborative assessment method in order to compute an au-
tomated assessment. We also compute the ‘error’ of the
collaborative assessment method, whose range is [0, 1], over
the set of assignments A accordingly:∑

α∈A

sim(fτ (α), φ(α))

|A|

, where φ(α) describes the automated assessment for a given
assignment α ∈ A

(a) Power law profile generation

(b) Uniform profile generation

Figure 4: Example of the profile distributions (left)
and of d counting averaged over 50 instances (right)

With the settings presented above, we run two different ex-
periments. The results presented are an average over 50
executions. The two experiments are presented next.

In experiment 1, students provide their assessments before
the tutor. Each student ρ provides assessments for a ran-
domly chosen aρ number of peer assigments (of course, where
assignments are those of their neighboring peers in N ). We
run the experiment for 5 different values of aρ = {3, 4, 5, 6, 7}.
After the students provide their assessments, the tutor starts
assessing assignments incrementally. After every tutor as-
sessment, the error over the set of automated assessment is

calculated. Notice that the collaborative assessment method
takes the tutor assessment, when it exists, to be the final
assessment. As such, the number of automated assessments
calculated based on aggregating students’ assessments is re-
duced over time. Finally, when the tutor has assessed all 50
students, the resulting error is 0.

In experiment 2, the tutor provides its assessments before
the students. The tutor in this experiment will assess a
randomly chosen number of assignments, where this num-
ber is based on the percentage aτ of the total number of
assignments. We run the experiment for 4 different values
of aτ = {5, 10, 15, 20}. After the tutor provides their assess-
ments, students’ assessments are performed. In every itera-
tion, a student ρ randomly selects a neighbor in N and as-
sesses his assignment (in case it has not been assessed before
by ρ, otherwise another connected peer is chosen). We note
that in the case of random and power law networks (denser
networks), a total number of 1000 student assessments are
performed. Whereas in the case of cluster networks (looser
network), a total of 400 student assessments are performed.
We note that initially, the trust graph is not fully connected,
so the service is not able to provide automated assessments
for all assignments. When the grap gets fully connected, the
service generates automated assessments for all assignments
and we start measuring the error after every new iteration.

3.4 Evaluation
In experiment 1, we observe (Figure 5) that the error de-
creases when the number of tutor assessments increase, as
expected, until it reaches 0 when the tutor has assessed all 50
students. This decrement is quite stable and we do not ob-
serve abrupt error variations or important error increments
from one iteration to the next. More variations are observed
in the initial iterations since the service has only a few as-
sessments to deduce the weights of the trust graph and to
calculate the final outcome.

In the case of experiment 2 (Figure 6), the error diminishes
slowly as the number of student assessments increase, al-
though it never reaches 0. Since the number of tutor assess-
ments is fixed in this experiment, we have an error threshold
(a lower bound) which is linked to the students’ assessment
profile: the closest to the tutor’s the lower this threshold will
be. In fact, in both experiments we observe that when using
a power law distribution profile (Figure 4(a)) the automated
assessment error is lower than when using a uniform distri-
bution profile (Figure 4(b)). This is because when using a
power law distribution, more student profiles are generated
whose assessments are closer to the tutors’.

In general, the error trend observed in all experiments com-
paring different social network scenarios (random, cluster or
power law) show a similar behavior. Taking a closer look at
experiment 2, cluster social graphs have the lowest error and
we observe that assessments on all assignments are achieved
earlier (this is, the trust graph gets connected earlier). We
attribute this to the topology of the fully connected clus-
ters which favors the generations of indirect edges earlier
in the graph between the tutor and the nodes of each clus-
ter. Power law social graphs have lower error than random
networks in most cases. This can be attributed to the cri-
teria of preferential attachment in their network generation,
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Figure 5: Eperiment 1 Figure 6: Experiment 2
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which favors the creation of some highly connected nodes.
Such nodes are likely to be assessed more frequently since
more peers are connected to them. Then, the automated
assessments of these higly connected peers are performed
with more available information which could lead to more
accurate outcomes.

4. DISCUSSION
The collaborative assessment model proposed in this paper
is thought of as a support in the creation of intelligent on-
line learning applications that encourage student interac-
tions within communities of learners. It goes beyond cur-
rent tutor-student online learning tools by making students
participate in the learning process of the whole group, pro-
viding mutual assessment and making the overall learning
process much more collaborative.

The use of AI techniques is key for the future of online learn-
ing communities. The application presented in this paper is
specially useful in the context of MOOC: with a low num-
ber of tutor assessments and encouraging students to inter-
act and provide assessments among each other, direct and
indirect trust measures can be calculated among peers and
automated assessments can be generated.

Several error indicators can be designed and displayed to the
tutor managing the course, which we leave for future work.
For example the error indicators may inform the tutor which
assignments have not received any assessments yet, or which
deduced marks are considered unreliable. For example, a
deduced mark on a given assignment may be considered un-
reliable if all the peer assessments that have been provided
for that assignment are considered not to be trusted by the
tutor as they fall below a preselected acceptable trust thresh-
old. Alternatively, a reliability measure may also be assigned
to the computed trust measure TD. For instance, if there
is only one assignment that has been assessed by τ and ρ,
then the computed TD(τ, ρ) will not be as reliable as hav-
ing a number of assignments assessed by τ and ρ. As such,
some reliability threshold may be used that defines what is
the minimum number of assignments that both τ and ρ need
to assess for TD(τ, ρ) to be considered reliable. Observing
such error indicators, the tutor can decide to assess more as-
signments and as a result the error may improve or the set
of deduced assessments may increase. Finally, if the error
reaches a level of acceptance, the tutor can decide to en-
dorse and publish the marks generated by the collaborative
assessment method.

Another interesting question for future work is presented
next. Missing connections might be detected in the trust
graph that would improve its connectivity or maximize the
number of direct edges. The question that follows then is,
what assignments should be suggested to which peers such
that the trust graph and the overall assessment outcome
would improve?

Additionally, future work may also study different approaches
for calculating the indirect trust value between two referees.
In this paper, we use the product operator. We suggest to
study a number of operators, and run an experiment to test
which is most suitable. To do such a test, we may calcu-
late the indirect trust values for edges that do have a direct

trust measure, and then see which approach for calculating
indirect trust gets closest to the direct trust measures.
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ABSTRACT
Question and Answering systems and crowd learning are
becoming an increasingly popular way of organising and ex-
changing expert knowledge in specific domains. Since they
are expected to have a significant impact on online educa-
tion [14], we will investigate to which degree the necessary
conditions for collaborative learning emerge in open Q&A
platforms like Stack Exchange, in which communities grow
organically and learning is not guided by a central authority
or curriculum, unlike MOOCs. Starting from a pedagogical
perspective, this paper mines for circumstantial evidence to
support or contradict the pedagogical criteria for collabora-
tive learning. It is observed that although there are techni-
cally no hindrances towards true collaborative learning, the
nature and dynamics of the communities are not favourable
for collaborative learning.

The findings in this paper illustrate how the collaborative
nature of feedback can be measured in online platforms, and
how users can be identified that need to be encouraged to
participate in collaborative activities. In this context, re-
marks and suggestions are formulated to pave the way for
a more collaborative and pedagogically sound platform of
knowledge sharing.

1. INTRODUCTION
Computer-assisted instruction (CAI) is one of the hottest
topics in education research [9] and often claimed to rev-
olutionise how we teach and learn [6]. Massive Open On-
line Courses or MOOCs are the newest manifestation of this
phenomenon. However, while 2012 was being praised as
”the year of the MOOC”, more and more critical voices were
heard during the last year and MOOCs are under increasing
pressure to finally live up to their promise. Spoken in terms
of of Gartner’s Hype Cycle [8], we could say that we’re either
at the peak of inflated expectations, or already entering the
through of disillusionment [3, 15, 10].

