
Proceedings of the Workshops of the
EDBT/ICDT 2015 Joint Conference

Peter M. Fischer, University of Freiburg, Germany
Gustavo Alonso, ETH Zurich, Switzerland

Marcelo Arenas, Pontificia Universidad Catolica de Chile, Chile
Floris Geerts, University of Antwerp, Belgium

March 27th, 2015

Contents

Message from the Chairs iii

Algorithms for MapReduce and Beyond (BeyondMR) 1
Jedi: A Storage Manager for SIMD-aware, Worst-case Optimal Join Processing 2
Bounds for Overlapping Interval Join on MapReduce . 3
Cuneiform: a Functional Language for Large Scale Scientific Data Analysis 7
A Spark-based Workflow for Probabilistic Record Linkage of Healthcare Data 17
Communication Cost in Parallel Query Processing . 27
Assignment of Different-Sized Inputs in MapReduce . 28
Lower Bounds on the Communication of XPath Queries in MapReduce 38
Computing NFA Intersections in Map-Reduce . 42

Data (Co-)Processing on Heterogeneous Hardware (DAPHNE) 46
Declarative query processing in imperative managed runtimes 47
Local vs. Global Optimization: Operator Placement Strategies in Heterogeneous Environ-

ments . 48
Massively Parallel Analysis of Similarity Matrices on Heterogeneous Hardware 56

Energy Data Management (EnDM) 63
Enhancing Energy Awareness through the Analysis of Thermal Energy Consumption . . . 64
Hybrid Multidimensional Design for Heterogeneous Data Supported by Ontological Anal-

ysis: an Application Case in the Brazilian Electric System Operation 72
Measuring and Comparing Energy Flexibilities . 78
What’s Wrong with my Solar Panels: a Data-Driven Approach 86
What are the Most Important Research Challenges in Energy Data Management? (panel) 94

Event Processing, Forecasting and Decision-Making in the Big Data Era (EPForDM) 95
Challenges from Industrial Data Analytics . 96
Complex Event Processing under Uncertainty: A Short Survey 97
Extending Event-Driven Architecture for Proactive Systems 104
Towards Flexible Event Processing in Distributed Data Streams 111
Latent Fault Detection With Unbalanced Workloads . 118
What You See Is What You Do: applying Ecological Interface Design to Visual Analytics 125

Querying Graph Structured Data (GraphQ) 132
Using Graph Traversal in Scientific Data Interpolation . 133
A Parallel Tree Pattern Query Processing Algorithm for Graph Databases using a GPGPU141
Implementing Flexible Operators for Regular Path Queries 149
Beta-Algebra: Towards a Relational Algebra for Graph Analysis 157
Graph Search of Software Models Using Multidimensional Scaling 163
Graph Data Exchange with Target Constraints . 171

i

Topic Detection Using a Critical Term Graph on News-Related Tweets 177
Graph Databases and Railway Operations Research Requirements 183

Linked Web Data Management (LWDM) 189
An Extensible Framework for Query Optimization on TripleT-based RDF Stores 190
Towards an RDF validation language based on Regular Expression derivatives 197
RDF Constraint Checking . 205
Peer-to-Peer Semantic Integration of Linked Data . 213
Interpreting Linked Data Search Results using Markov Logic 221
TripleGeo-CSW: A Middleware for Exposing Geospatial Catalogue Services on the Seman-

tic Web . 229
Frequent Subgraph Mining from Streams of Linked Graph Structured Data 237

Privacy and Anonymity in the Information Society (PAIS) 245
Transparency and Disclosure Risk in Data Privacy . 246
Privacy-Integrated Graph Clustering Through Differential Privacy 247
Big Graph Privacy . 255
Opening up Government Data while Maintaining Data Privacy 263
Private Computation of the Longest Increasing Subsequence in Data Streams 270
Efficient Sanitization of Unsafe Data Correlations . 278

ii

Message from the Chairs

It is our pleasure to present to you, on behalf of the entire conference organizing committee and the
workshop organizers, the proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference,
held on March 27, 2015, in Brussels, Belgium.

The International Conference on Extending Database Technology (EDBT) and the International
Conference on Database Theory (ICDT) are two prestigious venues for the exchange of the latest
research results in data management and the theoretical foundations of database systems. While
having the same overarching goal of presenting cutting-edge results, ideas, techniques, and theoreti-
cal advances in databases, the workshops of the EDBT/ICDT joint conference are separately tasked
by focusing on emerging topics that complement the areas covered by the main technical program.

This year, our program includes workshops focusing on seven exciting topics:

• Algorithms for MapReduce and Beyond (BeyondMR), aiming to explore algorithms and models
computational for the specialized systems that have recently been developed to serve the needs
of “big data”,

• Data (Co-)Processing on Heterogeneous Hardware (DAPHNE), investigating challenges and
opportunities for data processing on existing and upcoming heterogeneous hardware architec-
tures, ranging from multi-core CPUs to massively parallel accelerators, heterogeneous mobile
phone processors to FPGAs,

• Energy Data Management (EnDM), focusing on conceptual and system architecture issues
related to the management of very large-scale data sets specifically in the context of the
energy domain,

• Event Processing, Forecasting and Decision-Making in the Big Data Era (EPForDM), bringing
together computer scientists with interests in the fields of event processing, event forecasting
and event-driven decision-making to present recent innovations, find topics of common interest
and stimulate further development of new approaches to make sense of Big Data.

• Querying Graph Structured Data (GraphQ), which aims to encourage discussions on how to
efficiently and effectively support graph queries in different application domains and seeks
to provide the opportunity for cross-fertilization among teams working on graph-structured
data, with a particular focus on the querying issues.

• Linked Web Data Management (LWDM), aiming at stimulating participants to discuss about
data management issues related to the Linked Data and the relationships with other Semantic
Web technologies, and proposes a glance at new issues,

• Privacy and Anonymity in the Information Society (PAIS), which provides a platform for
researchers and practitioners from computer science and other fields that are interacting with
computer science in the privacy area, such as statistics, healthcare informatics, and law, to
discuss and present research challenges and advances in data privacy and anonymity research.

iii

This broad range of inciting workshops would not have been possible without the contributions
and the support which we have received. First of all, we would like to thank all workshop organizers
who have put together a highly interesting program as well as to all authors who submitted their
works to the workshops. We specially thank the authors of the accepted papers and the invited
speakers who presented their works in the workshops program. Needless to say, we are grateful to
the members of the workshop program committees and external reviewers who have helped to put
together a high-quality workshops program and we would like to acknowledge the conference orga-
nizers for their invaluable help at various stages of the process. We would also to thank the editors
of the CEUR Workshop Proceedings (CEUR-WS.org) who have agreed to host these proceedings
as well as ACM who are indexing them.

Sincerely,
Peter M. Fischer, Workshops Chair
Gustavo Alonso, EDBT Program Chair
Marcelo Arenas, ICDT Program Chair
Floris Geerts, General Chair

iv

Algorithms for MapReduce and Beyond
(BeyondMR)

Frank McSherry,
Foto N. Afrati (National Technical University of Athens, Greece),
Jacek Sroka (University of Warsaw, Poland)

1

Jedi: A Storage Manager for SIMD-aware, Worst-case
Optimal Join Processing

Christopher Ré,
Stanford University

ABSTRACT
This talk describes a new graph-pattern engine called Jedi.
Using a recent simplification of worst-case optimal join al-
gorithms due to Ngo et al., Jedi translates join queries into
a series of set intersection and union operations. Such set
operations are ideally suited to modern CPUs that provides
single-instruction, multiple data (SIMD) instructions. Using
these ideas, we demonstrate that Jedi outperforms special-
ized graph engines by over an order of magnitude and rela-
tional systems by over two orders of magnitude on standard
graph processing queries over real data.

Short Bio
Christopher (Chris) Re is an assistant professor in the De-
partment of Computer Science at Stanford University and
a Robert N. Noyce Family Faculty Scholar. His work’s goal
is to enable users and developers to build applications that
more deeply understand and exploit data. Chris received
his PhD from the University of Washington in Seattle under
the supervision of Dan Suciu. For his PhD work in proba-
bilistic data management, Chris received the SIGMOD 2010
Jim Gray Dissertation Award. He then spent four wonderful
years on the faculty of the University of Wisconsin, Madison,
before moving to Stanford in 2013. He helped discover the
first join algorithm with worst-case optimal running time,
which won the best paper at PODS 2012. He also helped
develop a framework for feature engineering that won the
best paper at SIGMOD 2014. In addition, work from his
group has been incorporated into scientific efforts including
the IceCube neutrino detector and PaleoDeepDive, and into
Cloudera’s Impala and products from Oracle, Pivotal, and
Microsoft’s Adam. He received an NSF CAREER Award in
2011, an Alfred P. Sloan Fellowship in 2013, and a Moore
Data Driven Investigator Award in 2014.

c©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0

2

Bounds for Overlapping Interval Join on MapReduce

Foto Afrati
∗

National Technical University
of Athens, Greece

afrati@softlab.ece.ntua.gr

Shlomi Dolev
†

and
Shantanu Sharma

Ben-Gurion University of the
Negev, Israel

{dolev,sharmas}@cs.bgu.ac.il

Jeffrey D. Ullman
Stanford University

USA
ullman@cs.stanford.edu

ABSTRACT
We consider the problem of 2-way interval join, where we want to
find all pairs of overlapping intervals, i.e., intervals that share at
least one point in common. We present lower and upper bounds
on the replication rate for this problem when it is implemented in
MapReduce. We study three cases, where intervals in the input
are: (i) unit-length and equally-spaced, (ii) variable-length and
equally-spaced, and (iii) equally-spaced with specific distribution
of the various lengths. Our algorithms offer intuition as how to
build algorithms for other cases, especially when we have some
statistical knowledge about the distribution of the lengths of the
intervals. E.g., if mostly large intervals interact with small intervals
and not within themselves, then we believe our techniques can be
extended to achieve better replication rate.

1. INTRODUCTION
MapReduce [3] is a programming model used for parallel
processing of large-scale data. A mapper is an application of a
(user-defined) map function to a single input and provides outputs
in the form of 〈key , value〉 pairs. A reducer is an application of
a (user-defined) reduce function to a single key and its associated
list of values. The reducer capacity — an important parameter —
is an upper bound on the sum of the total number of inputs that are
assigned to the reducer. We denote the capacity of a reducer by q,
and all the reducers have an identical capacity. Interval join using
MapReduce was introduced by Chawda et al. [2].
Example: Employees involved in the phases of a project.
We show an example to illustrate temporal relations (a relation
that stores data involving timestamps), intervals, and the

∗Supported by the project Handling Uncertainty in Data Intensive
Applications, co-financed by the European Union (European Social
Fund) and Greek national funds, through the Operational Program
“Education and Lifelong Learning,” under the program THALES
†Supported by the Rita Altura Trust Chair in Computer Sciences,
Lynne and William Frankel Center for Computer Sciences, Israel
Science Foundation (grant 428/11), the Israeli Internet Association,
and the Ministry of Science and Technology, Infrastructure
Research in the Field of Advanced Computing and Cyber Security.

c©2015, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015,
Brussels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of
this paper is permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0

𝐸𝑚𝑝𝐼𝑑 𝑁𝑎𝑚𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑒1 U 1-Apr –

1-June

𝑒2 V 1-May –

1-July

𝑒3 W 1-Apr –

1-July

𝑒4 X 1-Mar –

1-June

𝑒5 Y 1-Mar –

1-Aug

𝑃ℎ𝑎𝑠𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

Requirement

Analysis

(RA)

1-Mar –

1-May

Design (D) 1-Apr –

1-June

Coding (C) 1-May –

1-Aug

1-Mar 1-Apr 1-May 1-June 1-July 1-Aug

RA

D

C

𝑒1
𝑒2
𝑒3
𝑒4
𝑒5

𝑃𝑟𝑜𝑗𝑒𝑐𝑡

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒

𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒

Figure 1: Two temporal relations (Project(Phase,Duration) and
Employee(EmpId ,Name,Duration)) and their representation
on a time diagram.

need for interval join of overlapping intervals. Consider
two (temporal) relations (i) Project(Phase,Duration) that
includes several phases of a project with their durations, and
(ii) Employee(EmpId ,Name,Duration) that shows data of
employees according to their involvement in the project’s phases
and their durations; see Figure 1. Here, the duration of a phase or
the duration of an employee’s involvement in a phase is given by an
interval. It is interesting to find all the employee that are involved
in a phase of the project. Formally, a query: find the name of all
employees who worked in a phase of the project; requires us to join
the relations to find all overlapping intervals of the relations. For
example, the answer to the query includes employees U with id e1,
W with id e3, X with id e4, and Y with id e5 are involved in RA
phase the project.
Problem Statement. We consider the problem of interval join of
overlapping intervals, where two relationsX and Y are given. Each
relation contains binary tuples that represent intervals, i.e., each
tuple corresponds to an interval and contains the starting point and
ending point of this interval. Each pair of intervals 〈xi, yj〉, where
xi ∈ X and yj ∈ Y , ∀i, j, such that intervals xi and yj share at
least one common time, corresponds to an output.

A MapReduce job can be described by a mapping schema.
A mapping schema, for this problem, assigns each interval to
a number of reducers (via the formation of key-value pairs) so
that (i) for each output (i.e., pair of overlapping intervals), there
exists a reducer that receives the corresponding pair of overlapping
intervals that participate in the computation of this output and (ii)
each reducer has a capacity (denoted by q hereon) that constraints
the total number of intervals assigned to this reducer. The
replication rate of a mapping schema is the average number of
key-value pairs for each interval and is a significant performance
parameter in a MapReduce job. We analyze here lower and upper
bounds on the replication rate for the problem of overlapping
intervals.
Our Contribution. We provide lower and almost matching

3

upper bounds for three cases: (i) unit-length and equally-spaced
(Section 3), (ii) variable-length and equally-spaced, and (iii)
equally-spaced with specific distribution of the various lengths
(Section 4.1). In the third case, we assume that one set contains
only small intervals and the other set only large intervals. We
offer an algorithmic simple technique that takes advantage of this
knowledge to build an algorithm that improves the replication rate
of the second case above.
Related Work. Several types of join operations and a detailed
review of join algorithms for temporal relations are given in [4].
MapReduce-based 2-way and multiway interval join algorithms
of overlapping intervals without regarding the reducer capacity
are presented in [2]. However, the analysis of a lower bound on
replication of individual intervals is not presented; neither is an
analysis of the replication rate of the algorithms offered therein.

2. THE SETTING
A (time) interval, i, is represented by a pair of times [T i

s , T
i
e], T i

s <
T i
e , where T i

s and T i
e show the starting-point and the ending-point

of the interval i, respectively. T i
s - T i

e is the length of the interval i.
Two intervals, say interval i and interval j are called overlapping
intervals if the intersection of both the interval is nonempty.
Mapping Schema. A mapping schema is an assignment of
overlapping intervals to some given reducers under the following
two constraints: (i) a reducer is assigned only q intervals, and (ii)
for each output, we must assign the corresponding intervals to at
least one reducer in common.
Replication rate, r: The replication rate [1] is the average number
of key-value pairs created for an interval.

3. UNIT-LENGTH AND
EQUALLY-SPACED INTERVALS

Two relations X and Y , each of n unit-length intervals are given.
We assume that all the intervals have their starting-points in a
closed interval [0, k], i.e., there is no interval that starts before 0
or after k. Thus, the space between every two successive intervals
is k

n
< 1� k. In other words, the first interval starts at time 0, the

second interval starts at time k
n

, the third interval starts at time 2k
n

,
and the last nth interval starts at time k − k

n
; see Figure 2.

The output we want to produce is a set of all pairs of intervals
such that one interval overlaps with the other interval in the pair.
The problem is not really interesting if all these intervals exist on
the input. The real assumption is that some fraction of them exist,
and the reducer capacity q is selected so that the expected number
of inputs that actually arrive at a given reducer is within the desired
limits, e.g., no more than what can be processed in main memory.
In addition, the case of unit-length and equally-spaced interval is
not realistic, but is explored because it gives us an idea of what
optimal algorithms for more general and more realistic cases would
look like.

A solution to the problem of interval join of overlapping
unit-length and equally-spaced intervals is a mapping schema that
assigns each interval of the relation X with all its overlapping
intervals of the relation Y to at least one reducer in common,
without exceeding q. Since every two consecutive intervals have
an equal space (k

n
), an interval xi ∈ X overlaps with at least

2b1/ k
n
c + 1 = 2bn

k
c + 1 intervals of Y , where at least

⌊
n
k

⌋

intervals of the relation Y have their ending-points between the
starting-point and the ending-point of xi, at least

⌊
n
k

⌋
intervals of

the relation Y have their starting-points between the starting-point
and the ending-point of xi, and an interval yi ∈ Y that have
identical end-points as xi (this inequality does not true for the

0 0.25 0.50 0.75 1 1.25 1.5 1.75 2 2.25

X

Y

Figure 2: An example of unit-length and equally-spaced intervals,
where n = 9 and k = 2.25.

intervals that have starting-points before 1 and after k − 1). In
this section, we will show a lower bound on the replication rate
for interval join of overlapping unit-length and equally-spaced
intervals. After that, we provide an algorithm, its correctness, and
an upper bound on the replication rate obtained by the algorithm.

Theorem 1 (Minimum replication rate) For two relations, X
and Y , of unit-length and equally-spaced intervals, the minimum
replication of an interval, for joining each interval of the relation
X with all its overlapping intervals of the relation Y , is (i) at
least 2 when 2n > q ≥ 2

⌊
n
k

⌋
+ 2, and (ii) at least 2

q

⌊
n
k

⌋
when

2 < q < 2
⌊
n
k

⌋
+ 2, where each relation holds n intervals, q is the

reducer capacity, and k denotes that the starting points of intervals
are in [0, k].

PROOF. First, we consider the case of 2n > q ≥ 2
⌊
n
k

⌋
+ 2.

When q ≥ 2n, a single reducer is enough to hold all the intervals
of both the relations, and hence, the reducer is able to provide
all output pairs (of interval join of overlapping intervals). When
2
⌊
n
k

⌋
+ 1 < q < 2n, a single reducer may hold an interval i ∈ X

and all its 2
⌊
n
k

⌋
+ 1 corresponding overlapping intervals of the

relation Y , and such a reducer is enough to provide all-pairs of
the interval i with its overlapping intervals. However, at the same
time, there must be at least a single interval, say interval j, that is
assigned to the same reducer where the interval i is assigned, but
the interval j is not assigned with all its corresponding overlapping
intervals. Hence, the interval j must be assigned to at least one
more reducer to be coupled with all its 2

⌊
n
k

⌋
+ 1 overlapping

intervals. Therefore, the minimum replication of an interval is at
least 2.

Now, we consider the case of 2 < q < 2
⌊
n
k

⌋
+ 2. Consider

an interval i. Since the interval i has at least 2
⌊
n
k

⌋
+1 overlapping

intervals, all these (2
⌊
n
k

⌋
+ 2) intervals cannot be assigned to a

single reducer. The interval i can share a reducer with at most q−1
(< 2

⌊
n
k

⌋
+ 1) intervals (of the relation Y). In order to assign the

interval i with all the remaining overlapping intervals, it is required
to assign subsets of the 2

⌊
n
k

⌋
+1 intervals, each subset with at most

q−1 intervals. Such an assignment results in at least 2
⌊
n
k

⌋
+1/q−1

subsets of 2
⌊
n
k

⌋
+1 overlapping intervals. Thus, the interval imust

be sent to at least 2
⌊
n
k

⌋
+ 1/q − 1 > 2

q

⌊
n
k

⌋
reducers.

Algorithm 1. We propose an algorithm for interval join of
overlapping intervals, where two relations X and Y (each is of n
intervals of unit-length and equally-spaced) are inputs. Recall that
it is expected that not all possible intervals are present.

We divide the time-range from 0 to k into equal-sized partition
of length w = q−c

3dn/ke , where c =
⌈
n
k

⌉
+ 2. Consider that

by partitioning of the time-range, we have P partitions. We now
arrange P reducers, one for each partition. We consider a partition
pi, 1 ≤ i ≤ P , and assign all the intervals of the relation X
that exist in the partition pi to the ith reducer. In addition, we
assign all the intervals of the relation Y that have their starting or
ending-point in the partition pi to the ith reducer.
Explaining pseudocode of Algorithm 1. A mapper takes an
interval xi ∈ X (line 2) and produces 〈key , value〉 pairs (line 4).
The key represents a partition where the interval xi exists and the

4

Cases Solutions Theorems Replication rate
The lower bounds

Unit-length and
equally-spaced intervals

1 2 or 2
q

⌊
n
k

⌋

Variable-length and
equally-spaced intervals

3 2 or 2
q

⌊ lmin
s

⌋

The upper bounds
Unit-length and
equally-spaced intervals

Algorithm 1 5 3
qT−S

S
2

Variable length and
equally-spaced (big-small)
intervals

Algorithm 2 5 3
qT−S

S
2

Variable length
(different-length) and
equally-spaced intervals

Algorithms 3 and 4 5 3
qT−S

S
2

Table 1: The bounds for interval joins of overlapping intervals.

Algorithm 1: 2-way interval join algorithm for overlapping
intervals of unit-length and equally-spaced intervals.
Inputs: X and Y : two relations, each is of n intervals.
Variables: k: A point on the timeline after that no interval can
have a starting-point; w: The length of a partition w = q−c

3dn/ke ,
where c =

⌈
n
k

⌉
+ 2; P : The total number of partitions and

reducers.
1 Partition the time-range into P partitions, each of length w
2 Function Map_for_X (xi ∈ X) begin
3 z ← count_partitions(xi)
4 for j ← 1 to z do emit〈j, xi〉 ;

5 Function Map_for_Y (yi ∈ Y) begin
6 sp← starting_points(yi), ep← ending_points(yi)
7 emit〈sp, yi〉, emit〈ep, yi〉
8 Function reduce(〈key , list_of _values[]〉) begin
9 for j ← 1 to P do

10 Reducer i is having
〈i, list_of _values[xa, xb, . . . , ya, yb, . . .]〉

11 Perform interval join over overlapping intervals

12 Function count_partitions(xi) begin
c← Count the total number of partitions that xi crosses
return c

total number of 〈key , value〉 pairs for the interval xi depends on
the total number of partitions that the interval xi crosses, by calling
function count_partitions() (lines 3 and 12). Also, a mapper
processes an interval yi ∈ Y (line 5) and produces at most two
〈key , value〉 pairs (line 7), where the first pair and the second pair
are corresponding to a partition where yi has the starting-point and
the ending-point, respectively (line 6). The value represents the
interval xi or yi itself. In the reduce phase, a reducer i fetches all
the intervals of the relations X and Y that have a key i (line 10)
and provides the final outputs, line 11.

Theorem 2 (Algorithm correctness) Let c =
⌈
n
k

⌉
+2 and let q =

3w
⌈
n
k

⌉
+c, Algorithm 1 assigns each pair of overlapping intervals

to at least one reducer in common, where each relation, X and
Y , holds n intervals, q is the reducer capacity, k denotes that the
starting points of intervals are in [0, k], and w is the length of a
partition.

PROOF. Since every two successive intervals have k
n

spacing,
an interval i ∈ X can overlap with at most 2

⌈
n
k

⌉
intervals of the

relation Y . First, we consider w < 1; in a partition, p of length
w, an interval i can overlap with at most 2w

⌈
n
k

⌉
intervals of the

relation Y . Note that there are at most w
⌈
n
k

⌉
intervals (of the

relation X) that have their starting-points after the starting-point

of the interval i in the partition p, and we called these intervals
post-intervals of the interval i. Also, there are at most c =

⌈
n
k

⌉

intervals (of the relation X) that have either their ending-points
in the partition p or cross the partition p; we call these intervals
pre-intervals of the interval i.

Thus, for w < 1, q = 3
⌈
n
k

⌉
+ c, we can assign the interval

i, post-intervals of i that lie in the partition p, and pre-intervals of
i that lie in partition p at a single reducer. Such an assignment
occupies w

⌈
n
k

⌉
+ c − 1 capacity of the reducer. The remaining

capacity, 2w
⌈
n
k

⌉
+ 1, of the reducer is used to assign all 2w

⌈
n
k

⌉

overlapping intervals of the interval i and an interval, i′ ∈ Y
that have an identical starting-point as the interval i. (Note that
i′ is an overlapping interval for some of the pre-intervals and the
post-intervals of i.) Thus, the interval i is assigned to a reducer with
all its 2w

⌈
n
k

⌉
overlapping intervals of the relation Y . Further, the

interval i will also be paired with all its remaining 2
⌈
n
k

⌉
− 2w

⌈
n
k

⌉

overlapping intervals at some reducers.
Now, we consider w ≥ 1. In this case, for a partition p,

there must be an interval i ∈ X that can be assigned to a reducer
with all its 2

⌈
n
k

⌉
overlapping intervals of the relation Y . Also,

there are at most
⌈
n
k

⌉
post-intervals and c =

⌈
n
k

⌉
pre-intervals

(of the interval i) that lie in the partition p. Thus, we can assign
interval i, post-intervals of i, and pre-intervals of i at a single
reducer. In addition, an interval, i′ ∈ Y such that i and i′ have an
identical starting-point, is also assigned to the reducer. Therefore,
the interval i is paired with all 2

⌈
n
k

⌉
overlapping intervals (of the

relation Y) at the reducer.

4. VARIABLE-LENGTH AND
EQUALLY-SPACED INTERVALS

Two relations X and Y , each of n intervals, are given, where
all intervals can have non-identical length but equally-spaced.
We assume that the first interval starts at time 0, and the space
between every two successive intervals is s < 1; see Figure 3,
where a relation X has 6 intervals, and a relation Y has also 6
intervals. A solution to the problem of interval join of overlapping
variable-length and equally-spaced intervals is a mapping schema
such that each pair of overlapping intervals, one from each of
the relations, is sent to at least one reducer in common without
exceeding q.

We consider two types of intervals, as follows: (i) big and
small intervals: one of the relation, say X , is holding most of the
intervals of length l and the other relation, say Y , is holding most
of the intervals of length l′ � l; we call intervals of the relations
X and Y as small intervals and big intervals, respectively; and (ii)
different-length intervals: all the intervals of both the relations are
of different-length (we will consider the second case in Appendix).
In this section, we will provide lower bounds on the replication
rate for both types of intervals. We then provide algorithms for
interval join of overlapping intervals and show a upper bound on the
replication rate. Throughout this section, we will use the following
notations: lmax : the maximum length of an interval, lmin : the
minimum length of an interval, and w: length of a partition.

4.1 Big and small intervals
In this section, we consider a special case of variable-length and
equally-spaced intervals, where all of the intervals of two relations
X and Y have length lmin and lmax , respectively, such that lmin �
lmax ; see Figure 3. We call the intervals of the relations X and Y
as small intervals and big intervals, respectively.

Since every two successive intervals have an equal space, s, an
interval xi ∈ X of length lmin can overlap with at least 2

⌊
lmin
s

⌋
+1

intervals of the relation Y , where at least
⌊
lmin
s

⌋
intervals of the

5

0 0.7 1.4 2.1 2.8 3.5 4.2

X

Y

Figure 3: An example of big and small length but equally-spaced
intervals, where n = 6 and s = 0.7.

relation Y have their ending-points between the starting and the
ending-points of xi, at least

⌊
lmin
s

⌋
intervals of the relation Y have

their starting-points between the starting and the ending-points of
xi, and an interval yi ∈ Y has an identical starting-point as xi.
In addition, an interval xi ∈ X of length lmax can overlap with
at most 2

⌊
lmax
s

⌋
+ 1 intervals of the relation Y , where at most⌊

lmax
s

⌋
intervals of the relation Y have the ending-points between

the starting and the ending-points of xi and at most
⌊
lmax
s

⌋
intervals

of the relation Y have the starting-points between the starting and
the ending-points of xi, and an interval yi ∈ Y has an identical
starting-point as xi.

Theorem 3 (Minimum replication rate) For a relation X of n
small and equally-spaced intervals and a relation Y of n big and
equally-spaced intervals, the minimum replication of an interval,
for joining each interval of the relation X with all its overlapping
intervals of the relation Y , is (i) at least 2 when 2n > q ≥ 2

⌊
lmin
s

⌋
,

and (ii) at least 2
q

⌊
lmin
s

⌋
when 2 < q < 2

⌊
lmin
s

⌋
, where q is the

reducer capacity, s is the spacing between every two successive
intervals, and lmin is the length of the smallest interval.

PROOF. First we consider the case of 2n > q ≥ 2
⌊
lmin
s

⌋
+ 2.

When q ≥ 2n, all the 2n intervals of the relations X and Y
can be assigned to a single reducer, which is able to provide all
output pairs. When 2

⌊
lmin
s

⌋
+ 2 < q < 2n, a single reducer

cannot hold all the 2n intervals of the relations X and Y . Hence,
at least a single interval, say j, that is not assigned with all its
2
⌊
lmin
s

⌋
+ 1 overlapping intervals must be assigned to another

reducer. Therefore, the minimum replication of an interval is at
least 2.

Now, we consider the case of 2 < q < 2
⌊
lmin
s

⌋
+ 2. Consider

an interval i of length lmin . Since the interval i has at least
2
⌊
lmin
s

⌋
+1 overlapping intervals, all these (2

⌊
lmin
s

⌋
+2) intervals

cannot be assigned to a single reducer. The interval i can share
a reducer with at most q − 1 intervals of the relation Y . Hence,
in order to assign the interval i with all the remaining overlapping
intervals, it is required to assign subsets of overlapping intervals of
the relation Y such that each subset holds at most q − 1 intervals.
Thus, the interval i must be sent to at least 2

⌊
lmin
s

⌋
+ 1/q − 1 >

2
q

⌊
lmin
s

⌋
reducers.

Algorithm 2. Algorithm 2 for interval join of overlapping intervals
of a relation X of small and equally-spaced intervals and a relation
Y of big and equally-spaced intervals works in a similar fashion
as Algorithm 1 performs the join operation. However, Algorithm
2 creates P partitions of the time-range (from 0 to ns), each of
length of length w = q−c

3dlmin/se , where c =
⌈
lmin
s

⌉
+ 2. Note

that in Algorithm 2, small intervals are assigned to several reducers
corresponding to their partitions that they cross, and large intervals
are assigned to only two reducers corresponding to their stating and
ending points’ partitions. The correctness of Algorithm 2 proves
that each pair of overlapping intervals is assigned to at least one
reducer in common, where q = 3w

⌈
lmin
s

⌉
+c, where c =

⌈
lmin
s

⌉
+

2.

4.2 An upper bound for the general case
In this section, we show an algorithm and an upper bound on the
replication rate for the problem of interval join of variable-length

but equally-spaced intervals. We use the following notations: T :
the length of time in which all intervals exist, i.e., all intervals
begin at some time greater than or equal to 0 and end by time T ;
n: the number of intervals in each of the two relations, X and Y ,
S: the total length of all the intervals in one relation; and w: the
length of time corresponding to one reducer, i.e., we divide T into
T
w

equal-length segments, each of length w.
Algorithm 3. Algorithm 3 works in a manner similar to Algorithms
1 and 2 do. But this algorithm does more than Algorithms 1 and
2. It finds all intervals that intersect, regardless of whether they
overlap, are superimposed, or any other relation. We divide the
time-range into T

w
equal-sized partitions and arrange T

w
reducers,

one for each partition. After that, we follow the same procedure as
followed in Algorithms 1 and 2.

Theorem 4 (Algorithm correctness) Algorithm 3 assigns each
pair of overlapping intervals to at least one reducer in common,
where q = 3nw+S

T
, each of the two relations, X and Y , holds n

intervals, q is the reducer capacity, S is the total length of all the
intervals in one relation, w is the length of a partition, and T is the
length of time in which all intervals exist.

PROOF. Following the algorithm, each of the n intervals of the
relation Y is sent to at most two reducers. Since there are T

w

reducers, a reducer receives 2nw
T

inputs from Y in average. Since
the length of all the intervals of the relation X is S, the average
length of intervals is S

n
. Following the algorithm, an interval of X

is sent to 1+ S
nw

reducers. Since there are T
w

reducers, the reducer
receives (1 + S

nw
)nw

T
inputs from X in average. Thus, a reducer

receives at most 2nw
T

+ nw
t
(1 + S

nw
) = 3nw+S

T
inputs, which is

equal to the given reducer capacity.

Theorem 5 (Replication rate) For q = 3nw+S
T

and two relations,
X and Y , of variable-length but equally-spaced, the replication
rate of an interval, for joining each interval of the relation X with
all its overlapping intervals of the relation Y is 3

qT−S
S
2

.

5. REFERENCES
[1] F. N. Afrati and et al. Upper and lower bounds on the cost of a

map-reduce computation. PVLDB, 6(4):277–288, 2013.
[2] B. Chawda and et al. Processing interval joins on map-reduce.

In EDBT, pages 463–474, 2014.
[3] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. In OSDI, pages 137–150, 2004.
[4] D. Gao, C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Join

operations in temporal databases. VLDB J., 14(1):2–29, 2005.

APPENDIX
We consider a case of different-length intervals, i.e., all the n
intervals of each relation, X and Y , can have different-length. For
a relation X and a relation Y , each is of n different-length but
equally-spaced intervals, the minimum replication of an interval,
for joining each interval of the relation X with all its overlapping
intervals of the relation Y, is same as given in Theorem 3.
Algorithm 4. We propose an algorithm for interval join of
overlapping different-length and equally-spaced intervals, which
belong to two relations X and Y , each is of n intervals. Algorithm
4 works identically to Algorithms 1, 2, and 3. However, Algorithm
4 is different from Algorithms 1, 2 and 3, when it divides the
time-range from 0 to ns into P partitions, each of length w =

q−c
3dlmax/se , where c =

⌈
lmax
s

⌉
+2. The algorithm correctness shows

that Algorithm 4 assigns each pair of overlapping intervals to at
least one reducer in common, where q = 3w

⌈
lmax
s

⌉
+ c, where

c =
⌈
lmax
s

⌉
+ 2.

6

Cuneiform

A Functional Language for Large Scale Scientific Data Analysis

Jörgen Brandt Marc Bux Ulf Leser

Humboldt-Universität zu Berlin
Unter den Linden 6, D-10099 Berlin, Germany
{brandjoe, bux, leser}@informatik.hu-berlin.de

ABSTRACT
The need to analyze massive scientific data sets on the one
hand and the availability of distributed compute resources
with an increasing number of CPU cores on the other hand
have promoted the development of a variety of languages
and systems for parallel, distributed data analysis. Among
them are data-parallel query languages such as Pig Latin or
Spark as well as scientific workflow languages such as Swift
or Pegasus DAX. While data-parallel query languages focus
on the exploitation of data parallelism, scientific workflow
languages focus on the integration of external tools and li-
braries. However, a language that combines easy integration
of arbitrary tools, treated as black boxes, with the ability to
fully exploit data parallelism does not exist yet. Here, we
present Cuneiform, a novel language for large-scale scien-
tific data analysis. We highlight its functionality with re-
spect to a set of desirable features for such languages, in-
troduce its syntax and semantics by example, and show its
flexibility and conciseness with use cases, including a com-
plex real-life workflow from the area of genome research.
Cuneiform scripts are executed dynamically on the work-
flow execution platform Hi-WAY which is based on Hadoop
YARN. The language Cuneiform, including tool support for
programming, workflow visualization, debugging, logging,
and provenance-tracing, and the parallel execution engine
Hi-WAY are fully implemented.

1. INTRODUCTION
Over the recent years, data sets in typical scientific (and
commercial) areas have grown tremendeously. Also, the
complexity of analysis procedures has increased at es-
sentially the same pace. For instance, in the field of
bioinformatics the cost and speed at which data can
be produced is improving steadily [3, 18, 35]. This
makes possible entirely novel forms of scientific discov-
eries which require ever more complex analysis pipelines

c©2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org <http://ceur-ws.org/> (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the Creative Com-
mons license CC-by-nc-nd 4.0

(e.g., personalized medicine, meta-genomics, genetics at
population scale) developed by tens of thousands of sci-
entists around the world. Analysis infrastructures have
to keep up with this development. In particular, they
must be able to scale to very large data sets, and they
must be extremely flexible in terms of integrating and
combining existing tools. Scientific workflow manage-
ment systems have been proposed to deal with the lat-
ter problem [12]. Scientific workflows are descriptions
of data processing steps and the flow of information
between them [10]. Most scientific workflow langua-
ges like Galaxy [17] or Taverna [21] allow the user to
create light-weight wrappers around existing tools and
libraries. In doing so, they avoid the necessity of reim-
plementing these tools to conform with the API of the
execution environment. However, many scientific work-
flow systems do not take advantage of splitting input
data into partitions to exploit data parallelism which
limits their scalability. In contrast, partitioning input
data to achieve data parallelism is a main advantage
of the execution environments underlying data-parallel
query languages like Pig Latin [16, 33] or Spark [45],
thus, addressing the former issue. However, these are
not designed to make native integration of external tools
easy. Instead, they require developers to create heavy
wrappers around existing tools as well as to perform
costly conversion of data from their native formats to
the system-specific data model, or they expect develop-
ers to reimplement all algorithms in their specific data-
parallel languages. While creating wrappers is labori-
ous, error-prone, and incurs runtime penalties, reim-
plementation is infeasible in areas like genomics where
new algorithms, new data types, and new applications
emerge essentially every day.

To the best of our knowledge, a language for large-
scale scientific computing that offers both light-weight
wrapping of foreign tools and high-level data-parallel
structures currently does not exist. Here, we present
Cuneiform, a language that aims at filling this gap. Cu-
neiform is a universal functional workflow language of-
fering all important features currently required in scien-

7

tific analysis like abstractions and a dynamic execution
model in a language with implicit state. Its main focus,
however, is (i) the ease with which external tools writ-
ten in any language can be integrated, and (ii) the sup-
port for a rich set of algorithmic skeletons (or second-
order functions) enabling automatic parallelization of
execution. Cuneiform is fully implemented and comes
with decent tool support, including executable prove-
nance traces, visualization of conceptual and physical
workflow plans, and debugging facilities. Cuneiform
workflows can be executed on the workflow execution
engine Hi-WAY which builds on Hadoop YARN. To-
gether, Cuneiform and Hi-WAY form a fully functional,
scalable, and easily extensible scientific workflow sys-
tem.

The remaining parts of this paper are structured in
the following way: Section 2 introduces characteristics
of workflow languages important for scientific analysis
that drove the design of Cuneiform. We introduce Cu-
neiform by example in Section 3. In Section 4 we explain
the implementation of two exemplary workflows in Cu-
neiform to highlight its versatility and expressive power.
Hi-WAY is briefly introduced in Section 5.1 Related
work is presented in Section 6, and Section 7 concludes
the paper.

2. LANGUAGE CHARACTERIZATION
In this section we outline the language properties that
we consider important for parallel scientific analysis and
that drove the design of Cuneiform. We categorize dif-
ferent types of languages and discuss important lan-
guage features.

First, we can distinguish languages with implicit state
and explicit state [36]. Implicit state languages do not
have mutable memory. Purely functional languages like
Haskell or Miranda have implicit state. In these lan-
guages variables are only place-holders for immutable
expressions. In contrast, imperative languages like C or
Java and multi-paradigm languages like Scala or Lisp
have explicit state. In these languages variables can
change their values throughout the execution of a pro-
gram.

Scientific workflow languages are typically implicit
state languages while Spark [44, 45], FlumeJava [7], or
DryadLINQ [14, 43] inherit explicit state from their re-
spective host languages. There are arguments promot-
ing either of both approaches: Implicit state languages
profit from their ability to fully exploit task parallelism
because the order of tasks is constrained only by data
dependencies [6].2 Explicit state is preferable if func-
1Note that the focus of this paper is on Cuneiform, while a
complete description of Hi-WAY will be published elsewhere.
2Taverna is an exception as it introduces control links to
explicitly constrain the task execution order in addition to
data dependencies.

tions need to learn from the past and change their be-
havior [36]. However, the introduction of explicit state
incurs additional constraints on the task execution or-
der, thereby, limiting the ability to automatically infer
parallelism.

In the following we outline the requirements towards
a scalable workflow specification language. By focusing
on this specific set of requirements, we define the scope
for the discussion of Cuneiform and for the compari-
son of different languages. This list of requirements is,
however, not comprehensive.

Abstractions In the Functional Programming (FP)
paradigm the term abstraction refers to an expres-
sion that binds one (or more) free variables in its
body. When a value is applied to the expression,
the first bound variable is replaced with the ap-
plied value. In scientific workflows, abstractions
are referred to as subworkflows where the subwork-
flow’s input ports represent the bound variables.
While abstractions are common in functional lan-
guages for distributed computation (like Eden [5,
26]) or distributed multi-paradigm languages (like
Spark), some scientific workflow languages do not
allow for the definition of abstractions in the form
of subworkflows, e.g., Galaxy [17]. Other scientific
workflow languages like Pegasus DAX [13], KN-
IME [4], Swift, or Taverna do provide subwork-
flows. Pig Latin [16, 33] introduces abstractions
through its macro definition feature. Since ab-
stractions facilitate the reuse of reoccurring pat-
terns, they are an important feature of any high-
level programming model.

Conditionals A conditional is a control structure that
evaluates to its then-branch only if a condition
is true and otherwise evaluates to its else-branch.
Like abstractions, conditionals are common in func-
tional and multi-paradigm languages. Many sci-
entific workflow languages provide conditionals as
top-level language elements [2], e.g., KNIME, Tav-
erna, or Swift. However, in some other scientific
workflow languages they are omitted, e.g., Galaxy
or Pegasus DAX. Also, Pig Latin comes without
conditionals that would allow for alternate exe-
cution plans depending on a boolean condition.
Spark, on the other hand, inherits its conditionals
from Scala. Conditionals are important when a
workflow has to follow a different execution path
depending on a computational result that cannot
be anticipated a priori. For instance, consider a
scenario where two algorithms can be employed to
solve a problem. One algorithm performs compa-
rably better on noisy input data, while the other
performs better on clean data. If assessing the
quality of the data is part of the workflow then

8

the decision what algorithm to use has to be made
at execution time. Another example is the appli-
cation of an iterative learning algorithm. If the
exit condition of the algorithm is determined by
some convergence criterion, the number of itera-
tions cannot be anticipated a priori. This way,
conditionals introduce uncertainty in the concrete
workflow structure making it impossible to infer
a workflow’s invocation graph prior to execution.
Nevertheless, conditionals are an important lan-
guage feature.

Composite data types Composite data types are da-
ta structures composed of atomic data items. Lists,
sets, or bags are composite data types. In many
cases, languages with support for composite data
types also provide algorithmic skeletons (see be-
low) to process them, e.g., map, reduce, or cross
product. Swift, KNIME, and Taverna are scien-
tific workflow languages with support for compos-
ite data types. Other scientific workflow langua-
ges, like Galaxy or Pegasus DAX, support only
atomic data types. Data-parallel query languages,
like Spark or Pig Latin, however, provide exten-
sive support for composite data types. Note that
composite data types, like conditionals, introduce
uncertainty in the concrete workflow structure be-
fore its actual execution. For instance, if a task
outputs a list with an unknown size and each list
item is consumed by a proper subsequent task, the
number of such tasks is unknown prior to execu-
tion. This calls for a dynamic, adaptive approach
to task scheduling. Using composite data types is
a powerful and elegant way to specify data-parallel
programs.

Algorithmic skeletons Algorithmic skeletons are sec-
ond order functions that represent common pro-
gramming patterns. From the perspective of im-
perative languages, they can be seen as templates
that outline the coarse structure of a computa-
tion [8]. To exploit the capabilities of parallel, dis-
tributed execution environments, a language can
emphasize parallelizable algorithmic skeletons and
de-emphasize structures that could impose unnec-
essary constraints on the task execution order. For
instance, expressing the application of a function
to each element of a list as a for-loop with an exit
condition dismisses the parallel character of the
operation. Expressing the exact same operation
as a map, on the other hand, retains the paral-
lelism of the operation in its language represen-
tation. Some scientific workflow languages, like
Pegasus DAX or Galaxy, do not provide any algo-
rithmic skeletons. In contrast, Taverna, Swift, or
KNIME provide algorithmic skeletons in various

forms. For instance, Taverna implicitly iterates
lists if an unary task is applied to a list. Moreover,
Taverna provides cross- and dot product skeletons.
Swift provides the foreach and iterate-until skele-
tons. Algorithmic skeletons are particularly im-
portant in Scala. Thus, Spark exposes a number of
algorithmic skeletons to control distributed com-
putation [44]. Pig Latin uses algorithmic skele-
tons based on the SQL model of execution. Like
general abstractions, algorithmic skeletons facili-
tate the reuse of reoccurring algorithmic patterns.
Such patterns commonly appear in scientific data
analysis applications.

Foreign Function Interface (FFI) An FFI allows a
program to call routines written in a language other
than the host language. Many programming lan-
guages provide an FFI with the goal of accelerating
common subroutines by interfacing with machine-
oriented languages like C. Scientific workflow lan-
guages provide FFIs in the form of simple wrap-
pers for external tools. For instance, Swift and
Pegasus DAX allow language users to integrate
Bash scripts. Taverna provides Beanshell and R
services, and KNIME provides snippet-nodes for
Java, R, Perl, Python, Groovy, and Matlab. These
FFIs do not have the purpose to accelerate rou-
tines but to integrate existing tools and libraries
with minimum effort. In Pig Latin or Meteor [19],
User Defined Functions (UDFs) are provided in the
form of Java libraries which need to be wrapped
by an extra layer of code providing particular data
transformations from the tools native file formats
to the system’s data model and back. Similar
wrappers have to be implemented to use foreign
tools in Spark. The FFI is the language feature
that makes integration of external tools and li-
braries easy. It is the entry point for any piece
of software that has not been written in the host
language itself. A general and light-weight FFI
enables researchers to reuse their tools in a data-
parallel fashion without further adaptation or the
additional layer of complexity of a custom wrap-
per.

Universality Universal languages can express any com-
putable function. Most general purpose program-
ming languages are universal. Scientific workflow
languages including Swift, Galaxy, Taverna, and
Pegasus DAX are not universal. Additionally, some
data-parallel query languages like Pig Latin are
not universal. In contrast, Skywriting is an exam-
ple for a universal language for distributed compu-
tation [28]. Spark inherits the universality prop-
erty from Scala. Similarly, FlumeJava and Dryad-
LINQ inherit the universality property from their

9

respective host languages Java and C#. We do not
consider universality a requirement for a workflow
specification language. Nonetheless, it is a lan-
guage property worth investigating.

3. CUNEIFORM
In this section we present Cuneiform. We show that
it is simple to express data-parallel structures and to
integrate external tools in Cuneiform. Furthermore, we
demonstrate fundamental language features by example
and discuss how Cuneiform workflows are evaluated and
mapped to distributed compute resources for scheduling
and execution.

Cuneiform is a Functional Programming (FP) lan-
guage with implicit state. Cuneiform has in common
with scientific workflow languages its light-weight, ver-
satile FFI allowing users to directly use external tools or
libraries from scripting languages including Lisp, Mat-
lab, Octave, Perl, Python, and R. In principle, Cunei-
form can interface with any programming language that
has support a string and list data type. Cuneiform has
in common with data-parallel query languages that it
provides facilities to exploit data parallelism in the form
of composite data types and algorithmic skeletons to
process them. Cuneiform comes in the form of a uni-
versal FP language providing abstractions and condi-
tionals.

In the following, we introduce important concepts of
Cuneiform by example. We highlight the interplay of
Cuneiform’s features using more complex workflows in
Section 4, while Section 5 briefly sketches the Hi-WAY
execution environment.

3.1 Task definition and Foreign Function In-
terface

The deftask statement lets users define Cuneiform tasks,
which are the same as functions in FP languages. It
expects a task name and a prototype declaring the in-
put/output variables a task invocation consumes/pro-
duces. A task definition can be either in Cuneiform or
in any of the supported foreign scripting languages. In
the following example we define a task greet in Bash
which consumes an input variable person and produces
an output variable out.

deftask greet(out : person)in bash *{
 out="Hello $person"
}*

The task defined in this listing can be applied by bind-
ing the parameter person to a value. In this example
we bind it to the string “Peter”.

greet(person: 'Peter');

The value of this expression is the string “Hello Peter”.
Cuneiform assumes foreign tasks to be side effect-free.

I.e., the result of a task should be deterministic and
depend only on the value of its arguments. However
Cuneiform has no way of enforcing this behavior.

3.2 Lists
Cuneiform has one built-in composite data type: the
list. There is no atomic data type. In the following
example, we define a variable friends to be a list of two
strings being “Jutta” and “Peter”.

friends = 'Jutta' 'Peter';
greet(person: friends);

Applying the function greet to this list, evaluates to a
list with two string elements: “Hello Jutta” and “Hello
Peter”. Thus, the standard way of applying a task to a
single parameter, is to map this task to all elements in
the list.

To consume a list as a whole, we have to aggregate
the list. We can mark a parameter as aggregate by sur-
rounding it with angle brackets. The following listing
defines the task cat that takes a list of files and con-
catenates them.

deftask cat
 (out(File) : <inp(File)>)in bash *{
 cat ${inp[@]} > $out
}*

When a list is aggregated in a foreign task call, Cu-
neiform has to hand over this list as a whole. Thus,
Cuneiform loses control over the way data parallelism
is exploited in processing this list. Furthermore, the in-
terpreter has to defer the aggregating task unless the
whole list has been computed.

3.3 Parallel algorithmic skeletons
Cuneiform provides three basic algorithmic skeletons:
aggregate, n-ary cross product, and n-ary dot product.
A map can be viewed as any unary product. These ba-
sic skeletons are the building blocks to form arbitrarily
complex skeletons. If a task has multiple parameters,
the standard behaviour is to apply the function to the
cross product of all parameters.

Suppose there is a command line tool sim that takes
a temperature in ◦C and a pH value, performs some
simulation, and outputs the result in the specified file.
We could wrap and call this tool in the following way:

deftask simulate
 (out(File) : temp ph)in bash *{
 sim -o $out -t $temp -p $ph
}*

temp = -5 0 5 10 15 20 25 30;
ph = 5 6 7 8 9;

simulate(temp: temp ph: ph);

10

This script performs a parameter sweep from −5 to
30◦C and from pH value 5 to 9. Herein, each of the
8 temperature values is paired with each of the 5 pH
values resulting in 40 invocations of the sim tool. How
multiple lists are combined is generally determined by
the prototype of a task. The cross product is the default
algorithmic skeleton to combine task parameters.

Lastly, suppose we are given two equally long lists of
strings. We want to concatenate each string from the
first list with each string from the second list separated
by a white space character. A dot product between two
or more parameters is denoted in the task prototype by
surrounding them with square brackets. We choose to
perform the string concatenation in Python.

deftask join(c : [a b])in python *{
c = a+' '+b
}*

In the following listing we define the variables a and b
to be a pair of two-element lists and call the previously
defined task join on them. The result of this operation
is a two-element list with the members "Hello world"
and "Goodnight moon".

a = 'Hello' 'Goodnight';
b = 'world' 'moon';

join(a: a b: b);

3.4 Execution semantics
Cuneiform workflow scripts are parsed and transformed
into a graph representation prior to interpretation. Vari-
ables are associated not with concrete values but with
uninterpreted expressions thereby constituting a call-
by-name evaluation strategy. Consequently, an expres-
sion is evaluated only if that expression is actually used
(lazy evaluation). This ensures, not only, that all com-
putation actually contributes to the result, but also,
since evaluation is deferred to the latest possible mo-
ment, that parallelization is performed on the level of
the whole workflow rather than the level of only subex-
pressions. Furthermore, instead of traversing the work-
flow graph during execution, Cuneiform performs work-
flow graph reduction. This means that subexpressions
in the workflow graph are continuously replaced with
what they evaluate until the result of the computation
remains. Accordingly, workflow execution is dynamic,
i.e., the order in which which tasks are evaluated is
determined only at runtime, a model which naturally
supports data dependent loops and conditions. This as-
pect discerns Cuneiform from many other systems that
require a fixed execution graph to be compiled from
the workflow specification. Herein, Cuneiform resem-
bles Functional Programming language interpretation.

When an expression involves external software, a ticket

groupby

wc

untar

'corpus.tar'
untar

groupby

wc

Figure 1: Static call graph (left) and invocation
graph (right) for canonical word count with a
corpus of 2 text files.

is created and passed to the execution environment. Ex-
pressions depending on that ticket are deferred while
other expressions continue to be evaluated. A ticket,
encapsulating a concrete task on a concrete input, thus,
is the basic computational unit in Cuneiform. For any
given point in time, the set of available tickets may be
evaluated in any order. This order has to be detem-
ined by the scheduler of the runtime environment, tak-
ing into account the currently available resources. Each
time the execution environment finishes evaluation of
a ticket, the result is reported back to the Cuneiform
interpreter which then continues reduction of the re-
spective expression. When there are no more tickets to
evaluate and the expression cannot be further reduced,
execution stops and the workflow result is returned.

4. WORKFLOW EXAMPLES
In this section we present two example workflows in Cu-
neiform. The first, a canonical word count example, is
chosen for its simplicity and comparability with other
programming models (e.g., MapReduce [11]). The sec-
ond workflow performs variant calling on Next-Genera-
tion Sequencing data [34].

4.1 Canonical word count
The canoncical word count workflow consumes a corpus
of text files and, for each file, counts the occurrences of
words. It outputs a table that sums up the occurrences
of words in all files. The workflow consists of two steps.
In the first step, words are counted individually in each
file. In a second step, the occurrence tables are ag-
gregated by summing up the corresponding occurrence
counts. Figure 1 displays (a) the static call graph auto-
matically derived from the workflow script and (b) the
invocation graph that unfolds during workflow execu-

11

tion. Herein, the static call graph is a visualization
that takes into account only the unevaluated workflow
script. In contrast, the invocation graph is derived from
the workflow execution trace. Each yellow line in the
invocation graph stands for a single data item. Each
blue line stands for a task invocation. A task invoca-
tion depends only on its predecessors connected to it
via directed edges.

To specify the word count workflow we express both
tasks separately as R scripts. First, we use R’s table
function to extract word counts from a string:

deftask wc(csv(File) : txt(File))in r *{
 dtm <- table(scan(txt, what='character'))
 df <- as.data.frame(dtm)
 write.table(df, csv, col.names=FALSE,
 row.names=FALSE)
}*

Next, we use the function rbind to concatenate the list
of tables, generated in the previous step and aggregate
the resulting table using ddply which is part of the R
library plyer.

deftask groupby
 (result(File) : <csv(File)>)in r *{

 library(plyr)
 all <- NULL
 for(i in csv)
 all <- rbind(all,
 read.table(i, header=FALSE))
 x <- ddply(all, .(V1), summarize,
 count=sum(V2))
 write.table(x, result, col.names=FALSE,
 row.names=FALSE)
}*

To extract all files in an archive holding the text corpus
to be analyzed we use the following task definition:

deftask untar
 (<list(File)> : tar(File))in bash *{
 tar xf $tar
 list=`tar tf $tar`
}*

The workflow definition calls the tasks untar, wc, and
groupby in order. Finally, we query the workflow result:

txt = untar(tar: 'corpus.tar');
csv = wc(txt: txt);
result = groupby(csv: csv);
result;

Called this way, wc is invoked once for each file. Each
invocation is processed in parallel by Hi-WAY. In con-
trast, the tasks groupby and untar each have a single
invocation.

Note that the two tasks, wc and groupby, implement a
complete word count, including file I/O, parsing, dictio-

annovar

varscan

samtools-mpileup

samtools-sort

samtools-view

bowtie2-align

gunzip

'..' '..'

gunzip

'..' '..'

bowtie2-build

untar

samtools-faidx

'hg38/hg38.tar'

'annodb/hg38db.tar' 'hg38'

Figure 2: Static call graph for variant calling
workflow

nary management, and two-phase counting. No other
tools are needed. Furthermore, we are free to choose
the programming language. For instance, in a differ-
ent implementation we might use Perl libraries or the
command line tool awk.

4.2 NGS variant calling
The second workflow demonstrates how variant calling
in the application domain of Next-Generation Sequenc-
ing (NGS) can be performed in Cuneiform. In this
workflow, a set of DNA sequence read files in FastQ
format is mapped against a reference genome. Subse-
quently, the alignments are sorted, a multiple pileup
is performed, and variants are called and annotated.
As typical for scientific analysis pipelines, all steps are
performed by external command line tools [34]. Fig-
ure 2 shows the static call graph and Figure 3 shows
the invocation graph for this workflow. In the following
discussion we omit all foreign task definitions.3

The input to the workflow is a reference genome, a
set of sample files, as well as an annotation database.
The workflow calls two nested subworkflows per-sample
and per-chromosome which reflect the data paralleliza-
tion scheme. Up to this point, we defined only variable
assignments which would not trigger any computation.
Thus, we need to query the variables fun and exonicfun
to define the workflow output.

3The full workflow can be downloaded from https://
github.com/joergen7/cuneiform/blob/master/cuneiform-
dist/src/main/cuneiform/variant-call11.cf

12

hg38-tar = 'hg38/hg38.tar';

fastq1-gz =
 '1000genomes/SRR062634_1.filt.fastq.gz'
 '1000genomes/SRR062635_1.filt.fastq.gz';
fastq2-gz =
 '1000genomes/SRR062634_2.filt.fastq.gz'
 '1000genomes/SRR062635_2.filt.fastq.gz';

db = 'annodb/hg38db.tar';

deftask per-chromosome(
 vcf(File)
 : fa(File)
 [fastq1(File) fastq2(File)]) {

 bt2idx = bowtie2-build(fa: fa);
 fai = samtools-faidx(fa: fa);

 sam = bowtie2-align(
 idx: bt2idx
 fastq1: fastq1
 fastq2: fastq2);

 bam = samtools-view(sam: sam);

 sortedbam = samtools-sort(bam: bam);

 mpileup = samtools-mpileup(
 sortedbam: sortedbam
 fa: fa
 fai: fai);

 vcf = varscan(mpileup: mpileup);
}

deftask per-sample(
 fun exonicfun
 : <fa(File)> db(File)
 [fastq1(File) fastq2(File)]) {

 vcf = per-chromosome(
 fa: fa
 fastq1: fastq1
 fastq2: fastq2);

 fun exonicfun = annovar(
 vcf: vcf
 db: db
 buildver: 'hg38');
}

In this workflow parallelism is exploited along two di-
mensions: (i) Each self-contained region in the refer-
ence genome can be processed individually and (ii) each
sample can be processed individually. Consequently,
the workflow interpreter performs a cross-product of ref-
erence regions and samples. This leads to a high degree
of parallelism not only for read alignment, which is the
computationally most expensive task, but also for all
subsequent tasks. The cross product behavior needs no

fa = untar(tar: hg38-tar);
fastq1 = gunzip(gz: fastq1-gz);
fastq2 = gunzip(gz: fastq2-gz);

fun exonicfun = per-sample(
 fa: fa
 fastq1: fastq1
 fastq2: fastq2
 db: db);
fun exonicfun;

Figure 3: Invocation graph for variant calling
workflow

extra denotation in the task prototypes since it is the
default behavior. Thus, we can exploit data parallelism
in variant calling to execute the workflow in a parallel,
distributed compute environment while reusing estab-
lished tools.

5. EXECUTION PLATFORM
In this section we describe Hi-WAY, an execution en-
vironment for Cuneiform workflows. Cuneiform, as a
workflow specification language, depends on an execu-
tion environment that executes tasks in parallel. To
this end, the Cuneiform interpreter can either execute a
script on a single, multi-threaded machine (using a sim-
ple built-in greedy task scheduler) or feed a distributed
workflow engine. Currently, it interfaces only with Hi-
WAY, a novel scientific workflow management system
running on top of Apache Hadoop. Hi-WAY offers fea-
tures like adaptive scheduling and, this way, embraces
the dynamic nature of Cuneiform workflows. By us-
ing Hi-WAY as its distributed execution environment,
Cuneiform takes advantage of the Hadoop ecosystem,
including the distributed file system HDFS, multi-user
resource management, job monitoring, and failure re-
covery. Details on Hi-WAY will be published in a sep-
arate publication.

As a proof-of-concept, the variant calling workflow
described in Section 4.2 has been executed using Cu-
neiform and Hi-WAY on a Hadoop YARN cluster com-
prising 24 Xeon E52620 2GHz nodes each representing
one Hadoop YARN container with 24GB main mem-
ory and 24 logical cores at its disposal (as well as 2
additional master nodes). 12 Samples from the 1000

13

Figure 4: Workflow runtime with increasing
number of containers

genomes project [38] amounting to 10GB of compressed
input data have been processed. Figure 4 shows the
runtime behaviour for the variant calling workflow for
different cluster sizes. Within the limits of this experi-
ment the workflow shows a linear scaling behaviour with
an increasing number of available containers.

6. RELATED WORK
A number of scientific workflow systems have emerged,
some with a particular focus on large scale data analy-
sis. The exponential growth of data sets in many scien-
tific areas, such as Next-Generation Sequencing (NGS),
promotes scientific workflow systems that run in par-
allel and distributed environments, like e-Science Cen-
tral [20], Pegasus [13], or Swift [42]. Some scientific
workflow systems have been extended to this end, e.g.,
Kepler [41] or Galaxy [17]. These systems, however,
either do not take full advantage of partitioning input
data to exploit data parallelism or their integration with
data-parallel compute platforms is only partial.

The advent of data-parallel query languages enabled
researchers to exploit parallel, distributed compute in-
frastructures to analyze large-scale data sets. A num-
ber of dataflow systems with their according query lan-
guages have been proposed, most notably Pig [16, 33],
FlumeJava [7], Flink [1], DryadLINQ [14, 43], and Spark
[44, 45]. Their aptitude for NGS problems has been as-
sessed [46] and they are the underlying execution envi-
ronments for a number of emerging workflow systems
like Nova [32] or Oozie [22]. However, the integration
of external tools in these systems can be achieved only
through wrapping or reimplementing the external tools.
The speed-up potential from data parallelism has been
exploited in many scientific application domains and
particularly in NGS: CloudBurst [37] is a read align-

ment implementation for Hadoop. Crossbow [25] wraps
the read aligner Bowtie [24] to run on Hadoop. Both
Adam [27], an alignment processor, and Avocado [30],
a variant caller, are algorithm reimplementations for
Spark. The BioPig [29] project extends Pig Latin by
providing User Defined Functions (UDFs) that wrap
tools commonly used in NGS data analysis. These ap-
proaches show that it is feasible to integrate diverse sci-
entific algorithms in data-parallel programming models
either through wrapping or reimplementing. However,
in use cases in which the cost for tool reimplementation
is prohibitive (and in which the scientific community is
very reluctant to accept algorithm reimplementations
from outside their domain), the optimal programming
model is one that minimizes the effort to create wrap-
pers for existing tools.

Scientific workflow systems and data-parallel query
languages are linked to Functional Programming (FP).
Pig Latin maps execution plans to MapReduce, a pro-
gramming model inspired by the algorithmic skeletons
map and reduce which originate from FP [11, 15]. Spark
extends Scala, a multi-paradigm language that com-
bines concepts from Object Orientation and FP [31].
Furthermore, Scala provides a large number of algorith-
mic skeletons, of which Spark uses a subset including
map, reduceByKey, and crossProduct to derive paral-
lelism and distribute computation [44]. The scientific
workflow language Taverna has its semantics defined in
functional terms [40] and Kelly et al. [23] showed that
scientific workflow languages can be considered a sub-
set of FP. A number of FP languages are designed for
parallel, distributed environments. For instance, Sky-
writing is a universal functional scripting language for
distributed computation [28]. GUM [39] is a parallel
implementation of Haskell and Eden [5, 26] extends
Haskell with parallel algorithmic skeletons. However,
in many parallel, distributed FP languages the user has
to take control over the way parallelism is exploited,
how processes are created, or how computation is dis-
tributed.

7. CONCLUSION
We presented Cuneiform4, a functional workflow lan-
guage for parallel and distributed execution that facili-
tates the reuse of existing tools and libraries. Cuneiform
can process large-scale data sets by providing data par-
allel algorithmic skeletons operating on lists. Further-
more, it can integrate foreign tools in a straightforward
way by providing a versatile Foreign Function Interface
and offers many of the high-level language features com-
monly encountered in Functional Programming langua-
ges. We have contrasted the advantages and disadvan-
tages of current scientific workflow languages and data-
parallel query languages and discussed their relation to
4https://github.com/joergen7/cuneiform

14

Functional Programming. We demonstrated the ver-
satility and power of Cuneiform using two exemplary
workflows. In its current implementation Cuneiform
can be executed locally on a single machine or using
Hi-WAY5, a scientific workflow execution environment
running on Hadoop YARN. In future work, we intend
to integrate Cuneiform with scientific computing plat-
forms other than Hadoop like, e.g, HTCondor [9] which
enjoys wide adoption. Furthermore, we intend to create
compilers that consume Pegasus or Galaxy workflows
and generate Cuneiform scripts. This way, researchers
may run their existing Pegasus and Galaxy workflows
in any data-parallel execution environment supporting
Cuneiform without extra effort.

8. ACKNOWLEDGEMENTS
Jörgen Brandt and Marc Bux are funded by the Euro-
pean Commission’s 7th Framework Programme (FP7)
through the BiobankCloud project (project no. 317871).

9. REFERENCES
[1] http://flink.incubator.apache.org/.
[2] E. M. Bahsi, E. Ceyhan, and T. Kosar.

Conditional workflow management: A survey and
analysis. Scientific Programming, 15(4):283–297,
2007.

[3] M. Baker. Next-generation sequencing: adjusting
to data overload. Nature Methods, 7(7):495–499,
2010.

[4] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel,
T. Kötter, T. Meinl, P. Ohl, C. Sieb, K. Thiel, and
B. Wiswedel. Knime: The konstanz information
miner. In Studies in Classification, Data Analysis,
and Knowledge Organization, 2007.

[5] S. Breitinger, U. Klusik, and R. Loogen. From
(sequential) haskell to (parallel) eden: An
implementation point of view. In Principles of
Declarative Programming, pages 318–334.
Springer, 1998.

[6] M. Bux and U. Leser. Parallelization in scientific
workflow management systems. Computing
Research Repository (CoRR), 2013.

[7] C. Chambers, A. Raniwala, F. Perry, S. Adams,
R. R. Henry, R. Bradshaw, and N. Weizenbaum.
Flumejava: Easy, efficient data-parallel pipelines.
SIGPLAN Not., 45(6):363–375, 2010.

[8] M. I. Cole. Algorithmic skeletons: structured
management of parallel computation. Pitman
London, 1989.

[9] P. Couvares, T. Kosar, A. Roy, J. Weber, and
K. Wenger. Workflow management in condor,
2007.

5https://github.com/marcbux/Hi-WAY

[10] V. Curcin and M. Ghanem. Scientific workflow
systems-can one size fit all? In Cairo
International Biomedical Engineering Conference
(CIBEC), pages 1–9, 2008.

[11] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications
of the ACM, 51(1):107–113, 2008.

[12] E. Deelman, D. Gannon, M. Shields, and
I. Taylor. Workflows and e-science: An overview
of workflow system features and capabilities. In
Future Generation Computer Systems, 2008.

[13] E. Deelman, G. Singh, M.-H. Su, J. Blythe,
Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
G. Berriman, J. Good, A. Laity, J. Jacob, and
D. Katz. Pegasus: A framework for mapping
complex scientific workflows onto distributed
systems. Scientific Programming, 13:219–237,
2005.

[14] J. Ekanayake, T. Gunarathne, G. Fox, A. S.
Balkir, C. Poulain, N. Araujo, and R. Barga.
Dryadlinq for scientific analyses, 2009.

[15] J. Ekanayake, S. Pallickara, and G. Fox.
Mapreduce for data intensive scientific analyses.
In IEEE Fourth International Conference on
eScience, pages 277–284, 2008.

[16] A. F. Gates, O. Natkovich, S. Chopra,
P. Kamath, S. M. Narayanamurthy, C. Olston,
B. Reed, S. Srinivasan, and U. Srivastava.
Building a high-level dataflow system on top of
map-reduce: the pig experience. Proc. VLDB
Endow., 2(2):1414–1425, 2009.

[17] J. Goecks, A. Nekrutenko, J. Taylor, and T. G.
Team. Galaxy: a comprehensive approach for
supporting accessible, reproducible, and
transparent computational research in the life
sciences. Genome Biology, 11(8), 2010.

[18] R. R. Gullapalli, K. V. Desai, L. Santana-Santos,
J. A. Kant, and M. J. Becich. Next generation
sequencing in clinical medicine: Challenges and
lessons for pathology and biomedical informatics.
Journal of pathology informatics, 3, 2012.

[19] A. Heise, A. Rheinländer, M. Leich, U. Leser, and
F. Naumann. Meteor/sopremo: An extensible
query language and operator model. In
International Workshop on End-to-end
Management of Big Data, 2012.

[20] H. Hiden, P. Watson, S. Woodman, and D. Leahy.
e-Science Central: Cloud-based e-Science and its
application to chemical property modelling.
Newcastle University, Computing Science, 2010.

[21] D. Hull, K. Wolstencroft, R. Stevens, C. Goble,
M. Pocock, P. Li, and T. Oinn. Taverna: a tool
for building and running workflows of services.
Nucleic Acids Research, 34:729–732, 2006.

[22] M. Islam, A. K. Huang, M. Battisha, M. Chiang,

15

S. Srinivasan, C. Peters, A. Neumann, and
A. Abdelnur. Oozie: towards a scalable workflow
management system for hadoop. In Proceedings of
the 1st ACM SIGMOD Workshop on Scalable
Workflow Execution Engines and Technologies,
2012.

[23] P. M. Kelly, P. D. Coddington, and A. L.
Wendelborn. Lambda calculus as a workflow
model. Concurrency and Computation: Practice
and Experience, 21(16):1999–2017, 2009.

[24] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and
S. L. Salzberg. Searching for snps with cloud
computing. Genome Biology, 10(11), 2009.

[25] B. Langmead, C. Trapnell, M. Pop, S. L.
Salzberg, et al. Ultrafast and memory-efficient
alignment of short dna sequences to the human
genome. Genome Biology, 10(3), 2009.

[26] R. Loogen, Y. Ortega-Mallén, and R. Peña-Marí.
Parallel functional programming in eden. Journal
of Functional Programming, 15(03):431–475, 2005.

[27] M. Massie, F. Nothaft, C. Hartl, C. Kozanitis,
A. Schumacher, A. D. Joseph, and D. A.
Patterson. Adam: Genomics formats and
processing patterns for cloud scale computing.
Technical report, EECS Department, University
of California, Berkeley, 2013.

[28] D. G. Murray and S. Hand. Scripting the cloud
with skywriting. Proceedings of HotCloud, (3),
2010.

[29] H. Nordberg, K. Bhatia, K. Wang, and Z. Wang.
Biopig a hadoop-based analytic toolkit for large
scale sequence data. Bioinformatics,
29(23):3014–3019, 2014.

[30] F. A. Nothaft, P. Jin, and B. Brown. avocado: A
variant caller, distributed. Technical report,
Department of Electrical Engineering and
Computer Science, University of California,
Berkeley, 2013.

[31] M. Odersky, P. Altherr, V. Cremet, B. Emir,
S. Maneth, S. Micheloud, N. Mihaylov, M. Schinz,
E. Stenman, and M. Zenger. An overview of the
scala programming language. Technical report,
École Polytechnique Fédérale de Lausanne, 2004.

[32] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han,
M. Larsson, A. Neumann, V. B. N. Rao, S. Seth,
C. Tian, T. Zicornell, and X. Wang. Nova:
Continuous pig/hadoop workflows. In SIGMOD,
2011.

[33] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language
for data processing. In SIGMOD, pages
1099–1110, 2008.

[34] S. Pabinger, A. Dander, M. Fischer, R. Snajder,
M. Sperk, M. Efremova, B. Krabichler, M. R.
Speicher, J. Zschocke, and Z. Trajanoski. A

survey of tools for variant analysis of
next-generation genome sequencing data.
Briefings in bioinformatics, 15(2):256–278, 2014.

[35] E. Pennisi. Will computers crash genomics?
Science, 331(6018):666–668, 2011.

[36] P. V. Roy and S. Haridi. Concepts, Techniques,
and Models of Computer Programming. MIT
Press, 2004.

[37] M. C. Schatz. Cloudburst: highly sensitive read
mapping with mapreduce. Bioinformatics,
25(11):1363–1369, 2009.

[38] N. Siva. 1000 genomes project. Nature
biotechnology, 26(3):256–256, 2008.

[39] P. W. Trinder, K. Hammond, J. S. Mattson Jr,
A. S. Partridge, and S. Peyton Jones. Gum: a
portable parallel implementation of haskell. In
ACM SIGPLAN Notices, volume 31, pages 79–88,
1996.

[40] D. Turi, P. Missier, C. Goble, D. De Roure, and
T. Oinn. Taverna workflows: Syntax and
semantics. In IEEE International Conference on
e-Science and Grid Computing, pages 441–448,
2007.

[41] J. Wang, D. Crawl, and I. Altintas. Kepler +
hadoop: A general architecture facilitating
data-intensive applications in scientific workflow
systems. In Proceedings of the 4th Workshop on
Workflows in Support of Large-Scale Science,
2009.

[42] M. Wilde, M. Hategan, J. M. Wozniak,
B. Clifford, D. S. Katz, and I. Foster. Swift: A
language for distributed parallel scripting.
Parallel Computing, 37(9):633–652, 2011.

[43] Y. Yu, M. Isard, D. Fetterly, M. Budiu,
Ú. Erlingsson, P. K. Gunda, and J. Currey.
Dryadlinq: A system for general-purpose
distributed data-parallel computing using a
high-level language. In OSDI, pages 1–14, 2008.

[44] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and
Implementation, 2012.

[45] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster
computing with working sets. HotCloud, 2010.

[46] Q. Zou, X.-B. Li, W.-R. Jiang, Z.-Y. Lin, G.-L.
Li, and K. Chen. Survey of mapreduce frame
operation in bioinformatics. Briefings in
bioinformatics, 2013.

16

A Spark-based workflow for probabilistic record
linkage of healthcare data ∗

Robespierre Pita
Distributed Systems Lab.

Federal University of Bahia
Salvador, BA, Brazil

pierre.pita@gmail.com

Clicia Pinto
Distributed Systems Lab.

Federal University of Bahia
Salvador, BA, Brazil

cliciasp1@gmail.com

Pedro Melo
Distributed Systems Lab.

Federal University of Bahia
Salvador, BA, Brazil

pedronovaes@dcc.ufba.br
Malu Silva

Distributed Systems Lab.
Federal University of Bahia

Salvador, BA, Brazil
maludeleon89@gmail.com

Marcos Barreto
Distributed Systems Lab.

Federal University of Bahia
Salvador, BA, Brazil

marcoseb@dcc.ufba.br

Davide Rasella
Institute of Public Health

Federal University of Bahia
Salvador, BA, Brazil

davide.rasella@gmail.com

ABSTRACT
Several areas, such as science, economics, finance, busi-
ness intelligence, health, and others are exploring big data
as a way to produce new information, make better decisions,
and move forward their related technologies and systems.
Specifically in health, big data represents a challenging pro-
blem due to the poor quality of data in some circumstances
and the need to retrieve, aggregate, and process a huge amount
of data from disparate databases. In this work, we focused
on Brazilian Public Health System and on large databases
from Ministry of Health and Ministry of Social Development
and Hunger Alleviation. We present our Spark-based ap-
proach to data processing and probabilistic record linkage of
such databases in order to produce very accurate data marts.
These data marts are used by statisticians and epidemiolo-
gists to assess the effectiveness of conditional cash transfer
programs to poor families in respect with the occurrence of
some diseases (tuberculosis, leprosy, and AIDS). The case
study we made as a proof-of-concept presents a good per-
formance with accurate results. For comparison, we also
discuss an OpenMP-based implementation.

Categories and Subject Descriptors
J.1 [Administrative data processing]: Government;
D.1.3 [Concurrent Programming]: Distributed pro-
gramming.
∗This work is partially sponsored by Federal University
of Bahia (UFBA), with PIBIC and PRODOC grants, by
FAPESB (PPSUS-BA 30/2013 grants), and by CNPq —
Brazilian National Research Council.

c©2015, Copyright is with the authors. Published in
the Workshop Proceedings of the EDBT/ICDT 2015 Joint
Conference (March 27, 2015, Brussels, Belgium) on CEUR-
WS.org (ISSN 1613-0073). Distribution of this paper is
permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0.

1. INTRODUCTION
The term big data [18] was coined to represent the

large volume of data produced daily by thousands of de-
vices, users, and computer systems. These data should
be stored in secure, scalable infrastructures in order
to be processed using knowledge discovery and analy-
tics tools. Today, there is a significant number of big
data applications covering several areas, such as finance,
entertainment, e-government, science, health etc. All
these applications require performance, reliability, and
accurate results from their underlying execution envi-
ronments, as well as specific requisites depending on
each context.

Healthcare data come from different information sys-
tems, disparate databases, and potential applications
that need to be combined for diverse purposes, inclu-
ding the aggregation of medical and hospital services,
analysis of patients’ profile and diseases, assessment of
public health policies, monitoring of drug interventions,
and so on.

Our work focuses on the Brazilian Public Health Sys-
tem [23], specifically on supporting the assessment of
data quality, pre-processing, and linkage of databases
provided by the Ministry of Health and the Ministry of
Social Development and Hunger Alleviation. The data
marts produced by the linkage are used by statisticians
and epidemiologists in order to assess the effectiveness
of conditional cash transfer programs for poor families
in relation to some diseases, such as leprosy, tuberculo-
sis, and AIDS.

We present a four-stage workflow designed to pro-
vide the functionalities mentioned above. The second
(pre-processing) and third (linkage) stages of our work-
flow are very data-intensive and time-consuming tasks,
so we based our implementation in the Spark scalable
execution engine [41] in order to produce very accu-

1

17

rate results in a short period of time. The first stage
(assessment of data quality) is made through SPSS [17].
The last stage is dedicated to the evaluation of the data
marts produced by our pre-processing and linkage algo-
rithms and is realized by statisticians and epidemiolo-
gists. Once approved, they load these data marts into
SPSS and Stata [6] in order to perform some specific
case studies.

We evaluate our workflow by linking three databases:
CadÚnico (social and economic data of poor families
— approximately 76 million records), PBF (payments
from “Bolsa Famı́lia” program), and SIH (hospitaliza-
tion data from the Brazilian Public Health System —
56,059 records). We discuss the results obtained with
our Spark-based implementation and also a comparison
with an OpenMP-based implementation.

This paper is structured as follows: Section 2 presents
the Brazilian Healthcare System to contextualize our
work. In Section 3 we discuss some related works spe-
cially focusing on record linkage. Our proposed work-
flow is detailed in Section 4 and its Spark-based im-
plementation is discussed in Section 5. We present re-
sults obtained from our case study, both in Spark and
OpenMP, in Section 6. Some concluding remarks are
presented in Section 7.

2. BRAZILIAN HEALTHCARE SYSTEM
As a strategy to combat poverty, the Brazilian go-

vernment implemented cash transfer policies for poor
families, in order to facilitate their access to educa-
tion and healthcare, as well as to offer them allowances
for consuming goods and services. In particular, the
“Bolsa Famı́lia” Program [25] was created under the
management of the Ministry of Social Development and
Hunger Alleviation to support poor families and pro-
mote their social inclusion through income transfers.

Socioeconomic information about poor families are
kept in a database called CadastroÚnico (CadÚnico) [24].
All families with a monthly income below half the mi-
nimum wage per person or a total monthly income of
less than three minimum wages can be enrolled in the
database. This registration must be renewed every two
years in order to keep updated data. All social pro-
grams from the federal government should select their
recipients based on data contained in CadÚnico.

In order to observe the influence of certain social in-
terventions and their positive (or negative) effects for
their beneficiaries, rigourous impact evaluations are re-
quired. Individual cohorts [19] have emerged as the
primary method for this purpose, supporting the pro-
cess of improving public policies and social programs
in order to qualify the transparency of public invest-
ments. It is expected that these transfer programs can
positively contribute to the health and the education of
beneficiary families, but studies capable to prove this

are highly desirable and necessary for the evaluation of
public policies.

From an epidemiological standpoint, tuberculosis and
leprosy are major public health problems in Brazil, with
poverty as one of their main drivers. In addition, there
is a broad consensus on the bidirectional relationship
between these infectious diseases and poverty: one can
lead to another. It is therefore clear that to reduce
morbidity and mortality from poverty-related diseases
is necessary to plan interventions that address their so-
cial determinants.

This work pertains to a project involving the longi-
tudinal study of CadÚnico, PBF (“Bolsa Famı́lia” pro-
gram), and three databases from the Brazilian Public
Health System (SUS): SIH (hospitalization), SINAN
(notifiable diseases), and SIM (mortality). Table 1 shows
these databases with their years of coverage to which we
have access. The main goal is to relate individuals in
the existing SUS databases with their counterparts in
the PBF and CadÚnico, through a process called lin-
kage (or pairing). After linkage, the resulting databases
(data marts) are used by statisticians and epidemiolo-
gists to analyze the incidence of some diseases in fami-
lies benefiting from “Bolsa Famı́lia” compared to non-
beneficiary families.

Databases Years

SIH (hospitalization) 1998 to 2011
SINAN (notifications) 2000 to 2010
SIM (mortality) 2000 to 2010

CadÚnico (socieconomic data) 2007 to 2013
PBF (payments) 2007 to 2013

Table 1: Brazilan governmental databases.

The major obstacle for linkage is the absence of com-
mon identifiers (key attributes) in all databases, which
requires the use of probabilistic linkage algorithms, re-
sulting in a significant number of comparisons and in a
large execution time. In addition, handling these data-
bases requires the use of secrecy and confidentiality poli-
cies for personal information, especially those related to
health data. Therefore, techniques for data transforma-
tion and anonymisation should be employed before the
linkage stage.

The longitudinal study requires the pairing of all avai-
lable versions for certain databases within the period
to be analyzed. In the scope of our project, we must
link versions of CadÚnico, PBF, and SIH between 2007
and 2011 to allow a retrospective analysis of the inci-
dence of diseases in poor families and, thereafter, draw
up prospects for the coming years. In this scenario, the
amount of data to be analyzed, processed, and anonymi-
sed tends to increase significantly.

2

18

3. CHALLENGES AND RELATED WORK
Record linkage is not a new problem and its classic

method was first proposed by [13]. This approach is the
basis for most of the models developed later [5]. The
basic idea is to use a set of common attributes present in
records from different data sources in order to identify
true matches.

In [32], probabilistic and deterministic record linkage
methods were used to evaluate the impact of the ”Bolsa
Famı́lia” program in education, using some informa-
tion also contained in CadÚnico. They have proven
the importance of database relationships as a tool ca-
pable of allowing an integrated view of the information
available from various sources, ensuring efficient compa-
rative analysis and increasing the quality and quantity
of information required for a search. In public health,
many studies use matching records to evaluate impacts
or to find patterns [27].

In [11], the authors used probabilistic methods to
match records from two SUS databases — SIH (hos-
pitalization) and SIM (mortality) — to identify deaths
from ill-defined causes. They developed routines for
standardizing variables, blocking based on identification
keys, comparison algorithms, and calculation of simila-
rity scores, They also used RecLink [4] to check du-
bious records for reclassification (as true pairs or not)
purposes.

A crucial point is that as the size of databases in-
creases, and therefore the number of comparisons re-
quired for record matching, traditional tools for data
processing and analysis may not be able to run such
applications in a timely manner. In the midst of se-
veral studies on software for record linkage, there are
few that discuss issues related to the parallelization of
processes and data distribution. In [33], some ways to
parallelize matching algorithms are discussed, showing
good scalability results.

MapReduce paradigm and following technologies have
contributed to advance the big data scenario. Some
methods to adapt the MapReduce model to deal with
record matching are discussed in [16]. Despite these ef-
forts, it is still difficult to find references addressing the
problem of matching records using the advantages of
MapReduce or similar tools.

Computation techniques related to the preparation
steps for record linkage, such as data cleansing and
standardization, are still few discussed in the literature.
In [31], the authors claim that the cleansing process can
represent 75% of the total linkage effort. In fact, prepa-
ration steps can directly affect the accuracy of results.

It is possible to observe that management and some
aspects of service provision in this context are not yet
sufficiently explored [22]. Regarding databases under

coordination of public sectors, as CadÚnico and SUS
databases, we can observe a high sensitivity and strict

requirements for processing and storing such databases
in private clusters. Also, there is a lack, mainly in
Brazil, of probabilistic matching references over large
databases that use the benefits of big data tools.

4. PROPOSED WORKFLOW
Our workflow is divided in four stages, further dis-

cussed in the following sections. The first stage cor-
responds to the analysis of data quality, aiming at to
identify, for each database, the attributes more suit-
able for the probabilistic record linkage process. The
set of attributes is chosen based on metrics such as mis-
sing values or misfiled records. This step is performed
with the support of SPSS software. For security and
privacy reasons, the ministries do not allow direct ac-
cess to their databases; instead, they give us flat files
extracted from the databases listed in Table 1. Two
people of our team are the ones that manipulate these
data based on a strict confidentiality term.

The next stage is pre-processing, being responsible
for applying data transformation and cleansing routines
in these attributes. We based our implementation on
ETL (extract, transform, and load) techniques com-
monly found in data warehouse tools for standardizing
names, filling null/missing fields with default values,
and removing duplicate records.

An important step within this stage regards data pri-
vacy. We apply a technique based on Bloom filters [34]
to anonymize relevant fields prior to the record lin-
kage stage. As stated before, pre-processing is a time-
consuming, data-intensive stage, so we use Spark to
perform data transformation, cleansing, anonymization,
and blocking.

The record linkage stage applies deterministic and
probabilistic algorithms to perform pairing. Between
CadÚnico and PBF databases, we can use a determi-
nistic algorithm for record linkage based on a common
attribute called NIS (social number ID). All beneficiaries

of PBF are necessarily registered in CadÚnico and there-
fore have this attribute. Linkage between CadÚnico
and any SUS database (SIH, SINAN, and SIM) must
be done through probabilistic algorithms, since there
are no common attributes to all databases.

Within SUS databases, the occurrence of incomplete
records is quite high, since many records correspond to
children or homeless people, which do not always have
identification documents or are not directly registered
in CadÚnico. In such cases, we try to find a record
of an immediate family member, when available. Ano-
ther very common problem regards incomplete or ab-
breviated names, which difficults pairing. Again, we
use Spark to execute our linkage algorithms in a timely
manner and produce the resulting data marts (files with
matched and non-matched records).

The last stage is performed by statisticians and epi-

3

19

demiologists with the support of statistical tools (Stata
and SPSS). The goal is to evaluate the accuracy of the
data marts produced by the linkage algorithms, based
on data samples from the databases involved. This step
is extremely important to validate our implementation
and provide some feedback for corrections and adjust-
ments in our workflow.

In the following sections, we discuss a case study on
the linkage of CadÚnico and SIH databases made as
a proof-of-concept of our workflow. The goal was to
generate a data mart covering such databases that is
used to analyze the incidence of tuberculosis in PBF
beneficiaries and non-beneficiaries families. We chose
the databases of the year 2011, respectively with ap-
proximately 76 million records and 56,059 records.

4.1 Data Quality Assessment
Attributes suitable for probabilistic matching should

be chosen taking into account their coexistence in all
databases, their discriminatory capacity, and their qua-
lity in terms of filling requirements and constraints. The
occurrence of null or missing values is the major pro-
blem considered at this stage. This problem can occur
by omission or negligence of the operator responsible for
filling out forms or by the faulty implementation of the
involved information systems. The analysis of missing
values is extremely important, because using a variable
that has a high incidence of empty fields brings little or
no benefit to the matching process.

In our case study, we analyzed the occurrence of null
and missing values in the CadÚnico and SIH databases.
Tables 2 and 3 show the results obtained for the most
significant attributes in each database. Based on the re-
sults, we chose three attributes: NOME (person’s or pa-
tient’s name), NASC (date of birtyp), and MUNIC RES
(city of residence).

Attribute Description Missing (%)

NIS Social number ID 0,7
NOME Person’s name 0

DT NASC Date of birth 0
MUNIC RES City of residence 55,4

SEXO Gender 0
RG General ID 48,7

CPF Individual taxpayer ID 52,1

Table 2: CadÚnico — missing values.

4.2 Data Pre-processing
Datamarts produced in our case study are composed

of linked information that reflect the pairing process
output. They should contain information about people
hospitalized in 2011 with a primary diagnosis of tuber-
culosis and their socioeconomic data, if registered in

Attribute Description Missing (%)

MUNIC RES City of residence 0
NASC Date of birth 0
SEXO Gender 0
NOME Patient’s name 0
LOGR Street name 0,9

NUM LOGR House number 16,4
COMPL LOGR Address’ complement 80,7

Table 3: SIH — missing values.

CadÚnico, relevant for epidemiological studies.
To facilitate the linkage and increase accuracy, the va-

lues of NOME attribute are transformed to uppercase
and accents (and possible pontuaction) are removed,
so as not to influence the similarity degree between
two records. Attributes with null or missing values are
treated through a simple substitution to predefined va-
lues. This ensures all records are in the same format
and contain the same information pattern.

A fundamental concern in our work is confidentiality.
We must use privacy policies to guarantee that per-
sonal data is protected throughout the workflow. Lin-
kage routines should not be able to identify any person
in any database. To accomplish this, we use Bloom
filters for record anonymization. Bloom filter is an ap-
proach that allows to check if an element belongs to a
set. An advantage of this method is that it does not
allow false negatives: if a record belongs to the set, the
method always returns true. Furthermore, false posi-
tives (two records that do not represent the same en-
tity) are allowed. This could be advantageous if the
goal is to include records containing small differences in
the matched pairs.

The construction of Bloom filters is described in [34]
and involves a vector initially populated with 0’s. De-
pending on each attribute, specific positions of this vec-
tor, determined by hash functions, are replaced with 1’s.
Our approach considers an array of 110 positions that
maps each bigram (two characters) of the attributes in-
volved. Each attribute affects a fraction of the vector:
NOME comprises the first 50 bits, NASC comprises the
following 40 bits, and MUNIC RES the last 20 bits, as
shown in Figure 1.

Fractions were chosen considering two aspects: the
ideal size a filter must have in order to represent an
attribute with a minimum probability error and the in-
fluence (or “weight”) each field has in the matching de-
cision. Accuracy depends on the filter size (and thus the
weight of each attribute), the number of hash functions,
and the number of elements added to the filter [36].
The smaller the filter, more errors and false positives
are expected because different records can generate very
similar vectors with 1’s coincidentally mapped in same

4

20

Figure 1: Bit vector generated by Bloom filter.

positions. So, there is a classic tradeoff between size
and performance: the vector must be large enough to
increase accuracy and, at the same time, small enough
to not overload the similarity tests.

For testing our Bloom filter, we constructed three
controlled scenarios and use two databases with 50 and
20 records, respectively. The idea was to determine the
best vector size and the distribution (number of bits
for each field) that provides the best accuracy. Ta-
ble 4 shows our simulation results. In scenario 3, we
simulated filling errors. We can observe that when one
attribute has similarity index lower than the expected
value, pairing can be saved by the other two attributes
that have satisfactory similarity index.

Among all distributions that provide correct results,
the distribution with 50, 40, and 20 bits is better for
all scenarios. In this sense, the attribute MUNIC RES
must have less influence than NOME because the pro-
bability that the same value for NOME in different
databases refers to the same person is more significant
than two identical values for city.

Another important task performed during the pre-
processing stage is blocking construction. The record
linkage process requires all records from both databases
be compared in order to determine whether they match
or not. So, it demands M x N comparisons, being M
and N the sizes of the databases. However, most of the
comparisons will result in non-matched records.

In our case study, the number of comparisons between
CadÚnico (approximately 76 million records) and SIH
(56,059 records) could be quite prohibitively, so we de-
cide to group records in each database according to a
similarity criterion. We chose the MUNIC RES (city
of residence) attribute as blocking key, so that only in-
dividuals who live in the same city will be compared.
As blocking strategies are a difficult problem, we are
also considering another approaches such as adaptative
blocking [2], predicates, and phonetic codes (such as
Soundex [38], Metaphone [30], and BuscaBR [7]).

4.3 Calculation of Similarity
The decision on pairing two records depends on the

analysis of their similarity factor. In this work, we use
the Sørensen index [35], also known as Dice [9], to cal-
culate the similarity based on bigrams (two characters)

extracted from the bit vector generated by the Bloom
filter.

