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Abstract. Stream processing has recently gained a prominent role in
Computer Science research. From networks or databases to information
theory or programming languages, a lot of work has been dedicated to
conceive ways of representing, transmitting, processing and understand-
ing infinite sequences of data. Nevertheless, there are still aspects that
need time to reach a mature state. In particular, heterogeneity in stream
data management and event processing is both a challenging topic and
a key enabler for the rising Web of Things, where smart devices contin-
uously sense properties of the surrounding world. Different proposals on
RDF and Linked Data streams have shown promising results for man-
aging this type of data, while keeping explicit semantics on the data
streams, and linking them to other datasets in a web-friendly way. With
time, these efforts led to the emergence of initiatives such as the RDF
Stream Processing (RSP) W3C community group, aiming at specifying
a base RDF stream model and query language for that model. Although
these works produced interest results in defining overarching model def-
initions, there are still multiple orthogonal challenges that need to be
addressed. In this work we identify some of these challenges, and we
link them to the characteristics of what are nowadays called reactive
systems. This paradigm includes natively supporting event-driven asyn-
chronous message passing, non-blocking data communication and pro-
cessing through all layers, and on-demand flexible scalability. We argue
that RDF stream systems, combined with reactive techniques can lead
to powerful, resilient and interoperable systems at Web scale.

1 Introduction

Streams of data are one of the main sources of data today. The application
domains where they play a capital role include mobile wearable sensors, internet
of things, environmental monitoring or stock market analysis, to name just a
few. All these streams of data, or infinite flows of information, already exist and
are available in our streaming world [6], but they are of no use unless something
or someone processes and makes sense out of them. The dynamicity, volume and
velocity of these data make it challenging to effectively process, query and derive
results from them. In the area of databases, these research challenges led to the
emergence of data stream and complex event processing systems, including data
models, query languages, algebra and operational semantics for them [1, 3].
Nevertheless, research opportunities in this area are far from being exhausted.
The imminent realization of the Internet of Things and the abundance of new



sources of streaming data raise a set of new challenges, especially dealing with
the variety and heterogeneity of the data. Clear foundations are required to
solve problems such as data integration and real-time analytics, added to the
need for better understanding the meaning and the value of streaming data on
the web. Several attempts have been made to approach some of these challenges
using the theoretical foundations and the tools of Semantic Web research. These
works have resulted in systems that tackle different issues, including continuous
query processing [4, 9], stream reasoning [11], event detection [2], ontology main-
tenance [13] or ontology-based data access [5]. In all these heterogeneous works,
a common pattern can be found, in the fact that they generally process streams
of RDF data in some form. The RDF Stream Processing (RSP)! community
that has been formed around these research initiatives, has gradually grown and
started to also produce datasets, benchmarks, systems, and compare them in
terms of features, performance, correctness, and other criteria. However, it is
not clear if current RSPs are capable of meeting the real-life requirements of
stream processing, and if they do, to what extent.

In this paper we provide an analysis of these requirements in the context of
RSP systems, and we argue that for today’s standards the concept of reactivity
prevails and is a major driver for designing and implementing such systems.
The remainder of the paper is structured as follows: first we explain the main
concepts related to reactivity and the typical requirements of stream systems in
Section 2. Then we identify and discuss the current issues and opportunities for
designing reactive RSP systems in Section 3, before concluding in Section 4.