This however does not mean that online learning isn’t ad-

Figure 1: The degree distribution shows that the
network of user-interaction is scale-free, which sup-
ports the hypothesis that there is no symmetry of
knowledge.

vancing in many interesting directions: Kahn’s academy
emerged more or less organically when Salman Kahn started
teaching his cousin mathematics using short videos. When
Salman realized a lot more children could benefit from these
lessons, he started distributing them on YouTube. Today,
Kahn Academy reaches 10 million students per month, ac-
cording to Wikipedia. Wikipedia itself has become an in-
tegral part of traditional education too. Some researchers
expect that learning in general will evolve from an individ-
ual task centred around the teacher-student dichotomy, to
a collaborative social activity, in which online knowledge
bases like Wikipedia, forums, social networks and Question
& Answering systems are playing an ever more important
role [4]. In this paper, we will try to find evidence of the
claimed collaborative properties of Q&A systems, more in
particular the music forum site of Stack Exchange1. Though
the analysis is based on text-based feedback, it is expected
that the dynamics of feedback in collaborative activities also
hold in multi-modal situations.

This paper is structured as follows. First, the pedagogi-
cal background of collaborative learning is set out, based
upon the work of Dillenbourg [7] and conditions for and
indicators of collaborative learners are introduced. Next,

1http://music.stackexchange.com
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educational data mining techniques are applied [12] to find
evidence of collaborative learning in crowd learning systems,
more specifically Question and Answering systems like Stack
Exchange. Lastly, a critical discussion is performed and sug-
gestions towards more collaborative Q&A systems are pro-
posed, to end with conclusions.

2. COLLABORATIVE LEARNING
2.1 Pedagogical approach
Existing definitions of collaborative learning in the academic
fields of psychology, education and computer science, differ
significantly and are often vague or subject to interpretation.
We thus needed a theory that unified the different theories
and was applicable to the online, computerised world as well.
Not the least, it had to be easily operationalisable. A re-
view of the literature brought us to the work done by Pierre
Dillenbourg [7] that perfectly suited our requirements. Dil-
lenbourg takes a broad view on the subject and argues that
collaborative learning is a situation in which two or more
people learn through interactions.

This means that collaborative learning can not be reduced to
one single mechanism: just like people do not learn because
they are individual but rather because the activities they
perform trigger learning mechanisms, people don’t learn col-
laboratively because they are together. Rather, the interac-
tions between the peers create activities (explanation, mu-
tual regulation,...) that trigger cognitive learning mecha-
nisms (elicitation, internalisation, ...) [7].

For these processes to be effective, some requirements need
to be fulfilled. A subset was extracted that could be mea-
sured numerically, albeit indirectly, using the information
available in our data set (summarized in Table 1). In the
next section we will have a closer look at these indicators.

2.2 Indicators
Dillenbourg discriminates three important aspects for col-
laborative learning to be effective and characterises situa-
tions, interactions and processes as collaborative if they fulfil
the following criteria:

• Peers are more or less at the same level, have a common
goal and work together ;

• Peers communicate interactively, in a synchronous and
negotiable manner ;

• Peers apply mechanisms like internalisation, appropri-
ation and mutual modelling.

These high-level criteria have been refined by Dillenbourg
into more detailed conditions for collaborative learning, of
which a subset has been summarised in Table 1. Each corre-
sponding indicator provides indirect circumstantial evidence
for each criterion, as our analysis was limited by the data
available in the Stack Exchange. Nevertheless, as we will
see, they give useful insight in the formation and dynamics
of open online collaborative communities for learning.

The research in this paper can be seen as an extension of pre-
vious research in Educational Data Mining, that measured

participation and interaction between students [11] and the
successful formation of learner’s communities [1, 13].

3. QUANTITATIVE ANALYSIS
Stack Exchange can be considered as a distant-learning auto-
didact platform in which communities are formed organi-
cally and learning is not guided by a curriculum or some
central authority, but exclusively by the members of the
community, in contrast with MOOCs. This paper aims at
answering the question whether the necessary conditions for
collaborative learning emerge spontaneously in these plat-
forms. As the work is done in the context of the PRAISE
project2, a social media platform for music learning, the
Music Stack Exchange data set was chosen.

Stack Exchange provides an open API, from which all data
can be exported. The data set consisted of 2400 questions,
1500 active members and 1.7 million page views The plat-
form is basically a forum in which anyone can ask and reply
to questions. As a means of quality control, users can give
up- and down votes to questions, and answers. People can
also comment on questions and answers which is actually
some kind of meta-discussion in which feedback on relevance,
terminology, etc... is given. In the following paragraphs, the
criteria listed in Table 1 will be studied in more detail.

3.1 Symmetry of action
Symmetry of action expresses the extent to which the same
range of actions is allowed by the different users. Stack Ex-
change employs a system of so-called privileges, attributed
according to your reputation3. These privileges are generally
connected to moderation rights, rather than with the actions
of asking and replying to questions – unless you have a neg-
ative reputation. The fact that users can exert the same
actions, does not imply that this also actually the case. An
analysis of the distribution of the ratio of answers over the
number of questions, reveals that we can roughly discrimi-
nate three kinds of users, based upon their activity profile:

• Silent users (62% of the registered users) that never
answer, e.g. users that don’t register or register but
do not ask questions nor reply to them;

• Regular users (37% of registered users) that give roughly
as much as answers as they ask questions, that is, two
on average;

• Super-users (<1% of the registered users), these are
’hubs’ that give at least 40x more answers than they
ask questions.

The largest part (96%) of regular users, ask less than five
questions, and 76% even asks only one question: there are no
’parasite’ users between the regular users that ask question
but do not answer. From the other side, only 8 ’expert’
super-users (0.5% of the community) were responsible for
answering 25% of the questions. Above findings indicate
that the symmetry in action is highly skewed because
of a small group of ’super-users’ and a large group
of ’silent users’.

2http://www.iiia.csic.es/praise/
3http://stackoverflow.com/help/privileges
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Aspect Criterion Indicator

Situation Symmetry of action Ratio of answers and questions per user
Symmetry of knowledge Scale-freeness of the user interaction graph

Symmetry of status Distribution of reputation within the community

Interactions Synchronous Response times of answering to questions
Division of labour Distribution of questions and answers in the community

Table 1: Criteria of collaborative learning according to Dillenbourg, with corresponding indicators. The
indirect nature of the indicators stems from the fact that only meta data was available from the Stack
Exchange data set, and that the criteria in general are very hard to measure quantitatively.

Figure 2: Users tend to ask more questions in the
beginning when signing up, and start answering as
they have been around some time.

3.2 Symmetry of status
Stack Exchange employs a reputation system by which mem-
bers get rewarded or punished if a peer up- or down votes
your answer or question, when your answer gets ’accepted’,
etc...

We would expect a ”healthy” collaborative community to
have a strong correlation between reputation and the time
a user has been around on the platform: as users spend
more time on the platform, their reputation builds up. An
inquiry into the Stack Exchange music data set, however,
reveals only a correlation of 0.23 between reputation and
”time around”. We could thus conclude that there is some
odd kind of symmetry, in the sense that no one really
builds up reputation.

3.3 Symmetry of knowledge
Traditionally, these reputation systems are believed to make
a good indicator for the knowledge a user possesses. How-
ever, there are some problems with this reasoning:

• Knowledge is not a uni-dimensional measure, but is
connected to a (sub) domain of expertise;

• Someone’s reputation keeps on increasing, even with-
out activity: there is a bias towards old posts and
members;

• There is a bias towards ”easy answerable questions”.