Given a pair of records similar to those shown in Fig-
ure 1, the similarity test runs through every bit from
both vectors in order to find three metrics: h — re-
presenting the count of 1’s in the same position in both
vectors, a and b — representing the total of 1’s in the
first and second vectors, respectively, regardless their
positions. With these values, it is possible to calculate
the Sørensen index using the following formula:

Da,b = 2h / (|a| + |b|)
Perfect result expects the number of 1’s contained in

the first vector added to the second vector be exactly
equal to twice the number of common 1’s. When this
happens, we have a result equal to 1 (great accuracy).
If two records turn out different, the value of h decreases
and the ratio starts to be smaller than 1.

We use a product by 10,000 to represent the Dice
coefficient, therefore values ranging from 0 to 10,000
are used to represent the similarity degree between two
vectors. Records are inserted in three distinct groups, as
depicted in Figure 2. Every pair whose similarity degree
is less than 9,000 is considered non-matched. Values
between 9,000 and 9,600 are included in an indecison
group for manual analysis, whereas values above 9,600
are considered true matches.

Figure 2: Similarity degrees for Dice calculation.

4.4 Record Linkage
Practical applications of record linkage exist in se-

veral areas. For the impact assessment of strategies, for
example, it is often necessary to use individual search
methods to prove if a specific situation happens in the

5

21

Total size
and weight
distribution

Scenario 1
No matched

records expected

Scenario 2
Five perfectly matched

records expected

Scenario 3
Expected five matched records
with one incorrect character

Expected
pairings

Pairings
found

Expected
pairings

Pairings
found

Expected
pairings

Pairings
found

20x20x20 0 310 5 347 5 348
30x30x30 0 29 5 41 5 42
40x40x40 0 11 5 17 5 16
50x50x50 0 0 5 5 5 5
50x50x40 0 0 5 5 5 5
50x40x40 0 0 5 5 5 5
50x40x30 0 0 5 5 5 5
50x30x30 0 2 5 6 5 6
50x40x20 0 0 5 5 5 5

Table 4: Comparison of different vector sizes and weight distributions.

whole group being analysed. Therefore, record linkage
is a suitable method to follow cohorts of individuals
by monitoring databases that contain continuous out-
comes [32]. The interest group can be individually ob-
served in order to obtain more accurate results or to
identify variations in the characteristics of each indivi-
dual. This situation is called a longitudinal study [19].

Probabilistic approaches can be used to match records
without common keys from disparate databases. To
succeed, we must use a set of attributes for which a
probability of pairing can be set. This method requires
a careful choice of the keys involved in matching or inde-
terminancy decisions [10]. This is the case, for example,
of determining whether the records ”Maria dos Santos
Oliveira, Rua Caetano Moura, Salvador” and ”Maria
S. Oliveira, R. Caetano Moura, Salvador” refer to the
same person. The main disadvantages of probabilistic
approaches are their long execution times and the debug
complexity they impose.

One of the big challenges in probabilistic record lin-
kage is to link records with different schemas and get
a good accuracy [11]. There are many problems that
hinder pairing, such as abbreviations, different naming
conventions, omissions, transcription, and gathering er-
rors. Another big issue is scaling algorithms for large
data sets. Transformation and similarity calculation
are important challenges for the execution environment
when scaled for large databases.

5. SPARK-BASED DESIGN ISSUES
The pioneering programming model capable of han-

dling hundreds or thousands of machines in a cluster,
providing fault tolerance, petascale computing, and high
abstraction in building applications was MapReduce [8],
further popularized by its open-source implementation
provided by Hadoop [1]. Basically, this model proposed

the division of the input data into splits that must be
processed by threads, cores or machines in a cluster
responsible for implementing map or reduce functions
written by the developer. Intermediate data generated
by the first phase are stored on the local disks of pro-
cessing machines and are accessed remotely by machines
performing reduce jobs.

Hadoop was responsible for driving a number of varia-
tions seeking to meet specific requirements. Hive [37],
Pig [28], GraphLab [20], and Twister [12] are exam-
ples of initiatives classified as ”beyond Hadoop” [26],
which basically keep the MapReduce paradigm but in-
tend to generate new levels of abstractions. However,
some authors have indicated significant lacks in MapRe-
duce specially for applications that need to process large
volumes of data with strong requirements regarding ite-
rations, machine learning or even with different perfor-
mance requisites. New frameworks classified as ”be-
yond MapReduce”, such as Dremel [21], Jumbo [15],
Shark [39], and Spark [41], were created to deal with
these new requirements.

Spark is a framework that allows the design of appli-
cations based on working sets, the use of some general-
purpose languages (such as Java, Scala, and Python),
in-memory data processing and a new data distribution
model called RDD (resilient distributed dataset) [40].
RDD is a collection of read-only objects partitioned
across a set of machines that can be rebuilt if a par-
tition is lost.

The main benefits of using Spark are related to the
creation of a RDD for a dataset that must be processed.
There are two basic ways to create a RDD, both use
the SparkContext class: parallelizing a vector of iterable
items created at runtime or referencing a dataset in an
external storage system (such as a shared filesystem),
HDFS [3], HBase [14], or any data source offering a

6

22

Hadoop-like InputFormat interface [41].
RDDs can be used through two classes of basic ope-

rations: transformations, which creates a new dataset
from an existing one; and actions, which returns a value
to the driver program after running a computation on
the dataset. The first class is implemented using lazy
evaluation and is intended to provide better perfor-
mance and management of large data sets. Transfor-
mations are only computed when an action requires a
value to be returned to the driver program [41]. Table 5
shows the main features of Spark framework we used to
implement our probabilistic record linkage algorithms.

Transformation Meaning
Returns a new RDD by

map(func) passing each element of
the source through func
Similar to map, but runs

mapPartitions(func) separately on each partition
(block) of the RDD.

Action Meaning
Returns all the elements of

collect() the dataset as an array at
the driver program.

count() Returns the number of
elements in the dataset.

Table 5: RDD API used for record linkage.

Another advantage of Spark is its ability to perform
tasks in-memory. Views generated during execution are
kept in memory, avoiding the storage of intermediate
data on hard disks. Spark’s developers claim that it is
possible to reduce the execution time up to 100 times
thanks to the use of working sets, and up to 10 times
if hard disks are used. So, our choice to use Spark
is justified by its performance, scalability, RDD’s fault
tolerance, and a very comfortable learning curve due to
its compatibility with different programming languages.

The pre-processing stage follows Algorithm 1, which
shows how this flow is implemented by the processing of
input data transformations using map functions calling
other procedures. The intention is that the function
map(blocking) starts running as map(normalize) deli-
vers its results; so we use the collect() action to ensure
this. It is important to highlight the use of the cache()
function that fits the memory with the splits extracted
from the input files.

Algorithm 1 PreProcessing

1: Input← OriginalDatabase.csv
2: Output← TreatedDatabaseAnom.bloom
3: InputSparkC← sc.textFile(Input)
4: NameSize← 50
5: BirthSize← 40
6: CitySize← 20
7: ResultBeta← InputSparkC.cache().map(normalize)
8: Result← ResultBeta.cache().map(blocking).collect()
9: for line in Result :

10: write line in Output
11: procedure normalize(rawLine)
12: splitedLine← rawLine.split(;)
13: for fields in splitedLine:
14: field← field.normalized(UTF8) return splited-

Line.join(;)

15: procedure blocking(treatedLine)
16: splLine← treatedLine.split(;)
17: splLine[0]← applyBloom(splLine[0], NameSize)
18: splLine[1]← applyBloom(splLine[1], BirthSize)
19: splLine[2] ← applyBloom(splLine[2], CitySize)

return splitedLine.join()

20: procedure applyBloom(field, vectorSize)
21: instanceInitialVectorWithSize← vectorSize
22: for n-grams in field :
23: bitsVector← Calculate positions of 1s in Vector

return bitsVector

Algorithm 2 Record linkage

1: InputMinor← TreatedDatabaseAnom1.bloom
2: InputLarger← TreatedDatabaseAnom2.bloom
3: InputSC1← sc.textFile(InputMinor)
4: InputSC2← sc.textFile(InputLarger)
5: var← InputSC1.cache().collect()
6: varbc← sc.broadcast(var)
7: InterResult← InputSC2.cache().map(compare)
8: Result← InputSC2.cache().collect()
9: for line in recordLinkageResult :

10: write line in Output
11: procedure compare(line)
12: for linebc in varbc.value:
13: get Dice index of (linebc) and (line) comparison
14: decide about the similarity
15: if Dice = 9000 then return line
16: else return None

Algorithm 2 shows our record linkage flow. We use a
RDD object, since it is read-only, to map the smallest
database (SIH). We also use a shared variable, called
broadcast by Spark, to give every node a copy of the
largest database (CadÚnico) in an efficient manner, pre-
venting communication costs, file loads, and split mana-
gement. A comparsion procedure calculates the Dice
index and decides about matching.

7

23

6. PERFORMANCE EVALUATION
In order to evaluate the proposed workflow, we ran

out our Spark implementation on a cluster with 8 pro-
cessors Intel Xeon E74820, 16 cores, 126 GB of RAM
and a storage machine with up to 10 TB disks connected
by the NFS protocol. We compared this implementa-
tion with our OpenMP version of the same workflow,
also considering other multicore machines: an i5 pro-
cessor with 4 GB of RAM and 300 GB of hard disk and
an i7 processor with 32 GB of RAM and 350 GB of hard
disk.

6.1 Spark
For Spark, we chose three samples from CadÚnico

and SIH databases, each representing all the cities from
the states of Amapá (Sample A), Sergipe (Sample B),
and Tocantins (Sample C). These samples represent the
smallest Brazilian states in terms of number of records
in CadÚnico. Based on them, we can get an idea of the
number of comparisons and the rise in the execution
time in each case, as shown in Table 6.

Sample Size (in lines) Comparisons Exec. Time

Name CadÚnico x SIH (millions) (seconds)
A 367,892 x 147 54,0 96,26
B 1,6 mi x 171 289,5 479
C 1,02 mi x 389 397,63 656,79

Table 6: Spark results for record linkage.

These preliminary results are very promising if we
consider the possibility of scaling up the number of ma-
chines involved in data processing. Table 7 details the
time spent in each stage of the workflow. Standardiza-
tion, anonymization, and blocking stages are detailed by
Algorithm 1 and take only a few minutes in the larger
database, while the similarity test and the decision on
pairing require a longer running time. The last step
consists in recovering a pair of linked records for crea-
ting a data mart. Together, all steps do not take more
than 12 hours of execution.

CadÚnico SIH
Size (lines) approx. 87 mi approx. 61 k
Standardization

2310.4 s 36.5 sAnonymization
Blocking
Record Linkage 9,03 hours
Paired Recovery 1,31 hours

Table 7: Execution time within the workflow.

6.2 OpenMP
The OpenMP interface [29] was chosen due to its syn-

tax simplicity. This kind of implementation divides a

task between threads that execute simultaneously, dis-
tributed through processors or functional units. The
OpenMP API supports C, C++ and Fortran program
languages. The C language was chosen because of its
worldwide understanding.

The database sets used for this implementation were
files containing the results from the Bloom filter applied
during the pre-processing stage. These files have N bits
in each line (record). The goal is to make the record
linkage by calculating the Dice coefficient for each pair
of records and writing out the positive Dice results and
its respectives lines in an output file.

Access to the database sets in C language is made
through pointer types. When a parallel region of the
code is initialized, it is necessary to specify global and
local variables to the threads. If a pointer is global to
the threads, there is a race condition problem if they try
to access different positions from the same file. This
problem was solved by making these pointers private
to each thread. As it is not possible to pass pointer
types (only native types), they are created for every
line (record) from one of the files. As the files have
always the same N bits in each line, it is possible to
specify each thread to access uniquely some lines from
these files.

Tools i5 i7 Cluster
Spark 507.5 s 235.7 s 96.26 s

OpenMP 104.9 s 65.5 s 13.36 s

Table 8: OpenMP x Spark metrics (Sample A).

Table 8 shows the execution time achieved by OpenMP
for our Sample A. The machines we used have the fol-
lowing configuration: i5 (4 cores, 8 execution threads),
i7 (8 cores, 16 execution threads). The cluster has been
described in section 6. The execution time over i7 pro-
cessor was 37% shorter than i5, showing that the exe-
cution time could be even shorter when using computers
with more threads per core. Despite its shorter exe-
cution time, this approach does not provide a number
of advantages offered by Spark, such as scalability and
fault tolerance.

The number of matching record was 245. The results
were very satisfactory, taking into account that the ap-
plication runs in only one computer. This shows that
the OpenMP implementation is indicated for small lin-
kages or bigger linkages blocked by smaller parts. We
are also considering the use of OpenMP for generating
the Bloom filter and grouping records to compose the
data marts.

7. CONCLUDING REMARKS
The development of a computational infrastructure

to support projects focusing on big data from health

8

24

systems, like the case study discussed here, was moti-
vated by two factors. First, the need to provide a tool
capable of link disparate databases with socioeconomic
and healthcare data, serving as a basis for decision-
making processes and assessment of the effectiveness
of governmental programs. Second, the availability of
recent tools for big data processing and analytics, such
as those mentioned in this work, with interesting capa-
bilities to deal with new requirements imposed by the
applications.

Among the available tools, we chose Spark due to
its in-memory facility, its scalability, and ease of pro-
gramming. Our preliminary tests present very promis-
ing results, reinforcing the need for some adjustments in
our implementation. New features recently included in
Spark could help us, such as the SparkR extension for
data quality assessment. We are also testing other tech-
niques throughout the workflow, like phonetic codes,
predicates (for blocking) and multi-bit trees.

We plan to continue our tests with OpenMP in or-
der to identify scenarios for which it can provide good
performance. The exploration of hybrid architectures
(multicore + multi-GPUs) is also in our roadmap.

The execution platform developed in this work repre-
sents a major advance in the face of existing solutions
for record linkage in Brazil. It will serve as a basis ar-
chitecture for the installation of a Referral Center for
Probabilistic Linkage, and should be supplemented with
new features regarding privacy, security, storage, among
others.

8. REFERENCES
[1] Apache. Apache Hadoop, 2014. [Online; accessed

12-december-2014].
[2] M. Bilenko, B. Kamath, and R. J. Mooney.

Adaptive blocking: learning to scale up record
linkage. In ICDM, pages 87–96. IEEE Computer
Society, 2006.

[3] D. Borthakur. HDFS architecture guide. Hadoop
Apache Project, http://hadoop. apache.
org/common/docs/current/hdfs design.pdf, 2008.

[4] K. R. Camargo Jr. and C. M. Coeli. RecLink:
aplicativo para o relacionamento de bases de
dados, implementando o método probabilistic
record linkage. Cadernos de Saúde Pública, 16:439
– 447, 06 2000.

[5] P. Christen. Data matching: concepts and
techniques for record linkage, entity resolution,
and duplicate detection. Springer, 1st edition,
2012.

[6] S. Corporation. Stata — data analysis and
statistical software, 2014. [Online; accessed
12-december-2014].

[7] F. J. T. de Lucena. Busca fonética em português
do Brasil, 2006. [Online; accessed

13-december-2014].
[8] J. Dean and S. Ghemawat. MapReduce: simplified

data processing on large clusters. Communications
of the ACM, 51(1):107–113, 2008.

[9] L. R. Dice. Measures of the amount of ecologic
association between species. Ecology, 26(3), 1945.

[10] A. Doan, A. Halevy, and Z. Ives. Principles of
data integration. Morgan Kaufmann. Morgan
Kaufmann, 2012.

[11] C. L. dos Santos Teixeira, C. H. Klein, K. V.
Bloch, and C. M. Coeli. Reclassificação dos
grupos de causas prováveis dos óbitos de causa
mal definida, com base nas Autorizações de
Internação Hospitalar no Sistema Único de Saúde,
Estado do Rio de Janeiro, Brasil. Cad. Saúde
Pública, 22(6):1315–1324, 2006.

[12] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne,
S.-H. Bae, J. Qiu, and G. Fox. Twister: a runtime
for iterative MapReduce. In Proceedings of the
19th ACM International Symposium on High
Performance Distributed Computing, pages
810–818. ACM, 2010.

[13] I. P. Fellegi and A. B. Sunter. A theory for record
linkage. Journal of the American Statistical
Association, 64:1183–1210, 1969.

[14] L. George. HBase: the definitive guide. ” O’Reilly
Media, Inc.”, 2011.

[15] S. Groot and M. Kitsuregawa. Jumbo: beyond
MapReduce for workload balancing. In 36th
International Conference on Very Large Data
Bases, Singapore, 2010.

[16] Y. Huang. Record linkage in an Hadoop
environment. Technical report, School of
Computing, National University of Singapore,
2011.

[17] IBM. SPSS software — predictive analytics
software and solutions, 2014. [Online; accessed
12-december-2014].

[18] IBM, P. Zikopoulos, and C. Eaton. Understanding
big data: analytics for enterprise class Hadoop
and streaming data. McGraw-Hill Osborne Media,
1st edition, 2011.

[19] K. M. Keyes and S. Galea. Epidemiology matters:
a new introduction to methodological foundations.
Oxford University Press, 1st edition, 2014.

[20] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Graphlab: a
new framework for parallel machine learning.
arXiv preprint arXiv:1006.4990, 2010.

[21] S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis.
Dremel: interactive analysis of Web-scale
datasets. In Proc. of the 36th Int’l Conf on Very
Large Data Bases, pages 330–339, 2010.

[22] I. M. Merelli, H. P’erez-Snchez, S. Gesing, and

9

25

D. DAgostino. Managing, analysing, and
integrating big data in medical bioinformatics:
open problems and future perspectives. BioMed
Research International, 2014(1), 2014.

[23] Ministério da Saúde. Portal da Saúde — Sistema

Único de Saúde, 2014. [Online; accessed
12-december-2014].

[24] Ministério do Desenvolvimento Social e Combate
à Fome (MDS). Cadastro único para programas
sociais do governo federal, 2014. [Online; accessed
12-december-2014].

[25] Ministério do Desenvolvimento Social e Combate
à Fome (MDS). Programa Bolsa Famı́lia, 2014.
[Online; accessed 12-december-2014].

[26] G. Mone. Beyond hadoop. Communications of the
ACM, 56(1):22–24, 2013.

[27] H. B. Newcombe. Handbook of record linkage:
methods for health and statistical studies,
administration, and business. Oxford University
Press, 1st edition, 1988.

[28] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language
for data processing. In Proceedings of the 2008
ACM SIGMOD international conference on
Management of data, pages 1099–1110. ACM,
2008.

[29] OpenMP.org. The OpenMP API specification for
parallel programming, 1998. [Online; accessed
13-december-2014].

[30] L. Philips. Hanging on the Metaphone. Computer
Language, 7(12), 1990.

[31] S. M. Randall, A. M. Ferrante, and J. Semmens.
The effect of data cleaning on record linkage
quality. BMC Medical Informatics and Decision
Making, 13, 06 2013.

[32] J. Romero. Utilizando o relacionamento de bases
de dados para avaliação de poĺıticas públicas:
uma aplicação para o Programa Bolsa Famı́lia.
Doutorado, UFMG/Cedeplar, 2008.

[33] W. Santos. Um algoritmo paralelo e eficiente para
o problema de pareamento de dados. Mestrado,
Universidade Federal de Minas Gerias, 2008.

[34] R. Schnell, T. Bachteler, and J. Reiher.
Privacy-preserving record linkage using Bloom
filters. BMC Medical Informatics and Decision
Making, 9:41, 2009.

[35] T. Sørensen. A method of establishing groups of
equal amplitude in plant sociology based on
similarity of species and its application to analyses
of the vegetation on Danish commons. Kongelige
Danske Videnskabernes Selskab, 5(4), 1948.

[36] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz.
Theory and practice of Bloom filters for
distributed systems. IEEE Communications
Surveys and Tutorials, 14(1), 2012.

[37] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao,
P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and
R. Murthy. Hive: a warehousing solution over a
map-reduce framework. Proceedings of the VLDB
Endowment, 2(2):1626–1629, 2009.

[38] U.S. National Archives and Records
Administration. The soundex indexing system,
2007. [Online; accessed 13-december-2014].

[39] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin,
S. Shenker, and I. Stoica. Shark: SQL and rich
analytics at scale. In Proceedings of the 2013
international conference on Management of data,
pages 13–24. ACM, 2013.

[40] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: a
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and
Implementation, pages 2–2. USENIX Association,
2012.

[41] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: cluster
computing with working sets. In Proceedings of
the 2Nd USENIX Conference on Hot Topics in
Cloud Computing, HotCloud’10, pages 10–10,
Berkeley, CA, USA, 2010. USENIX Association.

10

26

Communication Cost in Parallel Query Processing

Dan Suciu, University of Washington

ABSTRACT
Fix a full, conjunctive query, and consider the following
problem: what is the amount of communication required
to compute the query in parallel, on p servers, over a large
database instance? We define the Massively Parallel Com-
munication (MPC) model, where the computation proceeds
in rounds consisting of local computations followed by a
global reshuffling of the data. Servers have unlimited com-
putational power and are allowed to exchange any data, the
only cost parameters are the number of rounds and the max-
imum amount of communication per server. I will describe
tight bounds on the amount of communication for the case
of a single round and data without skew, then discuss ex-
tensions to skewed data and multiround.

This is joint work with Paul Beame and Paris Koutris

Short Bio
Dan Suciu is a Professor in Computer Science at the Uni-
versity of Washington. He received his Ph.D. from the Uni-
versity of Pennsylvania in 1995, was a principal member of
the technical staff at AT&T Labs and joined the Univer-
sity of Washington in 2000. Suciu is conducting research
in data management, with an emphasis on topics related
to Big Data and data sharing, such as probabilistic data,
data pricing, parallel data processing, data security. He is
a co-author of two books Data on the Web: from Relations
to Semistructured Data and XML, 1999, and Probabilistic
Databases, 2011. He is a Fellow of the ACM, holds twelve
US patents, received the best paper award in SIGMOD 2000
and ICDT 2013, the ACM PODS Alberto Mendelzon Test
of Time Award in 2010 and in 2012, the 10 Year Most In-
fluential Paper Award in ICDE 2013, the VLDB Ten Year
Best Paper Award in 2014, and is a recipient of the NSF
Career Award and of an Alfred P. Sloan Fellowship. Suciu
serves on the VLDB Board of Trustees, and is an associate
editor for the VLDB Journal, ACM TWEB, and Informa-
tion Systems and is a past associate editor for ACM TODS
and ACM TOIS. Suciu’s PhD students Gerome Miklau and

c©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0

Christopher Re received the ACM SIGMOD Best Disserta-
tion Award in 2006 and 2010 respectively, and Nilesh Dalvi
was a runner up in 2008.

27

Assignment of Different-Sized Inputs in MapReduce∗

Foto Afrati
†

School of Electrical and
Computing Engineering

National Technical University
of Athens, Greece

afrati@softlab.ece.ntua.gr

Shlomi Dolev
‡

Department of Computer
Science

Ben-Gurion University of the
Negev, Israel

dolev@cs.bgu.ac.il

Ephraim Korach
Department of Industrial

Engineering and Management
Ben-Gurion University of the

Negev, Israel
korach@bgu.ac.il

Shantanu Sharma
Department of Computer

Science
Ben-Gurion University of the

Negev, Israel
sharmas@cs.bgu.ac.il

Jeffrey D. Ullman
Department of Computer

Science
Stanford University

USA
ullman@cs.stanford.edu

ABSTRACT
A MapReduce algorithm can be described by a mapping schema,
which assigns inputs to a set of reducers, such that for each
required output there exists a reducer that receives all the inputs
that participate in the computation of this output. Reducers have a
capacity, which limits the sets of inputs that they can be assigned.
However, individual inputs may vary in terms of size. We consider,
for the first time, mapping schemas where input sizes are part
of the considerations and restrictions. One of the significant
parameters to optimize in any MapReduce job is communication
cost between the map and reduce phases. The communication cost
can be optimized by minimizing the number of copies of inputs
sent to the reducers. The communication cost is closely related
to the number of reducers of constrained capacity that are used
to accommodate appropriately the inputs, so that the requirement
of how the inputs must meet in a reducer is satisfied. In this
work, we consider a family of problems where it is required that
each input meets with each other input in at least one reducer.
We also consider a slightly different family of problems in which,
each input of a set, X , is required to meet each input of another
set, Y , in at least one reducer. We prove that finding an optimal
mapping schema for these families of problem is NP-hard, and

∗More details appear in [1].
†Supported by the project Handling Uncertainty in Data Intensive
Applications, co-financed by the European Union (European Social
Fund) and Greek national funds, through the Operational Program
“Education and Lifelong Learning,” under the program THALES
‡Supported by the Rita Altura Trust Chair in Computer Sciences,
Lynne and William Frankel Center for Computer Sciences, Israel
Science Foundation (grant 428/11), the Israeli Internet Association,
and the Ministry of Science and Technology, Infrastructure
Research in the Field of Advanced Computing and Cyber Security.

c©2015, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015,
Brussels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of
this paper is permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0

present several approximation algorithms for finding a near optimal
mapping schema.

1. INTRODUCTION
MapReduce (was introduced by Dean and Ghemawat [6]) is a
programming system used for parallel processing of large-scale
data. Input data is processed by the map phase that applies a
user-defined map function to produce intermediate data (of the
form 〈key, value〉). Afterwards, intermediate data is processed
by the reduce phase that applies a user-defined reduce function to
keys and their associated values. The final output is provided by the
reduce phase. A detailed description of MapReduce can be found
in Chapter 2 of [11].
Reducers and Reducer Capacity. An important parameter to be
considered in MapReduce algorithms is the “reducer capacity.” A
reducer is an application of the reduce function to a single key
and its associated list of values. The reducer capacity is an upper
bound on the sum of the sizes of the values that are assigned to the
reducer. For example, we may choose the reducer capacity to be the
size of the main memory of the processors on which the reducers
run. We always assume in this paper that all the reducers have an
identical capacity, denoted by q.

The term reducer capacity is introduced, here, for the first time.
There are various works in the field of MapReduce algorithms
design (e.g., [10, 13, 2, 7, 12, 3]); none of them considers the
reducer capacity.
Motivation and Examples. We demonstrate a new aspect of the
reducer capacity in the scope of several special cases. One useful
special case is where an output depends on exactly two inputs. We
present two examples where each output depends on exactly two
inputs and define two problems that are based on these examples.
Similarity-join. Similarity-join is used to find the similarity
between any two inputs, e.g., Web pages or documents. A set
of m inputs (e.g., Web pages) WP = {wp1, wp2, . . . , wpm},
a similarity function sim(x, y), and a similarity threshold t are
given, and each pair of inputs 〈wpx, wpy〉 corresponds to one
output such that sim(wpx, wpy) ≥ t.

It is necessary to compare all-pairs of inputs when the
similarity measure is sufficiently complex that shortcuts like
locality-sensitive hashing are not available. Therefore, it is
mandatory that every two inputs (Web pages) of the given input

28

wp2

wp3

wp1

Reducer

for k1

Reducer

for k2

Reducer

for k3

Reducer

for kr

Output

Output

Output

Output

Reducers of an identical capacity

wpn-1

Mapper for (m-1)th Web page

Mapper for mth Web page

Mapper for 1st Web page

wp1

Mapper for 2nd Web page

wp2

Mapper for 3rd Web page

wp3

wpm-1

wpm
wpm

Notation: key, Web page = ki, wpj

Figure 1: Similarity-join example.

set (WP) are compared. The similarity-join is useful in various
applications, mentioned in [4], e.g., near-duplicate document
detection and collaborative filtering.

In Figure 1, an example of similarity-join is given as it is
applied to Web pages. We are given a set of m Web pages, and a
mapper (a mapper is an application of the map function to a single
input) would take only a single Web page, and a reducer produces
pairs of every two Web pages and their similarity score.
Skew join of two relations X(A,B) and Y (B,C). The join of
relations X(A,B) and Y (B,C), where the joining attribute is
B, provides the output tuples 〈a, b, c〉, where (a, b) is in X and
(b, c) is in Y . One or both of the relations X and Y may have
a large number of tuples with the same B-value. A value of the
joining attribute B that occurs many times is known as a heavy
hitter. In skew join ofX(A,B) and Y (B,C), all the tuples of both
the relations with the same heavy hitter should appear together to
provide the output tuples.

In Figure 2, b1 is considered as a heavy hitter, hence, it is
required that all the tuples of X(A,B) and Y (B,C) with the
heavy hitter, b1, should appear together to provide the desired
output tuples, 〈a, b1, c〉 (a ∈ A, b1 ∈ B, c ∈ C), which depend
on exactly two inputs. It is worth noting that all the tuples of both
the relations that have a common value of the joining attribute B,
except b1, are now also required to appear together to provide the
remaining output tuples.
Problem Statement. We define two problems where exactly two
inputs are required for computing an output, as follows:
All-to-All problem. In the all-to-all (A2A) problem, a set of inputs

is given, and each pair of inputs corresponds to one output.
Computing common friends on a social networking site,
similarity-join [4, 15, 14], the drug-interaction problem [13],
and the Hamming distance 1 problem [2] are examples of
tasks for which an output depends on exactly two inputs, and
the set of outputs requires us to consider each pair of inputs.

X-to-Y problem. In the X-to-Y (X2Y) problem, two disjoint sets
X and Y are given, and each pair of elements 〈xi, yj〉, where
xi ∈ X, yj ∈ Y, ∀i, j, of the sets X and Y corresponds to
one output. Skew join and outer product or tensor product
are examples.

The communication cost, i.e., the total amount of data
transmitted from the map phase to the reduce phase, is a
significant factor in the performance of a MapReduce algorithm.
The communication cost comes with tradeoff in the degree of
parallelism, however.

A reducer of large enough capacity can be used to
accommodate all the given inputs, and provide the desired outputs.
This results in the minimum communication cost but also in
the minimum parallelism. Higher parallelism requires more

A B

a1 b1

a2 b1

a3 b1

a4 b1

.

.

.

an b1

B C

b1 c1

b1 c2

b1 c3

b1 c4

.

.

.

b1 cp





B

A B C

a1 b1 c1

a1 b1 c2

.

.

.

an b1 cp

=

X Y Z

Figure 2: Skew join example for a heavy hitter, b1.

reducers (hence, of smaller reducer capacity), and hence a larger
communication cost (because the copies of the given inputs are
required to be assigned to more reducers).

A substantial level of parallelism can be achieved with fewer
reducers, and hence, yield a smaller communication cost. Thus,
we focus on minimizing the total number of reducers, for a given
reducer capacity q. A smaller number of reducers results in a
smaller communication cost. Thus, the reducer capacity, q, reflects
also the degree of parallelism we want, since if we want more
parallelism we can explore the problem in question for smaller q.
Related Work. Afrati et al. [2] presents a model for MapReduce
algorithms where an output depends on two inputs, and shows a
tradeoff between communication cost and parallelism. In [3], the
authors consider the case where each pair of inputs produces an
output and present an upper bound that meets the lower bound on
communication cost as a function of the total number of inputs sent
to a reducer. However, both in [2] and [3] the authors regard the
reducer capacity in terms of the total number of inputs (assuming
each input is of an identical size) sent to a reducer. Our setting
is closely related to the settings given by Afrati et al. [2] but we
allow the input sizes to be different. Thus, we consider a more
realistic setting for MapReduce algorithms that can be used in
various practical scenarios.
Our Contribution. In this paper, we provide:
•Mapping schemas for the A2A and the X2Y problems, which take
into account the fact that inputs have different sizes, while all the
reducers have an identical and fixed capacity (Section 2).
• A tradeoff between the reducer capacity and the total number
of reducers, which is demonstrated using similarity-join and skew
join (Section 2). A tradeoff between the reducer capacity and the
parallelism at the reduce phase, and a tradeoff between the reducer
capacity and the communication cost is detailed in Section 2 as
well.
• A proof that the A2A mapping schema problem for one and
two reducers has a polynomial solution, and the same problem
is NP-hard in the case of more than two reducers of an identical
capacity (Section 3). Also, we prove that the X2Y mapping schema
problem for one reducer has a polynomial solution, and the same
problem is NP-hard in the case of more than one reducer of an
identical capacity (Section 3).
• A set of heuristics, for the A2A mapping schema problem and the
X2Y mapping schema problem, that is based on First-Fit Decreasing
(FFD) or Best-Fit Decreasing (BFD) bin-packing algorithm, and a
pseudo polynomial bin-packing algorithm (Sections 4 and 5).

2. MAPPING SCHEMA AND TRADEOFFS
Our system setting is an extension of the standard system setting [2]
for MapReduce algorithms, where we consider, for the first time,
inputs of different sizes. The system setting is suitable for a variety
of problems where exactly two inputs are required for an output.
To demonstrate the influence of the extra considerations, we define

29

w1 = w2 = w3 = 0.20q, w4 = w5 = 0.19q, w6 = w7 = 0.18q

w1, w2, w3, w4

The second way to assign inputs
(optimum communication cost)

w1, w2, w5, w6

w1, w2, w7

w3, w4, w5, w6

w3, w4, w7

w5, w6, w7

w1, w2, w3, w4, w7

w1, w2, w5, w6, w7

w3, w4, w5, w6, w7

The first way to assign inputs
(non-optimum communication cost)

1

Figure 3: An example to the A2A mapping schema problem.

mapping schema and consider the communication cost tradeoff, as
we elaborate next.
Mapping Schema. A mapping schema is an assignment of the
set of inputs to some given reducers under the following two
constraints:
• A reducer is assigned inputs whose sum of the sizes is less than
or equal to the reducer capacity q.
• For each output, we must assign the corresponding inputs to at
least one reducer in common.
Tradeoffs. The following tradeoffs appear in MapReduce
algorithms and in particular in our setting:
• A tradeoff between the reducer capacity and the total number of
reducers. For example, large reducer capacity allows the use of a
smaller number of reducers.
• A tradeoff between the reducer capacity and the parallelism. For
example, large reducer capacity results in less parallelism.
• A tradeoff between the reducer capacity and the communication
cost.

In the subsequent subsections, we present two types of
mapping schema problems with fitting examples and explain the
three tradeoffs.

2.1 The A2A Mapping Schema Problem
The A2A mapping schema problem is defined in terms of a set of
inputs, a size for each input, a set of reducers, and a mapping from
outputs to sets of inputs. An instance of the A2A mapping schema
problem consists of a set of m inputs whose input size set is W =
{w1, w2, . . . , wm} and a set of z reducers of capacity q. A solution
to the A2A mapping schema problem assigns every pair of inputs to
at least one reducer in common, without exceeding q at any reducer.
Example. We are given a set of seven inputs
I = {i1, i2, . . . , i7} whose size set is W =
{0.20q, 0.20q, 0.20q, 0.19q, 0.19q, 0.18q, 0.18q} and reducers of
capacity q. In Figure 3, we show two different ways that we can
assign the inputs to reducers. The best we can do to minimize the
communication cost is to use three reducers. However, there is less
parallelism at the reduce phase as compared to when we use six
reducers. Observe that when we use six reducers, then all reducers
have a lighter load, since each reducer may have capacity less than
0.8q.
Explanation of tradeoffs. Similarity-join is an example of the A2A
mapping schema problem, and the tradeoffs can also be explained
with the help of similarity-join example. Consider that m Web
pages are of w1, w2, . . . , wm sizes. A single reducer of capacity
q = w1 + w2 + . . . + wm is able to find the similarity between
every pair of Web pages. The use of only one reducer results in no
parallelism at the reduce phase. But at the same time, the use of
a single reducer yields the minimum possible communication cost.
On the other hand, in case q is small but is still greater than or equal
to wi + wj , for any i and j, then more reducers are required, and
a higher level of parallelism is obtained. But, at the same time, the
communication cost is higher, since every input is communicated
to m− 1 reducers.

𝑤1 = 𝑤2 = 0.25𝑞, 𝑤3 = 𝑤4 = 0.24𝑞, 𝑤5 = 𝑤6 = 0.23𝑞,
𝑤7 = 𝑤8 = 0.22𝑞, 𝑤9 = 𝑤10 = 0.21𝑞, 𝑤11 = 𝑤12 = 0.20𝑞

𝑤1, 𝑤2, 𝑤1
′ , 𝑤2

′

𝑤3, 𝑤4, 𝑤1
′ , 𝑤2

′

𝑤5, 𝑤6, 𝑤1
′ , 𝑤2

′

𝑤7, 𝑤8, 𝑤1
′ , 𝑤2

′

𝑤9, 𝑤10, 𝑤1
′ , 𝑤2

′

𝑤11, 𝑤12, 𝑤1
′ , 𝑤2

′

𝑤1, 𝑤2, 𝑤3, 𝑤1
′

𝑤1, 𝑤2, 𝑤3
′ , 𝑤4

′

𝑤3, 𝑤4, 𝑤3
′ , 𝑤4

′

𝑤5, 𝑤6, 𝑤3
′ , 𝑤4

′

𝑤7, 𝑤8, 𝑤3
′ , 𝑤4

′

𝑤9, 𝑤10, 𝑤3
′ , 𝑤4

′

𝑤11, 𝑤12, 𝑤3
′ , 𝑤4

′

𝑤4, 𝑤5, 𝑤6, 𝑤1
′

𝑤7, 𝑤8, 𝑤9, 𝑤1
′

𝑤10, 𝑤11, 𝑤12, 𝑤1
′

𝑤1, 𝑤2, 𝑤3, 𝑤2
′

𝑤4, 𝑤5, 𝑤6, 𝑤2
′

𝑤7, 𝑤8, 𝑤9, 𝑤2
′

𝑤10, 𝑤11, 𝑤12, 𝑤2
′

𝑤1, 𝑤2, 𝑤3, 𝑤3
′

𝑤4, 𝑤5, 𝑤6, 𝑤3
′

𝑤7, 𝑤8, 𝑤9, 𝑤3
′

𝑤10, 𝑤11, 𝑤12, 𝑤3
′

𝑤1, 𝑤2, 𝑤3, 𝑤4
′

𝑤4, 𝑤5, 𝑤6, 𝑤4
′

𝑤7, 𝑤8, 𝑤9, 𝑤4
′

𝑤10, 𝑤11, 𝑤12, 𝑤4
′

𝑤1
′ = 𝑤2

′ = 0.25𝑞, 𝑤3
′ = 𝑤4

′ = 0.24𝑞

Inputs of set 𝑋

Inputs of set 𝑌

The first way to assign inputs

using 12 reducers

The second way to assign inputs

using 16 reducers

Figure 4: An example to the X2Y mapping schema problem.

2.2 The X2Y Mapping Schema Problem
The X2Y mapping schema problem is defined in terms of two
disjoint sets X and Y of inputs, a size for each input, a set of
reducers, and a mapping from outputs to sets of inputs. An instance
of the X2Y mapping schema problem consists of two disjoint sets
X and Y and a set of reducers of capacity q. The inputs of the
set X are of sizes w1, w2, . . . , wm, and the inputs of the set Y are
of sizes w′1, w′2, . . . , w′n. A solution to the X2Y mapping schema
problem assigns every two inputs, the first from one set, X , and the
second from the other set, Y , to at least one reducer in common,
without exceeding q at any reducer.
Example. We are given two sets X of 12 inputs and Y of 4 inputs,
see Figure 4, and reducers of capacity q. We show that we can
assign each input of the set X with each input of the set Y in two
ways. In order to minimize the communication cost, the best way
is to use 12 reducers. Note that we cannot obtain a solution for the
given inputs using less than 12 reducers. However, the use of 12
reducers results in less parallelism at the reduce phase as compared
to when we use 16 reducers.
Explanation of tradeoffs. Skew join of two relations X(A,B)
and Y (B,C) for a heavy hitter is an example of the X2Y mapping
schema problem. We also explain the tradeoffs using the example
of skew join. We assume that both the relations X(A,B) and
Y (B,C) have only a single heavy hitter, say b1. Note that we
do not consider tuples with no heavy hitter.

A reducer of capacity q that is sufficient to hold all the tuples
of X(A,B) and Y (B,C) with the heavy hitter results in the
minimum communication cost. However, due to a single reducer,
there is no parallelism at the reduce phase. In addition, a single
reducer takes a long time to produce all the desired output tuples of
the heavy hitter.

In order to decrease the time (or when q is small but still
enough to hold only two tuples, the first from X(A,B) and the
second from Y (B,C), which have the common B-value), we can
restrict reducers in a way that they can hold many tuples, but not
all the tuples with the heavy-hitter-value. In this case, we use more
reducers, which result in a higher level of parallelism at the reduce
phase. But, there is a higher communication cost, since each tuple
with the heavy hitter must be sent to more than one reducer.

3. INTRACTABILITY OF FINDING A
MAPPING SCHEMA

In this section, we will show that the A2A and the X2Y mapping
schema problems do not possess a polynomial solution. In other
words, we will show that the assignment of two required inputs
to the minimum number of reducers to find solutions to the A2A
and the X2Y mapping schema problems cannot be achieved in
polynomial time.
NP-hardness of the A2A Mapping Schema Problem. A set
of inputs I = {i1, i2, . . . , im} whose input size set is W =
{w1, w2, . . . , wm} and a set of reducersR = {r1, r2, . . . , rz}, are

30

an input instance to the A2A mapping schema problem. The A2A
mapping schema problem is a decision problem that asks whether
or not there exists a mapping schema for the given input instance
such that every input, ix, is assigned with every other input, iy , to
at least one reducer in common. An answer to the A2A mapping
schema problem will be “yes,” if for each pair of inputs (〈ix, iy〉),
there is at least one reducer that holds them.

Now we prove that the A2A mapping schema problem has a
polynomial solution to one and two reducers. If there is only one
reducer, then the answer is “yes” if and only if the sum of the input
sizes

∑m
i=1 wi is at most q. On the other hand, if q <

∑m
i=1 wi,

then the answer is “no.” In case of two reducers, if a single reducer
is not able to accommodate all the given inputs, then there must be
at least one input that is assigned to only one of the reducers, and
hence, this input is not paired with all the other inputs. In that case,
the answer is “no.” Therefore, we achieve a polynomial solution to
the A2A mapping schema problem for one and two reducers. Next,
we will prove that the A2A mapping schema problem is an NP-hard
problem for z > 2 reducers.

Theorem 1 The problem of finding whether a mapping schema of
m inputs of different input sizes exists, where every two inputs are
assigned to at least one of z ≥ 3 identical-capacity reducers, is
NP-hard.

Proof is omitted from here and given in [1].
NP-hardness of the X2Y Mapping Schema Problem. Two sets
of inputs, X = {i1, i2, . . . , im} whose input size set is Wx =
{w1, w2, . . . , wm} and Y = {i′1, i′2, . . . , i′n} whose input size
set is Wy = {w′1, w′2, . . . , w′n}, and a set of reducers R =
{r1, r2, . . . , rz} are an input instance to the X2Y mapping schema
problem. The X2Y mapping schema problem is a decision problem
that asks whether or not there exists a mapping schema for the given
input instance such that each input of the set X is assigned with
each input of the set Y to at least one reducer in common. An
answer to the X2Y mapping schema problem will be “yes,” if for
each pair of inputs, the first from X and the second from Y , there
is at least one reducer that has both those inputs.

The X2Y mapping schema problem has a polynomial solution
for the case of a single reducer. If there is only one reducer, then the
answer is “yes” if and only if the sum of the input sizes

∑m
i=1 wi+∑n

i=1 w
′
i is at most q. On the other hand, if q <

∑m
i=1 wi +∑n

i=1 w
′
i, then the answer is “no.” Next, we will prove that the

X2Y mapping schema problem is an NP-hard problem for z > 1
reducers.

Theorem 2 The problem of finding whether a mapping schema of
m and n inputs of different input sizes that belongs to set X and
set Y , respectively, exists, where every two inputs, the first from
X and the second from Y , are assigned to at least one of z ≥ 2
identical-capacity reducers, is NP-hard.

Proof is omitted from here and given in [1].

4. HEURISTICS FOR THE A2A MAPPING
SCHEMA PROBLEM

Since the A2A Mapping Schema Problem is NP-hard, in polynomial
time we cannot assign each pair of inputs to the minimum number
of reducers, which results in the optimum communication between
the map phase and the reduce phase. In this section, we propose
several heuristics for the A2A mapping schema problem that are
based on bin-packing algorithms, selection of a prime number p,
and division of inputs into two sets based on their sizes. In addition,

the proposed heuristics assume that a fixed reducer capacity q is
given. The heuristics have two cases depending on the sizes of the
inputs, as follows:
1. Input sizes are upper bounded by q

2
,

2. One input is of size, say wi, greater than q
2

, but less than q, and
all the other inputs have size less than or equal to q − wi,

The idea of the heuristics is: if the two largest inputs are greater
than the given reducer capacity q, then there is no solution to the
A2A mapping schema problem because these two inputs cannot be
assigned to a single reducer in common.
Parameters for bounds analysis. We analyze our heuristics on
three parameters, as follows:
1. Minimum number of reducers, r(m, q). The minimum
number of reducers of capacity q that can solve the A2A (and X2Y)
mapping schema problem(s) for the given inputs with certain size
restrictions.
2. Replication of individual inputs. Inputs of different sizes need
to be replicated at different numbers of reducers. We therefore
need to consider the minimum number of reducers to which each
individual input is sent.
3. The total communication cost, c. The total communication
cost is defined to be the sum of all the bits that are required to
transfer from the map phase to the reduce phase.

4.1 All the inputs sizes are upper bounded by
q
2

We first consider the case where all the input sizes are at most q
2

size. We consider the following two cases in this section: (i) all the
inputs are potentially of different sizes but at most size q

2
, and (ii)

all the inputs sizes are almost equal or there are a lot of inputs of
very small size. Particularity, all the inputs are of size at most q

k
,

where k > 1,

4.1.1 Different-sized inputs but at most size q
2

We first provide a heuristic for inputs of potentially different sizes,
where the largest input can have at most size q

2
. The heuristic uses

a bin-packing algorithm to place the given m inputs into bins of
size q

2
. Before going into details of the heuristic, we look at the

lower bound on the replication of an input i (of size wi), the total
number of reducers, and the total communication cost between the
map phase and the reduce phase. The bounds are given in Table 1.

Theorem 3 (Replication of individual inputs) For a set of m
inputs and a given reducer capacity q, an input i of size wi < q
is required to be sent to at least

⌈
s−wi
q−wi

⌉
reducers for a solution to

the A2A mapping schema problem, where s is the sum of all the
input sizes.

PROOF. Consider an input i of size wi. The input i can share a
reducer with inputs whose sum of the sizes is at most q − wi. In
order to assign the input i with all the remaining m − 1 inputs, it
is required to assign subsets of the m − 1 inputs, each subset with
sum of sizes at most size q − wi. Such an assignment results in
at least

⌈
s−wi
q−wi

⌉
subsets of the m − 1 inputs. Thus, the input i is

required to be sent to at least
⌈
s−wi
q−wi

⌉
reducers to be paired with all

the remaining m− 1 inputs.

Theorem 4 (The total communication cost and number of
reducers) For a set ofm inputs and a given reducer capacity q, the
total communication cost and the total number of reducers, for the
A2A mapping schema problem, are at least s2

q
and s2

q2
, respectively,

where s is the sum of all the input sizes.

31

PROOF. Since an input i is replicated to at least
⌈
s−wi
q−wi

⌉

reducers, the communication cost for the input i is wi × d s−wi
q−wi

⌉
.

Hence, the total communication cost for all the inputs will be at
least

∑m
i=1 wi

s−wi
q−wi

. Since s ≥ q, we can conclude s−wi
q−wi

≥ s
q

.

Thus, the total communication cost is at least
∑m

i=1 wi
s
q
= s2

q
.

Since the total communication cost, the total number of bits to
be assigned to reducers, is at least s2

q
, and a reducer can hold inputs

whose sum of the sizes is at most q, the total number of reducers
must be at least s2

q2
.

Bin-packing-based Heuristic. First-Fit Decreasing (FFD) and
Best-Fit Decreasing (BFD) [5] are most notable bin-packing
algorithms. We use the FFD or BFD bin-packing algorithm to
place the given m inputs to bins of size q

2
. Assume that FFD or

BFD bin-packing algorithm needs x bins to place m inputs, and
now, each of such bins is considered as a single input of size q

2
.

Since the reducer capacity is q, any two bins can be assigned to a
single reducer. Hence, the heuristic uses at most r(m, q) = x(x−1)

2
reducers; see Figure 5. There also exists a pseudo polynomial
bin-packing algorithm, suggested by Karger and Scott [9], that can
place the m inputs in as few bins as possible of size q

2
.

w1 = w2 = w3 = 0.20q, w4 = w5 = 0.19q,
w6 = w7 = 0.18q

w1, w2

Four bins, each of size q
2

w3, w4 w5, w6 w7

w1, w2 w3, w4

Six reducers

w1, w2 w5, w6

w1, w2 w7

w3, w4 w5, w6

w3, w4 w7

w5, w6 w7

1

Figure 5: Bin-packing-based heuristic.

Total required
reducers. FFD and
BFD bin-packing
algorithms provide
an 11

9
· OPT

approximation
ratio [8], i.e.,
if any optimum
bin-packing
algorithm needs
OPT bins to place
(m) inputs in the
bins of a given size
(say, q

2
), then FFD and BFD bin-packing algorithms always use

at most 11
9
· OPT bins of the same size (to place the given m

inputs). Since we require at most x(x−1)
2

reducers for a solution to
the A2A mapping schema problem, the heuristic requires at most

r(m, q) =
(11

9
·OPT)

2

2
reducers.

Note that, here in this case, OPT does not indicate the optimum
number of reducers to assignm inputs that satisfy the A2A mapping
schema problem; OPT indicates the optimum number of bins of size
q
2

that are required to place m inputs.
The following theorem gives the upper bounds that this

heuristic achieves on the replication of an inputs, the total
communication cost and the number of reducers.

Theorem 5 (Upper bounds from the heuristic) The above
heuristic using a bin size b = q

2
where q is the reducer capacity

achieves the following three upper bounds: The total number
of reducers, the replication of individual inputs, and the total
communication cost, for the A2A mapping schema problem, are at
most 8s2

q2
, at most 4 s

q
, and at most 4 s2

q
, respectively, where s is the

sum of all the input sizes.

PROOF. A bin i can hold inputs whose sum of the sizes is at
most b. Since the total sum of the sizes is s, it is required to divide
the inputs into at least s

b
bins. Since the FFD or BFD bin-packing

algorithm ensures that all the bins (except only one bin) are at least
half-full, each bin of size q

2
has at least inputs whose sum of the

sizes is at least q
4

. Thus, all the inputs can be placed in at most

w1 = 0.20q, w2 = 0.20q, w3 = 0.20q, w4 = 0.19q, w5 = 0.19q,
w6 = 0.18q, w7 = 0.18q

w1, w2

Four bins, each of size q
2

w3, w4 w5, w6 w7

w1, w2 w3, w4

Bin-packing-based solution Another way to assign the inputs

w1, w2 w5, w6

w1, w2 w7

w3, w4 w5, w6

w3, w4 w7

w5, w6 w7

w1, w2, w3, w4, w7

w1, w2, w5, w6, w7

w3, w4, w5, w6, w7

1

Figure 7: Comparison between the bin-packing-based heuristic and
the proposed algorithms for almost equal-sized inputs.

s
q/4

bins of size q
2

. Since each bin is considered as a single input,
we can assign every two bins at a reducer, and hence, we require
at most 8s2

q2
reducers. Since each bin is replicated to at most 4 s

q

reducers, the replication of individual inputs is at most 4 s
q

and the

total communication cost is at most
∑

1≤i≤m wi×4 s
q
= 4 s2

q
.

4.1.2 Almost equal-sized inputs
In this section, we provide two algorithms form almost equal-sized
(q
k

, where k > 1) inputs to assign each pair of inputs to reducers
of capacity q. In other word, we are given a lot of inputs of very
small sizes as compared to q. We pack all these inputs to bins of
unit size, and then consider each bin as a single input of unit-size.
Equivalently, we can take the reducer capacity to be q and the inputs
to be of unit size. In what follows, we will continue to use q as the
reducer capacity and assume all inputs are of unit size.

The two algorithms can be summarized as follows: 2-step
algorithms (Algorithm 1 and Algorithm 2) handle the case of m
unit-sized inputs and odd-even values of the reducer capacity q.
Algorithms 1 and 2 assume that q is an odd or an even number,
respectively.

Aside. Algorithms 1 and 2 have an advantage over the
bin-packing-based heuristic (Section 4.1.1). When inputs of almost
identical sizes are given, the bin-packing-based heuristic uses more
reducers as compared to Algorithms 1 and 2. For example, we
are given a set of seven inputs I = {i1, i2, . . . , i7} whose size
set is W = {0.20q, 0.20q, 0.20q, 0.19q, 0.19q, 0.18q, 0.18q}. In
this case, the bin-packing-based heuristic uses at least six reducers
while we can assign them to three reducers, see Figure 7.

Our goal to use Algorithms 1, 2, 3, and 4 is to minimize the
communication cost between the map and reduce phases for a given
number of unit-sized inputs and the reducer capacity q. Before
going into details of algorithms for q > 2, we look at the lower
bound on the total communication cost between the map and reduce
phases. The case of m inputs of size one and reducers of capacity
two is trivial. In this case, we can assign every pair of inputs to a
single reducer, which results in r(m, q) = m(m−1)

2
reducers, and

moreover, it is clearly impossible to use fewer reducers.

Theorem 6 (Replication of individual inputs) For a given
reducer capacity q > 1 and a set of m inputs of size one, an input
i required to be sent to at least

⌈
m−1
q−1

⌉
reducers for a solution to

the A2A mapping schema problem.

PROOF. Consider an input i. The input i can share a reducer
with only q − 1 inputs. In order to assign the input i with all the
remaining m − 1 inputs, it is required to create disjoint subsets of
the remaining m− 1 inputs such that each subset can hold at most
q − 1 inputs. In this manner, there are at least

⌈
m−1
q−1

⌉
subsets of

32

Cases Solutions Sections Theorems Replication of individual inputs Reducers Communication cost

The lower bounds for the A2A mapping schema problem

Different-sized inputs 4.1.1 3 and 4 s
q

s2

q2
s2

q

Almost equal-sized inputs 4.1.2 6 and 7
⌈

m−1
q−1

⌉ ⌊
m
q

⌋⌈
m−1
q−1

⌉
m

⌈
m−1
q−1

⌉

The lower bounds for the X2Y mapping schema problem

Different-sized inputs 5 13 and 14 sumx
q ,

sumy
q

2·sumx·sumy

q2
2·sumx·sumy

q

The upper bounds for the A2A mapping schema problem

Different-sized inputs Bin-packing-based heuristic 4.1.1 5 4s
q

8s2

q2
4s2

q

Almost equal-sized inputs
Algorithm 1 4.1.2 9

⌈
2m
q−1

⌉
− 1 (

⌈
2m

(q−1)

⌉
)2/2 m

(⌈
2m

(q−1)

⌉
− 1

)

Algorithm 2 4.1.2 11
⌈

2m
q

⌉
− 1 (

⌈
2m
q

⌉
)2/2 m

(⌈
2m
q

⌉
− 1

)

An input of size > q
2 Bin-packing-based heuristic 4.2 12 m− 1 m− 1 + 8s2

q2
(m− 1) · q + 4s2

q

The upper bounds for the X2Y mapping schema problem

Different-sized inputs, q = 2b Bin-packing-based heuristic 5 15 2·sumx
b ,

2·sumy
b

4·sumx·sumy

b2
4·sumx·sumy

b

Table 1: The bounds for heuristics for the A2A and the X2Y mapping schema problems.

Algorithm 1, with q = 3, divides m unit-sized inputs into two disjoint sets A and B of y and x ≤ y − 1 inputs respectively. (The
selection of the value of y will be described later. But, note that we prefer y to be a power of 2, and if y 6= 2i and y > 4, i > 2, then we
add unit-sized dummy inputs so that y is a power of 2.) When q = 3, we organize (y − 1) ×

⌈
y
2

⌉
reducers (each of capacity three) in

the form of y− 1 teams of
⌈
y
2

⌉
players (or reducers) in each team, and these reducers are used to assign each input of the set A with all

the remaining inputs of the sets A and B. Note that a team must have each of the inputs of the set A occurring exactly once among the
reducers of that team, and this fact will be clear soon.
There are (y − 1) ×

⌈
y
2

⌉
pairs of inputs of the set A (each of size two) and there are the same number of reducers (each of capacity

three); hence, it is possible to assign one pair to each reducer, and these two inputs become two of the three inputs allowed to each
reducer. Once, we assign every pair of inputs of the set A to (y− 1)×

⌈
y
2

⌉
reducers, then we assign ith input of the set B to all the

⌈
y
2

⌉

reducers of ith team. Further, we follow a similar procedure on inputs of the set B to assign each pair of the remaining x inputs.

4, 8, 9

Team 1

3, 7, 9

2, 6, 9

1, 5, 9

4, 5, 10

Team 2

3, 8, 10

2, 7, 10

1, 6, 10

4, 6, 11

Team 3

3, 5, 11

2, 8, 11

1, 7, 11

4, 7, 12

Team 4

3, 6, 12

2, 5, 12

1, 8, 12

6, 8, 13

Team 5

5, 7, 13

2, 4, 13

1, 3, 13

6, 7, 14

Team 6

5, 8, 14

2, 3, 14

1, 4, 14

7, 8, 15

Team 7

5, 6, 15

3, 4, 15

1, 2, 15

I = {1, 2, . . . , 15}
A = {1, 2, . . . , 8}
B = {9, 10, . . . , 15}

1

Team 8

10, 12, 13

9, 11, 13

Team 9

10, 11, 14

9, 12, 14

Team 10

11, 12, 15

9, 10, 15 13, 14, 15I1 = {9, 10, . . . , 15}
A1 = {9, 10, 11, 12}
B1 = {13, 14, 15} An additional reducer

1

Example. We are given 15 inputs (I = {1, 2, . . . , 15}) of size one and q = 3. We create two sets, namely A of y = 8 inputs and B
of x = 7 inputs, and arrange (y − 1) ×

⌈
y
2

⌉
= 28 reducers in the form of 7 teams of 4 players (or reducers) in each team. These 7

teams assign each input of the set A with all the remaining inputs of the set A and the set B. We pair every two inputs of the set A and
assign them to exactly one of 28 reducers. (All these pairs of the inputs of the set A are created and assigned using lines 10, 12, and 13
of Algorithm 1.) Once every pair of y = 8 inputs of the set A is assigned to exactly one of 28 reducers, then we assign ith input of the
set B to all the four reducers of ith team, see Team 1 to Team 7. Of course, the third input in ith team is ith input of the set B.
Now note that the first four teams pair inputs 1-4 with inputs 5-8. The first team (Team 1) has pairs {1, 5}, {2, 6}, {3, 7}, and {4, 8}.
Team 2-4 has pairs by rotation of the 5-8 inputs. Teams 5 and 6 handle pairs of 1-2 with 3-4 and 5-6 with 7-8, respectively, in the same
way, and the last team has pairs {1, 2}, {3, 4}, . . . , {7, 8}.
Next, we implement the same procedure on 7 inputs of the set B. We create two sets, say A1 = {9, 10, 11, 12} of y1 = 4 inputs and
B1 = {13, 14, 15} of x1 = 3. Then, we arrange (y1 − 1)×

⌈
y1
2

⌉
= 6 reducers in the form of 3 teams of 2 reducers in each team. We

assign each pair of inputs of the set A1 to these 6 reducers, and then ith input of the set B1 to all the two reducers of a team, see Team 8
to Team 10. Further, we assign the remaining inputs of the set B1 to a single reducer. The assignment of inputs to Teams 8-10 follows
the same procedure as we did for Teams 1-7.
We have three claims, as follows: (i) each input of the set A appears exactly once in each team, (ii) the set B holds x ≤ y − 1 inputs
when q = 3, and (iii) the given algorithm assigns each pair of inputs to at least one reducer. We will prove these claims in algorithm
correctness.

Figure 6: 2-step algorithm (Algorithm 1) for the reducer capacity q = 3 and m = 15.

33

m − 1 inputs. Hence, the input i is required to be sent to at least⌈
m−1
q−1

⌉
reducers.

Theorem 7 (The total communication cost and number of
reducers) For a given reducer capacity q > 1 and a set ofm inputs
of size one, the total communication cost and the total number
of reducers, for the A2A mapping schema problem, are at least
m
⌈
m−1
q−1

⌉
and at least

⌊
m
q

⌋⌈
m−1
q−1

⌉
, respectively.

PROOF. Since an input i is required to be sent to at least
⌈
m−1
q−1

⌉

reducers, the sum of the number of copies of (m) inputs sent to
reducers is at least m

⌈
m−1
q−1

⌉
, which result in at least m

⌈
m−1
q−1

⌉

communication cost.
There are at least m

⌈
m−1
q−1

⌉
total number of copies of (m)

inputs to be sent to reducers and a reducer can hold at most q inputs;
hence, at least

⌊
m
q

⌋⌈
m−1
q−1

⌉
reducers are required.

Algorithm 1: 2-step algorithm when the reducer capacity q is
an odd number. For the sake of understanding and presentation,
we first present two examples, where q = 3, i.e, a reducer can
hold at most three unit-sized inputs; see Figure 6 (and q = 5, i.e.,
a reducer can hold at most five unit-sized inputs; see Figure 11
in [1]).

Following the example given for q = 3 (in Figure 6), we
present our algorithm (see Algorithm 1) that handles any odd value
of q. The algorithm consists of five steps as follows:
1. Dividem inputs into two setsA andB of size y =

⌊
q
2

⌋
(
⌊

2m
q+1

⌋
+

1) and x = m− y, respectively.
2. Group the y inputs into u =

⌈
y

q−dq/2e
⌉

disjoint groups, where
each group holds

⌈
q−1
2

⌉
inputs. (We consider each of the u (=⌈

y
q−dq/2e

⌉
) disjoint groups as a single input that we call the derived

input. By making u disjoint groups1 (or derived inputs) of y inputs
of the set A, we turn the case of any odd value of q to a case where
a reducer can hold only three inputs, the first two inputs are pairs
of the derived inputs and the third input is from the set B.)
3. Organize (u − 1) ×

⌈
u
2

⌉
reducers, each of capacity q, in the

form of u − 1 teams of
⌈
u
2

⌉
reducers in each team. Assign every

two groups to one of (u − 1) ×
⌈
u
2

⌉
reducers. To do so, we will

prove the following Lemma 1, and its proof is omitted from here
due to space and given in [1].

Lemma 1 Each pair of u = 2i, i > 0, inputs can be assigned
to 2i − 1 teams of 2i−1 reducers in each team, where the reducer
capacity is q and the size of each input is

⌈
q−1
2

⌉
.

4. Once every pair of the derived inputs are assigned, then assign
ith input of the set B to all the reducers of ith team.
5. Apply (the above mentioned) steps 1-4 on the set B until there
is a solution to the A2A mapping schema problem for the x inputs.
Algorithm description. Algorithm 1 provides a solution to the A2A
mapping schema problem for unit-sized inputs when q is an odd
number. First, we divide m inputs into two sets A and B. Then,
we make u =

⌈
y

q−dq/2e
⌉

disjoint groups of y inputs of the set A
such that each group holds q−1

2
inputs, lines 1, 2. (Now, each of

the groups is considered as a single input that we call the derived
1We suppose that u is a power of 2. In case u is not a power of
2 and u > q, we add dummy inputs each of size

⌈
q−1
2

⌉
so that u

becomes a power of 2. Consider that we require d dummy inputs.
If groups of inputs of the set B each of size

⌈
q−1
2

⌉
are less than

equal to d dummy inputs, then we use inputs of the set B in place
of dummy inputs, and the set B will be empty.

input.) We do not show the addition of dummy inputs and assume
that u is a power of 2. Function 2_step_odd_q(lower, upper)
recursively divides the derived inputs into two halves, line 4.
Function Assignment(lower ,mid , upper) (line 8) pairs every
two derived inputs and assigns them to the respective reducers
(line 10). Each reducer of the last team is assigned using function
Last_Team(groupA[]), lines 14, 15.

Note that functions 2_step_odd_q(lower, upper),
Assignment(lower ,mid , upper), and
value_b(lower, t,mid, upper) take two common parameters,
namely lower and upper where lower is the first derived
input and upper is the last derived input (i.e., uth group) at
the time of the first call to functions, line 3. Once all-pairs of
the derived inputs are assigned to reducers, line 10, function
Assign_input_from_B(Team[]) assigns ith input of the set
B to all the

⌈
u
2

⌉
reducers of ith team, lines 16, 17. After that,

algorithm is invoked over inputs of the set B to assign each pair of
the remaining inputs of the set B to reducers until every pair to the
remaining inputs is assigned to reducers.
Algorithm correctness. The algorithm correctness proves that every
pair of inputs is assigned to reducers. Specifically, we prove that all
those pairs of inputs, 〈i, j〉 and 〈i′, j′〉, of the set A are assigned to
a team whose i 6= i′ and j 6= j′ (Claim 1). Then that all the inputs
of the set A appear exactly once in each team (Claim 2). We then
prove that the setB holds x ≤ y−1 inputs, when q = 3 (Claim 3).
At last we conclude in Theorem 8 that Algorithm 1 assigns each
pair of inputs to reducers.

Note that we are proving all the above mentioned claims for
q = 3; the cases for q > 3 can be generalized trivially where we
make u =

⌈
y

q−dq/2e
⌉

derived inputs from y inputs of the set A
(and assign in a manner that all the inputs of the A are paired with
all the remaining m− 1 inputs).

Claim 1 Pairs of inputs 〈i, j〉 and 〈i′, j′〉, where i 6= i′ or j 6= j′,
of the set A are assigned to a team.

PROOF. First, consider i = i′ and j 6= j′, where 〈i, j〉 and
〈i′, j′〉 must be assigned to two different teams. If j 6= j′, then
both the j values may have an identical value of lower and mid
but they must have two different values of t (see lines 12, 13 of
Algorithm 1), where j = lower + t + mid or j = lower + t.
Thus, for two different values of j , we use two different values of
t, say t1 and t2, that results in an assignment of 〈i, j〉 and 〈i′, j′〉
to two different teams t1 and t2, (note that teams are also selected
based on the value of t, (y − 2 · mid + 1) + t, see line 10 of
Algorithm 1, where for q = 3, we have u = y). Suppose now that
i 6= i′ and j = j′, where 〈i, j〉 and 〈i′, j′〉 must be assigned to two
different teams. In this case, we also have two different values of
t, and hence, two different t values assign 〈i, j〉 and 〈i′, j′〉 to two
different teams ((y − 2 ·mid+ 1) + t, line 10 of Algorithm 1).

Hence, it is clear that pairs 〈i, j〉 and 〈i′, j′〉, where i 6= i′ and
j 6= j′, are assigned to a team.

Claim 2 All the inputs of the set A appear exactly once in each
team.

PROOF. There are the same number of pairs of inputs of the set
A and the total number of reducers ((y − 1)

⌈
y
2

⌉
) that can provide

a solution to the A2A mapping schema problem for the y inputs of
the set A. Note that if there is a input pair 〈i, j〉 in team t, then the
team t cannot hold any pair that has either i or j in the remaining⌈
y
2

⌉
− 1 reducers. For the given y inputs of the set A, there are at

most
⌈
y
2

⌉
disjoint pairs 〈i1, j1〉, 〈i2, j2〉, . . ., 〈idy/2e, jdy/2e〉 such

that i1 6= i2 6= . . . 6= idy/2e 6= j1 6= j2 6= . . . 6= jdy/2e. Hence,

34

Algorithm 1: 2-step algorithm for an odd value of q.
Inputs:
m: total number of unit-sized inputs
q: the reducer capacity.
Variables:
A: A set A, where the total inputs in the set A is y =

⌊
q
2

⌋
(
⌊

2m
q+1

⌋
+ 1).

B: A set B, where the total inputs in the B is x = m− (
⌈

y
q−dq/2e

⌉
− 1).

Team[i, j] : represents teams of reducers, where index i indicates ith team and index j indicates jth reducer in ith team. Consider
u =

⌈
y

q−dq/2e
⌉
. There are u− 1 teams of v =

⌈
u
2

⌉
reducers in each team.

groupA[] : represents disjoint groups of inputs of the set A, where groupA[i] indicates ith group of
⌈
q−1
2

⌉
inputs of the A.

1 Function create_group(y) begin
2 for i← 1 to u do groupA[i]← 〈i, i+ 1 . . . , i+ q−1

2
− 1〉, i← i+ q−1

2
;

3 2_step_odd_q(1, u), Last_Team(groupA[]), Assign_input_from_B(Team[])

4 Function 2_step_odd_q(lower, upper) begin
5 if

⌊
upper−lower

2

⌋
< 1 then return;

6 else
7 mid←

⌈
upper−lower

2

⌉
, Assignment(lower ,mid , upper), 2_step_odd_q(lower,mid), 2_step_odd_q(mid+ 1, upper)

8 Function Assignment(lower ,mid , upper) begin
9 while mid > 1 do

10 foreach (a, t) ∈ [lower, lower +mid− 1]× [0,mid− 1] do
Team

[
(u− 2 ·mid+ 1) + t, a−

⌊
a−1
mid

⌋
· mid

2

]
← 〈groupA[a], groupA[value_b(a, t,mid, upper)]〉 ;

11 Function value_b(a, t,mid, upper) begin
12 if a+ t+mid < upper + 1 then return (a+ t+mid) ;
13 else if a+ t+mid > upper then return (a+ t) ;

14 Function Last_Team(lower ,mid , upper) begin
15 foreach i ∈ [1, v] do Team[u− 1, i]← groupA[2× i− 1], groupA[2× i] ;

16 Function Assign_input_from_B(Team[]) begin
17 foreach (i, j) ∈ [1, u− 1]× [1, v] do Team[i, j]← B[i] ;

all y inputs of the set A are assigned to a team, where no input is
assigned twice in a team.

Claim 3 When the reducer capacity q = 3, the setB holds at most
x ≤ y − 1 inputs.

PROOF. Since a pair of inputs of the setA requires at most q−1
capacity of a reducer and each team holds all the inputs of the set
A, an input from the set B can be assigned to all the reducers of
the team. In this manner, all the inputs of the set A are also paired
with an input of the set B. Since there are y − 1 teams and each
team is assigned an input of the set B, the set B can hold at most
x ≤ y − 1 inputs.

Theorem 8 Algorithm 1 assigns each pair of the givenm inputs to
reducers.

PROOF. We have (y − 1)
⌈
y
2

⌉
pairs of inputs of the set A of

size q − 1, and there are the same number of reducers; hence, each
reducer can hold one input pair. Further, the remaining capacity
of all the reducers of each team can be used to assign an input of
B. Hence, all the inputs of A are paired with every other input and
every input of B (as we proved in Claims 2 and 3). Following the
fact that the inputs of the set A are paired with all the m inputs, the
inputs of the set B is also paired by following a similar procedure
on them. Thus, Algorithm 1 assigns each pair of the givenm inputs
to reducers.

Theorem 9 Algorithm 1 requires at most (
⌈

2m
(q−1)

⌉
)2/2 reducers

and results in at most m
(⌈

2m
(q−1)

⌉
− 1
)

communication cost.

PROOF. There are at most x =
⌈

2m
q−1

⌉
groups (derived inputs)

of the given m inputs. In order to assign each pair of the
derived inputs, each derived input is required to assign to at most
x − 1 reducers. This fact results in at most m

(⌈
2m

(q−1)

⌉
− 1

)

communication cost, and there are at most (
⌈

2m
(q−1)

⌉
)2/2 pairs of

the derived inputs that require at most (
⌈

2m
(q−1)

⌉
)2/2 reducers.

Algorithm 2: 2-step algorithm when the reducer capacity q is
an even number. We present our algorithm (see Algorithm 2) that
handles any even value of q. For the sake of understanding and
presentation, we first present an example where q = 4, namely the
case in which a reducer can hold at most four unit-sized inputs, as
demonstrated in Figure 8 (Figure 8 is self-explainable; however,
interested readers may refer to Figure 12 in [1] for details). Note
that unlike the algorithm for odd values of q (Algorithm 1) the
algorithm for even values of q (Algorithm 2) does not divide the
m inputs into two sets. The algorithm consists of two steps, as
follows:
1. Group the given m inputs into u =

⌈
2m
q

⌉
disjoint groups,

2. Organize (u−1)× u
2

reducers, each of capacity q, in the form of
u− 1 teams of u

2
reducers in each team. Assign every two groups

to one of (u−1)× u
2

reducers. We use Lemma 1 for the assignment
of every two groups.

Note that we consider each of the u (=
⌈
2m
q

⌉
) groups as a

single input that we call the derived input. By making u disjoint
groups of the m inputs, we turn the case of any even value of q
to a case when q = 2 (i.e., a reducer can hold only two unit-sized
inputs) and assign every two derived inputs to reducers. In this

35

Team 1

I = {1, 2, . . . , 16} 1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 14 15, 16

1, 2 9, 10

3, 4 11, 12

5, 6 13, 14

7, 8 15, 16

Team 2

1, 2 11, 12

3, 4 13, 14

5, 6 15, 16

7, 8 9, 10

Team 3

1, 2 13, 14

3, 4 15, 16

5, 6 9, 10

7, 8 11, 12

Team 4

1, 2 15, 16

3, 4 9, 10

5, 6 11, 12

7, 8 13, 14

Team 5

1, 2 5, 6

3, 4 7, 8

9, 10 13, 14

11, 12 15, 16

Team 6

1, 2 7, 8

3, 4 5, 6

9, 10 15, 16

11, 12 13, 14

Team 7

1, 2 3, 4

5, 6 7, 8

9, 10 11, 12

13, 14 15, 16

8 groups

1

Figure 8: 2-step algorithm (Algorithm 2) when the reducer capacity q = 4.

Algorithm 2: 2-step algorithm for an even value of q.
Inputs: m: total number of unit-sized inputs.
q: the reducer capacity.
Variables: Team[i, j] : represents teams of reducers, where index
i indicates ith team and index j indicates jth reducer in ith team.
Consider u =

⌈
2m
q

⌉
. There are u− 1 teams of

⌈
u
2

⌉
reducers in

each team.
groupA[] : represents disjoint groups of inputs of the set A, where
groupA[i] indicates ith group of

⌈
q
2

⌉
inputs of the set A.

1 Function create_group(m) begin
2 for i← 1 to u do

groupA[i]← 〈i, i+ 1 . . . , i+ q
2
− 1〉, i← i+ q

2
;

3 2_step_even_q(1, u), Last_Team(1 ,
⌈
u−1
2

⌉
, u)

4 Function 2_step_even_q(lower, upper) begin
5 if

⌊
upper−lower

2

⌋
< 1 then return;

6 else
7 mid←

⌈
upper−lower

2

⌉
,

Assignment(lower ,mid , upper),
2_step_even_q(lower,mid),
2_step_even_q(mid+ 1, upper),

manner, each input of the set A is assigned with all the remaining
m− 1 inputs.
Algorithm description. Algorithm 2 provides a solution to the
A2A mapping schema problem for unit-sized inputs when q is
an even number. Recall that Algorithm 1 and Algorithm 2 are
almost similar except Algorithm 2 does not create two sets A
and B. We first make u =

⌈
2m
q

⌉
disjoint groups of the given

m inputs such that each group holds q
2

inputs (lines 2), (and
consider each of the groups as a single input, the derived input).
Function 2_step_even_q(lower, upper) recursively divides the
derived inputs into two halves, lines 4 and 7. Function
Assignment(lower ,mid , upper) (line 7) is a similar function as
given for Algorithm 1 (see line 8 of Algorithm 1) and makes
pairs of every two derived inputs. Function Last_Team(group[])
(lines 3) assigns inputs to the last team, i.e., team u− 1. Note that
function Last_Team(group[]) is same as given for Algorithm 1
(see line 14 of Algorithm 1).
Algorithm correctness. We show that every pair of inputs is
assigned to reducers. Specifically, Algorithm 2 satisfies two claims,
as follows:

Claim 4 Pairs of derived inputs 〈i, j〉 and 〈i′, j′〉, where i 6= i′ or
j 6= j′, are assigned to a team.

Claim 5 All the given m inputs appear exactly once in each team.

Theorem 10 Algorithm 2 assigns each pair of the given m inputs
to reducers.

Theorem 11 Algorithm 2 requires at most (
⌈
2m
q

⌉
)2/2 reducers

and results in at most m
(⌈

2m
q

⌉
− 1
)

communication cost.

Claim 4, Claim 5, Theorems 10, and 11 can be proved in
a similar manner as Claim 1, Claim 2, Theorems 8, and 9,
respectively. Detailed proofs are given in [1].

4.2 A big input of size greater than q
2

We now consider the case of an input of size wi, q
2
< wi < q;

we call such an input as a big input. Note that if there are two
big inputs, then they cannot be assigned to a single reducer, and
hence, there is no solution to the A2A mapping schema problem.
We assume m inputs of different sizes are given. There is a big
input and all the remaining m − 1 inputs, which we call the small
inputs, have at most size q − wi.

We use FFD or BFD bin-packing algorithm to place the small
inputs to bins of size q −wi. Now, we consider each of the bins as
a single input of size q − wi. Let x bins are used. We assign each
of the x bins to one reducer with a copy of the big input. Further,
we assign the small inputs to bins of size q

2
, and consider each of

such bins as a single input of size q
2

. Now, we can assign each pair
of bins (each of size q

2
) to reducers. In this manner, each pair of

inputs is assigned to reducers.

Theorem 12 (Upper bounds from the heuristic) For a set of m
inputs where a big input, i, of size q

2
< wi < q and for a given

reducer capacity q, q < s′ < s, an input is replicated to at most
m−1 reducers for the A2A mapping schema problem, and the total
number of reducers and the total communication cost are at most
m−1+ 8s2

q2
and (m−1)q+ 4s2

q
, respectively, where s′ is the sum

of all the input sizes except the size of the big input and s is the sum
of all the input sizes.

PROOF. The big input i can share a reducer with inputs whose
sum of the sizes is at most q − wi. In order to assign the input i
with all the remaining m − 1 small inputs, it is required to assign
a subset of m− 1 inputs whose sum of the sizes is at most q −wi.
If all the small inputs are of size almost q − wi, then a reducer can
hold the big input and one of the small inputs. Hence, the big input
is required to be sent to at most m − 1 reducers that results in at
most (m− 1)q communication cost.

Also, each pair of all the small inputs is assigned to reducers
(by first placing them to bins of size q

2
using FFD or BFD

bin-packing algorithm). The assignment of all the small inputs
results in at most 8s′2

q2
< 8s2

q2
reducers and at most 4s′2

q
< 4s2

q

communication cost (Theorem 5). Thus, the total number of

36

reducers are at most m − 1 + 8s2

q2
and the total communication

cost is at most (m− 1)q + 4s2

q
.

5. A HEURISTIC FOR THE X2Y MAPPING
SCHEMA PROBLEM

We propose a heuristic for the X2Y mapping schema problem that is
based on bin-packing algorithms. The proposed heuristic assumes
a fixed reducer capacity q. Two sets, X of m inputs and Y of n
inputs, are given. We assume that the sum of input sizes of the sets
X , denoted by sumx, and Y , denoted by sumy , is greater than q.
We analyze the heuristic on criteria given in Section 4. We look at
the lower bounds in Theorems 13 and 14, and Theorem 15 gives an
upper bound from a heuristic. The bounds are given in Table 1.

Theorem 13 (Replication of individual inputs) For a setX ofm
inputs, a set Y of n inputs, and a given reducer capacity q, an input
i of the setX is required to be sent to at least sumy

q
reducers and an

input j of the set Y is required to be sent to at least sumx
q

reducers
for a solution to the X2Y mapping schema problem.

Theorem 14 (The total communication cost and number of
reducers) For a set X of m inputs, a set Y of n inputs, and a
given reducer capacity q, the total communication cost and the
total number of reducers, for the X2Y mapping schema problem,
are at least 2·sumx·sumy

q
and 2·sumx·sumy

q2
, respectively.

Bin-packing-based heuristic for the X2Y mapping schema
problem. A solution to the X2Y mapping schema problem
for different-sized inputs can be achieved using bin-packing
algorithms. Let a fixed reducer capacity q, two sets X of m inputs,
and Y of n inputs are given. The heuristic will not work when a
set holds an input of size wi and the another set holds an input of
size greater than q − wi, because these inputs cannot be assigned
to a single reducer in common. Let the size of the largest input, i,
of the set X is wi; hence, all the inputs of the set Y have at most
size q−wi. We place inputs of the set X to bins of size wi, and let
x bins are used to place m inputs. Also, we place inputs of the set
Y to bins of size q − wi, and let y bins are used to place n inputs.
Now, we consider each of the bins as a single input, and a solution
to the X2Y mapping schema problem is obtained by assigning each
of the x bins with each of the y bins to reducers. In this manner,
we require x · y reducers.

Theorem 15 (Upper bounds from the heuristic) For a bin size b,
a given reducer capacity q = 2b, and with each input of sets X
and Y being of size at most b, the total number of reducers, the
replication of an individual input of the set X (resp. Y), and the
total communication cost, for the X2Y mapping schema problem,
are at most 4·sumx·sumy

b2
, at most 2·sumy

b
(resp. at most 2·sumx

b
),

and at most 4·sumx·sumy

b
, respectively.

Proofs of Theorems 13, 14, and 15 are given in [1].

6. CONCLUSION
Two new important practical aspects in the context of MapReduce,
namely different-sized inputs and the reducer capacity, are
introduced for the first time. The capacity of a reducer is defined in
terms of the reducer’s memory size. We note that processing time
is typically proportional to the memory capacity. All reducers have
an identical capacity, and any reducer cannot hold inputs whose

input sizes are more than the reducer capacity. We demonstrated
the importance of the capacity aspect by considering two common
mapping schema problems of MapReduce, A2A mapping schema
problem – every two inputs are required to be assigned to at least
one common reducer – X2Y mapping schema problem – every two
inputs, the first input from a set X and the second input from a
set Y – is required to be assigned to at least one common reducer.
Unfortunately, it turned out that finding solutions to the A2A and
the X2Y mapping schema problems that use the minimum number
of reducers is not possible in polynomial time. On the positive
side, we present near optimal heuristics for the A2A and the X2Y
mapping schema problems.

7. REFERENCES
[1] F. Afrati, S. Dolev, E. Korach, S. Sharma, and J. D. Ullman.

Assignment problems of different-sized inputs in
MapReduce. Technical Report 14-05, Department of
Computer Science, Ben-Gurion University of the Negev,
2014. Also appears as a Brief Announcement in International
Symposium on Distributed Computing (DISC) 2014.

[2] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman.
Upper and lower bounds on the cost of a map-reduce
computation. PVLDB, 6(4):277–288, 2013.

[3] F. N. Afrati and J. D. Ullman. Matching bounds for the
all-pairs MapReduce problem. In IDEAS, pages 3–4, 2013.

[4] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs
similarity search. In Proceedings of the 16th international
conference on World Wide Web, pages 131–140, 2007.

[5] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson.
Approximation algorithms for NP-hard problems. chapter
Approximation algorithms for bin packing: a survey, pages
46–93. PWS Publishing Co., 1997.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, pages 137–150, 2004.

[7] M. T. Goodrich. Simulating parallel algorithms in the
MapReduce framework with applications to parallel
computational geometry. CoRR, abs/1004.4708, 2010.

[8] D. S. Johnson. Near-optimal bin packing algorithms. PhD
thesis, Massachusetts Institute of Technology, 1973.

[9] D. R. Karger and J. Scott. Efficient algorithms for
fixed-precision instances of bin packing and euclidean tsp. In
APPROX-RANDOM, pages 104–117, 2008.

[10] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for MapReduce. In SODA, pages 938–948,
2010.

[11] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of
massive datasets. Cambridge University Press, 2014.

[12] A. Pietracaprina, G. Pucci, M. Riondato, F. Silvestri, and
E. Upfal. Space-round tradeoffs for MapReduce
computations. In ICS, pages 235–244, 2012.

[13] J. D. Ullman. Designing good MapReduce algorithms. ACM
Crossroads, 19(1):30–34, 2012.

[14] R. Vernica, M. J. Carey, and C. Li. Efficient parallel
set-similarity joins using MapReduce. In SIGMOD
Conference, pages 495–506, 2010.

[15] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity
joins for near duplicate detection. In Proceedings of the 17th
international conference on World Wide Web, pages
131–140, 2008.

37

Lower Bounds on the Communication of XPath queries in
MapReduce∗

Foto Afrati
National Technical University

of Athens, Greece

Matthew Damigos
Ionian University, Greece

Manolis Gergatsoulis
Ionian University, Greece

ABSTRACT
We present two algorithms, each depending on a different
data fragmentation of the XML tree. They both compute
XPath queries in MapReduce, by first computing subqueries
and then combining their results. We compute the replica-
tion rate of each algorithm and show it is less than 2.

1. INTRODUCTION
In this paper, we study how to use MapReduce to compute
XPath queries on large XML files. We focus on optimizing
the communication cost. It is known that the sequential
complexity of evaluating XPath queries on XML trees falls
into lower complexity classes with high parallelizable prob-
lems [3]. The tree structure of both the data and the query
facilitate the low sequential complexity. However, when it
comes to using a distributed computational environment to
evaluate such queries, and especially when using the MapRe-
duce framework, rigorous work that optimizes the significant
performance measures is missing. In starting such an inves-
tigation, first we note that, unlike relational databases, XML
files have a hierarchical structure that makes distribution to
compute-nodes special, in that chunks of data in HDFS are
already structured. This structure can be used already in
the mappers to compute partial answers to the query [9, 10,
6, 7, 5]. Another approach (which is not discussed in this
work) would be to view the data as a collection of one binary
relation and a set of unary relations which are distributed to
the compute-nodes (mappers) randomly, thus the tree struc-
ture of the data cannot be used. This approach however does
not seem to have an obvious advantage – although it may
be worth being investigated rigoursly in order to figure out
its limits.

Communication cost is the size of data transferred among
the compute-nodes during a MapReduce job and it affects
performance. Communication cost per input is the replica-

∗This research was supported by the project “Handling Un-
certainty in Data Intensive Applications”, co-financed by the
European Union (European Social Fund - ESF) and Greek
national funds, through the Operational Program ”Educa-
tion and Lifelong Learning”, under the research funding pro-
gram THALES.

c©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0

tion rate [4] (one node counts as one input).

In this paper, we give lower bounds on the replication rate
for XPath queries on XML trees, taking into account a limit
on the size of each compute-node. The size of a compute-
node is the number of XML tree nodes stored. The lower
bounds we derive for each round are smaller than 2. Actu-
ally we give proof of the validity of these lower bounds, by
providing an algorithm that achieves this replication rate.

The algorithms presented here use more than one rounds
of MapReduce. In the first round, the data are distributed
to the compute nodes and subqueries are computed. The
next round(s) combine the partial results of the subqueries
to compute the final result. For each of the algorithms
we assume a different fragmentation of the XML tree. We
do not discuss how to implement this fragmentation, which
would be necessary for these algorithms to derive also upper
bounds on the replication rate.

In particular we present two algorithms, one in Sec. 3, where
we do the assumption that a path from the root to any leaf
of the XML tree fits in one compute-node, so descendant
edges of the query are accommodated. The other algorithm
(Sec. 4) accommodates descendant edges in the next rounds
after partial descendant-free subqueries are evaluated.

2. PRELIMINARIES
2.1 XML trees and XPath Queries
Consider a directed, rooted, labeled tree t, where its labels
come from an infinite set Σ. We denoteN (t) and E(t) the set
of nodes and edges, respectively, of t, and we write label(n)
to denote the label of a node n of t. The number d of
edges of the unique path through which n is reachable from
root of t is said to be the depth of n. We define children
and descendants of a node if there is an edge or a path,
respectively.

We consider two types of trees, those that represent XML
documents and those that represent XPath queries. An
XML document is represented by a tree (also called XML
tree) having labels from Σ on its nodes. XPath queries are
different from XML trees in three aspects. First, the labels of
a query come from the set Σ∪{∗}, where ∗ is the “wildcard”
symbol. Second, a query P has two types of edges: E/(P)
is the set of child edges (represented by a single line) and
E//(P) is the set of descendant edges (represented by a dou-
ble line). Third, a non-Boolean query P has an output node,

38

denoted by out(P), and is represented by a circled node. A
Boolean XPath query does not have any output node. With-
out loss of generality, we will only consider Boolean queries
here. A subquery of Q is a single XPath query having a
subset of both the nodes and the edges of Q. Furthermore,
given an XML tree t and a node n of t, we say that the tree
rooted at n is a subtree of t. A subquery is Boolean or has
the same output as the query if the output node is in the
subquery.

The result of applying a query Q on an XML tree t is based
on a set of mappings from the nodes of Q to the nodes
of t, called embeddings. An embedding from Q to t is a
mapping e : N (Q) → N (t) with the following properties:
(1) Root preserving: e(root(Q)) = root(t), (2) Label pre-
serving: For all nodes n ∈ N (Q), either label(n) = ∗ or
label(n) = label(e(n)), (3) Child preserving: For all edges
(n1, n2) ∈ E/(Q), we have that (e(n1), e(n2)) ∈ E(t), and
(4) Descendant preserving: For all edges (n1, n2) ∈ E//(Q),
the node e(n2) is a proper descendant of the node e(n1).

The result Q(t), now, of applying a non-Boolean query Q
on a tree t is formally defined as follows:

Q(t) = {e(out(Q))|e is an embedding from Q to t)}.
If Q is a Boolean query then the result Q(t) is “true”, only
if there is an embedding from Q to t. A partial embedding
of the query is an embedding of a subtree of the query on
the data tree.

According to Dewey encoding system [1], a unique identifier
of the form x0.x1.x2.xd can be assigned to each node n
of an XML tree. These labels help to decide whether one
node is descendant of another (if and only if the Dewey label
of the latter is a prefix of the Dewey label of the former), or
what is the distance between nodes on the XML tree.

2.2 MapReduce
We will assume that the reader is familiar with MapReduce
(details can be found in [2]). However, we need to explain
our setting. Typically, each MapReduce job has a map phase
and a reduce phase. If we have a sequence of such jobs, then
the reducers of the first job send their data to the map-
pers of the second job, etc. However, the reducers of the
first job may act also as mappers of the second job (if it
is convenient for the problem at hand) and thus, distribute
the data themselves to the reducers of the second job. This
is the approach we take here. Hence, we will talk about
compute-nodes, instead of distinguishing between mappers
and reducers. There is another unconventionality we adopt.
Since we use the algorithms we present to argue for lower
bounds on the replication rate, we assume that the mappers
of the first job have the ability to send any subtree of the
XML to the first reducers. This is not totally unrealistic,
since many experiments on XML data do a similar fragmen-
tation as ours, because it is a natural way to obtain XML
data from HDFS.

3. XML TREE OF SHORT DEPTH
In this section, we consider XML trees where the root-to-
leafs paths fit into main memory of compute-nodes; i.e., the
size of each compute-node is larger than the depth of the
XML tree.

3.1 Data Fragmentation
The fragmentation of the XML tree is done so that in each
compute-node we include one subtree of the data tree. Each
subtree is rooted in some data node u and all its leaves are
leaves of the data tree. We also include the path from the
root of the XML tree to u. As we will prove later, including
this path adds little extra cost to the replication rate – while,
apparently, prunes more nodes.

3.2 Computing and Combining Subqueries
We name the nodes of the query tree by ni, i = 1, 2,
E.g., in Figure 1, the tree on the left is an XPath query with
23 nodes.

Definition 1. If there is a partial embedding from the
query to the XML tree that maps node ni of the query to
node u of the data tree such that all the descendants of ni

participate (are mapped on some data node) in the partial
embedding, then we say that node u is a ni-node.

Note that the same node can be both a ni-node and nj-
node, for distinct i and j. Thus, by considering partial em-
beddings, we say that we create adorned nodes, where the
adornment is a nonempty set of nodes from the query tree.
Hence, if ni is in the adornment set of a data node mj then
mj is a ni-node.

After distributing the data, each compute-node calculates
partial embeddings of the query and finds maximal ni-nodes,
for all i, i.e., the parent of a maximal ni-node is not a nj-
node where nj is the parent of ni on the query tree.