2 Reactivity in Stream Systems

There is not a single way of characterizing stream processing and the systems
that implement it. Different views touch different angles of the same problem as
in any other research topic. However, in the case that concerns us, the database
community has explored and detailed the challenges and issues of stream pro-
cessing in a systematic way. One of the key works in this direction is the one of
Stonebraker et al. [12], which identifies 8 major requirements for such systems.
These are summarized as the following rules:

Keep the data moving

Query using SQL on Streams

Handle stream imperfections
Generate predictable outcomes
Integrate stored and streaming data
Guarantee data safety and availability
Partition and scale automatically
Process and respond instantaneously

P NSO W

These requirements have helped shaping stream processing systems, not only in
the area of databases but also in the semantic web community. However, stream

1 http://www.w3.0rg/community/rsp



processing can go beyond these principles, and nowadays we notice that stream
processing systems have become a necessity in a wider range of scenarios. For this
reason, some of the rules described before (e.g. query using SQL) can be debated,
as we experience that alternatives such as no-SQL querying are gaining wide use.
What we can observe in stream processing nowadays is that the emphasis goes
more and more in supporting the reactivity of the system as a whole. Reactivity
refers not only to real-time processing but to a more comprehensive concept that
can be summarized as the ability of a system to react to different conditions
and stimuli. A commonly adopted definition of reactivity? identifies fours main
characteristics of a reactive systems:

1. Message-driven. A system reacts to events, through message-passing com-
munication between loose-coupled components.

2. Elastic. A systems reacts to dynamic and varying workload, adjusting the
resources allocated for processing and adapting through distribution or repli-
cation.

3. Resilient. A system reacts to failure gracefully, maintaining service avail-
ability, ensuring recovery and localizing failures.

4. Responsive. A system reacts in a timely manner to users and requests,
guaranteeing quality of service and overall usefulness and utility of the sys-
tem output.

It is clear to see that these characteristics of reactive systems are related in
many ways to the preceding requirements. In the specific case of RDF stream
processing, we can evidence that most systems are still in their infancy and the
available prototypes lack one or more of these characteristics, preventing their
wider use in real-life scenarios and applications. As we will see, many of the
pitfalls in RSP engines are due to a mismatch between traditional persistence
RDF databases and streaming systems: the supporting programming and design
patterns, techniques and paradigms for both of them have substantial differences.
We argue that the reactivity traits can help us building systems that can help
us using the appropriate tools for building RSP engines.

2.1 Message-driven Processing

Big data processing needs massive parallel and distributed processing. In stream
processing this is also the case, so it is important to avoid models that go into the
opposite direction. This includes shared mutable state between components that
leads to multi-threaded non-deterministic stream processing. Another example
to avoid is blocking operators. For example a synchronous call to read from a
web stream of data can block an entire stream processing workflow, hurting the
performance and responsiveness of the system. One way to avoid these problems
is adopting event and message-based communication, which can be achieved in
different ways. One of the most widely used paradigms for this is the actor model.

2 The reactive manifesto http://www.reactivemanifesto.org/



Actors are lightweight objects that communicate through messages in an asyn-
chronous manner, with no-shared mutable state between them (see Figure 1).
This allows providing a loose-coupled architecture where blocking operators are
avoided, as each actor is solely responsible of maintaining its local state, and
communicate with other actors via messages in a mailbox. The behavior of an
actor is defined by the way it reacts to asynchronous messages that arrive to its
mailbox3.

communicate send: fire-forget
through messages ™M

mailbox
state
behavior

ﬂ\_/

non-blocking response

Fig.1: Actor model: each actor communicates through asynchronous messages that arrive to its
mailbox. Actors keep their own state and can modify their behavior upon arrival of new events.

2.2 Elasticity

Stream processing systems feed from multiple and heterogeneous sources, which
can dynamically vary in terms of throughput and produce sudden load bursts.
Processing these streams requires adaptive scalability and scheduling over a set
of distributed computing units capable of reacting to theses continuous changes.
Using the actor model is one of the possible ways of achieving this. Given their
loose-coupled nature, actors can be deployed in one or many cores, or in an array
of servers. Asynchronous message passing can occur either locally or remotely
without changing the share-nothing overall design, as in Figure 2. This trans-
parent remoting feature can be combined with routing policies, actor clustering
and scheduling that gracefully adapts to workload variations.
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/\b — ! Transparent Remoting
@ | : i Locality optimization

| ! | Define Routing policies
3 \_/ @ | Define actor clusters
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Fig. 2: Actors are distributed by nature, and can be deployed in one or many cores, or in different
servers, without changing their communication and interaction model.