Figuring the knowledge of the members directly is quite an
impossible task to perform, especially in a broad and open-
ended domain like music. To assess symmetry of knowledge,
however, one could argue that if everyone in the Stack Ex-
change music learner’s community has more or less the same
expertise, then, on average, anyone would answer questions
asked by anyone.

In other words, there would be no particular hierarchy in
answering, rather the network of interaction would be ”ran-
dom” and not scale-free. Another way to put this, is to state
that no hubs of people would exist that answer significantly
more questions than others. A network is called scale-free if
the degree distribution follows a power law[2]:

P (k) ∼ k−γ (1)

with P (k) being the fraction of nodes that have a degree k,
and γ a constant typically between 2 and 3. Figure 1 reveals
a power-law relationship, with exception this special group
of ”super-users”. Above findings therefore suggest that sym-
metry of knowledge is not observed.

3.4 Division of labour
As pointed out before, a small group of super users answer
vastly more questions than they ask: a group of 21 users
answered half the questions. This is clearly not a balanced
situation in which the total labour of answering questions,
is equally distributed. Figure 2 shows the relative timing of
when users ask and respond to questions over their lifetime.

Users tend to ask questions in the beginning (a visit to the
site probably triggered by an urgent need to get a question
resolved), but start answering more uniformly after a while.
The graph also indicates that engagement is largest in the
beginning. This information is relevant when developing
platforms with a pedagogical purposes: users probably
need to be ”bootstrapped”, allowing them to give
lesser answers and ask more questions in the begin-
ning, so they get ”locked into” the platform.

Note that a relative plot was preferred, in which the x-axis
indicates the % of the lifetime, 0% being the moment of
signing up, and 100% the date the data set was obtained. It
allowed us to grasp the details of both users that had just
signed up, as well as users that have been active for a long
time (especially as the rate of signing up is probably not
constant but increases with time).

3.5 Synchronous feedback
To keep people engaged in an activity, according to the ”the-
ory of flow” [5], immediate feedback is necessary. In the case
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Figure 3: Users tend to give much more up-votes
than down-votes to questions. Generally speaking,
down-voting is only used to remove off-topic, dupli-
cate questions or questions that are either too spe-
cific or broad.

of the music Stack Exchange platform, 68% of the questions
received an answer within the day, and 20% even within the
hour. This may seem odd, but closer inspection reveals that
– once again – this is due to the small-group of ”super-users”
that are very engaged.

4. CRITICAL DISCUSSION
Based upon the analysis done in the previous section, some
critical remarks and suggestions are offered to improve the
pedagogical nature and collaborative learning

4.1 Remarks
4.1.1 Limited to no instructional design

The data set on Stack Exchange music’s forum, is an amal-
gam of questions (1) with different levels of granularity, typ-
ically with a small scope, (2) on a wide range of topics,
for learners (3) with different learning goals and (4) dif-
ferent levels of expertise. The activities are not designed
to elicit collaborative learning, and as the data is unstruc-
tured, without sufficient scaffolding of the learning content
(e.g. through hyper-linking), it is no natural fit for learning
but rather provides ad-hoc answers to appease short-
term narrow personal learning goals.

4.1.2 A heterogeneous community
Above remarks wouldn’t be so problematic for collaborative
learning, if proficient communities existed within the Stack
Exchange platform that had more or less the same goals, ex-
pertise and engagement. In the current case, there’s a risk
of frustration and boredom in expert users that don’t see
their questions answered and who have to answer straight-
forward questions. For novice members, on the other hand,
their learning remains limited because they do not get suf-
ficient guidance and do not really construct knowledge.

Although the group of super-users makes sure that questions
get answered quickly and perform the largest part of mod-
eration, they are potentially harmful to collaborative learn-
ing as they distort the natural formation and dynamics of

collaborative communities. From the other side, their inter-
ventions may bootstrap ”young” forums.

4.1.3 Strong preference for "liking"
The dataset revealed a very strong preference for voting up
rather than down: only two users gave more down votes than
up votes and of all the people that have ever cast a down vote
(72 users out of the roughly 1500 active users), 80% gave
more than five times as much up-votes in return. 80% of
the questions had no down vote, compared to less than 10%
without up-vote. Figure 3 shows the distribution of up- and
down-votes. This effect was even more pronounced in the
answers: the number of down-votes is typically zero or very
small, whereas the up-votes reach a maximum at about 3 up-
votes, then slowly attenuates. A further analysis of questions
with more down than up-votes, revealed that these questions
where either off-topic (40%), too vague, broad or specific
(35%), not real questions (10%) or Duplicate questions (8%).

4.2 Suggestions
4.2.1 Sub-communities

Allowing users to organise themselves in smaller active sub-
communities with common or similar learning goals, may
prove an elegant solution to manage or exploit the variety
in expertise of the users. Also, the concept of reputation
would make more sense. A similar idea was proposed by
Santos [13].

4.2.2 Knowledge construction
Good feedback should provoke critical thinking by asking
sensible questions, provide a clue to ”what’s next” and al-
low to construct knowledge through scaffolding and coupling
back to acquired knowledge. Though the concept of freely
asking questions is very accessible, the content stays rather
ad-hoc and unstructured. A way to organise and link dif-
ferent questions in order to guide learners would be very
useful.

4.2.3 Collaborative interfaces
In the modern ages of web technology, users could benefit
from a collaborative interface in which knowledge is con-
structed together, in a way similar to for example Google
Docs where one single entity is shared by all users. So, rather
than preserving the strict question/answer or learner/teacher
dichotomy, one would go for a situation in which knowledge
– not only answers but also questions – is constructed live
in an interactive way.

5. CONCLUSIONS
In this paper, the case for collaborative learning in open-
ended auto-didact Q&A environments like Stack Exchange
is investigated. Based upon the criteria put forward by Dil-
lenbourg, we can state that though there are technically no
hindrances towards collaborative learning, the nature and dy-
namics of the community that organically form on Stack Ex-
change, do not support the case for collaborative learning.

It was observed that the symmetry of action was distorted
due to a small group of ”super-users” that answered the ma-
jority of questions and a large group of ”silent users” that
do not really interact with the platform. Inspection of the
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degree distribution of the user interactions reveals that the
community network is scale-free, which means that symme-
try of knowledge is very unlikely. The reputation system
seems insufficient as a measure of expertise and a strange
kind of symmetry of status is observed, in the sense that no
one really builds up reputation, except for a small group of
users.

Lastly, the limited possibilities to instructional design, elic-
its short-term narrow and personal learning goals. Also, the
very heterogeneous nature of the community is not favourable
for learning. Suggestions were made to adapt these inter-
esting and popular platforms to learning, like creating sub-
communities with common learning goals, extend the possi-
bilities for organising and structuring the content and em-
ploy collaborative interfaces.

As future work, these results should be validated by means
of other communities on Stack Exchange as well, and on
different modes of feedback, rather than only text-based.
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ABSTRACT 
Arguably one of the most important activities of a university is to 
provide environments where students develop the wide variety of 
social and intellectual skills necessary for giving and receiving 
feedback. We are not talking here about the kinds of activity 
typically associated with the term “feedback” - such as that which 
occurs through individual course evaluation questionnaires or more 
universal systems such as the National Student Survey, but the 
profoundly creative and human act of giving and receiving 
feedback in order validate, challenge and inspire.  So as to 
emphasise we are talking about this kind of feedback, we coin the 
term “creative feedback” to distinguish it from the pre-conceived 
rather dreary compliance-inflected notions of feedback and set out 
in this paper to characterise its qualities. In order to ground and 
motivate our definition and use of “creative feedback” we take a 
historical look at the two concepts of creativity/creative and 
feedback. Our intention is to use this rich history to motivate both 
the choice two words, and the reason to bring them together. In 
doing so we wish to emphasise the characteristics of an educational 
philosophy underpinned by social interaction. By describing those 
qualities necessary to characterise creative feedback this paper sets 
out an educational philosophy for how schools, communities and 
universities could develop their learning environments. What we 
present here serves not only as a manifesto for designing learning 
environments generally but as a driver for designing technologies to 
support online social learning. Technology not only provides us 
with new opportunities to support such learning but also to 
investigate and evidence the way in which we learn and the most 
effective learning environments. 