We only distribute to the compute-nodes of second round a)
the adorned nodes which have at least one maximal adorn-
ment in their adornment set and b) all their ancestors (re-
member they are in the same compute-node). If we can
afford to send all such data nodes to one compute-node,
then we begin to adorn more nodes as follows: If a node u
with a non maximal adornment ni has children, each child
with adornment nij , for all the nij , j = 1, 2, . . . children of
the query node ni, then we maximally adorn u with ni. We
terminate this procedure when we find no more nodes to
maximally adorn.

If we decide to apply multiple rounds to combine the partial
results from the first round, then use the following observa-
tion:

• We call a node candidate ni-node if some of its children
are adorned accordingly maximally.

• If a data node u is a candidate ni-node then all its
maximally adorned children must meet in the same
compute-node in the next round (otherwise “progress”
is not made).

The above multi-round distribution is feasible because we
do in each compute-node a special kind of deduplication, so
that it never emits two siblings with the same adornment.
Now, in the following subsection we calculate the replication
rate that results from the kind of data fragmentation we

39

do. This calculation applies to both the data fragmentation
method in this section and to each of the next necessary
rounds that combine the subqueries, since in all cases we
distribute similarly structured data (only less, when non-
adorned nodes are not distributed).

3.3 Analysis of replication rate
We examine the replication rate of the phase where we dis-
tribute the data to the compute-nodes. We analyze in detail
two special cases in this section.

3.3.1 Two level XML tree with high degree
Here, we assume that the XML tree has a root with m0

children and each child ci of the root has qmi children itself,
where q is the size of a compute-node. These are all leaves
of the XML tree. Thus the XML tree T has n = 1 + m0 +
qΣm0

1 mi nodes in total. For convenience in the calculations
below, we assume that each compute-node has size q + 2.

Each compute-node is identified by a number from 1 to M =
Σm0

1 mi. We send each child of the root ci to mi compute-
nodes and each leaf to one compute-node. We send the root
to all the compute-nodes. The total number of compute-
nodes we use is Σm0

1 mi.

In particular child ci is sent to a number of compute-nodes
with identifiers (here i can be thought of as the second dot
in the Dewey label):

x+ Σi−1
j=1mj , x = 1, 2, . . . ,mi

Each leaf li is sent only to one compute-node. The commu-
nication cost is:

C = Σm0
1 mi + Σm0

1 mi + qΣm0
1 mi

The first term corresponds to the root, the second term to
the children of the root and the final term to the leaves. The
replication rate is r = C/n. Since m0 ≤ Σm0

1 mi, it is easy
to prove that r ≤ 1 + 1

q
.

3.3.2 XML tree being a full binary tree
Here, we assume the XML tree is a full binary tree with n
nodes. Since we have assumed that the size q of a compute-
node is larger than the length of the path from the root to
a leaf, we have here that q > logn. Again for convenience
in the calculations, we assume that the compute-node size
is q + logn− log q with q > logn.

In this case, each compute-node gets a whole subtree (with
its leaves being all leaves of the XML tree) of size q. Thus
the depth of this subtree is log q. The nodes in the XML tree
that are closer to the root than logn − log q are replicated
a number of times. In particular, the nodes at distance
logn − log q − i (i = 1, . . . , logn − log q − 1) from the root
are replicated 2i times. Thus communication for each level
(distance from root) is:

2logn−log q−i × 2i = 2logn−log q =
n

q

Hence the total communication cost is:

(n− n

q
) +

n

q
× (logn− log q)

The first term counts for the nodes that are replicated once.
By dividing the above by n, replication rate is

(1− 1

q
) +

1

q
× (logn− log q)

This is approximately logn/q. Since the assumption is that
a path from the root to any leaf of the XML tree fits in one
compute-node, log n < q.

3.3.3 General Remarks
In order to calculate the replication rate in the general case
we combine the intuition from the two cases we analyzed
in detail. The calculation is based on the following remark
for the case where all roots (call them primary roots) in the
data tree that define compute-nodes are in the same level
(as in the cases we studied in detail, e.g., full binary tree).
We believe that this remark can be extended for the general
case too.

• The total communication cost for all nodes at any level
is the same.

In order to prove this remark, we consider a node in the data
tree that is a parent of some primary root. This node adds
as much to the communication cost as add all its children,
because it is sent to exactly all compute-nodes its children
are sent (and no two children are sent to the same compute-
node).

4. TALL XML TREES
Here we assume that a root-leaf path may not fit in one
compute-node but a neigborhood of radius dQ in the XML
tree can fit, where dQ is the maximum acceptable depth of
a descendant-free (to be defined shortly) subquery.

4.1 Data fragmentation
Consider an XML tree t of depth dt. Since there are root-to-
leaf paths that cannot fit into main memory of the compute-
nodes, we aim to split the root-to-leaf paths. Considering a
positive number m (which will depend on compute-node size
q), we construct a set of fragments for each i = 1, . . . , d dt

m
e

which contains each tree node whose depth is included in
the range [(i − 1) dt

m
, i dt

m
+ dQ]. Furthermore, notice that

every two adjacent fragments overlap. In particular, the ith

fragment contains the top dQ nodes from the set i+1, where
i = 1, . . . , d(dt

m
)e. This overlap ensures that each subquery

given by the decomposition described in next section can be
completely answered in some fragment.

4.2 Computing and Combining Subqueries
Definition 2. Let Q be a query tree and E//(Q) be the

set of descendant edges of Q. Then the descendant-free sub-
queries of Q are the queries obtained by eliminating the de-
scendant edges from Q. We denote the set of the descendant-
free subqueries of a query Q as C(Q).

It is easy to see that for each descendant edge d = (n1, n2)
in E//(Q), there is a pair of queries Q1, Q2 in CQ such that
n2 is the root node of Q2 while n1 is a leaf node of Q1.

Here we need some more definitions. A node n of a subquery
Q′ in C(Q), such that there exists a descendant edge (n,m)

40

n1

n3 n4n2

n5

n10 n11

n8

n14

n9n7n6

n21

n15

n16

n12

(Q)

n13

n17 n18 n19 n20 n22 n23

n1

n3 n4n2

n5

n10 n11

n8

n14

n9n7n6

n21

n15

n16

n12

(Q1)

n13

n17 n18 n19 n20
n22 n23

(Q3)

(Q2)

(Q4)

(Q5)

(Q6)

Figure 1: A query Q and its descendant-free subqueries Q1, Q2, Q3, Q4, Q5, and Q6.

in Q, is called a border node of Q′. The set of border nodes
of Q′ is denoted by N//(Q′). A descendant-free subquery Q′

that does not contain border nodes is a leaf subquery while a
subquery that contains a border node is said to be a non-leaf
subquery.

Example 1. A query tree Q and the set of descendant-free
trees C(Q) = {Q1, Q2, Q3, Q4, Q5, Q6}, obtained by its
decomposition appear in Figure 1. The set of border nodes
of Q is N//(Q) = {n1, n2, n6, n9}. Q3, Q4, Q5 and Q6 are
leaf subqueries while Q1 and Q2 are non-leaf subqueries.

Definition 3. Let t be an XML tree, Q be a query and
C(Q) = {Q1, Q2}. Assume that N (Q1) = q0 and q1 =
root(Q2). Let e1 be an embedding from Q1 to t such that
q0 maps on data node u and e2 be an embedding from Q2

to t such that q1 maps on data node v. Suppose that v is a
descendant of u. The composition of e1 and e2, denoted as
e1 ◦ e2, is a mapping e from N (Q) to t such that for each
n ∈ N (Q1) then e(n) = e1(n), otherwise e(n) = e2(n).

Evaluation Strategy 1. The query evaluation strategy con-
sists in the following three steps:

1. Decompose the query Q into a set of descendant-free
subqueries C(Q).

2. Evaluate separately each subquery in C(Q).

3. Combine appropriately (pairwise as per Definition 3)
the embeddings of the queries in C(Q) to find the em-
beddings of Q.

To combine appropriately the embeddings of the subqueries
in C(Q) we can follow either a multi-round approach or a
single-round approach. In the ith round of the multi-round
approach, we construct one compute-node for each image u
of the ith border node (proceeding bottom-up in that we first
consider border nodes that have descendant edges to roots of
trees without border nodes). We send to this compute-node
all the descendants of u (Dewey label is used here). The
trade-off between the two approaches is that the amount of
pairs received by a compute-node may exceed the size of
the compute-node; while following multi-round approach we
perform iterative pruning of the intermediate pairs and we
reduce the amount of the pairs sent to each compute-node
in each round.

4.3 Replication rate analysis
The replication rate is less than 2 during the data fragmenta-
tion, since some of the data are replicated only once and the
rest only twice. For the replication rate during the other
rounds, we assume again deduplication (in a similar sense
as in the first algorithm) in the first round. Thus, each
compute-node emits only one (of each nj-nodes set) descen-
dant of a specific data node. The Dewey labels are used to
recognize that. Hence we can assume again that all “rele-
vant” descendants of a specific data node fit in one compute-
node.

5. REFERENCES
[1] S. Abiteboul, I. Manolescu, P. Rigaux, M.-C. Rousset,

and P. Senellart. Web Data Management. Cambridge
University Press, 2011.

[2] J. Leskovec, A. Rajaraman, and J.D. Ullman. Mining
of massive datasets. Cambridge University Press, 2014.

[3] G. Gottlob, C. Koch, and R. Pichler The Complexity
of XPath Query Evaluation. PODS, 179–190, 2003.

[4] F. N. Afrati, A. D. Sarma, S. Salihoglu, J. D. Ullman.
Upper and Lower Bounds on the Cost of a Map-Reduce
Computation. PVLDB, 6(4):277–288, 2013

[5] N. Bidoit, D. Colazzo, N. Malla, F. Ulliana, M. Nolé,
and C. Sartiani. Processing xml queries and updates
on map/reduce clusters. In EDBT, pages 745–748,
2013.

[6] G. Cong, W. Fan, A. Kementsietsidis, J. Li, and
X. Liu. Partial evaluation for distributed XPath query
processing and beyond. ACM Trans. Database Syst.,
37(4):32:1–32:43, Dec. 2012.

[7] M. Damigos, M. Gergatsoulis, and S. Plitsos.
Distributed processing of xpath queries using
mapreduce. In ADBIS (2), pages 69–77, 2013.

[8] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[9] S. Khatchadourian, M. P. Consens, and J. Siméon.
Having a chuql at xml on the cloud. In AMW, 2011.

[10] L. Lewandowski. Using Map and Reduce for Querying
Distributed XML Data. MSc. Thesis, 2012.
http://www.inf.uni-konstanz.de/gk/pubsys/

publishedFiles/Lewandowski12.pdf.

41

Computing NFA Intersections in Map-Reduce

Gösta Grahne
Concordia University

Montreal, Canada, H3G 1M8
grahne@cs.concordia.ca

Shahab Harrafi
Concordia University

Montreal, Canada, H3G 1M8
s harraf@encs.concordia.ca

Ali Moallemi
Concordia University

Montreal, Canada, H3G 1M8
moa ali@encs.concordia.ca

Adrian Onet
Concordia University

Montreal, Canada, H3G 1M8
adrian onet@yahoo.com

1. INTRODUCTION
Nondeterministic Finite-state Automata (NFA) are

simple, yet powerful devices that model a plethora of
computationally oriented phenomena. One of the ad-
vantages of NFA’s is that they are closed under several
operations, such as concatenation, intersection, differ-
ence, and homomorphic images. This makes NFA’s ide-
ally suited for a modular approach, for instance in the
context of protocol design and web service composition.
A simple, but illustrative example of an e-commerce
application designed from components can be found in
Chapter 2 in [5]. The salient operation here is the in-
tersection of several finite state automata.

Problems relating to NFA’s have been widely stud-
ied in the literature. One of the main issues for the
NFA intersection problem is that the size of the out-
put NFA is the product of the size of all input NFA’s.
There is not much hope for improvement, since testing
for emptiness of the intersection of a set languages rep-
resented by NFA’s is known to be PSPACE-complete
[8]. The most commonly used algorithm for computing
the intersection NFA is to use the Cartesian construct
for product automata. If there are m input NFA’s each
having n states, the product NFA will have nm states.
It therefore would be important to come up with good
distributed algorithms for the problem.

Google introduced map-reduce as a parallel program-
ming model [4] that can work over large clusters of com-
modity computers. Map-reduce provides a high-level
framework for designing and implementing such paral-
lelism. A growing number of papers deal with map-
reduce algorithms for various problems, for instance re-
lated to graphs [12, 9, 3, 11], and related to relational
joins [2, 6, 7].

In this paper we investigate the problem of imple-
menting the Cartesian construct in map-reduce. We
follow the optimization approach of Afrati et al. [1] and
analyze the replication rate required for computing the

©2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

product NFA. The replication rate corresponds intu-
itively to the total amount of communication between
the processes in the cluster. We first derive a lower
bound for the replication rate in the product computa-
tion. We then propose three algorithms for the prod-
uct computation and analyze their behaviors, thereby
obtaining upper bounds for the replication rate. Our
study shows that in the case where the size of the alpha-
bet for the NFA’s is large and we have a large number
of reducers available, an algorithm that distributes the
transitions of the input NFA’s based on their alphabet
symbol achieves an optimal replication rate. For the
cases where the alphabet size is smaller than the num-
ber of available reducers, a distribution based on both
the alphabet symbol and states of the transitions works
best. These conclusions are also supported by our ex-
perimental results.

The rest of this paper is organized as follows: Sec-
tion 2 gives the necessary technical definitions, and in
Section 3 we derive the lower bound for the replication
rate. Section 4 presents and analyzes three concrete al-
gorithms for the problem, and Section 5 describes the
experimental results. Conclusions are drawn in the last
section.

2. PRELIMINARIES
In this section we introduce the basic technical pre-

liminaries and definitions. We assume familiarity with
the map-reduce model (see e.g. [10]).

A Nondeterministic Finite-state Automaton (NFA) is
a 5-tuple A = (Q,Σ, δ, s, F), where Q is a finite set of
states, Σ is a finite set of alphabet symbols, δ ⊆ Q×Σ×Q
is the transition relation, s ∈ Q is the start state, and
F ⊆ Q is a set of final states. By Σ∗ we denote the set of
all finite strings over Σ. Let w = c1c2 . . . cn where ci ∈ Σ
be a string in Σ∗. An accepting computation path of
w in A is a sequence (s, c1, q1)(q1, c2, q2) . . . (qn−1, cn, f)
of elements of δ, where s is the start state and f ∈ F .
The language accepted by A, denoted L(A), is the set
of all strings in Σ∗ for which there exists an accepting
computation path in A. A language L is regular if and
only if there exists an NFA A such that L(A) = L.

1

42

It is well known that regular languages are closed
under intersection. In particular, given NFA’s A1 =(Q1,Σ, δ1, s1, F1) andA2 = (Q2,Σ, δ2, s2, F2), an NFAA,
such that L(A) = L(A1) ∩ L(A2) can be computed by
the Cartesian construct A = A1 ⊗A2, where

A1 ⊗A2 = (Q1 ×Q2,Σ, δ, (s1, s2), F1 × F2),
and

δ = {((p1, p2), c, (q1, q2)) ∶ (p1, c, q1) ∈ δ1, (p2, c, q2) ∈ δ2}.
The ⊗ operation clearly is associative, and can be gen-
eralized to a polyadic operator A1 ⊗ ⋯ ⊗ Am. The
Cartesian construct amends itself easily to the map-
reduce framework by having the mappers emit transi-
tions (pi, ci, qi) from each NFA Ai, and the reducers
output a transition ((p1, . . . , pm), c, (q1, . . . , qm)) upon
receiving inputs (pi, ci, qi), where c = c1 = ⋯ = cm.
The crucial question is how to distribute the transi-
tions (pi, ci, qi) over the reducers. This is discussed in
Section 4.

3. LOWER BOUND ON THE REPLICATION
RATE

Recall that each mapper emits key-value pairs (K,V),
where K determines the reducer that the pair is sent
to. Each reducer receives and aggregates key-value lists
of the form (K,V1, . . . Vq), where the (K,Vi) pairs are
emitted by the mappers. The largest list associated
with one key is called the reducer size, and we will de-
note it by q. A small q-value ensures that the reducer
can perform the aggregation in main memory, and also
enables more parallelism. On the other hand, more par-
allelism usually increases the replication rate, which is
the average number of key-value pairs that mappers cre-
ate from one input. The replication rate is intended to
model the communication cost, that is the total amount
of information sent from the mappers to the reducers.
The trade-off between reducer size q and replication rate
r, is usually expressed through a function f , such that
r = f(q). The first task in designing a good map-reduce
algorithm for a problem is to determine the function f ,
which gives us a lower bound of the replication rate r.

To start, we derive a tight upper bound, denoted
g(q), on the number of outputs that can be produced
by a reducer of size q. We suppose that NFA Ai has∣δi∣/k transitions for each of the k alphabet symbols. To
generate a transition for A, the reducer needs m tran-
sitions, one from each NFA Ai. The intersection NFA

A has ∣δ1∣×⋯×∣δm∣
km

transitions, for each alphabet symbol
c ∈ Σ. As there are k alphabet symbols, the total num-

ber of transitions will be k × ∣δ1∣×⋯×∣δm∣
km

= ∣δ1∣×⋯×∣δm∣
km−1 .

It is known that the product of the elements in a par-
tition with a fixed summation is maximum when the
blocks of the partition have equal size. We therefore as-
sume that input data is evenly distributed, so each re-

ducer receives q/m transitions from each NFA Ai. The
proceeding gives us the following upper bound on the
output of one reducer.

Lemma 1. In computing A = A1 ⊗⋯⊗Am a reducer
of size q can cover no more than g(q) = (q/m)m outputs.

Using Lemma 1, and the total number of transitions
in A, we can get a lower bound on the replication rate
as a function of q. As shown in [1] the lower bound is
given by the expression

q × ∣O∣
g(q) × ∣I ∣ ,

where ∣I ∣ is the size of input, and ∣O∣ is the size of the
output. The input size will be the sum of the size of the
transition relation of all input NFA’s, that is ∣I ∣ = ∣δ1∣ +⋯+∣δm∣. As we saw above, the size of the output in terms

of the number of transitions will be ∣O∣ = ∣δ1∣×⋯×∣δm∣
km−1 .

This gives us the lower bound on replication rate for
our problem as follows

Proposition 1. The replication rate r for the Carte-
sian construct A = A1 ⊗⋯⊗Am is

r ≥ q × ∣δ1∣×⋯×∣δm∣
km−1(q/m)m × (∣δ1∣ + ⋯ + ∣δm∣) .

4. ALGORITHMS FOR THE CARTESIAN
CONSTRUCT

In this section we propose and analyze three different
algorithms for computing A = A1⊗⋯ ⊗Am. Our algo-
rithms compute A in one map-reduce round, as opposed
to an m − 1 round cascade (. . . (A1 ⊗ A2) ⊗ . . .) ⊗ Am.
Since the Cartesian construct shares features with the
multiway join problem, and the latter has been shown
to work more efficiently when done in one round, as op-
posed to a cascade [2, 6], we only consider the one-round
version in this paper.

We note that the main difference between the NFA
intersection and the multiway join problem is that in
the latter the only possibility for distributing the tu-
ples is based on the value(s) of the join attribute(s)
(corresponding to the alphabet symbols in Σ), whereas
the NFA intersection problem we can also distribute the
tuples of the transition relation based on the states they
involve.

4.1 Mapping based on states
Suppose we have nm reducers, where n is the maxi-

mum number of transitions in any of the input NFA’s.
In our first algorithm the mappers produce keys of the
form (i1, i2, . . . , im). Let h be a hash-function with
range {1, . . . , n}. A transition (pi, ci, qi) from NFA Ai
is mapped as key-value pairs (K, (pi, ci, qi)), where

2

43

K = (i1, . . . , ii−1, h(pi), ii+1, . . . , im).
for each ij ∈ {1, . . . , n}. In other words, each transition
is sent to nm−1 reducers.

In this method, the input and output sizes remain
unchanged. However, the function g(q) will be affected
by presence of transitions with different alphabet sym-
bols inside a single reducer. This gives us a new upper
bound on the number of outputs each reducer can pro-
duce, namely g(q) = k (q/mk)m. We thus have

Proposition 2. The replication rate r in the state-
based mapping scheme is

r ≤ q × ∣δ1∣ × ⋯ × ∣δm∣(q/m)m × (∣δ1∣ + ⋯ + ∣δm∣) .
If n is the maximum number of transitions in any of
the input NFA’s, the upper bound on the replication rate
becomes r ≤ (nm

q
)m−1.

By comparing propositions 1 and 2, we observe that
the upper bound for the replication rate obtained by
mapping based on states exceeds the theoretical lower
bound by a factor of km−1. We conclude that the state-
based mapping approach is best suited for situations
where the alphabet size is small, e.g., when the alphabet
is binary.

4.2 Mapping based on alphabet symbols
In our second algorithm, we have one reducer for each

of the alphabet symbols. Thus, the number of reduc-
ers is equal to the alphabet size k. The mappers will
send each transition (p, c, q) to the reducer correspond-
ing the alphabet symbol c. More precisely, from tran-
sition (pi, c, qi) of NFA Ai the mapper will generate
the key-value pair (h(c), (pi, c, qi)). Here h is a hash
function with range {1, . . . , k}. Thus each reducer will
output transition ((p1, . . . , pm), c, (q1, . . . , qm)), having
received inputs (pi, c, qi) for i = 1, . . . ,m.

The total number of transitions sent to all reducers
is ∑mi=1 ∣δi∣ which we approximate by mn, assuming that
each Ai has at most n transitions. The replication rate
is 1, since every transition is mapped to exactly one
reducer. This algorithm works well when the alphabet
size k is large and the number of reducers is equal to
the number of alphabet symbols. In summary:

Proposition 3. The replication rate in the alphabet-
symbol based mapping scheme is 1, assuming that the
number of reducers and alphabet symbols are the same.

Obviously a replication rate of 1 is optimal. This
matches the lower bound of Proposition 1, when ob-
serving that each reducer has to process (nm)/k inputs,
assuming that the alphabet symbols are uniformly dis-
tributed. Substituting q = (nm)/k in the lower bound(nm
kq
)m−1 of Proposition 1, gives r ≥ 1.

4.3 Mapping based on both states and alpha-
bet symbols

On one hand, if we map the transitions only based
on the alphabet symbols, the algorithm does not allow
for much parallelism if the alphabet Σ is small. On the
other hand, as we have observed, if the transitions are
mapped based on states only, the replication rate, and
consequently the communication cost, will be sharply
increased km−1 times. We therefore consider a hybrid
algorithm that maps transitions based on a combination
of alphabet symbols and states. In the hybrid method
we have a function hs that hashes states into bs buckets,
and a function ha that hashes the alphabet symbols into
ba buckets. A transition (pi, ci, qi) from Ai is mapped
to reducers (i1, . . . , ii−1, hs(pi), ii+1, . . . , im, ha(ci)), for
each ij ∈ {1, . . . , bs}, and the total number of reducers
will be bm−1

s ⋅ ba.
To compute the replication rate in this method, we

note the input and output sizes ∣I ∣ and ∣O∣ remain un-
changed. However, the function g(q) will be affected
by presence of transitions with different alphabet sym-
bols inside a single reducer. We will now have g(q) =
`(q/m`)m, where ` is the average number of alphabet
symbols received by a reducer, or equivalently, ` = k/ba.
From this we can derive the replication rate.

Proposition 4. The replication rate r in the hybrid
mapping scheme is

r ≤ q × ∣δ1∣×⋯×∣δm∣
km−1(q/m)m × (∣δ1∣ + ⋯ + ∣δm∣) × `m−1.

Assuming that the maximum number of transitions in

any of the input NFA’s is n, we get r ≤ (nm`
qk
)m−1

.

Note that if ba = 1 then ` = k and there is no hashing on
alphabet symbols, and as it can be seen, the replication
rate will be equal to the replication rate of the first
mapping schema. On the other hand, if ba = k, that is
if we hash fully on alphabet symbols, then ` = 1 and as
it can be seen, the replication rate will be equal to the
replication rate of the second mapping schema.

5. EXPERIMENTS
We conducted some experiments to validate the anal-

ysis of the previous section. We computed A1⊗A2⊗A3,
and varied the size of the NFA’s and number of alpha-
bet symbols. Our experiments were run on Hadoop on
a 2-node, personal computer, cluster (8 cores per node
running at 3.0 GHz and 24GB memory in total). The
number of reducers in the experiments was set to 128.
The desktops were running Scientific Linux operating
system with kernel version 6.0. The NFA’s were gener-
ated as labelled random graphs, along the lines of [13].
The total number of transitions were determined by the

3

44

transition density, that is, the ratio between the num-
ber of transitions and the number of states. In the data
shown we used a transition density of 2.0.

In the experiments we compared the execution time
obtained by hashing the input data based on states
(Method I) and on both states and alphabet symbols
(Method II).

3.5 7 10.5 14 17.5 21 28

0

500

1,000

1,500

Total Number of Transitions in δ1 ∪ δ2 ∪ δ3 (in thousands)

T
o
t
a
l
E
x
e
c
u
t
io

n
T
im

e
(
s
e
c
)

States

Both

Figure 1: Processing times of two methods for
the alphabet size k = 16

7 14 21 28 35 42 56

0

1,000

2,000

3,000

4,000

Total Number of Transitions in δ1 ∪ δ2 ∪ δ3 (in thousands)

T
o
t
a
l
E
x
e
c
u
t
io

n
T
im

e
(
s
e
c
)

States

Both

Figure 2: Processing times of two methods for
the alphabet size k = 64

16 32 64 128 256 512 1024 2048

0

500

1,000

1,500

Alphabet Size

T
o
t
a
l
E
x
e
c
u
t
io

n
T
im

e
(
s
e
c
)

States

Both

Figure 3: Processing times of two methods
where total number of transitions are 28,000

In Figure 1, we see the execution time for differ-
ent data sizes with the alphabet size k = 16. Figure
2 shows the comparison of Method I and Method II,
while the alphabet size k = 64. As expected, Method II
is clearly more efficient. Figure 3 represents execution
time of the two methods for various alphabet sizes when∣δ1∣ + ∣δ2∣ + ∣δ3∣ = 28,000, The figure shows that as the
size of alphabet increases, the execution time of both
algorithms get closer to each other. This is due to the
fact that once the the size of the alphabet exceeds the
number of reducers (128), in Method II each reducer
has to deal with several alphabet symbols, thus slowing
down the computation inside the reducers.

6. CONCLUSIONS
In this paper we proposed and studied methods for

computing a product automaton using Map-reduce. Our
analysis and experimental results show that carefully
optimizing the amount of inter-processor communica-
tion indeed pays off in improved processing time.

In future work we will investigate reducing the num-
ber of states in the product automaton, either by elim-
inating all or part of the useless states or by and deter-
minizing and minimizing the automaton.

7. REFERENCES
[1] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D.

Ullman. Upper and lower bounds on the cost of a
map-reduce computation. PVLDB, 6(4):277–288,
2013.

[2] F. N. Afrati and J. D. Ullman. Optimizing
multiway joins in a map-reduce environment.
IEEE Trans. Knowl. Data Eng., 23(9):1282–1298,
2011.

[3] F. Chierichetti, R. Kumar, and A. Tomkins.
Max-cover in map-reduce. In 19th WWW 2010,
pages 231–240. ACM, 2010.

[4] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[5] J. Hopcroft, R. Motwani, and J. Ullman.
Introduction to Automata Theory, Languages, and
Computation. Pearson/Addison Wesley, 2007.

[6] B. Kimmett, A. Thomo, and S. Venkatesh.
Three-way joins on mapreduce: An experimental
study. In IISA 2014, pages 227–232, 2014.

[7] I. K. Koumarelas, A. Naskos, and A. Gounaris.
Binary theta-joins using mapreduce: Efficiency
analysis and improvements. In BeyondMR 2014,
pages 6–9, 2014.

[8] D. Kozen. Lower bounds for natural proof
systems. In FOCS, pages 254–266, 1977.

[9] S. Lattanzi, B. Moseley, S. Suri, and
S. Vassilvitskii. Filtering: a method for solving
graph problems in mapreduce. In SPAA 2011,
pages 85–94. ACM, 2011.

[10] J. Leskovec, A. Rajaraman, and J. Ullman.
Mining of Massive Datasets. Cambridge
University Press, 2014.

[11] G. D. F. Morales, A. Gionis, and M. Sozio. Social
content matching in mapreduce. PVLDB,
4(7):460–469, 2011.

[12] S. Suri and S. Vassilvitskii. Counting triangles
and the curse of the last reducer. In 20th WWW
2011, pages 607–614. ACM, 2011.

[13] D. Tabakov and M. Y. Vardi. Experimental
evaluation of classical automata constructions. In
LPAR 2005, pages 396–411, 2005.

4

45

Data (Co-)Processing on Heterogeneous
Hardware (DAPHNE)

Witold Andrzejewski (Poznan University of Technology),
Sebastian Breß (TU Dortmund University),
Max Heimel (Technische Universität Berlin)

46

Declarative Query Processing in Imperative Managed
Runtimes

Stratis Viglas
University of Edinburgh

ABSTRACT
The falling price of main memory has led to the develop-
ment and growth of in-memory databases. At the same
time, new advances in memory technology, like persistent
memory, make it possible to have a truly universal stor-
age model, accessed directly through the programming lan-
guage in the context of a fully managed runtime. This envi-
ronment is further enhanced by language-integrated query,
which has picked up significant traction and has emerged as
a generic, safe method of combining programming languages
with databases with considerable software engineering ben-
efits.

Short Bio
Stratis Viglas is a Reader (Associate Professor) in Database
Systems in the School of Informatics at the University of
Edinburgh, which he joined after receiving his PhD from
the University of Wisconsin-Madison in 2003. He has made
contributions to data stream processing, XML data man-
agement, query processing and optimization, and data man-
agement over flash memory. His current work involves inte-
grating managed runtimes with database systems for main
memory query processing through just-in-time compilation
of SQL queries and incorporating technologies like hetero-
geneous multicore and persistent memory into the data pro-
cessing stack.

c©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0

47

Local vs. Global Optimization: Operator Placement
Strategies in Heterogeneous Environments

Tomas Karnagel, Dirk Habich, Wolfgang Lehner

Database Technology Group
Technische Universität Dresden

Dresden, Germany

(tomas.karnagel, dirk.habich, wolfgang.lehner) @tu-dresden.de

ABSTRACT
In several parts of query optimization, like join enumeration
or physical operator selection, there is always the question of
how much optimization is needed and how large the perfor-
mance benefits are. In particular, a decision for either global
optimization (e.g., during query optimization) or local opti-
mization (during query execution) has to be taken. In this
way, heterogeneity in the hardware environment is adding
a further optimization aspect while it is yet unknown, how
much optimization is actually required for that aspect. Gen-
erally, several papers have shown that heterogeneous hard-
ware environments can be used e�ciently by applying opera-
tor placement for OLAP queries. However, whether it is bet-
ter to apply this placement in a local or global optimization
strategy is still an open question. To tackle this challenge,
we examine both strategies for a column-store database sys-
tem in this paper. Aside from describing local and global
placement in detail, we conduct an exhaustive evaluation to
draw some conclusions. For the global placement strategy,
we also propose a novel approach to address the challenge
of an exploding search space together with discussing well-
known solutions for improving cardinality estimation.

1. INTRODUCTION
Column-store database systems have been established over

the last years and have demonstrated that they massively
benefit from high main memory capabilities and multi-core
CPUs. As shown in several papers [1, 7, 10, 13], using such
database principle, the speedup of query performance—in
particular for OLAP scenarios—compared to classical row-
based architectures is immense. Aside from high main mem-
ory capabilities and multi-core CPUs, hardware systems are
more and more changing towards heterogeneity. That means,
a multi-core CPU with large main memory is packed into
one single hardware box together with one or more addi-
tional non-traditional computing units, e.g., graphic cards,
Intel Xeon Phis, or FPGA cores. This heterogeneity trend is

c� 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

going to accelerate and database systems have to exploit this
heterogeneity to fulfill increasing performance requirements
from available and upcoming applications.

A significant number of research activities has already
ported traditional database operators to di↵erent comput-
ing units like GPU [5, 4], FPGA [11], or many core proces-
sors [12]. To tackle the heterogeneity aspect, these ported
operators are useful, whereas these operators were always
executed on the corresponding computing unit, hoping to
reduce the overall execution time. However, to e�ciently
utilize heterogeneous hardware environments and to reduce
the overall query runtime in such environments, it is cru-
cial to assign database operators to the appropriate comput-
ing unit for each query separately. This placement assign-
ment has several influencing factors like execution behavior,
data characteristics, and properties of available computing
units [8].

In order to determine placement assignments, various de-
cision models have been proposed, e.g. HOP [8] and HyPE
[3]. These decision models use information about computing
units together with monitored values of previous executions
to calculate the estimated execution time in a cost func-
tion for each computing unit. A more static approach using
instruction counts and execution cycles is also possible to
estimate the runtime [5, 6]. Using one of these placement
models, the resulting estimation can be deployed to assign
an operator to the computing unit with the smallest esti-
mated costs. The mentioned work in this field has proven or
provide a high potential for heterogeneous execution. Never-
theless, it is yet unknown, how much optimization is actually
required for this placement assignment.

Placement Strategies
In our previous work [8], we identified two strategies for
column-store DBMS to support these operator-level place-
ment assignments based on runtime estimations. Both strate-
gies are shown in Figure 1 in the context of query optimiza-
tion and execution. Both strategies have in common that,
after an SQL query is translated into a query execution plan
(QEP), a placement decision is made for each operator. In
this paper, we assume the operators to be executed at a time
with fully materialized intermediate results.

The first placement strategy (local placement optimiza-
tion) conducts an estimation and placement step directly
before the execution of each operator and the placement is
done for each operator separately. Therefore, the estima-
tion can work on the most recent information about data

48

SQL QEP Placement Exec

Local Placement Strategy

Global Placement Strategy

Figure 1: Heterogeneous operator placement strate-
gies.

sizes, allowing an exact estimation of data transfers and ex-
ecution. Additionally, only one operator is placed at the
time, leaving a small search space of the amount of avail-
able compute units. However, this approach might be too
greedy since the rest of the QEP is not considered in this
local decision. In particular, data sharing between operators
is hardly considered.

On the contrary, the second strategy (global placement
optimization) decides the placement for all operators of a
QEP before execution. In this case, global placement is done
by considering all dependencies of the QEP. This approach
yields a high potential for better performance compared to
the local placement optimization, because data sharing be-
tween operators is explicitly encouraged to avoid costly data
transfers. However, there is a price for optimizing the whole
query for heterogeneous execution. The two main challenges
are the huge search space of possible placements and the
problem of uncertain or unknown intermediate result sizes.

Contribution
To tackle the issue of how much optimization is required
for the heterogeneity aspect, we examine both placement
strategies for a column-store database system in detail in
this paper. Our main contributions are as follows:

• First, we briefly describe the local placement optimiza-
tion strategy and present advantages and limitations
of this approach (Section 2).

• Second, we introduce the global placement strategy
with additional optimizations to tackle the mentioned
challenges (Section 3).

• Third, we conduct an exhaustive evaluation to com-
pare local and global placement optimization in an
OpenCL based database system (Section 4).

• Finally, we summarize our findings in a property table
illustrating the advantages and disadvantages of both
approaches.

.
To the best of our knowledge, no one evaluated di↵er-

ent query optimization strategies for heterogeneous envi-
ronments in the past. However, di↵erent optimization ap-
proaches were mentioned in previous work: local query op-
timization was used by Breß et al. [2] and Karnagel et al [9]
within an OpenCL based column store database system. He
et al. [5] computed all possible solutions for separate sub-
plans below a given number of operators and combined the
result for the full plan dividing the search space into much
smaller problems. However, this is only applicable for tree
like query plans and might introduce a significant overhead
for large queries.

Information

used for

estimation O3

O1 O2
Computing units:

x y

Figure 2: Local placement strategy.

2. LOCAL PLACEMENT STRATEGY
The strategy to integrate operator placement at the exe-

cution time of each operator, local optimization, is the most
intuitive approach. Placement is decided right before the op-
erator’s execution, after previously executed operators have
already finished. The input and output data is kept in the
computing unit’s memory until it will be needed on another
computing unit. For local optimization, there are three ques-
tions that have to be considered:

1. How big is the input data?

2. Where is the input data placed at the moment?

3. How does the operator perform on the di↵erent com-
puting units?

The approach is illustrated in Figure 2. The operators
O1 and O2 produce the results x and y. These are stored
on the computing units where the operators were executed,
here illustrated with di↵erent colors. Placement and data
size of each input for operator O3 is considered to calculate
the transfer costs, if transfer is needed, for the hypothetical
execution on each computing unit. The exact data input
size is known for base columns as well as intermediate re-
sults, since previous operators have already finished their
execution. For base columns, the data placement is either
in main memory, or already on a compute unit’s memory, if
an other operator needed the column before. For interme-
diate results, the data is most likely stored on a computing
unit’s memory, where the result producing operator was ex-
ecuted. There is the possibility, that data was evicted from
the computing unit’s memory, if other operators needed ad-
ditional memory space. However, this should be traceable
and the actual memory location should be considered. The
third question with respect to the estimated runtime should
be answered by one of the prediction models presented in
the introduction. Having the transfer time and the opera-
tor’s execution time estimates, a decision can be made by
picking the computing units with the minimal sum of all
input transfers costs and execution time. This is the best
decision from a local optimization point of view. The search
space for this decision is limited to the number of computing
units. The decision procedure is repeated for each operator
in the order of execution. The result transfer is not consid-
ered for the producing plan operator since the data might
be reused by the next operator on the same computing unit.
If the result transfer is needed, it is added to the costs of
the consuming operator instead of the producing one.

The strong advantage of the local placement strategy is
its simplicity and easy implementation. The search space
corresponds to the number of computing units per decision
with one decision per plan operator. Additionally, this ap-
proach works on runtime information about data sizes and
their placement. Furthermore, the decision is only local by

49

Op Runtime Placement Strategy
CU1 CU2 local global

1 1.2s 0.1s CU2+tr = 1.1s CU1 = 1.2s
2 0.1s 1.2s CU1+tr = 1.1s CU1 = 0.1s

Total: 2.2s 1.3s

Table 1: Local vs. global placement strategy. Data
transfer (if needed) takes always 1s (tr). The initial
data is stored on CU1. The operators are executed
according to their ordering.

trying to find the ideal execution unit for one single opera-
tor. This might not be optimal for the full plan, sacrificing
performance through unnecessary data transfers.

3. GLOBAL PLACEMENT STRATEGY
Applying placement at compile time means making the

placement decision globally during query optimization. This
leads to new possibilities as well as new challenges. An ex-
ample is shown in Table 1 to highlight the performance po-
tential. The example includes two operators with estimated
execution times for two computing units (CU1, CU2). The
initial data resides on computing unit CU1 and every data
transfer, if necessary, takes 1 second. The presented local
strategy would choose CU2 for the first operator, since the
run-time plus transfer-time is less than the execution time
on CU1. In the second step, it chooses CU1 for the same
reason. The total execution time is 2.2 seconds including
transfers. For the global strategy, however, the total exe-
cution time is only 1.3 seconds since the placement can be
globally optimized before execution. Besides the high po-
tential, there are also additional challenges to consider. The
two major challenges are (i) the exploding search space of
global optimization and (ii) the unknown or uncertain data
cardinalities of intermediate results.

3.1 Challenges
Data cardinalities are usually known for base relations

but intermediate results are unknown and can only be es-
timated in the optimization step. However, the exact data
cardinalities are crucial for calculating a good heterogeneous
placement including correct transfer costs. Since this is a
well-known problem in database research, we rely on other
research results to provide realistic estimations for the in-
termediate result sizes.

To the best of our knowledge, the exploding search space
for global placement optimization in heterogeneous hard-
ware environment was not in focus of prior research. For a
global optimization, every possible placement option has to
be considered in order to find the best placement for the full
plan. Being #cu the number of computing units and #op
the number of database operators, then #cu#op describes
the search space for this query plan. For example, a highly
heterogeneous system with 10 computing units, executing a
query with 100 operators would lead to 10100 possibilities,
which is more than all possible 2-way join combinations for
50 joins! To avoid a much larger search space, we assume
that, (i) the query execution plan is a DAG (directed acyclic
graph) as usual in column-store database system and (ii)
the DAG is fixed throughout our heterogeneous placement.
That means, the heterogeneous placement do not have any

Information

used for local

cost estimation

O5O4 O6

O3

O1 O2
Computing units:

x y

a cb

Figure 3: Global placement strategy.

influence on the structure of the DAG. There are approaches
to cope with such a large search space in join enumeration.
However, the general conditions are di↵erent for our hetero-
geneous placement approach. We identified three properties
that define the large search space in heterogeneous execu-
tion.

1. The search space does not correlate with the actual
runtime. This means, that a query with a large search
space can be based on small relations and therefore
can execute in a short time. In general, the runtime
is highly dependent on the underlying data character-
istics, whereas the e↵ort to evaluate the search space
stays the same.

2. The search space and the execution time scales with
the number of operators.

3. With increasing number of computing units, the query
execution time (ideally) reduces, since new computing
units might be better suited for some tasks. However,
the search space grows exponentially.

The first and the second issue are similar to join enumer-
ation problem, while the third point is unique to hetero-
geneous execution. However, looking at the first point, a
database system that needs to do the join enumeration for,
e.g., 50 joins will reserve a fair amount of time for optimiz-
ing the order. In our case, dependent on the data sizes, the
queries could execute in sub-seconds, leaving only a fraction
of that time for e�cient optimization.

3.2 Greedy-based Approach
To solve the presented challenges for global optimization,

we choose a greedy-based search algorithm together with two
approaches for further optimization. We rely on a greedy-
based algorithm for several reasons. As mentioned earlier,
the search space is too large for a complete search. Opti-
mizing smaller sub-trees is not possible, since we focus on
column stores having execution plans as DAGs instead of
trees. This means the results of an operator can be used by
multiple other operators, making it impossible to define iso-
lated sub-trees. Moreover, a greedy approach makes small
changes to improve the placement without considering every
possibility.

For our greedy implementation, we start with a pre-set
placement decision for every operator. This initial place-
ment could assign the operators randomly to the computing
units. Then, we iterate over each operator and evaluate
the possible placement decisions locally for this operator.
If the algorithm finds a better placement for this operator,
we change the decision in the initial placement. The main
di↵erence to the local approach is that we already have a

50

Op input Runtime Di↵erent Placements
transfer CU1 CU2 I II III IV V

1 1s 1s 5s 1 2 1 1 1
2 1s 1s 0.1s 1 2 2 1 2
3 5s 5s 0.1s 1 2 1 2 2
4 0.5s 1s 5s 1 2 1 1 1

Total(inc. transfers): 8 11.2 13.1 8.6 3.7

Table 2: Placement cost example. The initial data
is on CU1. If needed, the shown input transfer costs
apply. The operators execute in order.

placement decision for the following operators, leading to
a more informed decision concerning possible data sharing.
Figure 3 illustrates this di↵erence. Additional to Operator 1
and 2, the cost function knows the placement of the opera-
tors 4 to 6 and the data sizes a, b, and c, therefore being able
to calculate inward and outward transfers. Including both
kinds of transfers as well as estimates of execution times
of each compute unit is leading to a more informed deci-
sion than in a runtime-based local optimization. After an
optimization iteration over all operators, the changes made
on one operator’s placement, could influence placement of
the previous ones as well. Therefore, the algorithm has to
iterate over the operators as long as improvements can be
found. When no single placement change of an operator im-
proves the global estimation time, then the algorithm found
a (local) optimum.

The above described greedy approach is fast and improves
a pre-set starting placement iteratively. However, it is still
a greedy approach, which finds a good but possibly not the
best placement for the full plan. One reason for not finding
the optimal placement is the occurrence of operator groups,
that should be placed together. It could be possible that
some operators are most beneficially placed together on one
computing unit, so that data transfers between them are
avoided. However, the best computing unit for the group
might not be the best for the single computing unit, so an
approach which can only change one placement at the time
might not find the best solution. The problem is illustrated
in Table 2. Dependent operators, transfer costs, and run-
times are shown. Varying input transfer times correspond
to intermediate data sizes, e.g., Operator 2 could be a join
with large result, so operator 3 has a high input transfer
time. Local optimization would choose the pure CU1 place-
ment (I). For global optimization, the result highly depends
on the starting placement. If the starting placement is (I),
then (III) and (IV) would be evaluated (besides others) but
(I) would be chosen as placement with the minimal costs.
With a starting placement of (IV) and assuming the algo-
rithm starts from the top, our global strategy would also
evaluate (V) and find it to be the best possible placement.

It is unknown how big these operator groups could be, so
it would be a lot of e↵ort to test all groups of two opera-
tors, three operators and so on. A more practical idea would
be to change the pre-set starting placement and do multi-
ple greedy runs. For example when testing random starting
placements, there would be the possibility that some oper-
ators of a group are already assigned to the right comput-
ing unit, pulling the other operators as well. For that, the
overall result could be improved by testing many di↵erent

starting placements and picking the best plan placement ac-
cording to our execution time estimation. Therefore, we im-
plemented the greedy approach in a hardware-independent
OpenCL version, that can test many di↵erent starting place-
ments in parallel. This also addresses issue 3 from the pre-
vious section. With more computing units, the search space
grows but there is also more computing power to evaluate
more starting placements for a possibly better solution.

Search Space Reduction
In the previous part, we described our greedy approach and
the problem of being dependent on the starting placement.
We need to evaluate many di↵erent (random) placements,
in order to find a good solution. This scales with the search
space, meaning that we should test more starting placements
with a higher search-space (e.g., for more plan operators).
Since we can only evaluate a defined number of placements,
we need to reduce the search space to improve the probabil-
ity of finding a good placement.

We propose to reduce the search space by assigning oper-
ators fixed to one computing unit, if the greedy algorithm
would pick this computing unit in every possible scenario.
For example, Operator 1 and 4 in Table 2 will always be
placed on CU1 even if all other operators are on CU2. We
call these strong placements, where one computing unit is su-
perior in the execution of one operator to an extent that the
worst case data transfers are negligible. Since every greedy
run for any starting placement would pick these placements,
we do not have to consider them in the greedy algorithm
as well as in selecting the starting placement. For Table 2,
this would mean fixing the placement for Operator 1 and 4,
reducing the search space for the other placement decisions
from 24 = 16 to 22 = 4. Depending on the computing units
and operators, this approach can reduce the search space
significantly, even to the point of fixing the placement for
the full plan.

The strong placements can be calculated by iterating over
the plan once for each computing unit and evaluate if a single
operator would be placed on another computing unit, even
if all other operators are on the initial one. For example,
a plan is initially set to CU1. Each operator is tested if
a placement on CU2, CU3, and so on, is beneficial for the
overall runtime while having all other operators on CU1.
This has to be done for each computing unit. If, for example,
one operator is always placed on the same computing unit,
then this operator can be fixed to this computing unit as
a strong placement. Calculating these strong placements
introduces only a small overhead by having the potential to
reduce the search space significantly.

Majority Voting
After determining the strong placements, the remaining open
operator placements can be assigned randomly to the com-
puting units as starting placements for the greedy approach.
Here, we deploy the greedy algorithm for many starting
placements in parallel, ideally even in parallel on di↵erent
computing units. As a result, we get the improved place-
ment from the greedy approach and the estimated costs of
the full plan. According to the costs, we can choose the best
placement for execution.

As an additional step, we look at the output placements
and collect statistics on the operator placements. The statis-
tics can be used to find tendencies of the placements. For

51

System I System II

Vendor AMD AMD Intel Nvidia
Name A10-5800K HD7660D i7-3960X K20C
Type CPU GPU CPU GPU

Cores 4 384 6 (12 HT) 2496
Freq.(MHz) 3800 800 3300 706

Table 3: Heterogeneous test systems: AMD APU
(CPU and integrated GPU) and a combination of
Intel CPU and Nvidia GPU. The systems comput-
ing units are arranged to be balanced in their com-
putational power.

example, if we run 1000 random greedy searches, 200 would
pick CU1 for operator 1 and 800 would pick CU2 for the
same operator, then we know that CU2 is probably more
suited. Using the statistics for all operators, we apply a
kind of majority voting by combining one common place-
ment from all random runs. This placement is itself eval-
uated concerning runtime estimation as well as used for a
starting placement for another single greedy evaluation.

With the majority voting approach, it is possible to com-
bine many good placements to an even better one, which
was not found by the greedy algorithm using the random
starting placements. However, if the result of the majority
voting is not as good as some other placements, the best
placement is taken from the random runs.

3.3 Summary
Our approach for global optimization includes an informed

greedy algorithm, search space reduction through strong
placements, and the majority voting of random starting place-
ments. Therefore, we are able to globally optimize a full
QEP. Besides the advantage of global optimization, our global
optimization has also limitations. The presented approach
is still a greedy strategy which might only find a good so-
lution but not the optimal one. Additionally a small over-
head is added to query execution for optimization and re-
optimization of the placements.

4. EVALUATION
To evaluate our local and global optimizing approaches,

we implemented both in an established database system.
For this, we chose Ocelot [7], an OpenCL based extension
to the in-memory column store MonetDB [1]. To add het-
erogeneous hardware support to MonetDB, Heimel et al.
implemented this hardware-oblivious extension that allows
operators to be executed on most accelerators using the
hardware abstraction language OpenCL. Most of the ma-
jor CPU, GPU, and accelerator manufactures o↵er OpenCL
support for their hardware. When we started, Ocelot did
not include dynamic placement of plan operators but rather
manual placement of whole queries. However, recent work
was also done in this field by Breß et al. [2].

To support our two approaches, we added our self-learning
decision model [8], which includes several benchmarks to
evaluate data transfer bandwidths. We also included two
placement decision units: (i) in the execution engine of the
database and (ii) in the plan optimizer.

For the evaluation, we use the slightly altered TPC-H
benchmark from Heimel et al. [7]. The benchmark queries

1 3 4 5 6 7 8 10 11 12 15 17 19 21

TPC−H Queries

#O
pe

ra
to

rs

0
20

40
60

80
10

0

Not Fixed
Fixed

Figure 4: Reducing the search space by assigning
strong placements fixed to one computing unit.

are altered to avoid string operations, which are not sup-
ported by the Ocelot operators, yet. This is also the reason
why some queries were not used for our evaluation. All in
all, we tested our approaches on a set of 14 queries from
TPC-H.

We evaluated our approaches with two di↵erent hardware
setups. The two systems are presented in detail in Table 3.
Both test systems run with Ubuntu Linux. The first test
system is based on an AMD APU with an on-die integrated
GPU, which, however, does not support zero copy in our
current Linux configuration. That means that data has to
be transferred in order to be used by the GPU. The second
test system includes an Intel CPU and a Nvidia discrete
GPU. Here, memory also has to be transferred to the GPU,
since it is attached by PCIe 2.0 and employs a separate GPU
processor and GPU memory.

Please note, that heterogeneous placement is needed for
any heterogeneous environment in order to utilize all com-
puting units. Depending on the abilities of each comput-
ing unit and the computational balance between them, a
query can be spread over all computing units or alterna-
tively use only that computing unit, which fits best. So we
expect for the placement decision, to be at least as good as
the fastest computing unit for a query. Finding this fastest
computing unit is also a benefit of using a dynamic place-
ment approach. In most cases, it is also possible to improve
the fastest single-computing-unit result by applying place-
ment decisions on operator level. To show the e↵ect of the
placement decisions, we execute one operator at one time
(operator-at-the-time execution model). We do not execute
operators in parallel if they are placed on di↵erent comput-
ing units. Perceived speedups are purely achieved through
the placement decisions.

4.1 Search Space Reduction
First, we want to show the e↵ectiveness of our optimiza-

tions for the proposed global optimization approach. This
is done on System I with the TPC-H benchmark using scale
factor 5. First, we reduce the search space by finding strong
placements. For TPC-H Query 1 for example, our prototype
database system produces a plan with 43 operators, that can
be executed on di↵erent computing units. For the system
with 2 computing units, this results in a search space of:

243 = 8, 796, 093, 022, 208 possibilites

With our greedy approach, we do not need to search this

52

1 3 4 5 6 7 8 10 11 12 15 17 19 21

TPC−H Queries

ru
nt

im
e

in
 s

ec

0
1

2
3

4
5

CPU
GPU
Local
Global

Figure 5: Performance results for TPC-H queries on test system I with SF 5.

1 3 4 5 6 7 8 10 11 12 15 17 19 21

TPC−H Queries

ru
nt

im
e

in
 s

ec

0
1

2
3

4
5

6 11.2
CPU
GPU
Local
Global

Figure 6: Performance results for TPC-H queries on test system II with SF 10.

high number of possibilities. However, since the algorithm is
very dependent on the starting placement, the probability to
pick a good starting placement by chance is very low. When
we apply our search space reduction, we are able to assign 26
operators to computing units, that would always be placed
this way in any greedy search. Removing these operators
from the search, reduces the actual searching time as well
as the search space for picking random starting placements.
The search space for the 17 remaining operators is:

217 = 131, 072 posibilities

This is still too high to evaluate all possibilities in a fraction
of the actual query execution, but it is much more likely
to pick a good starting placement for the greedy search.
The results for all our TPC-H queries is shown in Figure 4.
Please note, that these results could be di↵erent for other
data sizes (e.g., other scale factors) or in other hardware en-
vironments. For example, with a highly superior computing
unit, most operators will be assigned as strong placements,
while a perfectly balanced environment will have less strong
placements.

Please note, that all operators that can be successfully
fixed by our global optimization are also chosen in the lo-
cal optimization, meaning that queries with many strong
placements will not di↵er much between local and global
placement decisions.

4.2 Greedy Search Performance
After reducing the search space by fixing strong place-

ments, the goal is to evaluate as many starting placements
as possible. For that we use our greedy algorithm in dif-

ferent implementations. The actual runtime of one greedy
search is highly dependent on the amount of operators in
the query plan. Not only one iteration over many opera-
tors takes longer, but one single change of an operator re-
sults in additional iterations over all operators, to evaluate
if this change influence other decisions. The unfixed portion
of operators in Figure 4 defines the variable search space.
For Test System I, we have seen the naive, single threaded,
search performance to be between 5 greedy runs per ms for
query 19 (32 variable operators) up to 200 greedy runs per
ms for query 6 (5 variable operators). Using OpenCL for the
greedy search, we gain a speedup of up to 6x when execution
on the CPU. This is to be expected for a 4 core system, since
OpenCL also applies vectorization and code optimizations.
For the GPU, a speedup of up to 3x can be seen, which indi-
cates in this case that the CPU is more suited for the task.
However, all computing units should be used in parallel to
evaluate starting placements.

For the final evaluation, we decided to run 100 greedy
searches, which takes in the worst case (Query 19) about 4
ms, when using the OpenCL implementation on the CPU.
After the first searches, we get the estimated query runtime
from the search results. Depending on this runtime, we can
decide to do more greedy searches, if the query runtime is
high, or to stop the search and start executing the plan,
if the query runtime is low. A reevaluation is done every
100 search runs, since the estimated query runtime could
improve during optimization. As a general rule, we propose
spending about 1% of the total query runtime on optimizing
the heterogeneous placement.

53

0 2 4 6 8 10

0
2

4
6

8

Transfer Cost Multiplyer

hy
po

th
et

ic
al

 ru
nt

im
e

in
 s

ec

GPU
CPU
Local
Global

9(a) TPC-H Q1 with di↵erent transfer cost multiplyers.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Transfer Cost Multiplyer

hy
po

th
et

ic
al

 ru
nt

im
e

in
 s

ec

GPU
CPU
Local
Global

9(b) TPC-H Q19 with di↵erent transfer cost multiplyers.

Figure 7: Placement performance comparison with varying transfer costs. The transfer bandwidths are taken
from System I and multiplied with a transfer cost multiplier.

4.3 Evaluation Results
We compare our two optimization approaches on our set

of TPC-H queries by running the queries first on the single
computing units and afterwards, we use the gathered knowl-
edge of the operator runtimes to execute the query heteroge-
neously with local or global optimization. For every query,
the initial data is stored in the main memory, meaning that
initially no data is cached on the computing units’ memories.
The results for the first test system are shown in Figure 5.
As shown, for some queries the CPU is clearly better and for
other queries the GPU is more suited. Heterogeneity-aware
operator placement can improve the execution in most cases.
In detail, global optimization is always better or equal in per-
formance compared to local optimization. However, the dif-
ference is not significant. Further investigations have shown
that global optimization finds sometimes the same or only
a slightly di↵erent plan than local optimization. For the
shown results, we used only about 1% of the query execu-
tion time for the global optimization. Testing with a higher
percentage of optimization did not lead to better results.
This shows, that our current global approach is suitable to
find a good and possibly the best placement for the given
query plan, however, the di↵erence to local decisions is not
as significant as having high impact on performance.

On the second test system, the results look similar. Here,
the GPU is mostly better for full query execution. Local
and global optimization show equally good or better results
than the GPU. In some cases however, the local approach is
slightly better than global optimization, which is caused by
the optimization overhead. On the other side, for Query 1,
local optimization is actually slower than the single GPU
version, which is caused by its rather uninformed decision
process. The local decision involves data transfers to a com-
puting unit and the operators’ execution. This makes sense
from the execution-time perspective, however, from a global
view, additional data transfers could be avoided by consid-
ering output transfers.

4.4 Evaluation with Changing Transfer Costs
To investigate e↵ects caused by unnecessary data trans-

fers in more detail, we conduct further experiments with
theoretical data transfer properties. As a base line, we use
System I, with the measured transfer bandwidth for each

computing unit. Then, we introduce a multiplier (M) for
the transfer costs, which allows us to adjust the theoret-
ical transfer costs from zero (M = 0) to any multiple of
the original transfer costs. The results are shown in Fig-
ure 7 for TPC-H Query 1 and 19. We can clearly see, that
the estimated CPU-only performance is independent of the
multiplier since no data needs to be transferred. For the
GPU-only version, the initial data transfers of base columns
and the final result transfers cause a linear scaling with the
transfer costs. For no transfer costs (M = 0) local and
global optimization always produce the same result, since
both approaches solely decide the placement on the opera-
tor execution time and data sharing yields no benefit. With
increasing transfer costs, the results di↵er because local op-
timization only considers input transfers and execution for
an operator while global optimization considers execution,
input and output transfer.

In Q1 (Figure 7(a)) the gap between the two strategies
becomes large for 0.7 < M < 8. The reason is one operator
that is much faster on the GPU than on the CPU. As long
as the input transfer costs are smaller than the execution
speedup, the operator is placed on the GPU. However, out-
put transfers are much higher and reduce the overall perfor-
mance to be less than the CPU-only execution. For M > 8
the input transfers are too expensive and all operators are
placed on the CPU. The global optimization is always better
than or equal to the best single-computing-unit execution,
being more reliable than local optimization. The e↵ects for
Q19 (Figure 7(b)) are similar, however, with a smaller gap
between local and global optimization. For the remaining
queries, the gaps were even smaller up to the point that, for
some queries, local and global optimization chose the same
placement for all values of M .

5. CONCLUSION
In this work, we have evaluated two operator placement

strategies for heterogeneous hardware environments. The
first, local placement optimization at execution time, is easy
to integrate but limited on its optimization potential. The
second, global placement optimization at compile time, in-
troduces a large implementation e↵ort, with the ability to
find a more optimal plan. In this paper, we explained how
to implement both strategies, including optimizations to re-

54

Property Local Strategy Global Strategy

1. Search space + small - huge
2. Computational overhead + little - some (can be defined)
3. Cardinalities + precisely known - need to be estimated
4. Implementation + simple - high implementation e↵ort
5. Decision - local (not fully informed) + global (informed)
6. Plan structure - fixed + could be changed
7. Worst-case placement - worse than single CU + best single CU

Table 4: Advantages and disadvantages of local and global placement strategy.

duce the search space and additional evaluations on the
outcome of random placements. By applying our imple-
mentations and optimizations in an OpenCL-based database
system within two test systems, we demonstrated that the
global approach achieves better or similar performance than
the local approach. However, the speedup is mostly not
significant. Additionally, in our evaluation with theoreti-
cal transfer costs, we illustrated the e↵ects of these costs
and the worst-case performance we can expect from both
strategies. While global optimization will always find a plan
better than or similar to single-computing-unit execution,
local optimization might choose a plan worse than the single-
computing-unit execution.

Table 4 summarizes the advantages and disadvantages of
both placement strategies. In this paper we presented ways
to weaken the disadvantages of global optimization in Point
1 and 2. However, even with our approaches, global op-
timization achieves mostly a similar performance as local
optimization on our test systems. On the other side, in our
hypothetical tests, global optimization shows a reliably good
performance compared to local optimization. Additionally,
with global optimization, the placement decision could in-
fluence the physical and logical query plan structure. While
this is not the focus of our paper, we would like to mention
that changing the plan structure would only be possible with
a global approach, where the structure might not be fixed,
yet.

In the end, it depends on the use case which strategy is
more suitable. From an implementation point of view, local
optimization is easier and faster to implement. However,
global optimization is more reliable to find a good operator
placement as well as enabling plan changes. Especially the
last point will be part of our future work.

6. ACKNOWLEDGMENTS
This work is partly funded by the German Research Foun-

dation (DFG) within the Cluster of Excellence “Center for
Advancing Electronics Dresden”and by the European Union
together with the Free State of Saxony through the ESF
young researcher group “IMData” 100098198. Parts of the
evaluation hardware were generously provided by Dresden
CUDA Center of Excellence.

7. REFERENCES
[1] P. A. Boncz, M. L. Kersten, and S. Manegold.

Breaking the memory wall in monetdb. Commun.
ACM, 51(12):77–85, Dec. 2008.

[2] S. Breß, M. Heimel, M. Saecker, B. Kocher, V. Markl,
and G. Saake. Ocelot/hype: Optimized data

processing on heterogeneous hardware. PVLDB,
7(13):1609–1612, 2014.

[3] S. Breß and G. Saake. Why it is time for a hype: A
hybrid query processing engine for e�cient gpu
coprocessing in dbms. Proc. VLDB Endow.,
6(12):1398–1403, Aug. 2013.

[4] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations
using graphics processors. SIGMOD ’04, pages
215–226, New York, NY, USA, 2004. ACM.

[5] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational query
coprocessing on graphics processors. ACM Trans.
Database Syst., 34(4):21:1–21:39, Dec. 2009.

[6] J. He, M. Lu, and B. He. Revisiting co-processing for
hash joins on the coupled cpu-gpu architecture.
PVLDB, 6(10):889–900, 2013.

[7] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and
V. Markl. Hardware-oblivious parallelism for
in-memory column-stores. PVLDB, 6(9):709–720,
2013.

[8] T. Karnagel, D. Habich, B. Schlegel, and W. Lehner.
Heterogeneity-aware operator placement in
column-store dbms. Datenbank-Spektrum, 2014.

[9] T. Karnagel, M. Hille, M. Ludwig, D. Habich,
W. Lehner, M. Heimel, and V. Markl. Demonstrating
e�cient query processing in heterogeneous
environments. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’14, pages 693–696, New York, NY,
USA, 2014. ACM.

[10] S. Manegold, P. A. Boncz, and M. L. Kersten.
Optimizing database architecture for the new
bottleneck: Memory access. The VLDB Journal,
9(3):231–246, Dec. 2000.

[11] R. Mueller, J. Teubner, and G. Alonso. Streams on
wires: a query compiler for fpgas. Proc. VLDB
Endow., 2(1):229–240, Aug. 2009.

[12] B. Schlegel, T. Karnagel, T. Kiefer, and W. Lehner.
Scalable frequent itemset mining on many-core
processors. In Proceedings of the Ninth International
Workshop on Data Management on New Hardware,
DaMoN ’13, pages 3:1–3:8, New York, NY, USA, 2013.
ACM.

[13] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and
S. Zdonik. C-store: a column-oriented dbms. VLDB
’05, pages 553–564, 2005.

55

Massively Parallel Analysis of Similarity Matrices on
Heterogeneous Hardware

Tobias Rawald
Humboldt-Universität zu Berlin

and
Helmholtz Centre Potsdam -

GFZ German Research
Centre for Geosciences

trawald@gfz-potsdam.de

Mike Sips
Helmholtz Centre Potsdam -

GFZ German Research
Centre for Geosciences

sips@gfz-potsdam.de

Norbert Marwan
Potsdam Institute for Climate

Impact Research
marwan@pik-
potsdam.de

Ulf Leser
Humboldt-Universität zu Berlin

leser@informatik.hu-
berlin.de

ABSTRACT
We conduct a study that investigates the performance char-
acteristics of a set of parallel implementations of the recur-
rence quantification analysis (RQA) using OpenCL. Being
an important tool in climate impact and medical research,
a central aspect of RQA is the construction of a binary ma-
trix that captures the similarities of multi-dimensional vec-
tors. Based on this matrix, quantitative measures are de-
rived. Starting with a baseline implementation, we diversify
its properties along four dimensions: the representation of
input data, the materialisation of the similarity matrix, the
representation of similarity values and the recycling of inter-
mediate results. We evaluate the performance of five imple-
mentations by varying the input parameter assignments, the
hardware platform employed for execution and the default
OpenCL compiler optimisations status. We come to the
conclusion that the performance of conducting RQA highly
depends on the selected implementation as well as the com-
bination of these variables under investigation. Differences
in runtime of up to one order of magnitude are observed,
emphasising the importance of performance studies as pre-
sented here.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures;
G.1.0 [Numerical Analysis]: General—Parallel Algorithms

Keywords
Similarity Matrix, Parallel Algorithm, Heterogeneous Hard-
ware, Recurrence Quantification Analysis

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

1. INTRODUCTION
Recurrence quantification analysis (RQA) is a statistical

method to quantify the recurrent behaviour of dynamic sys-
tems, captured in one or more time series [11]. It has proven
its potential in a variety of applications, such as the investi-
gation of the climate system [12] and the early detection of
epileptic states [3].

RQA is based on extracting multi-dimensional vectors from
time series; each vector corresponds to a reconstructed state
of the system at a point in time. To identify recurrences,
these vectors are compared regarding their mutual similar-
ities. The results of the comparisons are stored within a
binary similarity matrix.

Matrix elements referring to pairs of vectors considered
to be similar form vertically and diagonally connected se-
quences. Using frequency distributions of those lines, RQA
derives quantitative measures. They allow to draw conclu-
sions concerning the dynamics of the system under investi-
gation [11].

Focussing on very long time series, in [13] we introduced
coarse-grained parallelisation strategies to the problem of
RQA. We presented an approach that divides the similarity
matrix into multiple sub matrices, computing intermediate
results for each sub matrix. This allows to process several
sub matrices concurrently. Within a final step, the interme-
diate results are recombined into a global RQA result.

Even though our approach is independent of the concrete
implementation, in [13] we compare a non-parallel version
of RQA to a prototype of our approach based on OpenCL,
which performs parts of the computation in a massively par-
allel manner. Exploiting the parallel computing capabilities
of modern GPU processors, we achieved drastic performance
improvements.

However, executing the prototype on different hardware
platforms, we discovered that the relative performance im-
provements vary. Hence, in this publication we conduct a
study that exemplarily examines a selection of factors influ-
encing the overall performance characteristics of RQA.

We provide five implementations, which differ concern-
ing input data representation, similarity matrix materialisa-
tion, similarity value representation and intermediate results
recycling. Given a specific implementation, we investigate

56

0.0!

Time Series:!

m = 2 (Embedding Dimension)!
t = 2 (Time Delay)!

Extracted Vectors: !

0.7! 1.0! 0.7! 0.0! -0.7! -1.0! -0.7! 0.0! 0.7! 1.0! 0.7! 0.0!

s1!

0.0!
1.0!

s2!

0.7!
0.7!

s3!

1.0!
0.0!

s4!

0.7!
-0.7!

s5!

0.0!
-1.0!

s6!

-0.7!
-0.7!

s7!

-1.0!
0.0!

s8!

-0.7!
0.7!

s9!

0.0!
1.0!

s10!

0.7!
0.7!

s11!

1.0!
0.0!

t1! t2! t3! t4! t5! t6! t7! t8! t9! t10! t11! t12! t13!

Figure 1: Vector Extraction. Given a time series
capturing the sine function at multiples of π/4 start-
ing at 0, consisting of thirteen data points. Applying
the parameter values m = 2 and t = 2, eleven vectors
are extracted.

the influence of the RQA input parameter assignments, the
hardware platform used for execution and whether default
OpenCL compiler optimisations are enabled.

The results of our experiments show, that the performance
of each implementation highly depends on the combination
of hardware platform, default OpenCL compiler optimisa-
tions status as well as RQA input parameter assignments.
Providing general guidelines, we support the selection of
an implementation given a specific RQA scenario as well
as computing environment (see Sect. 5.2). Recognising the
fact that the exploration space covered is limited, we see this
study as a first effort to address the performance comparison
of parallel RQA implementations.

We believe that our work, apart from providing highly
interest into the nature of RQA, is also relevant for other
application areas that face similar problems, including near-
est neighbour search.

2. OVERVIEW OF RECURRENCE QUAN-
TIFICATION ANALYSIS

Recurrence quantification analysis is a method in the con-
text of time series analysis [11]. It is based on:

1. extracting multi-dimensional vectors from a set of time
series,

2. creating a similarity matrix by calculating pairwise
vector similarities, and

3. quantifying small-scale structures within the similarity
matrix.

There are several approaches for conducting each of these
steps. For the sake of clarity, in this paper we consider per-
forming RQA with the following properties: We are given a
single time series consisting of floating point numbers; each
value refers to a measurement of an output variable, e.g.,
the air temperature, of a dynamic system, e.g., the Earth’s
climate, at a specific point in time. To extract the multi-
dimensional vectors, the so called time delay method is ap-
plied, building on the two parameters embedding dimension
(m) and time delay (t). Starting at the first element of the
time series, vectors of size m with the temporal offset t are
extracted (see Fig. 1).

d!

v!

s1!

s1!

s11!

s11!

Figure 2: Thresholded Recurrence Plot. Referring
to the example from the previous figure, the eleven
vectors extracted are compared regarding their mu-
tual similarities. Concerning the vector compar-
isons, the Euclidean norm is applied, using a sim-
ilarity threshold of 1.0. The column v contains two
lines; one of length 2 and one of length 3. The diag-
onal d comprises a line of length 4.

To compare those vectors concerning their mutual similar-
ity, a metric such as the Euclidean norm is applied. By in-
troducing a threshold condition regarding the vector similar-
ities, all matrix elements fulfilling the condition are assigned
the value 1 (recurrence point), whereas pairs of non-similar
vectors are assigned the value 0. A visual representation
of this matrix is referred to as thresholded recurrence plot
(see Fig. 2). Recurrence points, encoded using the colour
black, form vertical and diagonal lines, which are captured
in corresponding histograms of line lengths. Based on these
histograms, quantitive measures are calculated, including for
example the average vertical line length.

3. PARALLEL RQA ALGORITHM
To enable a systematic analysis, we divide the problem of

conducting RQA into three operators:

I The creation of the binary similarity matrix.
(create matrix)

II The detection of vertical lines within the similarity ma-
trix. (detect vertical lines)

III The detection of diagonal lines within the similarity ma-
trix. (detect diagonal lines)

We refine these operators into atomic units of computa-
tion:

I The computation of the similarity of a single pair of
multi-dimensional vectors.

II The inspection of a single column of the similarity ma-
trix concerning vertical lines.

57

III The inspection of a single diagonal of the similarity ma-
trix concerning diagonal lines.

Having extracted N multi-dimensional vectors, the maxi-
mum degree of parallelism varies between N2 (I), N (II) and
2N − 1 (III).

Performing similar operations on different data objects,
each atomic unit is fully independent of any other unit re-
garding the execution of a single operator. However, there
exist interdependencies between atomic units belonging to
different operators: Prior to the detection of lines within a
single column or diagonal, the corresponding vector similar-
ities have to be computed.

The structure presented above allows us to perform RQA
in a parallel manner. Although subdividing the problem
into multiple operators, we mainly focus on the cumulative
performance of all operators, regarding the evaluation.

4. EXPERIMENTAL SETUP

4.1 Implementation Strategies
Building on the OpenCL framework, we consider a com-

puting environment that consists of a host device and a sin-
gle computing device. The code executed on the host device
is written in Python 2.7, utilising the package PyOpenCL.
The atomic units of computation described in Sect. 3 are
mapped to OpenCL kernels, implemented in OpenCL C.

We provide five RQA implementations, which differ along
the following dimensions:

• Input Data Representation,

• Similarity Matrix Materialisation,

• Similarity Value Representation, and

• Intermediate Results Recycling.

In the following, we introduce each dimension and moti-
vate the corresponding values. Regarding the evaluation, we
include only a subset of possible value combinations. Nev-
ertheless, we ensure that each value is featured within at
least one implementation. Tab. 1 gives an overview of the
individual properties of each implementation considered (see
Impl. A–E).

Input Data Representation
Conducting RQA, multi-dimensional vectors are extracted
from a time series. Regarding their representation within
the memory of the computing device, the set of vectors may
either be stored row-wise or column-wise. Choosing a Row-
Store layout, all components of a single vector are stored
consecutively. This requires to reorganise the data given by
the input time series.

However, having to perform read-only operations on the
vector data, a Column-Store layout [16] may be advanta-
geous. Applying this approach, all values belonging to the
same vector component are stored contiguously. Since seg-
ments of the input time series represent those columns, it
can be transferred to the memory of the computing device
without having to perform reorganisations.

0!

Number of Vectors: 100!
Size of Similarity Matrix: 100 x 100!

1! 2! 99! 0! 1! 99!Column ID:!

32-bit Integer Value!

…! …! …!

0! 1! 31!…!Row ID:! 32! 33! 63!…!

2!

Figure 3: Bitwise Similarity Value Representation.
The 32 bits of an integer value refer to a single col-
umn. Integer values stored contiguously refer to dif-
ferent columns. Each bit within an integer value
refers to a different row of the similarity matrix.

Similarity Matrix Materialisation
The vectors extracted from the time series are compared re-
garding to their mutual similarities. The resulting binary
similarity values are used as input for the detection of verti-
cal and diagonal lines. The corresponding similarity matrix
may be stored within the memory of the computing device
(Yes). This requires that the size of this memory is suffi-
ciently large enough.

Avoiding this restriction, the similarity values may be
computed on-the-fly by transferring the computations to the
operators for detecting vertical and diagonal lines (No). Pre-
vious work has shown that the computation of the pairwise
similarities requires extensive computing [4]. We are inter-
ested, if there are conditions where computing similarity val-
ues outperforms writing them to and reading them from the
memory.

Similarity Value Representation
Since device memory is a limited resource, the similarity
matrix shall be represented in the most efficient manner.
Using the bit-compression approach [14], a single bit is used
to encode the binary result of a similarity comparison (Bit).
A schematic illustration of the underlying memory layout is
depicted in Fig. 3.

Considering the detection of lines, this approach allows to
process up to 32 similarity values of a single column without
having to read additional data from the memory. In addi-
tion, it ensures that similarity values belonging to different
columns are read using a single read instruction.

Nevertheless, this compression approach may introduce a
computing overhead, having negative effects on the over-
all performance. Hence, we compare it to representing a
similarity value using the smallest data object addressable
(Byte).

Intermediate Results Recycling
To avoid matrix materialisation, similarity values may be
computed on-the-fly during the line detection process, as ex-
plained earlier. Assuming that the execution model adheres
to operator-at-a-time, similarity values computed within one
line detection operator may be reused later on. Applying
this concept of recycling [7], performance improvements may
be exposed.

Omitting the create matrix operator, we integrate the ma-
terialisation of the similarity values in detect vertical lines
and reuse the results during the detection of diagonal lines

58

Table 1: Implementation Comparison.
Dimension Value Impl. A Impl. B Impl. C Impl. D Impl. E

Input Data Representation
Row-Store X

Column-Store X X X X

Similarity Matrix Materisalisation
Yes X X X X
No X

Similarity Value Representation
Byte X X X
Bit X

Intermediate Results Recycling
Yes X
No X X X X

(Yes). Here, the challenge is that the maximum degree of
parallelism for detecting vertical lines is significantly smaller
than creating the similarity matrix individually (No). Thus,
our goal is to reveal whether there are conditions under
which the positive impact of eliminating one operator is large
enough to overcome this limitation.

4.2 Hardware Platforms
We evaluate each implementation using three computing

devices. Each device is part of a system that runs on a 64-
bit version of openSUSE. This includes an Intel Core i7-3820
CPU running at up to 3.8 GHz, which is supplied with 16
GB of random access memory.

In addition, we employ an NVIDIA GeForce GTX 690
graphics card, equipped with two GPU processors running
at up to 1.019 GHz; each processor is supplied with 2 GB
of memory. In the context of our evaluation, only one of
those processors is used. The underlying system has version
331.49 of the NVIDIA graphics driver installed.

Adding diversity regarding the GPU architectures, we em-
ploy an AMD Radeon HD 7470 GPU, equipped with a single
processor running at up to 0.775 GHz. It is supplied with
0.5 GB of memory. The underlying system has version 14.9
of the AMD Catalyst driver installed.

4.3 Parameter Space
Given the three hardware platforms, we identified the fol-

lowing factors additionally influencing the performance char-
acteristics:

• the parameters steering the properties of the similarity
matrix, including:

– the time series,

– the embedding dimension,

– the time delay,

– the similarity measure, and

– the similarity threshold, as well as

• the default OpenCL compiler optimisations.

To restrict the exploration space, we reduce the number of
degrees of freedom addressed within the evaluation to two.
This includes varying the embedding dimension between 1
and 32. Moreover, we observe the impact of disabling the de-
fault OpenCL compiler optimisations using the compiler flag
-cl-opt-disable. We consider evaluating the impact of those

optimisations as highly relevant, since they are vendor spe-
cific and may affect the computing results, e.g., the default
activation of relaxed math operations on the NVIDIA GPU.

We employ a time series capturing the sine function, simi-
lar to Fig. 1, consisting of 10,000 data points. We choose this
rather short length since we have to ensure that the result-
ing similarity matrix fits into the memory of all computing
devices applied.

Regarding the similarity comparisons, we select the Eu-
clidean norm in combination with a threshold of 1.0. Initial
experiments have shown that the time delay parameter does
not have considerable influence on the performance. Hence,
we set this parameter to 2.

5. EVALUATION

5.1 Procedure
Concerning the evaluation, we consider an experiment to

be a combination of:

• hardware platform,

• implementation,

• embedding dimension, and

• default OpenCL compiler optimisations status.

To reduce the impact of outliers, we conduct each exper-
iment five times. For the purpose of measuring the runtime
behaviour of the implementations, we rely on profiling events
as part of the OpenCL API, collecting information about the
average runtime of the three operators. Furthermore, we use
the sprofile [1] command line tool to retrieve extended per-
formance information provided by the AMD GPU.

5.2 General Guidelines
The cumulative runtime results are depicted in Fig. 4,

having the default OpenCL compiler optimisations disabled,
and Fig. 5, having them enabled.

As expected, increasing the dimensionality of the vectors,
the runtime increases as well. Enabling the default com-
piler optimisations has a positive impact on the cumulative
runtime, independent of the implementation as well as the
hardware platform employed. Considering the GPU devices,
implementation A, using a row-wise layout for storing the
multi-dimensional vectors, benefits the least. Whereas the
relative difference in runtime between A and the other imple-
mentations is narrow considering the CPU, it widens more

59

drastically regarding the GPU devices. Hence, considering
GPU devices, a row-wise layout should be avoided.

Compared to the other implementations, B shows well-
balanced performance characteristics, relying on the column-
wise memory layout. Applying an embedding dimension of
32, it is among the two fastest implementations independent
of the hardware platform applied. Eliminating the similarity
matrix materialisation, implementation C delivers perfor-
mance improvements considering small embedding dimen-
sions, as expected.

The usage of the bit-representation in implementation D
proves to be reasonable for larger embedding dimensions.
The corresponding runtime curves start at a higher plateau,
but have the smallest slope, independent of hardware plat-
form and default compiler optimisations status. Diminishing
the compression overhead with increasing dimensionality,
the curves of D converge towards the corresponding curves
of B.

Recycling intermediate results, as employed in implemen-
tation E, does not present runtime benefits across all hard-
ware platforms. Considering the CPU, it is the fastest imple-
mentation, for nearly all embedding dimension values. Re-
garding the GPU devices, E delivers runtime improvements
for vectors having small dimensionality, but is eventually
outperformed by implementation B and D.

Considering a given hardware platform, time series as well
as RQA input parameter assignments, we propose employing
an implementation that comprises the following features:

• column-wise input data representation,

• materialisation of the similarity matrix,

• byte representation of the similarity values, and

• usage of a separate create matrix operator.

Although this combination does not deliver the best per-
formance under all circumstances, it appears to be a reason-
able choice based on the evaluation results.

5.3 Detailed Performance Analysis
We present selected details on the impact of using differ-

ent implementation strategies. The runtime results as well
as the performance counter values listed below refer to an
embedding dimension of 32.

Input Data Representation
Comparing the hardware platforms applied, the row-store
layout for representing the vectors has the least worst im-
pact considering the CPU. Having the default compiler opti-
misations disabled, the create matrix operator of implemen-
tation A (0.79s) is as nearly as fast as the same operator of B
(0.75s). Enabling the optimisations, creating the matrix in
A (0.44s) consumes twice as much runtime as in B (0.22s).

Additionally, the impact of changing the access pattern to
the device memory is illustrated by the cache hit rate pro-
duced on the AMD GPU. Disabling the compiler optimisa-
tions, the create matrix operator of A has a rate of 23.39%,
whereas executing the same operator of B results in a rate
of 91.36%.

Similarity Matrix Materialisation
Not materialising the similarity matrix presents advantages
concerning the cumulative runtime using small embedding

dimensions. Regarding the NVIDIA GPU, the break-even
point of implementation B and C is a dimensionality of 3.

Experiencing a drastic increase in fetch operations, the
ratio between the amount of arithmetical logical unit (ALU)
instructions performed by the AMD GPU in comparison to
the number of fetch unit instructions decreases; from 17.97
(B) to 2.25 (C) regarding the detection of vertical lines,
having the default optimisations enabled.

Similarity Value Representation
Encoding similarity values using a single bit leads to an in-
crease in ALU instructions for all three operators, reflecting
the corresponding computing overhead. However, the cus-
tom layout presented in Sect. 4 improves the memory access.
Considering the AMD GPU, this results in an increased
cache hit rate for detecting diagonal lines; from 3.26% (B)
to 21.52% (D), having the default compiler optimisations
enabled.

Intermediate Results Recycling
Focussing on the execution on the CPU, the reuse of sim-
ilarity values in E is advantageous compared to any other
implementation. Enabling the default OpenCL compiler op-
timisations, implementation E (0.31s) outperforms its direct
successor B (0.37s), regarding the cumulative runtime.

6. RELATED WORK
A number of RQA implementations are available, posing

restrictions concerning the size of the similarity matrices
that can be processed [10, 17]. The Commandline Recur-
rence Plots (CRP) software allows to analyse time series of
arbitrary size [9]. However, it relies on computing the RQA
measures using a single CPU thread. For an overview of free
RQA software, we refer to [2].

In [15] prior efforts to bring RQA to the GPU are de-
scribed, comprising several limitations that hamper the anal-
ysis of long time series. This includes being restricted to
similarity matrices that fit into the memory of the GPU de-
vice. Relying on the concepts of Divide & Recombine [6],
our approach presented in [13] allows to process similarity
matrices of arbitrary size. We demonstrated the capabilities
of our approach for a specific RQA scenario from climate
impact research. Examining a time series consisting of over
one million data points, we were able to reduce the runtime
from over six hours, using the CRP software, to almost five
minutes, using an OpenCL implementation of our approach
running on two GPUs.

Considerable efforts have been made to accelerate database
operations. Exploiting the computing capabilities of general-
purpose graphics cards, in [5] several parallel implementa-
tions for database operations, such as semi-linear query, are
presented. The conclusion is that depending on the oper-
ation investigated, GPUs enable drastic performance im-
provements.

A prominent database operation similar to RQA is the
k-nearest neighbour search (kNN). Within both techniques,
comparing a set of objects regarding their mutual similarities
is a key aspect. Adapting kNN processing to many-core sys-
tems, a large amount of similarity comparisons is performed
concurrently. Experimental results illustrate that executing
a parallelised version of the algorithm on the GPU is two
orders of magnitudes faster than performing the search on
the CPU [4].

60

(a) Intel Core i7-3820

(b) NVIDIA GeForce GTX 690

(c) AMD Radeon HD 7470

Figure 4: Disabling Default OpenCL Compiler
Optimisations. Cumulative runtime of executing
the operators create matrix, detect vertical lines and
detect diagonal lines.

(a) Intel Core i7-3820

(b) NVIDIA GeForce GTX 690

(c) AMD Radeon HD 7470

Figure 5: Enabling Default OpenCL Compiler
Optimisations. Cumulative runtime of executing
the operators create matrix, detect vertical lines and
detect diagonal lines.

61

Previous work focussed on employing a set of optimisa-
tions to gain runtime improvements on a specific device.
To the best of our knowledge, we provide the first struc-
tured approach to analyse the performance characteristics
of parallel RQA implementations. In this regard, we benefit
from using the OpenCL framework for heterogeneous com-
puting [8], which allows us to execute identical code on a
variety of hardware platforms.

7. CONCLUSION
We present a structured approach to evaluate the per-

formance of five parallel implementations analysing binary
similarity matrices in the context of RQA. Assessing the
performance of each implementation, we vary their charac-
teristics along four dimensions, including the representation
of input data, the materialisation of the similarity matrix,
the representation of the similarity values as well as the re-
cycling of intermediate results.

Building on the OpenCL framework, we investigate the
influence of the hardware platform used for execution, in-
put parameter assignments and default OpenCL compiler
optimisations enabled on the performance. We examine the
runtime behaviour as well as additional indicators, e.g., the
cache hit rate. We come to the conclusion, that an imple-
mentation using column-wise input data representation in
combination with similarity matrix materialisation provides
reasonable performance, regarding a given RQA scenario.
Subsuming, we see our study as a first effort towards a com-
prehensive analysis of parallel RQA implementations.

8. ACKNOWLEDGEMENTS
This work is supported by grants from the Deutsche

Forschungsgemeinschaft, Graduiertenkolleg METRIK
(GRK 1324).

9. REFERENCES
[1] Advanced Micro Devices, Inc. APP Profiler Settings.

http://developer.amd.com/tools-and-sdks/

archive/amd-app-profiler/user-guide/

app-profiler-settings/, 2014.

[2] J. Belaire-franch and D. Contreras. Recurrence plots
in nonlinear time series analysis: Free software.
Journal of Statistical Software, 2002.

[3] K. C. Chua, V. Chandran, U. R. Acharya, and C. M.
Lim. Computer-based analysis of cardiac state using
entropies, recurrence plots and Poincare geometry.
Journal of Medical Engineering & Technology,
32(4):263–272, 2008.

[4] V. Garcia, E. Debreuve, and M. Barlaud. Fast k
nearest neighbor search using GPU. In 2008 IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, pages 1–6, 2008.

[5] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast Computation of Database
Operations Using Graphics Processors. In Proceedings
of the 2004 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’04, pages
215–226, New York, NY, USA, 2004. ACM.

[6] S. Guha, R. Hafen, J. Rounds, J. Xia, J. Li, B. Xi,
and W. S. Cleveland. Large complex data: divide and
recombine (D&R) with RHIPE. Stat, 1(1):53–67, 2012.

[7] M. G. Ivanova, M. L. Kersten, N. J. Nes, and R. A.
Gonçalves. An Architecture for Recycling
Intermediates in a Column-store. In Proceedings of the
2009 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’09, pages 309–320,
New York, NY, USA, 2009. ACM.

[8] Khronos Group. OpenCL 1.1 Specification.
http://www.khronos.org/registry/cl/specs/

opencl-1.1.pdf, Sept. 2010.

[9] N. Marwan. Commandline Recurrence Plots, Version
1.13z.
http://tocsy.pik-potsdam.de/commandline-rp.php,
2006.

[10] N. Marwan. CRP Toolbox, Version 5.17.
http://tocsy.pik-potsdam.de/CRPtoolbox, 2013.
platform independent (for Matlab).

[11] N. Marwan, M. C. Romano, M. Thiel, and J. Kurths.
Recurrence Plots for the Analysis of Complex
Systems. Physics Reports, 438(5–6):237–329, 2007.

[12] D. I. Ponyavin and N. V. Zolotova. Cross Recurrence
Plots Analysis of the North-South Sunspot Activities.
volume 2004, pages 141–142, 2005.

[13] T. Rawald, M. Sips, N. Marwan, and D. Dransch. Fast
Computation of Recurrences in Long Time Series. In
Translational Recurrences. From Mathematical Theory
to Real-World Applications, volume 103 of Springer
Proceedings in Mathematics & Statistics, pages 17–29.
Springer International Publishing, 2014.

[14] M. A. Roth and S. J. Van Horn. Database
Compression. SIGMOD Rec., 22(3):31–39, Sept. 1993.

[15] T. Rybak. Using GPU to Improve Performance of
Calculating Recurrence Plot. http://www.wi.pb.edu.
pl/pliki/nauka/zeszyty/z6/Rybak-full.pdf, 2010.

[16] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and
S. Zdonik. C-store: A Column-oriented DBMS. In
Proceedings of the 31st International Conference on
Very Large Data Bases, VLDB ’05, pages 553–564.
VLDB Endowment, 2005.

[17] C. L. Webber Jr. RQA Software, Version 14.1.
http://homepages.luc.edu/~cwebber, 2013. only for
DOS.

62

Energy Data Management (EnDM)

Torben Bach Pedersen (Aalborg University),
Wolfgang Lehner (TU Dresden)

63

Enhancing energy awareness through the analysis of
thermal energy consumption

Andrea Acquaviva†, Daniele Apiletti†, Antonio Attanasio† §, Elena Baralis†,
Federico Boni Castagnetti‡, Tania Cerquitelli†, Silvia Chiusano†, Enrico Macii†,

Dario Martellacci‡, Edoardo Patti†
† Dipartimento di Automatica e Informatica, Politecnico di Torino, ITALY

§ Istituto Superiore Mario Boella, Torino, ITALY – ‡ IREN Energia Torino, ITALY
† {name.surname}@polito.it – §attanasio@ismb.it – ‡{name.surname}@gruppoiren.it

ABSTRACT
Energy efficiency by means of reduction in wasteful energy
consumption is a growing policy priority for many coun-
tries. Innovative systems should be designed to continuously
monitor a smart city environment and provide all stake-
holders the tools to improve energy efficiency. This paper
presents the EDEN platform, designed to collect and ana-
lyze thermal energy consumption of residential and public
building heating systems. EDEN is being deployed in a ma-
jor Italian city and collects energy consumption measure-
ments through an extensive smart metering grid involving
thousands of buildings. EDEN also collects and analyzes
indoor climate conditions, and user feedbacks, such as their
thermal comfort perception, by means of an ad-hoc social
network. Collected data are further enriched with temporal
and spatial information at different abstraction levels and
meteorological data available as an open source data set.
Several technical Key Performance Indicators (KPIs) have
been defined to inform users on their building thermal en-
ergy consumption, while user-friendly KPIs present energy
savings or over-consumptions in an informative fashion.

1. INTRODUCTION
In the last few years, the interest in urban data computing

is continuously growing both in the industrial and research
domains, as well as in the Public Administration. Industries
are attracted by the business opportunities arising from the
design, implementation, and exploitation of novel technolo-
gies and applications to effectively support all the crucial
aspects of Smart Cities management. Researchers, instead,
are interested in the challenging issues coming from the ap-
plication of innovative data management and mining tech-
niques to new and more complex fields. Innovative systems
should be designed to continuously monitor a smart city
environment and suggest new ways to improve the quality
of life within an urban environment, for both citizens and
the Public Administration. A complete overview of the key

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

challenges of urban computing from the computer scientists
perspective is presented in [25]. Among the large variety
of applications available in the context of smart cities, this
paper focuses on energy consumption, and specifically on
thermal energy consumption in buildings during the win-
ter period. The goal is to improve energy infrastructures
and reduce energy consumption, and the associated costs,
by suggesting energy-saving strategies to users and by pro-
viding better information to the different people involved in
the energy management roles.

Energy efficiency is a growing policy priority for many
countries around the world, as governments seek to reduce
wasteful energy consumption and encourage the use of re-
newable sources. The International Energy Agency (IEA)
has estimated that in terms of primary energy consump-
tion, buildings represent roughly 40% of total final energy
consumption in most countries. The amount of this energy
used for heating and cooling systems is about 60% in the
residential sector and 45% in the service one [12].