2.3 Resilient to Failures

Any system is exposed to failures, either internal or external. In our case, streams
add the additional difficulty of dealing with extemporaneous events, delays, noisy
data, and data loss. Again, there are several ways of dealing with failures. For
example, in the case of the actor model, thanks to the decentralized nature

3 An implementation example of this model is Akka:http://akka.io



of actors it is possible to isolate failures and avoid a complete degradation of
the system. Actors allow defining hierarchies in which actors can supervise other
children actors, and handle exceptions locally, as in Figure 3. Different strategies
can be implemented depending on the type of failure and children actors can be
set up to restart, resume, stop, escalate, etc. if needed. Moreover, the system
can start new actors or re-schedule tasks to guarantee availability and response
times during the system life-span.

@ @ Supervision
hierarchy

Restart,

Suspend,

Stop,
Escalate, etc

Fig. 3: Supervision in actor hierarchies. Different strategies canbe applied depending on the type of
failure, but in general the faults are kept local.

2.4 Responsive Systems

Responsiveness in stream systems is capital and probably the number one re-
quirement in the perspective of users. Real-time decisions and outcomes are
expected in most use cases, and it is oftentimes admissible to loose in terms
of precision and soundness in order to offer timely responses. It is clear to see
that the previous three traits naturally help to achieve responsiveness in streams
systems. Asynchronous communication and avoiding blocking operators is a key
enabler for making data stream answers flow, but it requires to carefully look
into all stacks of the system. If at any layer, a component is operating in a
blocking fashion, all efforts at other levels are compromised and the system as a
whole may not be responsive anymore. Elasticity is also important, as it allows
providing flexible resource allocation and adaptive distributed and parallel pro-
cessing. Finally, resiliency is key to localize failures, while keeping the system
available even in the event of errors.

3 Reactive RSP: Issues and Opportunities

The reactive traits detailed above open a set of challenges for existing RSP en-
gines. This translates into opportunities for embracing these ideas and applying
them, so to design reactive RDF stream processors. In this section, we match
and adapt the eight requirements of stream processing to existing challenges for
RSP engines.

3.1 Event-driven RSP

Most, if not all of the existing RSP engines rely on tightly-coupled components
in which RDF streams are implemented as mutable collections of objects. In



many implementations, these objects are transmitted via notifications, usually
following the observer pattern. For instance, consider the code in Listing 1. An
RDF stream is both a data construct and a runnable object (something that
executes on a thread), and is tightly attached to listeners that are notified each
time something is put in the stream. This model clearly mixes data structures,
execution and communication, in a way that makes it complicated to do scale,
perform remote communication, distribute load, subscribe to stream events, etc.

public class SensorsStreamer extends RdfStream implements Runnable {
public void run() {

while(true){

RdfQuadruple g=new RdfQuadruple(subject,predicate,object,
System.currentTimeMillis());
this.put(q);
}
}
}

Listing 1: Example of generation of an RDF stream in C-SPARQL. RDF quads are generated in
the body of a thread executor.

A more suitable model for RDF streams can be designed based on events,
transmitted as asynchronous messages between RSP actors that operate as pro-
ducers and/or consumers. These streams should be immutable in nature, serial-
izable and distributable over a network of RDF stream processors.

3.2 Extending SPARQL for streams

Several existing extensions of SPARQL have shown that it is possible and prac-
tical to query RDF streams using rich declarative languages [4, 5, 2]. These lan-
guages have shown to incorporate an interesting set of operators, and even chal-
lenge the non-RDF languages in tasks such as reasoning and data integration.
This is mainly due to the fact that they rely on well defined semantic models,
represented as vocabularies and ontologies. However, existing systems need to
revisit the way in which they provide answers to these queries. For instance the
code in Listing 2 shows a CQELS [9] query execution code excerpt, attaching a
listener to an RSP query.