Keywords: Feedback, creative, creativity, learning, technology 

1. INTRODUCTION  
When the word feedback is mentioned in universities - as happens 
now with increasing frequency - there are usually one or two 
winces around the room. The problem it is a word that has become 
associated with compliance, with checking competency, with 
measurement and judgement, with having to go through the 
motions of various government or funding body processes and, 
perhaps too, with feeling beholden to open up channels of 
communication so as to hear things that we would rather not have 
to hear. This is a pity, and especially so at universities, because 
feedback is central to learning.  Not just to learn a discipline, but to 
learn about the way we are, to learn about the way we think, to 
learn about the way we interact and about the way in which we 
produce and value our work. Whether that work is an analytical or 
interpretive essay, whether it is a poem or a composition, whether it 
is a new performance or a new artwork, it is only through actively 
seeking feedback both from others and from ourselves that we 
learn.  

At one level it is clear that without the on-going feedback that we 
sense and perceive from our environment we could not operate or 
survive. Without basic perceptual acts such as seeing, hearing and 
touching we couldn’t function for very long. However, feedback is 

also necessary to experience ourselves as social beings, and 
especially to understand and investigate the process of social 
interaction between individuals. Sometimes the communication 
from one human to another is like an experiment whose result is 
evidenced by the feedback perceived from the other [22]. For 
example, shouting “hello?” to check whether anyone is at home, the 
result might be the perception of a response like “I’m in the 
kitchen!” or complete silence. This is an example of a simple 
feedback loop at work providing evidence for a model of the world. 
At the other extreme feedback loops can be continuous and 
extremely complex, and often below conscious awareness such as 
when two jazz musicians are improvising together [54].  In all cases 
feedback is the way in which we understand the world we are in, 
and learn about our physical and social place within it.  

Suppose you are a learning to play music, for example. If you play 
a piece of music then the only way you can know how it was heard 
and experienced by others is to get their feedback on your 
performance. This feedback will be absolutely critical if you want 
to understand how you can improve yourself as a performer. Of 
course in any performance sustained self-feedback is critical too 
and musicians are skilled enough to give themselves this on-going 
and continuous feedback as they play. In addition to this, musicians 
have the option of recording performances and listening to them 
later in order to provide an entirely new perspective. The distance 
created in time and space, and moving from performer to listener, 
provides new opportunities for fresh insights on how to improve 
ones own performance. In addition, through an understanding of 
how we come across to others, we can often best advance the 
quality and precision of the feedback we give ourselves. 

If we accept the need for building communities of feedback the 
issue then becomes how to build the right kinds of learning 
environments. If students can develop their own skills in giving and 
receiving feedback at school and university, then they will gain 
confidence in giving and receiving feedback from friends, 
colleagues, press and audiences too. Education environments 
should enable an exploration of how peers and tutors perceive 
essays, performances, software and artworks and in turn, how we 
all learn to be open to the feedback from others.  

This philosophy is very strong in the Art department at Goldsmiths, 
where the emphasis is very much focused on developing 
communities of feedback. This department is especially interesting 
because of its reputation for producing world-class artists that have 
become important cultural and creative pioneers in the UK.1 In our 
observations, first, second and third year undergraduates come 

                                                                    
1 (Damien Hirst, Malcolm McClaren, Mary Quant, Lucien Freud 

and Anthony Gormley are all alumni of the Art department. 
Other alumni include Laurie Provoust who currently holds the 
Turner prize and Steve McQueen who won a Bafta and Oscar 
for best film with “12 years a slave”. The question to us is 
whether developing communities of creative feedback is the key 
to the Art department’s success.) 
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together weekly in order to give feedback on a small selection of 
undergraduates work. The students clearly worked as a group in 
balancing praise and criticism, combining the emotional and 
analytical, and moving from the sociological to the political.  In all 
these open conversations students are learning about how to give 
and receive feedback to each other and understanding the ever 
present gap between any intention behind an artwork, and the 
perception by others. One of the most fascinating aspects observed 
in these sessions was the ability of students to take a sufficient 
emotional distance in order to be open to feedback, and to 
experience it freely without personalising anything. This ability is 
not only key in terms of learning how others experience their work 
but becomes an important skill for artists moving into a 
professional sphere with the free-for-all comment and criticism that 
social media now encourages.   

Arguably then, a learning institution’s key objective is to provide 
the kind of supportive and trusting environments where students 
can develop their ability to give and receive feedback in a 
culturally-aware, sensitive, mindful, critical and challenging way. 
We certainly think so, and would like a label to describe the kind of 
feedback we have in mind, and for this we choose the term 
“creative feedback”. In this paper we provide a historical account of 
the notions of creative and creativity in order to justify the use of 
this term in an educational context. Moreover, by using this term 
explicitly the hope is we can rescue the concept of feedback from 
its often rather dreary compliance-inflected interpretation.  

In what follows we will call upon our experience as educators 
spanning mathematics, psychology, psychotherapy, music and 
computer science, to try to explain what we mean by creative 
feedback and to justify our use of this term. To do this we need to 
take a brief historical look at the concepts of “creative” (and the 
related “creativity”) and “feedback” – particularly though not 
exclusively in an education context - in order to explain exactly 
what we mean by these terms and why we are bringing them 
together specifically.  The aim of the historical analysis is to give 
currency to the use of the term and the underlying manifesto for 
learning. We clearly need to be mindful of using the word 
“creative” when it is used so loosely, and for so many different 
educational, marketing and political reasons. We not only have 
creative writing and creative learning but now we have creative 
musicianship, creative computing and creative financing, not to 
mention the growing importance given to “creative industries” and 
economic arguments about why they are such an important part of 
our future.  The word is in danger of being no more than what is 
approved of, and we wish to recover an older and fuller meaning for 
our purposes. 

Aims. In this paper we set out to characterise creative feedback as 
the basis of an educational philosophy that is inspired by the 
American psychologist, philosopher, and educationalist John 
Dewey. The idea that follows naturally from this is that we 
structure schools, learning groups and universities as “communities 
of discovery”.  There are a number of motivating factors for the 
work in this paper described next.  

The first is the desire to build educational environments (which 
include online environments) that give more people access to 
developing “creative feedback” skills. Creative feedback belongs to 
what Dewey called “creative intelligence” which is a part of all 
human thinking and is available to everyone. A strong part of our 
individual learning journey is gaining an understanding how others 
see us. The way we think, the way we behave, what we produce. 
This understanding is such a crucial part of learning that we want to 
build environments that encourage students to be aware of how 
others see them. As George Herbert Mead wrote, "the individual 

mind can exist only in relation to other minds with shared 
meanings" [42: p5].  If this is true, the relation to other people is 
grounded within a framework of feedback and the individual mind 
can only exist within such a framework. 

Next, we want to emphasise that “creativity” depends on feedback 
from the world rather than being something that is an intrinsic 
quality that resides within individuals. It depends on feedback both 
in the act of creation itself, and also the social feedback that is 
received once it is made available to others (which may or may not 
amount to acclamation as great art). 