Important research activities have been carried out to use
database management systems and exploratory data min-
ing techniques in the field of storage and analysis of en-
ergy data to evaluate the efficiency of buildings. The pro-
liferation of sensor networks for monitoring indoor and out-
door environmental parameters [16, 19] has brought to the
facility managers huge archives of measures with tempo-
ral and spatial references. Research contributions on these
large data volumes have been carried out for: (i) support-
ing data visualization and warning notification [17, 20, 24];
(ii) efficient storing and retrieval operations based on NoSQL
databases [19, 23]; (iii) discovering anomalous behaviors us-
ing clustering algorithms [6, 24], Support Vector Machines
(SVM) [9] and outlier detection [21]; (iv) characterizing con-
sumption profiles among different users [2, 9, 20]; identify-
ing the main factors that increase energy consumption (e.g.,
floors and room orientation [10], location [9, 14]).

In this paper we describe the Energy Data ENgagment
platform, EDEN, designed to monitor and analyze thermal
energy consumption of heating systems for enhancing user
energy awareness. EDEN collects data from smart meters
deployed in thousands of buildings in Turin, a major Ital-
ian city. EDEN also collects and analyzes indoor climate
conditions by means of temperature sensors installed in a
subset of the monitored buildings. Thermal comfort per-
ception and user feedbacks on indoor climate conditions are
also collected by means of an ad-hoc social network. Col-
lected data are further enriched with temporal and spatial

64

information at different abstraction levels, and meteorolog-
ical data available as an open source data set. Several tech-
nical and user-friendly Key Performance Indicators (KPIs)
are defined within EDEN targeting different users. A tech-
nical KPI informs users on their building thermal energy
consumptions, while a user-friendly KPI explains monetary
savings or overconsumption by converting its value into the
price of commonly purchased goods. EDEN is designed, de-
veloped and experimented within the context of a publicly-
funded research project, including both academic and in-
dustrial partners that contribute to make it a live platform,
with actual deployment and real data.

This paper is organized as follows. Section 2 discusses
our vision towards enhancing energy awareness through the
Energy Data ENgagment platform. Section 3 describes the
main building blocks of the proposed system. For some
blocks, we describe our first implementation to show both
the feasibility and high potential of the proposed approach.
Section 4 reports a preliminary analysis of thermal energy
consumption for 2 school buildings and 6 residential build-
ings located in Turin. Section 5 draws conclusions and
presents future developments of this work.

2. PLATFORM OVERVIEW
Figure 1 shows the overall architecture of the EDEN sys-

tem. In this study we focus on an instance of EDEN tai-
lored to an indoor heating monitoring system. However, the
EDEN architecture can be easily tailored to different in-
door monitoring contexts, such as electric cooling, and out-
door monitoring applications as well. It includes three main
components, named Data Platform, Publication Platform,
and Social Platform, briefly described below and detailed in
the following sections.

EDEN is designed for the collection, storage, modeling,
and analysis of a large amount of heterogeneous data to
provide different levels of relevant knowledge. The aim is
to make people aware of their energy and thermal consump-
tions, as well as encouraging them to pursue energy sav-
ing strategies. Collected data include energy consumption
logs provided by thermal smart meters and indoor climate
conditions monitored through indoor temperature sensors.
In addition, data on the user thermal comfort perception
of indoor climate conditions and user feedbacks are gath-
ered through an ad-hoc social network. Heterogeneity in
terms of formats, timings and sampling periods, and sources
presented a challenge to the designers, also considering the
changes over time of this factors, determined by contexts
(e.g., smart meters update) or design improvements. To
this aim, EDEN exploits a non-relational schema-free data
warehouse, which allows coping with frequent changes in
data formats without technological issues. This component
will be detailed in Section 3.3.

Energy consumption data are collected by means of a large
number of smart meters (4,000 as of December 2014) de-
ployed in Turin (Italy) by IREN [13] to monitor thermal
energy for district heating. IREN is a multi-utility com-
pany listed on the Italian Stock Exchange and operates in
the sectors of electricity, thermal energy for district heating,
gas, management of integrated water services as well as the
collection and disposal of waste.

Data on energy consumption and on monitored indoor
climate conditions, collected through sensors and smart me-
ters, are stored in the Data Platform component. These

data are enriched with spatial and temporal information at
different granularity levels as well as with various meteo-
rological conditions. The enriched dataset is stored in a
datawarehouse and is managed by the Publication Platform
component. Specifically, an informative dashboard is gen-
erated based on a selection of Key Performance Indicators
(KPIs) to produce useful feedbacks to the different users
and suggests ready-to-implement energy efficient actions or
strategies. Mainly, the following two classes of KPIs have
been proposed. (i) Technical KPIs allow informing users on
the thermal energy consumption of their building, but also
comparing the consumption between buildings in the same
neighborhood, also in different time periods. Comparison
can be performed under similar meteorological conditions.
(ii) Informative and user-friendly KPIs present the results
of the analysis on energy savings and overconsumption in an
informative fashion, using simple and easily understandable
comparisons according to the user profile. For example, let
us consider the energy consumption of a secondary school,
and suppose that we would like to improve students’ energy
awareness. An informative and user-friendly KPI can pro-
vide the school energy savings in terms of energy needed for
heating the gym for a given number of days. Alternatively, it
can explain the possible monetary savings in terms of com-
monly purchased goods (e.g. average number of pizzas that
could have been purchased by saving on energy consump-
tion).

The Social Platform component is a digital and social
platform which will be developed as a social network where
users can share their feedbacks and their perceptions of in-
door thermal comfort (e.g. too hot, too cold, or comfort-
able). Furthermore, it provides visibility of both technical
and informative KPIs. The aim is ehnancing energy aware-
ness and stimulate sustainable behaviors to optimize energy
consumption.

The EDEN platform also includes the knowledge extrac-
tion block for discovering interesting associations among ther-
mal energy consumptions, indoor climate conditions, mete-
orological conditions, and user perception of indoor thermal
comfort in the form of association rules [1]. Association rules
represent a powerful exploratory data mining approach able
to discover interesting and hidden correlations in the data.

Finally, a subset of interesting and open data (e.g., KPI
values) will be published in the Smart Data Platform to im-
prove both individual and collective energy awareness. The
Smart Data Platform exploited in EDEN is the Yucca Smart
Data Net [18] developed by the Piedmont Region (Italy).

3. PLATFORM COMPONENTS
In this section we describe the main components of the

proposed EDEN platform, which are currently under devel-
opment.

3.1 Data platform
Remote measurements of energy consumption are collected

by IREN [13], an Italian energy-provider company, by means
of gateway boxes installed in monitored buildings. Each
gateway includes a GPRS modem with an embedded pro-
grammable ARM CPU. An ad-hoc software has been de-
veloped to execute the following activities: sensor manage-
ment, GPRS communication, remote software update, data
collection scheduling, and collected data sending to a remote
server.

65

Figure 1: The EDEN system architecture.

Each gateway has in charge the management of all the
sensors deployed in its building. Thermal energy is mea-
sured under different aspects, such as instantaneous power,
cumulative energy consumption, water flow and correspond-
ing temperatures. Furthermore, gateways also collect indoor
temperature and the status of the heating system.

A cloud architecture is used for storing and processing all
the monitored data. As of December 2014, there are about 4
thousands monitored buildings, each generating about 2,000
data frames per day. Thus, EDEN needs to manage a grow-
ing base of at least 8 million data frames per day. The gate-
ways send the data frame to the cloud architecture, where a
firewall first authenticates the data sender and then assigns
each data frame to one of four dispatchers to guarantee the
system reliability. Each dispatcher delivers the frame to a
cluster of computers including different processing servers
where data are stored in an HDFS distributed file system.
The dispatcher is able to recognize if the process server has
stored the frame correctly and in that case it sends the ACK
to the gateway which can send the next data frame.

Each processing server elaborates the received data and
stores the result in an Oracle database. The logical model of
the database includes the following three tables: (i)The Build-
ing table contains the main features characterizing each build-
ing such as address and volume; (ii) the Sensor table stores
the list of sensors located in each building and the main char-
acteristics for each sensor (e.g., unit of measure, description,
sensor type and model, etc.); (ii) the History table stores the
collected measurements for all sensors. On average, every 5
minutes a data frame is received from each building. Then,
corresponding data are stored in many records, with one
record for each measurement value.

To efficiently perform the management of a large vol-
ume of collected data, different strategies have been adopted
(e.g., data sharding, distributed map-reduces, and data repli-
cation).

3.2 Data integration and enrichment
Data collected through the smart meters are aggregated

and enriched with additional contextual information acquired
from external open data sources. More specifically, to ana-
lyze the temporal distribution of thermal energy consump-

tion, the following time granularities are considered: day,
month, 2-month, 3-month, 6-month time periods. Moreover,
each day is classified as holiday or not, and the measure-
ment time is aggregated into the corresponding daily time
slot (morning, afternoon, evening, or night).

In Italy, heating systems are operated only from October
15th to April 14th, hence times periods outside this range
were not considered. In addition, since the heating systems
under monitoring within EDEN are operated at fixed time
slots, each aggregation (morning, afternoon, evening) in-
cludes only the time slots when the system is actually on
(e.g., morning from 6:00a.m. to 11:59a.m, afternoon from
12:00p.m to 6:59p.m., evening from 7:00p.m to 10:00p.m.).

To analyze the spatial distribution of thermal energy con-
sumption, different space granularities are also considered
beyond the building addresses. In addition, each address
is mapped to the corresponding geographical coordinates
(longitude and latitude degrees), neighborhood and city dis-
trict including that neighborhood. While the address is an
information recorded for the monitored building, the geo-
graphical coordinates and both the neighborhood and dis-
trict names corresponding to the address are added as ad-
ditional contextual features to the repository. We exploited
the Google Maps APIs [11] for geocoding street addresses.
Furthermore, topological information about neighborhood
names and districts are integrated in the repository as well.
The latter have been retrieved from [22]. Topologies are used
to graphically analyze the most significant spatial trends in
thermal energy consumption data and were encoded in Geo-
JSON, which is a standard format for encoding a variety of
geographic data structures.

The above data were also enriched with meteorological in-
formation collected from the web. Specifically, historical me-
teorological data were taken from the Weather Underground
web service, which gathers data from Personal Weather Sta-
tions (PWS) registered by users. For the city of Turin more
than twenty PWS are distributed throughout the territory
and about 4 of them are directly located inside the area con-
sidered in this study. The decision to use data from PWS is
motivated by the fact that they reflect with high accuracy
the real conditions registered in their neighborhood, as op-
posed to other services that provide estimated values with
respect to a wider area. Although the measurement fre-
quency can be easily set by the user for each PWS (and can
vary over time), the average value for the ones we consid-
ered was about 5 minutes. Data were collected for the period
going from October 2012 to April 2013. More specifically,
each measurement includes the air temperature (expressed
in degree Celsius), the relative humidity (percentage), the
precipitation level (mm), the wind speed (km/h) and the
sea level atmospheric pressure (hPa). The date and time of
each measurement is also included.

3.3 Data warehouse
While the data collection from smart meters exploits an

Oracle database, due to the fixed and constant nature of
those measurements, enriched data is much more variable
and heterogeneous, and its analysis requires a different tech-
nological solution. To this aim, enriched data are modeled
into a document-oriented distributed data warehouse pro-
viding rich queries, full indexing, data replication, horizontal
scalability and a flexible aggregation framework, including
a distributed map-reduce engine. The current database em-

66

Figure 2: The EDEN data warehouse design.

powering EDEN analytics inside the Publication Platform
is MongoDB [7], and to our purpose it is actually exploited
as a data warehouse: periodically, sensor-collected data and
social-platform data are enriched, integrated and loaded into
a MongoDB collection.

Following best practices in data warehouse design, data
are de-normalized and redundant information is added to
each record (document) to speedup read performance by
avoiding join operations (which are not sopported by Mon-
goDB), and resulting in fast querying and KPI computa-
tion. The model design aims at providing a human-readable
document format, hence the choice of long, self-descriptive
field names, with sub-documents for each separate aspect
of the record, from user feedbacks to geo-location, through
smart meter measurements and other contextual informa-
tions. Such structured choice helps in coping with hetero-
geneity, but presents a main drawback in disk space usage:
each field name is re-written within each document, together
with all the redundant information that enrich the measure-
ment. However, the low cost of disk space nowadays makes it
an acceptable issue, also considering that no image or video
data are currently included.

In Figure 2 the data warehouse conceptual model is pre-
sented: the fact table consists of a main measure, the energy
consumption in a 5-minute time period, and some additional
metadata coming from indoor sensors, outdoor PWSs, and
the social data platform collecting customer feedbacks. Two
hierarchies are defined: a time-related hierarchy and a place-
related one. The former provides many different blends of
time spans, from minutes to months and years. The lat-
ter starts from the physical sensors inside each monitored
building and builds up to the whole city, with the building
volume and the geolocation coordinates as related features
included in the document.

Some metadata, in particular weather data and customer
feedbacks, may require some additional pre-processing dur-
ing the data loading phase because of different time spans:
e.g., a customer feedback given at a certain point in time
may be considered valid for a longer period than the specific
5-minute of a single data warehouse document, and weather
data may be unavailable for a specific point in space. The
solution adopted in EDEN supposes that customer feedback

in terms of indoor environment comfort has a temporal va-
lidity of 30 minutes, which is distributed from 15 minutes
before the feedback is provided and 15 minutes after. Hence,
a customer reporting a very cold indoor environment at mid-
night, is associated with 5-minute documents from 23:45 (in-
cluded) to 00:15 (excluded). Weather data associated with
a specific building and address are computed as a distance-
based weighted mean of the values provided by the three
nearest PWSs. The weight is inversely proportional to the
distance from the PWS to the building location, hence three
equally distant PWSs would have the same weight in deter-
mining the outdoor values of a given building.

In the following, a sample MongoDB document from the
designed data warehouse is provided. Subdocuments have
been extensively used to group similar fields together. Some
fields deem special attention:

• The customer feedback fields that identify too cold,
too hot and comfortable indoor environments are the
count of the collected feedbacks in the 30-minute time
span as previously described.

• The customer comments are a list of text strings pro-
vided as status description on the social data platform;
this allows us to exploit text mining techniques to as-
sociate keywords to measurement values, by building
upon the text search features of MongoDB. This is-
sues will be addressed as a future development of the
current implementation.

• The billing period spans over two different years: October-
November is the first 2-month (billing and operational)
period and so the December-January 2-month period
spans two calendar years, hence the choice to be ver-
bose and use values such as ‘2-2014-2015‘.

{

_id: ObjectId(...),

energy_consumption: 0.12,

indoor: {

temperature: 21.2

},

outdoor: {

temperature: 15.6,

relative_humidity: 70.0,

wind_speed: 5.0

},

feedback: {

cold: 2,

comfortable: 12,

hot: 1,

comments: ["nice sunny winter day",...]

},

place: {

sensor: {id: 123456, model:"..."},

gateway: {id: 234567, model:"..."},

building: {

id: 345678,

volume: 1234,

type: "med"

},

address: {

full: "corso Castelfidardo 39, 10129, ...",

street_name: "Castelfidardo",

street_number: "39",

67

coordinates: [7.6600778, 45.0632518],

...

},

neighborhood: "Crocetta",

city_district: "Circoscrizione I",

city: "Torino"

},

time: {

UTC_timestamp: 1419266446.0,

day: {

time: "16:40:46",

minute: 40,

hour: 16,

slot: "afternoon"

},

date: {

full: "2014-12-22",

day: 22,

day_of_year: 356,

holiday: "N"

}

month: "12-2014",

month_of_year: 12,

2month: "2-2014-2015",

3month: "1-2014-2015",

4month: "1-2014-2015",

billing_year: "2014-2015"

}

}

Finally, the data model design addresses horizontal scala-
bility and replication choices.

Horizontal scalability is obtained by exploiting data shard-
ing, i.e., storing documents across multiple distributed ma-
chines by dividing the collection and distributing its data
over multiple servers, or shards. As the size of the data in-
creases, EDEN only needs to add more machines to scale
and support the demand of a higher number of read and
write operations. Each shard processes fewer operations as
the cluster grows, and the amount of data that each server
needs to store is reduced.

MongoDB provides automatic sharding and the key design
choice is the attribute whose values partition the collection
documents, i.e., the shard key. In EDEN the sharding is
performed using a hash-based partitioning on the value of
the building ID field. The shard key choice is motivated
by KPIs that are typically computed by grouping measure-
ments per building, and the number of buildings grows with
the expansion of the EDEN framework, hence it is a natural
scaling indicator. Hash-based partitioning has been chosen
over the range-based partitioning approach to ensure that
data are evenly distributed across the machines in the clus-
ter, since no range queries are performed on the building
ID.

Replication is obtained by exploiting MongoDB replica
sets to provide redundancy and high availability. With mul-
tiple copies of data on different servers, replication avoids
data loss from a single server failure. Currently, in EDEN
each replica set consists of a primary server, a secondary
server and an arbiter. All writes go to the primary server,
while the secondary server can be exploited to increase the
read capacity at the cost of possible inconsistency. However,
this is not an issue in EDEN since KPIs for the dashboards
can wait to be updated after the secondary has caught up

the updates from the primary, which usually happens within
seconds.

3.4 KPIs definition
The EDEN system performs the KPI analysis tailored to

different users to gain insights on the integrated data. In
Business Intelligence, the analysis of Key Performance Indi-
cators (KPIs) is an established methodology [15]. KPIs help
organizations define and measure progress towards organi-
zational goals by monitoring the most significant achieve-
ments. In our context, KPIs are quantitative indicators of
thermal energy consumptions. To apply KPI analyses to
data coming from a real scenario, we defined technical KPIs
and informative and user-friendly KPIs. The aim of KPI
generation is to produce useful feedbacks to enhance energy
awareness for different types of users. We identified four dif-
ferent operational roles representing users of the EDEN sys-
tem: (i) the Energy Manager is responsible for the energy
services provided. He/She needs to access summary and
high-level information in order to grasp the overall picture
of the energy situation of the city district under observation.
He/She requires dashboards showing KPIs at a higher level
of granularity (e.g., city district). (ii) The Energy Analyst
is an expert in energy consumption. He/She is interested
in analyzing the complete streams of collected data to ob-
serve and understand the observed phenomenon, analyze the
different components and identify possible causes. He/She
needs to inspect a significant volume of data to understand
the anomaly. (iii) The Consumer represents the building
condos administrators or the public administration (as in
the case of public schools), whose interest is to assess the
efficiency of the heating system, as well as to get a feeling
of virtuous behaviors that should/could lead to energy sav-
ings while maintaining the desired level of indoor confort.
He/She only needs to visualize a few indicators, possibly
presented in a clear and intuitive way. (iv) The Users living
in the building are interested in mantaining indoor wellness
and understand how their behaviors affect energy consump-
tion and they can achieve a significant reduction of their
energy expenditure. Presented data should be informative
and, at the same time, easy to understand.

For users living in the building we define two user-friendly
KPIs that measure virtuous behaviors (i.e. energy savings)
in terms of (i) energy needed for heating the given building
for a given number of days, or (ii) kilograms of bread or
number of pizzas that can be purchased with the savings.

The technical KPIs aims at evaluating the energy con-
sumption at different levels: from the single building to
the neighborhood, and from hours and days to months. In
EDEN four technical KPIs have been identified.

• Building KPI. Average energy consumption indicator
of the building per unit of volume, i.e., total energy
consumption of the building divided by the building
total volume. This KPI can be also normalized ac-
cording to the degree days and to the known indoor
temperature.

• Neighborhood KPI. Average energy consumption in-
dicator of the buildings in the same neighborhood per
unit of volume.

• Building-type KPI. Average energy consumption indi-
cator of the buildings of the same type and in the same
neighborhood per unit of volume.

68

• Climate KPI. Average energy consumption indicator of
the buildings of the same type and in the same neigh-
borhood per unit of volume, considering only energy
consumption during specific outdoor conditions (tem-
perature range).

These KPIs are computed on different time scales, in partic-
ular: hourly, for each daily time slots, daily, monthly, and
on N-month periods.

Rich queries, indexing and map-reduces are the data ware-
house features exploited to compute KPIs. Specifically, fields
frequently used by KPI queries such as building IDs are in-
dexed, and map reduces are exploited to perform KPI com-
putation. Let consider a simple KPI such as the first of
the list, and for the sake of simplicity, suppose the tempo-
ral scope and normalizations are removed (their implications
will be discussed later). The equivalent SQL query to ex-
tract the Building KPI would be as follows.

select sum(energy_consumption)/building_volume

from fact_table, dimension_table1, ...

where <join fact and dimension tables>

group by building_id, building_volume

In EDEN such KPI is computed by exploiting map, re-
duce and finalize functions of MongoDB, as follows. The
map function determines the key and value pairs emitted by
each processed document: the key is similar to the group by
SQL clause, and in this case it corresponds to the building
ID, whereas the value is a more complex object, since to
compute an average we need to carry over both operands,
the consumption sum and the building volume. Hence, we
put these two values into the value object returned (emitted)
by the map function.

function() {

key = this.place.building.id;

value = {

ec: this.energy_consumption,

vol: this.place.building.volume

};

emit(key, value);

}

The reduce function receives a list of values from the map
functions having the same key, hence we have a list of objects
containing the energy consumption (ec) and the building
volume (vol), and we need to sum all the ec values of the
list. The building volume is the same for all values, since
they refer to the same building (the building id is the map
reduce key).

function(key, values) {

reduced_value = {

ec: 0,

vol: values[0].vol,

};

for (var i=0; i<values.length; i++) {

reduced_value.ec += values[i].ec;

}

return reduced_value;

}

After the reduce phase we have a list of value objects,
one for each building id (key), containing the total energy

consumption and the building volume. The finalize function
adds to each object in this list the average value, which is
the final result and corresponds to the desired KPI.

function (key, value) {

value.ec_vol = value.ec/value.vol;

return value;

};

The provided example is computed over the whole collec-
tion and return total cumulative results since the beginning
of the data collection. The temporal scope can be intro-
duced by exploiting two approaches: (i) a specific query
filtering undesired time periods can be passed to the map
reduce MongoDB command, thus limiting the computation
to a specific time span, or (ii) a more complex key can be
used involving compound building ID and time periods. The
latter is particularly useful to save pre-aggregated results in
a collection similarly to materialized views. For instance
a simple compound map-reduce key such as the concate-
nation of the building ID and the date (YYYY-MM-DD)
of the measurement would automatically provide day-level
aggregations and would require a small change in the map
function only. In EDEN then, monthly KPIs are computed
directly by querying the daily KPIs collections, hence build-
ing a tree of map-reduces that are fed by lower-level lesser-
aggregated results and feed higher-level map-reduces in the
tree.

Current advantages of the map-reduce KPI approach in-
clude a natively distributed computation, that allows hor-
izontal scaling and load balancing among the nodes of the
MongoDB cluster. We are currently analyzing further im-
provements on the EDEN KPI computation framework that
include incremental map-reduces, which are an obvious ap-
proach due to the nature of the data loading, and the ex-
ploitation of the MongoDB aggregation framework. Fur-
thermore, the ability to add new fields to the documents
allow us to easily implement new KPI computations as they
are required, even if the database does not natively support
join operations. Indeed, the actual join is performed as a
preprocessing step during the data enriching phase.

Finally, MongoDB also provides native support for geospa-
tial querying, that is exploited in EDEN to compute KPIs
involving the neighborhood besides the administrative bound-
aries. For instance, to query all the measurements associated
with buildings within a given distance from a specific point
in space, the following snippet of code can be added to an
existent query.

{

’address.coordinates’: {

$geoWithin: {

$center: [[7.6600778, 45.0632518], 0.01]

}

}

}

This limits the results to the measurements in a radius of
approximately 0.01 degrees (roughly 1 km) from the point
at the given longitude and latitude coordinates.

3.5 Smart data platform

69

Figure 3: Residential buildings: Daily energy con-
sumption per unit of volume (Wh/m3) .

The EDEN system will publish a subset of collected data
and results of the analysis in the Yucca Smart Data Platform
(SDP) [18]. Specifically, a portion of the data showed to
users through the informative dashboard, a subset of user’s
feedbacks and indoor thermal comfort perception data, and
interesting knowledge items extracted from the enriched data
collection. The Yucca SDP is a Big Data store developed and
maintained by CSI Piemonte [8]. Based on the Open Data
paradigm, it gives individuals and organizations the oppor-
tunity to publicly share their data under a license that allows
anyone to freely use them. It enables the interconnection
of geographically distributed applications, social networks,
objects and systems. The Yucca SDP supports different
protocols to receive and send data, such as HTTP, MQTT,
RTSP, WebSocket and OData REST APIs. It also provides
some basic functionalities of data enrichment, aggregation,
filtering, pattern matching and windowing.

4. EXPERIMENTAL RESULTS
We performed a preliminary analysis of energy consump-

tion on a real dataset using the EDEN platform. We con-
sidered 2 school buildings and 6 residential buildings, all lo-
cated in two neighboring districts in Turin, within a circular
area of 1 km of radius. Values were measured roughly every
5 minutes. The full time period depends on the availabil-
ity of measurements for each building. For the residential
buildings, measures are available from 2012 to 2014. To con-
sider a complete winter period we analyzed the period from
October 15th, 2012 to April 14th, 2013. For the first school
(named school A), instead, the time period is from Novem-
ber 28th, 2013 to April 30th, 2014. For the second school
(named school B), it is from October 1st, 2012 to March
14th, 2013.

Firstly, the daily energy consumption per unit of vol-
ume (Wh/m3) has been computed for each residential build-
ing, together with the daily average consumption among all
buildings. Figure 3 shows the average consumption profile,
and the profiles of an expensive building and an efficient one.

Since the time periods available for the two school build-
ings are different, also in duration, a further processing has
been performed to compare their energy efficiency: the con-

sumption has been normalized with respect to the total de-
gree days measured for the same time length. This measure
represents the different external temperatures that influence
the daily energetic demand for heating. We computed the
total degree days as the sum of all the positive differences
between a reference indoor temperature (i.e., 20 ◦Celsius)
and the average daily temperature taken from the ARPA
weather archives [3]. Results are reported in Table 1. As
shown in Table 1, the daily energy consumption in school
B is much greater than in school A, with a difference of
about 254 kWh. However, a higher value of average degree
days can also be observed (12.37 ◦C of school B versus 10.97
◦C of school A). The last row in Table 1 shows the energy
consumption per unit of volume divided by the total degree
days. The total consumption normalized with respect to
the degree days is still higher, but the difference is much
smaller. In fact, if we had 1690 degree days for school B
(like in school A), the total energy consumption per unit of
volume unit would have been only 31.04 Wh/(m3×◦C) ×
1690 ◦C= 52458 Wh/m3, rather than 63336 Wh/m3, which
is much closer to the 50373 Wh/m3 of school A.

5. CONCLUSIONS AND FUTURE WORKS
This paper presented a preliminary implementation of the

EDEN platform to enhance energy awareness. As of Decem-
ber 2014, IREN has installed thousands of thermal smart
meters in buildings in Turin, a major Italian city. EDEN
components and design choices that led to the Data Platform
and the Publication Platform have been discussed, with the
aim of efficiently collect and analyze data on energy con-
sumption. The Data Platform collects all the monitored
data, while the Publication Platform includes pre-processed
data enriched with spatial and temporal information at dif-
ferent abstraction levels, as well as meteorological data avail-
able in open source datasets. We also designed and imple-
mented different technical and user-friendly KPIs to provide
informative dashboards targeting different users.

We are currently implementing an ad-hoc social platform
where users are proactively engaged in the act of generating
data related to their perception of thermal comfort, as well
as useful feedbacks on thermal energy consumption of the
buildings where they live or work. The social platform will
also show to users both technical and user-friendly KPIs
on energy consumptions (savings or overconsumption) in an
informative fashion.

Since the collected data easily scale towards very large
datasets, the problem of discovering interesting and hidden
correlations for these huge data collections becomes chal-
lenging. We are currently designing an innovative scalable
algorithmtailored to enriched data managed by EDEN to
efficiently perform the association rule mining on a huge en-
ergy consumption dataset [5, 4].

6. ACKNOWLEDGMENTS
The research leading to these results has partially received

funding from the Piedmont Region under the POR FESR
2007/2013 n. 281-79 (EDEN Project).

The authors wish to thank colleagues and other part-
ners involved in the EDEN project (i.e., CSP Innovazione
nel ICT, COMMITWORLD S.r.l., Capetti Elettronica s.r.l.,
Consorzio TOP-IX, Experientia, Sisvel Technology s.r.l.) for
their advices and fruitful discussions.

70

School A School B

Volume [m3] 4480 4480
Time period 11/28/2013 – 04/30/2014 10/01/2012 – 14/03/2013

Total energy consumption per unit of volume [Whm3] 50,373 63,336
Daily energy consumption [Wh] 1,465,390 1,719,658

Daily consumption per unit of volume [Wh/m3] 327.10 383.85
Average degree days [◦C] 10.97 12.37

Total degree days (in the given time period) [◦C] 1690 2040.4

Total normalized consumption [Wh/(m3×◦C)] 29.81 31.04

Table 1: School buildings: Energy consumption normalized per unit of volume and degree days

7. REFERENCES
[1] R. Agrawal, T. Imielinski, and Swami. Mining

association rules between sets of items in large
databases. In ACM SIGMOD 1993, pages 207–216,
1993.

[2] O. Ardakanian, N. Koochakzadeh, R. P. Singh,
L. Golab, and S. Keshav. Computing electricity
consumption profiles from household smart meter
data. In EDBT/ICDT Workshops’14, pages 140–147,
2014.

[3] ARPA. Piedmont Region. Regional Agency for the
Protection of the Environment. Available at
http://www.arpa.piemonte.it/english-version Last
access: December 2014.

[4] E. Baralis, T. Cerquitelli, S. Chiusano, and A. Grand.
P-mine: Parallel itemset mining on large datasets. In
Workshops Proceedings of the 29th IEEE International
Conference on Data Engineering, pages 266–271, 2013.

[5] E. Baralis, T. Cerquitelli, S. Chiusano, and A. Grand.
Scalable out-of-core itemset mining. Inf. Sci.,
293:146–162, 2015.

[6] E. Baralis, T. Cerquitelli, and V. D’Elia. Modeling a
sensor network by means of clustering. In 18th
International Workshop on Database and Expert
Systems Applications, pages 177–181, 2007.

[7] K. Chodorow and M. Dirolf. MongoDB: the definitive
guide. O’Reilly Media, 2010.

[8] CSI website. http://www.csipiemonte.it/. Last access
on December 2014.

[9] S. Depuru, L. Wang, V. Devabhaktuni, and
P. Nelapati. A hybrid neural network model and
encoding technique for enhanced classification of
energy consumption data. In Power and Energy
Society General Meeting, pages 1–8, 2011.

[10] C. Filipṕın and S. F. Larsen. Analysis of energy
consumption patterns in multi-family housing in a
moderate cold climate. Energy Policy, 37(9):3489 –
3501, 2009.

[11] Google Maps. Available at http:/maps.google.it Last
access: December 2014.

[12] IEA. Energy efficiency indicators. 2014.

[13] IREN website. http://www.gruppoiren.it/index.asp.
Last access on December 2014.

[14] S. R. Iyer, V. Sarangan, A. Vasan, and
A. Sivasubramaniam. Watts in the basket?: Energy
analysis of a retail chain. In Proceedings of the 5th
ACM Workshop on Embedded Systems For
Energy-Efficient Buildings, pages 4:1–4:8. ACM, 2013.

[15] R. Kimball and M. Ross. The Data Warehouse

Toolkit: The Complete Guide to Dimensional
Modeling. John Wiley & Sons, Inc., 2nd edition, 2002.

[16] D. Kriksciuniene, T. Pitner, A. Kucera, and
V. Sakalauskas. Sensor network analytics for
intelligent facility management. In Proceedings of the
6th International Conference on Intelligent Interactive
Multimedia Systems and Services, pages 212 –221,
Amsterdam, 2013. IOS Press.

[17] D. Kriksciuniene, T. Pitner, A. Kucera, and
V. Sakalauskas. Data analysis in the intelligent
building environment. International Journal of
Computer Science and Applications, Volume 11, 2014.

[18] Piedmont Region. ITALY. SMARTDATANET.
Available at http://www.smartdatanet.it/ Last access:
December 2014.

[19] L. Pitt, P. Green, and B. Lennox. A sensor network
for predicting and maintaining occupant comfort. In
Environmental Energy and Structural Monitoring
Systems, pages 1–6, 2013.

[20] M. Santamouris, G. Mihalakakou, P. Patargias,
N. Gaitani, K. Sfakianaki, M. Papaglastra, C. Pavlou,
P. Doukas, E. Primikiri, V. Geros, M. Assimakopoulos,
R. Mitoula, and S. Zerefos. Using intelligent clustering
techniques to classify the energy performance of school
buildings. Energy and Buildings, 39(1):45 – 51, 2007.

[21] J. E. Seem. Using intelligent data analysis to detect
abnormal energy consumption in buildings. Energy
and Buildings, 39(1):52 – 58, 2007.

[22] Turin GeoPortal. Available at
http://www.comune.torino.it/geoportale/ Last access:
December 2014.

[23] J. van der Veen, B. van der Waaij, and R. Meijer.
Sensor data storage performance: SQL or NoSQL,
physical or virtual. In Cloud Computing (CLOUD),
2012 IEEE 5th International Conference on, pages
431–438, June 2012.

[24] D. Wijayasekara, O. Linda, M. Manic, and C. Rieger.
Mining building energy management system data
using fuzzy anomaly detection and linguistic
descriptions. Industrial Informatics, IEEE
Transactions on, 10(3):1829–1840, Aug 2014.

[25] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban
computing: Concepts, methodologies, and
applications. ACM Trans. Intell. Syst. Technol.,
5(3):38:1–38:55, Sept. 2014.

71

Hybrid Multidimensional Design for Heterogeneous Data
Supported by Ontological Analysis: an Application Case in

the Brazilian Electric System Operation

João Moreira1, Kelli Cordeiro2, Maria Luiza M. Campos2, Marcos Borges2

1 University of Twente, Services / Cyber-security / Safety (SCS) Group, Netherlands
2 Federal University of Rio de Janeiro (UFRJ), Knowledge Engineering (GRECO) Group, Brazil

1 j.luizrebelomoreira@utwente.nl
2 {kelli,mluiza,mborges}@ppgi.ufrj.br

ABSTRACT

An issue in operating a national electric system is how the corporate

image of an Independent System Operator (ISO) can be impacted

by disturbances in the system and their related news publications

from specialized press. To deal with it, a solution was developed in

the context of the Brazilian Electric System National Operator

(ONS): an analytical system for disturbances analysis integrating

both structured and unstructured data sources. It considers both the

daily news publications about the electric sector from ONS

clippings website and the details of operational disturbances from

the company data marts. We introduce here an adaptation of the

hybrid multidimensional (MD) design method, considering

heterogeneous data sources during business analysis and design

phases. Most important, we illustrate how ontological analysis can

enhance the semantic expressiveness of the MD modeling activity

through a semi-automatic derivation process. The analytical

potential is evidenced by a real scenario case study.

Keywords

Multidimensional design, unstructured, ontology, disturbances.

1. INTRODUCTION
Treating events of the electric sector through the support of

database (DB) systems is a critical activity in the operation of multi-

owned energy transmission, such as collecting and analyzing

disturbances occurrences. Usually, an ISO company is responsible

for this activity. In Brazil, ONS is in charge of monitoring the

national electric system. A Decision Support System (DSS) based

on Business Intelligence / Data Warehousing (BI/DW) architecture

[7], coined Disturbances BI, uses structured data for disturbances

analysis. Disturbances are most noticed by the population when

blackouts occur. Because of their negative consequences, Brazilian

press often publishes news on the subject, citing ONS, which may

influence its corporate image. News publications regarding the

electric sector are collected and made available daily at the

clippings website. However, there is still the need of an analytical

environment to support decision makers on analyzing the impact of

disturbances on ONS institutional image. To achieve this goal, a

solution to integrate structured data sources to unstructured data

from the clippings in a BI/DW architecture has been a main

requirement.

The problem addressed in this paper is the lack of a methodology

for BI/DW solutions that considers both types of data sources.

Indeed, there are a number of systems and solutions that extract

information from text and integrate with existing DBs, but it is still

missing a well-defined process to determine how this type of

application can be used in a corporative context. We propose an

approach for adapting Moss’s BI/DW lifecycle methodology [11]

so to consider heterogeneous data, addressing semantic problems

during the MD design, such as ambiguity and low semantic

expressiveness. In this paper a systematic approach is described,

extending the hybrid MD design method by considering reverse

engineering from text corpora during the source-driven activity.

Furthermore, we guide how ontological analysis can be applied as

a base for a semi-automatic process for MD schemas derivation,

from a well-founded domain ontology that represents information

in the data sources.

We also include the application of our approach in the case study

of disturbances and news publications joint analysis for ONS

corporate image. In the analysis-driven design activity we

consulted ONS official glossary, domain engineers and the

Common Information Model (CIM). In parallel, during the source-

driven design activity, the transactional master DB of ONS and the

Disturbances BI solution played the role of structured data sources.

Corpora of news publications from clippings website were

collected and analyzed by the DW designer as an unstructured data

source. Afterwards, the disturbance domain ontology was built

considering the scope of the original schemas. It was developed

using ontological analysis based on a foundational ontology [4], a

high-level category system for a solid grounding of conceptual

modeling. The domain ontology had its semantic enriched during

the verification and validation activity, where conceptual assertions

were made to increase the model quality. Then, a semi-automatic

process for MD structures derivation supports the designer in

delivering the final MD schema for temporal analysis. The DB

design and data cube construction phases were performed so joint

analysis examples over the final data cube are presented through

reports in an OLAP tool. This paper presents the continuation of

the approach introduced in [10], covering the adaptation to consider

heterogeneous data in the MD design methodology, supported by

the architecture we introduced in [9]. Moreover, the study case is

detailed and the ontological approach is depicted.

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-

ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-

sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this

paper is permitted under the terms of the Creative Commons license CC-

by-nc-nd 4.0.

72

2. EVENTS IN ELECTRIC SYSTEMS
Reliable and sustainable electric systems depend on the ability of

monitoring and responding, or even predicting, occurrences in the

electric sector. The treatment of events in the transmission grid is a

crucial activity, like responding to the shutdown of transmission

lines or other equipment, i.e. electrical disturbances. Such treatment

is made possible by solutions that handle large amount of data,

providing high quality information for decision makers in adequate

time. BI/DW architecture is a consolidated and usual way to deliver

information originated in structured data sources.

2.1 BI/DW Solution for Disturbances Analysis
ONS is a non-profit ISO, unique in Brazil, performing its duties

under the supervision and regulation of the national electric energy

agency. Its mission is to operate the Integrated National System

(SIN), a large hydrothermal system responsible for 97% of the

Brazilian electricity supply. It has a strong predominance of

hydroelectric plants with multiple owners and their facilities and

equipment, such as power plants, transmission lines and power

transformers. Equipment in SIN is subject to faults and failures of

various natures, causing forced shutdowns of one or more devices.

This can interrupt the power supply to consumers depending on the

resulting load cut level. These events are known as electric

disturbances and may be caused by atmospheric electric discharges,

floods, fires or even human failures. ONS official glossary defines

an electric disturbance as “an occurrence in SIN characterized by

forced shutdown of one or more of its components, which cause

any of the following consequences: loss of load, shutdown of the

system components, equipment damage or violation of operating

limits.”

The processes to fulfill the coordination and the control of SIN

operation are based on technical procedures, rules and criteria

defined in normative documents. Information systems were

developed by ONS, e.g. Disturbances Integrated System (SIPER),

to support the registration of disturbances as abnormalities,

undesirable events or unsatisfactory performance. They are

integrated through ONS master DB, which stores the core

transactional data from the electric system. Analytical processes of

disturbances are supported by a BI/DW solution, coined

Disturbances BI. It consolidates data from transactional systems

and a historical DB. The integration is made through a conventional

ETL process over structured data, being available in a disturbances

data cube. The users can navigate and generate reports over the data

cube through OLAP tools.

2.2 Impact of Disturbances on ONS Image
The corporate image is the way the organization is perceived by

society, tending to be classified as positive or negative, varying in

intensity and depending on variables such as opportunities, threats

and competences. ONS provides a daily summary of news related

to the electricity sector in its intranet home page, the clippings

website. Its main purpose is to provide to ONS collaborators news

publications from the specialized press, quoting the organization

when it is mentioned. The result of a disturbance in the system can

lead to power supply cuts, popularly known as blackouts. This

situation has a direct relation to the load cut level measure of

disturbances fact in Disturbances BI. The negative consequences of

a blackout to the population are numerous, generating large

financial losses in all sectors of the economy. The press gives great

focus to the subject, often citing ONS when such situation occurs,

which may influence its corporate image. Among ONS main

concerns in the electric security domain, the analyses of faults

caused by disturbances in the system and their impact on users’

lives, reflected in the media, is much relevant for decisions related

to the corporate marketing. Current information systems present the

information of disturbances and news about SIN independently.

Hard manual work is necessary for a joint analysis over large

amounts of historic data, often making it impossible to reach the

desired results. Therefore, an analytical information system for

joint exploration of disturbances and their impact in news can

address this need. Existing DSS solutions were mapped:

Disturbance BI and clippings website. They represent operational

data sources captured in business case assessment.

3. APPROACH PROPOSAL
To address the methodological support needed for a disturbances

and clippings integration solution we propose adaptations of

Moss’s methodology [11] to consider heterogeneous data. This

BI/DW lifecycle resembles Kimball’s [7] and Malinowski’s [8]

approaches, but it adds a metadata repository. Even being called a

lifecycle, it lacks operations and decommissioning phases after

deployment. However, it presents a balanced approach, considering

complexity and practice. Each activity is part of a specific phase,

as depicted in Figure 1 (left). Business analysis and design phases

are considered the most important activities because they guide the

BI/DW solution development. The efficacy of MD modeling is

directly related to future costs in maintaining the BI/DW solution.

It can be increased by avoiding conceptual mistakes through the

application of a common understanding formalization [16]. Here

we focus in the MD design activity as illustrated in Figure 1 (right).

Our method is based on [8], but we consider an ontological

approach.

Figure 1. Hybrid multidimensional design activity adapted.

3.1 Hybrid Design for Heterogeneous Data
In our approach we consider unstructured data sources as text and

ontological analysis to increase the semantic expressiveness of the

MD modeling activity. The semantic expressiveness (or semantic

power) is the quality of how precise a model is on representing the

reality [4]. It considers both supply-driven and analysis-driven

strategies running in parallel for deriving the initial schemas. In the

analysis-driven schema derivation, the designer can use the domain

knowledge from domain experts, existing procedures, glossaries,

taxonomies or other terminological standards. In the supply-driven

one, both structured and unstructured data sources can be analyzed.

Then, the matching of the schemas sketches, i.e. their merging, is

supported by ontological analysis [4], representing the business

concepts in a domain ontology, categorized by top-level categories.

Then, the domain ontology is verified and validated, increasing its

quality in a cyclical way. Afterwards, rules defined as in a prior

work, coined OntoWarehousing [10], can be applied to derive

possible MD structures, used by DW designers in the final

73

definitions of MD schemas. Adaptations of the activities to cope

with unstructured data and ontological engineering are described

below.

3.1.1 Analysis-Driven Design
Each domain concept should be correctly named, uniquely

identified and validated by business people who will access the

data. Therefore, ontological analysis can be applied to support

common understanding. A domain ontology can be sketched based

on interviews with the main stakeholders and business official

vocabularies, such as glossaries and standards. The ontology should

be independent of technologies, not being influenced by any type

of software or hardware. Current business processes should be

understood, so the behavior of the concepts is mapped to the

ontology, e.g. their creation or modification.

3.1.2 Source-Driven Design
In our approach we divided the reverse engineering in two main

activities: from transactional DBs (usual), as structured sources,

and, from textual sources. The result artifact from this activity is a

sketch of the domain ontology from the point of view of the data

sources. In both reengineering processes, making annotations about

the origins of the data is crucial for the ETL design. Reverse

engineering from structured data sources is widely addressed by

supply-driven related works, e.g. AMDO [15]. It checks functional

dependencies among tables by verifying relationships, cardinalities

and constraints. Then, MD structures can be derived automatically

based on a set of heuristics. It can capture important business rules

and policies that may not be gathered during interview sessions.

Some CASE tools implement this capability.

Reverse engineering from text generates representations of entities

and their relations from unstructured data sources. This can be

made manually or automatically. In both cases a set of text corpora

is selected with support of business experts. Then, its content is

analyzed. Automatic approaches consider Natural Language

Processing (NLP) and Information Retrieval (IR) techniques

applied to the corpora, resulting in suggestions of models. Entity

and relations recognition techniques play an important role on

ontology generation. Tools that implement these techniques are

based on lexical methods, such as orthographic correction, stop

word elimination, tokening, synonymous resolution, stemming,

morphological classification and some type of semantic

categorization from business terms. In our approach we do not

choose one specific technique or tool. Instead, we guide the

designer to first check the existing NLP and IR solutions.

3.1.3 Domain Ontology for Initial Schemas
The inputs for this phase are the model sketches from prior

activities. Common concepts found in these representations should

be matched or associated, by annotating their data structures

origins. This information will be necessary to build the linkages

between the structured and the unstructured universes for designing

the ETL process. After matching all entities, annotating their

origins, the consolidated domain ontology should be built. We

propose the use of the OntoWarehousing [10] ontological approach

to increase the semantic expressiveness of the MD design. It

presents a systematic and semi-automatic derivation process to

suggest MD structures from categories of a foundational ontology,

a high-level category system that represents concepts such as

endurants (things that are in time) and perdurants (events or things

that happen in time) [3] – refer to section 5 for a more detailed

explanation. The output of this activity is the consolidated well-

founded domain ontology.

3.1.4 Add Semantics: Verify and Validate
In this phase the designer analyzes the foundational constructs and

checks if the entities and relations from the model are semantically

consistent, also verifying business rules violations. Domain experts

can support the quality improvement of the domain ontology,

ensuring that the model is semantically correct, covering the main

entities involved in the business requirements, avoiding ambiguity.

This is a cyclical process: when the designer finds an inconsistency,

he fixes the model and validates it again. Verifying and validating

(V&V) ontologies with many concepts can be unfeasible for

humans because of their size and complexity. Thus, a common

practice is to choose ontology sub-domains, validate each

separately and merge them. The resulting artifact is the valid well-

founded domain ontology.

3.1.5 Deliver Final Schema: Derivation Process
The final MD schemas are designed based on the well-founded

domain ontology and other existing MD schemas. In common

methodologies [7,8] this task depends purely on informal

guidelines for MD designer decisions. It depends on tacit

knowledge, being error prone. In OntoWarehousing [10], we

defined a set of mapping rules to derive possible MD structures

from the well-founded domain ontology. The MD designer can use

this method to increase its assertiveness. The mechanism to derive

MD concepts begins by reading the domain ontology and looking

for the foundational ontology categories. Once they are found, it

executes the mapping rules and presents to the modeler the possible

MD structures inferred. Thereafter, the derived MD concepts are

conformed to other MD schemas, providing new analytical

possibilities. At last, the designer defines the final MD schemas

with data sources annotations as comments in natural language to

serve as specification for the ETL processes. Other ontological

approaches for MD design can be used in parallel, combining the

final MD concepts produced such as in [16].

4. APPLICATION CASE
To handle disturbances and clipping s integration we have applied

our approach in the construction of a BI/DW solution. Business

analysis, design and construction phases were performed and some

analysis examples over the final data cube could be made. To

support the BI/DW lifecycle, Enterprise Architect (EA:

http://www.sparxsystems.com.au/) CASE tool was chosen, which

provides a full-set of capabilities for requirements formalization,

conceptual models design and behavioral aspects representations.

In addition, OntoUML Lightweight Editor (OLED:

https://code.google.com/p/ontouml-lightweight-editor/) software

and its plug-in to EA supported the V&V process.

4.1 Business analysis

4.1.1 Analysis-Driven Design
The analysis driven design was supported by ONS domain experts,

the official glossary, and the CIM IEC 61970

(http://www.iec.ch/smartgrid/standards/). ONS official glossary

contains the definitions of the main terms used in the electric sector.

It serves as main business concepts source for common

understanding among ONS and other agents. It helped in asserting

the initial domain representations. When a specific term was not

encountered in the glossary or there was ambiguity, the domain

experts were consulted, mostly power systems engineers. They

asserted specific rules, such as the part-whole relation between a

disturbance and a forced shutdown, where a forced shutdown is part

of one unique disturbance and it is existentially dependent of the

disturbance. The CIM IEC 61970 is an international standard built

by the electric power industry and it was adopted to support

74

information systems interoperation and common concepts

agreement. Particularly, the main part of this standard was chosen,

the IEC-61970 for energy management. It brings the

representations of core concepts of electric power transmission and

distribution domain, such as equipment (e.g. power transformer)

and its sets (equipment containers) as power system resources. As

a practical advantage, this standard is available and extensible in

the EA tool as a UML class structural package.

4.1.2 Source-Driven Design
The involved data sources were listed as: the SIPER cut-off of ONS

master DB, an entities mapping between the master DB and CIM

models, Disturbances BI and clippings website (news

publications). The physical data model was used to check tables,

attributes, relationship integrities and constraints that implement

the domain behavior. This type of information was included when

representing the company concept. The entities mapping

specification between the master DB and CIM describes the

equivalence between the data structures from ONS master DB and

the classes and relations of CIM meta-model. This document was

previously built and used for the development of an ETL process,

which extracts data from ONS master DB, transforms and load it in

a CIM file representation. Thus, the domain could be designed in

English terms, reusing the existing knowledge. The available ETL

processes of the Disturbances BI were analyzed. We checked the

ETL process to load the fact disturbance, which has associations to

dimensions such as owner agent, source equipment, cause,

begin/end time, among others. The clippings website was checked

and the news publications sub-domain modeled, as textual

information source. At first, a web crawler was built to download

news publications from January 2011 to March 2013. A textual

ETL process from a prior work [9] was applied in these corpora

selected. It resulted on a data repository, named terminological DB,

which stores the terms and their lexical and semantic categories,

supported by IR.

4.1.3 Domain Ontology for Initial Schemas
The domain ontology was built in the EA tool supported by OLED

plug-in. As starting point, the SIN domain package was composed

by five sub-domains: companies, facilities, equipment and

geographical region (structural aspects); and disturbances and news

publications (dynamic aspects). The most important relation to link

disturbances and news publications was defined through the

temporal formal relation “before” at the conceptual level, meaning

that a disturbance that occurs before a news publication can be

somehow related to it. Disturbance and news publication are both

classified as complex events, inheriting a series of properties, such

as their beginning and ending time points, composition by other

events, etc. There is a practical implication in this representation

that was found during the construction phase regarding how long a

disturbance occurred before a publication about it. For instance, if

a disturbance occurred in 2010 and some news are published in

2013, if even this relation respects the “before” relation, it is most

unlikely that they are related. Therefore, we stated a threshold of

ten days based in prior experimentation [9]. Initial analysis

evidenced the increase in publications after a severe disturbance

and a decrease on subsequent days, reaching the publications

average in ten days.

4.1.4 Add Semantics: Verify and Validate
This activity was supported by OLED software. After the first time

designing the main concepts in the domain ontology (in EA tool),

we exported it as an XMI file and imported into the OLED tool.

During the import process, the tool provides a selection of classes

and relations that the user would like to validate. Cut offs were

made for V&V each part of the domain ontology. We could validate

the domain ontology by examples and counterexamples, simulating

instances of classes and their relations through the visual capability

of Alloy analyzer provided in OLED. Moreover, OCL check

statements were written as business rules representations. The

result of this activity was the well-founded domain ontology

considering disturbances and news publications.

4.1.5 Deliver Final Schema: Derivation Process
The final MD schema was designed based on the well-founded

domain ontology. The OntoWarehousing approach was applied to

discover MD structures, implemented through a prototype, which

was executed in the domain ontology (refer to [9]). The MD schema

to analyze the “before” relation could be designed by the derived

MD structures from the proposed rules and conciliated with the

existing disturbances MD schema. Moreover, from the

axiomatization of the temporal operator “before”, the constraint for

the WHERE clause of the SQL to load the fact at the end of the

ETL process was derived. Each event is considered a data structure

(e.g. table, view, procedure) having the columns of start and end

time points as date/time fields, where “before” is represented when

the end of the first event is lower than the begin of the second event.

As a result, the domain ontology, the MD schema specification, the

requirements document and a high-level design of the ETL process

were produced.

4.2 Construction and Deployment
A DB was physically created reflecting the MD schema

specification. It supported the ETL process construction based on

the ETL design and the domain ontology. It considered an ETL

integration architecture coping with textual ETL, termed

JointOLAP [9]. It uses IR and NLP techniques for the extraction

process from text files and loads the terminological DB. The high-

level data flow design is illustrated in Figure 3, having each activity

supported by a set of tools. It begins with parallel activities: the

conventional ETL process execution of disturbances Operational

Data Store (ODS) and the textual ETL downloading news

publications through a web crawler. Then, JointOLAP is performed

in these documents, populating the terminological DB with all news

articles content. It checks patterns in headers (e.g. title, publication

date and press company), structuring this information in the DB.

Figure 3. High-level ETL process workflow design.

The framework applies orthographic correction, case sensitive

elimination, tokenizing and morphological classification, stop word

and punctuation elimination, synonymous resolution and

stemming. It indexes the terms, their stems, morphological

75

classification (e.g. verb, adjective, preposition and adverb). A list

of business terms was created based on ONS official glossary and

the terms of news articles were marked. An ETL process was

created to execute the linkage activity, integrating data between

disturbances and terminological ODSs and loading the final MD

schema. It was used to build a data cube, making data accessible by

OLAP tools.

The impact of blackouts on ONS corporate image analysis was

supported through the OLAP tool connected to the data cube. The

navigation was made possible through the dimensions and their

hierarchies, enabling the exploration of the measures within the fact

and possible aggregations with drill-down and roll-up operations,

as well as graphics and reports generation. An analysis example is

the number of terms published in news by the load cut level

measure of the related disturbances. Average terms occurrences by

disturbances is 5,720. Analyzing this measure by the severity of the

disturbances makes it possible to verify a direct relation with the

number of news publications. The more severe are the disturbances,

more terms are published. In average the “blackout” term is,

considering synonymous, the 27th most common term, but when

load cut level is greater than 99MW it jumps to 1st. When it is lower

than 49MW it becomes the 52nd of the blackout terms. News

publications by disturbance month in 2011 revealed a significant

variance of terms published after the disturbances occurred in

February, which caused an enormous blackout in northeast. The

number of publications increases considerably in March and April,

then, it decreases back again to the standard baseline. These

analyses are evidences that the expressivity enrichment of the MD

design is a differential of our proposal, having the relation “before”

connecting disturbances and news publications. The counting of

mentions to certain words emphasized the press terminology when

severe disturbances happened, addressing the main requirement of

the solution.

5. RELATED WORK
Energy data management is a knowledge area that addresses the

techniques for collecting, storing and analyzing huge amounts of

data from the energy sector through IT solutions. Common

definitions of data and information concepts by ontological

approaches are still open topics [14]. Ontologies may be applied for

the representation of portions of reality to understand,

communicate and reason about the domain. In software engineering

it is commonly built as UML class diagrams. In artificial

intelligence it is commonly built as semantic networks and in DB

area as ER diagrams. All these models seek to represent entities,

relationships, properties, rules and restrictions of the involved

domain. It can be considered formal when it is machine-

processable, enabling automated reasoning by the semantics

described in formal logic [4]. An example of an ontological solution

for real-time data sources integration is the smart grid domain

ontology introduced in [2]. It presents representations of event

types, such as electrical appliances, weathers, storages and

generators.

To fulfill analysis requirements in a BI/DW project, the MD and

ETL design activities are supported by ontological solutions

addressing the lack of semantic expressivity in MD models [1,12].

We introduced OntoWarehousing approach [10] where ontological

analysis is applied in MD design based on formal ontology

discipline. Analogous to formal logic, which contemplates logic

formal structures, such as truth, validity and consistence [4], formal

ontology is founded on mathematical disciplines of mereology

(part-wholes), theory of dependence and topology and principles of

identity and unity. In our approach we used the Unified

Foundational Ontology (UFO) [3] to enrich the domain

representation. It is a high-level category system, a top-level

ontology, which presents these philosophical concepts interpreted,

describing the most general concepts, such as space, time, matter,

object, event and action, concepts independent of a domain or a

particular problem. In OntoWarehousing, the domain ontology is

semantically enriched by these top-level formalizations, e.g.

domain concepts classified as events, participations, temporal

relations, roles, among others. These high-level categories are used

during the derivation process, which is based on a set of mapping

rules from UFO categories to MD structures. The idea of such

interpretation mapping from a foundational ontology to MD

concepts was first discussed in [12].

A survey [1] summarized semantic web technologies (e.g. RDF and

OWL) applied in BI/DW, discussing advantages, disadvantages

and cases. Description logic can be used to assist data aggregation

processing by reasoning services over rules. To enforce the

semantics in MD design, Romero et al. [15] proposed the AMDO

approach for conceptual modeling in BI/DW solutions based on

end-user requirements elicitation and hybrid MD design. It uses a

supply-driven mechanism where a set of rules formalized in first

order logic derive MD structures (facts, measures, dimensions,

hierarchies and attributes). The GEM approach [16] operationalizes

the whole process, automating the identification of potential MD

concepts by analyzing the domain ontology and the semantic

annotations represented in OWL-DL. The ORE module [6] evolves

GEM considering the complexity of frequent changes in MD

design, integrating each new analytical requirement. These tools

are mature enough, but they still lack some common understanding,

which can be provided by a foundational ontology.

The need of considering unstructured data in BI/DW solutions is

fundamental for business analytics. Even so, most of BI/DW

methodologies are based on structured data. Analyzing and

exploring data from heterogeneous natures, jointly, can enhance the

potential of analytical applications offered to decision makers [5].

Several works are being proposed to consider the unstructured data

sources by applying IR and NLP techniques as listed in [13]. We

introduced the architecture JointOLAP [9] as a solution for joint

exploration. It takes advantage of semantic treatment mechanisms

for the unstructured content.

6. CONCLUSIONS AND FUTURE WORK
We introduced our approach as an adaptation of Moss’s BI/DW

methodology to consider heterogeneous data by making specific

changes in the hybrid MD design activity. It takes advantage of IR

and NLP techniques during the source-driven analysis phase to

derive complementary analytical elements and associate data from

structured and unstructured sources. In addition, we increased the

MD design semantics by applying ontological engineering

supported by a foundational ontology. A case study regarding ONS

joint analysis of distribution consumption energy affected by press

publications was described. The MD schema was derived

considering the “before” temporal formal relation between

disturbances and news publications. This case study is a work-in-

progress, being considered as an original research and an industrial-

strength solution for energy data management. Its main

contribution is the integrated OLAP specification for ONS

corporate image impact analyses built based on our approach.

Indeed, the correlation between disturbances and news publications

is not surprising. However, our case study could materialize this

relation and its exploration using real data.

76

Lessons learned from our approach application on hybrid MD

design activity include: (i) unstructured data sources proved to be

essential information for MD conceptual design; (ii) ontological

engineering seems to be an adequate method to improve knowledge

acquisition and its design through a well-founded domain ontology;

(iii) we believe this method may increase the productivity in

business analysis and design phases of BI/DW projects. Some

limitations are: (i) the derived ETL process did not considered

implementation issues such as surrogate keys treatment and

indexing management; (ii) to simplify, we considered a 1:1 relation

between terms and categories, restricting the terms classification;

(iii) the reverse engineering from text can be unfeasible depending

on the amount of data; and (iv) the choice of MD concepts for the

resulting MD schemas continues to be a tacit activity depending on

the designer’s decisions. Future work includes: (i) to enhance the

textual ETL for news publications with new text treatment

techniques, considering distributional models; (ii) to apply

sentiment analysis techniques to discover the polarity of the

sentiment around the events (e.g. positive, negative and neutral);

(iii) to predict how quickly after an event the sentiment for or

against ONS changes in the news and also to incorporate sentiment

from crowd sources; (iv) we believe that entity recognition and

relation extraction activities can consider categories of a

foundational ontology; (v) regarding the involved tools, we believe

that the prototype should be developed as an extension of OLED

integrated to GEM/ORE.

7. ACKNOWLEDGMENTS
Our thanks to CAPES PhD scholarship (process BEX 1046/14-4).

8. REFERENCES
[1] Berlanga, R., Romero, O., Simitsis, A., Nebot, V., Pedersen,

T. B., Abelló, A., Aramburu, M. J. 2011. Semantic Web

Technologies for Business Intelligence. BI Applications and

the Web - Models, Systems, and Technologies. pp. 310-339.

[2] Gillani, S., Laforest, F. e Picard, G. 2014. A Generic

Ontology for Prosumer-Oriented Smart Grid. 3rd workshop

on Energy Data Management (EnDM) - EDBT.

[3] Guizzardi, G., Wagner, G., Falbo, R. A., Guizzardi, R. S. S.,

Almeida, J. P. A. 2013. Towards Ontological Foundations

for the Conceptual Modeling of Events. Conceptual

Modeling, Lecture Notes in Computer Science. pp. 327-341.

[4] Guizzardi, G.; Lopes, M.; Baião, F.; Falbo, R. 2010. On the

importance of truly ontological representation languages.

Journal of Info. Systems Modeling and Design (IJISMD).

[5] Inmon, W. H., Strauss, D. e Neushloss, G. 2008. DW 2.0 -

The Architecture for the Next Generation of DW.

[6] Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.,

Mayorova. 2014. A requirement-driven approach to the

design and evolution of data warehouses. Information

Systems 44, 94-119.

[7] Kimball, R. e Ross, M. 2013. The Data Warehouse Toolkit:

The definitve Guide to Dimensional Modeling. Wiley.

[8] Malinowski, E. e Zimányi, E. 2009. Advanced Data

Warehouse Design: From Conventional to Spatial and

Temporal Applications. Springer.

[9] Moreira, J., Cordeiro, K. F. e Campos, M. L. M. 2013.

JointOLAP – Sistema de Informação para Exploração

Conjunta de Dados Estruturados e Textuais - Um estudo de

caso no setor elétrico. SBSI.

[10] Moreira, J., Cordeiro, K. F., Campos, M. L. M., Borges, M..

2014. OntoWarehousing – Multidimensional Design

Supported by a Foundational Ontology: A Temporal

Perspective. 16th International Conference on Data

Warehousing and Knowledge Discovery (DaWaK/DEXA).

[11] Moss, L. T. 2003 Business Intelligence Roadmap - The

Complete Project Lifecycle for Decision-Support

Applications. 1st. s.l. : Addison-Wesley Professional.

[12] Pardillo, J. and Mazón, J. N. 2011. Using Ontologies for the

Design of Data Warehouses. International Journal of

Database Management Systems (IJDMS). May, pp. 73–87.

[13] Park, B. K. and Song, I. Y. 2011. Toward Total Business

Intelligence Incorporating Structured and Unstructured Data.

Proceedings of the 2nd International Workshop on Business

intelligence and the WEB (BEWEB). pp. 12-19.

[14] Pedersen, T. B. 2014. Energy Data Management: Where Are

We Headed? Panel paper, 3rd workshop on Energy Data

Management (ENDM) - EDBT.

[15] Romero, O. e Abelló, A. 2010. A framework for

multidimensional design of data warehouses from ontologies.

Data & Knowledge Engineering Journal. Elsevier Science

Publishers B. V. Vol. 69, pp. 1138-1157.

[16] Romero, O., Simitsis, A. e Abelló, A. 2011. GEM:

Requirement-Driven Generation of ETL and

Multidimensional Conceptual Designs. 13th International

Conference on Data Warehousing and Knowledge Discovery

(DaWaK). August, pp. 80-95

77

Measuring and Comparing Energy Flexibilities

Emmanouil Valsomatzis, Katja Hose, Torben Bach Pedersen, Laurynas Šikšnys
{evalsoma, khose, tbp, siksnys}@cs.aau.dk

Department of Computer Science, Aalborg University

ABSTRACT
Flexibility in energy supply and demand becomes more and
more important with increasing Renewable Energy Sources
(RES) production and the emergence of the Smart Grid. So-
called prosumers, i.e., entities that produce and/or consume
energy, can offer their inherent flexibilities through so-called
demand response and thus help stabilize the energy mar-
kets. Thus, prosumer flexibility becomes valuable and the
ongoing Danish project TotalFlex [1] explores the use of pro-
sumer flexibility in the energy market using the concept of
a flex-offer [2], which captures energy flexibilities in time
and/or amount explicitly. However, in order to manage and
price the flexibilities of flex-offers effectively, we must first
be able to measure these flexibilities and compare them to
each other. In this paper, we propose a number of possible
flexibility definitions for flex-offers. We consider flexibility
induced by time and amount individually, and by their com-
bination. To this end, we introduce several flexibility mea-
sures that take into account the combined effect of time and
energy on flex-offer flexibility and discuss their respective
pros and cons through a number of realistic examples.

Keywords
Energy Flexibility, Flex-offers, Flexibility Measures

1. INTRODUCTION
A common challenging goal is to increase the use of en-
ergy produced by renewable energy sources (RES), such as
wind and solar and at the same time reduce the CO2 emis-
sions. However, RES are characterized by fluctuating en-
ergy production and increased use of RES can lead to peaks
(and valleys) in energy production and thus create conges-
tion problems (or shortages) in the electric grid [5]. On the
other hand, new devices such as heat pumps, increase the
demand of energy and will lead to undesirable consumption
peaks and a need for load shedding.

In this new energy scenery, the forthcoming Smart Grid [4]
uses advanced information and communication infrastruc-

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

tures to activate the concept of demand side management
(DSM) [6, 8]. According to DSM, the individual energy pro-
sumers (producers and consumers) have a prominent role in
the energy market due to their inherent flexibility. Flexibil-
ity can be used to mainly let the energy demand follow the
energy supply and adjust the energy requirement according
to energy production. The TotalFlex project explores the
effect of prosumer flexibility on the energy market by intro-
ducing a new commodity using the flex-offer [2] concept that
captures flexibilities in operating times and energy amounts
of devices, as presented in the following use case.

Flex-offer use-case example. An electrical vehicle (EV)
is plugged in and ready for charging at 23:00. Its battery is
totally empty and it needs 3 hours to be charged. Moreover,
its owner is satisfied with a minimum charging of 60% be-
cause this is sufficient enough for his needs tomorrow, e.g.,
going to work. Thus, we can see a flexibility regarding the
energy demand of the EV due to the energy range satisfac-
tion (60%−100%). Furthermore, the owner wants the car
to be charged by 6:00 the latest, where he/she leaves home.
As the battery requires 3 hours of charging, it should start
being charged at 3:00 the latest. Therefore, we can also see
a flexibility regarding the starting time range (23:00-3:00)
of recharging the EV. The energy supplier is notified about
the EV owner’s energy requirement as well as the associated
flexibilities in time and amount in the form of a flex-offer.
Utilizing the flex-offer, the charging of the battery is sched-
uled (the starting time and energy demand for operating are
assigned) at 1:00 because wind production will increase at
that time. Furthermore, in order to ensure the owner’s par-
ticipation and to take advantage of the EV flexibility, the
owner is offered lower energy tariff prices.

Flexibility, harnessed from many prosumers (using flex-
offers) and handled according to the use-case example above,
brings many advantages to society as well as to the actors
participating in the energy market. Specifically, the utiliza-
tion of RES is substantially increased and CO2 emissions
are reduced. Individual energy demands from prosumers
are met and lower energy tariffs are offered. Marginal costs
are reduced for Balanced Responsible Parties (BRPs) who
trade energy. Congestion problems of Distributed System
Operators (DSOs) can be handled without costly upgrades
of physical grid infrastructures.

However, in order to take flexibility into consideration, we
need to be able to measure how much flexibility is offered and

78

identify the kind of flexibility offered. Only with a proper
flexibility measure, different flexibility offerings can be com-
pared together. Focusing on the use-case of flex-offers and
flexibility represented by these, we now present two scenar-
ios where measuring flexibility is particularly useful.

Scenario Nr. 1 Flex-offers must be scheduled at some
point in time to be able to satisfy the prosumers’ energy
needs, as described in the use case example above. Flex-offer
scheduling problem [13], being similar to the unit commit-
ment problem [9], is highly complex [12], when considering
a large number of flex-offers, issued for a variety of appli-
ances such as EVs, heat-pumps, dish washers, and smart
refrigerators. To reduce the complexity of scheduling, flex-
offer aggregation [15] plays a crucial role by trying to reduce
the number of flex-offers while retaining as much as possible
of their flexibility. In addition, the TotalFlex project is fur-
ther utilizing the aggregation not only to reduce the number
of the flex-offers, but also to partially handle the balancing
task as well [14]. For all the aggregation techniques, it is
essential to quantify and then to minimize flexibility losses,
and therefore a flexibility measure is needed.

Scenario Nr. 2 Consider an energy market where flex-
offers are traded. It is infeasible to trade flex-offers from in-
dividual prosumers directly in the market due to their small
energy amounts. It is desirable for a BRP or for any other
participating actor (e.g., an Aggregator) to first aggregate
flex-offers from individual prosumers (e.g., household appli-
ances) into “larger”’ aggregated flex-offers (e.g., at the dis-
trict level) before entering the market. Consequently, only
large aggregated flex-offers are allowed to be traded in the
market, and, when traded, used, e.g., by a BRP to ensure
balance between the physically dispatched energy and en-
ergy traded in the energy spot-market, thus avoiding imbal-
ance penalties. In this scenario, it is preferable for aggre-
gated flex-offers to retain as much flexibility as possible in
order to obtain a better value in the energy market when
they are traded. Thus a flexibility measure to quantify flex-
ibility of various flex-offers traded as commodities is needed.

In this paper, we employ the existing flex-offer definition [15]
capturing flexibilities regarding time and energy amount.
We assume that a flex-offer is already generated and it cap-
tures the energy and associated flexibility of a single pro-
sumer unit (e.g., an EV). Our goal, is to express the flex-
ibility, in time, amount, and both time and amount, with
a single flexibility measure that can be applied on a single
flex-offer or on a set of flex-offers. Therefore, we introduce
8 possible flexibility measures that can be used to quan-
tify flexibilities of flex-offers and to compare flex-offers to-
gether in terms of their flexibilities. These include so-called
time, energy, product, vector, time-series, assignments, abso-
lute area-based, and relative area-based flexibility measures,
which treat time and energy amount either as independent
or dependent flex-offer dimensions. We discuss their advan-
tages and disadvantages using illustrative real-world based
examples. Our proposed flexibility definitions can be used
not only for the valuing of flex-offers, but also for evaluation
of flex-offer aggregation techniques and their algorithmic im-
plementation. In fact, depending on the application needs,
the flexibility of a flex-offer can be measured using one or
more of the proposed measures, each with their advantage.

The remainder of the paper is structured as follows. In Sec-
tion 3, we introduce and propose different flexibility defi-
nitions. We discuss in Section 4 about the use-case of the
introduced definitions mentioning their pros and cons. We
refer to related work in Section 5, and we conclude and men-
tion our future work in Section 6.

2. PRELIMINARIES
In this paper, we consider the dimensions of time and energy,
where time has the domain of natural numbers including
zero (N0) and energy has the domain of integers (Z). These
assumptions are without loss of generality as we can achieve
any desired finer granularity/precision of time and energy by
simply multiplying their values with the desirable coefficient.
Based on [15], we define a flex-offer according to Definition 1.

Definition 1. A flex-offer f is a 2-tuple
f=([tes, tls], 〈s(1), . . . , s(s)〉). The first element of the
tuple denotes the start time flexibility interval where
tes ∈ N0 and tls ∈ N0 are the earliest start time and latest
start time, respectively. The second element is a sequence of
s consecutive slices that represents the energy profile. Each
slice s(i) is an energy range [amin, amax], where amin ∈ Z
and amax ∈ Z. The duration of slices is 1 time unit.

A flex-offer also has a total minimum cmin and a maximum
cmax energy constraint. The minimum constraint is smaller
than or equal to the maximum one and they are lower and
upper bounded by the sum of all the minimums and the sum
of all the maximums of energy of the slices, respectively.
If all the energy values of a flex-offer are positive then the
flex-offer represents energy consumption (positive flex-offer),
e.g., a dishwasher. If all the energy values of a flex-offer
are negative then the flex-offer represents energy production
(negative flex-offer), e.g. a solar panel. If the energy values
of a flex-offer are both positive and negative then the flex-
offer represents both energy consumption and production
(mixed flex-offer), e.g., a “vehicle-to-grid”.

A flex-offer f can be instantiated into a so-called assignment
of f , fa, is a time series defining the starting time and the
exact energy amounts satisfying all flex-offer constraints.

Definition 2. An assignment fa of a flex-offer f =
([tes, tls], 〈s(1), . . . , s(s)〉) is a time series {fa}tstart+s

t=tstart
=

〈v(1), . . . , v(s)〉 such that:

• tes ≤ tstart ≤ tls
• ∀i = 1..s : s(i).amin ≤ v(i) ≤ s(i).amax

• cmin ≤
s∑

i=1

v(i) ≤ cmax

A (valid) flex-offer assignment satisfies the constraints of a
flex-offer. Specifically, for each slice of the flex-offer, the
assignment has a corresponding energy value which must
be within the corresponding slice energy range of the flex-
offer. In addition, the sum of the energy values of a flex-offer
assignment must be within the total minimum and the total
maximum energy constraints of the flex-offer. Furthermore,
the first non-zero energy value of the assignment that defines

79

the actual starting time of the flex-offer must be within the
start time flexibility interval of the flex-offer. A single flex-
offer (typically) has several flex-offer assignments. We use
the set L(f) to define all (valid) flex-offer assignments. For
instance, Figure 1 illustrates a flex-offer with four slices f =
([1, 6], 〈[1, 3], [2, 4], [0, 5], [0, 3]〉). One valid assignment of f
is fa1 ∈ L(f) such that {fa1}5t=2 = 〈2, 3, 1, 2〉, shown as bold
lines in Figure 1.

Figure 1: Illustration of a flex-offer f

3. FLEXIBILITY DEFINITIONS AND
MEASURES

We now introduce different flexibility definitions and mea-
sures associated with a flex-offer.

3.1 Time and energy flexibility
There are two different types of flexibilities associated with
a flex-offer, either derived by the starting time interval or
by the energy ranges of the slices.

Based on the flexibility definitions introduced in [15], we
consider the time flexibility tf (f) of a flex-offer f to be the
difference between the latest and the earliest start time of
f , measured in time units, i.e., tf (f) = f.tls − f.tes.

Example 1. The flex-offer f in Figure 1 has tls=6 and
tes=1, thus time flexibility is: tf (f) = 6− 1 = 5.

Moreover, since the total maximum and the total minimum
energy constraints impose the allowed energy range of a flex-
offer, we also define energy flexibility of a flex-offer f to be
the difference between the total maximum and the total min-
imum energy constraints, i.e., ef (f) = c max(f)− c min(f)

Example 2. The flex-offer f in Figure 1 has the
sum of maximum slice values equal to 15 and the
sum of minimum slice values equal to 3. Given that,
c max(f)=15, c min(f)=3, and the energy flexibility of f
is ef (f)=15−3=12.

3.2 Combined flexibility measures
As seen above, quantifying either time or energy flexibilities
on their own is rather straightforward. It is more tricky to
consider them in combination. Therefore, we now define and
discuss several alternative measures for this.

Product flexibility. The existing definition of total flex-
ibility [15] originally specified the total (joint) flexibility of
a flex-offer f as the product of the time flexibility and the
sum of the energy flexibilities of all the slices. However, as
we have additionally introduced the total energy constraints
of a flex-offer, we define the product flexibility of a flex-offer
as follows:

Definition 3. The product flexibility product flexibility(f)
of a flex-offer f is the product of the time flexibility and the
energy flexibility of f , i.e., product flexibility(f) = tf(f) ·
ef(f).

Example 3. The flex-offer f in Figure 1 has product flex-
ibility product flexibility(f) = 5 · 12 = 60.

Vector flexibility. Since a flex-offer is characterized by
both time and energy we define the flexibility of a flex-offer
to be a vector where time and energy flexibilities are the
vector components.

Definition 4. The vector flexibility vector flexibility(f) of
a flex-offer f is a vector v with 2 components. The first
component of the vector is the time flexibility of f , and
the second component is the energy flexibility, i.e., v =
〈tf(f), ef(f)〉.

The total flexibility is then intuitively given by the “length”
of the vector, computed using a given norm. Possible
relevant norms in our two dimensions include Manhattan
(L1−norm) and Euclidean norm (L2−norm).

Example 4. The flex-offer f in Figure 1 has vector
flexibility vector flexibility(f) = 〈5, 10〉, and we can com-
pute its length as either ‖vector flexibility(f)‖1=5+10=15

or ‖vector flexibility(f)‖2=
√

(52 + 102)=11.180.

Time-series flexibility. A flex-offer allows multiple as-
signments, each expressing a possible instantiation of the
flex-offer. Since every assignment of a flex-offer is a time
series, the difference between two assignments is also a time
series. We consider the two most dissimilar time series (as-
signments), minimum and maximum, defined as follows:

Definition 5. The minimum assignment fmin
a (f) of a

flex-offer f = ([tes, tls], 〈s(1), . . . , s(s)〉) is the assignment
with the first energy value positioned at the earliest start-
ing time of f and energy values equal to the minimum
slice values of f , i.e., fmin

a (f) = t, where {t}tes+s
t=tes

=

〈f.s(1).amin, . . . , f.s
(s).amin〉.

Definition 6. The maximum assignment fmax
a (f) of a

flex-offer f = ([tes, tls], 〈s(1), . . . , s(s)〉) is the assignment
with the first energy value positioned at the latest start-
ing time of f and energy values equal to the maximum
slice values of f , i.e., fmax

a (f) = t, where {t}tls+s
t=tls

=

〈f.s(1).amax, . . . , f.s
(s).amax〉.

80

Using minimum and maximum assignments, we define series
flexibility as follows:

Definition 7. The time series flexibility,
series flexibility(f), of a flex-offer f is the difference
the maximum and the minimum assignments of f (time
series), i.e., series flexibility(f)=fmax

a (f)-fmin
a (f).

Since we use two dimensions, we again propose the Manhat-
tan and Euclidean norms to quantify the difference between
two assignments.

Figure 2: Time series definition example with ef(f1) = 1
and tf(f1) = 1

Example 5. Figure 2 illustrates a flex-offer f1 with 1
slice, earliest start time = 0, and latest start time = 1, f1 =
([0, 1], 〈[0, 1]〉, cmin(f1) = 0, and cmax(f1) = 1.

Flex-offer f1 has 4 assignments, and the following mini-
mum and maximum assignments: {fmin

1a (f1)}1t=0 = 〈0, 0〉,
{fmax

1a (f1)}1t=0 = 〈0, 1〉. Let the difference between fmax
1a (f1)

and fmin
1a (f1) be fd1 so that fd1=fmax

1a (f1)-fmin
1a (f1). In this

example {fd1}1t=0 = 〈0, 1〉, L1−norm, |{fd1}1t=1|1 = 1, and
L2−norm, |{fd1}1t=1|2 = 1. According to both L1−norm and
L2−norm, series flexibility(f1)=1.

Assignment flexibility. As mentioned in Section 2, a flex-
offer allows a number of possible assignments. The number
of possible assignments directly depends on time and energy
flexibility and is the number of the combinations between all
the allowed amount and time values of all its slices. There-
fore, we use the number of possible assignments as a com-
bined measure induced by both time and amount flexibility.

Definition 8. We define assignment flexibil-
ity, assignment flexibility(f), of a flex-offer f =

([tes, tls], 〈s(1), . . . , s(s)〉) to be the number of all possi-
ble assignments of f , i .e., assignment flexibility(f)=

=(tls−tes+1)·
s∏

i=1

(s(i).amax−s(i).amin+1).

Figure 3: Number of assignments example with ef(f2) = 2
and tf(f2) = 2

Example 6. Flex-offer f2 = ([0, 2], 〈[0, 2]〉) in Fig-
ure 3 has tls−tes+1=3 and since it has one slice
s(1).amax−s(1).amin+1=3. Thus, f2 has 9 assignments in
total.

Absolute area-based flexibility. Absolute area-based
flexibility is based on the area that all flex-offer assign-
ments jointly cover, considering all of their possible values
of start time and energy. As a basis for calculating this
area, we consider a two-dimensional (time and energy) grid
G = N0 × Z = {(t, e) : t ∈ time, e ∈ energy}, in which
the x axis corresponds to discretized time and the y axis to
discretized energy. Cells of the grid are identified by their
lower left coordinates. For instance, the cell with identi-
fier (0, 0) has the following corner coordinates: (0, 0), (0, 1),
(1, 0), (1, 1).

First, we define the area of a single flex-offer assignment.

Definition 9. The area of an assignment fa of a flex-offer
f , denoted as area(fa), is the set of cells that falls between
the fa energy values and the X-axis of the grid.

Example 7. Given an assignment of flex-offer f3,
{f3a}3t=1 = 〈2, 1, 3〉 the area is as follows: area({f3a}3t=1) =
{(1, 0), (1, 1), (2, 0), (3, 0), (3, 1), (3, 2)}, which is represented
by the hatched cells in Figure 4.

This area represents the total assigned amount of a sin-
gle flex-offer. However, multiple assignments with differ-
ent areas are possible for a flex-offer. The total coverage
of all these assignment areas gives us the area of the flex-
offer flexibility. This joint area expresses all the possible
amounts at all the possible time instances that a flex-offer

81

Figure 4: Area of the assignment {f3a}3t=1 = 〈2, 1, 3〉

could have. Furthermore, we are interested in the size (a
numerical value) of this area of flexibility. To specify this,
we additionally take into account the minimum total energy
constraint c min, which is applicable to all assignments and
is thus considered inflexible.

Definition 10. The absolute area-based flexibil-
ity of a flex-offer f is the difference between the
size of the total area covered by all the assign-
ments of f and the total minimum constraint of f :
absolute area flexibility=| ⋃

as f∈L(f)

area(as f)| − c min(f)

Example 8. Figure 5 illustrates the flex-offer f4 =
([0, 4], 〈[2, 2]〉, cmin(f4)=2, and cmax(f4)=2. Flex-offer
f4 has 5 different assignments and each one covers an
area of two cells, see Figure 5. Flex-offer f4 has
absolute area flexibility(f4)=10−2=8.

Example 9. Figure 6 illustrates the flex-offer f5 =
([0, 4], 〈[1, 1], [2, 2]〉, cmin(f5)=3, and cmax(f5)=3. Flex-
offer f5 has 5 different assignments and each one covers
an area of three cells, see Figure 6. Flex-offer f5 has
absolute area flexibility(f5)=10−2=8.

Relative area-based flexibility. For most of the pre-
sented flexibility measures (incl., absolute area-based flex-
ibility), the value of the flexibility depends on the actual
amounts specified in the flex-offer. However, in cases when
we need to compare flex-offers of different sizes in terms
of amount, we need a size-independent measure. For these
cases, we propose a relative area-based flexibility.

Definition 11. The relative area-based flexibility of a flex-
offer f is equal to the absolute flexibility divided by the av-
erage of the energy total constraints of f :

relative area flexibility(f) = 2∗absolute area flexibility(f)
|c min(f)|+|c max(f)| ,

|c min(f)|+ |c max (f)| 6= 0

Example 10. Flex-offer f4 = ([0, 4], 〈[2, 2]〉,
cmin(f4)=2, cmax(f4)=2, shown in Figure 5, has
relative area flexibility(f4)= 2∗8

|2|+|2|=4. Flex-offer

Figure 5: Absolute and relative area-based flexibility of the
flex-offer f4

f5 = ([0, 4], 〈[1, 1], [2, 2]〉, cmin(f5)=3, cmax(f5)=3, shown
in Figure 6, has relative area flexibility(f5)= 2∗8

|3|+|3|=16/6.

4. DISCUSSION
In this section, we discuss the pros and cons of the proposed
flexibility measures, and scenarios in which we can use each
of these measures.

Product flexibility. The product flexibility measure, de-
fined in Definition 3, is only applicable in cases when a
flex-offer f has positive time and energy flexibilities, i.e.,
tf(f) > 0 and ef(f) > 0. In cases, when either the time
or the amount flexibility is equal to zero, the value of the
product flexibility is also equal to zero. As the flex-offer is
still flexible in the other dimension (time or energy), this
measure is not particularly accurate.

Example 11. Flex-offer fx=([2, 8], 〈[5, 5]〉) has tf(f)=6,
ef(fx)=0, and product flexibility(fx) = 6 · 0 =
0. Moreover, two flex-offers fx=([1, 3], 〈[1, 5]〉) and
fy=([1, 3], 〈[101, 105]〉) have equal product flexibility values,
i.e., product flexibility(fx)=product flexibility(fy)=8, even if
the minimum energy requirement of fy is more than 100
times greater than the minimum energy requirement of fx.

Furthermore, product flexibility does not take into account
individual slice energy requirements. It relies only on total
energy requirements (cmin and cmax). Nevertheless, Defi-

82

Figure 6: Absolute and relative area-based flexibility of the
flex-offer f5

nition 3 can still be applicable in scenarios where the flex-
offer represents production, consumption, or both, as long
as there are no mixed flex-offers. Additionally, it can be
generalized for sets of flex-offers. To compare two or more
sets of flex-offers, we should sum the product flexibilities of
the flex-offers in each set.

Vector flexibility. Vector flexibility measure, as defined
in Definition 4, can be applicable to either individual flex-
offers or sets of flex-offers, like the product flexibility. How-
ever, unlike the product flexibility, it can capture the flex-
ibility in cases where either time or energy flexibility of a
flex-offer is equal to zero. Furthermore, it is independent of
the sign of the energy values of the slices of a flex-offer. In
particular, it can express flexibility of flex-offers that repre-
sent either energy production, consumption, or both. Like
the product flexibility, it does not take into account individ-
ual slice energy requirements, solely relying on total energy
requirements (cmin and cmax). Lastly, vector flexibility does
not take into account the actual values of energy (“size of
the flex-offer”), but, instead, captures only the difference
between energy bounds.

Example 12. The two flex-offers fx=([1, 3], 〈[1, 5]〉) and
fy=([1, 3], 〈[101, 105]〉) from Example 11 have the same
vector flexibility irrespectively of the used norm, even if the
minimum energy requirement of fy is more than 100 times
greater than the minimum energy requirement of fx. Specif-
ically, ‖vector flexibility(fx)‖1=‖vector flexibility(fy)‖1=6
according to the Manhattan norm, and

‖vector flexibility(fx)‖=‖vector flexibility(fy)‖2=4.472
according to the Euclidean norm.

Time-series flexibility. Norms such as Manhattan and
Euclidean, applicable with time-series flexibility (see Defini-
tion 7), do not take into account the temporal structure of
the time series [7] and thus cannot capture the joint effect of
time and energy flexibilities. As a result even if time-series
captures both time and energy, the norms applied on a differ-
ence between time-series can capture only energy flexibility.
However, the time-series definition can be applied on pos-
itive, negative, and mixed flex-offers, as well as on sets of
flex-offers – by computing the sum of time-series flexibilities
of the flex-offers in the set.

Example 13. As mentioned in Example 5 , flex-offer f1 =
([0, 1], 〈[0, 1]〉, cmin(f1) = 0, and cmax(f1) = 1 results in
time series {fd1}1t=0 = 〈0, 1〉, and its norms are as follows:
L1−norm, |{fd1}1t=1|1 = 1, and L2−norm, |{fd1}1t=1|2 = 1.
However, another flex-offer f ′1 = ([0, 10], 〈[0, 1]〉, cmin(f ′1) =
0, and cmax(f ′1) = 1 with 10 times greater time flexibil-
ity than f1 results in a similar time series {f ′d1}1t=0 =
〈0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1〉 with identical norms: L1−norm,
|{f ′d1}1t=1|1 = 1, and L2−norm, |{f ′d1}1t=1|2 = 1.

Assignment flexibility. Assignment flexibility, as defined
in Definition 8, considers only the number of flex-offer as-
signments, and this number is independent of the actual val-
ues of the time and energy bounds. The limitation of this
measure is that energy flexibility has an exponential impact
on the number of the assignments, i.e., the number of assign-
ments increases exponentially when energy flexibility is in-
creased. In comparison, the number of flex-offer assignments
increases linearly when time flexibility is increased. Thus,
this measure favors energy flexibility over time flexibility.
Moreover, assignment flexibility, as defined in Definition 8,
does not take into account the total energy requirements
(cmin and cmax), and gives the same values for flex-offers
with the same time and amount flexibilities, but differing
in energy amounts. Furthermore, it can express flexibility
of flex-offers that represent either production, consumption,
or both. It can be used to compare individual flex-offers
and to compare sets of flex-offers by counting the number of
possible assignments for the whole set.

Example 14. The flex-offer f2 with tf(f2)=ef(f2)=2,
shown in Figure 3, has 9 possible assignments. If tf(f2)
were 0, flex-offer f2 would have 3 possible assignments, but
if ef(f2) were 0, f2 would have 2 possible assignments. The
flex-offer f6 with tf(f6)=2 and ef(f6)=10, shown in Fig-
ure 7, has 240 assignments. If tf(f6) were 0, f6 would have
80 assignments, but if ef(f6) were 0, f6 would have 3 as-
signments.

Absolute and relative area-based flexibility. Both the
absolute and relative area-based flexibility measures (Defini-
tions 10–11) can be used to capture the joint effect of time
and energy flexibilities. However, the absolute area-based
flexibility measure should only be used for (pure) consump-
tion flex-offers only, as its value is adjusted using the total
minimum energy constraint (cmin), which is meaningful only
for the consumption case where amounts are positive. For
the production flex-offer case, where amounts are negative,

83

Flexibility Measures
Characteristics Time Energy Product Vector Time-series Assignments Abs. Area Rel. Area

Captures time Yes No No Yes No Yes Yes Yes
Captures energy No Yes No Yes Yes Yes Yes Yes

Captures time & energy No No Yes Yes No Yes Yes Yes
Captures size No No No No No No Yes Yes

Captures positive flex-offers Yes Yes Yes Yes Yes Yes Yes Yes
Captures negative flex-offers Yes Yes Yes Yes Yes Yes Yes Yes
Captures Mixed flex-offers Yes Yes Yes Yes Yes Yes No No

Single Value Yes Yes Yes Yes Yes Yes Yes Yes

Table 1: Flexibility definitions characteristics.

the total maximum energy constraint (cmax) should be used
instead. However, for cases when the flex-offer represents
both production and consumption, this flexibility measure
is not feasible.

Example 15. For instance, flex-offer
f4=([0,2],〈[−1,2],[−1,−4],[−3,1]〉) in Figure 7 has
cmin(f6)=−8 and cmax(f6)=2, but neither of them
expresses the lower or upper bounds of the area,
jointly covered by the assignments of f6. In this
case, absolute area flexibility(f6)=24−(−8)=32 and
relative area flexibility(f6)= 2∗32

|8|+|2|=6.4.

On the other hand, both absolute and relative area-based
flexibility measures can be used to compare individual flex-
offers. Only absolute area-based flexibility can be used to
compare the total absolute flexibility of two or more sets
of flex-offers, e.g., by summing up the individual absolute
area-based flexibility values of the flex-offers in the sets. To
assess the relative flexibility for a set of flex-offers, the sum
of relative flexibilities is not meaningful, instead the average
relative flexibility could be used.

All the flexibility measures can be applied for both individ-
ual flex-offers and sets of flex-offers to compare their un-
derlying flexibility. However, as we see in Table 1, which
summarizes the characteristics of all the proposed flexibility
definitions, each flexibility measure has specific characteris-
tics and should be used under specific circumstances only.
For example, the product flexibility measure cannot properly
capture flexibility unless both time and amount flexibility is
exhibited. The time-series flexibility measure captures only
flexibility induced by energy flexibility. Only the absolute
and relative area-based flexibility measures take into account
the amount values (size) of the flex-offers. However, the
absolute and relative area-based flexibility measures have
problems expressing the flexibility of mixed flex-offers.