ExecContext context=new ExecContext(HOME, false);

String queryString =" SELECT ?person ?loc "
ContinuousSelect selQuery=context.registerSelect(queryString);
selQuery.register(new ContinuousListener()
{
public void update(Mapping mapping){
String result="";
for(Iterator<Var> vars=mapping.vars();vars.hasNext();){
result+=" "+context.engine().decode(mapping.get(vars.next()));
System.out.println(result);

Listing 2: Example of generation of an RDF stream in CQELS.




Although this design allows obtaining updates on the query results (through
a mapping that contains the bindings), it makes it complicated to distributed the
results, respond asynchronously or remotely dispatch notifications to other com-
ponents. RSP systems can rely on asynchronous message passing for delivering
results and notify subscribers to a continuous query. Moreover, using dynamic
push-pull mechanisms, subscribers can proactively specify their demand needs,
and switch form pull to push mode and viceversa depending of the load (Fig-

ure 4).
demand flow

- ——— -
o~ Push when consumer is faster
Producen Pull when producer is faster
—_—— Dynamically switch modes

data flow

Fig. 4: Dynamic Pull-push. The consumer indicated its data demand so that the producer can push
at a suitable rate. If the producer is too fast, then the data flow can switch to pull mode dynamically
during the system lifespan.

3.3 Imperfect RDF Streams

Very few systems in the RSP scope deal with stream imperfections such as
noise, out-of-order data and delays. While these issues are often described as
out-of-scope or simply ignored, they are recurring in almost all real life stream-
ing scenarios. This opens challenging questions, for instance regarding the RDF
stream model used in most engines. These require timestamped data items, and
assume that order among them is preserved at the time of arrival. Adapting this
for out-of-order processing is an open question, as well as dealing with uncer-
tainty in RSP continuous queries. Finally, in RSP engines all data items in a
stream are considered to arrive instantaneously, and delays are not taking into
account. Systems have to be ready to decide when to time-out, and how to deal
with data delays, in order to prevent blocking the processing workflow.

3.4 Correctness in RSP

Recently, we have witnessed the emergence of RSP benchmarks that try to com-
pare engines in terms of through put and query response time, among other
criteria [14]. Nevertheless, it has been evidenced that these engines do not re-
ally behave in the same way, and throw different results to seemingly equivalent
queries. This behavior has been studied and characterized in previous works [7],
but it is still needed to adapt engines to consider these findings and be consis-
tent and sound in query answering. Otherwise, benchmark results can be proven
to be meaningless, and systems cannot really be reliable. To achieve this, it is
needed to provide the theoretical foundations and models that describe precisely
the operational semantics of an RSP system.

3.5 Stored and Streaming RDF

The RSP query languages already mentioned natively and elegantly support
combining stored and streaming RDF (e.g. see Listing 3). Moreover, they allow



in many cases to perform reasoning tasks based on persistent knowledge bases
that contain domain knowledge expressed as an ontology. However, in most cases
this knowledge is supposed to be static, and is often loaded once as a file, mak-
ing it impractical to refresh data or update contents. Stored data should not
be assumed to be static data, and on the other hand dynamic persistent data
should not be confused with streaming data. In any case, to effectively combine
the two, it is important to consider adaptive query operators and non-blocking
access to persistent data stores, so to avoid creating bottlenecks on the stream
of responses.

SELECT ?personl ?person2
FROM NAMED <http://deri.org/floorplan/>
WHERE {
GRAPH <http://deri.org/floorplan/>
{?locl lv:connected ?loc2}
STREAM <http://deri.org/streams/rfid> [NOW]
{?personl lv:detectedAt ?locl}
}

Listing 3: Example of a CQELS query combining a stored RDF graph and and RDF stream.
3.6 Resilient RSP engines

Failures in RDF stream engines currently result in exception escalation and a
general disruption in the processing pipeline. As we have seen, these engines
are composed of tightly coupled components: e.g. streams attached to query lis-
teners, and relying on synchronous communication between the query processor
and the subscribers. For instance, if a stream generator thread fails, then its sub-
scribers can fail as well. Or if the query engine fails, in many cases all registered
queries are susceptible to fail too.