As stated above feedback is not often seen as a creative endeavour 
but rather as being quite mechanical (tick boxes and scores) and 
about compliance (such as is often the case when making module 
feedback forms available to students). The impact of this notion of 
feedback on tutor/tutee relationships can often be dire.  We 
explicitly introduce “creative feedback” to mitigate against this 
commonly held view of feedback and, in addition, to move away 
from another commonly held conception about feedback that it only 
exists in terms of praise and punishment. Furthermore, we want to 
emphasise how we are immersed in feedback as biological and 
social beings and we wish any definition to encompass this.  

Most educationalists like us want to promote effective education as 
available to everyone rather than a middle-class luxury and 
technology clearly has an important role here. However, technology 
also provides opportunity to bring communities of learners together 
and, moreover, serve as a test-bed from which we can start to 
evidence the benefits of social learning over the individual, rote-
learning and exam-based methodology that so dominates current 
political thinking. It also provides us with exciting new possibilities 
for understanding the way in which we learn. One of the drivers in 
our own research, for example, is to develop learning analytics and 
methodologies that can enable us to correlate creative feedback 
with learning.  

The ability to use technology to understand and support social 
learning depends on whether we can construct systems that 
encourage humans to give and receive creative feedback. In order to 
achieve this we need participatory design methods working with a 
variety of user groups in order to design software that can support 
creative feedback across a whole range of disciplines (e.g. poetry, 
music, design, digital art). We believe a historical and educational 
underpinning is necessary to drive the principled design of such 
systems that not only support creative feedback but also allow 
mixed human and computational societies. One of the practical 
questions that we are addressing in the design of novel education 
systems that enable social learning is how to build autonomous 
artificial systems that can help exemplify creative feedback in a 
learning community. 

2. A HISTORY OF CREATIVITY AND 
FEEDBACK  
The Education Wars. Ever since people started arguing about 
education, there has been an angry debate that is still not resolved, 
and is especially marked today in England.  On the one hand the 
Secretary of State for Education crusades for even more frequent 
and stringent examinations and inspections in the State-based 
schools, creating what his critics call “exam factories” [12], 
designed to compete with the dauntingly efficient exam factories 
of the Far East.2  And on the other hand the popular educationalist 

                                                                    
2 “Tougher GCSE marks pegged to China scores”.  Guardian 

headline, 3.4.14 
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Sir Ken Robinson speaks for many when he condemns such an 
approach for undermining creativity, which is the true goal of 
democratic education.  It may be hard to define creativity, but 
everyone agrees that it is a good thing, and that it is not fostered by 
an exclusive focus on training students for success in exams.  The 
emphasis on exam factories may even be self-defeating, since there 
are studies showing that the success of children in China and Japan 
depends more on the early nurturance of sociality, than on forced 
study and rigorous examinations [35] More like what Coffield 
called “communities of discovery” than “exam factories”, so 
perhaps Gove is taking us “ever faster down the wrong road” [11].  

Background to the Conflict. This quarrel occurs at every level of 
education, from toddlers to adults, and it reflects different views on 
the nature of children.  At one extreme is the active child, full of 
wonder and curiosity at the world, who needs only skilled guidance 
from the teacher to flower into a civilized and creative adult.  At the 
other is the resistant child, lazy and easily distracted, whose 
motivation and attentiveness require firm moulding and sometimes 
medication in order to learn lessons and become a good citizen.  
Around 1900 these extremes were given psychological and 
educational form by two prominent American thinkers [61], and 
this set the scene for many of the debates on education during the 
coming century.  In the active, curious child camp sat the 
philosopher, educationalist and psychologist, John Dewey, the great 
champion of American pragmatism, which is a philosophy based on 
doing rather than thinking; in the other camp sat Edward Thorndike, 
famous throughout the 20th century for his puzzle box experiments 
with cats published in 1898 [56] in which he claimed to show that 
cats are incapable of reason and learn only through trial and error.  
During the second half of the 20th century both camps contributed 
to the new interest in creativity, which has now become a massive 
and well-funded research industry in Europe especially in relation 
to technology.  

In this paper we aim to show how technology can contribute to the 
fostering of creativity in education in a way that can satisfy both the 
jeremiads of Professor Robinson and the ministerial anxieties of 
Michael Gove.  But first we need to be clear about what kind of 
learner we have in mind, Dewey’s or Thorndike’s, since this 
determines what we mean by creative and creativity, and the 
deployment of these terms has provided a map of the hidden 
agendas of Psychology and Educational Theory during the 20th 
century. 
E. L. Thorndike: Connectionism, Stimulus-Response And The 
Importance Of Measurement. In 1911 Thorndike published his 
puzzle box experiments in Animal Intelligence, and developed the 
theory that learning is initially guided by random trial and error 
learning, rather than rational intelligence. For Thorndike and later 
many Behaviourists, the unit of behaviour was the stimulus 
response (S-R) connection, treated as a kind of reflex. Thorndike’s 
view was that learning takes place by establishing connections in 
the brain and these connections are stamped in through a system of 
reward and punishment. Applied to education it was argued that the 
randomness of the trials in initial learning showed that little is to be 
gained by relying on the prior capacities of the novice learner. 

Connections were treated as ”atoms of the mind”, and Thorndike 
speculated that “the vague gross feelings of the animal sort might 
turn into the well-defined particular ideas of the human sort, by the 
aid of a multitude of delicate associations” [58: p289]. This is 
Thorndike’s Connectionism, and it has been one of the main models 
guiding studies of learning throughout the 20th century, though it 
was quickly found that the S-R scheme needed to be extended to S-
O-R [68]. In this extended scheme O refers to the state of the 
organism, which is made up of many variables or factors, including 

prior knowledge (the multitude of delicate associations), 
motivation, attentiveness, intelligence and many other variables.  

During the second half of the 20th century computers became the 
new model of the mind, and the language for describing “a 
multitude of delicate associations” became increasingly 
sophisticated, eventually leading to a new brand of Connectionism 
as a model for perception and learning [3].  But even in its most 
sophisticated form, it is still about the selection of successful acts 
and the “stamping out” of “profitless” [58: p283] acts by reward 
and punishment.  Nowadays we speak of input and output of 
information rather than S-R, but whatever the cognitive complexity 
of what goes on in between, a basic linear structure remains, with 
the environment operating on the organism, rather than the 
organism on the environment. 

But Thorndike was not only one of the founders of S-R theory, he 
was also a pioneer of mental testing as a way of classifying 
individuals for social control, and therefore for assigning numbers 
to the “O” variables in the S-O-R scheme.  Thorndike greatly 
admired the work of Darwin’s cousin Francis Galton (1822-1911) 
who spent much of his life studying and measuring human variation 
and its genetic basis after reading Origin of Species. As part of this 
interest Galton became the first to use questionnaires and statistics 
for the measurement of human differences and Thorndike in turn 
became a champion of measurement in Psychology and Education. 
In 1904 he published An Introduction to the Theory of Mental and 
Social Measurements [57] which introduced students to the new 
statistical methods that were to dominate the scientific practice of 
Psychology  
Deweyan Inquiry. The contrasting philosophy was that of John 
Dewey, who was one of the first to acknowledge the value of 
Galton’s statistical discoveries [16] but had little faith in the value 
of measuring the worth of individual human beings [36]. He 
believed effective education is powered by the child’s spontaneous 
curiosity about the world and is social, taking place in “a 
community held together by participation in common activities” 
[20: 55]. This social setting generates inquiry, a process as natural 
as breathing in all animals. Inquiry is an ongoing process that 
reveals novelty, which in turn becomes the spur to further inquiry.  