Application Scenarios. There are 2 major scenarios
(see Section 1) where the different measures can be ap-
plied. In Scenario 1, the goal of aggregation is to reduce
the input complexity of scheduling and retain as much flex-
ibility of flex-offers as possible. In this scenario, measures
that capture flexibility induced by both time and energy,
e.g., product flexibility and assignments flexibility, are qual-
ified. Measures that capture only time or energy flexibility,
such as time-series flexibility, are not appropriate for Sce-
nario 1. However, in cases where aggregation handles the
balancing task as well, measures that capture flexibility of

Figure 7: Number of assignments example, flex-offer f6

mixed flex-offers are needed since the aggregated flex-offers
might be mixed ones. Thus, measures that are not suitable
for mixed flex-offers, i.e., absolute and relative area-based
flexibility, are inappropriate to express flexibility. Instead,
measures that capture flexibility of mixed flex-offers such
as vector and assignments flexibility, are qualified. In Sce-
nario 2, where an energy market actor (e.g., an Aggregator)
trades flex-offers as commodities, measures capturing only
time or energy can be used. The reason is because an Aggre-
gator might handle flex-offers from specific appliances that
are characterized only by time or energy flexibility. Thus,
the time-series measure, the time and energy flexibility mea-
sures, and the product flexibility measure are appropriate.
In cases where an Aggregator wants to explore and evalu-
ate the potentials of achieving a local balance and handle a
power capacity limitation, measures for mixed flex-offers are

84

more appropriate. However, only absolute and relative area-
based flexibilities take into account the size of a flex-offer,
but they cannot be applied on mixed flex-offers. Therefore,
a combination of measures that includes the absolute or the
relative area-based flexibility can be used to handle these
more complex cases. Weighting is one way of combining dif-
ferent flexibility measures and balancing their influences to
fulfill specific characteristics mentioned in Table 1.

5. RELATED WORK
Flexibility in energy supply and demand has a prominent
role in the Smart Grid domain, and, among others within
this domain, can be associated with distributed generation,
load management and demand side management [6]. Many
definitions of flexibility have been proposed, but a formal
universal definition is still pending [10]. Some proposed mea-
sures of flexibility focus on operational aspects and take into
account transmission constraints [3], while others are based
on time shifting of loads [11]. Furthermore, there has been
proposed categorizations of power units based on their char-
acteristics, taking into consideration their qualities and ca-
pabilities to dispatch power and solve balancing issues [10].

In comparison, this paper proposes and discusses specific
measures to quantify flexibility in energy supply and de-
mand, namely in the units connected to the Smart Grid
such as electric vehicles, solar panels, wind turbines, and re-
frigerators. We use the existing definition of a flex-offer [15],
which is a generic model for representing flexibility and ad-
just it for the cases of energy consumption, production, and
both consumption and production. The proposed measures
can be applied on individual electrical units and on sets of
units as well, e.g., when solving the unit commitment prob-
lem [9] or tackling balancing or congestion problems occur-
ring in the grid [13].

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed and explored 8 measures for
quantifying flexibility in demand and supply based on the
generic flexibility model of a flex-offer, capturing the energy
behavior of units connected to the Smart Grid. We iden-
tified the independent flexibilities of time and energy and
proposed a number of combined measures – product, vector,
time-series, assignments, absolute area-based, and relative
area-based – which take both time and energy into account.
These measures can be used to compare the flexibility of in-
dividual flex-offers as well as sets of flex-offers. We demon-
strated and discussed the impact of the proposed measures
using elaborate graphical examples. We concluded through
a discussion that such single-value measures can be used to
express the flexibility of the units connected to the Smart
Grid. However, none of the measures have all the desirable
characteristics. Instead, each measure has specific character-
istics and can be used in specific circumstances, all discussed
in the paper.

In future work, we will examine the use of the suggested mea-
sures for flex-offer aggregation algorithms, including those
that partially address the energy balancing problem and
consider electric grid constraints. The proposed flexibility
measures will be added to the constraints and/or objective
functions of these aggregation algorithms, performing ag-
gregation jointly with flexibility optimization. We will also

experimentally evaluate the flexibility measures and their ef-
fect on the scheduling process in different scenarios. More-
over, we will extend the current proposals to new types of
measures capturing more aspects of flexible electrical loads.

7. ACKNOWLEDGMENTS
This work was supported in part by the TotalFlex project
sponsored by the ForskEL program of Energinet.dk.

8. REFERENCES
[1] Totalflex project, link: www.totalflex.dk.

[2] M. Boehm, L. Dannecker, A. Doms, E. Dovgan,
B. Filipic, U. Fischer, W. Lehner, T. B. Pedersen,
Y. Pitarch, L. Šikšnys, and T. Tušar. Data
management in the mirabel smart grid system. In
Proc. of EnDM, 2012.

[3] M. Bucher, S. Chatzivasileiadis, and G. Andersson.
Managing flexibility in multi-area power systems.
CoRR, abs/1409.2234, 2014.

[4] H. Farhangi. The path of the smart grid. Power and
Energy Magazine, IEEE, 2010.

[5] H. Hermanns and H. Wiechmann. Future design
challenges for electric energy supply. In Proc. of
ETFA, 2009.

[6] F. Kupzog and C. Roesener. A closer look on load
management. In Industrial Informatics, IEEE
International Conference on, 2007.

[7] J. A. Lee and M. Verleysen. M.: Generalization of the
lp norm for time series and its application to
self-organizing maps. In COTTRELL, M. (Hrsg.):
Proc. of WSOM, 2005.

[8] A.-H. Mohsenian-Rad, V. Wong, J. Jatskevich,
R. Schober, and A. Leon-Garcia. Autonomous
demand-side management based on game-theoretic
energy consumption scheduling for the future smart
grid. Smart Grid, IEEE Transactions on, 2010.

[9] N. Padhy. Unit commitment-a bibliographical survey.
IEEE Transactions on Power Systems, 2004.

[10] M. Petersen, K. Edlund, L. Hansen, J. Bendtsen, and
J. Stoustrup. A taxonomy for modeling flexibility and
a computationally efficient algorithm for dispatch in
smart grids. In ACC, 2013.

[11] K. Pollhammer, F. Kupzog, T. Gamauf, and
M. Kremen. Modeling of demand side shifting
potentials for smart power grids. In AFRICON, 2011.

[12] T. Tušar, E. Dovgan, and B. Filipic. Evolutionary
scheduling of flexible offers for balancing electricity
supply and demand. In IEEE Congress on
Evolutionary Computation (CEC), 2012.

[13] T. Tušar, L. Šikšnys, T. B. Pedersen, E. Dovgan, and
B. Filipič. Using aggregation to improve the
scheduling of flexible energy offers. International
Conference on Bioinspired Optimization Methods and
their Applications, 2012.

[14] E. Valsomatzis, K. Hose, and T. B. Pedersen.
Balancing energy flexibilities through aggregation. In
Proc. of DARE, 2014.

[15] L. Šikšnys, M. E. Khalefa, and T. B. Pedersen.
Aggregating and disaggregating flexibility objects. In
Proc. of SSDBM, 2012.

85

What’s Wrong with my Solar Panels: a Data-Driven
Approach

Xiang Gao, Lukasz Golab and S. Keshav
University of Waterloo

200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1

{x39gao,lgolab,keshav}@uwaterloo.ca

ABSTRACT
Solar panels have been improving in efficiency and dropping
in price, and are therefore becoming more common and eco-
nomically viable. However, the performance of solar panels
depends not only on the weather, but also on other exter-
nal factors such as shadow, dirt, dust, etc. In this paper,
we describe a simple and practical data-driven method for
classifying anomalies in the power output of solar panels. In
particular, we propose and experimentally verify (using two
solar panel arrays in Ontario, Canada) a simple classifica-
tion rule based on physical properties of solar radiation that
can distinguish between shadows and direct covering of the
panel, e.g,. by dirt or snow.

1. INTRODUCTION
Photovoltaic (PV) technology, i.e., solar panels, has been

rapidly dropping in price and increasing in popularity world-
wide [7]. The monitoring and measuring capability of PV
installations has also improved. While it used to be possible
only to measure the total power output of an array of solar
panels, micro-inverters (which are devices that covert Direct
Current generated by an individual panel into Alternating
Current) now make it possible to measure the power out-
put of each individual panel at fine granularities (e.g., every
minute or every five minutes). Thus, solar panel data analyt-
ics is becoming an important area of research and practice.

The power output of a PV system depends on solar inten-
sity and the panels’ efficiency of converting light into power
(typically 15-20 percent). Additionally, even a perfectly-
functioning panel on a sunny day will produce little power if
it is shaded or covered by dust or dirt. For instance, many
large-scale PV installations are located on farmlands and/or
near country roads, which makes them vulnerable to dust,
mud, pollen and other types of soiling. Furthermore, even if
a farm site is chosen to be shadow-free, grass may eventually
grow tall enough to cast shadows on the panels. Numerous
studies have observed power drops of 40 or more percent due
to shaded, dirty and snow-covered panels [1, 2, 3, 4, 6, 8,

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0
.

11, 15, 18, 23, 25].
A simple solution is to frequently clean the panels. How-

ever, this is not feasible in desert locations that suffer from
water shortages, or in remote large-scale installations where
an automated sprinkler system is prohibitively expensive.
Some PV installations include cameras that monitor the
panels, but it may be difficult to tell from videos or still
images whether the panels are dirty (see, e.g., Figure 4 in
Section 5). Thus, in practice, PV systems often operate in
less than ideal conditions.

The problem we address in this paper is how to determine,
in a data-driven fashion, what is wrong with a solar panel, on
a per-panel rather than per-array basis. Since most large-
scale PV systems are equipped with sensors that measure
solar intensity and power output at regular intervals, we
propose a simple classification approach to explain anoma-
lies (i.e., drops) in the produced power based on these time
series. This is a challenging problem because it is not obvi-
ous how to distinguish between different types of anomalies,
and therefore it is not obvious which features of the data to
use for classification.

We take a first step towards data-driven classification of
anomalies in PV power output based on fine-grained per-
panel data. Our solution exploits the physical properties of
solar radiation. We observe that obstructions which do not
touch the panels, such as shading, affect the power output
in a subtly different way than dirt or snow lying on the
panels. Based on this observation, we derive simple features
from the power output time series that distinguish between
shadows and soiling. We tested the proposed idea using data
obtained from two real PV installations in the province of
Ontario, Canada, and obtained 85 percent accuracy.

An obvious limitation of the proposed solution is that it
can only tell shadows apart from direct cover, but it can-
not distinguish between different types of direct cover (such
as dust, dirt, or leaves) or between direct cover and physi-
cal panel malfunctions. Nevertheless, this simple classifica-
tion can already be helpful to PV owners as it can suggest
when the panels are due for a cleaning and when unexpected
shadows arise. Our preliminary results are promising, and
we hope that this paper encourages further research in solar
panel data mining.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the necessary background in solar panel mon-
itoring and defines our problem; Section 3 discusses related
work; Section 4 presents our solution; Section 5 describes
our experimental results; and Section 6 concludes the paper
with directions for future work.

86

2. PRELIMINARIES AND PROBLEM
STATEMENT

We begin with a simple example of the factors affecting
the power output of a solar panel with the help of Figure 1.
The curve labeled “1” corresponds to the maximum solar
intensity times the surface area of the panel throughout a
hypothetical day, on which the sun rises at 6:00 and sets at
20:00. If the sun were shining all day, there were no clouds,
and the panel was able to convert 100 percent of the solar
radiation into power, curve 1 would be the maximum power
output throughout the day. Chapter 20 of [14] describes how
to estimate the maximum clear-sky solar intensity given the
time of day, day of year, latitude and tilt angle of the panel,
all of which determine the relative position of the panel with
respect to the sun.

PV systems usually include a pyranometer – a device that
measures the solar intensity reaching the panels. The pyra-
nometer is tilted at the same angle as the panels and is
designed to stay clean and snow-free. The curve labeled “2”
corresponds to the actual solar intensity times the surface
area of the panel through the day. Drops in curve 2 com-
pared to curve 1 indicate clouds, and in practice, curve 2
may be much more “noisy” than shown; see, e.g., Figure 2
and Figure 3.

Of course, a solar panel cannot convert all the radiation
into power, i.e., its efficiency is not 100 percent. PV manu-
facturers typically specify efficiency as a function of temper-
ature (solar panels tend to be more efficient at lower tem-
peratures) [20]. Curves 3 and 4 in Figure 1 are derived by
applying an efficiency formula to curves 1 and 2, respec-
tively. That is, curve 3 is the expected power output given
a perfectly sunny day, and curve 4 is the expected power
output after taking clouds into account. Note that the area
between curves 3 and 4 corresponds to power loss due to
clouds, which is unavoidable.

There are two common ways to compute curve 4. One is
to start with the solar intensity measured by a pyranometer,
as described above, and adjust it according to the efficiency
function. If there is no pyranometer onsite, another way is
to select one panel as a reference panel and use its actual
power output as the expected power output. Of course, this
panel, to which we refer as a reference panel, must be clean
and problem-free.

Finally, curve 5 shows the actual power output of the
panel, as measured by a sensor connected to the micro-
inverter. Ideally, curve 5 should be identical to curve 4.
In Figure 1, the actual power output drops below the ex-
pected power output around 11:00, which could be due to
external factors such as shadow or dirt. Note that the area
between curves 4 and 5 corresponds to power loss due to
such external factors, many of which are avoidable, e.g., by
cleaning the panels.

We are now ready to state the problem we want to solve.
We are monitoring a PV array consisting of multiple panels.
We are given 1) enough enough information to compute the
expected power output time series (curve 4), e.g., the cor-
responding solar intensity and temperature time series plus
the performance ratio function, and 2) for each panel, we are
given an actual power output time series (curve 5). Our goal
is to identify and classify time intervals during which curve
5 significantly drops below curve 4, as we will formalize in
Section 4. We assume that the input time series have a fine

!!6!!!!7!!!!8!!!!9!!!10!!!11!!!12!!13!!!14!!!15!!!16!!17!!18!!20!
Hour!of!day!

Po
w
er
!

1!

2!

3!
4!

5!

Figure 1: Example of solar panel output assuming
perfect efficiency and a sunny day (1), perfect effi-
ciency and clouds (2), actual efficiency without (3)
and with (4) clouds, and with other factors (5).

granularity (e.g., one measurement every 5 or 15 minutes).
The frequency of identifying and classifying anomalies in the
power output depends on the application; for concreteness,
we assume that at the end of each day, we need to analyze
the current day’s data.

3. RELATED WORK
There has been a great deal of research on understanding

and attributing the power loss of a whole PV array due
to weather and the external environment. Field trials and
simulations were done to model and characterize the effects
of cloud cover (see, e.g., [13]), air pollution (see, e.g., [11]),
shadows (see, e.g., [4, 17, 23]), dust and dirt (see, e.g., [3,
6, 8, 15, 25]), and snow (see, e.g., [1, 2, 18]). The goal of
this body of work was mainly to estimate the percentage
power loss over an extended period of time, perhaps as a
function of the type or thickness of snow or soiling. Rather
than studying a particular factor in a controlled environment
(e.g., using clean and dirty panels side-by-side), our work
aims to infer the underlying factors based on (per-panel)
power output and solar intensity data.

In terms of anomaly detection, there are at least three
related approaches, which we summarize below.

The first approach, mentioned in [16, 19, 24], is to period-
ically compute linear regressions of power output vs. solar
radiation and power output vs. panel temperature to de-
tect changes in the behaviour of panels. However, this ap-
proach is not meant to distinguish between different types
of changes, and therefore anomaly classification was not dis-
cussed.

In [5, 21], the solution is to collect statistics about anoma-
lies such as the magnitude of the power drop and the dura-
tion of the anomaly. The idea behind our solution is simi-
lar, but we show that a single feature is already sufficient to
distinguish between shadow and direct covering of a panel.
Furthermore, our solution does not rely on the magnitude

87

of the power drop since the same type of anomaly (e.g.,
dirt/snow) may cause a different amount of power drop in
different circumstances (e.g., different thickness and density
of snow or different types of dirt).

The third approach is based on machine learning. In [12],
a decision tree classifier was constructed to predict the sever-
ity of a physical problem with a solar panel based on features
such as discolouration or panel warping. While we also aim
to classify anomalies in power output, we focus on exter-
nal problems rather than hardware faults, and therefore our
framework and features are different. In [10], several classi-
fiers were tested on their ability to classify anomalies in PV
power output based on statistical properties of the output
time series. While our solution also classifies anomalies in
power output, it is different from [10] in several ways. First,
we assume that we are also given solar intensity data as in-
put, which allows us to separate power drop due to cloud
cover from other factors. Second, as we will show, we use
simple and interpretable features of the output time series
rather than complex statistical properties.

There is also a variety of commercial software tools for
estimating and tracking the power produced by solar pan-
els, and estimating power loss due to weather and other
factors; examples include Enphase Energy’s Enlighten1, Lo-
cus Energy’s PVIQ2, PVSyst3 and Tigo4. Some systems
use rough estimates for shading and soiling losses based on
historical data, while others include more sophisticated an-
alytics. For example, PVIQ estimates loss due to shading
by identifying seasonal patterns, e.g., a drop in power ev-
ery morning throughout the summer may correspond to a
morning shadow. Our solution does not require a year of
training data. In general, our solution is complementary to,
and may be incorporated in, the above systems to improve
the accuracy of power loss estimation and attribution.

4. OUR SOLUTION
Recall that we are given an expected power output time

series, computed using pyranometer measurements or using
the power output of a clean reference panel, and an actual
power output time series. Our goal is to explain anomalies
in the actual power output. Also, recall that the expected
power output already accounts for clouds, so any further
drop in produced power is likely due to other factors such as
dirt or shadow. The crux of our solution is the observation
that dirt or snow, which physically cover a panel, affect the
power output in a different way than shadows. We illustrate
this observation with an example and then we explain it in
terms of the physical properties of solar radiation.

4.1 Intuition and Physical Explanation
Figure 2 plots the expected (“theoretical”) and actual

(“real”) power outputs (in Watts) of the solar panel circled
in red in Figure 5; we will describe the PV array this panel
comes from in Section 5.1. The measurements were taken
on February 11, 2012, and, as can be seen, this panel is cov-
ered by snow. In general, this panel is producing roughly
one third of the expected power. Notice that the real power
output follows the fluctuations of the expected power out-

1http://enphase.com/enlighten/
2http://locusenergy.com/solutions/pviq-analytics/
3http://www.pvsyst.com
4http://www.tigoenergy.com/

put; that is, if clouds come out, the power output drops
correspondingly.

Next, in Figure 3 we show another pair of theoretical and
real power time series for another panel covered by a morn-
ing shadow (from about 9:00 till 11:00) on July 10, 2013.
Notice that at that time the power output drops to roughly
20 Watts and generally does not follow the fluctuations of
the expected power output. That is, whether it is sunny or
cloudy, this shaded panel is producing (roughly) uniformly
low power.

In order to explain these observations, we need to under-
stand the physical properties of solar radiation [14]. It has
two main components: direct and diffuse. Direct radiation
reaches the surface of the Earth in a straight line from the
sun without any reflection or scatter by the atmosphere. Dif-
fuse radiation is scattered by the atmosphere and arrives at
the surface of the Earth from all directions. There is also
a third component, albedo radiation, which is the radiation
reflected from the ground, but its effect on solar panels is
negligible compared to the other two. On a clear sunny day,
most of the radiation is direct. On a cloudy winter day even
half the radiation may be diffuse depending on location.

Now, it is important to understand that shadow only
blocks direct radiation, which would normally reach a so-
lar panel in a straight line from the sun; diffuse radiation is
not affected since it arrives from all directions. This is why
the power output in Figure 3 drops and remains roughly
constant. The only radiation getting through is diffuse, and
this does not fluctuate when clouds come out. The peaks
in theoretical power output are due to more direct radiation
hitting the panel when the sky is clear. On the other hand,
covering the panel with dirt or snow blocks both direct and
diffuse radiation. This is why the power output in Figure 5
is roughly a constant fraction of the expected power output
at all times: depending on the thickness and density of the
snow, some fraction of all the radiation is blocked.

This simple property of solar radiation has been men-
tioned by prior work on PV performance analysis [5, 13,
17, 25]. Our contribution in this paper is to turn this obser-
vation into a classification feature, as we explain below, and
experimentally verify its accuracy on real data.

4.2 Anomaly Classification
We now translate the above observations into features that

may be used in classification. At any point in time, we define
the Performance Ratio (PR) of a solar panel as the ratio of
actual power produced to the expected (theoretical) power.
That is, PR is the ratio of curves 5 and 4 from Figure 1, or
the ratio of the two curves shown in each of Figures 2 and
3. For example, if the expected power is 100 Watts but the
produced power is 40 Watts, the PR at that point in time
is 0.4.

Let S be a set of data points. The Coefficient of Variation
(CV) of S is a standard statistical metric, defined as the
ratio of the standard deviation of the data points to their
mean. Now, note that the Coefficient of Variation of the
Performance Ratio (CVPR) is low in Figure 2 but higher in
Figure 3. This is the main idea of the proposed solution.

The input to our problem consists of the expected and
actual power output time series for a given solar panel, as
discussed earlier. In the first step, we identify time intervals
in which the PR is below some threshold τPR. In the second
step, we compute the CVPR for each such time interval. If

88

Figure 2: Expected and actual power output of a panel covered by snow.

Figure 3: Expected and actual power output of a shaded panel.

the CVPR is below some threshold τCV PR, we classify the
anomaly as direct cover. Otherwise, we classify the anomaly
as a shadow. We reiterate that per-panel data are required
for this method. Otherwise, if, say, only one panel is shaded,
then the whole array’s PR may still be very close to one and
no anomaly will be detected.

The threshold τPR controls the aggressiveness of the above
classification rule. A high value may lead to false positives,
but a low value can miss some anomalies such as small shad-
ows or delay the identification of anomalies such as dirt. The
other threshold, τCV PR, can be learned from labeled data.
We will discuss threshold selection further in Section 5.

We point out two simple optimizations of the above clas-
sification rule. First, after we find a time interval with low
PR, rather than computing CVPR from all the points within
this interval, we can remove outliers (highest and lowest PR
values in the interval) and compute the CVPR from the re-
maining points. This will help guard against data errors.
The second optimization is to only consider anomalies oc-
curring when the solar intensity is sufficiently high. During
periods of low intensity (e.g., dusk or dawn), there is little
power being generated and the PR can be noisy.

Note that our solution can easily be extended. For exam-
ple, in the context of a decision tree, we may test the value
of CVPR in the root node of the tree, and then add fur-

ther tests on other attributes of the data to further specify
the cause of a power drop (e.g., dust vs. leaves on the panel
vs. bird droppings). That said, we believe that classifying
anomalies into shadow vs. direct-cover is already very useful
as it can determine when the panels are dirty, for whatever
reason, and need cleaning.

5. EXPERIMENTS
This section describes our experimental results regarding

the accuracy of the proposed classification rule and the ac-
curacy of other classification algorithms that may be applied
to our problem, starting with a description of our two data
sets, followed by our findings.

5.1 Data
In order to test an anomaly classifier, we need examples of

shading and soiling along with the corresponding (expected
and actual) power output time series. We obtained these
from the following two PV installations.

TRCA: an array of 15 panels, three each from five differ-
ent manufacturers, located in Toronto, Ontario. The panels
are facing due south with a 30 degree tilt and are man-
aged by the Toronto and Region Conservation Authority
(TRCA). This data set contains power output, solar inten-
sity (from an on-site pyranometer), temperature and wind-

89

Figure 4: Example of an image in the TRCA data
set.

Figure 5: Example of an image showing snow-
covered TRCA panels.

speed measurements every minute for one year, from De-
cember 2011 till December 2012. We calculated expected
power output (curve 4 in Figure 1) from the solar intensity
time series and the efficiency formulas provided by the PV
manufacturers. Additionally, we obtained an image data
feed containing 600x800 photos of the panels taken every 5
minutes. Due to low resolution, we could not identify dust
or dirt; see, e.g., Figure 4 taken at noon on August 3, 2012.
However, we found 24 days with snow; see, e.g., Figure 5
taken at noon on February 11, 2012.

UW: an array of 15 panels installed on the roof of one
of the University of Waterloo buildings, facing 26.11 degrees
southeast with a 15 degree tilt. We obtained access to the
array for one month, from June 20 till July 20, 2013. There
is no pyranometer onsite, so we selected one panel as a refer-
ence panel and ensured it is always clean and anomaly-free.
The power output of this panel was used as the expected
power output (i.e., curve 4 in Figure 1). Furthermore, there
is no camera on-site, so we manually inspected the panels
several times a day and recorded the times and locations of

Table 1: PR and CVPR values of all 18 shadow
anomalies

PR CVPR
0.44 1.82
0.5 0.75
0.35 0.91
0.51 1.87
0.34 1.99
0.45 0.93
0.41 1.42
0.46 1.82
0.45 1.17
0.35 1.17
0.19 3.45
0.33 1.53
0.31 2.18
0.3 1.87
0.31 2.42
0.15 6.3
0.3 1.91
0.47 2.13

shadows. We also manually covered the panels with varying
amounts of dirt (consisting of fine sand mixed with dried
soil) and measured the corresponding power drop.

5.2 Results
Altogether we collected 60 examples of anomalies, 24 of

which are due to snow (TRCA), 18 due to shadow (UW)
and 18 due to dirt (UW). Tables 1, 2 and 3 list the PR
and CVPR values for all the shadow, snow and dirt anoma-
lies, respectively. Shadow appears to drop the power output
to one-half or less of the expected output. The PR val-
ues for snow anomalies range from 0.1 to 0.88 depending on
the thickness and density of the snow cover. Dirt appears to
have less of an effect on the power output than other anoma-
lies: the PR values for our dirt anomalies range from 0.85 to
0.97. However, this may be an artifact of our experimental
procedure: the dirt we manually placed on the panels did
not stick to the panels for very long and slid off them within
several minutes (recall that the UW panels are tilted 15 de-
grees). In prior work, the effect of dirt and dust has been
reported to be higher. Finally, we note that, as expected,
the CVPR of shadow anomalies appears significantly higher
than that of direct cover anomalies.

5.2.1 Our Classifier
We now test our simple classification rule: for each time

interval in which PR drops below τPR, if CVPR is below
τCV PR, the power drop is due to direct cover; otherwise,
the power drop is due to shadow (then, separating direct
cover into snow vs. other cover can be done easily with the
help of weather data).

The first task is to determine a value for τPR. In general,
we need to trade off between missed anomalies and false
alarms. Our shadow and snow anomalies all had a PR under
0.88, but there were seven dirt anomalies with a PR above
0.9. However, as we mentioned earlier, in practice we expect
dirt anomalies to have a lower PR than the PR we obtained
in our experiments. Thus, τPR = 0.9 is a reasonable choice.
That is, we identify an anomaly if the actual power output
of a panel is 90 percent or less of the expected output.

90

Table 2: PR and CVPR values of all 24 snow anoma-
lies

PR CVPR
0.48 0.17
0.5 0.18
0.45 0.74
0.56 0.37
0.58 0.6
0.1 1.44
0.55 0.31
0.77 0.11
0.42 0.48
0.11 1.8
0.88 0.02
0.47 0.44
0.62 0.18
0.62 0.34
0.35 0.46
0.76 0.15
0.74 0.08
0.84 0.05
0.85 0.05
0.78 0.19
0.81 0.09
0.81 0.17
0.23 0.67
0.37 0.63

Next, we need to choose a value for τCV PR. Based on our
training data, the best thresholds are 0.75 and 1.17. With
τCV PR = 0.75, 50 out of 60 anomalies are classified correctly,
with two snow and 8 dirt anomalies misclassified as shadow.
With τCV PR = 1.17, 51 out of 60 anomalies are classified
correctly for an accuracy of 0.85, with 3 shadow anomalies
misclassified as direct cover, and two snow and 4 dirt anoma-
lies misclassified as shadow. As we mentioned in Section 4.2,
there are simple optimizations that may improve accuracy,
such as removing PR outliers within the time interval of an
anomaly. Furthermore, having access to more labeled data
should help choose a better threshold. That said, based on
our results so far, we conclude that a τCV PR value of around
one should work well.

We also point out that only three shadow anomalies had a
CVPR value below one, and they happened on cloudy days,
on which the solar radiation was not as noisy as that in Fig-
ures 2 and 3. As a result the CVPR was lower than it would
be had there been periods of sunshine and clouds through-
out the day. On the other hand, there are several snow and
dirt anomalies with a relatively high CVPR between 1.4 and
1.8. These correspond to thin layers of dirt or snow, which
may have allowed more diffuse radiation to reach the panel
than a thick and dense cover would.

5.2.2 Other Classifiers
For comparison, we also tested several classifiers using

the WEKA machine learning toolkit [9]. Each classifier was
given two feature variables: PR and CVPR, and the class
label, which could be shadow or direct cover. Table 4 shows
the accuracy of the tested classifiers using ten-fold cross vali-
dation. The algorithms are: the C4.5 decision tree, the Best
First (BF) decision tree, the Naive Bayes (NB) decision tree,
the Functional Tree (FT), the Simple Cart decision tree al-

Table 3: PR and CVPR values of all 18 dirt anoma-
lies

PR CVPR
0.9 0.7
0.91 1.2
0.88 1.13
0.92 0.68
0.82 0.57
0.95 0.55
0.97 0.41
0.94 0.43
0.9 0.13
0.93 1.41
0.9 0.98
0.86 1.45
0.88 0.97
0.85 1.56
0.93 1.04
0.9 0.66
0.89 0.53
0.9 0.89

Table 4: Accuracy of other classification algorithms
Classifier Accuracy
C4.5 0.93
BF Tree 0.92
NB Tree 0.93
FT 0.86
Simple Cart 0.93
SVM (Linear) 0.88
SVM (degree 4 polynomial) 0.88
kNN (k = 1) 0.95
kNN (k = 3) 0.93
kNN (k = 5) 0.88

gorithm, Support Vector Machines (SVM) with linear and
degree-4 polynomial basis, and the k-Nearest-Neighbour al-
gorithm with three different values of k.

The accuracy of the other classifiers is higher than that of
our simple rule, at the cost of over-fitting. For instance, the
C4.5 algorithm gave the following tree, which overfits the
data by making multiple tests on PR; the numbers in brack-
ets correspond to the number of anomalies covered by each
leaf node in the decision tree. Interestingly, PR, not CVPR,
is tested at the root of the tree. However, as the tree shows,
some direct cover anomalies have low PR whereas others
have higher PR (depending on the thickness and density of
the dirt or snow).

PR <= 0.51

| CVPR <= 0.74: Direct Cover (8.0)

| CVPR > 0.74

| | PR <= 0.11: Direct Cover (2.0)

| | PR > 0.11: Shadow (18.0)

PR > 0.51: Direct Cover (32.0)

Similarly, the BF tree also overfit the data by making
multiple tests on PR and CVPR. The root node actually
tests on CVPR but the threshold is too high and a second
test on CVPR is required in the second layer of the tree.

91

CVPR < 1.81

| PR < 0.525

| | CVPR < 0.745: Direct Cover (8.0)

| | CVPR >= 0.745

| | | PR < 0.22: Direct Cover (2.0)

| | | PR >= 0.22: Shadow (7.0)

| PR >= 0.525: Direct Cover (32.0)

CVPR >= 1.81: Shadow (11.0)

Simple Cart also overfit the data with similar problems to
that of the BF tree:

CVPR < 1.81

| PR < 0.525

| | CVPR < 0.745: Direct Cover (8.0)

| | CVPR >= 0.745: Shadow (7.0)

| PR >= 0.525: Direct Cover(32.0)

CVPR >= 1.81: Shadow (11.0)

6. CONCLUSIONS AND FUTURE WORK
In this paper, we addressed the problem of identifying and

explaining anomalies in the power output of solar panels.
We developed and tested a simple classification rule based
on the physical properties of solar radiation. The proposed
rule can distinguish between power drop due to shadow and
power drop due to direct cover such as dust or snow on the
panel.

Based on our experimental results, there is room for im-
provement of our anomaly classifier, both in terms of accu-
racy and ability to further pinpoint the nature of a direct
cover (dust, dirt, leaves, etc.). In general, given the rising
popularity of solar panels and the availability of per-panel
data, there is much more solar panel data mining that can
be done. Examples include clustering the power output time
series (and other measurements) to determine similar pan-
els (in terms of performance and/or anomalies), outlier de-
tection, and association rule mining among different panels
(e.g., if there is a shadow on panel x then there will be a
shadow on panel y within 15 minutes).

7. ACKNOWLEDGEMENTS
We would like to thank the Toronto and Region Conser-

vation Authority (TRCA) for giving us a copy of their PV
power output and image data, and we thank Bo Hu for set-
ting up the power output monitoring infrastructure on the
University of Waterloo PV array.

8. REFERENCES
[1] R. W. Andrews, A. Pollard and J. M. Pearce, The

effects of snowfall on solar photovoltaic performance,
Solar Energy 92 (2013): 84-97.

[2] G. Becker, B. Schiebelsberger, W. Weber, An
approach to the impact of snow on the yield of
grid-connected PV systems, in Proc. 21st European
Photovoltaic Solar Energy Conference (EU PVSEC),
2006.

[3] J. R. Caron and B. Littmann, Direct Monitoring of
Energy Lost Due to Soiling on First Solar Modules in
California, IEEE Journal of Photovoltaics 3.1 (2013):
336-340.

[4] C. Deline, Partially shaded operation of a grid-tied
PV system, in Proc. 34th IEEE Photovoltaic
Specialists Conference (PVSC), 2009.

[5] A. Drews, A. C. De Keizer, H. G. Beyer, E. Lorenz, J.
Betcke, W. Van Sark, W. Heydenreich, E. Wiemken,
S. Stettler and P. Toggweiler, Monitoring and remote
failure detection of grid-connected PV systems based
on satellite observations, Solar Energy, 81.4 (2007):
548-564.

[6] M. S. El-Shobokshy and F. M. Hussein, Effect of dust
with different physical properties on the performance
of photovoltaic cells, Solar Energy 51 (1993): 505-511.

[7] D. Frankel, K. Ostrowski and D. Pinner, The
disruptive potential of solar power, MicKinsey
Quarterly, April 2014.

[8] D. Goossens and E. Van Keschaever, Aeolian dust
deposition on photovoltaic solar cells: the effects of
wind velocity and airborne dust concentration on cell
performance, Solar Energy 66.4 (1999): 277-289.

[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.
Reutemann, I. H. Witten, The WEKA Data Mining
Software: An Update, SIGKDD Explorations (2009)
11(1):10-18.

[10] B. Hu, Solar Panel Anomaly Detection and
Classification, University of Waterloo M.Math Thesis,
2012.

[11] J. K. Kaldellis, P. Fragos and M. Kapsali. Systematic
experimental study of the pollution deposition impact
on the energy yield of photovoltaic installations,
Renewable Energy 36.10 (2011): 2717-2724.

[12] J. M. Kuitche, R. Pan and G. TamizhMani,
Investigation of Dominant Failure Mode(s) for
Field-Aged Crystalline Silicon PV Modules Under
Desert Climatic Conditions, IEEE Journal of
Photovoltaics 4.3 (2014): 814-826.

[13] D. H. W. Li, G. H. W. Cheung and J. C. Lam,
Analysis of the operational performance and efficiency
characteristic for photovoltaic system in Hong Kong,
Energy Conversion and Management 46 (2005):
1107-1118.

[14] A. Luque and S. Hegedus, Eds., Handbook of
photovoltaic science and engineering. John Wiley &
Sons, 2011.

[15] M. Mani and R. Pillai, Impact of dust on solar
photovoltaic (PV) performance: research status,
challenges and recommendations, Renewable and
Sustainable Energy Reviews 14 (2010): 3124-3131.

[16] S. Mau and U. Jahn, Performance analysis of
grid-connected PV systems, in Proc. 21st European
Photovoltaic Solar Energy Conference (EU PVSEC),
2006.

[17] T. Oozeki, T. Izawa, K. Otani and K. Kurokawa, An
evaluation method of PV systems, Solar Energy
Materials and Solar Cells, 75.3 (2003):687-695.

[18] L. Powers, J. Newmiller and T. Townsend, Measuring
and modelling the effect of snow on photovoltaic
system performance, in Proc. 35th IEEE Photovoltaic
Specialists Conference (PVSC), 2010.

[19] S. J. Ransome, J. H. Wohlgemuth, S. Poropat and E.
Aguilar, Advanced analysis of PV system performance
using normalised measurement data, in Proc. of 31st
IEEE Photovoltaic Specialists Conference (PVSC),

92

2005.

[20] E. Skoplaki and J. A. Palyvos, On the temperature
dependence of photovoltaic module electrical
performance: A review of efficiency/power
correlations, Solar energy 83.5 (2009): 614-624.

[21] S. Stettler, P. Toggweiler, E. Wiemken, W.
Heydenreich, A. C. de Keizer, W. van Sark, S. Feige,
M. Schneider, G. Heilscher and E. Lorenz, Failure
detection routine for grid-connected PV systems as
part of the PVSAT-2 project, in Proc. 20th European
Photovoltaic Solar Energy Conference (EU PVSEC),
2005.

[22] I. H. Witten, E. Frank and M. A. Hall, Data Mining:
Practical Machine Learning Tools and Techniques, 3rd
ed., Morgan Kaufmann Publishers, 2011.

[23] A. Woyte, J. Nils and R. Belmans, Partial shadowing
of photovoltaic arrays with different system
configurations: literature review and field test results.
Solar Energy 74 (2003): 217-233.

[24] A. Woyte, M. Richter, D. Moser, S. Mau, N. Reich, U.
Jahn, Monitoring of photovoltaic systems: good
practices and systematic analysis, in Proc. 28th
European Photovoltaic Solar Energy Conference (EU
PVSEC), 2013.

[25] J. Zorrilla-Casanova, M. Piliougine, J. Carretero, P.
Bernaola, P. Carpena, L. Mora-Lopez and M.
Sidrach-de-Cardona, Analysis of dust losses in
photovoltaic modules, World Renewable Energy
Congress, 2011

93

What are the Most Important Research Challenges in
Energy Data Management? (panel)

Torben Bach Pedersen
Aalborg University
tbp@cs.aau.dk

ABSTRACT
This panel paper aims at initiating discussion at the
Fourth International Workshop on Energy Data Manage-
ment (EnDM 2015) about what the most important research
challenges within Energy Data Management are. The author
is the panel organizer, extra panelists will be recruited from
the workshop audience.

Keywords
Energy Data Management

1. RESEARCH CHALLENGES
The panel should try to answer (at least) the following ques-
tions:

• What are the research challenges within energy data
management?

• What are their nature (scientific, technical, interdisci-
plinary,..) ?

• Which ones are the most interesting from a scientific
point of view?

• Which ones are the most important from a societal
point of view?

Below, some of the panel organizer’s personal opinions on
these questions are listed.

Research challenges within energy data management are
abundant. Among the important scientific ones are a) the
modeling and management of energy flexibilities, including
more powerful flexibility models as well as scalable tech-
niques for aggregating, scheduling, and disaggregating flex-
ibilities; b) creating open and realistic benchmarks with as-
sociated open datasets; and c) development of robust and

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

effective methods and techniques for predicting and fore-
casting energy consumption and production, as well as their
associated flexibilities, at a very fine-grained level.

Technical research challenges include d) creating commu-
nity-wide agreed-upon common definitions of data and in-
formation concepts, e.g., standardized ontologies specifying
common concepts and e) the standardization of communica-
tion protocols, e.g., for communicating available flexibilities.

Interdisciplinary challenges, which are perhaps the most im-
portant from a societal point of view, include f) the inter-
play between hardcore data management techniques/tools
and user-oriented human-computer interaction concepts to
determine how and at which level of detail to interact with
a smart grid system; and g) realizing the economic potential
in energy data management systems by inventing, imple-
menting, and taking to market new economics-based busi-
ness models and energy taxation schemes that can ensure
the (financial) interest, and thus the participaton, of all the
many involved parties in solving the challenge of using very
high rates of renewable energy in the grid. An example of
such interdisciplinary collaborations is found in the Danish
Totalflex project www.totalflex.dk.

2. PANEL ORGANIZER
Prof. Torben Bach Pedersen is full professor of com-
puter science at Aalborg University, Denmark. He received
his Ph.D. in 2000. His research interests span Big Data
and business intelligence topics such as data warehousing,
multidimensional databases, OLAP, and data mining, with
a focus on non-traditional and complex types of data. He
has published more than 140 peer-reviewed papers on these
topics. He has served as PC Chair for DaWaK 2009+10,
DOLAP 2010, and SSDBM 2014, General Chair for SSTD
2009, and on numerous program committees, including SIG-
MOD, (P)VLDB, ICDE, and EDBT. He has worked on
energy data management since 2007, was involved in the
MIRABEL EU FP7 project on energy data management,
as is now leading the research in the large interdisciplinary
Danish project, TotalFlex.

94

Event Processing, Forecasting and
Decision-Making in the Big Data Era (EPForDM)

Alexander Artikis (NCSR Demokritos),
Antonios Deligiannakis (Technical University of Crete)

95

Challenges from Industrial Data Analytics

Michael May
Siemens AG, Germany

ABSTRACT
Big data applications in industry pose a number of unique
challenges, setting them apart from domains such as con-
sumer analytics in the web. Central for many industrial
applications is time series data generated by often hundreds
or thousands of sensors at a high rate, e.g. by a turbine.
Another important data source are log files generated by
control units in complex technical equipment, e.g. PLCs
(programmable logic controller). This data can be used
for failure statistics, root cause analysis, predictive main-
tenance, or for optimizing the performance during product
design. Especially interesting are use cases that combine
in-situ streaming analytics inside the local devices with cen-
tralized information, e.g. time series data collected from a
whole fleet of wind turbines. In this talk I will describe a
number of SiemensâĂŹ machine learning applications, espe-
cially failure diagnostics at the CERN Large Hadron Col-
lider, self-optimizing wind turbines, and levee monitoring
for Waternet Amsterdam. I will also discuss architectural
challenges for such systems from a Big Data point of view.

Short Bio
Michael May is Head of the Technology Field Business An-
alytics & Monitoring at Siemens Research and Technology
Center, and responsible for ten research groups in Munich,
Vienna, Brasov, St. Petersburg, Princeton, and Berkeley.
He is driving research at Siemens in data analytics and big
data architectures and implements with his teams data an-
alytics solutions across Siemens. Before joining Siemens in
2013, he was Head of the Knowledge Discovery Department
at the Fraunhofer Institute for Intelligent Analysis and In-
formation Systems in Bonn, Germany. In cooperation with
industry he developed Big Data Analytics applications in
sectors ranging from telecommunication, automotive, retail,
logistics to finance and advertising. Michael was responsi-
ble for a number of National and European funded research
projects in the area of Data Mining, Machine Learning, and
Big Data. Between 2002 and 2009 he coordinated two Re-

c©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0

search Networks in Data Mining and Machine Learning at
the European level, and he was local chair of ICML 2005.
He did his PhD on machine discovery of causal relationships
at the Graduate Programme for Cognitive Science at the
University of Hamburg

96

Complex Event Recognition under Uncertainty:
A Short Survey

Elias Alevizos1, Anastasios Skarlatidis1, Alexander Artikis2 1, Georgios Paliouras1

1National Centre for Scientific Research (NCSR) “Demokritos", Greece
2University of Piraeus, Greece

{alevizos.elias, anskarl, a.artikis, paliourg}@iit.demokritos.gr

ABSTRACT
Complex Event Recognition (CER) applications exhibit var-
ious types of uncertainty, ranging from incomplete and er-
roneous data streams to imperfect complex event patterns.
We review CER techniques that handle, to some extent,
uncertainty. We examine both automata-based techniques,
which are the most often, and logic-based ones, which are
less frequently used. A number of limitations are identified
with respect to the employed languages, their probabilistic
models and their performance, as compared to the purely
deterministic cases.

1. INTRODUCTION
Systems for Complex Event Recognition (CER) accept

as input a stream of time-stamped simple, derived events
(SDE)s. A SDE (‘low-level event’) is the result of applying a
computational derivation process to some other event, such
as an event coming from a sensor. Using SDEs as input,
CER systems identify complex events (CE)s of interest—
collections of events that satisfy some pattern. The ‘def-
inition’ of a CE (‘high-level event’) imposes temporal and,
possibly, atemporal constraints on its subevents, i.e. SDEs or
other CEs. For example, consider the recognition of attacks
on computer network nodes, given the TCP/IP messages. A
CER system attempting to detect a DOS attack has to iden-
tify (as one possible scenario) both a forged IP address that
fails to respond and that the rate of requests is unusually
high.

Due to the complex nature of information sources, the in-
put events arriving at a CER system almost always carry a
certain degree of uncertainty and/or ambiguity. Sensor net-
works introduce uncertainty into the system due to reasons
that range from inaccurate measurements through network
local failures to unexpected interference of mediators. The
latter is a new phenomenon that stems from the distribution
of sensor sources. Sensor data may go through multiple me-
diators en route to the CER systems. Such mediators apply
filtering and aggregation mechanisms, most of which are un-

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.
.

known to the system that receives the data. For example, a
road sensor collecting traffic data may calculate the average
speed of cars passing over it within a time period, but this
calculation might not be accurate, it might be corrupted or
it might even fail to reach the CER system, due to some
network failure, unrelated to the sensor. Again, in the traf-
fic management domain, it might not be possible to define
all the possible situations which indicate the occurrence of
an accident. Hence, the uncertainty that is inherent to sen-
sor data is multiplied by the factor of unknown aggregation
and filtering treatments [5]. Even if we assume perfectly ac-
curate sensors, the domain under study might be difficult
or impossible to model precisely, thereby leading to another
type of uncertainty.

Until recently, most CER systems did not make any ef-
fort to handle uncertainty [9]. This need is gradually being
acknowledged and it seems that this might constitute a sig-
nificant line of research and development for CER. Almost
all of the papers presented have appeared after 2008. The
purpose of this paper is to present a short overview of ex-
isting approaches for performing CER under uncertainty.
It should be noted that handling uncertainty in activity
recognition (where SDEs come mainly from video streams
or RFID tracks) is an active research field that has strong
similarities with CER. However, in this short survey we have
chosen to present only those methods that come directly
from the field of CER.

The structure of the paper is as follows: In Section 2 we
discuss the dimensions along which a proposed solution for
handling uncertainty may be evaluated. Section 3 presents
the reviewed approaches, summarizes them in a tabular form
and comments on their limitations. Some open issues and
lines of potential future work are identified in Section 4.

2. EVALUATION DIMENSIONS
We restrict attention to the following types of uncertainty.

First, the rules defining a CE may be imperfect. Second,
the SDE stream may be incomplete and/or include erro-
neous events. Detailed discussions about types and sources
of uncertainty in CER may be found in [4, 22].

We follow the customary division between representation,
inference and learning. In other words, we are interested
in what kind of knowledge a system can encode (represen-
tation), what kind of queries it can answer (inference) and
if/what parameters and models it can learn. However, al-
though learning in general is a very active research area, we
have decided not to include a detailed discussion about the
learning capabilities of the examined approaches in our sur-

97

vey. The reason is quite simple. Almost none of the systems
touches upon this subject. Instead, we draw some conclu-
sions as far as the performance of each system is concerned.

2.1 Representation
Following the terminology of [15], we define an event as

an object in the form of a tuple of data components, signi-
fying an activity and holding certain relationships to other
events by time, causality and aggregation. An event with N
attributes can be represented as

E(Type, ID,Attribute1, . . . , AttributeN, T ime)

where T ime might be a point, in case of an instantaneous
event, or an interval during which the event happens, if it
is durative. In CER, we are interested in detecting patterns
of events among the streams of SDEs. Therefore, we need a
language for expressing such pattern detection rules.

Formalisms for reasoning about events and time have ap-
peared in the past, such as the Event Calculus [6, 14] and
Allen’s Interval Algebra [2,3], and have already been used for
defining event algebras (e.g. in [18]). With the help of the
theory of descriptive complexity, recent work has also iden-
tified those constructs of an event algebra which strike a bal-
ance between expressive power and complexity [27]. Based
on the capabilities of existing CER systems and on related
theoretical work, the following list enumerates those opera-
tions that should be supported by a CER engine:

• Sequence: Two events following each other in time.

• Disjunction: Either of two events occurring, regard-
less of temporal relations. Conjunction (both events
occurring) may be expressed by combining Sequence
and Disjunction.

• Iteration: An event occurring N times in sequence,
where N ≥ 0.

• Negation: Event not occurring at all.

• Selection: Select those events whose attributes satisfy
a set of predicates/relations, temporal or otherwise.

• Projection: Return an event whose attribute values
are a possibly transformed subset of the attribute val-
ues of its sub-events.

• Windowing: Apply pattern for events within a speci-
fied time window.

In a probabilistic setting, uncertain events are assigned an
occurrence probability. More complex models also allow for
probabilities on the attributes of the events as well. Fur-
thermore, the rules for expressing CE definitions may also
be probabilistic. The semantics for the probability space are
usually those of possible worlds. A possible world is one of
the possible SDE streams, as defined by the SDE probabili-
ties. Thus, the probability space is understood as the set of
all the alternative event streams that may have occurred and
the distribution is defined over this set. Event attributes are
usually discrete and the continuous case is outside the scope
of most CER systems.

2.2 Inference
In probabilistic CER, the most basic inference task is to

compute the probability of occurrence of a CE. In other
words, the task is to compute the marginal probabilities of
the CEs, given the SDEs. In some settings, we might also
be interested in performing maximum a posteriori (MAP)
inference, in which the task is to compute the most probable
states of some CEs, given the evidence SDEs stream. A
simple example from the domain of video recognition is the
query in which the user asks about the most probable time
interval during which a certain activity occurs.

Another dimension concerns the ability of a system to per-
form approximate inference. In the literature of statistical
relational learning, it is widely believed that for all but the
simplest cases, exact inference stumbles upon serious per-
formance issues, unless several simplifying assumptions are
made. For this reason, approximate inference is considered
essential. When this capability is present, certain systems
provide answers with confidence intervals and/or the option
of setting a confidence threshold above which an answer may
be accepted.

2.3 Performance
CER systems are usually evaluated for their performance

in terms of throughput, measured as number of events pro-
cessed per second. For some queries, the latency, as mea-
sured by the time required to process an event, is also im-
portant. Less often, the memory footprint is reported. Note
that no standard benchmarks exist, although some work
towards this direction has begun [12, 16, 17]. Reporting
throughput figures is not enough by itself, since there are
multiple factors which can affect performance, such as query
selectivity (see [16] for a list of such factors). When uncer-
tainty is introduced, the complexity of the problem grows
and other performance-affecting factors enter the picture,
such as the option of approximate inference. Moreover, sys-
tems need to be evaluated along another dimension, that of
accuracy.

The issue of accuracy is of critical importance and is not
orthogonal to that of performance. Precision and recall are
the usual measures of accuracy, but neither one of them
may be sufficient by itself. Therefore, a more appropriate
measure would be that of the F-measure, i.e. the harmonic
mean of precision and recall.

3. APPROACHES
Since many of the CER engines employ finite automata,

either deterministic (DFA) or non-deterministic (NFA), it
is not surprising that automata are one of the dominant
approaches for handling uncertainty. Less frequently, logic-
based approaches are preferred. In this section, we present
both of these areas.

We summarize our results in Tables 1 - 3. The columns of
Table 1 correspond to the list of operators presented in Sec-
tion 2.1 and refer to the expressive power of the language em-
ployed. An extra column has been added to indicate whether
a system supports event hierarchies, i.e. the ability to define
CEs at various levels and reuse those intermediate inferred
events in order to infer other higher-level events. In Table 2
we present the probabilistic properties of each method, with
respect to the independence assumptions they make and to
their capacity for assigning probabilities to the input data
(SDEs) and/or the rules for CE definitions. Some systems

98

Language Expressivity

Paper σ π ∧ ∨ ¬ ; * W H Remarks

Kawashima et al [13] X X X X X
Re et al [19] X X X

Chuanfei et al [7] X X X X Not enough details in paper
about σ, π, ∧, ∨, ¬.

Shen et al [20] X X X X X
Wang et al [21] X X X X X X X

Zhang et al [26,27] X X X X X X X X

Cugola et al [10] X X X X X X X
* implicit;
Support for continuous
event attributes.

Wasserkrug et al [23,24,25] X X X X X Explicit time representation

Table 1: Expressive power of CER systems. Columns: σ: selection, π: projection, ∧: conjunction,
∨: disjunction, ¬: negation, ;: sequence, *: iteration, W:windowing, H: hierarchies.

Probabilistic Expressivity

Paper
Data (occur-
rence and/or
attributes)

Rules
Independence
Assumptions Remarks

Kawashima et al [13] Occurrence All events independent

Re et al [19] Both
1st-order Markov for
SDEs (different streams
independent)

Chuanfei et al [7] Occurrence 1st-order Markov with
extensions

Shen et al [20] Both SDEs independent

Wang et al [21] Occurrence
SDEs independent or
Markovian (different
streams independent).

Zhang et al [26,27] Occurrence SDEs independent Probability distribution
on time attribute

Cugola et al [10] Both X

Event attributes inde-
pendent. SDEs indepen-
dent. CEs dependent
only on events immedi-
ately below in hierarchy.

Bayesian Networks

Wasserkrug et al [23,24,25] Both X SDEs independent Bayesian Networks

Table 2: Expressive power of CER systems with respect to their probabilistic properties.

99

Inference

Paper Marginal / MAP Confidence
Thresholds

Approximate Performance Remarks

Kawashima et al [13] Marginal X 0.8-1.1 K events/s with
Kleene+

Re et al [19] Marginal X
> 10 points increase in
accuracy.
100K tuples/s for Ex-
tended Regular Queries.

Chuanfei et al [7] Marginal X 4-8K events/s for pat-
tern lengths 6-2

Shen et al [20] Marginal X

1000K events/s, almost
constant for varying win-
dow size.
1000K-100K events/s for
10-1 alternatives.

Wang et al [21] Marginal X 8K-13K events/s for 2-6
nodes

Distributed

Zhang et al [26,27] Marginal X
Reduction from expo-
nential to close-linear
cost w.r.t to selectivity /
window size

Cugola et al [10] Marginal X 50% overhead

Wasserkrug et al [23,24,25] Marginal X X

CEs within desired con-
fidence interval.
Sub-linear decay of
event rate w.r.t possible
worlds.

Table 3: Inference capabilities of probabilistic CER systems

may allow only uncertainty with respect to the occurrence
of an event, whereas others may allow uncertainty for the
event attributes as well. Finally, Table 3 presents some of
the systems’ properties when performing inference, such as
whether they perform marginal or MAP inference, whether
they give the user the option to set minimum confidence
thresholds and whether they can perform approximate in-
ference. Some comments about their performance are also
included.

3.1 Cayuga
The Lahar system of Re et al [19] constitutes one of the

earliest proposals. It is based on the Cayuga [11] CER en-
gine. The design goal behind the Lahar system is to develop
an efficient inference mechanism for answering queries over
probabilistic SDE streams, i.e. streams whose events are
tagged with a probability value. It is assumed that events
follow a first-order Markov process. The possible queries are
categorized in three different classes. Regular queries are
composed of subgoals which do not share any variables, can
readily be transformed into regular expressions with a cor-
responding automaton and can be evaluated in time linear
to the size of the event stream. Extended regular queries
allow for shared variables which must be present in all of
the subgoals. Therefore, the query can be broken into in-
dependent, regular “ground” queries (by substitution) and
its success probability can be computed by combining the
probabilities of its constituent “ground” queries. Finally,
in safe queries, variables might not be shared among all
subgoals. These queries are evaluated by using a version

of the Probabilistic Relational Algebra with a complexity
that is quadratic to the number of timestamps in the SDE
stream. Lahar was tested on object tracking in which per-
sons and objects were equipped with RFID tags and the per-
sons’ paths and/or locations had to be assessed. Significant
improvements in precision and recall were observed against
deterministic approaches, with only a relatively slight over-
head on throughput, which reached hundreds of thousands
of events per second. A method which attempts to over-
come the strict markovian hypothesis and to apply certain
optimizations, such as early pruning, may be found in [7].

3.2 SASE
A simple solution for handling uncertainty with automata

was proposed by Kawashima et al [13], as an extension of the
SASE+ event processing engine [1]. The system builds a de-
terministic automaton for every user query (CE definition)
and detects patterns above a certain confidence threshold
by developing a matching tree as new SDEs arrive until the
time window of the query expires. Branches of the tree below
the given threshold are pruned early for optimization pur-
poses. The SDEs are assumed to be independent (therefore,
probability values are calculated by multiplication) and are
tagged with an occurrence probability. Neither probability
values for the event attributes are allowed nor for the queries
themselves. Throughput values can reach several hundreds
of events per second, but these numbers correspond to exper-
iments with a single query of low complexity – a sequence
operator with equality selection on the attributes and no
shared variables.

100

Another early, NFA-based approach to incorporate uncer-
tainty within an existing CER system is presented in [20]
by Shen et al. This work uses SASE+ as its starting point
and amends it in order to handle probabilistic SDEs. Each
SDE is defined as a set of alternatives, each with its occur-
rence probability, with all alternatives summing to a prob-
ability value of 1 or less than 1 if non-occurrence is con-
sidered. The probability space is therefore defined over the
possible worlds, as determined by the different (mutually
exclusive) alternatives of the SDEs. The CE definitions are
encoded as NFAs, but, in order to avoid enumerating all
possible worlds, a special data structure, called Active In-
stance Graph, is used. The Active Instance Graph is a Di-
rected Acyclic Graph connecting events with previous can-
didate events, i.e. whose possible occurrence may lead to
the recognition of the CE. By backward-traversing the AIG,
the sequence(s) that satisfy the CE definition may be re-
trieved and this structure also allows for dynamic filtering of
events when other constraints (besides temporal sequence)
are present. Finally, each event is associated with its lin-
eage, i.e. a function which captures “where the event came
from”, used for computing its probability.

Inspired yet again by SASE, the work recently proposed
by Wang et al [21] attempts to address two important is-
sues. The first, related to previous NFA-based methods,
concerns their inability to express CE hierarchies. The sec-
ond is a performance issue and, this work is the first one
which develops a CER system which is both probabilistic
and distributed. The CE recognition process depends on
a data structure, called Active Instance Stack, which is an
optimized version of the already mentioned Active Instance
Graph. Probabilities may be assigned only to events and
refer to occurrences (neither probabilities for CE definitions
nor for event attributes are allowed). Events are also as-
sumed to be either independent or to follow a first-order
Markov process. A data partitioning scheme is used in or-
der to distribute different parts of the streams to different
nodes and the local results are later combined to produce
a global result. Finally, CE hierarchies may be constructed
by having different event processing agents producing differ-
ent CE types and connecting them through channels (agents
are pattern matching components which can be connected
to form an event processing network).

In most of the automata-based methods (with the excep-
tion of [10], presented in Section 3.3), uncertainty concerns
the occurrence of the event itself as a whole, but the event
attributes, including timestamps, are certain. In Zhang
et al [26], the issue of imprecise timestamps is addressed,
while all the other attributes have crisp values. Due to
sensors’ sensitivity or time granularity differences between
event sources, timestamps are assumed to follow a proba-
bility distribution (usually uniform). Each event may thus
have several alternative occurrence timestamps and many
possible worlds, i.e. event histories, are available to the
system. The temporal relations between events may dif-
fer among the possible worlds and a CE recognized in one
of them may not be recognized in another. One solution is
to enforce an ordering of the events from all possible worlds
and then leverage an existing CER engine, such as SASE,
for the CE recognition task. However, the authors present
another, more efficient method, which avoids a complete
enumeration of all possible worlds by employing an incre-
mental, three-pass algorithm through the events in order to

construct event matches and their intervals. This method
achieves high throughput but supports only sequence pat-
terns with simple equality/inequality predicates. Moreover,
it was extended in [27] by Zhang et al, which added negation
and Kleene plus and allowed for user-defined predicates.

3.3 CEP2U
A more recent effort extends the TESLA [8] event spec-

ification language with probabilistic modelling, in order to
handle the uncertainty both in input SDEs and in the defi-
nitions of CEs [10]. The semantics of the TESLA language
are formally specified by using a first order logical represen-
tation with temporal constraints that express the length of
time intervals. The CE recognition algorithm however em-
ploys automata. At the input level, the method supports
uncertainty regarding the occurrence of the SDEs, as well
as uncertainty regarding their content. In the former case,
SDEs are associated with probabilities that indicate a degree
of confidence. In the latter case, the attributes of an event
are modelled as random variables with some measurement
error. The probability distribution function of the measure-
ment error is assumed to be known (e.g. Gaussian distri-
bution). Since uncertainty also derives from incomplete or
erroneous assumptions about the environment in which the
system operates, the method also models the uncertainty of
the CE definitions. In particular, the method automatically
builds a Bayesian network for each rule. The probabilistic
parameters of the network are manually estimated by do-
main experts.

3.4 Logic-based methods
Wasserkrug et al [23,24,25] employ the technique of knowl-

edge based model construction (KBMC), whereby knowl-
edge representation is separated from the inference process.
Inference is preformed on a Bayesian network as needed
(when new SDEs arrive), without constructing the whole
network beforehand. Each event is assigned a probability,
denoting how probable it is that the event occurred with spe-
cific values for its attributes. Uncertainty about the value
of a single event attribute may be represented by multi-
ple event instances with different probabilities and with the
same values for all other attributes.

In turn, CE definitions are encoded in a two-fold way,
with a selection operation (mostly based on event type) per-
forming an initial filtering, followed by a pattern-detection
schema for more complex operations, based on temporal re-
lations and attribute equalities. The selection mechanism
imposes certain independence properties on the Bayesian
network. Inferred CEs are conditioned only on selectable
lower-level events, preventing the network from being clut-
tered with many dependency edges. This framework is not
limited to representing only propositional or first order knowl-
edge. It could potentially handle higher-order knowledge,
since this pattern-matching step could, in principle, be de-
fined in any kind of language. However, the system pre-
sented in the evaluation experiments allows only predicates
expressing temporal constraints on event timestamps or equal-
ity relations on event attributes.

Calculation of the probabilities for the inferred CEs is
done by dynamically constructing a Bayesian network upon
every new event arrival. The nodes of the network corre-
spond to SDEs and CEs. First, SDEs are added. Nodes for
CEs are inserted only when a rule defining the CE is sat-

101

isfied, having as parents the events that triggered the rule,
which might be SDEs or even other CEs, in case of hierar-
chical CE definitions. The probability and attribute values
of the inferred CEs are determined by mapping expressions
associated with the corresponding rule. In order to avoid
the cost of exact inference, a form of sampling is followed,
which allows for bypassing the construction of the network
by sampling directly according to the rules for CE defini-
tions.

3.5 Comments
In Table 1 we list the operators supported by each method.

Table 2 presents their probabilistic properties: their inde-
pendence assumptions and the support for data and/or rules
uncertainty. Their properties with respect to inference are
shown in Table 3 (marginal/MAP inference, support for con-
fidence thresholds, approximate inference).

As shown in Table 2, all of the presented approaches have
the ability to represent probabilistic SDEs, where uncer-
tainty may refer to their occurrence or/and the content of
their attributes. However, a feature which is lacking in most
of the methods is the capacity to assign probabilities to rules
expressing CE definitions. In this case, probabilistic graphi-
cal models, with their ability to represent all events as nodes
in a homogeneous manner and encode the direction of cau-
sation, can prove useful. The two methods which allow rule
probabilities, use such a model, namely Bayesian Networks.

The KBMC method of [23, 24, 25] and the CEP2U sys-
tem of [10] allow for both hierarchies and probabilistic rules
(see Table 2). Both of them use Bayesian Networks for in-
ference, with the nodes of the network representing events,
SDEs and CEs. CEP2U was designed from the very begin-
ning with the goal of minimizing the performance overhead
incurred by the introduction of uncertainty. Indeed, the
maximum overhead mentioned in the experiments was al-
most always less than 50%, compared to the deterministic
case. On the other hand, the KBMC technique is still far
from achieving event rates comparable (say, within an or-
der of magnitude) to those of purely deterministic models.
This performance robustness of CEP2U against uncertainty
comes at a price though, since some simplifying assumptions
have to be made. CEP2U constructs only a single Bayesian
Network for each rule (not for each grounding) and a simple
solution is proposed for the problem of propagating proba-
bilities from lower to higher level CEs. Occurrence proba-
bilities of intermediate events are propagated to higher level
events with a value of 1, essentially decomposing the total
probability space into smaller and more manageable spaces.
This means that these Bayesian Networks function more like
look-up tables, hence the much lower cost of inference. The
effects of this simplification on accuracy, however, are un-
clear.

A related issue is that of the independence assumptions
made by each method. Automata-based methods tend to
make a substantial number of simplifying assumptions about
the independence of events or streams, resulting in simpler
probabilistic models The most complex dependency mod-
els employed make the assumption that events may follow
a first-order Markov process, as in [19, 21] (a slightly more
complex model may be found in [7]). In domains charac-

terized mostly by sequential patterns upon homogeneous
streams, this assumption may be sufficient. When multiple
streams with different event types are involved and hierar-
chies of CEs are required, which take into account lower-level
CEs across a time window, more complex dependencies need
to be encoded.

Bayesian Networks offer such a flexibility but they suf-
fer from problems of high inference complexity. In order to
keep the inference cost low, certain simplifications are intro-
duced again. For example, CEP2U assumes that an inferred
CE is the only cause for all of its sub-events (note that, in
CEP2U, the direction of causation is from the higher level to
the lower level events), i.e. one sub-event cannot be used to
define other CEs and it is not possible to have multiple def-
initions for a CE. Although this obviously helps in making
the Bayesian Networks (which can be manually edited by
the user) the assumption of such a strict separation of rule
conditions limits the expressive power of the system (and
would presumably require tedious tuning to correct it).

4. CONCLUSIONS
Our short review of probabilistic CER systems identified

the following limitations: In terms of language expressivity,
the basic drawback of most systems is the absence of support
for constructing hierarchies of CEs. Moreover, most systems
do not support uncertainty in the rules defining CEs. Those
that do support rule uncertainty either make too strong sim-
plifying assumptions, thus possibly limiting accuracy in do-
mains with complex dependencies, or face serious issues of
under-performance, even when approximate inference is em-
ployed. Distributed processing of probabilistic SDE streams
is still at its early stages, with only one method employing
it. Notice also that none of the systems supports MAP in-
ference, a feature which is useful in certain domains (e.g.
in video recognition, where it is sometimes desirable to re-
trieve those time intervals during which it is most likely for
an activity to have occurred). Those issues should act as
indicators for possible directions of future work.

5. ACKNOWLEDGMENTS
This work has been funded by the EU SPEEDD project

(FP7-ICT 619435).

6. REFERENCES
[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.

Efficient pattern matching over event streams. In
SIGMOD Conference, pages 147–160, 2008.

[2] J. F. Allen. Maintaining knowledge about temporal
intervals. Communications of the ACM,
26(11):832–843, 1983.

[3] J. F. Allen. Towards a general theory of action and
time. Artificial Intelligence, 23(2):123–154, July 1984.

[4] A. Artikis, O. Etzion, Z. Feldman, and F. Fournier.
Event processing under uncertainty. In Proceedings of
the 6th ACM International Conference on Distributed
Event-Based Systems, DEBS ’12, pages 32–43, New
York, NY, USA, 2012. ACM.

[5] A. Artikis, M. Weidlich, F. Schnitzler, I. Boutsis,
T. Liebig, N. Piatkowski, C. Bockermann, K. Morik,
V. Kalogeraki, J. Marecek, and others. Heterogeneous
stream processing and crowdsourcing for urban traffic
management. In EDBT, pages 712–723, 2014.

102

[6] I. Cervesato and A. Montanari. A calculus of
macro-events: progress report. In Seventh
International Workshop on Temporal Representation
and Reasoning, 2000. TIME 2000. Proceedings, pages
47–58, 2000.

[7] X. Chuanfei, L. Shukuan, W. Lei, and Q. Jianzhong.
Complex event detection in probabilistic stream. In
Web Conference (APWEB), 2010 12th International
Asia-Pacific, pages 361–363, Apr. 2010.

[8] G. Cugola and A. Margara. TESLA: a formally
defined event specification language. In Proceedings of
Conference on Distributed-Event Based Systems
(DEBS), pages 50–61, 2010.

[9] G. Cugola and A. Margara. Processing flows of
information: From data stream to complex event
processing. ACM Computing Surveys, 44(3), 2011.

[10] G. Cugola, A. Margara, M. Matteucci, and
G. Tamburrelli. Introducing uncertainty in complex
event processing: model, implementation, and
validation. Computing, pages 1–42, 2014.

[11] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and
W. White. Towards expressive publish/subscribe
systems. In Y. Ioannidis, M. H. Scholl, J. W. Schmidt,
F. Matthes, M. Hatzopoulos, K. Boehm, A. Kemper,
T. Grust, and C. Boehm, editors, Advances in
Database Technology - EDBT 2006, number 3896 in
Lecture Notes in Computer Science, pages 627–644.
Springer Berlin Heidelberg, Jan. 2006.

[12] T. Grabs and M. Lu. Measuring performance of
complex event processing systems. In Topics in
Performance Evaluation, Measurement and
Characterization, pages 83–96. Springer, 2012.

[13] H. Kawashima, H. Kitagawa, and X. Li. Complex
event processing over uncertain data streams. In 2010
International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing (3PGCIC), pages
521–526, Nov. 2010.

[14] R. Kowalski and M. Sergot. A logic-based calculus of
events. New Generation Computing, 4(1):67–95, 1986.

[15] D. C. Luckham. The Power of Events: An
Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
2001.

[16] M. R. Mendes, P. Bizarro, and P. Marques. A
performance study of event processing systems. In
Performance Evaluation and Benchmarking, pages
221–236. Springer, 2009.

[17] M. R. Mendes, P. Bizarro, and P. Marques. Towards a
standard event processing benchmark. In Proceedings
of the 4th ACM/SPEC International Conference on
Performance Engineering, ICPE ’13, pages 307–310,
New York, NY, USA, 2013. ACM.

[18] A. Paschke and M. Bichler. Knowledge representation
concepts for automated SLA management. Decision
Support Systems, 46(1):187–205, Dec. 2008.

[19] C. Re, J. Letchner, M. Balazinksa, and D. Suciu.
Event queries on correlated probabilistic streams. In
Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08,
pages 715–728, New York, NY, USA, 2008. ACM.

[20] Z. Shen, H. Kawashima, and H. Kitagawa.

Probabilistic event stream processing with lineage. In
Proc. of Data Engineering Workshop, 2008.

[21] Y. H. Wang, K. Cao, and X. M. Zhang. Complex
event processing over distributed probabilistic event
streams. Computers & Mathematics with Applications,
66(10):1808–1821, Dec. 2013.

[22] S. Wasserkrug, A. Gal, and O. Etzion. A taxonomy
and representation of sources of uncertainty in active
systems. In O. Etzion, T. Kuflik, and A. Motro,
editors, Next Generation Information Technologies
and Systems, number 4032 in Lecture Notes in
Computer Science, pages 174–185. Springer Berlin
Heidelberg, Jan. 2006.

[23] S. Wasserkrug, A. Gal, and O. Etzion. A model for
reasoning with uncertain rules in event composition
systems. arXiv:1207.1427 [cs], July 2012.

[24] S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin.
Complex event processing over uncertain data. In
Proceedings of the second international conference on
Distributed event-based systems, pages 253–264. ACM,
2008.

[25] S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin.
Efficient processing of uncertain events in rule-based
systems. IEEE Transactions on Knowledge and Data
Engineering, 24(1):45–58, Jan. 2012.

[26] H. Zhang, Y. Diao, and N. Immerman. Recognizing
patterns in streams with imprecise timestamps. Proc.
VLDB Endow., 3(1-2):244–255, Sept. 2010.

[27] H. Zhang, Y. Diao, and N. Immerman. On complexity
and optimization of expensive queries in complex
event processing. pages 217–228. ACM Press, 2014.

103

Extending Event-Driven Architecture for Proactive
Systems

Fabiana Fournier
IBM Research – Haifa

Haifa University Campus
Haifa 3498825, Israel

+972 4 8296489
fabiana@il.ibm.com

Alexander Kofman
IBM Research – Haifa

Haifa University Campus
Haifa 3498825, Israel

+972 4 8281055
kofman@il.ibm.com

Inna Skarbovsky
IBM Research – Haifa

Haifa University Campus
Haifa 3498825, Israel

+972 4 8281330
inna@il.ibm.com

Anastasios Skarlatidis
Institute of Informatics and

Telecommunications, NCSR
“Demokritos”

Athens 15310, Greece

+30 210 6503217

anskarl@iit.demokritos.gr

ABSTRACT

Proactive Event-Driven Computing is a new paradigm, in which a

decision is not made due to explicit users' requests nor is it made

as a response to past events. Rather, the decision is autonomously

triggered by forecasting future states. Proactive event-driven

computing requires a departure from current event-driven

architectures to ones capable of handling uncertainty and future

events, and real-time decision making. We present a proactive

event-driven architecture for Scalable Proactive Event-Driven

Decision-making (SPEEDD), which combines these capabilities.

The proposed architecture is composed of three main components:

complex event processing, real-time decision making, and

visualization. This architecture is instantiated by a real use case

from the traffic management domain. In the future, the results of

actual implementations of the use case will help us revise and

refine the proposed architecture.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: General – System

architectures; D.4.8 [Operating Systems]: Performance -

Modeling and prediction; G.3 [Mathematics of Computing]:

Probability and Statistics - Distribution functions, Time series

analysis; H.1.2 [Models and Principles]: User/Machine Systems

– Human factors; I.2.3 [Artificial Intelligence]: Deduction and

Theorem Proving - Uncertainty, fuzzy, and probabilistic

reasoning.

General Terms

Performance, Design, Human Factors

Keywords

Proactive computing, event-driven, real-time optimization,

forecasting, uncertain and future events, visualization.

1. INTRODUCTION
Proactive Event-Driven Computing is a new paradigm

(‎[6],‎[7], ‎[9]), where a decision is neither made due to explicit

users' requests nor as a response to past events, but is

autonomously triggered by forecasting future states, either desired

or undesired. The decisions and actions are often real-time in the

sense that they are done under time constraints and require the

exploitation of large amounts of historical and streaming data. The

underlying motivation of proactive computing stems from social

and economic factors, and is based on the fact that prevention is

often more effective than cure.

Achieving this vision requires novel research in three different

directions:

Dealing with large quantities of data. Massive volumes of

historical data and massive streaming data have to be analyzed to

forecast events. Most systems are not capable of handling big

data in real-time because of scalability problems, the need to

cleanse noisy data offline, or the difficulty in fusing different

types of data coming from different sources online. The result is

that most analyses are done on offline data, while online data is

not leveraged for immediate operational decisions.

Extending the state-of-the-art in event processing to deal with

future events and uncertainty due to incomplete and noisy

streaming data ‎[1]. The ability to process past events and forecast

future ones makes proactive systems a compelling application

area. But, the uncertain nature of future events requires a major

leap in event processing systems.

Devising methods for making near-optimal decision within time

constraints. The decision about which is the best action to take in

proactive computing has two properties that differ from most

contemporary decision support systems: (1) the decision should be

taken on-line and under real-time constraints, which may dictate

the use of approximation techniques and (2) The decision often

entails autonomic actions, rather than providing only

recommendations for human decision makers.

A proactive-driven architecture should satisfy the requirements

above and provide an integrated platform that combines advanced

event processing with dynamic forecasting capabilities leveraged

towards online optimisation and decision-making. The proposed

architecture presented in this paper, an outcome of the SPEEDD

(Scalable ProactivE Event-Driven Decision making) project1,

exactly addresses this.

This paper is organized as follows: Section ‎2 briefly introduces

the traffic management use case that will illustrate our proposed

architecture. Section ‎3 presents a general overview of a proactive

event-driven architecture, while Section ‎4 details the SPEEDD

proactive event-driven architecture. We survey some related work

in Section ‎5. We conclude the paper in Section ‎6.

2. ILLUSTRATIVE EXAMPLE
Proactive traffic management concerns the south ring of

Grenoble, which is the main West to East artery around the city in

France and a primary source for traffic congestion. The goal

within this use case is to forecast traffic congestion before it

1 http://speedd-project.eu

(c) 2015, Copyright is with the authors. Published in the Workshop

Proceedings of the EDBT/ICDT 2015 Joint Conference (March 27,
2015, Brussels, Belgium) on CEUR-WS.org (ISSN 1613-0073).

Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0

104

happens and, as a result, automatically act in order to attenuate it.

This is done by forecasting traffic congestions a few minutes

before they happen, and making decisions within a few seconds of

the forecast about adjustment of traffic light settings and speed

limits.

There are two sources of data in this use case: real data from

sensors and synthetic data generated by a micro-simulator.

The input data (raw events) comes from 130 magnetic wireless

Sensys sensors2 buried in the road along the highway which can

provide individual or aggregated data. Sensors are located in 19

collection points. Each collection point has a sensor per lane (slow

and fast lane) and, where applicable, also has sensors on the

on/off-ramps. Sensors provide data every 15 seconds. Such data

can be either individual (concerning every single vehicle), or

aggregated (over the 15-seconds time span). However, the

individual and aggregated data cannot be collected

simultaneously. Currently, aggregated data is being collected.

The simulator used for generating synthetic traffic data is the

commercial micro-simulator by Aimsun3. The simulator has been

calibrated using real traffic data from Grenoble South Ring.

3. PROACTIVE EVENT-DRIVEN

ARCHITECTURE
Conceptually, we distinguish between the design time and runtime

components.

At the build or design time, proactive applications are developed

using authoring tools either directly by experts or with the help of

learning systems. Visualization tools can be used to analyze the

stored historical data during design time. By using the authoring

and visualization tools, the experts may also annotate the

historical data, in order to provide training examples for the

machine learning algorithms. The products of the design time

activities are event processing definitions and decision making

configurations that will be deployed and executed at the runtime.

The runtime consists of four building blocks or components: event

processing, forecasting, real-time decision making, and

visualization tools. In general, raw events emitted by various

event sources (e.g., traffic sensors) are processed by the complex

event processing (CEP) engine and forecasted events serve for

real-time decision making. The CEP engine processes raw as well

as derived (detected and forecasted) events to detect and forecast

higher-level events, or situations. These serve as triggers for the

decision making component, which uses domain-specific

algorithms to suggest the next best action to resolve or prevent an

undesired situation.

Let’s examine in more details the principles of each building

block in the envisaged architecture:

The first building block required to facilitate proactive event

driven computing is a new kind of event processing component.

Event processing is an approach to software systems that is based

on reaction to events, often under time constraints. It includes

specific logic to filter, transform, or detect complex events and

patterns in events as they occur ‎[8]. The CEP component needs to

be extended to cope with detecting and forecasting derived events

under uncertainty.

2 http://www.sensysnetworks.com

3 http://www.aimsun.com/wp

The second building block facilitates event recognition and

forecasting, that is, identifying events that either have occurred or

are likely to occur in the near future. This is a key enabler of

proactive computing, allowing decision-making to commence

even before an event has been (completely) detected. This

building block continuously refines event recognition and

forecasting given the incoming, possibly noisy, data streams, in

order to improve the recognition accuracy and probability

estimations. Recognition and forecasting exploit models that can

be created by human experts or through goal-driven supervised

learning that exploits offline data available to the organization, or

a combination thereof. A particularly challenging aspect of event

forecasting is the temporal dimension. To facilitate precisely-

informed online decision-making, forecasting should indicate not

only which event will happen and with what probability, but also

when it is expected to happen; more generally, forecasting should

provide a probability distribution over the expected occurrence

time.

The third building block enables the event-based real-time

decision making under uncertainty. In order to realize proactivity

and support autonomous or semi-autonomous decision-making, a

body of tools is required that can exploit the forecast models and

state predictions as a basis for decision-making. These tools will

have to properly consider the nature and degree of uncertainty in

the models’ forecasts when generating decisions.

The forth building block, the visualization component (or

dashboard) supports the human interpretation of decisions made

in runtime. It facilitates decision making process for business

users by providing easily comprehensible visualization of detected

or forecasted situations along with output of the automatic

decision making component – a list of suggested actions to deal

with the situation. The proposed architecture can be run in open,

closed, or hybrid loop mode. In case of the open loop, the user can

approve, reject, or modify the action proposed by the automatic

decision maker. The closed loop operation does not require user’s

approval, the action is performed automatically. A hybrid mode

where some types of actions are taken automatically while other

types require human attention is also supported.

With the quantity of events, the volume of historical data, and the

complexity of applications all growing fast, it is vital that the

proposed architecture also exhibit scalable behavior. Scalability

has several dimensions, including scalability in streaming events,

scalability in volume of historical data, scalability in amount of

data sources and sinks, scalability in amount of processing

elements, and scalability in terms of physical infrastructure.

4. SPEEDD ARCHITECTURE
In the scope of the SPEEDD project a proactive event-driven

architecture has been proposed ‎[10] that follows the conceptual

architecture presented in Section ‎3 and consists of all the building

blocks introduced. In the following sections we describe this

architecture using the traffic management scenario.

4.1 System Requirements
The requirements for the current prototype are derived from the

traffic management use case. The detailed requirements can be

found in ‎[2].

The prototype should provide authoring tools that could be

applied to the historic data in order to derive event pattern

definitions and decision models to be deployed in runtime, as well

as a scalable runtime system capable of detecting and predicting

105

important situations (traffic conditions) and issuing automatic

actions aimed at preventing undesired situations (congestions).

For the traffic management scenario, the projected throughput is

2000 sensor readings per second (computed based on the amount

of sensors and the report frequency, assuming aggregated readings

sent every 15 seconds by each of the 130 Sensys sensors installed

along the Grenoble South Ring).

In terms of integration with external systems the following is

required:

 Replay historic events from text files or a database.

 Receive sensor reading messages generated by the

micro-simulator.

 Provide a mechanism to log output events and actions to

a log for subsequent research.

 Provide a mechanism to connect to the traffic micro-

simulator for updating the simulator configuration –

action simulation.

4.2 SPEEDD Runtime Architecture
The architecture of the runtime part of SPEEDD follows the

Event-Driven Architecture paradigm ‎[12]. This approach

facilitates building loosely coupled highly composable systems, as

well as provides close alignment with the real world problems,

including our representative use case. Every component functions

as an event consumer, or an event producer, or a combination of

both. The event bus plays a central role in facilitating inter-

component communication which is done via events. Figure 1

shows the event-driven architecture for SPEEDD where the

runtime part is represented as a group of loosely-coupled

components interacting through events. The event bus serves as

the communication and integration platform for SPEEDD

runtime.

Input from the operational systems (traffic sensor readings) are

represented as events and injected into the system by posting a

new event message to the event bus. These events are consumed

by the CEP runtime. The derived events representing detected or

forecasted situations that CEP component outputs are posted to

the event bus as well. The decision making module listens to these

events so that the decision making procedure is triggered upon a

new event representing a situation that requires a decision. The

output of the decision making represents the action to be taken to

mitigate or resolve the situation. These actions are posted as

action events. The visualization component consumes events

coming from two sources: the situations (detected as well as

forecasted) and the corresponding actions suggested by the

automatic decision components. Architecturally, there is no

difference between these two – both are events that the dashboard

is ‘subscribed to’, although having different semantics and

presented and handled differently. The user can accept the

suggested action as is, modify the suggested action’s parameters,

or reject it (and even decide upon a different action). In the case

where an action is to be performed, the resulting action will be

sent as a new event to the event bus so that the corresponding

actuators are notified.

Specifically, Figure 2 shows the SPEEDD runtime architecture for

the traffic management use case, including the technology

platforms used to implement the architecture. In the following

subsections we describe the details of the runtime architecture

including the design of each component and its technology

implementation.

4.2.1 Event Bus

The technology chosen for the event bus component is Apache

Kafka ‎[16]. It provides a scalable, performant, and robust

messaging platform that matches SPEEDD requirements. To

implement routing of the events to event consumers we build

upon the topic-based routing mechanism provided by Kafka.

To allow scalable processing of massive stream of messages at

high throughput, Kafka provides the partitioning mechanism.

Every topic can be partitioned into multiple streams that can be

processed in parallel, while every partition can be managed in a

separate machine. There may be more than one replica for every

partition, thus providing resilience in case of failures.

In SPEEDD we exploit Kafka partitioning to build a scalable and

fault-tolerant event bus. The topic that receives the biggest

incoming traffic is speedd-in-events where all the input events are

sent. The decision about the partitioning mechanism to use is use-

case specific as we want to achieve nearly uniform distribution of

load over different partitions. Below, we describe the partitioning

approach for our use case, providing the rationale for the design

decisions. It is important to mention, though, that we may change

the final partitioning mechanism based on the performance

experiments on real and simulated data. We will be able to do that

at any stage of the project development, thanks to the highly

extensible and customizable partitioning framework that Kafka

provides.

Figure 1. SPEEDD Event-Driven Architecture

106

Figure 2. SPEEDD Runtime Event-Driven Architecture (Traffic Use Case)

4.2.1.1 Partitioning for the Traffic Use Case

Assuming that we get relatively equal amount of events produced

by every sensor, we could partition sensor reading events based

on the sensor id. This should result in uniform distribution of the

messages to partitions, which provides horizontal scalability of

the topic.

4.2.1.2 Ordering of events

Kafka guarantees that the order of events submitted to a topic’s

partition is preserved within same partition – the consumers will

receive them in the same order. However, the order is not

guaranteed across partitions. In our case, this should not be an

issue because the CEP component takes care of the out-of-order

events as long as the delay between the event and its preceding

event that arrives after that event is not too long – this assumption

should be valid with Kafka.

4.2.1.3 Storm-Kafka Integration

SPEEDD event processing and decision making components run

on top of Apache Storm ‎[25], a distributed scalable stream

processing infrastructure.

Integration between Storm streaming platform and our Kafka-

based event bus is done based on the Storm-Kafka-Plus project4.

Storm-Kafka-Plus provides two building blocks. KafkaSpout

listens on a Kafka topic and creates a stream of the tuples.

KafkaBolt posts incoming tuples to a configured topic. There is an

extensible mechanism for serialization and deserialization of

tuples to messages and vice versa.

4.2.2 Event/Data Providers
Event providers provide the input interface of SPEEDD runtime

with the external world. Every event that occurs in the external

4 https://github.com/wurstmeister/storm-kafka-0.8-plus

world that should be taken into account by SPEEDD to detect or

predict an important business situation should be sent to the

speedd-in-events topic on the event bus as a message representing

the event.

As it is illustrated in Figure 2, events for the traffic use case may

come from traffic sensors (magnetic wireless Sensys sensors

buried in the road), micro-simulator (synthetically generated

data), as well as historic data (collected data from sensors).

To enable processing of events generated by any of the above

sources, a connector should be developed. The connector uses

source-specific integration mechanism to read the data from the

event sources and send them to SPEEDD event bus using Kafka

producer API.

We define three connector types corresponding to the types of the

event sources, that is, file-reader (replay past events from a file)

sensor, and micro-simulator connectors.

4.2.3 Action Consumption – Actuators/Connectors
The outcomes of SPEEDD are actions that should be applied in

the operational environment to resolve a problem or prevent a

potential problem. According to the event-driven architecture

principles, actions are represented as outbound events and are

available to every interested party to receive and process them.

The actuators connectors are interface points in SPEEDD

architecture responsible for listening to the speedd-actions-

confirmed topic for new actions and connect to operational

systems to execute respective operations.

As it is not planned to connect SPEEDD prototype to the traffic

operational systems running in production mode, the

detectdecideact loop will be implemented and tested using

the AIMSUN micro-simulator ‎[2]. The traffic actuator connector

will listen to the outbound action events (speedd-actions-

confirmed topic on the event bus) and execute operations

supported by the micro-simulator, e.g., update speed limits, set

ramp metering rates, etc. The integration with the event bus for

actuators is based on the Kafka consumer API.

107

4.2.4 Complex event processing component
The main role of the CEP component is to detect events and

derive situations to feed the decision module, so proactive actions

can be taken. To this end, the CEP component needs to deal with

uncertainty in the input, as well as the output events.

We use the IBM Proactive Technology Online (Proton) research

asset as the CEP engine in SPEEDD. This engine has been

released as open source as an outcome of the FI-WARE project5

and it is extended to cope with predictive capabilities in the scope

of the SPEEDD project.

Proton receives raw events, and by applying patterns defined

within a context on those events (we follow the terminology

in ‎[8]), computes and emits situations (derived events emitted to

consumers). Proton is platform-independent, as it is implemented

in Java. The architecture is modular and consists of the following

components:

Adapters – communication of Proton with external systems

Parallelizing agent-context queues – for parallelization of

processing of single event instance, participating in multiple

patterns/contexts, and parallelization of processing among

multiple event instances.

Context service – for managing of context’s lifecycle – initiation

of new context partitions, termination of partitions based on

events/timers, segmenting incoming events into context groups

which should be processed together.

EPA manager – for managing Event Processing Agent (EPA)

instances per context partition, managing its state, pattern

matching, and event derivation based on that state.

SPEEDD will take advantage of the adaptation of the standalone

architecture of Proton to a distributed architecture done in the

scope of the FERARI FP7 EU project6, and will apply the Proton

on Storm version of the engine. It is important to note that, while

Storm offers an open programming model so developers can add

the logic to address complex event driven applications, the

resulting implementation is custom to a single application and not

a generic re-usable solution. Furthermore, the inclusion of

uncertainty requires additional specific coding to deal with. In the

architecture proposed, we make use of a generic event processing

system that provides the necessary building blocks to build

generic event driven applications with the presence of uncertainty.

The Proton architecture on top of Storm preserves the same

logical components as are present in the standalone architecture:

the queues, the context service and the EPA manager, which

constitutes the heart of the event processing system. However the

orchestration of the flow between the components is a bit

different, and utilizes existing Storm primitives for streaming the

events to/from external systems, and for segmenting the event

stream.

4.2.5 Decision making component
As aforementioned, the aim of the real-time decision making

building block is to provide a body of proactive event-driven

decision-making tools, which exploit the detected or forecasted

events of the CEP. The Decision Making (DM) module receives

as inputs the detected, derived, and forecasted events and emits

control actions or appropriate suggestions. Therefore, it functions

5 https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/

index.php/FI-WARE_Architecture

6 http://www.ferari-project.eu

both as an event consumer and as an event producer at the same

time.

In this sense, decision making is the task of finding the optimal

response to a specific situation, which is described by the detected

or forecasted events. It is naturally represented as a parametric

optimization problem. The main task of decision making is to

solve this optimization problem, which can be accomplished in

two conceptually different ways:

The parametric optimization problem is solved offline such that

an explicit solution is obtained. Note that this is a “difficult" task,

since an optimal answer to any situation that might arise during

operation needs to be computed. If such an explicit solution can

be obtained, it takes the form of a feedback rule, e.g. a linear

controller K(s) or state feedback - K*x. Therefore, it can be

efficiently implemented in a unified architecture using the existing

SPEEDD components (e.g., as a Storm Bolt).

The construction of an explicit solution may be computationally

intractable for certain problems. In such a case, the solution to

multiple distinct instances of the optimization problem needs to be

computed at runtime. In contrast to the first case, in which only

the evaluation of a feedback rule is required, the algorithmic

solution of an optimization problem is not trivial and it is not

tractable to solve such a problem within the stream processing

environment adopted in SPEEDD (Storm). We, therefore, assume

the existence of a use-case specific “optimization black-box”

outside the actual SPEEDD framework, which can be queried

whenever such a decision is required.

In our illustrative example of freeway ramp-metering (regulating

the traffic inflow on a freeway in order to maximize throughput),

a low-level ramp metering controller receives measurements of

the local traffic density and the local traffic flows, as well as

notifications about detected or predicted congestion queues. It

then emits a recommendation to change the ramp metering rates

accordingly. For a network of interaction freeways, a network-

wide planning algorithm can be used for coordination purposes,

implemented as an external oracle that can be queried.

Since a road network is naturally a spatially distributed system,

the architecture of the decision-making module reflects this

structure. Specifically, the module is directly and efficiently

implemented as Storm bolts in a distributed manner. Preliminary

theoretical results suggest that such local controllers may perform

asymptotically optimal with regard to flow maximization for a

single freeway; however, coordination is required to achieve

optimal operation of more complex road networks. Network-wide

planning can be superimposed by querying an external black-box.

4.2.6 Dashboard component
As aforementioned, the proposed event-driven architecture can be

run in an open, closed, or hybrid loop mode. In the traffic

management use case we only deal with open or hybrid modes,

i.e., we don’t have fully automatic actuators for the decisions. The

closed mode implies connecting the SPEEDD prototype to the

actual production systems and, therefore, out of the scope of the

project.