We can envision an RSP engine as a set of dynamic actors that are started,
suspended or reused depending on the needs. These RSP actors can do different
tasks, form stream acquisition to filtering, event processing, scheduling or data
delivery. Using supervision strategies, failures can be handled locally, avoiding
unwanted escalation or general service unavailability. Furthermore, at the pro-
cessing level it is important to take into consideration the potential data bursts in
the incoming streams. Load shedding and data eviction are possible alternatives
that have started to be explored in RSP already [8].

3.7 Elastic and Scalable Processing

First steps towards parallel RSP systems have already been taken, although
focusing on the deployment of RDF query processors on different nodes on a
cluster [10]. There is still room for designing a more flexible RSP engine design
that splits completely the query operators over a set of computing units, depend-
ing on the queries posed to the systems. Having RSP actors can allow realizing
this vision, as these can communicate locally or remotely through asynchronous
messages. Moreover, such an architecture can allow having different types of
RSPs (query processors, reasoners, filtering units, etc.) in a workflow pipeline.
Depending on the load and the number and difficulty of the queries, the system




can see if it is necessary to adapt and use more or less nodes, and assign jobs to
them. In specific systems, most notably for maintaining materialized ontologies,
there have been attempts to engineer and optimize the computation by applying
map-reduce parallelization techniques [13].

3.8 Responsive Systems

Avoiding blocking operators (e.g. choosing right type of joins, adaptively acquir-
ing stored data, using asynchronous messaging) from end-to-end in an RSP is key
to achieve responsiveness. In general, responsiveness will benefit from the other
characteristics described in the previous sections. Event driven asynchronous
communication within RSP actors, as well as avoiding blocking operators guar-
antees that the information flow is not stuck unnecessarily. In the same way,
adaptive delivery of query results using dynamic push and pull, can prevent
data bottlenecks and overflow. Also, by handling stream delays, data out of or-
der and reacting gracefully to failures, the system can maintain availability, even
under stress or non-ideal conditions. Similarly, elasticity can boost the system
overall responsiveness by efficiently distributing the load and adapting to the
dynamic conditions of the system.

4 Discussion

Streams are here to stay and it is our responsibility to design and build systems
that cope with them in an effective and usable way. In this paper we have
seen how the RDF Stream Processing community has been addressing some of
the main challenges in this area, although in some cases there remains a lot
to investigate and develop. With a varying degree of success we can see that
most of the requirements for generic stream processors are handled by RSP
engines, and that in some cases we even cope with more complicated scenarios
that include data integration, heterogeneity, data interpretation and reasoning.
Nevertheless, there are many pitfalls in systems design that prevent most of
RSP engines to be reactive, in the sense that they do not always incorporate
the traits of resilience, responsiveness, elasticity and message driven nature. We
strongly believe that these principles have to be embraced at all levels of RDF
stream processing. Finally, we proposed an actor-based model of RSP engines
that can communicate asynchronously using immutable streams, and that can
be deployed in local or remote instances under supervision strategies for failure
handling. This model can be a starting point for achieving interoperability in
RDF stream systems, where different type of stream processing tasks can be
delegated to a specialized engine, as depicted in Figure 5.

We are confident that this type of systems will soon be realized, given the
strong response of the RSP community to the challenges of stream processing,
including standardization, serialization, agreement on processing semantics, etc..
Thsi will lead to a common understanding of what we can call reactive RDF
stream processors.
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Fig.5: Reactive RSP engines communicating through asynchronous messages in local or remote
deployments, using immutable streams of RDF data.
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