In 1896 Dewey had made the revolutionary step of taking the basic 
S-R reflex studied in the laboratory by physiologists, not as the 
simple arc of Thorndike, but as a circular structure with neither 
stimulus nor response being dominant over the other.  He argued 
that the S-R reflex is not an isolable molecule of behaviour, but is 
inseparable from an ongoing process involving what 50 years later 
would be called feedback.3  Dewey was not a laboratory 
psychologist, and unlike Thorndike’s S-R, his scheme did not lend 
itself to precise control, since it required freedom of action for 
optimal learning to take place.  

The main concern for the teacher therefore is to guide this action 
toward educational goals, and to avoid stifling freedom through the 
indiscriminate “stamping out” of what Thorndike referred to as 
“profitless” acts.  For Dewey these “profitless” acts are part of what 
                                                                    
3 Thorndike’s S-R connectionism also involved a rudimentary 
form of feedback.  Reward and punishment applied to isolated S-
R connections are feedback.  But Dewey seemed to have in mind 
what we now think of as a self-organising system, in which the 
parts, which we may for convenience label stimulus, response, 
feedback, etc., cannot usefully be isolated and studied as 
“laboratory preparations” outside the system.  The knowledge 
gained by an inquiring child involves, not a changing array of S-R 
connections, but an evolving place within a system that includes 
its social and physical environment.  
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he called inquiry and to stamp them out is to suppress inquiry and 
to stunt human development. 

Who Has Won? In Psychology and in Education, Thorndike has 
won hands down:  

One cannot understand the history of education in the United States 
during the twentieth century unless one realises that Edward L. 
Thorndike won and John Dewey lost [33: p185].      
But as Lagemann goes on to point out, Dewey paradoxically 
remains a significant figure in education, dominating discussion in 
schools of education, and pointing to an ideal, even if it is 
Thorndike who prevails in practice. But occasionally an indirect 
Deweyan light shines through. A possible example of this was the 
dramatic reception in the West of Vygotsky’s Zone of Proximal 
Development (ZPD).  Dewey had a strong influence on Russian 
education in the 1920’s when Vygotsky was developing his ideas, 
[39]. Vygotsky had certainly read Dewey’s work [63: p53], and 
there is a close affinity with Dewey’s ideal of “a community held 
together by participation in common activities” [20: p55]. ZPD 
contrasted the child’s developmental level when measured by 
conventional tests, with the level shown under adult or peer 
guidance [63: p86] where the ability to follow and imitate comes 
into play:  “using imitation, children are capable of doing much 
more in collective activity or under the guidance of adults” [61: 
88].  This presupposes “a specific social nature and a process by 
which children grow into the intellectual life of those around them” 
[63: p88], which comes close to the collective learning through 
inquiry described by Dewey. In 1966 Bruner [7] introduced the 
word “scaffolding” to describe what is going on in ZPD, but this 
has been often been limited to the capacity to benefit from adult 
help [67], rather than from the more general sociality of “collective 
activity”, which leads to a form of “social constructivism” [69].  
Like an education based on Deweyan inquiry, ZPD in our 
interpretation goes very deep, and its effects, unlike those of 
scaffolding (if we take the metaphor literally), cannot be removed 
once the construction is complete.  
In Psychology too, Dewey has been lurking in the background, and 
his influence became more apparent once the notion of feedback 
spread after the publication of Norbert Wiener’s Cybernetics [66].  
Later, in 1960, Plans and the Structure of Behavior [46] appeared, 
and brought together feedback of information (rather than reward 
and punishment) with some of the early influences on Artificial 
Intelligence.  These included Chomsky’s generative grammar [9] 
and Newell, Shaw and Simon on problem solving in computers 
[47].  The result was the TOTE (test operate, test exit), introduced 
as a unit of behaviour to replace the S-R model, and the authors 
were quick to recognise that this was similar to what Dewey had 
proposed in his 1896 reflex arc paper [46: p30, 43].  

More generally, affinity with the Dewey scheme rather than 
Thorndike’s shows itself when the organism, animal or human, is 
treated as essentially in the world, active and subject to continuous 
feedback as it acts, rather than a static processor of information.  
Examples of this Deweyan scheme are Gibson’s sensori-motor 
systems as a model for perception [25]; the move in Robotology 
from cognitive representions to a focus on sensori-motor activity 
[6]; Jean Lave’s Situated Learning [34]; and more recent work in 
Psychology and Philosophy on Situated Cognition [48]. 

Formative Assessment and Feedback. In one respect - through 
the notion of formative assessment - the Deweyan influence 
penetrated deep into the heartlands of Thorndikean territory, 
measurement and educational testing.  

The psychologist L.L.Thurstone studied at Chicago with a close 
colleague of Dewey’s, George Henry Mead, and spent most of his 
career there.  Early on in his career he proposed a Deweyan model 

of ongoing behaviour as an alternative to the S-R scheme [59].  
But his main achievements were in test theory and a more careful 
analysis than was usual of what is typically meant by measurement 
in Psychology [60].  Lee Cronbach, whose PhD was also from 
Chicago, continued this critical tradition within psychological 
measurement.  His work with Meehl on Construct Validity [14] 
showed the limitations of psychological testing, since it measures 
constructs rather than reality.  And he recommended that 
assessment be part of the learning process, rather than a test given 
after the learning is over [13]. Later this was labelled “formative” 
by contrast with the conventional “summative” assessment [50]. 
Summative assessment was by tests after the course had ended, 
whereas formative assessment was assessment during the course, 
designed as part of the learning process. It is closer therefore to a 
Deweyan rather than a Thorndikian philosophy of education, and 
the formative assessor joins “a community held together by 
participation in common activities” [20: p55]. Formative 
assessment involves what came to be called formative feedback. In 
formative feedback the student is given ongoing information about 
performance, and the term has replaced the concepts of reward, 
punishment and reinforcement.  But the old S-R scheme dies hard, 
and many of the experiments reported on formative feedback seem 
quite similar to those by Thorndike and others of 80 years ago 
[51]. They are a long way from the feedback of a sensori-motor 
system that is the necessary vehicle for Deweyan inquiry. This 
same pattern - an apparent massive victory by the Thorndike camp, 
yet a persistent critical or subversive presence from the Deweyans 
- exists in the field of creativity, where the difference between the 
two viewpoints is especially marked and important given that the 
concept of creativity is so dominant in educational discourse. 
Creative Intelligence. In literature on Creativity, which spans 
many disciplines and is now remarkably large and increasing every 
year, two distinct points of view about its nature have remained 
unchanged. The first is that it is a puzzling and wonderful property 
of the human mind that has given rise to all great human 
achievements.4  The second is that it is a perfectly ordinary and 
basic property of all human and perhaps even animal behaviour. 
The reason for this strange contradiction between the two 
meanings, which seems to have gone largely unnoticed, may be 
because the modern word “Creativity” derives from two distinct 
ways of thinking about novelty and innovation in the world. The 
first of these, which sees creativity as the basic process of every 
mind, belongs to the Deweyan view.  The second, which came 
later, sees creativity as a marvellous addition to the mechanical 
processes of ordinary thinking; this belongs to the Thorndikean 
view.  

 
Figure 1. Creative and Creativity in Google’s nGram 

As the diagram above suggests, the popularity of words like 
“creative” and “creativity” is only quite recent. Originally both 
words were the prerogative of God, who was unique in being able 
to make something (the world) out of nothing. This is what 

                                                                    
4 “Creativity is consensually viewed as one of the most 
remarkable characteristics of the human mind.” Cardosa (8:147).  
Creativity “is the humble human counterpart of God’s creation” 
Arieti [1: 4]. 
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creation meant, making something out of nothing. With this in 
mind, “Creative” (though not creativity) was occasionally extended 
to women giving birth and in the 19th century to refer to the divine 
and mysterious work of poets and artists5. This can be seen clearly 
in the diagram above.  