In our current scenario, operators interact with the outputs of the

SPEEDD modules through a User Interface (UI). The Dashboard

Client communicates, via the Dashboard Server, with the

composite systems in the SPEEDD architecture. Operators can

accept, respond to, or make suggestions and control actions.

Actions taken by operators via the UI are fed back into the

SPEEDD runtime as events, thus allowing for the seamless

108

integration of expert knowledge and the outputs of complex

algorithms.

The Dashboard Server component is based on Node.js ‎[24]

asynchronous programming framework. The server functions as a

Kafka consumer and producer. The consumer listens for

broadcasted messages in the Event Bus under the following

topics: speedd-out-events and speedd-actions. The producer

broadcasts messages under the topic speedd-actions-confirmed

(see section ‎4.2.1)

The Dashboard Client is designed to provide the user with a clear

picture of the current state of the world. It achieves the picture of

the current state by aggregating sensor readings in human

readable form, current states of the control equipment available

(e.g., speed limit signs, message signs, lanes), current events

identified by the CEP module, and displays of the automated

control events produced by the DM unit (e.g., ramp metering

rates). Furthermore, it aims to support the decision-maker by

highlighting events which might require attention along with

corresponding suggested mitigating strategies.

4.3 SPEEDD Design Time Architecture
In general, there exist two methods to define the rule patterns for a

CEP application: machine learning and experts. In the first, the

patterns are learnt automatically by a computer program, while in

the second, they are given by an external entity; usually a subject

expert matter specialized in the domain. It is also possible to

combine between these two methods.

Historic data used at design time contains raw events reported

during the observed period along with annotations provided by

domain experts. These annotations mark important situations that

have been observed in the past and should be detected

automatically in the future. Domain experts can apply tools and

methodologies provided by SPEEDD authoring toolkit to extract

derived event definitions from the annotated event history. This is

a semi-automatic process involving applying machine learning

tools to extract initial set of patterns, then further enhanced and

translated with help of the domain experts into deployable CEP

artefacts.

Due to the dynamic nature of the proactive traffic management

application, the knowledge base of event pattern definitions may

require to be refined or enhanced with new ones. Manual creation

of event definitions is often a tedious and cumbersome process,

thus we employ machine learning techniques to semi-

automatically create event pattern definitions by analyzing

historical data.

We employ the Probabilistic Event Calculus ‎[23] that combines

temporal logic-based formalization with probabilistic modelling.

The logic-based representation allows to compactly define

relations between events and incorporate existing domain

knowledge, while probabilistic modelling allows to naturally

handle uncertainty. For the implementation of the machine

learning algorithms, we extend the open-source framework

LoMRF7 with state-of-the-art scalable probabilistic inference and

incremental learning methods ‎[14]. LoMRF is developed in

Scala8, which compiles to Java bytecode and thus works

seamlessly with any other Java-based framework.

7 https://github.com/anskarl/LoMRF

8 http://www.scala-lang.org

Additionally, for scalability LoMRF employs the high-

performance parallel processing framework of Akka Actors9.

The resulting output of the machine learning algorithms is

composed of a set of text-formatted files that contain the event

pattern definitions. Thereafter, the resulting rules are parsed by

the "rtec2proton" translator and converted semi-automatically to

JSON formatted Proton EPN definitions. All EPN definitions are

then reviewed and manually refined by domain experts using

Proton's authoring tool. The output of this process is a JSON file

containing the EPN definition.

5. RELATED WORK
Proactive applications have been developed in an ad-hoc manner

for several years; some examples include proactive security

systems ‎[5], proactive routing in mobile ad-hoc wireless ‎[17],

proactive network management with failure handling ‎[11],

proactive service level agreement negotiation in service oriented

systems ‎‎[18], proactive caching ‎‎[15], and proactive management

in logistic processes ‎‎[19] and ‎[9]. However, the lack of a generic

paradigm to develop proactive event-driven applications makes it

difficult for this capability to spread.

One of the main ingredients for proactive event driven computing

is the ability to deal with uncertainty in the events. Despite

uncertainty handling has been recognized as one of the most

critical and relevant aspects in the area of CEP, it still remains an

open issue ‎[1]. Only a few solutions have been proposed, and

most of them are tailored to a specific application domain ‎[4].

Examples of previous works can be found

in ‎[4], ‎[20], ‎[22], ‎[26], ‎[27] and ‎[28]. Existing CEP approaches

examine three major types of uncertainty that may be present in

the events that are fed in a CEP system: uncertainty in event

content, in the event occurrence, and in the rules. Our CEP

component must support these three types. Furthermore, learning

event rules in the presence of uncertainty is also an open research

area ‎[1].

In terms of real-time optimization techniques, the state-of-the-art

is that optimization techniques are being activated mostly off-line

and use a variety of optimization methods that fit different

assumptions: robust (worst-case) optimization, stochastic

optimization, and optimization methods based on black-box

models (e.g., ‎[3], ‎[13] and ‎[21]). Our main challenge is to develop

real-time proactive planning tools for proactive applications using

these optimization methods within an event-based planning

framework.

6. SUMMARY AND FUTURE WORK
Event-driven architecture is a software architecture pattern

promoting the production, detection, consumption of, and reaction

to events. We describe how we extended this architecture from

being reactive to proactive, by incorporating capabilities for

forecasting and real-time decision making.

The proposed architecture is instantiated by a real use case from

the traffic management domain. Although driven by the use case

requirements in the SPEEDD project, the proposed architecture is

generic and can be applied to any domain that requires proactive

event-driven computing.

We are currently working on a first implementation of the use

case based on the proposed architecture. Future work includes

integration of offline historic data and online streaming data as

9 http://akka.io

109

well as refinements to the proposed architecture as result of the

implementation.

7. ACKNOWLEDGMENTS
The research leading to these results has received funding from

the European Union's Seventh Framework Programme FP7/2007-

2013 under grant agreement 619435 (SPEEDD).

8. REFERENCES
[1] Artikis A., Etzion O., Feldman Z., and Fournier F. 2012.

Event Processing under Uncertainty. In Proceedings of the

sixth ACM conference on Distributed Event-Based Systems

(DEBS’12).

[2] Baber C., Bellicot I., Canudas de Wit C., Cooke N., Garin

F., Grandinetti P., Hempel A., Kibangou A., Morbidi F., and

Schmitt. M. User requirements and scenario definition.

Accessible at http://www.speedd-project.eu/sites/default/

files/D8.1-UserRequirements_final.pdf

[3] Ben-Tal, A., Boyd, S., and Nemirovski. A. 2006. Extending

Scope of Robust Optimization: Comprehensive Robust

Counterparts of Uncertain Problems. Mathematical

Programming, 107:1-2, 63-89.

[4] Cugola G., Margara A., Matteucci M., and Tamburrelli G.

2014. Introducing uncertainty in complex event processing:

model, implementation, and validation. Computing 1–42.

[5] Dolev S., Kopeetsky M., and Shamir A. 2011. RFID

Authentication Efficient Proactive Information Security

within Computational Security. Theory of Computing

Systems, 1-18.

[6] Engel Y., Etzion O., and Feldman Z. 2012. A Basic Model

for Proactive Event-Driven Computing. In Proceedings of

the sixth ACM conference on Distributed Event Based

Systems (DEBS’12).

[7] Engel Y. and Etzion O. 2011. Towards proactive event-

driven computing. In Proceedings of the fifth ACM

conference on Distributed Event Based systems (DEBS’11).

[8] Etzion O. and Niblett P. 2010. Event Processing in Action.

Manning Publication.

[9] Feldman Z., Fournier F., Franklin R., and Metzger A. 2013.

Proactive event processing in action: A case study on the

proactive management of transport processes, in Proceedings

of the Seventh ACM International Conference on Distributed

Event-Based Systems (DEBS’13).

[10] Fournier F., Kofman A., Morar N., Schmitt M., Skarbovsky

I., and Skarlatidis A. 2014. The Architecture Design of the

SPEEDD Prototype. Accessible at http://www.speedd-

project.eu/sites/default/files/D6.1-

Architecture_Design_of_SPEEDD_Prototype-v1.0a.pdf

[11] Fu S. and Xu C.Z. 2007. Exploring event correlation for

failure prediction in coalitions of clusters. In Proceedings of

the 2007 ACM/IEEE Conference on Supercomputing

(SC’07), 1-12.

[12] Hohpe G. Programming without a call stack – Event-driven

Architecture. 2006, [Online], at:

http://www.eaipatterns.com/docs/EDA.pdf

[13] Hokayem P., Chinquemani E., Chaterjee D., Ramponi F., and

Lygeros J. 2012. Stochastic receding horizon control with

output feedback and bounded controls. Journal Automatica,

48, 1, 77-88.

[14] Huynh, T. N., & Mooney, R. J. 2011. Online structure

learning for markov logic networks. In Machine Learning

and Knowledge Discovery in Databases, 81-96.

[15] Kohler M. and Fies R. 2009. ProActive Caching-A

Framework for Performance Optimized Access Control

Evaluations. In Proceedings of IEEE International

Symposium on Policies for Distributed Systems and

Networks (POLICY 2009).

[16] Kreps, J., Narkhede N., and Rao J. 2011. Kafka: A

distributed messaging system for log processing. In

Proceedings of the 6th International Workshop on

Networking Meets Databases (NetDB).

[17] Kunz T. and Alhalimi R. 2010. Energy-efficient proactive

routing in MANET: Energy metrics accuracy. Ad Hoc

Networks, 8(7), 755-766.

[18] Mahbub K. and Spanoudakis G. 2010. Proactive SLA

Negotiation for Service Based Systems. In Proceedings of

the 6th World Congress on Services (SERVICES-1).

[19] Metzger A., Franklin R., and Engel Y. 2012. Predictive

monitoring of heterogeneous service-oriented business

networks: The transport and logistics case. In Proceedings of

the Annual SRII Global Conference (SRII), 313-322.

[20] Ré C., Letchner J., Balazinksa M., and Suciu D. 2008. Event

queries on correlated probabilistic streams. In Proceedings of

the 2008 ACM SIGMOD International Conference on

Management of Data (SIGMOD ’08), 715–728.

[21] Shapiro, A. 2008. Stochastic programming approach to

optimization under uncertainty. Mathematical Programming,

112.

[22] Shen Z., Kawashima H., and Kitagama H. 2008. Probabilistic

event stream processing with lineage. In Proceedings of Data

Engineering Workshop (DEWS’ 08).

[23] Skarlatidis A., Paliouras G., Artikis A. and Vouros G. 2014.

Probabilistic Event Calculus for Event Recognition. ACM

Transactions on Computational Logic (TOCL), to appear.

[24] Tilkov S. and Vinoski S. 2010. Node.js: Using JavaScript to

Build High-Performance Network Programs. IEEE Internet

Computing 14(6), 80-83.

[25] Toshniwal, A., Taneja S., Shukla A., Ramasamy K., Patel J.

M., Kulkarni S., Jackson J., et al. 2014. Storm@twitter. In

Proceeding of the 2014 ACM SIGMOD international

conference on Management of data (SIGMOD '14), 147-156

[26] Wasserkrug S, Gal A., Etzion O., and Turchin Y. 2012.

Efficient processing of uncertain events in rule-based

systems. IEEE Transactions on Knowledge and Data

Engineering, 24(1), 45–58.

[27] Wasserkrug S., Gal A., Etzion O., and Turchin Y. 2008.

Complex event processing over uncertain data. In

Proceedings of the Second ACM conference on Distributed

Event-Based Systems (DEBS ’08), 253–264.

[28] Zhang H., Diao Y., and Immerman N. 2010. Recognizing

patterns in streams with imprecise timestamps. Proc. VLDB

Endowment, 3(1-2), 244–255.

110

Towards Flexible Event Processing in Distributed Data
Streams ∗

Sebastian Bothe
Fraunhofer IAIS

sebastian.bothe@ iais.fraunhofer.de

Vasiliki Manikaki
Technical University of Crete
manikaki@softnet.tuc.gr

Antonios Deligiannakis
Technical University of Crete

adeli@softnet.tuc.gr

Michael Mock
Fraunhofer IAIS

michael.mock@ iais.fraunhofer.de

ABSTRACT
The FERARI project aims to develop a highly scalable dis-
tributed streaming architecture supporting complex event
processing in a communication-efficient manner. Two key
requirements for our system are that its architecture is not
tied to the underlying streaming platform used in its imple-
mentation and that it allows the easy definition of commu-
nication-efficient methods for monitoring a global condition
over a distributed set of states. In this paper we present
the architecture of our system and explain how these key re-
quirements are met. Concerning the actual implementation
of our system in a scalable distributed streaming platform,
it is reasonable not to re-invent the wheel but to use one
of the actual Big Data Streaming platforms as a starting
point. For this reason, we evaluate some popular platforms
and discuss whether they meet our requirements.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

1. INTRODUCTION
In recent years, an area with great future potential for Big
Data is machine-to-machine interaction (M2M), and the In-
ternet of Things. Examples of relevant applications include
smart energy grids, car-to-car communication, mobile net-
work quality monitoring, optimizing operation of large and
complex systems, fault detection in clouds, automated nego-
tiation systems – all these have been identified as important
hot use cases for Big Data.

∗(c) 2015, Copyright is with the authors. Published in
the Workshop Proceedings of the EDBT/ICDT 2015 Joint
Conference (March 27, 2015, Brussels, Belgium) on CEUR-
WS.org (ISSN 1613-0073). Distribution of this paper is per-
mitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0

Current Big Data technologies, developed for systems that
process and analyze human generated data such streams,
managing social networks at Facebook, or indexing web pages
at Google, seem inadequate for processing of such M2M ap-
plications. In order to understand this, note that the data
volumes generated from M2M interaction surpass by far the
amount of data generated by humans. M2M data is typi-
cally required to be processed in real-time as it is produced,
it is predominantly transient (does not need to be and is too
large to be stored for future reference), and is typically much
more structured in nature than human-generated data.

Due to the sheer size of M2M data, approaches that seek
to centralize this data are not an option, as they (i) would
require enormous infrastructures both for storage, as well as
for the required bandwidth for transmitting this data, (ii)
would impose unnecessary latency due to the data shuffling
possible, and (iii) do not consider the characteristics and
limitations of the data sources of M2M data - sensors are
often the sources of M2M data and constant communication
of sensor readings would quickly drain the energy of sen-
sor nodes. It is thus important to be able to process M2M
data and to detect important events without centralizing
the collected data, but rather doing as much processing and
filtering of the data at the nodes that produce it.

The project Flexible Event pRocessing for big dAta aRchI-
tectures (FERARI) aims at developing a highly scalable dis-
tributed streaming architecture supporting complex event
processing (CEP) in a communication-efficient manner. While
most CEP systems are built on the premise that primitive
events are obtained and transmitted by the remote data
sources based on their own data, a key element of the FER-
ARI architecture will include the development of communi-
cation efficient distributed methods for also detecting events,
expressed over the data of multiple nodes, in a distributed
manner. We consider the important case of complex events
that can be expressed as a monitoring task that alerts when-
ever a complex function, expressed over the data of multi-
ple nodes, has exceeded a threshold. In order to make the
complex event processing feasible, a key component is to
perform in-situ processing at the nodes generating the data,
thus avoiding continuously pushing related data or events
to our CEP engine. A key component that we will utilize
for such distributed monitoring tasks is the recently devel-
oped [10, 11, 12, 13, 8, 7, 9] geometric approach. The details
of this geometric approach are presented in Section 2.

111

We present the general architecture of FERARI and argue
that a flexible CEP system for M2M data should not be
tied to a specific implementation using existing stream pro-
cessing systems as its infrastructure. To develop a generic
architecture, in Section 3 we specify the essential building
blocks that it must contain and then consider which of some
existing big data streaming platforms seems more appropri-
ate for our actual implementation. Given our architecture,
in Section 4 we explain how an important part of this archi-
tecture, namely the distributed detection of events using the
geometric approach, can be developed in an existing open
source platform, such as Apache Storm, and explain how
some distributed monitoring tasks (that may use the geo-
metric approach, or not) fit within our architecture.

2. BASICS - THE GEOMETRIC APPROACH
We now describe in more detail the geometric approach for
function monitoring over a distributed system of n sites.
Figure 1 demonstrates the basic ideas of the geometric ap-
proach that we discuss in this section.

Each site Si maintains a local d-dimensional vector, termed
as the local statistics vector, with the j-th (j = 1 . . . d) ele-
ment of the local statistics vector of Si denoted as ~vj,i. All
sites contain a vector of the same dimensionality (i.e., num-
ber of elements). The global statistics vector ~v is computed
as the average1 amongst all local statistics vectors. Thus,
the j-th component of the global statistics vector, denoted
as ~vj is computed as: ~vj = 1

n

∑n
i=1 ~vj,i.

For the framework to be applicable, any supported monitor-
ing function f : Rd → R must be expressed over the global
statistics vector ~v (thus, over the average of all local statis-
tics vectors). An important feature is the wide applicability
of the geometric approach, as the threshold function can in
general be non-linear. Given a threshold T, the framework
in [10, 11, 12, 13, 8, 7, 9] can safely determine whether
f(~v) > T .

The geometric approach decomposes the monitoring task
into a set of constraints (one per site) that each site can
monitor locally. To achieve this, during the operation of the
algorithm, each site Si maintains (i) the estimate vector ~e,
which is equal to the global statistics vector ~v computed by
the local statistics vectors transmitted by sites at certain
times, and (ii) a delta vector ∆~vi, denoting the difference of
the current local statistics vector from the last local statistic
vector that Si has transmitted. Based on these two quanti-
ties, Si calculates its drift vector ~ui = ~e + ∆~vi. Additional
optimization have been developed in the framework, such as
the ability to balance only a portion of the network in case
of violations. In that case, an additional slack vector needs
to be maintained and added in the calculation of the drift
vector.

The domain space Rd represents the potential locations of
the global statistics vector at any time. Let all points in Rd

where f(~v) <= T be colored by the same color (i.e., white
in Figure 1), while the remaining points be colored by a dif-
ferent color (i.e., green in Figure 1). Because the sites do

1The same framework also applies when the global statis-
tics vector is calculated as a weighted average of the local
statistics vectors.

2
u 3

u 4

Estimate Vector e

Drift Vector u

Global Vector v

v
e

u 1

A
re

a
 w

h
e
re

 f
(v

)
>

 T

u

Figure 1: Local constraints using the Geometric Ap-
proach. Each node constructs a sphere with diame-
ter the drift vector ~u of the node and the estimate
vector ~e. The global statistics vector ~v is guaranteed
to lie in the convex hull of ~e, ~u1, ~u2, ~u3, ~u4. The union
of the local spheres covers the convex hull.

not perform transmissions at each time period, the current
global statistics vector ~v is not known to the sites. How-
ever, what is guaranteed is that ~v will always lie within the
convex hull Conv(~u1, . . . , ~un) of the drift vectors and, thus,
within the convex hull Conv(~e, ~u1, . . . , ~un) of the drift vec-
tors and the estimate vector. Thus, if Conv(~e, ~u1, . . . , ~un)
is monochromatic (i.e., either entirely below/equal to the
threshold, or entirely above to the threshold), then all sites
are certain about the color of the function f(), since this
will coincide with the color of f(~e). Of course, each node
cannot compute Conv(~e, ~u1, . . . , ~un), since it is not aware
of the current drift vectors of other sites. However, an im-
portant observation [11] is that if each site monitors the
sphere B(~e, ~ui) constructed with diameter the estimate vec-
tor and its own drift vector, then the union of these spheres
covers the convex hull. Thus, it suffices for each node to
simply monitor whether its sphere is monochromatic. If all
the spheres are monochromatic, then the convex hull is also
monochromatic and, thus, f(~v) has the same color as f(~e).
Otherwise, nodes transmit their local statistics vectors, and
a new estimate vector is computed and made known to all
nodes.

Using Safe-Zones. The more recent work of [8, 7, 9] sim-
plifies the local tests performed by nodes by having each
node test whether its drift vector [8, 9] or its local statistics
vector [7] lies within a convex region. This test is very effi-
cient and only depends on the complexity of the bounding
convex region. For example, the work in [9] demonstrates
how this convex region can be determined by the intersec-
tion of hyperplanes. In that case, the local test of each node
simply checks that a tested vector lies on the “correct” side
of these hyperplanes.

3. PROPOSED ARCHITECTURE
To build a flexible event processing application, we assemble
an appropriate algorithmic approach and a stream process-
ing platform. The approach we use to create this assembly is

112

Execution Environment
FERARI

Interfaces

Application Algorithm

Native Execution
Engine APIFERARI

Building Blocks

Distribu-
ted State

Communi-
cation

Primitives

FERARI
Templates

Query
Planer

Application

Application Runtime Adaptation

Physical
Sensornet

Distribu-
ted

Online
Learning
Frame-
work

FERARI
CEP
Inte-

gration

Distribu-
ted

Stream
Monito-

ring

Figure 2: FERARI architecture overview.

described in Section 3.1. We show how the application can
be organized such that the application core can be made
independent from the execution environment. Additionally,
several open source projects are working on scalable dis-
tributed streaming platforms. It is therefore reasonable not
to start from the beginning. To identify a good starting
point, we compare the current systems in Section 3.2.

3.1 Architecture Components
We design the FERARI architecture to allow the fast devel-
opment of distributed flexible event processing applications.
To achieve this, it is required that we can create new func-
tionality on the basis of existing ones, and that we can ex-
change parts of the system without affecting other parts. A
common approach in software development for this require-
ment is to decompose the complex system into smaller units,
called components or modules. Each of the components has
clearly defined bounds and a dedicated functionality. Addi-
tionally, the interaction between the components is defined
in terms of interfaces. We use this approach and derive ap-
propriate components and interfaces. An overview of the
proposed FERARI architecture is depicted in Figure 2.

We now describe the components and the decisions, that
lead to our choices. It is important to keep the architecture
as generic as possible, as we need to execute applications in
different runtime environments. As a runtime we consider a
distributed system, that provides the actual execution con-
text for the application. This may be a simulator, a dis-
tributed stream processing framework or even a distributed
physical sensor network. Especially for in-situ processing
there needs to be an adaptation optimized for the applica-
tion’s concrete environment. For that reason, we start the
decomposition of the application by isolating its algorithm
from the application’s part that depends on a specific ex-
ecution environment. The first part we call application al-
gorithm and the latter application runtime adaptation. The
division now makes the application algorithm independent
from the selected runtime platform and can, therefore, be re-
used in different execution environments. This decoupling
from the runtime now raises the demand to define abstract
versions of mechanisms used by our distributed algorithms.

The distributed algorithms in our current set of example
applications need access to communication primitives and
a distributed state. The concrete mechanisms for both de-
pend on the selected runtime adaptation, which is not ac-
cessible by the application algorithm. To enable this access,
we introduce a set of FERARI interfaces. We develop the
FERARI system using an agile process, therefore we cre-
ated the interfaces that we need for the geometric approach.
We want to monitor a global condition over a function, us-
ing the derived local conditions (c.f. Section 2). The local
and global condition are based on a local and a global state
respectively. These two parts of the state are represented
by the interface for distributed state. Additionally, the co-
ordinator needs to send information to the local node and
vice versa. Primitives for sending messages in each of theses
directions are provided by the other interface. The appli-
cation algorithm can now be created using this interfaces.
On side of the application runtime adaptation, we need to
provide the concrete implementation for the mechanism ex-
posed by the interfaces. All of the execution environments
use different types of abstractions, interfaces and nomencla-
ture. Additionally, it is a very demanding task to create
a efficient runtime adaptation for an arbitrary set of possi-
ble applications. Following an agile development principle,
we instead solve the more viable task of creating templates
for common application types. These FERARI templates
allow the re-use of runtime adaptations for different appli-
cations. They can provide a mapping of common patterns
onto the runtime implementation. Beyond this, some appli-
cations may require access to special features of a runtime
system. This may for instance be optimized network oper-
ations. Especially in the case of in situ processing, access
to these features is important to create an efficient runtime
adaptation. Therefore we provide access to these features
by exposing the native API of the execution engine.

It is possible to create applications using just the FERARI
interfaces and a runtime adaptation, and we give an example
for this in Section 4.1. Nevertheless, writing the application
code using these interfaces requires skills in distributed pro-
gramming and especially knowledge about communication
efficient algorithms. Therefore, we plan to provide a set of
ready to use blocks that can be called from the application
code directly, the FERARI Building Blocks. As a first ex-
ample of these blocks, we describe the current status of the
distributed stream monitoring block in Section 4. An out-
look for the other planned blocks is given in our concluding
remarks (Section 5).

3.2 Candidate Streaming Platforms
As we identified in Section 3.1, it is important to decou-
ple the application algorithm and the execution runtime.
We will now focus on candidate platforms within the exist-
ing open source streaming platform implementations. The
FERARI architecture itself will be available under a liberate
open source license, the Apache license. For that reason, we
consider only platform candidates that are compatible with
this license. Since there are a lot of streaming platform can-
didates, we focus on some popular ones, Storm, Trident,
Spark Streaming and Akka. We require a system that can
be scaled to handle the streams of data for huge volume
and high velocity. In current stream processing platforms,
this is achieved by horizontally scaling out, which means

113

additional processing nodes are added to increase the ca-
pacity. An effect of horizontal scaling is that the increased
amount of nodes also increases the probability of nodes fail-
ures. Therefore, the platform needs to provide mechanisms
to deal with system components failing. In Section 2 we ex-
plained how the geometric approach divides the monitoring
task to a local (checking for local violations) and a global
part (synchronization and determining if there is a global
violation/event). These two parts interact with each other
in adaptation cycles. The ability to support such cycles is
a key requirement for the platform that we choose. Addi-
tionally, our application scenarios include monitoring tasks.
In this application area it is important to create immedi-
ate reaction, for instance raise an alarm as soon as possible.
The requirement for the platform is, therefore, that it allows
processing with low latency. Another important aspect of
this application scenario is that potential alarms must not
be omitted. The processing of an input event may either
be guaranteed by the underlying platform (i.e., by ensuring
that messages are not lost), or it may be a concern of the
application. We now evaluate our candidates with respect
to the properties, possibility of adaptation cycles, latency
of processing and guarantees for processing provided by the
platform.

Apache Storm [3] initially was developed at Twitter, got
open-sourced in 2011 and is now an Apache top level project.
Processing in Storm is organized by a graph, the Storm
topology. Input stream data items enter the topology by
spouts and are called tuples in Storm terminology. Each of
these tuples is processed by Storm bolt, one at a time. The
approach of processing a single tuple at a time allows for
low latency processing. A storm bolt can execute arbitrary
Java code, and it emits new tuples as processing results.
These result tuples are then processed by the next bolts
in the topology. A storm topology can contain cycles, and
therefore allows for the adaptation cycles that we need. The
Storm system recovers from node failures, by restarting the
broken processing task at a different place. In case of fail-
ures, all state associated with a crashed tasks is lost. Storm
provides two types of processing guarantees, best effort and
at least once processing semantics. More on Storm’s imple-
mentation can be found in [14].

Trident is not an independent system - it is an abstraction
layer on top of Storm. It extends Storm by introducing
exactly-once execution semantics and a model for consistent
states. To achieve this, it switches from processing each
tuple individually to processing small amounts of tuples, the
mini batches, together. In general, mini batching increases
the time that elapses between the entering of a new tuple
in the system and the result being available. Further, the
processing topology in Trident is required to be a cycle-free
graph, which conflicts with the adaptation loop requirement
that we have.

Another development independent from Storm is the dis-
tributed processing framework Akka [1]. The organization
of the processing units follows the actor model. The actors
interact with each other by message passing and especially
cyclic connections can be constructed. There are no guaran-
tees on delivery or processing of messages - they are handled
at best effort. Each single message is processed individually,

Storm Trident Akka Spark
Cycles yes no yes no
Processing
Guarantees

best effort
and at least
once

exactly
once

best ef-
fort

exactly
once

Processing
Granularity

single tuple mini
batch

single
message

mini
batch

Figure 3: Properties of candidate distributed stream
porcessing platforms

therefore achieving low latency.

Apache Spark Streaming [2] is an extension of the recently
developed Spark processing system. Spark is a batch pro-
cessing system designed for caching intermediate results.
The streaming variant organizes the processing of the stream
in mini batches. Each operation on these batches is guaran-
teed to be performed exactly once. There is no way known
to the authors for constructing loops in the processing op-
erations.

A summary of the supported features of the evaluated plat-
forms is provided in Table 3. Our analysis reveals that Storm
provides most of the features we need for our system. Akka
remains to be an interesting candidate, if the targeted appli-
cation does not require at least once processing guarantees.

4. DISTRIBUTED STREAM MONITORING
We now focus on the important Distributed Stream Mon-
itoring building block and explain how distributed moni-
toring functions can be incorporated in our framework. As
we have mentioned, we are interested in detecting events,
which are emitted when a function, computed over the data
of different distributed nodes, has crossed a specific global
threshold. We give a basic example, counting the number of
distinct items in streams, to show the usage of the FERARI
interfaces in Section 4.1. This basic example does not yet
make use of the geometric approach. Since it is desirable to
allow code reusability for different monitoring functions, we
then present how declared distributed monitored functions
can be implemented using a hierarchy that we define. Our
function hierarchy alleviates the development of many im-
portant details of the geometric method, requiring minimal
new code for each new monitoring function, while at the
same time providing support for both the original geomet-
ric approach, as presented in [10, 11, 12, 13], as well as the
more recent Safe-Zone [8, 7, 9] approach, which improves
upon the original approach. In Section 4.2 we present our
function hierarchy that allows for easily defining and incor-
porating new functions for distributed monitoring. Please
note that both methods presented in Sections 4.1.1. and
4.2.1 do not depend on the underlying execution environ-
ment (i.e., Storm, SPARK etc). We show in Sections 4.1.2
and 4.1.3 respectively, how they can be be mapped to the
FERARI architecture.

4.1 Monitoring Global Threshold with Count
Distinct

4.1.1 Application Algorithm
Counting the number of distinct elements in streams of data
is a common pattern in various types of applications. For

114

Function
+monitoringVariables : FunctionState
+nodeData: NodeState[*]

+F(X:Real[*]): Real
+hasLocalViolation(NodeID:Integer): Boolean
+deleteNode(NodeID:Integer): Boolean
+update(NodeID:Integer,Tuple:Tuple): void

SafeZoneFunction

+safeZones: ConvexRegion[*]

+hasLocalViolation(NodeID:Integer): Boolean
+computeSafeZones(): void

BallFunction

+hasLocalViolation(NodeID:Integer): Boolean

ConvexRegion

+powers: Real[*]
+factors: Real[*]

+hasSafeZoneViolation(estimate:Real[*],drift:Real[*],inequality :String): Boolean

VarianceBall

+F(Real[*]): Real

VarianceSafeZone

+F(Real[*]): Real
+computeSafeZones(): void

FunctionState
+threshold: Real
+inequality: String = (">", "<", ">=", "<=")
+estimate: Real[*]

+setEstimate(newEstimate:Real[*]): void

NodeState
+lsv: Real[*]
+dv: Real[*]
+drift: Real[*]
+lastSent: Real[*]
+lastValues: Tuple[*]
+lsvSise: Integer

+ updateLSV(): void
+update(Tuple): void
+updateLastSent(): void
+updateDV(): void
+setDriftVector(): void

VarianceBNodeState

+updateLsv(): void

VarianceSZNodeState

+updateLsv(): void

Figure 4: Function Class Hierarchy.

instance, in a mobile fraud detection scenario, it is impor-
tant to keep track of the number of different locations a
mobile device is used within a certain period of time. If
a device changes too many times, this could be an indica-
tion of fraudulent usage. Another example for the same
counting pattern, originating from a different scenario is to
determine the popularity of an artist. For instance a ser-
vice like last.fm2 may monitor streams of events, in which
each of the events in a stream corresponds to a user listening
to a song. The popularity of an artist is measured by the
number of distinct users listening to songs of the artist. To
discover artists getting popular, it is relevant to know when
an artists exceeded a certain global threshold, the count of
distinct listeners.

An data sample of such events was collected by the author
of [4] and is now publicly available at the webpage3. We
will use these data and describe, how the pattern of count-
ing distinct elements in streams of data can be instantiated
using the proposed FERARI architecture. There are two
application dependent blocks we need to fill, the application
algorithm and the runtime adaption. Concerning the ap-
plication algorithm, it is common practice in the streaming
scenario to approximate the count of distinct items by ap-
plying sketching techniques. One type of such sketches are
linear sketches, which fit our needs in this example. The
details of the sketching algorithm can be found for instance
in [5]. The sketch is a compact synopsis of our data that can
be communicated more efficiently between the local nodes
and the coordinator. For each artist we maintain a sketch
to count the distinct at each of the distributed processing
units. Such a sketch is communicated with the global co-
ordinator only if it is required, i.e. if the count of distinct
users has increased by some percentage or by a fixed amount.
The coordinator, than also updates it’s global sketch for this

2http://www.last.fm/
3http://www.dtic.upf.edu/~ocelma/
MusicRecommendationDataset/lastfm-1K.html

LocalState CoordinatorState

update update

sendTo
Coordinator(Tuple)

sendToLocal(Tuple)

FERARI Interface

Storm Data Stream

Storm toCoordinator Stream

Storm toLocal Stream

FERARI

LEGEND

Application Algorithm

Read
SpoutData

Source

Local
Bolt

Coordinator
Bolt

STORM Backend
Application Runtime Adaptation

+handleFrom
Coordinator(Tuple)

+handleFromLocal(Tuple)

Figure 5: Interface for application algorithm.

artist appropriately. Additionally, the coordinator detects
whether the global threshold has been crossed. In the case
of a global threshold violation, the coordinator takes appro-
priate actions, for instance raises the information about the
new popular artist and interacts with the local processing
units to make them reset the counters.

4.1.2 Mapping to the FERARI Architecture
This algorithm can now be created using the FERARI in-
terfaces. The local part implements the LocalState inter-
face, with two methods update and handleFromCoordina-

tor. The update method is called on incoming data and
provides new the listen events. HandleFromCoordinatorl

is used to reset the local counters as indicated by the co-
ordinator. Further, increased counts are reported to the
coordinator, via the sendToCoordinator method. For the
global part, the coordinator, the equally named interface
CoordinatorState is implemented. Here, we use the up-
date method to receive the notifications of increased counts.
As already mentioned, the coordinator resets counters in
regular intervals and notifies the local units by the send-

115

ToLocal method. Note that the application algorithm now
is formulated using FERARI interfaces and does not depen-
dend on the runtime. The application algorithm can now be
executed using an appropriate runtime system as proposed
in Section 3. We choose the Storm runtime for our example
and setup the topology as follows:

• A spout inserts the listen events as Storm tuples to the
topology.

• At random choice the tuples reach one of the Local-

Bolts.

• The LocalBolts are connected with the Coordinator-

Bolt by a named channel, a Storm stream. This con-
nection is achieved using a Storm global grouping.
Vice versa, the Coordinator uses another stream to
the LocalBolts, which is translated to a Storm all

grouping in the topology.

The Storm runtime adaption for this example, now maps
sendToLocal and sendToGlobal to emitting tuples on the
dedicated channels for each of the operations. The process-
ing in the LocalBolt decides on basis of the channel name,
if the update method or the handleFromCoordinator is in-
voked. In this example the coordinator only receives tu-
ples containing the updated sketches from the LocalBolts,
therefore the mapping to the processing hook is unique. The
complete view on the FERARI interfaces and the link to the
runtime adaption is given in Figure 5.

We now describe our more general solution to define moni-
toring tasks exploiting the geometric approach.

4.2 Monitoring Global Function Thresholds
4.2.1 Application Algorithm

In Figure 4 we present the function hierarchy that we have
developed in order to facilitate writing of applications that
make use of the geometric approach. The abstract class
Function represents the core elements that the geometric
approach contains. In this class, the abstract method F

must be provided for all developed functions and simply
returns the value of the function, computed over a multi-
dimensional point in the input domain. When an instance
of a function is created, this is done by also specifying two
important parameters: a threshold value and a parameter
inequality, which may obtain one of four possible values
“>”, “<”, “<=”, “>=”. A distributed event is then detected
when the condition f(v) inequality threshold becomes true.
For example, when inequality = ‘‘ >”, an event is detected
when f(v) > threshold. Once an event is detected, it re-
mains valid for the entire time until another global violation
occurs, meaning that the monitored condition has stopped
being true.

In order to minimize the implementation overhead when
adding new monitoring functions, a significant part of the
functionality of the geometric approach has been implemented
in our architecture, either at the most general Function

class, or at the two abstract classes BallFunction and Safe-

ZoneFunction. Starting from most general Function class,
we notice that it contains contains two types of variables.

The monitoringVariables parameter contains information
related to the function input parameters (threshold, in-

equality) and the estimate vector estimate. The nodeData
parameter contains information for one or more nodes. This
is general enough to accommodate implementations over dis-
tributed systems such as Storm, where each processing node
(i.e., bolts in Storm) may receive and process data for mul-
tiple nodes. For each node, we maintain:

• The most recently received data (lastValues variable
in the NodeState class). The addition of this data
is done through the update method. All stored tuples
are accompanied by the corresponding timestamp that
specifies when they were produced.

• The current local statistics vector (lsv) of the node.
This is calculated, if recent data arrives by the FER-
ARI interface update method of the node, through the
abstract method updateLSV. For each new declared
function, this method must be defined in a subclass
of NodeState. The parameter lsvSize specifies the
dimension of the lsv vector.

• Parameters relevant to the geometric approach, such
as the drift vector drift, the delta vector dv from the
last transmission of this node, a vector lastSent con-
taining the last transmitted lsv vector, and the cor-
responding methods that update the values of these
parameters. The transmission is achieved by using the
FERARI interface sendToCoordinator.

Besides the abstract F method that has already been men-
tioned, the class Function also contains some additional
methods. The abstract hasLocalViolation method answers
whether a local violation has occurred using the geometric
approach. In case a violation has occurred, it communicates
using the FERARI interface method sendToCoordinator.
The hasLocalViolation method is defined in a different way
for the two subclasses of Function.

The BallFunction and SafeZoneFunction classes contain
important functionality regarding the detection of events.
The hasLocalViolation method is implemented in both the
BallFunction, as well in the SafeZoneFunction subclasses.
In BallFunction, the way to check for a local violation in a
generic way is performed using a grid of points within the
sphere that each node constructs in order to check for a local
violation. Any function that wants to use the original tech-
nique with the spheres (c.f. Section 2) simply needs to: (i)
Create a subclass of BallFunction that provides the code
for the F method, (ii) Create a subclass of NodeState that
provides the code for the updateLSV method, and (iii) op-
tionally provide a better method for hasLocalViolation if
for the specific function it is simple to compute its maxi-
mum and minimum values within a sphere. If the third step
is omitted, the development of a new function literally re-
quires just a few lines of code and very limited knowledge
on the internals of the geometric approach.

The SafeZoneFunction class inherits the BallFunction class
because we may want to define a function that uses a safe
zone only when the estimate vector lies on one side of the
threshold, while checking for a local violation using the spheres

116

in the other case. In case we want to use a safe zone, this
is determined by the intersection of one or more convex re-
gions (class ConvexRegion). Given the value of lsvSize, and
two vectors factors and powers (having a dimensionality
of lsvSize+1 and lsvSize, respectively) each convex region
is defined as the set of points P that satisfy a multivariate
polynomial of the form:

∑lsvSize
i=1 factors[i] ∗ P [i]factors[i] =

factors[lsvSize]. When developing the code for a function
that uses safe zones, one simply needs to: (i) Create a sub-
class of SafeZoneFunction and provide the code for the F

method, (ii) Create a subclass of NodeState that provides
the code for the updateLSV method, and (iii) Provide the
method computeSafeZones that computes the safe zone to
use whenever the estimate vector is updated. With this hier-
archy, it is now possible to implement monitored conditions
over functions with little implementation effort.

4.2.2 Mapping to the FERARI Architecture
The Storm topology we derived in our basic example in Sec-
tion 4.1, can also be used to instantiate the more powerful
approach of our function hierarchy. As the FERARI inter-
faces are used to express the algorithm, we can map the re-
quired runtime adaption to our Storm topology. New input
data from the monitored streams reach the local nodes by
the update method and are directed to the function we moni-
tor accordingly. Local violations are communicated with the
coordinator by the sendToCoordinator method, which is be-
ing mapped to a global grouping between the LocalBolt

and CoordinatorBolt. In the other direction, the coordi-
nator provides the local nodes with an updated estimate
vector by the method sendToLocal. This is translated on
the Storm topology to an all grouping between the Coor-

dinatorBolt and the LocalBolts. The appropriate calcula-
tions required by the geometric approach, update of lsv, dv
and estimate. are invoked by the handleFromCoordinator

and handleFromLocal respectively. The same Storm, topol-
ogy with LocalBolt, CoordinatorBolt and the connecting
streams can be used, as runitme for the geometric monitor-
ing hierarchy. Therefore, this topology can act as FERARI
runtime adaption template.

5. CONCUSIONS AND FUTURE
DIRECTIONS

In this paper we proposed an architecture for distributed de-
tection and processing of events that allows the separation
of application specific code from runtime dependent code.
This is achieved by the introduction of the FERARI inter-
faces, which allow us to create applications for different exe-
cution environments. We evaluated established open source
distributed streaming platforms, Akka, Spark, Storm and
Trident and found that Storm best suits our requirements
for the distributed monitoring scenario. We demonstrated
how the proposed architecture can be used to implement
an interesting example, monitoring when artists get popu-
lar by analyzing a stream of listen events. Additionally, we
described how the powerful geometric monitoring approach
can be implemented using our architecture while requiring
tiny programming development efforts. Our code, in ad-
vance is public and available on-line 4.

Our future direction is to provide additional FERARI build-

4https://bitbucket.org/sbothe-iais/ferari

ing blocks. Especially, we are interested in including the
distributed online learning framework recently published in
[6]. Another important block we are working on within the
consortium is in providing the capabilities of the PROTON
engine, that is open sourced by our partner IBM 5. Finally,
we work on creating a query planer, that will allow to for-
mulate and dynamically optimize the monitoring task in a
very convenient way.

6. ACKNOWLEDGMENTS
This research has been supported by the EU FP7-ICT-2013-
11 under grant 619491 (FERARI).

7. REFERENCES
[1] Akka, http://akka.io/.

[2] Apache spark,
https://spark.apache.org/streaming/.

[3] Apache storm, http://storm.apache.org/.

[4] O. Celma. Music Recommendation and Discovery in
the Long Tail. Springer, 2010.

[5] G. Cormode, M. Garofalakis, P. J. Haas, and
C. Jermaine. Synopses for massive data: Samples,
histograms, wavelets, sketches. Found. Trends
databases, 4(1–3):1–294, Jan. 2012.

[6] M. Kamp, M. Boley, D. Keren, A. Schuster, and
I. Sharfman. Communication–efficient distributed
online prediction by dynamic model synchronization.
In ECML PKDD, 2014.

[7] D. Keren, G. Sagy, A. Abboud, D. Ben-David,
A. Schuster, I. Sharfman, and A. Deligiannakis.
Geometric monitoring of heterogeneous streams. IEEE
TKDE, 26(8):1890–1903, 2014.

[8] D. Keren, I. Sharfman, A. Schuster, and A. Livne.
Shape sensitive geometric monitoring. IEEE TKDE,
24(8):1520–1535, 2012.

[9] A. Lazerson, I. Sharfman, D. Keren, A. Schuster,
M. Garofalakis, and V. Samoladas. Monitoring
Distributed Streams using Convex Decomposition.
VLDB, 2015 (to appear).

[10] G. Sagy, D. Keren, I. Sharfman, and A. Schuster.
Distributed threshold querying of general functions by
a difference of monotonic representation. Proc. VLDB
Endow., 4, November 2010.

[11] I. Sharfman, A. Schuster, and D. Keren. A geometric
approach to monitoring threshold functions over
distributed data streams. In SIGMOD, 2006.

[12] I. Sharfman, A. Schuster, and D. Keren. Aggregate
threshold queries in sensor networks. In IPDPS, 2007.

[13] I. Sharfman, A. Schuster, and D. Keren. Shape
sensitive geometric monitoring. In PODS, 2008.

[14] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy,
J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu,
J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy.
Storm@twitter. In SIGMOD, 2014.

5https://github.com/ishkin/Proton

117

Latent Fault Detection With Unbalanced Workloads

Moshe Gabel
Technion – Israel Institute of

Technology
Haifa 32000 Israel

mgabel@cs.technion.ac.il

Kento Sato
∗

Lawrence Livermore National
Laboratory

Livermore, CA 94551 USA
kento@llnl.gov

Daniel Keren
Haifa University

Haifa 31905 Israel
dkeren@cs.haifa.ac.il

Satoshi Matsuoka
Tokyo Institute of Technology
Meguro-ku, Tokyo 152-8552

Japan
matsu@is.titech.ac.jp

Assaf Schuster
Technion – Israel Institute of

Technology
Haifa 32000 Israel

assaf@cs.technion.ac.il

ABSTRACT
Big data means big datacenters, comprised of hundreds or
thousands of machines. With so many machines, failures
are commonplace. Failure detection is crucial: undetected
failures may lead to data loss and outages.

Recent health monitoring approaches use anomaly detec-
tion to forecast failures – anomalous machines are considered
to be at risk of future failures. Our previous work focused on
detecting latent faults in large web services, which are often
characterized by scale-out architecture where load is dynam-
ically balanced. We proposed a robust and unsupervised
latent fault detector for such systems, with statistical bounds
on the rate of false positives. That detector, however, is
unsuitable for applications without dynamic load balancing,
such as statically-balanced key-value stores, Hadoop jobs,
and supercomputer applications.

We describe an improved latent fault detection method
for unbalanced workloads. It retains the advantages of our
previous methods: it is unsupervised, robust to changes, and
statistically sound. Moreover, the statistical bounds for the
new method scale better with the number of machines, and
so dramatically reduce the number of measurements needed.
Preliminary evaluation on supercomputer logs shows that
the new method is able to correctly predict some failures,
while our previous methods completely fail in this setting.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault tolerance

Keywords
Anomaly detection, health monitoring, data mining

∗This work was produced while K. Sato was at Tokyo Insti-
tute of Technology, Meguro-ku, Tokyo 152-8552 Japan.

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

1. INTRODUCTION
Recent years have seen an increasing demand for comput-

ing power and storage. Large scale applications – whether
offline batch computations or modern web services and clouds
– are implemented on top of large datacenters, comprised of
thousands of machines or more. For large cloud services,
it is unreasonable to assume that all machines are working
properly and are well configured [29, 28]. Unnoticed failures
may cause data loss and service outages. Similarly, modern
supercomputers and high-performance clusters are increas-
ingly comprised of more and more individual components
(multiple CPUs, drives, and recently multiple GPUs [32]),
resulting in higher failure rates [31, 1]. In such systems,
failures may delay long computation, even to the point where
little useful computation is being done [30, 31, 27].

Many current failure detectors model normal behavior from
historical data. Modeling can be manual, by setting static
thresholds [14], or automatic, using supervised machine learn-
ing [2]. Modeling from historical behavior is suboptimal, how-
ever [9]. Workload changes, data-dependent computations,
and software updates render learned models inaccurate [12,
9]: static thresholds must be adjusted by domain experts,
and machine learning models must be retrained from recent
data. This retraining requires relabeling data as exhibiting
normal and abnormal behavior – an expensive process. Fur-
thermore, supervised techniques often only detect problems
that have been foreseen or encountered before.

More recent approaches [17, 18, 19] focus on unsupervised
methods (mainly anomaly detection) which require no la-
beling and less domain expertise. Within this context we
focus on latent fault detection [9]. Latent faults are subtle
behavior deviations that may indicate problems or miscon-
figurations. The aim is to catch unforeseen faults that “fly
under the radar” of monitoring systems, before they manifest
as machine or software failures. In our previous work [9] we
proposed a statistical latent fault detection framework for
web services. It is robust to software changes and workload
fluctuations, and provides statistical bounds on the rate of
false positives. Our evaluation showed that latent faults are
common and can precede failures by days. We have also
extended that work for distributed settings [8], where the
goal is to reduce communication and computational load.

Despite its advantages, our existing latent fault detection
framework, like many other anomaly detection techniques,

118

assumed that workload is dynamically distributed over iden-
tical machines. Though this setup is common in scale-out,
replicated services, it is not always the case in every setting.
First, some large-scale web services are statically balanced or
simply poorly balanced. Consider, for example, a key-value
store where keys are statically assigned to machines by a hash
function. If commonly used keys fall on a small number of
machines, these machines are much more heavily loaded than
the rest. Similarly, parallel computation frameworks such as
Hadoop generally use key values to partition loads, resulting
in unbalanced workloads [22]. Finally, large scale compu-
tations in compute clusters may distribute work to nodes
unequally, due to data locality or because there is no easy
way to predict how data distribution affects computation.

Our previous work also required a large number of mea-
surements for a single run of the detection algorithm. The
statistical bound grew linearly weaker with the number of
machines: the more machines, the larger the required time
window.

This work proposes a statistical latent fault detection
test for unbalanced workloads, making it more practical in
settings such as supercomputers, and in other large scale
systems whose computational workload is not necessarily
balanced. It also reduces the window size from a full day
(roughly 300 measurements) to minutes (4 measurements).
Since the new bound scales much better as the number of
monitored machines grows, the new detector is much more
responsive to immediate changes. It can therefore be used
to monitor large systems when rapid response is important.

A preliminary evaluation on historical metric and failure
logs from the TSUBAME2 supercomputer1 shows that the
new detector is superior: while our previous latent fault
detectors fail completely in this setting, the new detector
can predict some failures several days in advance.

2. IMPROVED ANOMALY DETECTION
Our previous latent fault detection framework [9, 8] relied

on several assumptions, which we now revisit. First, ma-
chines in the system are homogenous in terms of hardware,
software infrastructure and running code. Second, the ma-
jority of machines are not faulty; in a large system, most
machines perform well most of the time. Finally, the mon-
itored system uses dynamic load balancing – on average,
workload is distributed evenly across machines. Thus when
measuring aggregated performance counters, we could expect
healthy machines to exhibit the same behavior, on average.
We wish to keep the first two assumptions, but avoid the
third.

As with web services, machines in compute clusters are
often homogenous for logistical reasons. Where they are not,
it is often possible to cluster to a few distinct configurations,
using hardware and job data. Indeed supercomputers have
strict, almost uniform hardware. For example, TSUBAME2
has 6 types of nodes2 with well-documented hardware con-
figurations.

The second assumption is also quite reasonable; it is hard
to imagine an expensive datacenter running for lengths of
time with a majority of faulty machines.

We can no longer assume dynamic load balancing though.

1http://www.gsic.titech.ac.jp/en/tsubame2 .
2http://tsubame.gsic.titech.ac.jp/docs/guides/
tsubame2/html_en/overview.html#computing-nodes .

Table 1: Hypothetical machine measurements.
Node D has anomalous memory and CPU usage.

Node Reqs Memory DB CPU
A 3 630 9 6
B 5 650 15 10
C 4 640 12 8
D 3 740 9 15
E 8 680 24 16
F 7 670 21 14
G 5 645 15 11

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10

C
P

U

Requests

normal
subspace

abnormal
subspace normal

outlier

Figure 1: Scatterplot of the hypothetical requests vs
CPU usage, with normal and abnormal subspaces.
Machine D is visibly an outlier.

Instead, given our original assumption of homogenous ma-
chines running the same code, we assume there are common,
inherent interdependencies, or correlations, between different
counters, stemming from the fact that all machines do the
same job, and run the same code. These correlations (not
necessarily linear) between sets of counters are the result
of what the machines are doing, and are not affected by
workload. For instance, suppose task A requires k of some
resource X and n of some resource Y for each unit of work.
Increasing the workload to 5 units of work will require 5k of
X and 5n of Y, but the correlation between k and n remains;
it will remain even if we don’t measure the actual workload.
Generalizing to dependencies that may involve more than
two counters, we can instead discuss correlations or rela-
tionships between or within sets of counters; for example,
2k + 3n+ l2 = m.

Given the first two basic assumptions and the above, we
can assume that similar machines doing the same task will
result in the same correlations (relationships) between sets of
counter values. The counters of machines with latent faults
will not exhibit the same relationships.

For example, consider a hypothetical web service where
for each client request we need 10MB of memory, 3 database
transactions, and 2% CPU time. Machines with latent faults
might have too few DB transactions, or too much memory
use, or CPU usage that doesn’t match the workload. Table 1
shows 5 such hypothetical machines. Machines A, B, C
and E all exhibit the expected relationship between their
counter values. Machine D, however, is anomalous, because
its memory and CPU usage are far too high for its workload
of 3 requests, for example due to a memory leak.

Our strategy is therefore to establish the linear correla-
tions3 within the aggregated counters at every time point,

3Not limited to the Pearson correlation, which is pairwise.

119

and find machines whose counters consistently (across several
time points) exhibit different correlations.

2.1 PCA Subspace Decomposition
We will use Principal Component Analysis subspace de-

composition [6, 23] to decompose the space of counters into
a normal subspace and an abnormal subspace.

PCA is a statistical technique commonly used to auto-
matically choose a smaller set of dimensions – the principal
components – which captures most of the data variance.
Since this subspace captures the variance in normal data, we
can refer to it as the normal subspace. This normal subspace
represents normal (healthy) linear correlations between the
counters.

The residual components, on the other hand, define the
complementary subspace that captures very little variance.
In other words, when projecting a normal data point to the
residual subspace, we can expect the projected vector to be
very small, close to zero. The residual subspace is therefore
the abnormal subspace, which represents violations of healthy
relationships between counters.

Subsections 2.2 and 2.3 describe two variations using this
basic idea. In the first variant, data vectors are projected
into the abnormal subspace, and those vectors whose projec-
tion is above some threshold are declared to be abnormal.
Jackson and Mudholkar [15] developed a way to infer the
threshold from the data to guarantee a desired false positive
rate. While their guarantee is only for multivariate Gaussian
distributions, in practice the threshold is known to be robust
even when the data is not Gaussian [16, 35]. Alternatively,
we can apply the latent fault statistical framework [7] as is,
using the projection to the abnormal subspace (normalized
by the vector length) as the score function S (m,x(t)).

Figure 1 illustrates the technique. It shows requests vs.
CPU usage of hypothetical machines from Table 1, including
some additional healthy machines. The normal subspace is
represented by the line Y = 2X, where X is requests and Y
is CPU usage. The abnormal subspace is the perpendicular
line. The outlier machine D clearly has a large presence in
the abnormal subspace – projecting D’s data to this space
results in a large vector.

Ordinarily, historical data that is guaranteed to be“normal”
is used to learn the normal and abnormal subspaces [23, 35].
In our case, we wish to detect small problems, and to support
complex systems where we do not have a guaranteed error-
free history. Instead we will make use of the large number of
machines in the system. Since we assume most machines are
fine at any given point in time, we can use this to extract
the normal and abnormal subspaces.

One wrinkle in our plan is the presence of outliers in our
data. Since we assume a small number of faulty machines
(outliers), the resulting subspaces will include their faulty
data. We therefore use a robust approach to PCA called
HR-PCA, described by Xu et al. [34]. It is robust to outliers
and arbitrarily corrupted data, and can recover the princi-
pal subspace even when the number of counters approaches
the number of machines (C ≈ M). HR-PCA is also quite
efficient.

2.2 Formalizing the Algorithm
There are M machines, performing identical tasks, each

periodically reporting C aggregated performance counters in
a time window of length T . We standardize counter values

in the time window across all machines to zero mean and
unit variance in the time window. We denote by x(m, t) the
vector of standardized counter values for machine m at time
t, and by x(t) =

⋃
m x(m, t) their union. Denote by X the

M × C data matrix x(t) after pre-processing and scaling at
time t. Denote by xm the row in X that came from machine
m, meaning xm = x(m, t).

Using PCA we extract the normal subspace of X, com-
prised as the first k principal components v1, . . . vk that
capture the most variance (say 95%). Denote by Hno the
C×K normal subspace projection matrix built from the first
k principal components, Hno = [v1, v2, . . . , vk]. Let the ab-
normal subspace projection matrix be the residual subspace
Hab = I −HnoHT

no.
Given the projection Hab, we can then map each machine

vector x(m, t) to its residual: x̃m = Habxm. Using the test
statistic and threshold given in [15], define: Qm = ‖x̃m‖2 =
‖Habxm‖2. A machine is declared abnormal at time t if
Qm > Qα, where Qα denotes the threshold for the 1 − α
confidence level:

Qα = φ1

[
cα
√

2φ2h2
0

φ1
+ 1 +

φ2h0(h0 − 1)

φ2
1

] 1
h0

,

where

h0 = 1− 2φ1φ3

3φ2
2

, φi =

C∑

j=k+1

λij ,

λj is the variance captured by the j-th principal component,
and cα is the upper 1− α percentile of the standard normal
distribution. For a normal machine, Pr [Qm > Qα] < α. In
other words, α is the false alarm probability when testing a
single machine.

Detecting one abnormal machine at time t is not sufficient,
however. We are testing multiple machines, and must there-
fore guard against false positives. Hence we will only flag a
machine if it is abnormal for T ′ consecutive times.

How big must T ′ be to guarantee a false alarm probability
p when testing M machines? The probability of a false alarm

for a specific machine m in T ′ consecutive time points is αT
′
.

The false alarm probability in at least one machine after T ′

time points is therefore 1−
(

1− αT ′)M
, and so we require:

1−
(

1− αT ′)M ≤ p.
Thus for a desired false alarm probability p with M ma-

chines, we need a window size of:

T ′ =
⌈
logα

(
1− M

√
1− p

)⌉
. (1)

Note that the probability of false alarms drops roughly expo-
nentially with T ′. We discuss this below in Subsection 2.5.

The final algorithm for target false probabilities p and α:

1. Preprocess: select counters and scale to unit variance.
2. For each time t across T ′ consecutive times:

2.1 Compute robust PCA (HR-PCA) from data x(t).
2.2 Choose k that captures most variance (say 95%).
2.3 Build Hno, Hab, Qα.
2.4 For each machine m, check if Qm > Qα.

3. Report m if Qm > Qα for T ′ consecutive times.

2.3 Alternative to Thresholding
The threshold Qα is determined from the actual data, and

so may be too conservative. It is possible that, due to noisy

120

data, the resulting threshold is too high. The test is binary:
Qm > Qα is either true or false; there is no middle ground.
Hence, it is possible that even if Qm is consistently high,
much higher than the Q of other machines, it is still below
the threshold. Our conservative design to limit false positives
will result in too many false negatives, as few faulty machines
are flagged.

Instead, we can use the statistical framework from [9, 7].
Let S (m,x(t)) be a test, a ranking function that assigns an
outlier score (either a scalar or a vector) to machine m at
time t. Given a test S, and desired false alarm probability
0 < α < 1, we can present the framework as follows:

1. Preprocess: select counters and scale to unit variance.
2. Compute for every machine m the vector:
vm = 1

T

∑
t S(m,x(t)) (integration phase).

3. Compute the p-values (defined below) p(m) from vm.
4. Report every machine with p(m) < α as suspicious.

We use the normalized Qm as the score function:

S (m,x(t)) =
Qm
‖xm‖2

=
‖x̃m‖2
‖xm‖2

=
‖Habxm‖2
‖xm‖2

.

We derive probabilistic bounds using the machinery from [7].
Note that 0 ≤ S (m,x(t)) ≤ 1, thus even if we change all of
x(t) S cannot change by more than 1. Moreover, HR-PCA is
robust, so changing just one vector x(m, t) should not overtly
affect Hab, thus Qm′ for any other machine m′ should not
change. Therefore S is 1, 0-bounded [7, Definition 2.3.1], and
we can apply [7, Lemma 2.3.3] to get a p-value:

p(m) = (M + 1) exp


− 2TMγ2

(√
M + 1

)2


 (2)

where γ = max (0, ‖vm‖ − v̂), and v̂ = 1
M

∑
m ‖vm‖. This

p-value is the probability that ‖vm‖ is larger than the mean v̂
by γ when m is healthy, given that we are testing m machines;
testing for p(m) < α guarantees false alarm probability α
across all machines, equivalent to p in Subsection 2.2.
p(m) is more flexible than Qα – it is computed from data

of T times (step 2, above), rather than tested each time
separately. Consistently small deviations from the norm
accumulate if T is large enough. The advantage of this “soft
threshold” approach is that it is much more sensitive to
smaller anomalies (Q < Qα) than the original “all or nothing”
approach. The downside is that the improved window size
described in Subsection 2.5 no longer applies.

2.4 Unbalanced Workloads and Robustness
Our previous framework required that workload be dy-

namically balanced, on average, across all machines. This
was because we directly compared counter values between
machines. Aggregating across a large time window helped
us overcome, and take advantage of, temporal noise. Indeed,
temporary workload imbalance is very likely, since it is dif-
ficult to guarantee that all machines are equally loaded for
any short time interval. Averaged across a larger interval,
these small random imbalances cancel each other out.

Conversely, the algorithm described above does not depend
on the absolute counter values, but instead on the correlations
between them at each point in time. We expect that these
correlations will remain similar regardless of the load.

Table 2: Hypothetical machine measurements ex-
hibiting unbalanced load.

Load Reqs Memory DB CPU
low 8 680 24 16
low 5 650 15 10
low 6 660 18 12
high 33 930 99 66
high 40 1000 120 80
high 37 970 111 74

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

C
P

U

Requests

low
load

high
load

normal
subspace

Figure 2: Scatterplot of the unbalanced hypothetical
requests vs CPU usage. All machines lie on normal
subspace.

For example, consider our hypothetical web service from
above. For each client request, we need 10MB of memory, 3
database transactions, and 2% CPU time. Table 2 shows 6
such hypothetical machines. The first 3 machines are lightly
loaded (few requests), while the last three are heavily loaded.
Still, all exhibit the expected relationship between their
counter values, and so lie on the normal subspace (Figure 2).
A machine exhibiting anomalous CPU usage for the number
of requests would lie outside this normal subspace.

Moreover, as with our previous methods, the subspace
decomposition approach is robust to changes in the monitored
system. The normal and abnormal subspaces are recomputed
using counter values measured at the same time, and we never
compare such values across different times. If the software is
updated, for example, the new behavior is never compared
to the old one.

2.5 Improved Window Size
The bounds for our previous methods [9] required increas-

ing window sizes as the number of machines grew. As illus-
trated by Equation (2), the framework bound grows linearly
weaker with the number of machines M , meaning that we
have to increase the window size T to compensate.

This can be intuitively be explained by the need to aggre-
gate different measurements across many times to overcome
temporal noise in counter values, such as short-term workload
imbalance. The experiments described in [9] were performed
with window size of T = 288, which translated to a full
24-hour day since counters were sampled every 5 minutes.

The PCA method has an improved window size. T ′ from
Equation (1) is logarithmic in the number of machines M .
The intuitive explanation is that we no longer need to track
counter behavior across time to overcome minute random
imbalances or random noise. For example, given M = 10000
machines, α = 0.01, and overall false alarm probability
p = 0.01, Equation (1) tells us we need a window size of only

121

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

rand. guess
sign

(a) Sign test

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

rand. guess
Tukey

(b) Tukey test

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

rand. guess
LOF

(c) LOF test

Figure 3: Performance of original latent fault detector on TSUBAME2 data with 7 day horizon.

3 time points, i.e., 15 minutes:

T ′ = dlog0.01

(
1− 10000

√
1− 0.01

)
e = d2.9989e = 3 .

Even for a million machines, M = 106, a window size of 4
time points, meaning 20 minutes, is sufficient to guarantee a
false positive rate of 0.01:

T ′ = dlog0.01

(
1− 106

√
1− 0.01

)
e = d3.9989e = 4 .

3. PRELIMINARY EVALUATION
We used historical machine metric logs and failure records

from the TSUBAME2 supercomputer to compare the new
subspace decomposition approach to our existing latent fault
detectors [9].

3.1 Supercomputer Workloads
Supercomputer workloads are very different from cloud

workloads in many ways: long jobs rather than short requests;
parallelization and load balancing are done within single jobs,
not over all requests; and jobs are heterogeneous, so different
nodes do not run the same code at the same time. Thus,
the job uniformity assumption we make in Section 2 and our
previous work [9] may no longer hold.

Computational jobs often perform many iterations of the
same basic loop [30, 31]. For computations whose perfor-
mance is not data-dependant (such as many common matrix
operations), a single computation iteration will usually re-
quire the same amount of resources (CPU time, GPU load,
etc.) as any other iteration. Moreover, required resources for
one iteration will be the same for all nodes in the system with
the same hardware configuration. This essentially brings us
back to the PCA approach suggested in Section 2 – metrics
of healthy nodes will lie in the same subspace.

Latent fault detection tests should be run on groups of
machines partitioned by job. Scheduling logs that contain
start and end times (along with the list of assigned machines)
can be used to subdivide machines in this way.

3.2 The TSUBAME2 Dataset
We used 45 common machine metrics (e.g., cpu idle time,

GPU utilization, user time, swap free, various temperatures),
sampled every 1 to 10 minutes (depending on the metric),
from one month of runs (roughly jobs, see below). We divided

Table 3: Statistics of inferred jobs (runs).
Statistic Median Max

Number of machines (M) 99 236
Length (minutes) 1016 5699

each run of 240 minutes or more, with at least 10 machines,
to windows of length 240 minutes each. This resulted in 60
runs with a total of 252 windows, summarized in Table 3.
We performed latent fault detection on each such window.
The results of the detector were compared with the historical
failure log within a 7 day horizon – a node is considered to
have failed if it failed within 7 days from the time window;
otherwise it is considered to have not failed.

Since our TSUBAME2 logs did not include any job schedul-
ing information, our preliminary experiments relied on CPU
and GPU usage metrics to infer which machines were being
used and how they were grouped. A group of machines that
together became busy and then idle were considered to be a
single job, or a “run”. This method is ad-hoc and inherently
inaccurate. For example, a failing machine might stop at
the beginning of the computation and so would never be
considered part of the run, as it did not finish with the rest.
Section 5 discusses a potentially more robust alternative.

3.3 Results
We first evaluated the performance of our existing latent

fault detectors: the sign, LOF and Tukey tests [9], with
T = 240 and α = 0.01. Figure 3 shows the receiver operating
characteristic (ROC) curves for our existing latent fault
detection tests. Ignoring computed p-values, we swept the
threshold for anomaly scores ‖vm‖ (as in Eq. (2)) across a
range of values and drew the resulting false positive and false
negative rates. The performance of all three previous tests
is no better than a random guess, where the false positive
and false negative rates are equal.

We repeated the tests with the PCA approach suggested
in Section 2, using the “soft threshold” variation described
in Subsection 2.3. We used T = 240 and α = 0.01. k was
selected to capture 95% of variance. Finally, HR-PCA [34]
was used as the robust PCA building block, with the max-
imum number of corrupted points set to 10% of machines

122

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

rand. guess
PCA

Figure 4: Performance of PCA latent fault detector
on TSUBAME2 data with 7 day horizon.

(t̂ = 0.9M). As can be seen in Figure 4, the subspace decom-
position approach performs better than our original latent
fault detectors. Though still no better than random guess at
lower false positive rates, it is still able to predict some node
failures several days ahead.

4. RELATED WORK
PCA residuals have been used in the past for monitoring

tasks [6]. Lakhina et al. [23] famously used this approach
to detect network traffic anomalies. Like many similar ap-
proaches, they monitor the network as a whole, and do not
attempt to localize it to a specific node. Furthermore, they
rely on historical data that is guaranteed to be normal, and
assume that the system is unchanged, again a common theme.
Xu et al. [35] analyze program source code to parse console
log messages and use principal component analysis to identify
unusual message patterns based on their frequency. As with
Lakhina’s work, this technique relies on error-free history and
relatively stable systems. Console logs also tend to contain
different sorts of data, and are likely to catch different sorts
of anomalies. Similarly, Chen et al. [3] localize failures in
software components of a Java application; they propose an
online algorithm to update normal and abnormal behavior
models. Chen et al. [4] also analyze the correlation between
sets of measurements and track them over time. Their ap-
proach requires domain knowledge for choosing counters,
and requires training on “healthy” periods to model baseline
correlations.

Ling et al. [13] use Stochastic Matrix Perturbation theory
to adapt Lakhina’s work to distributed monitoring with PCA.
Liu et al. [26], in turn, apply the distributed PCA monitoring
approach on linear sketches of the network data to reduce
running time and space costs.

5. CONCLUSIONS AND FUTURE WORK
Failure detection and prediction techniques are increasingly

important in the era of clouds and compute clusters. Several
recent approaches rely on anomaly detection techniques to
detect failures ahead of time, while avoiding costly relabeling
and retraining of models.

In this work we have presented a new latent fault detector
suitable for settings where the workload is unbalanced. As

with our previous methods, the new approach is robust to
changes in the monitored system, it requires neither domain
expertise nor labeled data, and it comes with statistical
guarantees on the rate of false positives. Our preliminary
evaluation showed that the new approach is clearly superior
to the previous latent fault detectors in the supercomputer
setting. Though the results obtained may not yet be prac-
tical in the supercomputer setting (possibly due to lack of
scheduling logs), they show that the new detector does cope
with unbalanced loads.

There are several avenues to pursue: more complete eval-
uation, communication-efficient and computation-efficient
algorithms, and subspace clustering for job detection.

First, we wish to evaluate the new approach in additional
settings where the workload is unbalanced. In the cloud set-
ting, key-value stores are good candidates for our monitoring
approach. In the compute cluster setting, Hadoop jobs have
many machines running the same code in the reduce phase,
but their computational load may be different.

Second, we can further combine PCA with distributed
online detection as in [8], since collecting metrics from all
nodes and computing PCA may be prohibitive for some
large systems. We previously described [8] a communication-
efficient approach using safe zones [21, 20] to standardize
counter values across machines. Ling et al. [13] adapt PCA
anomaly detection for distributed stream monitoring. We can
combine their technique with recent distributed monitoring
approaches [24, 11]. Beyond that, we can follow Liu et al.
[26], who apply the distributed PCA technique on a linear
sketch. Recent work by Liberty [25] introduces a better
matrix sketching technique called Frequent Directions with
improved bounds that is well-suited for PCA computation
in a streaming setting. Indeed, streaming constructions of
PCA using this approach are proposed by Ghashami and
Phillips [10] and Cohen et al. [5].

Finally, more complete job and scheduling information in
the supercomputer setting may help us improve results even
further. A more robust approach to job detection might be
subspace clustering [33]. Given a collection of vectors drawn
from a union of (potentially disjoint) subspaces, subspace
clustering algorithms cluster these data points according
to the subspace they originate from. For similar reasons
described in Section 2, and since hardware is uniform, we
could assume that metrics of machines running the same job
will lie in the same subspace. Thus, we might be able to
use subspace clustering to identify machines that run similar
code. Given such a group of machines, our anomaly detection
techniques can be more effective. Moreover, the ability to
cluster running code can be useful in monitoring settings
such as virtual machine clouds, where operators have less
information on what code runs inside virtual machines.

6. ACKNOWLEDGMENTS
The research leading to these results has received funding

from the European Union’s Seventh Framework Programme
FP7-ICT-2013-11 under grant agreement No 619491 and
No 619435. This work was performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344
(LLNL-CONF-665287). This work was also supported by
Grant-in-Aid for Research Fellow of the Japan Society for
the Promotion of Science (JSPS Fellows) 24008253, and
Grant-in-Aid for Scientific Research S 23220003.

123

7. REFERENCES
[1] G. Bronevetsky, I. Laguna, S. Bagchi, B. R.

de Supinski, D. H. Ahn, and M. Schulz. Statistical fault
detection for parallel applications with AutomaDeD. In
Proc. SELSE, 2010.

[2] G. Bronevetsky, I. Laguna, B. De Supinski, and
S. Bagchi. Automatic fault characterization via
abnormality-enhanced classification. In Proc. DSN,
2012.

[3] H. Chen, G. Jiang, C. Ungureanu, and K. Yoshihira.
Failure detection and localization in component based
systems by online tracking. In Proc. KDD, 2005.

[4] H. Chen, G. Jiang, and K. Yoshihira. Failure detection
in large-scale internet services by principal subspace
mapping. IEEE Trans. Knowl. Data Eng., 2007.

[5] M. B. Cohen, S. Elder, C. Musco, C. Musco, and
M. Persu. Dimensionality reduction for k-means
clustering and low rank approximation. CoRR, 2014.

[6] R. Dunia and S. J. Qin. Multi-dimensional fault
diagnosis using a subspace approach. In Proc. ACC,
1997.

[7] M. Gabel. Unsupervised anomaly detection in large
datacenters. Master’s thesis, Technion I.I.T, 2013.

[8] M. Gabel, D. Keren, and A. Schuster.
Communication-efficient distributed variance
monitoring and outlier detection for multivariate time
series. In Proc. IPDPS, 2014.

[9] M. Gabel, A. Schuster, R.-G. Bachrach, and N. Bjorner.
Latent fault detection in large scale services. In Proc.
DSN, 2012.

[10] M. Ghashami and J. M. Phillips. Relative errors for
deterministic low-rank matrix approximations. In Proc.
SODA. 2014.

[11] N. Giatrakos, A. Deligiannakis, M. Garofalakis,
I. Sharfman, and A. Schuster. Distributed geometric
query monitoring using prediction models. ACM Trans.
Database Syst., 2014.

[12] C. Huang, I. Cohen, J. Symons, and T. Abdelzaher.
Achieving scalable automated diagnosis of distributed
systems performance problems. Technical report, HP
Labs, 2007.

[13] L. Huang, X. Nguyen, M. Garofalakis, J. Hellerstein,
M. Jordan, A. Joseph, and N. Taft.
Communication-efficient online detection of
network-wide anomalies. In Proc. INFOCOM, 2007.

[14] M. Isard. Autopilot: automatic data center
management. SIGOPS Oper. Syst. Rev., 2007.

[15] J. E. Jackson and G. S. Mudholkar. Control procedures
for residuals associated with principal component
analysis. Technometrics, 1979.

[16] D. R. Jensen and H. Solomon. A gaussian
approximation to the distribution of a definite
quadratic form. Journal of the American Statistical
Association, 1972.

[17] S. Kadirvel, J. Ho, and J. A. B. Fortes. Fault
management in Map-Reduce through early detection of
anomalous nodes. In Proc. ICAC, 2013.

[18] S. Kavulya, S. Daniels, K. Joshi, M. Hiltunen,
R. Gandhi, and P. Narasimhan. Draco: Statistical
diagnosis of chronic problems in large distributed
systems. In Proc. DSN, 2012.

[19] S. Kavulya, R. Gandhi, and P. Narasimhan. Gumshoe:
Diagnosing performance problems in replicated
file-systems. In Proc. SRDS, 2008.

[20] D. Keren, G. Sagy, A. Abboud, D. Ben-David,
A. Schuster, I. Sharfman, and A. Deligiannakis.
Geometric monitoring of heterogeneous streams. Trans.
on Knowl. and Data Eng., 2014.

[21] D. Keren, I. Sharfman, A. Schuster, and A. Livne.
Shape sensitive geometric monitoring. Trans. Knowl.
Data Eng., 2012.

[22] Y. Kwon, K. Ren, M. Balazinska, and B. Howe.
Managing skew in Hadoop. IEEE Data Eng. Bull.,
2013.

[23] A. Lakhina, M. Crovella, and C. Diot. Diagnosing
network-wide traffic anomalies. In Proc. SIGCOMM,
2004.

[24] A. Lazerson, I. Sharfman, D. Keren, A. Schuster,
M. Garofalakis, and V. Samoladas. Monitoring
distributed streams using convex decompositions. In
Proc. VLDB, 2015. To appear.

[25] E. Liberty. Simple and deterministic matrix sketching.
In Proc. KDD, 2013.

[26] Y. Liu, L. Zhang, and Y. Guan. A distributed data
streaming algorithm for network-wide traffic anomaly
detection. SIGMETRICS, 2009.

[27] A. Moody, G. Bronevetsky, K. Mohror, and B. R.
De Supinski. Design, modeling, and evaluation of a
scalable multi-level checkpointing system. In Proc. SC,
2010.

[28] E. B. Nightingale, J. R. Douceur, and V. Orgovan.
Cycles, cells and platters: An empirical analysis of
hardware failures on a million consumer pcs. In Proc.
EuroSys, 2011.

[29] N. Palatin, A. Leizarowitz, A. Schuster, and R. Wolff.
Mining for misconfigured machines in grid systems. In
Proc. SIGKDD, 2006.

[30] K. Sato, N. Maruyama, K. Mohror, A. Moody,
T. Gamblin, B. R. de Supinski, and S. Matsuoka.
Design and modeling of a non-blocking checkpointing
system. In Proc. SC, 2012.

[31] K. Sato, A. Moody, K. Mohror, T. Gamblin, B. R. d.
Supinski, N. Maruyama, and S. Matsuoka. FMI: Fault
tolerant messaging interface for fast and transparent
recovery. In Proc. IPDPS, 2014.

[32] U. Verner, A. Schuster, and M. Silberstein. Processing
data streams with hard real-time constraints on
heterogeneous systems. In Proc. ICS, 2011.

[33] R. Vidal. Subspace clustering. IEEE Signal Processing
Magazine, 2011.

[34] H. Xu, C. Caramanis, and S. Mannor. Outlier-robust
PCA: The high-dimensional case. IEEE Transactions
on Information Theory, 2013.

[35] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I.
Jordan. Detecting large-scale system problems by
mining console logs. In Proc. SOSP, 2009.

124

What You See Is What You Do: applying Ecological

Interface Design to Visual Analytics
Natan Morar

University of Birmingham
School of Electronic, Electrical and

Computer Engineering, UK
0044 741 472 6845

nsm120@bham.ac.uk

Chris Baber
University of Birmingham

School of Electronic, Electrical and
Computer Engineering, UK

0044 121 414 3965

c.baber@bham.ac.uk

Adam Duncan
University of Birmingham

School of Electronic, Electrical and
Computer Engineering, UK

axd174@student.bham.ac.uk

Peter Bak
IBM Research Lab

Haifa / Israel
00972 4829 6537

peter.bak@il.ibm.com

ABSTRACT

In the SPEEDD project, we are developing approaches to the

design and evaluation of Visual Analytics which are informed by

Human Factors theories and methods. As part of this process, we

are using the concept of Allocation of Function to inform the

design of User Interfaces for Visual Analytics. The paper presents

a case study of the development of a Road Traffic Management

User Interface.

ACM Classification Keywords

H.1.2 User/machine systems; H.5.2 User interfaces

Keywords

Cognitive Work Analysis; Ecological Interface Design; Visual

Analytics; Human Factors.

1. INTRODUCTION
Visual Analytics combines the power of data analytics with the

insight and imagination of the human operator in response to the

visualization of the output of these data analytics. In terms of

output, visualization can be applied before the analysis on raw

data (data visualization), or on output results (information

visualization), or during the analysis phase (visual data mining),

or on any combination of these [1]. This division of labor between

an automated system, which mines massive data sets, and a human

decision maker, who interprets the recommendations of the

analytics, can be considered as Allocation of Function. One could

allocate the analysis functions to the automation, leaving the

human as the passive consumer of the system’s outputs, and

merely accepting the system’s recommendations; anyone who has

watched ‘The Simpsons’ will recall Homer pressing the ‘any key’

to confirm system status. Not only does the relegation of the

human to an acceptor of system recommendations miss the point

of the Visual Analytics concept, but it also removes the human

operator from the analysis loop. A consequence of removing the

person is that this can impair the person’s ability to understand the

meaning of the data, to interpret the system’s recommendation or

to intervene appropriately when required [2]. Furthermore, users

tend to have more trust in their findings when involved in the

discovery process than when the findings come from an

automated system [1]. Thus, it would make sense to design the

Allocation of Function between human and automation in such a

way as to ensure both partners worked to their best potential. In

general, the storage, transformation and processing of data is more

suited to automatic systems, whereas hypotheses generation and

interpretation of findings are considered more human led tasks

[3].

2. ALLOCATION OF FUNCTION
Determining whether a particular function (in terms of system

operation) should be performed by automation or human operator

is known as Allocation of Function. While some functions (such

as dealing with massive data sets) are clearly suite to automation

and others (such as gaining insight from a collection of data)

might be more suited to human operators, the challenge of

Allocation of Function stems from the fact that some of the

functions could be performed equally well by automation or

human operator. Further, the way a function is performed is likely

to change as a result of the task context. Thus, adaptive

automation (in which Allocation of Function varies according to

context) can improve operator ability in intervening in response to

errors [4, 5, 6]. Moreover, by dynamically allocating tasks to

either the user or the automated system user skills can be

maintained [7.].

In this paper, we are interested in the question of whether it is

possible to manage Allocation of Function through the

visualization. In other words, the User Interface could indicate to

the operator when and how they could intervene at particular

stages in the process.

As the application of this work is linked to the traffic

management use case, we start by presenting the requirements of

the system as highlighted by traffic operators in our discussions

with them. These requirements, in combination with the Cognitive

Work Analysis (presented in the following section), informed the

initial design of the User Interface (Figure 1). Following this, in

order to appreciate how Allocation of Function might be applied

to this use case, we turn our attention to the question of Situation

Awareness and the design of Ecological Interfaces.

(c) 2015, Copyright is with the authors. Published in the Workshop

Proceedings of the EDBT/ICDT 2015 Joint Conference (March 27,

2015, Brussels, Belgium) on CEUR-WS.org (ISSN 1613-0073).

Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0.

125

2.1 Requirements for Traffic Management

Use Case
 Allow Operator to clarify and query notification

 Allow Operator to draw on experience of previous

incidents

 Allow Operator to select Incident Type option

 Allow Operator to draw on several sources of

information to confirm location

 Support Operator Situation Awareness

o Of current incident

o Of future conditions

 Allow Operator selection of response

 Allow Operator to challenge or negotiate response

 Support Operators in gaining Global and Local

Situation Awareness of road user behaviour

 Supporting Operators in determining that the

incident has no unexpected consequences.

Figure 1: SPEEDD Initial User Interface for Road Traffic

Management Use Case v1.0

3. COGNITIVE WORK ANALYSIS OF

ROAD TRAFFIC MANAGEMENT

OPERATIONS
CWA, Cognitive Work Analysis [10, 11, 12], involves a

number of phases, each of which contributes to an

understanding of how stakeholders could work with a given

system. In this way, the problem space represented by the

system can be explored in order to determine ways of

supporting activity in that space. Figure 2 shows the

Abstraction Hierarchy from CWA of Road Traffic

Management; we have used the phrase ‘manage road

network’ as the Functional Purpose of the system.

Having defined a Functional Purpose, the next step is to

define the Value and Priority Measures of the system (the

second row of Figure 2). These represent those aspects of

performance that the system could use to indicate how well

it is performing. Through observation and interviews, we

defined the following aspects:

 To ensure minimal congestion in the road network

 To ensure minimal risk to road users

 To enable minimal journey times for road users

 To ensure informed road users

 To support maintained infrastructure

 To encourage compliant road users

 To support immediate response to incidents

 To produce an auditable record of activity

These aspects map on to the generally accepted set of

objectives for traffic management [13.]:

 Maximize the available capacity of the roadway

system

 Minimize the impact of incidents

 Contribute to demand regulation

 Assist in the provision of emergency services

 Maintain public confidence in operations and

information provision

The main difference between the two sets concerns the issues of

providing support to the emergency services (although we have

‘immediate response to incident’ which we suggest would include

this), and maintaining public confidence in control center

provision (which we do not include but which could relate to the

priority for ensuring ‘compliant road use’).

In the control room environment (in the scope of the

SPEEDD project), because of the introduction of the

automated system, the goals (derived from CWA) are

shared between the two entities – the operator and the

automation. Each entity contributes to achieving the system

goals through different means (see Figure 3). Besides the

operators’ role to deal with uncertainty and spot errors in

the data and analysis outputs, the system should allow them

126

to inform (train) automation. The latter can be achieved

through the action of overriding the automation outputs.

Figure 2: CWA Abstraction Hierarchy

Goal

Auditable
Record of
Activity

Immediate
Response to

Accident

Automated System
Actions

Operator
Actions

poll sensors and spot
trends

control actuators

understand
automation actions

Minimal
Congestion

Minimal Risk

Minimal
Journey Time

Informed Road
Users

Maintained
Infrastructure

Compliant
Road Users

find recurring patterns
in sensor data

detect errors in the
data and analysis

inform automation

Figure 3: Contribution of System Components to System

Goals

As in any Socio-Technical System, there will be a range of actors

who will perform functions in order for the system to achieve its

Functional Purpose. For instance, apart from automation and

operators, there will be the individual road users who are driving

vehicles through the road network and whose behavior the

operators in a control room are seeking to influence. In addition,

there might be specialized roles, dedicated to maintaining the

infrastructure of the road network or to dealing with accidents and

incidents, which are called upon at specific times. Figure 4 takes

the Object-related Functions (from Figure 2) and shows how these

can be performed by different actors (shown by color coding) and

in different circumstances. In this Figure, the circumstances are

presented as examples of different ‘modes’ in which the system

could be assumed to operate, i.e., normal conditions (managed

roads), disrupted conditions (response to incidents), or scheduled

disruptions (planned works). Figure 4 shows how the different

circumstances can lead to different distribution of these object-

related functions across the range of actors.

Figure 4: CWA SOCA

127

The Object-Related Functions in Figure 2 represent a form of task

analysis. The ‘decision ladder’ in Figure 5 should be read from

the bottom left (beginning with an input to the operator) up to the

top (Functional Purpose, or overall goal of the operator / system).

From the Functional Purpose, the right-hand leg of the ladder

descends to the action that the operator will make. There are

various ‘short-cuts’ that the experienced operator might apply

(indicated by dotted lines), perhaps in light of particular patterns

of data or reports from previous responses.

Figure 5: CWA ‘Decision ladder’

4. DESIGN CONCEPTS AND

IMPLEMENTATION
 At the top level, the Abstraction Hierarchy (Figure 2) presents the

Functional Purpose of the system. For example, if the system is

intended to respond to incidents quickly, then this display could

show the time spent responding to incidents, perhaps against

targets or against historical data. The usefulness of such a display

would depend on the nature of the work.

At the next level of the Abstraction Hierarchy, the Abstract

Function (values and priorities) would be reflected by the

parameters that the ‘system’ is seeking to balance. It can also be

beneficial to present subgoals (Purpose-related functions), tasks

(Object-related functions) or information sources (Physical

objects). These can either provide cues for the operators to

interact with the system at a lower level or can provide alternative

means of alerting operators to change in system state. Thus, for

example, the output of a CCTV (Physical Object) could be

manipulated by the operator (Object-related function) in order to

determine the location of an incident (Purpose-related function).

In this situation, it might be useful for the operator to directly

mark and record this information, say by marking this frame (and

its associated metadata defining location, direction of view, time

etc.) and capturing this directly into the report.

Table 1: Relating Information Requirements for different

Stakeholders to the levels of Abstraction Hierarchy

 Control Room

Operators

Road Works

Crews

Drivers

(Road

users)

Domain

purpose

Values

Priorities

Congestion

Incident

Record activity

Congestion

Infrastructure

Congestion

Risk

Journey time

Information

Knowledge

semantics

insight

Support to

response

Update log

Conditions

{repair / works,

weather, traffic

flow / density,

environmental}

Driver

behaviour

Compliance

Facts

ideas

opinions

Availability

{signage,

CCTV}

Availability

{lane, road, exit /

entry}

Movement

Accident

Source

objects

Location

{signage,

CCTV}

Content

{signage,

CCTV}

Map Vehicles

Motion

Compliance

.

In Table 1, relations are mapped and examples of the type of

information which might be used in the system to support these

relations are indicated. This provides a simple means of eliciting

the information which might be useful for this system. Finally,

taking the relationships defined in Table 1, we sketch the concept

layout (Figure 6) for the User Interface.

4.1 Graphic Options
Figure 6 contains 8 regions. The following list outlines some of

the options that are being considered in the design. Items in the

list marked * correspond to existing information displays in the

control room.

1. Road status (traffic conditions), e.g., displayed as a

fundamental diagram. This could also compare current

traffic conditions with the same time last week, or

predicted traffic conditions and likely trends;

2. Values / trends / forecasts: this display could provide

operators with views of the predicted traffic, or driver

behavior, to allow comparison between alternative

courses of action;

3. Road user goals: this display could indicate information

which might be relevant to road user activity, for

instance, alternative routes which drivers might take if

there is congestion;

128

4. Driver behavior and compliance: this display could

indicate how road users are behaving. This could

include average speed in each lane or average distance

between vehicles;

5. CCTV content / control*: this display would present the

images from the selected CCTV camera to the operator,

and allow the CCTV camera to be controlled;

6. Control activity, signage content*: this would show the

actions that the operator is able to perform and the

content which could be presented on variable message

signs;

7. Log, open tasks, scheduled events*: this would show the

log of the current incident that the operator is working

on, together with open tasks or any scheduled events

that need to be dealt with;

8. Map of road network*: displayed as a map of the ring

road (either a schematic as in the current design or a

more detailed map of Grenoble and the road network),

with key Objects indicated, e.g., CCTV and sign

locations, junction (ramps) etc. This could also be used

to display the location of incidents, such as congestion.

5. SITUATION AWARENESS AND

ECOLOGICAL INTERFACE DESIGN
For the operator, Situation Awareness involves selecting the most

appropriate information source (or combination of sources) and

then analyzing the information in order to make sense of the

system being controlled. This raises questions such as what is the

‘system’ that is being worked with, and what constraints might

affect interaction with this system. In other words, the focus of

operator activity can be described in terms of the problem space in

which humans make decisions, the sort of tasks and decisions that

humans make, and the constraints which affect performance of

these activities. Ecological Interface Design addresses these

concerns [8.].

Figure 6: Schematic User Interface for Road Traffic Case

The concept of Ecological Interface Design (EID), developed

from Cognitive Work Analysis (see next section), draws on

Gibson’s [9.] concept of direct perception (later encompassed by

the ‘ecological psychology’ movement). For User Interface

design, this leads to the assumption that people are able to

perceive meaning of objects directly (i.e., with no need for

cognitive intervention) when the situation in which they encounter

those objects provide a suitable context for interpretation. A

further assumption of EID is that the task constrains the ways in

which information is interpreted and defined to be salient or

meaningful. Within this ‘task ecology’, it is plausible to assume

that different people will interpret the information in different

ways (according to their current tasks, goals, experience and

training). Thus, the ‘task ecology’ of a system is defined by the

range of states in which it can develop and the constraints that

these states place on people interacting with the system.

Relating Situation Awareness to EID, we might expect operators

to be able to spot patterns in the data and then respond to these by

selecting a course action. It is interesting to contrast guidance for

the design of User Interfaces from the perspective of Situation

Awareness with that presented for EID. As Table 2 shows, there

are strong similarities between the approaches (even if the

underlying theory and the terminology used differ). Both

emphasize the benefit of ‘direct’ display of information and both

imply the need to represent the system in terms of user goals and

in terms of different levels of system operation and performance.

Table 2: Comparing EID and SA

Design for Situation

Awareness

Ecological Interface

Design

Relate to operator’s major

goals

Represent function and

meaning in the task

ecology

Present information directly Design to support direct

perception of visual

information

Assist system projection

Display global status Reveal underlying system

process and constraints

Support global-local trade-offs

Support perception-action

schemata

Take advantage of human

parallel processing capability

Integrated capabilities

permit more work with less

cognitive effort

Filter information judiciously

5.1 User Interface for First Prototype Trials
While Figure 1 presents the User Interface derived from our

analysis of operator activity and information requirements, the

first prototype for the SPEEDD demonstration focuses on a

specific subset of this use case. In the demonstration, the operator

needs to monitor ramp metering and to accept (or challenge) the

129

automated systems control of ramps around the city. The User

Interface for this task is presented in Figure 7. In addition to the

User Interface supporting the demonstrator task, it also provides

an opportunity for controlled experiments which will allow testing

of the decision models and the eye-tracking metrics. For these

experiments, participants will be presented with a series of ramp

metering scenarios and will need to respond as quickly as possible

to the automated system’s recommendations. Using reaction time,

it is possible to distinguish between different levels of

performance, e.g., when all windows in the display contain

corresponding information versus situations when information in

one window conflicts with the others. In addition to reaction

time, the experiments will also employ eye-tracking to ascertain

which information sources participants tend to focus on under the

different conditions.