But after the widespread acceptance of the Theory of Evolution by 
the end of the 19th century, the world itself could be seen as creative 
through variation and selection, with no help from God. This is how 
it is used in the title of Bergson’s Creative Evolution [4] which was 
first published in French in 1907, and then translated into English 
four years later6.  This was a book that was widely discussed, 
especially in the pragmatist circles around William James in 
Harvard and John Dewey in Chicago. 

Dewey’s Creative Intelligence was published later in 1917, and the 
word “creative” in the title was not being used to pick out one kind 
of intelligence amongst others, but to emphasise that human 
intelligence is inherently creative through a natural process of 
deliberate variation and invention. This could be the herald of a 
new beginning for education, since according to the traditional 
philosophies, “If ever there was creation it all took place at a 
remote period.  Since then the world has only recited lessons.” [21: 
p23].  Dewey thought that reciting lessons is a way of suppressing 
the variation that is necessary for creative intelligence to flourish. 
There was nothing divine about Dewey’s view of creative thought, 
and he made little use of the popular concept of genius, instead 
seeing art and creativity as present in the most mundane activities: 
“The sources of art in human experience will be learned by him 
who sees how the tense grace of the ball-player infects the 
onlooking crowd; who notes the delight of the housewife in tending 
her plants, and the intent interest of her goodman in tending the 
patch of green in front of the house” [18: p3]. 
In this philosophy, education involves social control, but not via 
rules dictated by authority.  Instead Dewey took as a benign 
paradigm of social control that of children playing games, in which 
the control is not from on high, but is naturally social from “a 
community held together by participation in common activities” 
[20: p55].  This underlies his practical experiments in education in 
the experimental schools he set up first in Chicago, later at 
Columbia University.   
Creativity. The modern word “Creativity” came into play a little 
later than “creative,” in the mid 1920’s [45]. In 1924, around seven 
years after Dewey’s Creative Intelligence was published, the 
mathematician and philosopher Alfred North Whitehead was 
invited to Harvard, where he developed the process philosophy for 
which he is best known.  At the centre of this philosophy was his 
concept of creativity, a term he coined from the Medieval Latin 
“creare”. [63: p208]. This was his word for the evolution of forms 
or species.  Darwin had shown how this could be a property of 
organic evolution, and Whitehead applied the same basic structure 
(variation, and a means of fixing change) to the universe as a 
whole. It was his metaphysical principle through which entities are 
created out of flow (“all things flow” [65: p208]) which is more 
basic than the things that we experience. New forms (the solar 
system, new species) emerge and creativity is the power that 
enables this to happen. Dewey read this as a universal 
generalisation of his own views of human invention, managed by 
                                                                    
5 “But this I know; the writer who possesses the creative gift owns 
something of which he is not always master--something that at 
times strangely wills and works for itself.” Charlotte Brontë in 
editorial preface to 1850 edition of Wuthering Heights [5, p 1iii]. 
6 Translation of Bergson’s L’Évolution créatrice from 1907 as 
Creative Evolution in 1911 [4].  

creative intelligence out of variation, and wrote approvingly about 
Whitehead and his ideas of creativity in 1937 [19].  On this view, 
there is nothing special about creativity.  It is a basic principle of 
the world, and human creativity is no more than a reflection of this.  
From Creativity to Social Creativity. Dewey’s friend and 
colleague the social psychologist G.H. Mead had contributed one of 
the chapters in Dewey’s Creative Intelligence of 1917 writing, “The 
individual in his experiences is continuously creating a world which 
becomes real through his discovery”. [41: p210] After reading 
Whitehead, he used the word “creativity” in his lectures during the 
1920’s, [41: p325], and it appeared in his best known book “Mind, 
Self and Society” [40] which was widely read. 
There Mead described how any individual self is constituted by the 
social and physical environment it inhabits, but at the same time 
affects the environment in which the it is situated. More generally, 
the organism is partly determined by its environment, but also “is 
determinative of its environment” a more general version of the 
circular process described by Dewey [17]. Thus the word 
“creativity” is will have been familiar to the many readers of Mead 
and Dewey, and they would have had a common understanding that 
there was nothing special about it, not linked to genius but essential 
for the thinking of every human being and animal.7  
Creativity as Faculty. But when creativity re-emerged in 1950 
[26] it had a different meaning, and came from a different tradition 
of Psychology, that of Psychological measurement, therefore closer 
to Thorndike than to Dewey. It was not about creativity as the 
generation of change and novelty in the world, but referred instead 
to a personality characteristic. Launched by J.P. Guilford in 1950 in 
a presidential address to the American Psychological Association, 
he started by expressing astonishment at the lack of work on 
Creativity.  He made no mention of Whitehead, Dewey or Mead, 
and based his concept of creativity on Factor Analysis, discovered 
by Charles Spearman [52].  Spearman had actually written a book 
called Creative Mind in 1930 [53], in which the word “creativity” 
appears, but it is not referred to by Guilford though he is likely to 
have known it.  Spearman was a colleague of Whitehead’s at UCL 
for several years before Whitehead left for Harvard, and may have 
picked the word up from him.  

By partitioning similar correlations in tables from a large number of 
tests, Spearman had shown how to extract distinct factors of the 
mind, like intelligence, perseverance, memory and so on, and now 
creativity, which can be used to form part of the O in the S-O-R 
scheme.  By 1950 Factor Analysis had reached a high level of 
sophistication, and Guilford had isolated a factor he called 
Creativity, based on his test of Convergent and Divergent thinking.  
Convergent thinking is conventional problem solving, converging 
on the correct solution, divergent is open ended and was thought to 
allow the free play of imagination, with questions like “in what 
different ways can you make use of a brick?” Later many other tests 
of creativity were devised including Torrance’s Incomplete Figure 
Test [62] tests of insight, similar to Duncker’s classic candle 
problem [23] and of “remote associations“ Mednick et al [44].   

The Creativity Bandwagon. The vastness of the bandwagon 
launched by Guilford has been extraordinary, and cannot be 
                                                                    
7  Vygotsky had a similar view: “just as electricity is equally 
present in a storm with deafening thunder and blinding lightning 
and in the operation of a pocket flashlight, in the same way, 
creativity is present, in actuality, not only when great historical 
works are born but also whenever a person imagines, combines, 
alters, and creates something new, no matter how small a drop in 
the bucket this new thing appears compared to the works of 
geniuses.” [64: p10-11] 
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explained only by the happy Utopian vision offered by the 
definition that runs throughout the literature:  “a creative response 
is novel, good, and relevant.” [32: xiii]. From a comfortable seat on 
board in 1966, Liam Hudson wrote:  

‘Creativity’ . . . applies to all those qualities of which psychologists 
approve.  And like so many other virtues . . . it is as difficult to 
disapprove of as to say what it means.   As a topic for research, 
‘creativity’ is a bandwagon; one which all of us sufficiently hale 
and healthy have leapt athletically abroad [29: p100-101]. 
But why, what are the reasons for the astonishing success of the 
Creativity bandwagon, which continues to gain speed, and has left 
in its wake a whole set of often quite unrelated “creative industries” 
(media, advertising, TV, film, design, games).  Even banking is 
given the epithet creative without a trace of irony, as well as the 
great entrepreneurs, led by Richard Branson. Here are just a few of 
the possible reasons for this remarkable juggernaut. 
A.  It is held together by the scientific armour of Factor Analysis, a 
way of constructing smooth curves from the uncertain data of 
questionnaires. 

B.  Protected by this show of rigour, it was able to break away from 
the aridities of Behaviourism, which had given Psychology its 
needed scientific respectability but had bored students for years. 