Figure 7: User Interface for first SPEEDD

demonstration

6. DISCUSSION
Key to the development of Visual Analytics is an appreciation of

how Visual Analytics operates in a working environment in which

other actors will share information with each other, or will interact

with systems outside the core Visual Analytics system. This

means that it important to appreciate the Socio-Technical

Infrastructure in which the technology will be used (Figure 8).

Consequently, the challenges this paper aims at addressing are the

relating to information need, rather the information visualization.

The latter is concerned by how the available information is

presented, whereas the former shows what information shall be

presented.

In this paper we demonstrate the application of Cognitive Work

Analysis to the derivation of an Ecological Interface Design of the

User Interface for the SPEEDD project’s Road Traffic

Management Use Case. Understanding operator tasks and

information requirements (in terms of a Socio-Technical Systems)

allows us to develop concepts for User Interface designs which

reflect the job of the operator. This helps define the ‘task

ecology’ in which operators perform their work, and helps define

one aspect of the ‘ecological’ interface. The User Interface also

reflects a desire to present information in formats which operators

can spot patterns, trends and combinations of data using a form of

‘direct perception’. The intention is to develop such designs so

that operators can monitor system status by glancing at the

displays during normal operations, rather than needing to engage

in lengthy search and retrieval processes to discover information.

The benefit of providing intuitive system overview is that it

support operator Situation Awareness of steady-state, normal

operations.

Figure 8: Visual Analytics in a Socio-Technical System

When operations deviate from normal, e.g., due to an actual or

predicted incident, then the role of the operator changes from

system monitor seeking to maintain Situation Awareness, to active

responder seeking to ensure that system status returns to normal as

quickly and efficiently as possible. In the SPEEDD project, this

role is also performed by automated systems which detect system

activity and perform responses to the activity. This means

‘control’ is now allocated between operator and automated

system. We are developing the User Interface to not only inform

the operator of system status, and automated system behavior but

also to cue operators as to when (and how) they might need to

intervene.

The User Interface shown in Figure 7, for instance, allows the

operator to request that the system <explain> current settings and

130

decisions, at any time during the operation. However, if the

operator feels that a setting or decision is not appropriate or

correct, then the ramp being controlled can be selected and the

decision can be queried, using the <challenge> button. This then

allows the operator to either reset parameters or engage in some

other form of intervention. While this is a simple example, it

highlights how User Interface can be used to indicate the

constraints under which the operator can act (where ‘constraint’ is

seen as a positive means of shaping operator activity and

indicating which function the operator is expected to perform).

7. REFERENCES
[1.] Keim, D., Kohlhammer, J., Ellis, G. and Mansmann,

F. eds, (2010). Mastering the Information Age:

Solving Problems with Visual Analytics, Goslar,

Germany: Eurographics Association.

[2.] Bainbridge, L., (1983) Ironies of automation,

Automatica, 19, 775-779.

[3.] Sacha, D., Stoffel A., Stoffel, F., Kwon, B.C., Ellis, G.

and Keim, D.A. (in press) Knowledge generation

model for visual analytics, IEEE Transactions on

Visualisation and Computer Graphics.

[4.] Byrne, E. A., & Parasuraman, R. (1996)

Psychophysiology and adaptive automation,

Biological psychology, 42, 249-268.

[5.] Parasuraman, R., Cosenzo, K.A. and De Visser, E.

(2009) Adaptive Automation for Human Supervision

of Multiple Uninhabited Vehicles: Effects on Change

Detection, Situation Awareness, and Mental

Workload, Military Psychology, 21, 270–297.

[6.] Parasuraman, R., Mouloua, M. and Molloy, R. (1996)

Effects of Adaptive Task Allocation on Monitoring of

Automated Systems, Human Factors, 38, 665–679.

[7.] Johnson, A.W., Oman, C.M., Sheridan, T.B., Duda,

K.R., 2014. Dynamic task allocation in operational

systems: Issues, gaps, and recommendations, in: 2014

IEEE Aerospace Conference. Presented at the 2014

IEEE Aerospace Conference, pp. 1–15

[8.] Rasmussen, J. and Vicente, K. (1989) Coping with

human errors through system design: implications for

ecological interface design, International Journal of

Human Computer Studies, 31, 517-534.

[9.] Gibson’s (1969) Gibson, J. (1979) The Ecological

Approach to Visual Perception, Boston, MA:

Houghton Mifflin.

[10.] Jenkins, D.P., Stanton, N.A., Salmon, P.M. and

Walker, G.H. (2009) Cognitive Work Analysis:

coping with complexity, Avebury: Ashgate.

[11.] Vicente, K.J. (1999) Cognitive Work Analysis:

towards safe, productive and healthy computer-based

work, Mahwah, NJ: LEA.

[12.] Rasmussen, J., Pejtersen, A. And Goodstein, L.P.

(1994) Cognitive Systems Engineering, New York:

Wiley.

[13.] Folds, D., Brooks, J., Stocks, D., Fain, W., Courtney,

T. and Blankenship, S. (1993) Functional Definition

of an Ideal Traffic Management System, Atlanta, GA:

Georgia Tech Research Institute.

131

Querying Graph Structured Data (GraphQ)

Federica Mandreoli (University of Modena and Reggio Emilia),
Riccardo Martoglia (University of Modena and Reggio Emilia),
Wilma Penzo (University of Bologna)

132

Using Graph Traversal in Scientific Data Interpolation

Alireza Rezaei Mahdiraji
Jacobs-University
Bremen, Germany

a.rezaeim@jacobs-university.de

Peter Baumann
Jacobs-University
Bremen, Germany

pbaumann@jacobs-university.de

ABSTRACT
In this paper, we present a topological neighborhood ex-
pression which allows us to express arbitrary neighborhood
around cells in unstructured meshes. We show that the ex-
pression can be evaluated by traversing the connectivity in-
formation of the meshes. We implemented two algebraic
operators which use the expression to compute neighbors of
cells and approximate data fields of cells by aggregating their
neighbors’ information. We evaluate one of the operators on
a real dataset using four queries and report the results.

Keywords
Graph Data Model, Halo, Hull, Regrid, Topological Neigh-
borhood, Unstructured Meshes

1. INTRODUCTION
Many scientific domains such as oceanography and clima-

tology have data stored on unstructured meshes. Weighted
contribution from nearest-neighbor cells is known to im-
prove accuracy of interpolation operations on unstructured
meshes. Examples of such operations are smoothing a skewed
data field, and computing partial derivative in a point of in-
terest.

The common method to specify a neighborhood for a cell
of interest is stencil string which is originally defined only for
structured meshes. Stencil allows us to define the value of
a cell as a function of its topological nearest-neighbor cells.
In [3], the concept of stencil is generalized for unstructured
meshes. A stencil string w.r.t. an unstructured mesh con-
sists of a sequence of digits representing the dimensions of
cells in the neighborhood of a cell of interest which needs to
be accessed by an algorithm. The stencil string uses hard
coded dimensions and thus contains no topological abstrac-
tion. Furthermore, it is not obvious from the string what is
the result, i.e., union of elements visited in each intermedi-
ate layer (hull) or the elements only in the last layer (halo).
Finally, it is not possible to filter intermediate cells using
predicates.

c©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0.

In this paper, we present a neighborhood expression which
uses topological functions instead of dimensions and allows
filtering of intermediate results. We design two algebraic
operators which use the expression to extract neighborhood
and approximate information of a cell by interpolating in-
formation of its neighbors.

The paper is organized as follows: Section 2 introduces
some mathematical concepts, Section 3 discusses the related
work, Section 4 presents the new neighborhood expression,
Section 5 shows the algebraic operators which use the ex-
pression to explore the neighborhood and interpolate data,
Section 6 reports the experiments, and Section 7 concludes
the paper.

2. MATHEMATICAL CONCEPTS
We define a mesh as a 4-tuple M = (C, ≺C, Γ, F) where

C, ≺C, Γ, and F are the set of cells, incidences, geometric
embedding, and data fields of the mesh M .

C contains a set of k-cells (0 ≤ k ≤ d) which is closed
under intersection, i.e., the intersection of two cells is either
empty or another lower dimension cell of the mesh. Each cell
in turn is formed by the union of lower dimensional cells (aka
the cell boundary). Cells of dimension i are called i-cells.
Cells of dimensions zero, one, two, and three are also called
vertices, edges, faces, and bodies. Dimension of a mesh is
defined as the maximal dimension of its cells (d).

The incidence set ≺C specifies the topological structure of
a mesh using the binary incidence relationship. The inci-
dence relationship is a partial order between cells in C, i.e.,
cells c and e are incident (i.e., c ≺C e) if one is located on the
boundary of the other, i.e., c ∈ ∂(e) (dim(c) < dim(e)) or
e ∈ ∂(c) (dim(e) < dim(c)) where ∂() represents the bound-
ary of the cell c. When k-cell c is on the boundary of m-cell
e, then c is called a k-face of e and e is a m-coface of c or
just co-boundary of c. When k = m − 1 then c is an imme-
diate boundary face of e and e is an immediate co-boundary
(coface) of c. Cells c and e (k = m 6= 0) are p-adjacent if
they share a p-face. Two vertices v1 and v2 (k = m = 0)
are adjacent if they share an edge. The adjacent relation
can be expressed as nested application of the co-boundary
and boundary relations, i.e., to find k-adjacent cells to the
m-cell c, first we need to find all its boundary k-faces and
then for each k-face find its m-cofaces.

The geometric embedding Γ maps each cell in C to its
corresponding geometric realization such that (c1 ≺C c2) ⇔
(Γ(c1) ⊂ Γ(c2) =

⋃
c∈∂(c2) Γ(c)). For instance, the geomet-

ric realization of vertices are their coordinates.
F contains a set of (partial) functions which assign data

133

X

Y
Z

W

U

a

b

c

d

e

f g
f1

f2

f3

b b

b

bb
f1 f3 f2

a b f d e c g

X Y Z W U

Figure 1: A 2D triangular unstructured mesh (left)
and its incidence graph (right).

values to each cell. For instance, the function fi assigns a
value of type τ to each i-cells: fi : Ci → τ where Ci refers
to i-cells.

We can represent mesh topology using Incidence Graph
(IG) such that the nodes of the graph represents the cells
of the mesh and the links between two nodes encode the in-
cidence relationship. Figure 1 shows a simple 2D simplicial
mesh (left) and it topological structure (right) as a incidence
graph [13]. The incidence graph in Figure 1 shows that the
boundary and co-boundary a cell can be extracted by follow-
ing the links in the graph starting from the cell downward
and upward, respectively. The immediate boundary and co-
boundary cells of a cell are its children and parents. For
instance, the immediate boundary and co-boundary of the
edge d are {U, W } and {f3}, respectively and the boundary
and immediate co-boundary of face f3 are {d, c, g,W, U, Z}
and {}, respectively.

For detailed definitions, we refer the interested reader to
[13], Chapter 3 of [3], and the references therein.

3. RELATED WORK
Stencil string specifies a subset of neighboring vertices

of a given vertex on a structured mesh. The information
of the neighbors are later used by numerical approximation
algorithms to compute a weighted solution for the vertex.
In other words, the stencils determine the region of influ-
ence of numerical algorithms. For example, commonly used
neighborhood sizes by algorithms are three, five, and twenty
five neighbors for 1D, 2D, and 3D structured meshes, re-
spectively. The neighbors in a structured mesh can be eas-
ily specified by index arithmetic, e.g., the four neighbors of
the point (i, j) in a 2D structured grid. In systems such as
Pochoir, the neighboring vertices are explicitly listed [15].
Figure 2 (left) shows four neighboring vertices of the red
vertex on a 3D structured mesh (5-point stencil).

In his thesis, Berti generalized the idea of stencils for un-
structured meshes by abstracting topological structures of
mesh algorithms as an incidence sequence. For instance, if
the incidence sequence of a mesh algorithm is 010 (or al-
ternatively shown as vertex-edge-vertex) w.r.t. an unstruc-
tured mesh, then it means any calculation for a vertex v
needs to have access to all adjacent vertices of v (i.e., ver-
tices sharing an edge with v) [3]. The snippet below shows
how the stencil string 010 can be used to computes the data
for each vertex v1 as the sum of the data of its adjacent
vertices (v2).

forall vertices v1

forall edges e incident to v1

forall vertices v2 incident to e
result[v1]+=data[v2]

Figure 2 (right) depicts 010 stencil for the red vertex in a
2D unstructured mesh. As it can be seen, the stencil string
is implemented as nested for loops. Furthermore, Berti for-
mally defined the concept of incidence hull as the union of
all cells expressed by a stencil string. Gridfields uses stencil
string in the same manner [7].

The proposed neighborhood expression in this paper ex-
tends the stencil string in [3]. The new neighborhood expres-
sion offers several advantages to the stencil string notation:
it uses topological abstraction rather than dimensions, it can
return two types of neighborhoods (i.e., hull or halo), and it
is able to filter the intermediate results.

Figure 2: 5-point stencil for a vertex in 3D structured

mesh (left) and adjacent vertices of the red vertex repre-

sented by 010 stencil in a 2D unstructured mesh (right).

The other related area to this research is graph databases.
We use graph database Neo4j to implement the proposed
neighborhood expression. Neo4j is a popular open source
graph database implemented in Java which is operational
since 2003. Neo4j is schema-free, supports full ACID trans-
actions, and provides implementations for several graph al-
gorithms out of the box. Neo4j uses property graph data
model, i.e., data is stored in nodes and relationships of a
multi-graph with pairs of key-value properties. Neo4j graphs
can be queried using either its declarative query language
(known as Cypher) or its Core Java API. We refer the reader
to Neo4j documentation for further details on Neo4j and
Cypher [1, 14].

The reason to choose graph databases is that they allow
implementing the general purpose mesh data model (see
Section 5.1). The reasons for choosing Neo4j rather than
other graph databases such as DEX (implemented in C++)
are two folds, namely, high performance on graph traversal
queries and supporting spatial data. Recent research show
that the performance of Neo4j drastically improved since its
early version. The argument is supported by performance
evaluation of several graph databases (e.g., such as Neo4j,
DEX, orientDB, etc.) using data ingestion, traversal, non-
traversal, and manipulation queries. Neo4j outperforms the
other systems in traversal queries (the main focus of this
paper) [8, 9, 11, 10]. Moreover, Neo4j is shown to have
close performance to graph-processing frameworks such as
GraphLab and Giraph [5]. The spatial layer is crucial for
several mesh operations. This is beyond the scope of this
paper and will not be covered here.

4. TOPOLOGICAL NEIGHBORHOOD EX-
PRESSION

The basic idea of the neighborhood expression is to use
topological abstraction for expressing neighborhood traver-
sal, i.e., to express a neighborhood as nested application of
boundary, co-boundary, and adjacency functions. We define

134

these functions as follows:
Boundary Function. it is represented as b(c, k) for a given

cell c and it returns the boundary elements of dimension k
(k < dim(c)) of the cell c:

b(c, k) = {e| (e ∈ ∂(c)) ∧ (dim(e) = k)}
For a cell set C, it is defined as the union of k-cells on the
boundary of each member of the set.

Immediate Boundary Function. it is represented as ib(c)
for a cell c and it returns the immediate boundary of c:

ib(c) = {e|(e ∈ ∂(c)) ∧ (dim(e) = dim(c) − 1)}
Co-Boundary Function. it is represented as cob(c, k) for a
given cell c and it returns the co-boundary of dimension k
(k > dim(c)) of cell c:

cob(c, k) = {e| c ∈ ∂(e) ∧ (dim(e) = k)}
For a cell set C, it is defined as the union of k-cells on the
co-boundary of each member of the set.

Immediate Co-Boundary Function. it is represented as
icob(c) for a given cell c and it returns the immediate co-
boundary of c:

icob(c) = {e| c ∈ ∂(e) ∧ (dim(e) = dim(c) + 1)}
Adjacency Function. it is represented as adj(c, k) for a given
cell c and it returns the k-adjacent cells to the cell c, i.e.,
cells which share a k-face with c. Formally,

adj(c, k) = {e| (∃s : s ∈ (∂(c) ∩ ∂(e))) ∧ dim(s) = k}
Note that dim(c) = dim(e).
The definition of the adjacency relation for vertices is defined
as follows:

adj(v) = {c| ∃e : (dim(e) = 1) ∧ (v ≺ e) ∧ (c ≺ e)}
where v and c are vertices. Note that in this case the func-
tion has only one argument.

4.1 Basic Neighborhood Expression
The basic neighborhood expression is semantically equiv-

alent to the stencil string. The difference is that instead
of using dimensions it uses the topological functions de-
fined in the previous section. This means that arbitrary
cell neighborhoods can be expressed as nested applications
of the functions. Assuming the set C containing all initial
elements which we would like to traverse their neighborhood
(a.k.a. seed), the basic expression is defined as:

nex = en(en−1(· · · e1(e0(C, k0), k1) · · · , kn−1), kn)

where nex is the neighborhood expression, ei is a (immediate)
boundary, (immediate) co-boundary, or adjacency relation-
ships, 0 ≤ k ≤ d (d is the mesh dimension), ki shows an op-
tional dimension argument for the functions, and 0 ≤ i ≤ n.
The expression repeatedly applies the functions to explore
the neighborhood of the cells in the set C. Functions such as
b needs a dimension parameter which specifies the dimension
of the target boundary element. For the adjacency function,
adj means p-cells which share a (p − 1)-face with a given
p-cell in the seed set.

The nex is a functional expression, i.e., its functions are
applied from innermost to outermost, i.e., e0 is applied to the
seed set C and produces layer zero result L0, e1 is applied
on L1 and stored as layer one result L1 and so on.

For instance, the stencil 010 (adjacent vertices of the seed
vertices) can be expressed as icob(ib(V)) or simply adj(V),
where V is the seed set. As another example, a common
stencil on 2D triangular mesh is 202, i.e., neighboring 2-
cells which share at least one vertex with the seed 2-cell. In
Figure 2 (right), the stencil for the triangle number 1 as seed
contains triangles number 2 to 11. The stencil can be ex-
pressed as cob(b(F, 0), 2) (or icob(icob(ib(ib(F))))) where F
is the seed set. The stencil 0102 can be succinctly expressed
as cob(adj(V), 2) with V as the seed set.

The final result of the expression can be either the ele-
ments in the last layer or union of elements in all intermedi-
ate layers. In the latter case, the result forms a stencil mesh
[7]. We define these two types of outputs as follows:

Halo Neighborhood. A halo neighborhood w.r.t. a given
neighborhood expression nex contains the cells of the last
layer only, i.e., before computing elements of the current
layer it removes cells from the previous layer:

halo(C, nex) = Ln

Hull Neighborhood. A hull neighborhood w.r.t. a given
neighborhood expression nex contains the union of elements
in all intermediate layers of the nex evaluation:

hull(C, nex) =
i=n⋃

i=0

Li

4.2 Advanced Neighborhood Expression
The neighborhood expression from Section 4.1 has enough

abstraction w.r.t. mesh topology. However, in comparison
to stencil string, it does not offer anything new. Often appli-
cations need to filter the intermediate results of the traversal
while searching the neighborhood. This is not possible with
stencil string. Thus, we further extend the basic neighbor-
hood expression to allow filtering of cells in intermediate
layers using predicates on mesh components (e.g., field val-
ues, geometry, etc.). To this end, we extend the definition
of the functions as follows:

Extended Boundary Function. It is represented as b(C, k, p).
It computes the k-cells in the boundary of each element in
C and then it checks if the boundary elements satisfies the
predicate p. It returns elements in the boundary which sat-
isfy p. It is formally defined as follows:

b(C, k, p) =
⋃

c∈C

{e|(e ∈ ∂(c)) ∧ (dim(e) = k) ∧ p(e)}

where p(e) means that the cell e satisfies p.
Extended Immediate Boundary Function. It is represented

as ib(C, p). For each cell c in C, it computes its immediate
boundary and applies the predicate p on each cell in the
immediate boundary of c. It returns cells in the immediate
boundary which satisfy the predicate. It is formally defined
as follows:

ib(C, p) =
⋃

c∈C

{e|(e ∈ ∂(c)) ∧ (dim(e) = dim(c) − 1) ∧ p(e)}

Extended Co-Boundary Function. It is shown as cob(C, k, p).
For each cell c in C, it computes its co-boundary elements
of dimension k and checks if they satisfies the predicate p.
It returns co-boundary cells which satisfy the predicate. It
is formally defined as follows:

cob(C, k, p) =
⋃

c∈C

{e|(c ∈ ∂(e)) ∧ (dim(e) = k) ∧ p(e)}

135

Extended Immediate Co-Boundary Function. It is repre-
sented as icob(C, p). For each cell c in C, it computes its im-
mediate co-boundary and applies the predicate p on each cell
in the immediate co-boundary of c. It returns cells in the im-
mediate co-boundary which satisfy the predicate. icob(C, p)
is formally defined as follows:

⋃

c∈C

{e|(c ∈ ∂(e)) ∧ (dim(e) = dim(c) + 1) ∧ p(e)}

Extended Adjacency Function. It is represented as adj(C, p).
For each p-cell c in C, it computes its (p − 1)-adjacent cells
and checks the predicate p. It returns (p − 1)-adjacent cells
which satisfy the predicate. adj(C, p) is formally defined as
follows:

⋃

c∈C

{e|(∃s : s ∈ (∂(c) ∩ ∂(e))) ∧ (dim(s) = k) ∧ p(e)}

With the definitions above, the new functional neighborhood
expression is as follows:

nex = en(en−1(· · · e1(e0(C , k0, p0), k1, p1)

· · · , kn−1, pn−1), kn, pn)

where ki and pi are the (optional) dimension and the pred-
icate arguments, respectively. The predicate pi is defined
on properties of cells returned by ei, e.g., predicates on data
fields or geometric features such as length, area, volume, etc.

For instance, the expression icob(ib(T, f < 24.0)) (or equiv-
alently adj(T, 2, f < 24.0)) finds 2-adjacent 3-cells using 3-
cells in T as seed set. The predicate selects only 2-cells where
the value of the field f is less than 24.0.

Such a functional notation with many nested parentheses
can become very tedious to read/write. Thus, we propose
a notation inspired by XPath [2]. We use slash to separate
the topological functions and brackets to express predicates.
Assuming C as the seed set, the previous nex can be written
as follows:

nex = e0(k0)[p0]/e1(k1)[p1]/ · · · /en−2(kn−2)[pn−2]/

en−1(kn−1)[pn−1]/en(kn)[pn]

Note that ki and pi are optional and the seed set is not
present in the expression. In the next Section, we show how
to specify the seed.
For instance, the expression from the previous example can
be written as ib[f < 24.0]/icob using T as seed.

In comparison to the functional form, the evaluation of
XPath-like neighborhood expression is done left-to-right, i.e.,
first applying e0 to the seed set C and filtering the result us-
ing p0, then applying e1 to the result from layer zero and so
on. More formally, the elements in each intermediate layer
is computed as follows:

nex =





L0 =
⋃

c∈C {e|e ∈ e0(c) ∧ p0(e)} i = 0
L1 =

⋃
c∈L0 {e|e ∈ e1(c) ∧ p1(e)} i = 1

· · · · · ·
Ln =

⋃
c∈Ln−1 {e|e ∈ en(c) ∧ pn(e)} i = n

where Li represents elements in the layer i and pi(e) means
that the predicate pi holds for cell e.

5. IMPLEMENTATION
We implemented a set of algebraic mesh operators which

we call AMQL (Algebraic Mesh Query Language). The op-
erators are declarative meaning that we only need to de-
scribe the information need and the AMQL engine will figure
out how to find it. Two of AMQL’s operators use the neigh-
borhood expression, namely, the neighbors and self-regrid
operators. Other operators are described in [13]. In the rest
of this section, first we discuss the data model which we use
to store unstructured meshes as graphs and then we explain
the neighbors and self-regrid operators.

5.1 Graph Data Model for Meshes
In Section 2, we discussed that incidence graph can store

connectivity information of unstructured meshes. The graph
model allows us to find boundary, co-boundary, and adja-
cency relationships of cell using graph traversal.

The IG does not encode information about the data fields
and geometric embedding of cells. Many mesh application
domains have operations which needs to manipulate fields
and geometry data. Furthermore, the IG stores only inci-
dence relationship and the adjacency relationship needs to
be computed on demand. Neighborhood queries use adja-
cency information extensively. Adjacency based data struc-
ture are proved to be more efficient [4].

Based on the above observations, we extend the IG model
to a general purpose mesh model such that nodes in the
graph contains data fields and geometries and each node
stores information about its adjacent nodes. Figure 3 shows
the graph data model for a linear 3D unstructured mesh.
The nodes in the graphs represent the cells, e.g, vertex, edge,
face, and body. V F ieldi, EFieldi, FFieldi, and BFieldi

represent properties of vertices, edges, faces, and bodies, re-
spectively. Geom is the geometric object of each node, i.e.,
point for vertex, line-segment, polygon for face, and volume
for body. This allows us to compute geometric predicates
such as length, area, volume, centroid, distance, etc. Fur-
thermore, there are two types of topological relationships
between nodes, namely, boundary (between cells of differ-
ent dimensions) and adjacency (represented as self-loop in
the Figure 3). These relationships allow us to navigate the
topology using graph traversal algorithms.

5.2 Self-Regrid Operator
In domains such as climatology and oceanography, the

regrid operator is used to transform data from source meshes
to a target mesh [6]. The operator works in two steps: first,
it assigns a set of target cells to each source cell (mapping
step), then, it combines the data of the mapped cells to
estimate data of the target cell (interpolation step) [7].

The self-regrid operator is a special case of the regrid op-
erator (i.e., the source and the target meshes are the same)
where the goal is to estimate the data of a cell using its
neighbors information. The mapping step uses topological
or geometric neighborhood functions. The geometric map-
ping function, which assigns neighbors to a cell based on
their geometric distance to the cell (e.g., k-nearest neigh-
bors), is beyond the scope of this paper. The neighborhood
expression introduced in this paper can be used as a topo-
logical mapping function in the self-regrid operator to assign
neighboring cells to each given cell, e.g., assigns all adjacent
vertices to each vertex.

136

Figure 3: The graph data model for 3D linear meshes.

The notation for self-regrid operator is:

regrid(M, i, nex, agg f = aggFunc(f))

The operator assigns cells defined by nex to each i-cell of
M using the i-cell as the seed. Then, it applies the ag-
gregation function aggFunc on the field f of the mapped
cells and store the result as a new field agg f for the i-cell.
The algorithm 1 shows how the self-regrid algorithm works.
The algorithm loops over i-cells of the mesh M (line 7) and
by using each i-cell as seed evaluate the topological func-
tions from left-to-right. Th topological functions is stored
in L and L[i] refers to the ith function in the expression
nex. For instance, if the topological function is ib and has a
corresponding predicate, it first computes the result of the
topological function and then for each cell in the result check
the predicate. If there is no corresponding predicate, it just
returns the result of the function (line 12-17). The value of
field f of the mapped cells is combined to estimate value for
the target cell (line 23-26).

For instance, the following self-regrid operator can be used
to smooth temperature field on each vertex of the mesh M
using information from its adjacent vertices. To find adja-
cent vertices we need to compute the neighborhood expres-
sion adj (or icob/ib). This is equivalent to the stencil string
010.

regrid (M, 0, adj , agg_temp =avg(temperature))

In more structured and readable form, we can write it as
follows:

FOR VERTEX v IN M
MAP v TO neighbors(M, v , halo , icob/ib) AS m
RETURN v, avg(m.temperature)

The FOR loop iterates over all vertices of the mesh M. For
each vertex, the operator maps the vertex to the output set

Algorithm 1: Evaluation of the Regrid Operator
regrid(M, i, nex, agg f = aggFunc(f))

input : Mesh M , dimension i, field f , aggregation function
aggFunc, output field name agg f , and neighborhood
expression nex

output: Mesh M with new field agg f
1 L← List of (co-)boundary functions extracted from nex;
2 P ← List of predicates extracted from nex;
3 MappedCells ← ∅;
4 Seed← ∅;
5 S ← ∅;
6 fvals← ∅;
7 while (there are i-cells in C) do
8 Seed ← next unused i-cell c;
9 k ← i;

10 for (j from 0 to length(L))) do
11 for (e in Seed) do
12 if (P [i] 6= null) then
13 I ← L[j](e);
14 add cell c from I to S where P [i](c) holds;

15 else
16 add ib(e) to S;
17 end

18 end
19 Seed← S;
20 S ← ∅;
21 end
22 MappedCells ← Seed;
23 for (k-cell e in MappedCells) do
24 add e.f to fvals;
25 end
26 c.”agg f” = aggFunc(fvals) ;
27 MappedCells ← ∅;
28 fvals← ∅;
29 end

m from the neighbors operator (using the MAP ... TO ...
AS clause) and return the average of the temperature of the
mapped cells. The dot notation is used to refer to the field
temperature of a vertex, i.e., e.temperature.

5.3 Topological Neighbors Operator
The neighbors operator can create sub-meshes (a.k.a. sten-

cil meshes). It is represented as N (M, E, ROI,nex) where
its arguments are a mesh, seed set, the Region Of Influence
(ROI), and a neighborhood expression, respectively. The
Region Of Influence (ROI) is either halo or hall. The oper-
ator returns a set of cells by evaluating the expression nex
on the seed set E w.r.t. to the ROI argument.
For instance, the hull mesh around a vertex v containing
the vertex itself and all edges and faces can be expressed as
N (M, {v} , hull, icob/icob/ib/ib).

Algorithm 2 shows how to construct result of the neigh-
bors operator N (M, E, halo, nex). A similar algorithm can
be written for the hull with small modification of the algo-
rithm 2.

6. EXPERIMENTAL RESULTS

6.1 Experimental Setup
Experimental Design. We conducted experiments to

evaluate the performance of the declarative self-regrid op-
erator. The operator is implemented within AMQL which
contains a collection of declarative operators for unstruc-
tured meshes implemented in Java. As explained in Section
3, the main reason to use Java is that Neo4j provides spa-
tial data management (crucial for some of the operators)
and either performs better or has close to existing graph

137

Algorithm 2: Algorithm Evaluation of Neighbors Op-
erator N (M, E, halo, nex)

input : Mesh M , seed cells E, ROI = halo, and neighborhood
expression nex

output: Sequence N containing all cells which are in the defined
neighbourhood by nex

1 N ← ∅;
2 L← List of (co-)boundary functions extracted from nex;
3 P ← List of predicates extracted from nex;
4 Seed← E;
5 S ← ∅;
6 I ← ∅;
7 k ← dimension of element in E;
8 for (i from 0 to length(L)) do
9 for (e in Seed) do

10 if (P [i] 6= null) then
11 I ← L[i](e);
12 add cell c from I to S where P [i](c) holds;

13 else
14 add ib(e) to S;
15 end

16 end
17 Seed ← S;
18 S ← ∅;
19 end
20 N ← Seed;

databases and frameworks such as DEX or GraphLab. We
compare the performance of our implementation with GrAL
(a C++ mesh library) [3] by measuring the execution time
(this does not include time of building internal data struc-
tures or indexes for each system). The reason to use GrAL
is that it uses a generic approach to meshes which enables
it to express virtually any combinatoric query using domain
specific language of iterators [3].

We use four smoothing field queries in the experiments.
The queries differ in the length of the neighborhood expres-
sions and use of predicates. This allows us to observe the ef-
fect of expression length and predicates on the performance.

Implementation Details. We run the experiments on
a system with four cores (2.4 GHz processor) with 8GB of
RAM and XUbuntu 12.10 operating system.

We use ANTLR to parse AMQL operators including the
self-regrid [12]. The operators are implemented in Java and
use Neo4j database facilities, e.g., storage, indexes, traver-
sal framework, etc. However, the AMQL implementation is
storage neutral, i.e., the implementation is abstracted and
can be used with any other system which provides imple-
mentations for the abstract methods.

We implemented the self-regrid operator using both Cypher
and Neo4j core Java API. We refer to these two implemen-
tations as AMQL Cypher and AMQL Java, respectively. In
particular, the implementation of AMQL Cypher translates
each regrid query to a Cypher query. We report performance
of each implementation .
We use GrAL as of 1.11.2014 and Neo4j 2.1.6. GrAL is
compiled using gcc 4.6.3 with setting -03 which controls
depth of template instantiation. GrAL implements each
query separately in C++. We run each query ten times
and average the response times over ten trials for each pair
of (query,dataset).

Dataset. We use a real dataset from oceanographic do-
main [7]. The dataset contains a 2D triangular mesh where
each vertex has two data fields, namely, temperature and
bathymetry. The number of vertices, edges, and faces in the
dataset are 20736, 39133, and 59884, respectively. To see

how the systems perform with the data set size, we applied
the subsetting operator from AMQL to divide the dataset
to three smaller datasets with different size of vertices, i.e.,
4862 (D1), 10270 (D2), and 20736 (D3). As it can be seen,
the second dataset has (almost) twice the number of ver-
tices as in the dataset two and the dataset three has twice
the number of vertices as in the dataset two. The reason
behind the subsetting is that all the queries needs to iter-
ate over all the vertices in the datasets. This means the
workload for each dataset is twice the previous dataset.

Queries. We use four field smoothing queries for the
experiment. The smoothing operation is commonly used to
smooth a noisy data field or a data field with missing values.
The queries are as follows:

Q1. Compute temperature of each vertex as average of
the temperature of its adjacent vertices.

In the Section 5.2, we showed the regrid operator for this
query and its Cypher translation is as follows:

MATCH (p0:M)
WHERE p0.dim=0
WITH p0
MATCH (p0:M)<-[:ADJACENCY]-(p1:M)
RETURN p0.cid , avg(p1.temperature)

The MATCH clause is used for graph pattern matching.
The first MATCH clause defines an iterator variable p0 on
all nodes of mesh M . The WHERE clause filters p0 to ver-
tices where dim property is zero. The WITH clause chains
several smaller queries. In the query, the WITH only passes
the vertices to the next part of the query. The second
MATCH clause does a path matching in the graph by se-
lecting all p1 nodes which has ADJACENCY relationship
with p0. Finally, the RETURN clause returns the identifier
of each vertex in p0 and average value of temperature over
all correspondent p1. We refer the interested reader to Neo4j
documentation for elaborate details on Cypher [1].

The GrAL C++ code implementing the same query con-
sists of 10 lines of codes which uses underlying GrAL ab-
straction such as Cell-On-Cell iterators and mesh functions.

Q2. Compute temperature of each vertex as average of
the temperature of its adjacent vertices with the bathymetry
field greater than 5.0.

The query can not be expressed by a stencil. The query
is equivalent to the neighborhood expression adj[bathymetry
> 5.0] or icob/ib[bathymetry > 5.0]. The implementation of
the query in the AMQL is as follows:

regrid(M, 0, adj[bathymetry > 5.0],
agg_temp =avg(temperature))

The regrid operator above is translated to the the following
Cypher query:

MATCH (p0:M)
WHERE p0.dim=0
WITH p0
MATCH (p0:M)<-[:ADJACENCY]-(p1:M)
WHERE p1.bathymetry >5.0
RETURN p0.cid , avg(p1.temperature)

The GrAL C++ code implementing the same query consists
of 10 lines of codes.

Q3. Compute temperature of each vertex as average of the
temperature of vertices which are exactly two edges (2-hops)
away from the vertex.

This is equivalent to the stencil string 01010 and the neigh-
borhood expression adj/adj (or icob/ib/icob/ib). The self-
regrid operator pertaining to the query is:

138

regrid (M, 0, adj/adj,
agg_temp =avg(temperature))

The regrid operator is translated to the following Cypher
query.

MATCH (p0:M)
WHERE p0.dim=0
WITH p0 MATCH (p0:M)<-[:ADJACENCY]-(p1:M)

<-[:ADJACENCY]-(p2:M)
RETURN p0.cid , avg(p2.temperature)

The GrAL C++ code implementing the same query consists
of 15 lines of codes. The code uses several abstraction con-
cepts from GrAL [3] and contains three nested FOR loops.

Q4. Compute temperature of each vertex as average of
the temperature of vertices which are exactly two edges away
from it. Consider immediate adjacent vertices only if their
bathymetry field is greater than 5.0.

There is no stencil equivalent to this query. The query is
equivalent to the neighborhood expression adj[bathymetry >
5.0]/adj (or icob/ib[bathymetry > 5.0]/icob/ib). The imple-
mentation of the query in AMQL is as follows:

regrid (M, 0, adj[bathymetry > 5.0]/adj ,
agg_temp =avg(temperature))

The above regrid operator is translated to the following
Cypher query.

MATCH (p0:M)
WHERE p0.dim=0 WITH p0
MATCH (p0:M)<-[:ADJACENCY]-(p1:M)

<-[:ADJACENCY]-(p2)
WHERE p2.bathymetry >5.0
WITH p0, p2
MATCH (p2:M)
RETURN p0.cid , avg(p2.temperature)

Note that the complexity of the Cypher query grows with
the length of the expression and the number of predicates.
Moreover, some predicates such as geometric predicates can
not be translated to Cypher.

The corresponding GrAL code for the query consists of 18
lines with three nested FOR loops.

6.2 Performance Evaluation
Figure 4, 5, 6, and 7 show the results of the Q1, Q2, Q3,

and Q4 queries. Clearly, the GrAL implementation outper-
forms AMQL in all the queries except Q3. A closer look
on the performance data of the Q1, Q2, and Q4 queries
shows that GrAL on average is 150 (570), 140 (565), 500
(60) percent faster than AMQL Java and AMQL Cypher,
respectively. However, in Q3, GrAL is on average 15 per-
cent slower than AMQL Java and 140 percent faster than
AMQL Cypher.

The performance of AMQL Java increases by increasing
the length of the neighborhood expression (see Figures 4
and 6). Its performance on Q3 even outperforms GrAL.
This means that the traversal framework of Neo4j is very
efficient on long expression. However, increasing the length
and adding predicates cause a drastic increase in the per-
formance of AMQL Java (see Figures 6 and 7). This means
that the traversal framework of Neo4j Java API does not
perform well on a complex neighborhood expression with
long length and predicates.

In comparison to AMQL Java, the performance of AMQL
Cypher is better on longer expressions with predicates (see

Figures 7). The reason is that we need to apply the traver-
sal framework several times while evaluating an expression
with predicates. Furthermore, the evaluation of predicates
is done using Java code. However, AMQL Cypher breaks
down the query to shorter path and applies the predicates
directly on Neo4j (which is faster than running on Java).

We conclude that both Cypher and Neo4j Java API should
be used in implementing of the the expression depending on
length of the expression and usage of predicates.

We observe that by increasing the length of the neighbor-
hood expression and adding predicates the performances of
AMQL and GrAL get closer (see Figure 6 and 7).

A common pattern in the performance of the both systems
is that the response times increase linearly with the number
of vertices. More precisely, for each pair of (system, query)
the execution time on D2 is (almost) twice the execution
on D1 and the execution time on D3 is (almost) twice the
execution on D2.

Figure 4: Performance of Q1 on AMQL and GrAL.

Figure 5: Performance of Q2 on AMQL and GrAL.

We believe that the poor performance of AMQL in com-
parison to GrAL has the following reasons. First, AMQL
provides a generic solution which can accept any neighbor-
hood expression as input while the GrAL implementations
are query specific, i.e., any changes in the query requires
changes in the implementation. The generic solution offers
a declarative way of expressing the self-regrid but it has a
cost which is the query parser overhead. Moreover, we use
Neo4j’s transactions in the implementation which introduce
significant overhead. Also, in comparison to GrAL which
uses a light and pure topological data structure, AMQL uses

139

Figure 6: Performance of Q3 on AMQL and GrAL.

Figure 7: Performance of Q4 on AMQL and GrAL.

a general purpose mesh data model which contains the com-
plete mesh information. This introduces further query pro-
cessing overhead. Finally, it is known that Java language
has inherent performance inefficiencies compare to C++.

To sum up, AMQL implementation works better on long
neighborhood expression without predicates. In terms of
expressiveness, the expression described in this paper is more
expressive than the stencil string. Furthermore, it offers
declarative querying (i.e., shorter and more readable than
C++) and allows persisting of the computed data (i.e., the
result of the regrid can be stored as a new field in the input
mesh).

7. CONCLUSIONS AND FUTURE WORK
We presented a topological neighborhood expression which

is more expressive than the stencil string. The implementa-
tion of the expression is declarative and generic. However,
compare to a query-specific implementation in C++ it per-
forms poorly (except on very long expressions).

In the future, we would like to measure the cost of the
operator w.r.t. to the total cost of the queries and improve
the operator implementation. Also, we would like to imple-
ment the operators on top of a graph database (framework)
written in C++ such as DEX or GraphLab and repeat the
experiments. We also want to use the expression in a struc-
tured query language for unstructured meshes similar to the
example in the Section 5.2.

8. ACKNOWLEDGMENTS
The authors would like to thank Dr. Guntram Berti for

his help in implementing the queries in GrAL library.

9. REFERENCES
[1] Neo4j - the world’s leading graph database, Viewed

December 2014.

[2] A. Berglund, S. Boag, D. Chamberlin, M. F.
Fernandez, M. Kay, J. Robie, and J. Siméon. Xml
path language (xpath). World Wide Web Consortium
(W3C), 2003.

[3] G. Berti. Generic software components for Scientific
Computing. PhD thesis, BTU Cottbus, 2000.

[4] D. Canino, L. De Floriani, and K. Weiss. Ia*: An
adjacency-based representation for non-manifold
simplicial shapes in arbitrary dimensions. Computers
& Graphics, 35(3):747–753, 2011.

[5] Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup,
C. Martella, and T. L. Willke. Towards benchmarking
graph-processing platforms. Poster at Supercomputing,
2013.

[6] H. Hinterberger, K. A. Meier, and H. Gilgen. Spatial
data reallocation based on multidimensional range
queries. a contribution to data management for the
earth sciences. In Scientific and Statistical Database
Management, pages 228–239. IEEE, 1994.

[7] B. Howe. Gridfields: model-driven data transformation
in the physical sciences. PhD thesis, Portland, OR,
USA, 2007. AAI3255425.

[8] S. Jouili and V. Vansteenberghe. An empirical
comparison of graph databases. In Social Computing
(SocialCom), 2013 International Conference on, pages
708–715. IEEE, 2013.

[9] V. Kolomičenko, M. Svoboda, and I. H. Mlỳnková.
Experimental comparison of graph databases. In
Proceedings of International Conference on
Information Integration and Web-based Applications &
Services, page 115. ACM, 2013.

[10] P. Macko, D. Margo, and M. Seltzer. Performance
introspection of graph databases. In Proceedings of the
6th International Systems and Storage Conference,
page 18. ACM, 2013.

[11] R. C. McColl, D. Ediger, J. Poovey, D. Campbell, and
D. A. Bader. A performance evaluation of open source
graph databases. In Proceedings of the first workshop
on Parallel programming for analytics applications,
pages 11–18. ACM, 2014.

[12] T. Parr. The definitive ANTLR reference: building
domain-specific languages. Pragmatic Bookshelf, 2007.

[13] A. Rezaei Mahdiraji. Toward unstructured mesh
algebra and query language. In Proceedings of the 2014
SIGMOD PhD Symposium, pages 16–20. ACM, 2014.

[14] I. Robinson, J. Webber, and E. Eifrem. Graph
databases. ” O’Reilly Media, Inc.”, 2013.

[15] Y. Tang, R. Chowdhury, C.-K. Luk, and C. E.
Leiserson. Coding stencil computations using the
pochoir stencil-specification language. In 3rd USENIX
Workshop on Hot Topics in Parallelism (HotPar’11),
2011.

140

A Parallel Tree Pattern Query Processing Algorithm for
Graph Databases using a GPGPU

Lila Shnaiderman
Computer Science Department, Technion

lilas@cs.technion.ac.il

Oded Shmueli
Computer Science Department, Technion

oshmu@cs.technion.ac.il

ABSTRACT
Large amounts of data are modeled and stored as graphs in or-
der to express complex data relationships. Consequently, query
processing on graph structures is becoming an important compo-
nent in real-world applications. The most commonly used query
format is that of tree pattern queries. We present a new paral-
lel SIMD algorithm, GGQ (GPU Graph data base Query), for an-
swering tree pattern queries on graph databases, using a GPU. We
present the results of extensive experimentation of GGQ on large
graph databases using known benchmarks that show that GGQ is
an effective and competitive algorithm.

1. INTRODUCTION
Graph databases are widespread in many areas, including the se-

mantic web and social/biological networks, as a graph is a more
flexible and expressive structure than a tree. One of the most im-
portant and practically most interesting query formats for graph
databases is a tree pattern query (TPQs - Tree Pattern Queries). In
most known query languages for XML and RDF (such as XQUERY
and SPARQL [19]), many queries can be regarded as TPQs on
graphs. An example of a TPQ query is presented in Figure 2 (right
end side). Finding all occurrences of matching a TPQ query to
an isomorphic sub-graph of a given data graph is a fundamental
operation in graph query processing. Related basic problems are
(a) determining if a matching exists, and (b) providing part of the
matched data nodes, corresponding to query target nodes, as the
result.

Lately, there has been much research on using GPUs to speedup
database operations. The standard use of GPUs is to render graph-
ical information. GPUs are a cheap and ubiquitous source of pro-
cessing power, as at least one GPU can be found in almost any com-
puter. GPUs follow a SIMD (Single Instruction, Multiple Data)
architecture, while multi-core systems follow a MIMD (Multiple
Instructions, Multiple Data) architecture. In SIMD, multiple pro-
cessing elements perform the same operation on multiple data ele-
ments, simultaneously.

We focus on processing TPQ queries and not on general graph
structured queries as, in practice, TPQ queries seem to be the most

c⃝2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0

frequently used type. Few research projects have addressed paral-
lelizing query processing over graph databases. The main idea has
been to use the data partitioning strategy, i.e., methods to partition
the data between many computing elements, for example see [9].
To the best of our knowledge, there have been no attempts to paral-
lelize the query processing of a single TPQ, or to design a parallel
algorithm that exploits GPUs (or any other SIMD-based device) to
accelerate the processing of a single TPQ.

In this paper we present the GGQ algorithm (GPU-Graph data
base Query). The problem we address is how to use GPUs to ac-
celerate the processing of a single TPQ query. The main idea un-
derlying GGQ is to copy the relevant parts of the graph document,
according to the input query, to the GPU global memory, to process
the query using all the threads of the GPU in parallel, and to copy
the query results back to the CPU memory. The key to paralleliz-
ing the query processing is in the ability to efficiently coordinate
the query processing tasks between thousands of working units. In
GGQ, each thread checks a different potential matching between
the TPQ pattern and the data graph. In case that the checked po-
tential matching actually exists, the thread reports this matching as
one of the answers to the query.

GGQ is novel in that thread identifiers (IDs) are used to deter-
mine the choices made in attempting to match the tree pattern to
actual database graph nodes and edges. As the space of possibilities
that can be represented by an ID is limited, methods are presented
to practically increase this space.

To minimize the amount of data that has to be copied to the GPU
for a particular query execution, we designed a new graph lists stor-
age scheme, GLS, that is based on a XML stream representation
scheme [11]. A section describing GLS is not included in the pa-
per due to lack of space.

For documents that can fully reside in the global memory, we
gain speedup of up to 1000 times in comparison to Gremlin [17]1

(counting the time of copying the results from the GPU to the CPU
but not counting copying from the CPU to the GPU). If a whole
document is loaded to the GPU, many queries on this document
can be processed one after the other, thus eliminating the need to
copy the document, for each query, from the CPU to the GPU. For
documents that can not fully reside in the GPU global memory,
according to our experiments, we still gain a significant improve-
ment of up to 100 times in comparison to Gremlin (counting the
time of copying the data from the CPU to the GPU and the time
of copying the results from the GPU to the CPU). In experiments
with an extra-large query, we obtained speedup of up to 50 times in
comparison to Gremlin (while counting just the copying time of the
results from the GPU to CPU), and up to 35 times in comparison

1There may by now be tools for public use that are more efficient
than Gremlin.

141

to Gremlin (while counting the time of copying the data from the
CPU to the GPU and the time of copying the results from the GPU
to the CPU).

2. BACKGROUND
In this section, we briefly introduce GPUs and CUDA (the un-

derlying platform upon which the GGQ algorithm is implemented),
and TPQ pattern matching.

2.1 Graphics Processors (GPUs)
GPUs were originally designed for dealing with graphics render-

ing. In recent years GPUs are also used as multi-threaded multi-
core co-processors for CPUs. GPUs have a SIMD (Single Instruc-
tion, Multiple Data) architecture. In the SIMD architecture, there
are multiple processing elements that perform the same operation
on multiple data, simultaneously. Any algorithm for GPUs has to
fit the SIMD scheme; hence an original CPU (or multi-core) algo-
rithm should not be run as is on a GPU. If run as is, it will most
probably be extremely inefficient. Programmers write their algo-
rithms so that the part of the algorithm that does not have to be
massively parallelized runs on the CPU and the other part, which
can be massively parallelized, runs on the GPU.

Figure 1: GPU architecture model

GPU Hardware Architecture. The GPU architecture is shown
in Figure 1. This architecture is common to both NVIDIA [16]
and AMD [13]. The NVIDIA GTX processor is a collection of
multiprocessors (in GTX480 there are 15 multiprocessors), each
with a group of processors (32 in GTX480). Each multiprocessor
has its own shared memory which is common to all the proces-
sors within it. It also has a set of registers, texture, and constant
memory caches. At any given cycle, each processor in the multi-
processor executes the same instruction on different data. A warp
is a collection of threads that run simultaneously on a multipro-
cessor. The warp size is fixed for a specific GPU. Communication
between multiprocessors (i.e., processors from different multipro-
cessors) is through the device memory (also called global memory),
which is available to all the processors of the multiprocessors. The
size of the global memory is limited. The GTX480, for example,
has 1.5GB memory. The global memory has both a high bandwidth
and high access latency. GPU threads have both low context-switch
and low creation time as compared to CPU threads. The global
memory is available to all the threads, so any thread can access any
memory location.

CUDA Programming Model. Programmers use two types of
code, the kernel code and the host code. The kernel code is exe-
cuted on the GPU. The host code runs on the CPU. The host part is
in charge of transferring data between the GPU and main memory,
and starting kernel-code instances (kernels) on the GPU. A compu-
tation task on the GPU is divided into three separate steps. First,
the host code allocates GPU memory for input and output data,

and copies input data from the main memory to the GPU mem-
ory. Second, the host code starts threads each executing the kernel
code, kernels, on the GPU. The kernels perform the required task
on the GPU. Third, when the kernels finish their work, the host
code copies results from the GPU memory to main memory. For
the programmer the CUDA model is a collection of threads run-
ning in parallel. A collection of threads (called a block) runs on a
multiprocessor at a given time. One can assign multiple blocks to
a single multiprocessor and then the blocks execution on the multi-
processor is time-shared.

Execution. All threads of all blocks executing on a single mul-
tiprocessor share its resources. Each thread and block has a unique
ID. In addition, each thread has a program counter, registers, per-
thread private memory, and inputs that can be used by the thread
during its execution. Each thread in a set of parallel threads exe-
cutes an instance of the kernel code, in parallel. Blocks are further
organized into grids of thread blocks by the programmer. Each grid
is a 2 or 3-dimensional arrangement of blocks. When a block is ex-
ecuted, it is further divided into warps. Using the thread and block
IDs each thread can perform the kernel code on different set of data.
In some cases, during some operations, for example an if else state-
ment, some of the threads in a multiprocessor are idle (during the if
block or the else block), as according to the if else statement, they
do not have to process the body of the if block or the else block of
the statement.

2.2 TPQ (Tree Pattern Query) pattern match-
ing

Tree Pattern Queries (TPQs) are represented as directed trees,
where (1) the nodes and edges of a TPQ Q are labelled by labels
from an alphabet

∑
. The label of a node u is denoted by τ(u), and

the root node of Q is denoted by root(Q). The size of Q, denoted
by |Q|, refers to the number of nodes in Q. (2) The nodes in Q are
connected by parent-child edges (pc-edges) labeled by a label from∑

. Consider an edge e = (u, v) with parent node u and child node
v, we say that v is a child of u and u is the parent of v.

Given a TPQ Q with nodes (q1,..., qn) and a directed graph doc-
ument D, a match of Q in D is a mapping from the nodes of Q to
nodes (d1,..., dn) in D s.t.: (1) di is matched with qi, 1 ≤ i ≤ n,
(2) di and qi have the same label except that nodes labeled with the
special label ’*’ may be matched with data nodes that can have any
label from alphabet

∑
. (3) the edges, i.e., structural (parent-child)

relationships between query nodes are satisfied by the correspond-
ing D nodes and the label of both of the edges (in Q and D) have to
be exactly the same (again, with the ’*’ exception). The ordering of
sibling nodes in a TPQ query imposes no constraints on the match-
ing. Also, pattern nodes need not be mapped to distinct D nodes
(the algorithm can be extended to enforce such distinct mappings).

The TPQ pattern matching problem is defined as finding all the
possible matches of a given TPQ Q in a given graph document
D.

3. THE GGQ (GPU GRAPH DATA BASE QUERY)
ALGORITHM

The GGQ algorithm is a SIMD algorithm. The main advantage
of the GGQ algorithm is the ability to divide the matching work to
hundreds or even thousands of threads that run in parallel, and that
the work of each thread is exactly of the same length. The idea of
the basic version of the algorithm is to use the ID of a thread to de-
termine the portion of the data to which a pattern matching attempt
will be executed by the particular thread. Then, as the number of
bits in a thread ID is bounded, we designed an extension that al-

142

lows the algorithm to be efficient also in cases when the query tree
or the data graph are more complex. GGQ processes mainly the
document parts that are relevant to the input query by processing
only edge streams that are relevant for the input query.

The inputs of the algorithm are a labeled directed graph G =
(V, E), a TPQ Q, and a set of nodes Vq , subset of V , containing all
data graph nodes which are part of legal possible matches for the
root node of Q. The algorithm finds all possible matches between
Q and G subject to the Vq constraint.

Next, we explain the main idea of the algorithm. For ease of ex-
planation, assume that set Vq has just one node, v1. Each GPU
thread has a unique ID. For example, the ID of thread th is
thNum, and in binary thNumb =< bm, bm−1, ..., b0 >. Each
node vi in V has at most outgNum(lbl) outgoing edges with label
lbl for each lbl label where outgNum(lbl) is the maximum num-
ber of edges labeled lbl connected to a node in the database. I.e., we
need log2(outgNum(lbl)) bits to represent outgNum(lbl). For
ease of exposition, we assume that outgNum(lbl) for any label is
a power of 2. The bits of thNumb define which edge has to be
chosen at each step of checking for a match against the data graph.

For example, assume that we have just two types of labels, lblA
and lblB, in the graph. outgNum(lblA) = 4, outgNum(lblB) =
16. Assume that we have a query pattern Q with 3 edges, the first
and third edges are with label lblA, and the second edge is with la-
bel lblB. Assume that the maximal thread ID is 255, thus we have
8 bits < b7, b6, ..., b0 > to represent any possible thread ID. Bits
b0 and b1 represent the index of all possible data edges with label
lblA, for the first edge in the query pattern. Bits b2, b3, b4, and b5

represent the index of all possible data edges with label lblB, for
the second edge in the query pattern. And finally, bits b6 and b7

represent the index of all possible data edges with label lblA, for
the third edge in the query pattern.

We have also tried to reverse the ordering of enumerating the
thread ID bits (i.e., to extract the bits from left to right - from
MSB to LSB), so that the MSB bit will correspond to the top of
the tree. However, the effectiveness of this will fully depend on the
nature of the data tree. For the data we used which induces a flat
structure on the data tree, this scheme turned out to have inferior
performance.

To gain intuition about the algorithm, we start off with an exam-
ple.

3.1 An Intuitive Example

Figure 2: Example of a query tree qTree and a data graph
dGraph

Consider2 qTree and dGraph presented in Figure 2. Based on
2In the experiments we used simpler documents in which a single

dGraph, we see that each node vi ∈ V has no more than
outgNum(created) = 2 outgoing edges labelled created and
no more than outgNum(knows) = 3 outgoing edges labelled
knows, thus we need 1 bit to represent outgNum(created) and 2
bits to represent outgNum(knows), here bit=0 means edge num-
ber 1 and bit=1 means edge number 2.

In total, we need 4 bits to represent all the possible potential
matchings with graph gData (shown in Figure 2). During the run,
we have 16 different running threads. For ID with bits
< b3, b2, b1, b0 >, bits b0 and b1 apply to the first edge (between
query nodes 0 and 1), bit b2 applies to the second edge (between
query nodes 1 and 2) and bit b3 applies to the last edge (between
query nodes 1 and 3). Vq contains the data node with ID = 0.
Now, we go over all the threads and explain what happens at run
time with each of them.

The thread with ID 0000, finds that the data node with ID 0
has 3 outgoing edges labelled knows, according to the first 2 bits
"00" of the thread’s ID, we choose the first edge which leads us to
the data node with ID 1. While checking the data of this node, we
find that it does not have label and data "Age: 32". So, this partial
matching is not part of an answer, thus the thread terminates with
no match. The same behavior happens for threads with ID: 0100,
1000, and 1100.

The thread with ID 0010, chooses the 3-rd outgoing edge (cor-
responding to the "10" bits) of the data node with ID 0. Thus, it
matches the query node with ID 1 to the data node with ID 2.
While checking the data of this node, we find that it does not have
label and data "Age: 32". Thus, the thread 0010 terminates with no
match. The same behavior happens for the threads with ID: 0110,
1010, and 1110.

The thread with ID 0011, chooses the 4-th outgoing edge (cor-
responding to the "11" bits) of data node with ID 0, but such an
edge does not exist. Thus, the thread terminates with no match.
The same behavior happens for the threads with ID: 0111, 1011,
and 1111.

The thread with ID 0001, chooses the 2-nd outgoing edge of
the data node with ID 0. Thus, it matches the query node with
ID 1 to the data node with ID 3. The data node with ID 3 has
label and data "Age: 32"İ. Next, the thread chooses the 1-st outgo-
ing edge, with label "created", of the data node with ID 3. Thus,
it matches the query node with ID2 with the data node with ID
4. The data node with ID 4 has no label and data "Language:
computer"İ. Thus the thread terminates with no match. The same
behavior happens for the thread with ID 1001.

The thread with ID 0101, chooses the 2-nd outgoing edge of
the data node with ID 0. Thus, it matches the query node with
ID 1 to the data node with ID 3. The data node with ID 3 has
label and data "Age: 32"İ. So, the thread now chooses the 2-nd
outgoing edge of the data node with ID 3. Thus, it matches the
query node with ID 2 with the data node with ID 2. The data
node with ID 2 has label and data "Language: computer"İ. Now,
the thread chooses the 1-st outgoing edge of the data node with
ID 3 (corresponding to the leftmost "bit" with value 0). Thus, it
matches the query node with ID 4 with the data node with ID 4.
The data node with ID 4 has label and data "Name: Baby"İ. At
this point the tread has finished to match all the nodes and edges.
Thus the thread reports that the currently identified assignment of
query nodes to data nodes is an answer to qTree in dGraph, and
terminates with a match. The last thread does not find a match.

3.2 Base algorithm
We specify how the algorithm operates for query Q, graph G, set

label may be associated with a graph node.

143

Vq , and a thread with ID thNum. For ease of explanation, assume
that set Vq has just one node, v1.

Let maxthNum be the maximal possible thread ID. Let p be
log2(maxThNum), without loss of generality, assume that
maxThNum is power of 2. Sort the edges of Q: e0, ..., ew so that
if edge ex is on the path from Q’s root to the left vertex of edge ey ,
then ex precedes ey in the order (i.e., "higher" in the tree).

Input: 1) Data graph G. 2) TPQ query Q. 3) Vq set.
Output: ansSet, the set of all thread IDs that encode patterns that are an
answer to query Q in data graph G.
Method (runs on the CPU):
1. ansSet = {}
2. Invoke CUDA kernel call for function:

GpuGraphQuery(G, Q, Vq , ansSet)
3. RETURN ansSet

// GpuGraphQuery kernel function (runs on the GPU):
Input: 1) Data graph G. 2) TPQ query Q.

3) Vq set of nodes in G that match to the root of Q.
4) ansSet set of all answers (thread IDs).
5) idConst. Has default value of 0. Used for algorithm extensions

Goal: In case that current thread’s ID encodes an answer to query Q in
data graph G, add it into ansSet.

Method:
1. Set thID to a system assigned index of the current thread.
2. Set maxID to a system value of the maximal thread index.
3. thNum = (idConst ∗ (maxID + 1) + thID)
4. Set cqIdx to 0. /* current query edge index */
5. Express thNum in binary notation as < bp, bp−1, ..., b0 >.
6. Set bitIdx to 0. /*represents the currently processed bit in the binary

notation of thNum*/
7. Create dataNodeArray of size |Q| and initialize all its entries

to nil. /* the element with index ai will be data graph node dn,
that corresponds to query node with index ai */

8. dataNodeArray[1] = vr /* w.l.o.g. the root index of Q is 1 and
vr is some matching data node
(according to Vq).*/

9. FOREACH edge ecqIdx = (qa, qb) in Q’s edges in order
10. lbl = ecqIdx.getLabel()
11. k = Q.getNumBits(lbl) /* According to the graph definition,

there are no more than 2k outgoing edges
labeled lbl from any node in G*/

12. Set num to the integer represented by bits
< bbitIdx+k−1, bbitIdx+k−2, ..., bbitIdx > of thNum.

/* These bits corresponds to edge number cqIdx in Q */
13. currV = dataNodeArray[qa.idx]. /*the data graph node to

which qa is mapped*/
14. currE = currV.getEdge(lbl, num) /*gets edge number num

out of outgoing edges labeled lbl of node currV */
15. IF (currE == nil) THEN RETURN
16. currV = currE.getTargetNode() /*find qb*/
17. IF (NOT isMatching(currV, qb)) THEN RETURN
18. dataNodeArray[qb.idx] = currV /*update the mapping array*/
19. bitIdx = bitIdx + k /*prepare bitIdx to read next edge data*/
20. END FOREACH
21. ansSet.add(thNum) /*current thread encodes an answer*/

Figure 3: The base GGQ algorithm

Figure 3 presents the base version of the GGQ algorithm. The
input to the algorithm are the data graph G, the TPQ Q and the
set Vq that contains the matching data node of the TPQ query root
node. Line 2 contains the invocation of the CUDA kernel function
gpuGraphQuery which is processed on the GPU. I.e., the query
processing algorithm itself is executed on the GPU.

The gpuGraphQuery kernel call finds all the matchings be-
tween the TPQ Q and the data graph G. The code of gpuGraphQuery
is run in all the threads. They process exactly the same code (i.e.,
the code of the gpuGraphQuery function itself) at the same time
("Single Instruction") over different data ("Multiple Data") in G.

As the possible number of pattern matchings between Q and G is
very large, there is a potential for an enormous number of parallel
threads. According to the GPU GTX 480 architecture, the maxi-
mum number of resident threads per MP (multiprocessor) is 1536
(i.e., 1536*15 for all the MPs), while the number of threads that
are processed at any moment of time in the MP is 32 (other threads
may be waiting for data from the global memory, or just waiting for
their turn to be run). The threads in the GPU are arranged in blocks
where each block can have a maximum of 1536 threads. If the
requested (by the algorithm) number of threads exceeds 1536*15,
then the GPU first handles the 15 first blocks, and then continues
to process the next 15 blocks, and so on until all the blocks are pro-
cessed. Note that maximum number of threads that can actually run
in parallel at any point of time is 480 (32 on each of the 15 MPs).
The potential number of pattern matchings between Q and G is
very large, and is usually much larger than the number of compute
units in the GPU. Thus the utilization of the GPU is usually very
high, i.e., the throughput of processing the work is high in compar-
ison to multi-threaded CPU systems. By running a profiling tool
on GGQ, we found that the execution uses the coalesced memory
access feature of the GPU3. This is due to an apparent matching
between the structure of the storage and the way the algorithm tra-
verses the data.

Next, we explain the gpuGraphQuery kernel function. Line 1
computes the thread’s ID, namely thNum, according to CUDA’s
semantics. In line 3 we compute the index for which the current
thread is responsible. In the base algorithm, idConst is always 0.
Thus, thNum == thID. cqIdx that is defined in line 4, indi-
cates the index of the currently processed edge. Line 6 defines the
bitIdx variable. bitIdx points to the bit that is currently processed
in the binary presentation of thNum. The dataNodeArray array
which is defined in line 7 holds the data nodes that are matched
against query Q by the current thread. I.e., the element with in-
dex ai of the dataNodeArray is the data graph node di that is
matched to the query node with index ai. The size of dataNodeArray
is the number of nodes in Q, i.e., |Q|. In line 8, dataNodeArray[1]
is initialized. This is the data node that is matched to the root node
of Q. This data node named vr is taken from set Vq which is one
of the parameters of the gpuGraphQuery function.

In line 9 the algorithm starts a FOREACH, that tries to perform
a matching between the pattern that is encoded by thNum (the
index of the current thread) and G according to TPQ Q. Note that
before starting the algorithm, the edges of Q are sorted in a way
that if edge ex is on the path from Q’s root to the source vertex of
edge ey , then ex precedes ey in the order. And this is the order in
which they are processed during the FOREACH. In lines 10-12, the
algorithm finds the edge number num that has to be chosen out of
the outgoing edges labeled lbl of node currV (a value is assigned
to currV in line 13). currV is the node that is matched to the
qa node, which is the source node of the ecqIdx edge. currV is
taken out of the dataNodeArray according to the index of the qa

node. The ordering of Q edges (described above) guarantees that
currV exists. To find num, the algorithm first extracts the bits of
the binary representation of thNum that correspond to the ecqIdx

edge. The decimal value that is encoded by these bits is inserted
to num. In line 14 the algorithm gets the outgoing lbl labeled
edge number num of node currV and assigns it to edge currE.
If the value of currE is nil, it means that such an edge does not
exist, thus according to line 15 the algorithm terminates the run, as
this thread does not encode a matching pattern in graph G. In line

3This means that when many threads in a warp access consecutive
global memory addresses, these memory accesses are grouped into
one access.

144

16-17, using edge currE, the algorithm finds the data node that
matches to the query node qb (the target node of edge ecqIdx) and
inserts it to currV , then it checks the matching between the data of
the new currV and the data of qb. In case it finds that there is no
matching between the data of currV and qb, it terminates the run,
as this thread encodes a pattern that does not exist in graph G. In
lines 18-19 the data of dataNodeArray and bitIdx is updated, as
preparation to the next iteration of the FOREACH. If the algorithm
finishes successfully the FOREACH loop for all the edges, without
returning in lines 15 or 17, it means that the current thread encodes
a pattern that exists in the graph and that fully matches Q. That is
why in line 21, the algorithm inserts thNum to ansSet.

There are possible optimizations of the basic scheme. As pointed
out by a reader, one can base thread addressing on a simple algo-
rithm that takes into account the maximum number of edges with a
particular label emanating from a node and, based on the query and
the thread ID, deduce the thread’s search pattern. This will often
result in fewer threads.

3.3 First algorithm extension (Brute Force Loop-
ing)

Input: 1) Data graph G. 2) TPQ query Q. 3) Vq set.
Output: ansSet, the set of all thread IDs that encode patterns that are an
answer to query Q in data graph G.
Method (runs on the CPU):
1. ansSet = {}
2. maxIDbitNum = getBinBitsNum(getMaxID())

/*getMaxIDbits is a system function*/
3. maxQBinNum = getBinBitsNum(Q)

4. FOR (i = 0; i < 2(⌊ (maxBin+maxIDbits)
maxIDbits

⌋); i + +)
5. Invoke CUDA kernel call for function:
6. GpuGraphQuery(G, Q, Vq , ansSet, i)
7. END FOR
8. RETURN ansSet

Figure 4: The first extension of the GGQ algorithm

There can be situations in which the maximal number of bits
that may be required to represent query patterns is larger than the
number of bits of maximal thread ID. Thus, we extend the algo-
rithm as presented in Figure 4. Assume that the maximal thread
ID is maxID and that we need maxIDbits to represent it, that
maxBin bits are required to represent the query pattern, and that
maxBin > maxIDbits. In line 4 we start a FOR loop. The

number of iterations is: 2(⌊ (maxBin+maxIDbits)
maxIDbits

⌋). At each loop it-
eration (line 5), we run the base algorithm, where each thread in the
current iteration will take care of the pattern represented by the fol-
lowing number: (i ∗ (maxID +1)+ threadID), where maxID
is the ID of the maximal thread ID, and treadID is the system
ID of the current thread. This computation can be seen in line 3
of the base algorithm (Figure 3). Note that this way, conceptually,
we extend the thread’s ID bit representation to the left by placing
there the bits corresponding to i in the current loop iteration.

Often, when a query is posed, the desired answer is whether there
exist any matching between the query tree and the data graph. In
such cases, it is sufficient to find one matching in order to provide
a positive answer. In a slightly modified version of the algorithm,
the run is stopped the moment a first match is found. This feature
decreases the running time of the algorithm in such cases. Some-
times, the desired answer to a query corresponds to only one spe-
cific query node and not to all nodes corresponding to the whole
set of query nodes. This does not affect the GGQ algorithm as an
answer provided by GGQ to a query is an ID of the thread.

3.4 Second algorithm extension (Multi Phase)
A substantial possible improvement, in case that the number of

possible patterns is larger than the maximal thread ID, is a two
phase exploration (and, in general, a multi phase exploration using
the same principle). Here, we first limit the pattern by removing
subtrees (actually edges leading to the roots of subtrees) so as to be
left with the original rooted pattern with portions removed so that
the remaining new pattern Q′ is a "prefix" of the original pattern
Q. The idea is that we have sufficiently many bits in maxIDbits
to explore the smaller Q′ (with no need to use the first extension).
A Q′ node is called a contact node if it is a node in Q from which
an edge leading to a subtree was removed along with the whole
subtree. When evaluating Q′ we record for each solution the im-
ages in the data graph of the contact nodes of Q′ which we call a
recorded solution vector. Then, we run the second phase in which,
for each recorded solution vector, we explore the rest of Q using
all the threads we can utilize. In case two phases are not sufficient,
we grow Q′ to Q in more than 2 phases. Each such phase will pro-
duce a collection of recorded solution vectors in which additional
Q nodes are assigned values. The advantage of this two phase (and
in general multi phase) scheme is that (a) We employ many threads
in the first phase working on a smaller query derived from the orig-
inal query and obtain all the relevant prefixes, encoded in recorded
solution vectors, out of the data graph. (b) In the second phase, for
each recorded solution vector, we employ all threads on a relevant
portion of the data graph that can potentially lead to a solution to
Q.

Figure 5: Example of limited Query
For example, consider the query Q as presented on the left side

of Figure 5. Suppose that an edge representation requires 4 bits for
any label, namely the whole pattern requires 32 bits. Suppose that
maxID requires 16 bits. So, we are "missing"İ 16 bits. We can
transform Q to the limited query Q′ with 4 less edges, as presented
on the right side of Figure 5. This way we can handle Q′ with
all threads (whose maxID requires 16 bits). Once we evaluate Q′

we obtain recorded solution vectors. Each recorded solution vector
encodes a partial matching of the full matching, and determines the
data contact nodes va and vb that are matching to the query con-
tact nodes v2 and v7. When phase 2 is carried out for each recorded
solution vector, each thread will operate on the subtrees rooted at
v2 and v7 where the dataNodeArray will be initialized with va

in the location corresponding to v2 and vb in the location corre-
sponding to v7. As the subtrees rooted at the contact nodes have a
total of 4 edges, 16 bits will suffice to represent all possible navi-
gations. This means that in phase 2, when considering a particular
recorded solution vector, all threads will be employed in checking
possible continuations for this recorded solution vector. Thus, the
computing power is fully utilized in (the short) phase 1 and later
on throughout phase 2. Note that there is an advantage here over
the loop scheme (that is presented in the first extension) in that for
a loop index that corresponds to a non-prefix of the data graph, all

145

GPU threads are activated in vain. Here, the first phase guarantees
that the sequence of GPU activations is done for recorded solution
vectors that correspond to potentially extendable matchings. The
disadvantage is that the recorded solution vectors need be stored so
that they are available for the second phase.

Input: 1) Data graph G. 2) TPQ query Q. 3) Vq set.
Output: ansSet, the set of all thread IDs that encode patterns that are an
answer to query Q in data graph G.
Method (runs on the CPU):
1. prelimAnsSet = {}
2. prefixQ = getPrefixQ(Q) /*getPrefixQ returns the "prefix"

of the query Q*/
3. Invoke CUDA kernel call for function:
4. GpuGraphQuery(G, prefixQ, Vq , prelimAnsSet, 0)
5. ansSet = {}
6. remainQ = getRemainQ(Q, prefixQ) /*getRemainQ returns

Q \ prefixQ*/
7. FOREACH ans in prelimAnsSet
8. currAnsSet = {}
9. Invoke CUDA kernel call for function:
10. GpuGraphQueryExt(G, remainQ, currAnsSet, ans)
11. ansSet = ansSet ∪ currAnsSet
12. END FOREACH
13. RETURN ansSet

// GpuGraphQueryExt kernel function (runs on the GPU,
just the differences from GpuGraphQuery presented):
Input: 1) Data graph G. 2) forest remainQ.

3) ansSet set of all answers (thread IDs).
4) baseAns is the ID that encodes the matching between

prefixQ and G
Goal: In case that current thread’s ID encodes an answer to query

remainQ based on the matching presented by baseAns in
data graph G, add it into ansSet.

Method:
...
3. thNum = thID
...
8. initNodesArray(dataNodeArray, baseAns)

/* initNodesArray extracts baseAns, and fill all the nodes
that already matched in dataNodeArray by answering prefixQ
in the first phase */

...

Figure 6: The second extension of the GGQ algorithm
Figure 6 presents the second extension to the algorithm. The

function getPrefixQ (line 2), decides which part of Q is going to
be the "prefix" query. It makes the decision based on the number
of bits bLimit required to present the maximal thread ID, and on
the structure of Q. Basically, it chooses the "upper" part of the tree
(the part with the smallest depth), up to the limit of bLimit. I.e, it
sums the number of bits that are required to present all the edges
of the chosen part, and enlarges the chosen part up to the limit
of bLimit. Lines 3,4 run the base algorithm on prefixQ, and
insert the answer into prelimAnsSet. Line 5 initialize ansSet,
the set of the final answers. remainQ that is computed in line
6, is the remainder part of Q after removing prefixQ out of it.
Line 7 starts a FOREACH that computes the final answers for Q
based on the preliminary answers from prelimAnsSet. The set
of answers of the current iteration, carrAnsSet is defined in line
8. Lines 9-10, contain the invocation of the CUDA kernel func-
tion gpuGraphQueryExt which is processed on the GPU, and
is slightly different from gpuGraphQuery (as defined in Figure
3). In line 11 we add the answers that were found in the current
iteration to the final answers set, namely ansSet.

Next we describe gpuGraphQueryExt. This function has slight
differences from the base algorithm GPU function, gpuGraphQuery.
Thus, we describe just these differences. The first difference is in

line 8, in which the thNum is defined. thNum is equal to the
system value of the ID of the current thread. The second differ-
ence is in line 8, in which the initNodesArray function initial-
izes dataNodeArray. The function extracts from baseAns the
matchings between nodes in Q and nodes in G that were found
during the first phase, and assigns the found data nodes into the ap-
propriate places in dataNodeArray. Except for the described two
changes, the function operates exactly as the base gpuGraphQuery
function.

The number of edges that can be represented by one phase is n
such that

∑n
edge=1 outgNum(lbl(e)) ≤ 2bitsNum(maxThreadID)

where bitsNum(maxThreadID) is the number of bits that are
used by the GPU to represent the maximal thread ID. For example,
assume that a GPU thread ID is represented with 32 bits. Assume
that for each edge e, on average, there are 16 potential outgNum(lbl(e))
from each node. Thus, on average, we need 4 bits to represent each
edge of the query. Based on the above, each phase allows us to
represent 32/4 = 8 edges on average. Having 2 phases in the
multi-phase extension described above allows us to represent fairly
large TPQs with about 16 edges. The multi-phase extension can be
easily extended to more than 2 phases. Based on this analysis, if
we extend the multi-phase extension to 3 phases, we can represent
a TPQ with 24 edges, which is a very large query. It is important
to note that without the multi phase extension, experiments involv-
ing very large queries give very poor results that are worse than
Gremlin’s performance on these queries.

Input: 1) query edges (qEdges). 2) maxQdepth, the max depth of Q
3) maxBitsNum, the number of bits required to represent

maximal thread ID
Goal: to set the field phaseNum of each query edge
Method (runs on the CPU):
1. currPhase = 1
2. currBitsSum = 0
3. FOR depth FROM 1 TO maxQdepth
4. FOREACH edge IN qEdges
5. IF edge.depth == depth
6. IF currBitsSum + edge.bitsNum > maxBitsNum
7. currPhase + +
8. currBitsSum = 0
9. END IF
10. currBitsSum+ = edge.bitsNum
11. edge.phaseNum = currPhase
12. END IF
13. END FOREACH
14. END FOR

Figure 7: Query phase ordering algorithm
Figure 7 presents the algorithm for breaking the query into phases.

4. EXPERIMENTAL EVALUATION
We compared GGQ to Gremlin [17] in terms of run time (to

completion). Gremlin is the only query processor that we found
that uses the native graph approach and that supports XPath-style
queries over graph documents. Using Gremlin’s query language,
one can easily express TPQs. We are not aware of any parallel
graph query processor to which we can currently compare our re-
sults. We used the GLS storage scheme to store the data. We imple-
mented the GGQ algorithm from scratch on CUDA [7]. We exper-
imented with GRR [10], a benchmark tool for generating random
RDF documents. We also experimented with the Geospecies data
document [2], and a representative data document example of the
Census database [8]. We checked different TPQ query patterns. 4

4Queries and data are available upon request.

146

Path Q1 Path Q2 Speedup
Q1 Q2

Gremlin 114 84
GPU − full 0.8 7.4 148 11
GPU − ans 0.09 0.08 1267 1050
GPU − alg 0.085 0.075 1425 1200

Figure 8: Results of GGQ on a document with size 125MB, for
path queries with 5 nodes. The right two columns contain the
speedup of GGQ run in comparison to a Gremlin run.

Path Q1 Tree Q2 Speedup
Q1 Q2

Gremlin 76 72
GPU − full 3.2 3.17 24 23
GPU − ans 0.08 0.09 950 800
GPU − alg 0.075 0.095 1085 900

Figure 9: Results of GGQ on a document with size 600MB, for a
path query with 5 nodes and a tree query with 6 nodes. The right
two columns contain the speedup of GGQ run in comparison to a
Gremlin run.

Path Q1 Tree Q2 Speedup
Q1 Q2

Gremlin 81 75
GPU − full 0.86 0.67 94 112
GPU − ans 0.09 0.12 900 625
GPU − alg 0.08 0.11 1012 682

Figure 10: Results of GGQ on a document with size 180MB, for a
path query with 4 nodes and a tree query with 6 nodes. The right
two columns contain the speedup of GGQ run in comparison to a
Gremlin run.

Tree Q1 Tree Q2 Speedup
Q1 Q2

Gremlin 187 165
GPU − full 49 5.4 3.8 30.6
GPU − ans 48 2.6 3.9 63.5

Figure 11: Results of GGQ on a document with size 180MB, for
two different tree queries with 11 nodes. The right two columns
contain the speedup of GGQ run in comparison to a Gremlin run.

All experiments were run on an 3 GHz Intel S5520SC ShadyCove
5520 12DDR3 6SATA/R 2LAN1000 EATX workstation having an
NVIDIA GTX 480 GPU (with 1.5GB global memory), and having
two Intel Xeon 6C X5650 processors (with 24GB of RAM in total).
Each Xeon processor has 6 cores so altogether the workstation has
12 cores. We used the actual run time in various scenarios as the
main metric of performance.

4.1 Experiments Description
Setting Up. An experiment run has two input files: an RDF doc-

ument, and a text file with query (TPQ) patterns to run against the
given document. An experiment begins with loading the input doc-
ument into the GLS storage system by the parser. Then, we parse
the queries, and process them against the input document. We used
different TPQ patterns. The patterns we used have different length
and of different tree structures.

Experiment Description. The document is first loaded to the
GLS storage system (the time of loading is not measured, as it is a
one time procedure). Every experiment has the following runs:

1. Gremlin Run - We process the queries in the queries text file
using Gremlin [17]. Information regarding the run time of the
query is collected in the result log file.

2. GPU Run - This run is performed using the GPU. We process
the queries in the queries text file. The queries are processed by the
GGQ algorithm as described in Section 3. Information regarding
start and end times of processing the queries is collected in the
result log file.

We compare the performance of GGQ to Gremlin by comparing
the run time of these algorithms in three different ways. In the first
way we start the time measurement for the GGQ algorithm before
copying the data from the CPU to the global memory of the GPU,
and stop after copying the result data from the GPU to the CPU
(namely, GPU-full). In the second way we start the time measure-
ment for the GGQ algorithm right after copying the data from the
CPU to the global memory of the GPU, and before the query exe-
cution begins, and stop the time measurement right after finishing
the query processing, but before copying the results data from the
global memory of the GPU to the CPU (namely, GPU-alg). In the
third way we start the time measurement for the GGQ algorithm
right after copying the data from the CPU to the global memory
of the GPU, and before the query execution begins, and stop the

time measurement after copying the result data from the GPU to the
CPU (namely, GPU-ans). GPU-full reflects the potential time im-
provement of the GPU for large documents that cannot fully reside
in the global memory of the GPU. GPU-ans reflects the potential
time improvement for documents that can fully reside in the global
memory of the GPU. This is an important measurement as in a case
that the document can fully reside in the GPU, we have to copy it
to the GPU only once and then we can run many queries over this
document in a row, by this eliminating the need for copying the
document to the GPU per each query. GPU-alg is appropriate for
GPUs in which the global memory and RAM are merged, i.e., in
more recent processors such as NVIDIA’s planned PASCAL GPU
family. Time is measured is milliseconds. Each experiment is char-
acterized by the size of the input RDF document. We experimented
with documents sized as follows: 40MB, 125MB,180MB, 600MB.
We did not use larger files, as the GRR benchmark tool was not able
to create larger files. Also, the main factor that influences the com-
plexity of GGQ is the size of the query and not the size of the RDF
database document. Note that only the relevant edge streams have
to be copied to the global GPU memory, so ordinarily the amount
of data that is copied to the global GPU memory is usually much
smaller than the document size.

4.2 Experiments
Figures 8 and 9 show the results of GGQ on GRR documents

with sizes 125MB and 600MB respectively for different TPQ queries.
The GGQ run with full memory transferring time (both directions)
has speedup with respect to Gremlin of about 147 and 11 for a
document with size 125MB and of 24 and 23 for a document with
size 600MB, for Q1 and Q2 respectively. The GGQ run with result
transferring time (from the global memory to the CPU) has speedup
with respect to Gremlin of 1267 and 1050 for a document with size
125MB and of 950 and 800 for a document with size 600MB, for
Q1 and Q2 respectively. The GGQ pure run (without transferring
times) has speedup with respect to Gremlin of 1425 and 1200 for
a document with size 125MB and of 1086 and 900 for a document
with size 600MB, for Q1 and Q2 respectively. Due to lack of space,
we shall not elaborate on all the experimentation Figures.

147

5. RELATED WORK
There are a growing number of initiatives to implement and com-

mercialize Graph databases, such as Neo4j [6], HyperGraphDB
[4] and DEX [3] and many RDF solutions such as Jena [5] and
AllegroGraph [1]. There are other initiatives to create graph query-
ing languages that enable a simplified user view of querying such
as SPARQL [19] and Gremlin [17]. Another initiative for a graph
query language is GraphQL that is presented in [12] in which the
base node is a graph, so it deals with a graph of graphs. Thus, the
answer to this query is a set of graphs; further, this work is not deal-
ing with parallel query processing. Works in the area of paralleliza-
tion of graph databases have started to appear. For example, par-
allelGDB [9] and papers that address parallelization that is based
on graph partitioning. GPU-based work is [14] which proposes an
efficient subgraph matching algorithm. It presents an implementa-
tion of the STwig algorithm [18] in which the third (join) step of
the algorithm is performed in parallel on a GPU.

Lately, there are efforts to use GPUs to improve the performance
of DBMSs. There are also new framework proposals, such as Medusa,
a programming framework for parallel graph processing on GPUs.
Medusa enables developers to leverage the massive parallelism and
other hardware features of GPUs by writing sequential C/C++ code
for a small set of APIs. Recent works, [15], propose efficient XML
path processing algorithms using GPUs, which deal with path pat-
terns. The current paper, on the other hand, deals with TPQs, which
are more complex query patterns, looked for on more complex
database structures.

6. CONCLUSIONS
We present the GGQ algorithm, a novel efficient algorithm for

processing TPQ queries on graph documents. We use a new stor-
age scheme, GLS, in a parallel multi-threaded computing platform,
using a GPU as a CPU co-processor. GGQ employs techniques that
allow it to run hundreds of threads in parallel.

We conducted extensive experimentation with GGQ. We com-
pared, in terms of run time, GGQ to Gremlin [17], currently the
only available tool for comparison, that supports XPath-style queries
over graph documents. We checked performance for varying doc-
ument sizes and for different queries. Experimental results indi-
cate that using GGQ significantly reduces the run time of queries
in comparison to Gremlin.

As part of future work, we plan to adapt the multi-phase scheme
to oddly shaped graphs, e.g., ones with a few nodes, each having a
multitude of edges. We also plan to extend GGQ to handle queries
that are in the form of a directed graph. The idea is to first build

a spanning forest out of the query graph. Then, to run the above
algorithm on each tree in the forest. As the last step, to check all
the answers for compatibility (namely, that the same query node is
not mapped to different data graph nodes) and retain the answers
that conform to the graph query structure.

7. REFERENCES
[1] Allegrograph: Modern, high-performance, persistent graph

database. http://franz.com/agraph/allegrograph/.
[2] The apache xalan project. http://stats.lod2.eu/rdfdocs/769.
[3] Dex: High-performance and scalable graph database

management system.
http://www.sparsity-technologies.com/dex.

[4] Hypergraphdb. http://www.hypergraphdb.org/index.
[5] Jena: Java framework for building semantic web and linked

data applications. http://jena.apache.org/.
[6] Neo4j: WorldŠs leading graph database.

http://www.neotechnology.com/neo4j-graph-database/.
[7] Nvidia cuda c programming guide.
[8] Rdf data sets repository links.

http://www.w3.org/wiki/DataSetRDFDumps.
[9] L. Barguñó, V. Muntés-Mulero, D. Dominguez-Sal, and

P. Valduriez. Parallelgdb: a parallel graph database based on
cache specialization. IDEAS ’11.

[10] D. Blum and S. Cohen. Grr: Generating random rdf. In
ESWC (2), 2011.

[11] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:
optimal xml pattern matching. In SIGMOD’02.

[12] H. He and A. K. Singh. Graphs-at-a-time: Query language
and access methods for graph databases. SIGMOD ’08.

[13] J. Hensley. Amd ctm overview. In SIGGRAPH’07.
[14] X. Lin, R. Zhang, Z. Wen, H. Wang, and J. Qi. Efficient

subgraph matching using gpus. In Databases Theory and
Applications, Lecture Notes in Computer Science. 2014.

[15] R. Mousalli, R. Halstead, M. Salloum, W. Najjar, and V. J.
Tsotras. Efficient xml path filtering using gpus. In ADMS -
VLDB Workshops, 2011.

[16] NVIDIA. What is gpu-computing?
http://www.nvidia.com/object/what-is-gpu-computing.html.

[17] M. A. Rodriguez. Gremlin, 2010.
[18] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient

subgraph matching on billion node graphs. VLDB’12.
[19] W3C. Sparql. http://www.w3.org/TR/rdf-sparql-query/.

148

Implementing Flexible Operators for Regular Path Queries

Petra Selmer
London Knowledge Lab

Birkbeck, University of London
lselm01@dcs.bbk.ac.uk

Alexandra Poulovassilis
London Knowledge Lab

Birkbeck, University of London
ap@dcs.bbk.ac.uk

Peter T. Wood
London Knowledge Lab

Birkbeck, University of London
ptw@dcs.bbk.ac.uk

ABSTRACT
Given the heterogeneity of complex graph data on the web,
such as RDF linked data, a user wishing to query such data
may lack full knowledge of its structure and irregularities.
Hence, providing users with flexible querying capabilities
can be beneficial. The query language we adopt comprises
conjunctions of regular path queries, thus including exten-
sions proposed for SPARQL 1.1 to allow for querying paths
using regular expressions. To this language we add two op-
erators: APPROX, supporting standard notions of approx-
imation based on edit distance, and RELAX, which per-
forms query relaxation based on RDFS inference rules. We
describe our techniques for implementing the extended lan-
guage and present a performance study undertaken on two
real-world data sets. Our baseline implementation performs
competitively with other automaton-based approaches, and
we demonstrate empirically how various optimisations can
decrease execution times of queries containing APPROX and
RELAX, sometimes by orders of magnitude.

1. INTRODUCTION
The volume of graph-structured data on the web continues

to grow, most recently in the form of RDF Linked Data. At
the time of writing, there are 570 large datasets, spanning a
variety of domains, such as the life sciences, geographical and
government domains [2]. The prevalence of graph databases,
such as Sparksee [21], Neo4j [14] and OrientDB [16], has also
greatly increased over the past few years; they have been
used in areas as diverse as social network analysis, recom-
mendation services [20] and bioinformatics [1].

Graph-structured data in these domains may be complex,
heterogeneous and evolving in terms of its structure, mak-
ing it difficult for users to formulate queries that precisely
match their information retrieval requirements. In this pa-
per, we discuss the development of efficient algorithms for
approximate matching and relaxation of conjunctive regular
path (CRP) queries over such data, with the aim of assist-
ing users in formulating queries and interactively retrieving

c©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0

results that are of relevance to them. Query results are
returned incrementally to the user in order of their increas-
ing edit or relaxation distance from the original query, with
users being able to specify a limit on the number of results
returned in each phase.

This paper extends earlier work in [9, 18], where the AP-
PROX and RELAX operators were introduced, and in [17],
where an initial prototype implementation was described,
by describing our system implementation, called Omega, in
detail. We also undertake here a performance study on real-
world data sourced from adult further education [17] and
from YAGO [10]. This study demonstrates that the perfor-
mance of exact query evaluation is competitive with other
automaton-based approaches, while a number of novel op-
timisations improve the performance of queries containing
APPROX and RELAX, sometimes by orders of magnitude.

In Section 2 we give the necessary background and moti-
vation, introducing our graph-based data model and query
language. In Section 3 we discuss the implementation of
Omega. We present our performance study in Section 4. In
Section 5 we review related work in CRP query evaluation
for graph-structured data. Section 6 summarises the con-
tributions of the paper, gives our concluding remarks and
directions for further work.

2. BACKGROUND AND PRELIMINARIES
Omega uses a general graph-structured data model com-

prising a directed graph G = (VG, EG,Σ) and a separate
ontology K = (VK , EK). The set VG contains nodes each
representing an entity instance or an entity class, while the
set EG ⊆ VG × (Σ∪ type)× VG represents relationships be-
tween members of VG. For an edge e = (x, l, y) ∈ EG, l is
called the label of e, x the source of e, and y the target. We
assume that the alphabet Σ is finite. The label type is used
to connect an entity instance to its class, and can represent
the corresponding notion in RDF/S (see below).

The set VK contains nodes each of which represents an
entity class or a property. We call a node in VG or VK that
represents an entity class a class node and a node in VK that
represents a property a property node. So VG ∩ VK consists
of all the class nodes of VG.

The edges in EK capture subclass relationships between
class nodes, subproperty relationships between property nodes,
and domain and range relationships between property and
class nodes. Hence, EK ⊆ VK × {sc, sp, dom, range} × VK .
We assume that Σ∩ {type, sc, sp, dom, range} = ∅. We also
assume that the set of labels of property nodes in VK does
not contain the label type.

149

This general graph model encompasses RDF data, ex-
cept that it does not allow for the representation of RDF’s
‘blank’ nodes; however, blank nodes are discouraged for
linked data [7]. Our graph model also encompasses a frag-
ment of the RDFS vocabulary: rdf:type, rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:domain, and rdfs:range, which
we abbreviate by the symbols type, sc, sp, dom, and range.