C.  The giants of Humanistic Psychology got on board, each with a 
mouth-watering trade mark to draw students to Creativity 101:  Carl 
Rogers’ self-actualization in 1954 [49], Csikszentmihalyi’s flow in 
1975 [15], and Maslow’s peak experiences in 1968 [37]. Charles 
Tart was there with altered states of consciousness in 1969 [55], 
and Frank Barron, veteran of LSD experiments in 1963 [2]. And 
even Buddhism, offering an endless stream of books with titles 
beginning “Zen and Art of . . . .” to say nothing of Kabat-Zinn’s 
introduction mindfulness as an essential component of creativity in 
1990 [31]. It all added much needed glamour to Psychology. 

D. Artificial Intelligence hitched a lift. As early as 1958 Newell et 
al [47], had raised the problem of creativity for computers and 
described a programme on ILLIAC that composed music. 
Computational creativity has progressed independently (there are 
remarkably few cross references between the two disciplines) but in 
parallel with Psychology’s version, and has probably added a 
further bit of hard-nosed scientific respectability to the whole 
endeavour. 

E.  Last but not least, there has been massive funding from military 
and industry.  As Guilford wrote in 1959, soon after the launch of 
Sputnik by the USSR “The preservation of our way of life and our 
future security depend upon our most important national resources:  
our intellectual abilities and, more particularly, our creative 
abilities. It is time, then, that we learn all we can about those 
resources” [27: p469]. The economy and safety of the West is 
thought to depend on the practical benefits of making things that 
work, from nuclear weapons to the stylish artefacts of Steve Jobs, 
and the secret is creativity. 

3. CREATIVE FEEDBACK 
But in the midst of all this razzmatazz, there was a quiet Deweyan 
revolution. Some of it took place on the bandwagon itself, where 
there are researchers who stress that Creativity is an everyday 
matter, and that we all possess it in our capacity for flow and 
mindfulness. More recently there are those who have turned away 
from creativity with a capital C, and looked at how a more modest 
Deweyan creative intelligence can be encouraged throughout 
education [10, 24, 30].  Dewey believed that creative intelligence 
is necessary for democracy to prosper, and it is fostered by what 
we call creative feedback.  

This is the goal of MusicCircle Software project at Goldsmiths; to 
design an online environment to support communities of creative 
feedback for learning to play music. It includes the ability to upload 
performances, share them with others, and then seek and provide 
creative feedback. It is developed through a process of participatory 
design, working with students and other users to ensure we build 
what people want. Through systems such as ours perhaps we can 
begin to reconcile the conflicting demands of Michael Gove and 
Ken Robinson through evidencing clearly how learning takes place 
through creative feedback. 

In order to understand how to design learning environments, we 
now set out to characterise creative feedback in more detail. We do 
so by describing its qualities along a number of dimensions drawing 
both upon our historical analysis and our combined backgrounds: 
teaching, programme development and management in higher 
education; performance and composition in music; design and 
implementation in software; and mindfulness and psychotherapy in 
practice. These qualities of creative feedback are offered in hope of 
receiving creative feedback to inspire the next steps. 

1. CF is social. It comes from one social agent who has perceived 
the feedback object in some way (whether that is an output or a 
process of an individual) to another (the originator of the feedback 
object). Note this definition does not preclude students giving 
creative feedback to their own work. 

2. CF is mindful. This incorporates at least two aspects. a) That the 
person giving the CF is aware of the cultural and individual context 
of the receiver (such as an understanding of the individual’s artistic 
or scientific goals/methods/audiences etc.) and b) That individuals 
are aware of any personal judgments that are being made and can 
articulate these if required. 
3. CF contains a degree of community awareness. a) That CF 
embodies an awareness of what creative feedback has occurred 
previously but also that it features as part of a complex and 
developing system b) That giving and receiving CF should be 
embraced equally for the community to sustain itself. It would be 
difficult for communities to thrive if everyone wanted to give more 
CF than they wanted to receive of course. CF creates a self-
sustaining self-organising system where flexibility and robustness 
need to be balanced. Whilst each learner may have more or less 
knowledge about what is required to maintain such a system it is 
clear that it can only exist if individuals in the learning environment 
actively encourages engagement in CF.  
4. CF is clear, the language used being unambiguous and terms 
used mutually understood.   
5. CF is democratic. Being a tutor or student bestows no special 
right to giving or receiving CF (though of course one might hope 
that tutors have more experience and skills in giving it).  
6. CF is challenging. Underpinning any creative partnership is the 
notion of the challenge that the each brings to the other. CF that 
provides the right level of challenge is arguably the most sought 
after feedback.  To do so involves “skill in means”, a Buddhist 
concept meaning that feedback is geared to the level and character 
of the student, and is always open to the student’s needs. 

7. CF incorporates generosity of spirit and compassion. It is an act 
of giving and enabling, itself an essential aspect of skill in means. 
8. CF is always open to discussion and further explanation. 
9. CF is comparative rather than absolute. No absolute judgment 
about a feedback object can be made. Comparisons (explicit or 
implicit) of the feedback object to other existing objects is a 
mindful tactic in many cases and involves skill in means. (For 
example, CF to a jazz piano student from a tutor could simply say 
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how close the student’s playing is to another well-known jazz 
pianist and how they may want to take a listen.)   

We believe the key to successful education is about providing the 
right kinds of environments where skills in creative feedback can 
develop. The role of technology is both to build new kinds of 
learning environments but critically to start to evidence how the 
creative feedback ability is correlated with learning and artistic 
development more generally.  This may have ramifications for the 
way in which we think about structuring learning in schools, 
universities and any other kind of learning community.   

4. CONCLUDING THOUGHTS 
We are designing a new technology at Goldsmiths called Music 
Circle as part of a European Project (Practice and Performance 
Analysis Inspiring Social Education) through the technology-
enhanced learning Programme. It is designed to allow students to 
upload and share performances and compositions within learning 
communities and then by inviting feedback from others. In order to 
identify the kind of feedback we wish to encourage in our system 
(which currently operates in a blended learning context at 
Goldsmiths) we have identified the term “creative feedback” which 
embodies a range of characteristics including clarity, mindfulness, 
generosity, challenge and democracy.  
 
At the heart of the motivation for designing this system is the idea 
that students can learn a huge amount from the creative feedback 
given by others. Not only that, but that the students can develop 
their own abilities as musicians through the ability to give creative 
feedback to others.  And there is little doubt that the ability to 
receive feedback well, to depersonalise it as much as possible and 
respond to it appropriately, will stand students in good stead for 
the world of professional musicianship. Moreover, outside the 
professional music world, employers will be seeking students who 
have the skills to work in communities that have skills in giving 
and receiving creative feedback. Indeed one can easily imagine a 
world where an employer is much more interested in the way in 
which a student has contributed to and benefitted from being in a 
community. So our manifesto and agenda for change may result in 
students leaving universities not with a transcript of module marks 
but with a detailed account of their sustained engagement with 
creative feedback in a community of learners.  
 
As part of the design of the system, we are designing “creative 
feedback agents” that are software systems that can start to provide 
some aspects of creative feedback on uploaded performances and 
compositions. With the development of techniques from audio 
analysis, gesture analysis, and style analysis combined with 
building models of learners we are looking to build systems that 
can start to embody some of the CF characteristics we have 
identified in this paper. What is important to us is that the design 
of our software is underpinned by a strong educational philosophy 
that comes from an understanding of the historical precedents and 
discoveries of many before us. We want to move away from the 
idea that technologies are designed and built by technologists and 
we embrace a multi-disciplinary approach where learners, 
educators, designers, sociologists, philosophers, historians, 
psychologists and computer scientists come together to build 
systems but with a clear understanding of the work that has come 
before. Perhaps more than anything this paper is a call to arms to 
revive and embed a Deweyian educational philosophy that can 
now be both supported and evidenced through technology.  
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