The query language underlying Omega is that of conjunc-
tive regular path queries [3]. A conjunctive regular path
(CRP) query Q, consisting of n conjuncts, is of the form

(Z1, . . . , Zm)← (X1, R1, Y1), . . . , (Xn, Rn, Yn)

where m,n ≥ 1, each Xi and Yi is a variable or a constant,
each Zi is a variable appearing in the right-hand-side of Q,
and each Ri is a regular expression over the alphabet from
which edge labels in the graph are drawn. In our context, a
regular expression R is defined as follows:

R := ε | a | a− | | (R1 ·R2) | (R1|R2) | R∗ | R+

where ε is the empty string, a is any label in Σ∪{type}, a−
represents traversal of an edge in the reverse direction, “ ”
denotes the disjunction of all constants in Σ ∪ {type}, and
the operators have their usual meaning.

The (exact) answer to a CRP query Q on a graphG can be
obtained in a standard way by finding all pairs of nodes in G
satisfying each conjunct, joining the results, and projecting
over the variables in the head of Q.

Example 1. Suppose a user wishes to find people who
graduated from an institution located in the UK and poses
the following query, Q, over the YAGO graph [10]:

(?X) <- (UK,isLocatedIn-.gradFrom,?X)

(Variables in a query have an initial question mark.) This
query returns no results since it requires that there is some
entity y, located in the UK, which has graduated from some
institution. However, no such y exists, since only people can
graduate from an institution and only events and places can
be located in a country.

The work in [9] investigated approximate matching of CRP
queries, allowing edit operations such as insertions, deletions
and substitutions of edge labels to be applied to the regular
expressions Ri of a CRP query, each with some edit cost
configurable by the user.

Example 2. In Omega, the user can submit a variant of
Q in which the conjunct can be approximated:

(?X) <- APPROX (UK,isLocatedIn-.gradFrom,?X)

isLocatedIn−.gradFrom is approximated by isLocatedIn−.
gradFrom−, at some edit distance α, by substituting gradFrom

with gradFrom−. This query now returns results, matching
the user’s original intention by correcting the error in Q.

The work in [18] also considered applying ontology-based
relaxation to the regular expressions Ri. This allows query
relaxations entailed using information from the ontology K,
in particular: (i) replacing a class/property label by that of
an immediate superclass/superproperty, at some cost β; (ii)
replacing a property label by a type edge with target the
property’s domain or range class, at some cost γ.

Example 3. In Omega, the user can submit a variant of
Q in which the conjunct can be relaxed:

(?X) <- RELAX (UK,isLocatedIn-.gradFrom,?X)

This query allows gradFrom to be relaxed to its parent prop-
erty relationLocatedByObject at cost β, which now allows
properties such as happenedIn and participatedIn to be
matched, and answers to be returned at ‘distance’ β.

3. IMPLEMENTATION OF OMEGA

Figure 1 illustrates the architecture of the Omega sys-
tem. Sparksee [21] (formerly DEX) is used as the data store.
The development was undertaken using the Microsoft .NET
framework. The system comprises four components: (i) the
console layer, in which queries are submitted, and which dis-
plays the results; (ii) the system layer in which query plans
are constructed and executed; (iii) the Sparksee API; and
(iv) the data store itself.

Figure 1: System architecture

The architecture of the system layer broadly follows that
described in [17], with the major change being that the data
store used in Omega is Sparksee [21] rather than XML. This
layer is responsible for the construction of the automaton
(NFA) corresponding to each query conjunct. Given a query
conjunct (X,R, Y), a weighted NFA MR is constructed to
recognise the language denoted by the regular expression R.
If the conjunct is prefixed by APPROX or RELAX, then
MR is augmented to produce an automaton AR or MK

R ,
respectively; we discuss this in Section 3.3. Further respon-
sibilities of the system layer include the construction of the
query tree, the incremental construction of a weighted prod-
uct automaton HR from each conjunct’s automaton and the
data graph G, and the evaluation of the overall query, in-
cluding performing a ranked join for multi-conjunct queries.
We make extensive use of data structures provided by the
C5 Generic Collection library [15].

3.1 The Sparksee Data Model and API
The two main Sparksee structures used in our implemen-

tation are nodes and edges (which may be directed or undi-
rected), each of which has a pre-created type (this is a label,

150

of string data type), and a unique object identifier (oid) of
long data type. Associated with each node and edge are zero
or more attributes, which are key-value pairs; values may be
of any primitive data type. Further details regarding Spark-
see may be found in [12, 13] and the User Manual1. The
main Sparksee API functions used in Omega are as follows:
Neighbors takes as arguments a node n and edge type t,

and returns the set of nodes connected to n via an edge of
type t; the directionality of edges may also be specified.
Heads takes a set of edges E, and returns the set of nodes

which are the target of an edge in E. Tails is analogous
to Heads, except that nodes which are sources are returned.
TailsAndHeads returns the union of Heads and Tails.

To store the data, Sparksee uses a combination of maps
(inverted indexes) and associated bitmap vectors [13]. To
improve the performance of the Neighbors function, an op-
tion may be set to index the neighbouring nodes when creat-
ing an edge type t. This means that an index entry is created
when an edge of type t is created between any two nodes.
Node- and edge-related attributes may also be configured to
be indexed when they are created (the index stores all oids
associated with each value of the attribute).

3.2 Omega data graphs
As it is mandatory in Sparksee for each node to have a

type, and as our data model does not assume that nodes are
typed, we create all of our nodes to be of the same type,
‘node’. All of our nodes have one attribute, of string data
type, representing the node label (which is unique in the
data graph G). This attribute has indexing enabled.

We create multiple edge types, all of which are defined
to be directed edge types with indexing enabled. Specifi-
cally, for each edge in G having label l ∈ Σ, two Sparksee
edges are created: (i) one having type l, and (ii) one hav-
ing type ‘edge’ with an associated indexed string-valued at-
tribute corresponding to l. We introduce the generic ‘edge’
type to counter a limitation of the Neighbors function which
requires the type of the edge to be provided as an argument,
in order to allow us easily to retrieve multiple types of edges
simultaneously. For each edge in G labelled type, only one
edge is created, whose type is type. In cases which require
the retrieval of all types of edges of a node, we retrieve all
‘edge’ edges, followed by all type edges.

3.3 Query conjunct initialisation
The initialisation of a query conjunct (X,R, Y) comprises

the construction of the associated automaton (one of MR,
AR or MK

R), and the initialisation of its data structures prior
to the evaluation of the conjunct. We discuss each here.

In all cases, an automaton (NFA) MR is first constructed
from regular expression R using standard techniques. Then,
if the conjunct is prefixed by APPROX or RELAX in the
query, additional transitions and states are added (see [18]),
along with the removal of ε-transitions, to form AR or MK

R

respectively. As the automaton is weighted, the removal of
ε-transitions may result in final states having an additional,
positive weight [5]. For state s, we denote this weight by
weight(s). The NFA is represented as a set of transitions
(s, a, c, t), where s is the ‘from’ state, t is the ‘to’ state, a is
the label, and c is the cost.

If the conjunct is APPROXed, the insertion edit opera-
tion would result in many additional transitions in the NFA,

1www.sparsity-technologies.com/downloads/UserManual.pdf

one for each label in Σ ∪ {type} and their reversals. To make
our automaton more compact, we represent these as a single
transition labelled by the wildcard label ∗.

In all cases, if X (respectively, Y) is a constant c, we
annotate the initial (resp. final) state with c; otherwise we
annotate the initial (resp. final) state with the wildcard
symbol matching any constant.

The pseudocode for the initialisation of a conjunct is given
in the Open procedure below. After constructing the ap-
propriate automaton, the procedure evaluates the conjunct
by traversing the automaton and the data graph simulta-
neously. This traversal is represented by tuples of the form
(v, n, s, d, f), where d is the distance associated with visiting
node n in state s having started from node v, and f denotes
whether the tuple is ‘final’ or ‘non-final’ (see below).

The tuples are added to and removed from a dictionary
DR whose key is an integer-boolean variable (where the in-
teger portion represents a distance and the boolean portion
represents the final or non-final tuples at that distance). The
value associated with each key is a linked list of tuples. Tu-
ples are always added to, and removed from, the head of a
linked list (at cost O(1)). We introduced the notion of fi-
nal and non-final tuples in order to prioritise the removal of
‘final’ tuples (rather than ‘non-final’ ones) at the minimum
distance (if any), so that answers may be returned earlier.
Including this refinement improved the performance of most
of our queries, and also ensured that some queries, which
had previously failed by running out of memory, completed.

Procedure Open

Input: query conjunct (X,R, Y)
(1) construct NFA MR for R; initial state is s0
(2) transform MR into AR (APPROX) or MK

R (RELAX) if
necessary

(3) visitedR ← ∅
(4) d← 0
(5) if conjunct is of the form (C,R, ?X) then
(6) //Let n be the node in G corresponding to C
(7) if RELAX is being applied then
(8) foreach node m ∈ GetAncestors(n) do
(9) add(DR, (m,m, s0, d, false))

(10) else
(11) add(DR, (n, n, s0, d, false))

(12) else
(13) //the conjunct is of the form (?X,R, ?Y)
(14) if s0 is final then
(15) if weight(s0) = 0 then
(16) foreach node n in G do
(17) add(DR, (n, n, s0, d, true))

(18) else
(19) foreach n ∈ GetAllNodesByLabel(s0) do
(20) add(DR, (n, n, s0, d, false))

(21) else
(22) foreach n ∈ GetAllStartNodesByLabel(s0) do
(23) add(DR, (n, n, s0, d, false))

We distinguish between 3 cases in the Open procedure:
(Case 1) If the conjunct is of the form (C,R, ?Y) where C

151

is a constant, we begin the traversal at the node in G having
the attribute value C.

(Case 2) A conjunct of the form (?X,R,C) is transformed
to (C,R−, ?X), where R− is the reversal of R. This reversal
can be accomplished in linear time starting from the NFA
for R [23]. Thus, Case 2 reverts to Case 1.

If the conjunct has the RELAX operator and C is a class
node, we also add toDR every node returned byGetAncestors
(line 8). This function returns all superclasses of C in order
of increasing specificity so that they are added to the list in
DR in that order. We want to process more specific classes
first, given that nodes representing more general classes will
have larger degree (owing to transitive closure) and will lead
to answers of greater cost.

(Case 3) For a conjunct of the form (?X,R, ?Y), lines 14
to 23 are invoked. The function GetAllNodesByLabel (line
19) takes as input a list of all labels on transitions whose
‘from’ state is the initial state s0. Each label in the list is
then processed as follows: (i) the directionality of the label is
determined — i.e. whether it is an incoming or an outgoing
edge, or whether both incoming and outgoing edges are re-
quired (as for the *-labelled transitions, introduced above);
(ii) the set of object identifiers (oids) for the nodes having
the relevant edge and directionality are retrieved using the
Sparksee methods Heads, Tails and TailsAndHeads; (iii)
Sparksee set operations are used to maintain a distinct set
of nodes, so that the same node is not re-added to DR at
a higher cost (this can occur with the ‘*’ label); and (iv)
the remaining nodes in the graph G are returned. When
adding to DR, we iterate through the set of nodes in order
of decreasing cost. The function GetAllStartNodesByLabel
(line 22) is identical to GetAllNodesByLabel, except that
it does not include step (iv).

We have implemented the above two functions and that
retrieving all nodes in G (line 16) as coroutines in conjunc-
tion with the GetNext procedure (discussed in Section 3.4),
incrementally obtaining nodes in batches (the default is 100
nodes at a time). We found that, as a result, the execution
time of some queries was reduced by half, since nodes not
required to answer the user’s query are not added to DR.

3.4 Query conjunct evaluation
The two algorithms concerned with the evaluation of a

single query conjunct are GetNext and Succ, which have
previously been presented in [9, 18]. We now describe our
physical implementation of these algorithms.

GetNext returns the next query answer, in order of non-
decreasing distance from the original query Q, by repeatedly
removing the first tuple (v, n, s, d, f) from the distance d list
of DR until DR is empty. If the removed tuple is final (f
is true) and the answer (v, n, d′) has not been been gener-
ated before for some d′, the triple (v, n, d) is returned after
being added to answersR. If the tuple is not final, we add
(v, n, s) to visitedR, and add (v,m, s′, d+ d′, false) to DR

for each transition
d′→ (s′,m) returned by Succ(s, n) such

that (v,m, s′) 6∈ visitedR. If s is a final state, its annota-
tion matches n, and the answer (v, n, d′) has not been been
generated before for some d′, then we add the weight of s to
d, mark the tuple as final, and add the tuple to DR.

For visitedR, we use a hashed set which has O(1) lookup
time. Lines 8 and 9 in practice are executed as a single
step, and the logic in lines 10 to 13 is only executed if the
item was added. This means that we never re-process a

Procedure GetNext(X,R, Y)

Input: query conjunct (X,R, Y)
Output: triple (v, n, d), where v and n are

instantiations of X and Y
(1) while nonempty(DR) do
(2) (v, n, s, d, final)← remove(DR)
(3) if final then
(4) if 6 ∃d′.(v, n, d′) ∈ answersR then
(5) append (v, n, d) to answersR
(6) return (v, n, d)

(7) else
(8) if (v, n, s) 6∈ visitedR then
(9) add (v, n, s) to visitedR

(10) foreach
d′→ (s′,m) ∈ Succ(s, n) s.t.

(v,m, s′) 6∈ visitedR do
(11) add(DR, (v,m, s

′, d+ d′, false))

(12) if s is a final state and its annotation
matches n and 6 ∃d′.(v, n, d′) ∈ answersR
then

(13) add(DR, (v, n, s, d+ weight(s), true))

(14) //Incrementally add the next batch of initial nodes
(15) if no distance 0 tuples in DR and more initial nodes

available then
(16) foreach initial node n′ do
(17) add(DR, (n

′, n′, s0, 0, false));

(18) return null

previously-processed (v, n, s) triple; this situation may arise
when (v, n, s) triples of monotonically-increasing distances
are created and added at lines 11 and 13 (we therefore never
process ‘duplicate’ tuples at a higher distance).

In lines 15 to 17, we utilise a coroutine for (?X,R, ?Y)
conjuncts. If DR no longer contains any tuples at distance
0, we retrieve and add the next batch of initial nodes from
the functions initially invoked in the Open procedure.

The Succ function takes as input a node (s, n) of the
weighted product automaton HR and returns a set of of

transitions
d→ (p,m), such that there is an edge in HR from

(s, n) to (p,m) with cost d. The function NextStates(s)
returns the set of states reachable from state s on reading
some label, along with the associated costs. We only re-
trieve those edges for node n in G whose label corresponds
to one of those returned by NextStates(s), thereby using
the transitions in the automaton to guide the selection of
neighbouring nodes in G.
NeighboursByEdge takes as input the oid of a node n

from G and a label, and returns a list of neighbouring node
oids. If the label is not ‘*’, we invoke the Sparksee method
Neighbors in order to retrieve all neighbouring nodes for n
connected by an edge labelled with label, taking direction-
ality into account. If the label is ‘*’, we invoke Neighbors

once for edges labelled ‘edge’ and once for edges labelled
type. We do this for both directions in both cases.

In each case, we iterate over the neighbouring nodes, adding
their oid toW (lines 7 and 8). As it is possible forNextStates
to return identical labels consecutively (at the same cost), we
store the results of NeighboursByEdge for new labels in a

152

Procedure Succ(s, n)

Input: state s of NFA and node n of G
Output: set of transitions from (s, n) in HR

(1) W ← ∅; U ← ∅
(2) currlabel← null; prevlabel← null
(3) foreach (label, successor, cost) ∈ NextStates(s) do
(4) currlabel← label
(5) if currlabel 6= prevlabel then
(6) U ← NeighboursByEdge(n, label)

(7) foreach node m ∈ U do

(8) add the transition
cost→ (successor,m) to W

(9) prevlabel← currlabel

(10) return W

Class hierarchy Depth Average fan-out
Episode 2 2.67
Subject 2 8

Occupation 4 4.08
Education Qualification Level 2 3.89

Industry Sector 1 21

Figure 2: Characteristics of the class hierarchies.

set U (line 6), avoiding identical calls toNeighboursByEdge.

4. PERFORMANCE STUDY
In this section, we present performance results from two

case studies. We also discuss two optimisations, showing
how each results in improved performance for some of the
APPROX/RELAX queries. All experiments were run on an
Intel Core i7-950 (3.07-3.65GHz) with 6GB memory, running
Windows 7 (64 bit).

4.1 L4All Case Study
Our first case study uses data from the L4All project [17].

Briefly, the L4All system aimed to support lifelong learn-
ers in exploring learning opportunities and in planning and
reflecting on their learning. The system allows users to cre-
ate and maintain a chronological record — a timeline — of
their learning and work episodes. Each episode is (i) linked
to an Episode category by an edge labelled type, (ii) linked
to other episodes edges labelled ‘next’ or ‘prereq’ (indicating
whether the earlier episode simply preceded, or was neces-
sary in order to be able to proceed to, the later episode),
and (iii) linked to either an occupational or an educational
event, by means of an edge labelled ‘job’ or ‘qualif’, which in
turn is classified in terms of Education Qualification Level
or Industry Sector, respectively.

Figure 2 shows the class hierarchies used in the ontol-
ogy accompanying the data; the depth is the length of the
longest path from the root to the leaf nodes, and the av-
erage fan-out is the average number of children of each
non-leaf class. There is only one property hierarchy: the
super-property ‘isEpisodeLink’ has ‘next’ and ‘prereq’ as
subproperties. These properties also have defined domains
and ranges, but as these are not used in the our performance
study, we do not discuss them further.

Our initial data comprised five detailed timelines from real
users, to which we added 16 additional realistic timelines.
Each of these timelines consisted of a mixture of educa-

L1 L2 L3 L4
Nodes 2,691 15,188 68,544 240,519
Edges 19,856 118,088 558,972 1,861,959

Figure 3: Characteristics of the L4All data graphs.

Q1 (Work Episode, type−, ?X)

Q2 (Information Systems, type−.qualif−, ?X)

Q3 (Software Professionals, type−.job−, ?X)

Q4 (?X, job.type, ?Y)

Q5 (?X, next+, ?Y)

Q6 (?X, prereq+, ?Y)

Q7 (?X ,next+|(prereq+.next), ?Y)

Q8 (Mathematical and Computer Sciences, type.prereq+, ?X)

Q9 (Alumni 4 Episode 1_1, prereq*.next+.prereq, ?X)

Q10 (Librarians, type−, ?X)

Q11 (Librarians, type−.job−.next, ?X)

Q12 (BTEC Introductory Diploma, level−.qualif−.prereq, ?X)

Figure 4: The L4All query set.

tional and occupational episodes, and varied in terms of the
number of episodes contained within them, as well as the
classification of each episode.

We then scaled this data graph up by creating synthetic
versions of the real timelines in order to obtain four data
graphs of increasing size, called L1 (143), L2 (1,201), L3
(5,221) and L4 (11,416), where the number in brackets refers
to the number of timelines. Figure 3 shows the characteris-
tics of each data graph. The synthetic timelines were gener-
ated by duplicating a real timeline and using the ontology to
alter the classification of each episode to be a ‘sibling’ class
of its original class, for as many sibling classes as are present.
Each duplicated timeline remained identical to the original
in terms of the number of episodes, whether the type of the
episode was educational or occupational, and the manner in
which episodes were linked to each other. Thus, as the data
graph increases in size, the degree of the class nodes (i.e.
the nodes with incoming type edges) increases linearly. As
the data graph size increases, the total number of edges also
increases linearly with the number of nodes.

We execute a series of single-conjunct queries on this data
in order to evaluate the performance of our APPROX and
RELAX operators, shown in Figure 4. These 12 queries in-
clude actual queries used in the original L4All case study,
as well as others designed to stress test our implementation.
Each query is first run in ‘exact’ mode — i.e. neither AP-
PROX nor RELAX is used — followed by versions of the
same query containing either the APPROX or the RELAX
operator. We therefore run 36 queries in total.

We used a cost of 1 for each approximation operation (in-
sertion, substitution and deletion). For RELAX, we applied
rules of type (i) (see Section 2), also at a cost of 1. We ran
each query five times, discarding the first run as the cache-
warm-up. After initialisation, each exact query was run to
completion, in which all results are obtained. On the other
hand, each APPROX and RELAX run comprises the follow-
ing sequence: initialisation; obtain results 1–10 (‘batch 1’);
obtain results 11–20 (‘batch 2’); . . . ; obtain results 91–100
(batch 10). For exact queries, the average time to return all
answers was taken across runs 2 to 5. For APPROX and RE-
LAX queries, we took the average of each of the 10 batches
across runs 2 to 5 to obtain an average for each batch. We

153

Q3 Q8 Q9 Q10 Q11 Q12

L1: Exact 58 0 1 1 2 0

L1: APPROX 100 100 100 100 100 100
1 (42) 2 (100) 1 (32) 1 (7) 1 (12) 1 (100)

2 (67) 2 (92) 2 (86)

L1: RELAX 100 0 12 100 100 59
1 (42) 1 (11) 1 (20) 1 (40) 1 (59)

2 (20) 2 (40)
3 (59) 3 (18)

L2: Exact 1,090 0 1 1 2 0

L2: APPROX 100 100 100 100 100 100
2 (100) 1 (32) 1 (7) 1 (12) 1 (100)

2 (67) 2 (92) 2 (86)

L2: RELAX 100 0 12 100 100 59
1 (11) 1 (20) 1 (40) 1 (59)

2 (20) 2 (40)
3 (59) 3 (18)

L3: Exact 3,104 0 1 1,024 2,048 0

L3: APPROX 100 100 100 100 100 100
2 (100) 1 (32) 1 (100)

2 (67)

L3: RELAX 100 0 12 100 100 59
1 (11) 1 (59)

L4: Exact 3,104 0 1 1,024 2,048 0

L4: APPROX 100 100 100 100 100 100
2 (100) 1 (32) 1 (100)

2 (67)

L4: RELAX 100 0 12 100 100 100
1 (11) 1 (100)

Figure 5: Results for each query and data graph.

then computed the average over all batches. Some of these
queries yielded fewer than 100 results.

We show the number of results obtained for queries 3, 8,
9, 10, 11 and 12 per data graph in Figure 5. Queries 1 and 2
showed similar performance to Query 3, while queries 4–7 all
returned well over 100 exact results on all the data graphs,
thus negating the need to apply APPROX and RELAX to
them for the purposes of this performance study. For AP-
PROX and RELAX queries yielding non-exact answers, we
also show in Figure 5 the distances of the non-exact answers,
as well as the number of the answers at each non-zero dis-
tance in brackets (with the number of exact answers com-
prising the difference). For example, query Q9/APPROX
on data graph L2 returns 1 exact answer (100-(32+67)), 32
answers at distance 1 and 67 answers at distance 2.

Figures 6, 7 and 8 show the average execution times for
the exact, APPROX and RELAX versions, respectively, of
queries 3, 8, 9, 10, 11 and 12 over the data graphs L1–L4.

Figure 6: Execution time (ms) – exact queries.

For the exact queries, we see that queries 8 and 9 take
constant time for all the data graphs since at most a single
answer is returned. The jump in execution time from L2
to L3 for queries 10 and 11 is caused by the large increase
in the number of answers; similarly for query 3. Query 12
shows a steep increase owing to the manner in which the syn-
thetic timelines were generated, giving rise to the processing
of nodes of ever-increasing degree. We note that the perfor-
mance of all the queries is competitive with the expected
behaviour of native NFA-based approaches to regular path
query evaluation [11].

Figure 7: Execution time (ms) – APPROX queries.

Figure 8: Execution time (ms) – RELAX queries.

For the APPROX queries, queries 10 and 11 show a de-
crease in the time taken for L3 and L4 compared with L2
which is caused by the fast processing of sufficient exact re-
sults for the larger two data graphs; similarly for query 3.
However, the APPROX versions of queries 8, 9 and 12 ex-
hibit an exponential increase in time taken to retrieve the
top 100 results. This is caused by a large number of inter-
mediate results being generated (due to the Succ function
returning a large number of transitions which are then con-
verted into tuples in GetNext and added to DR). We discuss
optimisation of query 9 in Section 4.3. Regarding queries 8
and 12, the time for query 8 decreased from 332ms to 272ms
by applying the first optimisation of Section 4.3. Query 12
was not aided by the optimisations of Section 4.3.

The RELAX queries 3, 8, 9, 10 and 11 all exhibit a fairly
constant execution time across the data graphs. Query 12
shows an increase from L3 to L4 for a reason similar to that
for its APPROX version.

4.2 YAGO Case Study
For our second case study, we used data from YAGO [10].

The connectivity patterns in YAGO differ from the rather
‘linear’ timelines comprising the L4All data, so provide a
contrasting basis on which to evaluate query performance.
Additionally, the YAGO ontology differs from the L4All one
in terms of its breadth and depth.

We downloaded the simpler taxonomy and core data facts
from the YAGO website (the SIMPLETAX and CORE por-

154

Q1 (Halle_Saxony-Anhalt, bornIn−.marriedTo.hasChild, ?X)

Q2 (Li_Peng, hasChild.gradFrom.gradFrom−.hasWonPrize, ?X)

Q3 (wordnet_ziggurat, type−.locatedIn−, ?X)

Q4 (?X, directed.married.married+.playsFor, ?Y)

Q5 (?X, isConnectedTo.wasBornIn, ?Y)

Q6 (?X, imports.exports−, ?Y)

Q7 (wordnet_city, type−.happenedIn−.participatedIn−, ?X)

Q8 (Annie Haslam, type.type−.actedIn, ?X)

Q9 (UK, (livesIn−.hasCurrency)|(locatedIn−.gradFrom), ?X)

Figure 9: The YAGO query set.

Q2 Q3 Q4 Q5 Q9

Exact 2 0 0 0 0

APPROX 100 100 ? ? 100
1 (98) 1 (5) 1 (100)

2 (95)

RELAX 2 100 0 100 100
1 (100) 1 (100) 1 (100)

Figure 10: Query results for the YAGO data graph.

tions) and imported these into our system2. The resulting
data graph consists of 3,110,056 nodes and 17,043,938 edges.
There is only one classification hierarchy in YAGO; its depth
is 2 and average fan-out is 933.43.

Including the type property, YAGO uses 38 properties.
There are two property hierarchies, containing 2 and 6 sub-
properties respectively. The properties also have domains
and ranges defined, not used in our performance study.

The queries we ran on the YAGO data are listed in Fig-
ure 9. The exact, APPROX and RELAX versions therefore
give rise to 27 queries, for which we calculated the timings as
described in Section 4.1, with the edit and relaxation costs
the same as those used for the L4All case study.

The number of results obtained for queries 2, 3, 4, 5 and 9
for the YAGO data graph are shown in Figure 10. For each
query, the exact version was run to completion, and the
APPROX and RELAX versions were run until the top 100
answers were retrieved. The ‘?’ indicates instances where
the system ran out of memory and hence failed without re-
turning any answers. Query 1 showed a similar performance
to query 2; query 6 is similar to queries 4 and 5 in terms of
query structure, but it terminated, unlike these; and queries
7 and 8 returned well over 100 exact results, therefore negat-
ing the need for APPROX and RELAX.

Figure 11 shows the average execution times for queries 2,
3, 4, 5 and 9. For the exact queries, queries 2 and 3 execute
quickly. Queries 4 and 5 take longer to execute because their
conjuncts are of the form (?X,R, ?Y). Hence processing is
initiated from a large number of nodes (41,811 and 33,834
respectively), and further traversal leads to large numbers
of intermediate results; query 9 behaves similarly.

APPROX queries 2 and 3 exhibit poor performance due to
a large number of intermediate results, while query 9 takes
the same time as the exact version; we discuss these further
in Section 4.3. Queries 4 and 5 failed to terminate as the
system ran out of memory; this, too, is due to a large number
of intermediate results.

RELAX queries 2, 3 and 9 performed competitively, re-
turning more results for the latter two than their exact coun-
terparts. Query 4’s time was the same as for the exact ver-

2http://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/research/yago-naga/yago/downloads/

Figure 11: Execution times (ms), YAGO data graph.

sion (with no extra results). Query 5 returned results and
executed faster than the exact version; this is due to 100
results being found (by the application of rules of type i)
and execution terminating sooner.

4.3 Query execution optimisations
In this section we outline two optimisations which may

improve the performance of APPROX and RELAX queries.
Retrieving answers by distance: We have implemented

a distance-aware mode of query execution for APPROX and
RELAX queries in order to prevent the unnecessary process-
ing of data which yields answers at a cost higher than that
required by the user. For example, if the user requests the
top 100 answers in cases where there are over 100 answers
at cost 0, using transitions of greater cost to traverse G and
add tuples to DR results in a slower query execution time
overall, owing to the processing of redundant data.

We set a current maximum cost, ψ, to be 0 initially. No
tuple having a cost greater than zero is processed (i.e. added
or removed from DR), and all answers of cost 0 are returned.
Should more answers be required, we then increment ψ by
the smallest cost, φ, of the edit or relaxation operations be-
ing applied. For each successive value of ψ, query evaluation
commences from the beginning, as all tuples having a cost
c ≤ ψ need to be considered (so this method is not suitable
in cases where answers at high cost are required) but no
tuple having a cost greater than ψ is processed.

Using distance-aware retrieval substantially improves the
performance of some APPROX queries. For example, L4All
queries 3 and 9 run three to four times faster with this opti-
misation. YAGO query 3 executes twice as fast, while query
2 takes 0.6ms instead of 2560ms, a dramatic improvement.
Replacing alternation by disjunction: Another op-

timisation for APPROX queries we have implemented is to
decompose the NFA for a regular expression R = R1|R2|...
into sub-automata NFAi for each Ri, providing the NFA
has a single start state. These are processed in default or-
der (NFA1, NFA2, . . .) for the distance 0 answers, and we
store the number of answers returned in each case, n0,i. To
compute the answers at distance φ, we evaluate the sub-
automata by increasing n0,i value. In general, to compute
the answers at distance kφ, we evaluate the sub-automata
by increasing n(k−1)φ,i value.

For example, applying this to YAGO query 9, results in
the sub-automata NFA1 for (UK, livesIn−.hasCurrency,
?X) and NFA2 for (UK, locatedIn−.gradFrom, ?X). NFA1

the returns the least answers at distance 0, so this is pro-
cessed first for the distance 1 answers. This reduces the
query execution time to 12.65ms compared with 101.23ms.

155

5. RELATED WORK
In this section we briefly review previous work on the im-

plementation of regular path queries.
[11] presents a technique for the evaluation of exact queries

which takes advantage of rare labels in a graph. A query
containing one or more rare labels is broken down into a set
of sub-queries such that each sub-query begins or ends with
a rare label. Their method, using a bi-directional search
utilising graph indexes, is shown to be faster than other
automaton-based implementations. Our exact queries per-
form favourably compared with the results in [11].

[22] presents RPL, a regular path language for RDF data,
whose implementation, like ours, uses an automaton-based
approach. However, RPL is only able to process very small
graphs efficiently [11].

[4] describes a framework allowing weighted RDF data to
be queried in a cost-aware manner, and returning results
ranked according to cost. This is accomplished by an ex-
tension to SPARQL, SPARankQL, encompassing the provi-
sion of novel predicates for expressing flexible paths between
nodes and the capacity to define ranked queries (in which the
weights are used). Our work allows the path to be expressed
by a regular expression which may be mutated by edit op-
erations, whereas SPARankQL can only be used to express
either no restrictions on paths from a node or restrictions on
specified labels of the path. The data graphs used in their
performance study have, respectively, 9K nodes (24K edges)
and 10K nodes (25K edges), and are both smaller and more
sparse than our L2 graph.

[6] discusses a SPARQL query graph model using trans-
formation rules to rewrite queries. Experiments are run on
RDF graphs of increasing size, with the largest comprising
1,272K triples. The rewritten queries run approximately
twice as fast as the original ones. We do not yet make use
of query rewriting, which is an area of future work.

6. CONCLUSIONS
Building on previous work on combining approximation

and relaxation for regular path queries [18, 17], we have pro-
vided a detailed description of our implementation, Omega,
focussing on low-level data structures and physical optimisa-
tions, both in terms of the interaction with the graph store,
Sparksee, and our query processing layer within Omega.

We have presented a comprehensive performance study,
using large graphs consisting of real-world data, in which
we show that our baseline implementation performs compet-
itively in terms of exact regular path queries. The benefits
of our APPROX and RELAX operators have been shown
in terms of additional answers being returned for queries re-
turning few or no answers for the exact version. Many of the
APPROX and RELAX queries executed quickly, but some
either failed to terminate or did not complete within a rea-
sonable amount of time. We discussed the reasons for this in
each case, and showed how further optimisations, such as re-
trieval by distance and replacing alternation by disjunction,
enabled several queries to execute faster.

For future work, we will consider the use of disk-based
data structures to guarantee the termination of APPROX
queries with large intermediate results (such as YAGO queries
4 and 5). We will also investigate using characteristics of
the data graph and heuristics to reduce the amount of un-
necessary processing. Other promising directions are query

rewriting, and leveraging rare labels as in [11]. Distributed
approaches [8, 19] are also relevant for flexible querying
of larger-scale graphs than we have considered in our cen-
tralised approach so far.

7. REFERENCES
[1] Bio4j. http://bio4j.com/.

[2] C. Bizer, A. Jentzsch, and R. Cyganiak.
http://lod-cloud.net/state/.

[3] D. Calvanese, G. D. Giacomo, M. Lenzerini, and
M. Y. Vardi. Containment of conjunctive regular path
queries with inverse. In KR, pages 176–185, 2000.

[4] J. P. Cedeño and K. S. Candan. R2DF framework for
ranked path queries over weighted RDF graphs. In
Proc. WIMS, pages 40:1–40:12, 2011.

[5] M. Droste, W. Kuich, and H. Vogler. Handbook of
Weighted Automata. Springer, 2009.

[6] O. Hartig and R. Heese. The SPARQL query graph
model for query optimization. In Proc. ESWC, pages
564–578, 2007.

[7] T. Heath, M. Hausenblas, C. Bizer, and R. Cyganiak.
How to publish linked data on the web (tutorial). In
Proc. ISWC, 2008.

[8] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL
querying of large RDF graphs. PVLDB,
4(11):1123–1134, 2011.

[9] C. A. Hurtado, A. Poulovassilis, and P. T. Wood.
Ranking approximate answers to semantic web
queries. In Proc. ESWC, pages 263–277, 2009.

[10] G. Kasneci, M. Ramanath, F. Suchanek, and
G. Weikum. The YAGO-NAGA approach to
knowledge discovery. SIGMOD Rec., 37(4):41–47,
Mar. 2009.

[11] A. Koschmieder and U. Leser. Regular path queries on
large graphs. In Proc. SSDBM, pages 177–194, 2012.

[12] N. Martinez-Bazan and D. Dominguez-Sal. Using
semijoin programs to solve traversal queries in graph
databases. In Proc. GRADES, pages 6:1–6:6, 2014.

[13] N. Mart́ınez-Bazan et al. Efficient graph management
based on bitmap indices. In Proc. IDEAS, pages
110–119, 2012.

[14] Neo4j. http://www.neo4j.com/.

[15] I. U. of Copenhagen. http://www.itu.dk/research/c5/.

[16] OrientDB. http://www.orientdb.org/.

[17] A. Poulovassilis, P. Selmer, and P. T. Wood. Flexible
querying of lifelong learner metadata. IEEE Trans. on
Learning Technologies, 5(2):117–129, 2012.

[18] A. Poulovassilis and P. T. Wood. Combining
approximation and relaxation in semantic web path
queries. In Proc. ISWC, pages 631–646, 2010.

[19] M. Przyjaciel-Zablocki, A. Schätzle, T. Hornung, and
G. Lausen. RDFPath: Path query processing on large
RDF graphs with MapReduce. In ESWC Workshops,
2011.

[20] Reco4j. http://www.reco4j.org/.

[21] Sparksee. http://www.sparsity-technologies.com/.

[22] H. Zauner, B. Linse, T. Furche, and F. Bry. A RPL
through RDF: expressive navigation in RDF graphs.
In Proc. RR, pages 251–257, 2010.

[23] D. D. Zhu and K. I. Ko. Problem Solving in Automata,
Languages, and Complexity. Wiley, Newark, NJ, 2004.

156

Beta-algebra: Towards a Relational Algebra for Graph
Analysis

Luiz Gomes-Jr*†
gomesjr@ic.unicamp.br

Bernd Amann†
bernd.amann@lip6.fr

André Santanchè*

santanche@ic.unicamp.br
*Institute of Computing †LIP6 (UMR 7606/CNRS)

State University of Campinas (UNICAMP) Université Pierre et Marie Curie (UPMC)
Campinas – SP – Brazil Paris – France

ABSTRACT
Graph analysis is an essential tool to understand natural
and man-made networks, such as social networks, food webs,
transportation infrastructures, etc. Although graph analysis
has fomented the development of algorithms, visual tools,
and distributed processing frameworks, there is still little
support for analysis at the query language level. Current
graph query languages are mostly concerned with flexible
matching of subgraphs, while graph processing frameworks
are mostly concerned with fast parallel execution of instruc-
tions.

Our goal is to provide analysis capabilities at the language
level, allowing more interactive and explorative query-based
analysis. In this paper, we present our ongoing efforts to-
wards a relational algebra extension that offers an operator
for graph-based data aggregation. The beta (β) operator is
composed of four suboperators, which are used to control
the path-based aggregations. The β-algebra allows seamless
composition of queries that mix relational and graph-based
aspects.

Here we introduce our current algebra and provide examples
of its use. We also show how we are using the analysis
strategy in query scenarios. Since the algebra-based query
scenario allows for execution plan rewritings, we also discuss
our first efforts on equivalence rules for query optimization.

Keywords
Graph algebra, relational algebra, Complex Networks, graph
data models, graph query languages

1. INTRODUCTION
Graph analysis has become an important tool in diverse
fields. Social, transportation, communication, and biolog-
ical networks are examples of information often organized
as graphs, which require specific tools and algorithms for
proper data analysis.

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

The area of Complex Network Analysis [6] has advanced
in the last decades and has produced several models, algo-
rithms and techniques to study natural and human-made
networks. In terms of database support, there has been
a strong acceleration in the usage of graph databases and
query languages, as well as in the development of the under-
lying algorithms and mechanisms. There is, however, still
a big gap between graph query languages and the analysis
techniques. Current graph query languages offer little sup-
port for the type of analysis required for complex networks.
Such a gap is not present, for example, in traditional rela-
tional databases, which support query languages that offer
aggregation operations that are the basis of more sophisti-
cated multidimensional analysis.

Our goal is contributing towards bridging this gap. We aim
at developing data management and querying mechanisms
that offer a better support for network analysis. In this pa-
per, we present our first steps towards creating an algebra
that offers a graph-based aggregation operation. We expect
this algebra to be the basis of more expressive queries, sup-
porting declarative and interactive graph data exploration.

Our proposed algebra is based on Codd’s relational algebra
[4]. This has several advantages: (i) it provides a well estab-
lished theoretical basis; (ii) it allows the combination of tra-
ditional relational operations alongside our proposed graph
operation; (iii) it is a de facto standard in database research.
Having an underlying algebra allows a better understanding
of the semantics of the query language and, most impor-
tantly, allows the definition of rewriting rules for execution
plan optimization. As an extra benefit, relational algebra
compatibility also simplifies implementation in current rela-
tional database systems.

In simple terms, our goal with the algebra is to provide
graph-based aggregation of values. The core of our pro-
posal is the beta (β) operator, which encapsulates the graph
traversal procedure and allows parametric control over the
aggregation of values. We see graph-based aggregation as
a generalization of relational aggregation over sets. Consid-
ering that most useful relational aggregations perform joins
before applying an aggregation operation, we adopt this pat-
tern of first deriving relationships between the data (joins or
graph traversals) and then aggregating the values as the ba-
sis for our new constructor.

Combining the advantages of relational query languages and

157

graph analysis, the proposed algebra allows the construc-
tion of queries involving subgoals such as: obtain a sub-
graph based on given nodes properties and edge labels; cal-
culate the reputation of the nodes in the subgraph; combine
the reputation and the average distance to a given refer-
ence node in the general graph; order the resulting nodes
based on the final score. In our envisioned scenario, such
queries would be starting points for deeper explorative anal-
ysis, with goals such as: analyze the average node degree for
the top-k nodes returned in the query; obtain the average
value for a certain attribute for the bottom-k scoring nodes,
etc.

This paper is organized as follows: Section 2 describes re-
lated work and fundamental concepts. Section 3 presents the
definition of our algebra alongside with query and execution
examples. Section 4 briefly describes our current approach
for querying and initial query rewriting rules for execution
plan optimization. Finally, Section 5 concludes the paper.

2. RELATED WORK
There is great diversity of graph query languages, which have
pushed the boundaries for more expressive constructors [16].
Graph query languages are often based on conjunctive regu-
lar path queries (CRPQs). CRPQs are the basis for several
graph languages, such as GraphLog [5] and SPARQL1. Re-
cent developments have extended CRPQs in order to allow
constraints over path properties. These types of queries have
been described as extended conjunctive regular path queries
(ECRPQs) [2]. ECRPQs also allow paths to be returned as
query results. These queries are all focused on data selection
and support only the simplest cases of analysis.

Query languages such as in GID [15] allow ranking based on
pre-calculated metrics of importance which capture the dy-
namics of a snapshot of the network. Our goal is to enable a
higher level of on-demand analysis in graph query languages.
To that extent, we are working towards an algebra that can
handle graphs and aggregations over paths. The goal is to
use this algebra to build more flexible query languages.

Several algebras that support graphs have been proposed.
To our knowledge, the algebra that is closer to our goals
is the alpha-algebra [1], which also serves as inspiration for
the name of our operator. The alpha operator derives the
transitive closure for tables that express self-relationships –
e.g. CONNECTS(from, to, distance). The algebra supports
aggregation and filtering over paths through the delta (∆)
attribute, which is an internal relation containing each path
history in the result set. Conceptually, the alpha operator
has two main characteristics that make it unsuited for our
needs: the operator always processes until reaching fix point,
and there is a single point for value aggregation. In our alge-
bra, we add more flexible stop conditions and split aggrega-
tion in four suboperations (Section 3). We also change the
underlying model and add several elements for querying con-
venience. The changes allow more analysis algorithms to be
represented in the algebra as well as providing more oppor-
tunities for optimization based on query rewritings (Section
4).

1http://www.w3.org/TR/sparql11-query

Frasincar et al. [8] propose an algebra for RDF, with some
operators inspired by relational algebra. The algebra en-
ables both querying and construction of RDF models. Al-
though the algebra shares many of the goals in this paper,
the focus is on the complete RDF-S model, which incurs con-
siderable complexity when compared to our simpler graph
model. Most importantly, the proposed algebra does not
support graph-based aggregation, our main focus.

In a more recent and simpler proposal, Cyganiak [7] defines a
relational algebra for the SPARQL language over the RDF
model. The authors rely on a global reference table con-
taining RDF triples (subject, property, object) as basis for
the operations. We use a similar strategy for our underlying
model as we employ global tables for nodes and relationships
to represent the graph in the database. Their proposal, how-
ever, does not deal with aggregation or analysis issues.

The demand for graph analysis in large scale has motivated
the development of several frameworks for distributed com-
putation: Google’s Pregel, the first NoSQL implementation
in that scale, was followed by diverse proposals including
GraphLab [13] and GraphX2. These models focus on paral-
lelization of the API operations and do not provide declar-
ative languages as means for data querying. GraphX shares
some of our motivation since it aims at simplifying mixed
analysis that include graphs and relations. The focus is,
however, on general parallel computation and not on query-
ing. Our goal is to provide a higher level, declarative lan-
guage for graph querying and analysis, allowing a more in-
teractive and explorative interface with the user. Although
we are not concerned with distributed computation at the
moment, we believe that would be a natural evolution for
our framework.

The Complex Networks [6] field is a prominent area that
would benefit from query-base graph analysis. Complex net-
work formation is based on localized phenomena, which in
a global scale determines emergent behavior that cannot be
assessed based merely on the analysis of parts of the system.
The researchers employ a variety of models and algorithms
to derive knowledge from the structures. Among the fre-
quently used algorithms are the well known PageRank [3]
and HITS. Most of the analysis in the field is done using ad
hoc applications with no database support.

The algebra that we propose in this paper has been de-
veloped in the context of our Complex Data Management
System (CDMS) [11], which aims at providing a database-
like framework for complex network analysis and manage-
ment. Appropriate query languages (and underlying alge-
bras) would allow a more fine-grained, exploratory and in-
teractive interaction with the networks.

3. THE BETA-ALGEBRA
In this section we describe the requirements for our algebra
and present the beta operator alongside example queries.

3.1 Requirements
The basic requirements for the proposed algebra are:

2https://spark.apache.org/graphx/

158

Allow traditional relational aggregation: given the widespread
use and familiarity with relational database queries, it is im-
portant to build on and leverage this foundation. Moreover,
a graph analysis workflow often contains routines that are
typically relational (counting, ranking, statistics, etc).

Enable aggregation over path traversals: Most graph analysis
tasks involve aggregating values along graph traversals. It
is important to allow flexible and case-specific aggregation
functions that are applied as the graph is traversed.

Preserve the closure of relational algebra: It is important
that the aggregation operates over and produces relations.
This allows compatibility with relational algebra properties
studied for decades, as well as making the language more
flexible and composable.

Support flexible selection of nodes of interest : To enable ex-
plorative analysis over graph data it is important to have
efficient means to filter nodes and relationships that are to
be part of the analysis. A declarative language would natu-
rally allow this type of flexibility.

Offer means to express subgraphs to constrain the analy-
sis: Currently, most complex networks analysis is done over
graphs as a whole. We believe this is highly associated with
a lack of convenient means to select a subgraph of interest
and apply the analysis over the selection. An appropriate
algebra needs to enable graph-based constraints over the ex-
ecution of the algorithms.

Rewriting rules for cost-based optimization: One of the main
advantages of building query languages over an underlying
algebra is the possibility of rewriting the queries for faster
execution. Including graph-specific operations allows the
specification of semantically sound rewriting rules for the
graph setting.

Other requirements, not covered in this paper but that we
want to address soon are:

Include convergence criteria for operation termination: This
would allow the implementation of complete versions of pop-
ular graph analysis algorithms (e.g. PageRank).

Provenance/Path information for query results: Like in the
alpha algebra with its delta attribute, adding information
about paths traversed by the operations allows more flexi-
bility for query composition and allows optimizations such
as avoiding loops in graphs.

3.2 Data model
In this paper we use a simple interpretation of graphs in the
relational model. In this model, a labeled property multi-
graph3 [14] G is represented in two relational tables, V (ver-
tices or nodes) and E (edges or links). The tables contain
attributes representing the properties for all nodes and edges
(typically highly sparse tables). The V table is in the form
〈node, a1, a2...an〉, where node represents the node id in the
database, and a1, a2...an are node properties.

3a graph with labeled links and properties for nodes and
links

Figure 1: Subgraph from a movies dataset

The E table is in the form 〈source, dest, label, a1, a2...an〉.
source and dest are ids representing the connected nodes for
a given edge (the order implies the direction), label is the
label according to the labeled property graph model, and
the properties are as in the V table.

This data model is the reference for the proposed algebra.
However, as with any other model, it does not impose im-
plementation constrains (e.g. it can be implemented over a
pure graph database and use efficient structures to represent
the sparse tables). Our own implementation stack does not
include any traditional relational component.

In the following paragraphs, the beta operator will be pre-
sented informally, in increasingly complexity as parameters
and suboperations are introduced. Since the operator can
be seen from either a graph or relational perspective, we will
use equivalent terms interchangeably (e.g. join and traversal
step). The semantics, however, is always relational.

3.3 The beta operator
Much like the alpha operator, the beta operator assesses
recursive relations in the database. However, the main goal
is not to derive transitive closure. Instead, the focus is on
data aggregation along the traversal of the relations. In
its simplest form, the beta operator performs a single join
between a single column source table and the table E. An
union operation is then applied to aggregate the original and
new nodes. For the sake of readability, we omit extra join,
projection, and renaming operations required to maintain
the original schema after the execution of the operator. In a
graph interpretation, the beta operator augments an initial
set of nodes with all of their neighbors. For example, based
on the graph in Figure 1, the beta operator applied to a
source table containing one column with node ids {9, 10}
would produce {9, 10, 3, 1, 4}. This operation is represented
as β(σid∈{9,10}(V)).

In general, we represent the beta operator as nβp(R), with
p = 〈s, dir, set,map, reduce, update, C〉. Several parameters
are used to control the behavior of the beta operator. s is
the join condition, which accepts Boolean expressions just
like its relational counterpart. n determines the number
of recursive calls to the operator (i.e. consecutive joins).

159

Figure 2: Simplified execution tree template

dir ∈ {inbound, outbound, both} determines the order of the
relations in the joins (or the direction of the graph traversal
operations). The optional parameter source determines, for
tables with more than one node column, the column over
which the beta operator operates (the default is the fist col-
umn).

The operator keeps the algebra closed since (i) it always pro-
duces a table with at least the same columns as the input
table, and (ii) it can be defined using standard relational
algebra with aggregation. The design choices (such as en-
capsulating the table E inside the beta operator) are for
convenience and to focus on what we think are the most im-
portant aspects of an aggregation operation. This aspect is
inspired by the introduction of the relation join that despite
being a redundant operation has directed the focus of the re-
search on properties and optimizations of a central element
of the model.

The most important elements of the beta operator are the
aggregation suboperations. To allow full control of the com-
putation as the graph is traversed, we define four operations:
set, map, reduce, and update. set is a function that at-
tributes a value to a new column before the join (traversal)
operation is performed. map calculates a new value based
on each node in the source relation. The new values are as-
sociated with the neighbors after the join operation. reduce
is a function that aggregates over values for the same source
node (equivalent to a group by). Finally, update redefines
the aggregation values for the source nodes before the union.
Figure 2 shows a simplified execution tree for the beta op-
erator. As an example, the query:

σtype=movie(5β(σid=1(V))),
with {set: dist=0, map: dist=dist+1,dir=both}, obtains
distances to movie nodes that can be reached from the initial
node 1 (director Woody Allen) in up to 5 steps. Figure 3
shows the partial tables after the suboperations for the first
iteration of the query. The query:

Figure 3: Snapshots of the resulting tables inside the
beta operator for the first iteration of the example
query.

σtype=movie(5β(σid=1(V))),
with {set: dist=0, map: dist=dist+1, reduce: dist=MIN(dist)}
obtains the minimum distances in the same setting.

Another parameter is the optional graph constructor C. Its
purpose is to specify the effective subgraph for the beta op-
erator, constraining the search space for the traversals. The
reference points for the constructor are the input nodes. C
has its own parameters: radius is the maximum distance
from the reference points; s is the edge selection expression
(similar to the join condition in the beta operator). Nodes
and links beyond the radius or that do not match the se-
lection are ignored by the beta operator. The addition of
the graph constructor in the algebra is also for convenience
sake. The same effect could be obtained by a series of joins
and selections over the E table. The query:

5β(σtype=movie(V)),
with {set: rank=1, map: rank=rank/|e.out()|,
reduce: SUM(rank), reset: rank = 0, C: {radius:3}}, is a
simplified PageRank algorithm executed for five iterations
(not until convergence) over a graph of radius 3 around the
source nodes in R. |e.out()| represents the number outbound
nodes (that can be obtained with traditional algebra aggre-
gation). If the number of source nodes is known and its
inverse is used in set function, the query obtains, for each
node in the constructed graph from C, the probability that
a random walker would stop at the node after five steps.

Other parameters and functionalities that we want to inves-
tigate are (i) specifying stop conditions for the beta oper-
ator, including simple test and convergence properties, (ii)
recording path traversal information in a delta attribute,
with functions that operate over it (similar to the alpha-
algebra), and (iii) a modifier equivalent to the SQL distinct,
that uses the delta attribute to avoid the computation of
cycles.

4. QUERYING AND OPTIMIZATION
In this section we present our initial attempts with query
language design and rule-based optimization.

4.1 Querying
We are developing the algebra presented here to support the
query language that we have been developing as part of our
CDMS system. The language that we are currently using is
an extension of popular graph queries as shown in Figure 4.
The language shows the type of queries we are envisioning,
although it is less expressive than the algebra that we are

160

Figure 4: Query examples. a) extends SPARQL and
b) extends Cypher

proposing. We plan to design a more expressive language
following the definition of our algebra.

In the initial language, the graph-based aggregation is ex-
pressed in a RANK BY clause. The clause accepts met-
rics that aggregate values over graph traversals as in the
algebra presented. For example, Relevance is a generaliza-
tion of the notion of relevance in Information Retrieval, at-
tributing higher scores to elements that have multiple and
more specific connections (paths). This metric can be rep-
resented in our algebra by a beta operator with aggrega-
tion functions {set : score = 1,map : score = (score ∗
0.9)/e.out(), reduce := SUM(score)}. Details about the
metrics and queries can be found in [10].

Figure 4a shows a query that retrieves actors whose careers
are strongly correlated (relevant) with the director Woody
Allen (id 1). Based on the subgraph in Figure 1, Mia Farrow
would have a much higher score than Robin Williams. An-
other interesting query, that includes traditional relational
aggregation, would be to find the pair (actor, director) with
the maximum mutual relevance. This type of query would
be hard to express using current graph or relational queries.

Figure 4b shows a query that we used for a nursing diagnosis
task. Possible diagnosis are ranked based on their connec-
tions with the symptoms identified in the patients. This
query contains a combination of two different metrics (Rel-
evance and Connectivity).

4.2 Rewriting rules
An important motivation for introducing a new algebra is
to better understand the computation complexity and de-
fine rewriting rules for query optimization. This work is
still ongoing and we will only show some first examples for
illustration.

The first rule is about the bidirectionality of the analysis. A
beta operation that starts on a group of nodes and selects
another group of target nodes can be reversed (changing the
directions of the allowed edges). Reversing the direction can,
in certain cases, reduce the search space by avoiding dense
regions of the graph. For example, a three step undirected
traversal from node 1 to node 6 in Figure 1 visits 9 nodes,
while the traversal from 6 to 1 activates only 4 nodes. This
rule can be represented as:

σa(β(σb(R))) ≡ σb(β(σa(R))), where β represents the β op-
erator with inverted directions (parameter dir). We are
omitting, for sake of simplicity, extra joins and renamings
that would make the outmost selections equivalent. We have
tested this strategy for the query in Figure 4a against a com-
prehensive movie database [12]. The execution was reduced
to half the time of the baseline query. The initial results,
using a different formalization, were published as a technical
report [9]. We still have to assess the subset of aggregation
functions that allow the use of this rule. In practice, this
rule requires cost-based planning, which we have not imple-
mented yet.

Another rule, regarding compositionability of operators, com-
bines aggregation functions that are applied over the same
data by different beta operators. It can be represented as:

σa(βp(σb(R))) 1 σa(β′p′(σb(R))) ≡ σa(βp•p′(σb(R))), where
p represents the tuple of aggregation functions for the op-
erator and p • p′ combines the respective functions. The
functions in p and p′ must not make conflicting operations
over the same attributes. We expect this type of rewriting
to be very common, as multiple metrics can be used for the
same target nodes (as in the query b in Figure 4). We have
not yet implemented this rule in the system.

We have also explored options for speeding up queries be-
yond rule-based rewritings. We have tested, with positive
results, caching paths between nodes for metrics that need to
traverse the paths in both directions. We also explored a few
query approximation strategies for specific metrics. These
experiments are also reported in [9]. Another possibility is
to materialize graphs constructed from the parameter C for
use in multiple beta operators in the same query (rewrit-
ing the execution tree to take advantage of the materialized
graph).

5. CONCLUSION
Graph analysis has become an important requirement in
a wide range of modern applications and research fields.
This type of analysis is currently highly specialized, employ-
ing ad-hoc applications or complex distributed frameworks.
Graph databases offer little support for graph-based aggre-
gations that would allow for query-based analysis.

Here we presented our ongoing work on the beta-algebra,
which is intended to allow graph-based aggregations for declar-
ative query languages. The algebra extends the relational
model to support graph traversals and allows the control of
several aspects of the aggregations.

We have shown examples of the use of the algebra and how
it fits in our broader goal of developing data management
and querying mechanisms specific for graph/complex net-
work analysis. Also, we presented initial tests and directions
for query optimization based on execution plan rewriting,
along with our preliminary experimental results.

Our algebra allows more expressive querying when compar-
ing to pure relation aggregation and CRPQs. The increased
expressiveness enables explorative analysis and more inter-
active data manipulation. It also enables seamless integra-
tion of relational and graph-based analysis, which is a com-

161

mon application scenario. We believe the algebra is a good
basis to build expressive query languages as well as useful
optimization strategies.

Ongoing and future work include the expansion of the alge-
bra to allow more flexible stop conditions (e.g. convergence),
accumulation of traversal history (such as with the delta at-
tribute in alpha-algebra), definition and tests of rewriting
rules, specification of a query language that can take full ad-
vantage of the algebra, and implementation of a distributed
query processor.

Acknowledgments
This work was partially financed by the Microsoft Research
FAPESP Virtual Institute (NavScales project), CNPq (Mu-
ZOO Project and PRONEX-FAPESP), INCT in Web Sci-
ence (CNPq 557.128/2009-9) and CAPES-COFECUB, with
individual grants from CAPES and FAPESP (Proc. 2012/
15988-9 and 2014/01419-8). The opinions and conclusions
expressed in this work do not necessarily reflect the funding
agencies’.

6. REFERENCES
[1] R. Agrawal. Alpha: An extension of relational algebra

to express a class of recursive queries. IEEE Trans. on
Softw. Eng., 14(7):879, July 1988.

[2] P. Barceló, L. Libkin, A. W. Lin, and P. T. Wood.
Expressive languages for path queries over
graph-structured data. ACM Trans. Database Syst,
37(4):31, 2012.

[3] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1-7):107–117, 1998.

[4] E. F. Codd. A relational model of data for large shared
data banks. Comm. ACM, 13(6):377–387, June 1970.

[5] M. Consens and A. O. Mendelzon. Graphlog: a visual
formalism for real life recursion. In In Proceedings of
the Ninth ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, pages 404–416, 1990.

[6] L. Costa, O. Oliveira Jr, G. Travieso, F. Rodrigues,
P. Boas, L. Antiqueira, M. Viana, and L. Rocha.
Analyzing and modeling real-world phenomena with
complex networks: A survey of applications. Advances
in Physics, 60:329–412, 2011.

[7] R. Cyganiak. A relational algebra for SPARQL.
Technical Report HPL-2005-170, Hewlett Packard
Laboratories, May 21 2005.

[8] F. Frasincar, G.-J. Houben, R. Vdovjak, and
P. Barna. RAL: An algebra for querying RDF. World
Wide Web, 7(1):83–109, 2004.

[9] L. Gomes-Jr, L. Costa, and A. Santanchè. Querying
complex data. Technical Report IC-13-27, Institute of
Computing, University of Campinas, October 2013.

[10] L. Gomes-Jr, R. Jensen, and A. Santanchè. Towards
query model integration: topology-aware, ir-inspired
metrics for declarative graph querying. In
GraphQ-EDBT, 2013.

[11] L. Gomes-Jr and A. Santanchè. The Web Within:
leveraging Web standards and graph analysis to
enable application-level integration of institutional
data. to appear in Transactions on Large Scale Data
and Knowledge Centered Systems, 2014.

[12] O. Hassanzadeh and M. Consens. Linked movie data
base. In Proceedings of the 2nd Workshop on Linked
Data on the Web (LDOW2009), 2009.

[13] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed
graphlab: A framework for machine learning and data
mining in the cloud. Proc. VLDB Endow., 5:716–727,
2012.

[14] M. A. Rodriguez and P. Neubauer. The graph
traversal pattern. CoRR, abs/1004.1001, 2010.

[15] R. Varadarajan, V. Hristidis, L. Raschid, M.-E. Vidal,
L. D. Ibáñez, and H. Rodŕıguez-Drumond. Flexible
and efficient querying and ranking on hyperlinked
data sources. In EDBT, pages 553–564, 2009.

[16] P. T. Wood. Query languages for graph databases.
SIGMOD Record, 41(1):50–60, 2012.

162

Graph Search of Software Models Using Multidimensional
Scaling

Bojana Bislimovska1, Güneş Aluç2, M. Tamer Özsu2 and Piero Fraternali1
1 Politecnico di Milano, 2 University of Waterloo

{bojana.bislimovska, piero.fraternali}@polimi.it {galuc,tamer.ozsu}@uwaterloo.ca

ABSTRACT
Software models formalize the requirements, structure and
behavior of a system or application. They represent essential
artifacts that simplify the process of software development.
Software repositories have been developed to store models
in order to facilitate the reuse of know-how from software
projects; however, methods for searching these model repos-
itories are not very efficient. Specifically, while being more
scalable, general-purpose keyword search is not suitable for
model search because it does not consider the structure that
is inherent in software models: a good search algorithm
should consider the model structure as well as the knowl-
edge concentrated in the metamodel. On the other hand,
existing approaches that consider the structure while query-
ing software models are limited to only specific domains such
as Business Process Models (BPMs).

In this paper, we introduce MultiModGraph, an efficient
approach for indexing and searching model repositories. Mul-
tiModGraph preserves the model structure and metamodel
information by representing models as graphs. To enable ef-
ficient search, the approach employs multidimensional scal-
ing to approximately map vertices of the model graph to
points in space. We evaluate MultiModGraph both with
respect to speed and quality of results using a real-word
repository of web application models.

1. INTRODUCTION
Models facilitate software development in multiple ways:

They raise the level of abstraction to help deal with the in-
creasing complexity in software development; they help or-
ganizations improve source code quality and adapt faster to
changes in the requirements of a project; and they improve
communications within an organization. Models have a spe-
cific structure, which is expressed using a well-defined syntax
of a modeling language. Each modeling language conforms
to a metamodel, which defines the structure, semantics and
constraints for building a model [10].

Model repositories are used for storing collections of soft-

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0
.

ware models. Most (model) repositories offer elementary
tools to search these collections of models, which is partic-
ularly important for model re-usability [12]. For example,
instead of designing a model from scratch, developers can re-
trieve an already existing modeling pattern (from the repos-
itory) and tailor it according to their needs to build new
software models. This can significantly improve the model
development process by decreasing its time and cost, while
at the same time improving its quality.

Broadly speaking, model repositories employ two tech-
niques for search: general-purpose keyword search [13], or
content-based search that incorporates the model structure
in the query [16, 19]. However, each technique has its short-
comings. While being more scalable, general-purpose key-
word search is not suitable for model search because it does
not consider the structure that is inherent in software mod-
els [2]. Furthermore, most keyword-based approaches allow
only exact matching of keywords, where a set of keywords is
matched against the models’ description (e.g. model element
labels). On the other hand, those approaches that consider
the structure while querying software models are limited
to only specific domains such as Business Process Models
(BPMs). In contrast, methods are needed that are (i) more
general, (ii) sensitive to the knowledge about the model
structure and (iii) are at the same time scalable. Specifi-
cally, these solutions should allow users to pose queries (to
the model repository) in the form of a model sketch, which
captures the intended requirements in a native modeling lan-
guage supported by the model repository. Then, the repos-
itory should rank and return a sub-collection of the “most
relevant” modeling patterns from these models.

In this paper, we propose an algorithm for efficient search
of Web Modeling Language (WebML1) models, namely, Mul-
tiModGraph. The algorithm uses a representation of mod-
els as attributed graphs, which allows mapping of the model
structure and hierarchies among the model elements to a
graph. Queries, which represent model fragments, can also
be transformed into graphs, and they can be used for search-
ing similar models in a model repository. Our algorithm uses
multidimensional scaling to represent the graph vertices as
points in a multidimensional space. These points are used to
build an index that allows for efficient pruning during search.
This way, given a query vertex, those vertices in the graph
that are relevant to the query can be located efficiently (i.e.,
they correspond to points within a specified distance in the

1WebML is a modeling language for Web application front-
ends, recently generalized into the OMG IFML standard
(www.ifml.org)

163

multidimensional space). Furthermore, the algorithm con-
siders neighborhood information for each graph vertex in or-
der to locally expand already matched vertices. Metamodel
information is incorporated in the search and indexing, as
well as in the ranking function which sorts retrieved models
with respect to their similarity.

The paper is organized as follows: Section 2 presents re-
lated work; Section 3 describes the WebML modeling lan-
guage and the process of model to graph transformation;
Section 4 gives the system architecture; Section 5 describes
the proposed approach; Section 6 illustrates our results, and
finally, Section 7 concludes and proposes directions for fu-
ture work.

2. RELATED WORK
Existing works can be classified into 3 areas: (i) keyword-

based model search, (ii) content-based model search, which
present specific techniques for search of models, and (iii)
graph databases whose indexing and querying approaches
can be employed for model search.

2.1 Keyword-Based Model Search
Keyword-based approaches for model search use a set of

keywords for querying models. Their main limitation is that
they do not consider the model structure in the query or the
hierarchies and relationships among model elements. Fur-
thermore, they return exact but not approximate matches
to the query, which may be relavant to the user.

Moogle [13] is a keyword-based model search engine that
uses metamodels to create indexes for the evaluation of key-
word queries. In comparison to our approach, Moogle sup-
ports only textual queries with just a simple filter on the
type of the model element to be returned. Another keyword
based search solution for WebML models is presented in [2].
It incorporates metamodel information in the search pro-
cess, used only in deciding how weights are assigned to dif-
ferent index terms. In contrast, MultiModGraph supports
relationships among model elements through graph model
representation, as well as some additional metamodel infor-
mation such as references to the Data Model.

2.2 Graph-Based Model Search
Existing approaches that rely on a graph-based repre-

sentation of models predominantly target Business Process
Models (BPM) and their corresponding notations. However,
BPMs are not as rich as WebML models in terms of syntax
and semantics. Moreover, they are not suitable for searching
large collections of models, since they only rely on a scan of
the set of models without any indexes. One example of such
technique is [6], which proposes discovering and ranking of
BPEL process models. This is achieved by using behavioral
similarity measure and a graph matching algorithm.

The approach in [16] retrieves process models by combin-
ing related pairs’ clustering and a set of metrics for compar-
ison of vertex labels. The main limitation of this approach
is that the similarity between two process models is mainly
based on the similarity of vertex labels rather than the struc-
tural similarity of the model graphs.

Some recent approaches [19, 8] exploit indexing for more
efficient retrieval of business process models. These indexes
are mostly feature-based, containing subgraphs that are most
representative features of the model graphs in the repository.
However, this type of indexing cannot be applied to models

with complex metamodels, such as WebML.
In [2], we compare keyword-based approach with a graph-

based approach for searching web application(WebML) mod-
els, but we do not apply any indexing in the graph-based
approach.

2.3 Graph Databases
The approaches for indexing and querying that allow ef-

ficient search of large graph databases can be employed for
efficient search of models. NeMa (Network Match) [9] is
a neighborhood-based top-k subgraph matching technique
that uses a minimal cost function to evaluate a goodness of
a match. It considers structure and label similarities and
it uses a neighborhood-based vector index to improve effi-
ciency. Unlike NeMa, MultiModGraph uses different kind
of indexing based on multidimensional scaling. TALE (Tool
for Approximate Subgraph Matching of Large Queries Ef-
ficiently) [18] is a general tool for approximate subgraph
matching. It employs neighborhood-based indexing. TALE
allows for vertex mismatches and vertex and edge gaps. The
basic differences are that in MultiModGraph the queries are
small model fragments, and the graphs are attributed.

There also exist some approaches for search of attributed
graph databases [11, 20] whose graphs contain multiple la-
bels for both vertices and edges. Attributed graphs are used
to represent WebML models, because they exploit the rich-
ness of the WebML metamodel. These techniques for match-
ing attributed graphs use indexing methods that contain
neighborhood information for each vertex. MultiModGraph
also uses neighborhood information, but for a different pur-
pose, i.e., to expand the matching candidates. The main
limitation of these approaches is that they do not consider
approximate, but only exact graph matching.

3. BACKGROUND AND PRELIMINARIES
In this section, we give a brief introduction to WebML,

and describe the transformation from WebML models to at-
tributed graphs.

3.1 Web Modeling Language (WebML)
WebML is a Domain Specific Language (DSL) for design-

ing complex web sites [4], recently generalized into OMG
IFML standard. It consists of two parts (i) data model
and (ii) web model. The data model describes the data
requirements of an application, using entity-relationship no-
tation. The web model describes the organization of the
front-end interfaces of a web application. It contains three
main building blocks, namely pages, units and links which
are organized hierarchically into larger container elements
such as areas and site views. A site view represents a model
element that includes a well-defined set of requirements for
a specific category of users. Site views can contain areas,
container elements that cluster pages with a homogeneous
subject and can be nested recursively [3]. Pages are the ac-
tual interface elements delivered to the user and they contain
content units which represent atomic elements for specify-
ing the content of a web page. Another type of units is an
operation unit, contained in the areas and site views. Oper-
ation units denote operations on data or arbitrary business
actions; they can be activated as a result of a link naviga-
tion, performing manipulation with data, or execution of an
external service. Content and operation units are connected
by links. Links allow sequencing of units, passing parame-

164

AreaPublication

Enter New Publication

New PublicationPublication Type

Create New
Publication

Publication

Publication type

A

Figure 1: Example of a WebML model

ters, navigating the hypertext front-end, changing the page
content or accessing a page.

Each WebML model has a structure determined by the
WebML metamodel, and an inherent hierarchy determined
by the container WebML model elements. Figure 1 shows an
example of a part of a WebML model. The area Publication
contains a Enter New Publication page, which allows the
user to insert a new publication through the New Publication
entry unit. The selection of a publication type is enabled
by the selector unit Publication Type. After the insertion
of the data for a publication, a new publication instance is
created, which is performed by the Create New Publication
create unit.

3.2 Model to Graph Transformation
We represent WebML models as attributed graphs such

that every model element is represented as a vertex in the
graph, while containment relationships and links among the
model elements are represented as graph edges. This type
of (graph) representation preserves as much as possible the
model structure and the hierarchies present among the model
elements. Specifically in this case, each graph vertex is an-
notated with three attributes: (i) name, (ii) type and (iii)
data, (Figure 2), where:

• Name represents the textual label of the model ele-
ment;

• Type represents the corresponding model element type,
derived fro mthe metamodel;

• Data represents the entity or relationship to which the
model element refers, in case such reference exists.

Likewise, each edge is annotated with the attribute type
which refers to the type of the corresponding relationship/link
in the model, as represented in Figure 2.

Thus, after the transformation, each WebML model from
the repository yields an attributed graph, and the model
search becomes the problem of searching over a collection
of attributed graphs. Since queries also represent model
fragments, they can be transformed in the same way into
graphs.

4. SYSTEM ARCHITECTURE
Figure 3 presents the architecture of our graph-based model

search system. The Content Processing component takes
every model from the repository and transforms it into a
format suitable for indexing. First, the Project Analysis
sub-component extracts general informaton from the model
such as the model name and id. Then, the Model to Graph
Transformation sub-component transforms each model into
a graph considering its metamodel features, as explained

Name: Publication
Type: Area

Name:Enter New Publication
Type:Page

Name: Create New Publication
Type: Create Unit
Data: Publication

Name: New Publication
Type: Entry Unit

Name: Publication Type
Type: Selector Unit
Data: Publication Type

Type: containment Type: containment

Type: containment

Type: containm
ent

Type: automatic
Typ

e: tr
an

sp
ort

Figure 2: Graph representation of the WebML model in
Figure 1

in Section 3 for the case of WebML models. These model
graphs are used to build the index in the Indexing compo-
nent, which is elaborated in more detail in Section 5.1.2.

Project
Analysis

Model to Graph
Transformation

Content Processing

Project
Repository

Metamodel

Query Analysis Query to Graph
Transformation

Query Processing Search

Index

Results

Matching Ranking

Indexing

DSL Metamodel

Model graph

Query graph

Metamodel features

Figure 3: Architecture of a graph-based model-driven infor-
mation retrieval system.

On the user side, a query is expressed as a model frag-
ment, which can be formulated in the same modeling lan-
guage in which models in the repository are encoded. The
Query Processing component transforms the query model
fragment into a format that is more suitable for search, the
same way models are transformed into graphs by the Con-
tent Processing component. When the query is transformed
into a graph, the system is ready for search.

The Search component has two tasks, which are discussed
in more detail in Section 5.1.3. The Matching sub-component
uses a specific algorithm and the help of the index to find
model fragments (subgraphs) from the repository that match
the query graph under certain criteria. Finally, the Ranking
sub-component performs sorting on the retrieved model sub-
graphs with respect to their relevance to the query. These
ranked subgraphs (along with their computed ranking scores)
are returned to the user.

5. DETAILS OF MULTIMODGRAPH
Our main objective is, for a given query, to find a ranked

list of modeling patterns in the repository such that the
returned patterns are as similar as possible to the model-
ing pattern that represents the query. In our approach, the
problem can be rephrased as discovering a ranked list of
subgraphs in the set of project graphs similar to the query
graph. We define the notion of similarity as follows: A query
graph is similar to a retrieved project subgraph based on
the similarity of the textual content represented by the la-
bels of the vertices and edges in the attributed graphs, as
well as the similarity in their corresponding graph topolo-

165

gies. Moreover, the size of these similar subgraphs should
be comparable to the size of the query graph, so that upon
retrieval, these subgraphs (or the modeling patterns they
represent) can be reused to build new software models with
as few modifications as possible. One may note that in one
large project graph there might be multiple subgraphs sim-
ilar to a query graph, since a given task can be presented
with different modeling patterns, and we would like to cap-
ture also those kind of modeling patterns.

Our approach consists of an indexing phase, in which ver-
tices of the model graphs are indexed for efficient search, and
a search phase, in which (i) an index lookup is performed
on the vertices to find potentially matching candidates, (ii)
the matched vertices are expanded to form subgraph pat-
terns that are similar to the query graph, and (iii) the sub-
graphs are ranked with respect to their similarity to the
query graph.

In the indexing phase, illustrated in Figure 4, we build
three types of indexes. The first index is a grid index, that
uses multidimensional scaling to cluster similar graph ver-
tices from all of the project graphs for each attribute that
represents a different model feature: name, type and data
(cf., Section 3.2).

Multidimensional
Scaling

Grid Index

Points

Neighborhood Index

Index
Neighborhood

Vertices

Vertices

Project graph
Name Grid

Index Vertices by
Project Name

Vertices

Project Index

Figure 4: Indexing in MultiModGraph.

We use multidimensional scaling because our preliminary
evaluations (detailed results are available in [1]) showed that
it allows efficient pruning of most of those vertices that
are beyond a distance threshold from a given query ver-
tex. For expansion of the vertices matched using the grid
index, two more auxiliary indexes are built: (i) a neigh-
borhood index that considers the vertex neighborhood, and
(ii) a project index that considers the vertices belonging to
a graph (project), specified by their name. The indexing
phase is discussed in more detail in Section 5.1.2.

In the search phase, shown in Figure 5, query vertices are
also transformed into points in space through the same mul-
tidimensional scaling algorithm [5]. These points are used to
search the grid index, retrieving only those vertices similar
to the corresponding query vertices with respect to a specific
attribute. Then, the project and the neighborhood index are
searched to expand the matching candidates and form local
subgraph matches, which are subsequently ranked consid-
ering a graph-edit distance metric as a similarity measure.
Further details of search and match expansion can be found

in Sections 5.1.3 and 5.1.4, respectively.

5.1 Graph search using multidimensional scal-
ing

In this section, we present MultiModGraph in more detail.
We illustrate the concept of graph similarity, i.e. how a
query graph is defined to be similar to a subgraph of the
project graph (Section 5.1.1); we describe the process of
indexing the project graphs (Section 5.1.2), the search of
similar query vertices to find matching candidate vertices
(Section 5.1.3), the expansion of the matching candidate
vertices to produce local subgraph matching patterns, and
the ranking of the matching patterns with respect to the
query (Section 5.1.4).

5.1.1 Graph Similarity
The similarity between the query graph and each of the

project subgraphs is computed through graph-edit distance,
a measure that specifies the number of graph-edit operations
that transform one graph into the other. The considered
operations are:

• Vertex substitution: a vertex in the project subgraph
is substituted with a vertex in the query graph if they
are similar. Two vertices are similar if the project
graph vertex is retrieved as a result of searching the
grid index for a specific query vertex considering at
least one attribute.

• Edge substitution: an edge in the project subgraph is
substituted with an edge in the query graph if their
type labels belong to a similar type, and if their in-
cident vertices are substituted. Two edge labels are
similar if they are identical, or if they both belong to
the set of WebML links, excluding the containment
relationships.

• Vertex deletion: a vertex from the query graph that
does not have corresponding similar vertices in the
project subgraph is deleted from the query graph.

• Vertex insertion: a vertex from the project subgraph
that does not have corresponding similar vertices in
the query graph is inserted in the query graph.

• Edge insertion: an edge from the project subgraph
that does not have corresponding similar edges in the
query graph is inserted in the query graph.

• Edge deletion: an edge from the query graph that does
not have corresponding similar edges in the project
subgraph is deleted from the query graph.

5.1.2 Indexing
A. Grid Index

Given a set of data objects and the distance values between
each pair of objects, multidimensional scaling assigns coor-
dinates to each data object, such that distances computed
from the assigned coordinates are as representative as pos-
sible to the actual distances. While this technique is used
mainly in data visualization [15], we exploit this idea for
clustering and then efficiently indexing the vertices of the
model graphs.

We perform clustering of graph vertices with respect to
the vertex attributes that correspond to the metamodel at-
tributes in a model element. For our specific context, we
consider the name, type and data attributes. Clustering

166

Grid Index

Multidimensional
Scaling

Querying Grid
Index

Querying
Neighborhood

Index
Match Expansion Graph Distance

Computation
Points

Neighborhood
Index

Vertices
Candidate
Vertices

Small Localized
Matches

Query Graph

Querying Project
Index

Project Index

Vertices

Figure 5: Search and Match Expansion in MultiModGraph.

is achieved by transforming vertex attributes’ values rep-
resenting a specific attribute class (name, type and data)
as points in multidimensional space. The distance between
points, preserved by the multidimensional scaling, is com-
puted by the Euclidian distance. These computed distances
help to find for a graph vertex, its “nearby” graph vertices
with respect to a single attribute. The transformed points
are placed into multidimensional grids, as shown in Figure
6. Each grid corresponds to a metamodel attribute, i.e.,
name, type and data. Therefore, the total number of grids
is the same as the number of attributes (in our case three).
The number of dimensions of each grid is equal to the num-
ber of dimensions of the points representing a specific at-
tribute. These grids are used to build the grid index which
allows for efficient pruning of all vertices that are not within
a specified distance from a query vertex. In this work we
chose the Chalmers algorithm [5] for performing multidimen-
sional scaling, because it has lower computational overhead
(quadratic) than other multidimensional scaling approaches
without introducing too much noise. It is a heuristic-based
approach, hence it does not provide tight error bounds. The
quality evaluation of the algorithm is presented in [1].

Name: Create Book
Type: Create Unit

Data: Book
Name Grid Type Grid Data Grid

Figure 6: Grid Index in MultiModGraph.

B. Auxiliary Indexes
Besides the grid index, two other index structures are con-

structed and used in the search algorithm.

• The neighborhood index is an inverted index that keeps
track of the neighborhood of each vertex, where for
each vertex, all the vertices wthin its 2-hop neighbor-
hood considering both ancestors and descendants are
stored. This index considers the local structure around
a graph vertex for expansion of already matched ver-
tices. The 2-hop neighborhood has been selected for
two reasons: (i) to better respond to the diversity of
modeling patterns expressing a given task; (ii) to allow
vertex mismatches between a query graph and a local
subgraph match, since we perform approximate, and
not exact matching. For scalability reasons, we do not
exceed 2-hop neighborhood.

• The project index is an inverted index that for each

vertex stores the corresponding project name. It is
used to form subgraphs of vertices that belong to the
same project.

5.1.3 Search
The search algorithm is described in Algorithm 1 and pre-

sented in Figure 5. VQ represents the set of vertices of the
query graph, while attribute is the set of attribute types,
namely, name, type and data attribute. The search process,
takes each vertex vq of the query graph and transforms it
into a set of points in space queryPoint, using the Chalmers
algorithm, where each point represents a specific attribute
a. These points are used to query the grid index. Each
query point is positioned in the corresponding grid in a sim-
ilar way as the points that represent vertex label attributes
from the project graphs are positioned by multidimensional
scaling (using a single iteration of the Chalmers algorithm).
In this way, the query point is “querying” the grid to find
points points that are within an acceptable distance value
distance (a user-specified parameter) with respect to a spe-
cific attribute a. Since the grids are independent, differ-
ent acceptable distances can be assigned for each attribute
(grid). This step performs pruning of points that are distant
(dissimilar) from the query point, keeping only those points
points that are within the specifed distance values2.

When all the points for each attribute are retrieved, a
union is performed across the different attribute classes, thus
merging the results obtained from all the three grids into a
set of candidates candidates. To further reduce the num-
ber of vertices, the candidate points are pruned by check-
ing whether the real distance of the vertex labels they rep-
resent is within the acceptable distance values. As a real
distance for name and data attribute we consider the string-
edit distance, while for the type attribute we consider the
distance between two types in the metamodel tree, normal-
ized with respect to the longest distance in the tree. Finally,
for each query vertex we obtain a set of real candidate ver-
tices realCandidates which represent the potential matches.

5.1.4 Match Expansion and Ranking
Each matching candidate is expanded in order to form

small localized subgraph structures, denoted as matching
patterns, achieved with the help of the project and the
neighborhood indexes, as illustrated in Figure 5. The pro-
cess of match expansion is described in Algorithm 2. At
the beginning, for each query vertex vq, a set of patterns is
created, such that each pattern consists of one real candi-
date of vq. Then, if query vertex vq is not the first exam-

2Note that we will use the terms vertex and its representing
point interchangeably.

167

Algorithm 1 Search Algorithm

Require: VQ, attribute, distance
for all vq ∈ VQ do

candidates ← ∅
for all a ∈ attribute do

queryPoint ← ChalmersQuery(vq, a)
points[a] ← findCandidates(queryPoint,

grid[a], distance[a])
candidates ← candidates ∪ points[a]

end for
realCandidates[vq] ← prune(vq, candidates)

end for

ined vertex, the algorithm checks whether its set of can-
didates realCandidates can extend already existing pat-
terns. Namely, a project vertex from the candidates set
realCandidates is added to an already created pattern in
the set of existing patterns patternSet, if all of the follow-
ing conditions are met:

• The project vertex represents a matching candidate
for different query vertices with respect to the already
matched query vertices.

• The project vertex belongs to the same project graph
as the current matching pattern. This information is
retrieved from the project index.

• The project vertex is within the 2-hop neighborhood
of any of the project vertices present in the matching
pattern. This information is retrieved from the neigh-
borhood index.

As a result, a new set of patterns is created (newPatternSet),
used to update the set of patterns patternSet.

The matching is complete when, for a matching subgraph
pattern, all the query vertices have been examined for poten-
tial matches. Additional vertices from the project graph are
added to the matching pattern if they are in the intersection
intersection of the neighborhoods of the pattern’s vertices
(retrieved from the neighborhood index). In this way, all
the vertices of a pattern are found. They are used to build a
subgraph subgraph by finding the edges that connect these
vertices from the project graph. Thus, subgraph represents
a subgraph of the project graph. Once a matching subgraph
is built, it is compared to the query graph with respect to the
similarity, as explained in Section 5.1.1. Graph-edit distance
is used as a similarity metric to rank the modeling patterns
with respect to their similarity to the query. In the graph-
edit distance computation, the subsituted vertices from a
subgraph pattern are those that represent the real candi-
dates, while the inserted vertices are the vertices that were
added additionally to the pattern as a result of the intersec-
tion with the neighborhood index.

6. RESULTS
We evaluated our approach on a repository of WebML

models3 which consists of 12 real-word WebML projects
from different application domains. The projects were di-
vided into segments such that each segment represents a
different WebML area in the project (i.e., areas group pages
with similar purpose). This way, we obtained 341 segments
in total.

The test queries were generated as follows. First, a set
of exemplary models were selected by considering different

3Provided by the WebRatio company www.webratio.com

Algorithm 2 Match Expansion Algorithm

Require: VQ, realCandidates
patternSet ← ∅
for all vq ∈ VQ do

patternSet ← patternSet ∪ createPatterns(∅,
realCandidates[vq])

if notFirstV ertex(vq) then
for all pattern ∈ patternSet do

if realCandidates[vq] within two-hop neighborhood of
pattern and realCandidates[vq] in the same project as
pattern then

newPatternSet ←
addToExistingPattern(pattern,
realCandidates[vq])

patternSet ←
updatePatternSet(patternSet, newPatternSet)

end if
end for

end if
end for
for all pattern ∈ patternSet do

for all vp ∈ pattern do
intersection ← neighborhood(vp)∩

neighborhood(pattern − ∑p−1
i=1 vi)

if intersection �= ∅ then
pattern ← addAdditionalV ertices(pattern,

intersection)
end if

end for
subgraph ← buildGraph(pattern)

end for

WebML modeling patterns, a variety of metamodel concepts
and a vocabulary of labels present in the repository. Then,
three experienced model developers selected 10 models from
the initial set of exemplary models that they believed better
represented the typical user needs of a model developer [2].
Subsequently, these models were transformed into graphs (as
explained in Section 3.2), which constitute the test queries
in our evaluations.

To obtain the ground truth (used in our evaluations), we
asked the same model developers to manually evaluate the
relevance of each query against each project segment, where
a relevance score of (i) 0 implies no relevance, (ii) 1 implies
either textual or structural similarity, and (iii) 3 implies both
textual and structural similarity. The final scores were com-
puted by averaging the scores reported by the three domain
experts, which was then rounded to the nearest integer [2].
Note that we did not use 2 as a score value to achieve greater
diversity in the aggregate scores.

Given a query, MultiModGraph returns a set of modeling
patterns (that it believes are relevant to the query). Hence,
to assess the quality of the algorithm, we evaluate the rele-
vance of each returned modeling pattern to the given query
(based on the ground truth). However, note that a modeling
pattern might span multiple project segments. Therefore, to
assess a modeling pattern’s relevance to a query, we consider
all of the project segments that the modeling pattern spans.
The final relevance of a modeling pattern is computed as an
average of the relevance of the project segments.

In our evaluations, parameters of the Chalmers algorithm
such as (i) number of iterations, (ii) max number of points in
the random set and (iii) number of dimensions that are used
for representing points in space, have been manually tuned
to their optimal values [2]. As for the distance thresholds,
we performed a preliminary evaluation to discard certain
combinations of distance values across the three attribute
classes: name, type and data. In Table 1, we show the
acceptable distance values we use for each attribute class.

168

We have observed that using smaller distance values for the
name and the type attribute classes does not retrieve suffi-
cient number of candidate points. On the other hand, using
greater distance values loosens the distance constraints, i.e.,
precision drops.

Table 1: Distance values configurations.

Name distance Type distance Data distance

0.4 0.4 0.2
0.4 0.4 0.4
0.6 0.4 0.2
0.6 0.4 0.4

As the baseline in our evaluations, we use the A-star al-
gorithm [17] that we adapted for searching WebML mod-
els (details are in [2]). First, we compare MultiModGraph
against the A-star algorithm with respect to their 11-point
interpolated average precision, a metric that combines preci-
sion and recall by measuring the highest precision obtained
at 11 standard levels of recall (ranging from 0.0 to 1.0) [14].
Namely, for each recall level i, the precision is computed as
the maximum precision value for recall levels j > i, which is
averaged across all of the test queries. In the computation
of precision and recall values, we consider every modeling
pattern with relevance > 0 relevant, while every modeling
pattern with relevance = 0 irrelevant.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r level

pr
ec

is
io

n
at

 r

nameDist=0.4 typeDist=0.4 dataDist=0.2
nameDist=0.4 typeDist=0.4 dataDist=0.4
nameDist=0.6 typeDist=0.4 dataDist=0.2
nameDist=0.6 typeDist=0.4 dataDist=0.4
A−star algorithm

Figure 7: 11-point Interpolated Average Precision for differ-
ent distance value configurations and the A-star algorithm.

Figure 7 shows the 11-point interpolated average precision
for the four different configurations of MultiModGraph and
the baseline algorithm. Each algorithm was configured to re-
turn the top 150 results. The values denoted as nameDist,
typeDist and dataDist represent the acceptable distance
values for the name, type and data attribute classes, re-
spectively.

MultiModGraph achieves the best configuration with val-
ues of nameDist = 0.4 and typeDist = 0.4, while increas-
ing dataDist from 0.2 to 0.4 does not affect precision/recall.
Increasing the nameDist value further to 0.6, however, sig-
nificantly worsens performance. Compared to the A-star
(baseline) algorithm, MultiModGraph performs better for
recall values greater than 0.5. This is important because it
means that the algorithm still continues to retrieve relevant
models at high levels of recall.

Figure 8 presents the best-case behaviour of MultiMod-
Graph for configuration values nameDist = 0.4, typeDist =
0.4 and dataDist = 0.4, where queries with the best two
11-point interpolated curves are reported. The algorithm
achieves a maximum precision of 1 even at lower levels of
recall: up to 0.3 for Query 6, and up to 0.8 for Query 2.
For other queries, the algorithm performs worse, which in-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

r level

pr
ec

is
io

n
at

 r

Query2
Query6

Figure 8: 11-point interpolated average precision for the best
performing queries for nameDist = 0.4, typeDist = 0.4
dataDist = 0.4 configuration: Query 2 and Query 6.

fluences the overall algorithm performance when averaged
across all of the queries.

MultiModGraph’s lower performance in precision in some
queries can be attributed to the way the algorithm selects
candidate vertices. For a query vertex, a vertex in the
project graph is considered a match candidate if at least
one of the distances for a specific attribute class are within
the specified distance thresholds. This generates patterns
similar to the query, where each model element (in the re-
sult) is similar to a query model element with respect to a
different attribute class. Some of these alternative matching
patterns are still “reusable” (indeed, a closer manual inspec-
tion of the results further confirms this fact), but not all of
them have been considered relevant by the ground truth.

Manage Appointments

Appointments List

Appointment

Manage Appointments

Office List
Office List

Office

Office areas and roles management

(a)

Figure 9: Example of a query and its corresponding “irrele-
vant” result as deemed by the ground truth.

For Query 7, its highly ranked result by MultiModGraph
is depicted in Figure 9, where each matched element in the
result is highlighted by a red rectangle. Note the similarity
between the query (on top) and its result (at the bottom).
The query is about management of appointments and the
result is about management of office areas and roles, but
otherwise, they are structurally equivalent.

This highlights two possible future directions. First, ground
truth generation can be improved to include relevance as-
sessments at more fine-grained segments (i.e., currently, a
project segment corresponds to a WebML area in the project).
Second, improvements to the ranking function can be made
to capture users’ varying notions of relevance across different
attribute classes (i.e., name, type and data attributes).

Lastly, we examine the runtime performance of MultiMod-
Graph and compare it against the runtime performance of
the baseline. We consider the average execution times over
the entire query set. For this experiment, we varied the num-
ber of indexed vertices. The experiments were performed on
a machine with Intel dual Core Processor 2.4 GHz, 6 GB
RAM and Windows 7 (64-bit) operating system.

169

 10� 20� 30� 40� 50� 60� 70� 80� 90� 100�
0

1000

2000

3000

4000

5000

6000

7000

�ataset �i�e

�
�e

c�
tio

n
�i

�
e

��
s�

MultiModGraph
A−star algorithm

Figure 10: Runtime performance of MultiModGraph and
A-star algorithm.

The runtime performance of the MultiModGraph is much
better than the runtime performance of the A-star algorithm
(on average, MultiModGraph is 12 times faster than the A-
star algorithm), as demonstrated in Figure 10. The improve-
ment in runtime performance is due to the use of indexing,
however, it comes at a cost of some loss in the quality of the
retrieved results, which is due to the approximate nature of
the multidimensional scaling process. However, further op-
timizations are possible to improve both the quality and the
runtime performance of MultiModGraph.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a graph-based approach

for searching WebML repositories that uses multidimensional
scaling. We have evaluated our approach on a real-world
WebML repository using 10 test queries. Our preliminary
results show that MultiModGraph has a better runtime per-
formance than the baseline algorithm, but this comes at the
cost of accuracy. We have argued that some of this inac-
curacy could be attributed to the way the ground truth is
generated. However, it may also be possible to improve per-
formance by considering alternative objective functions for
ranking, which is an integral part of our future work. Some
other future work directions include: (i) applying MultiMod-
Graph to different types of models by modifying the graph
representation and the grid index according to the meta-
model of the modeling language; (ii) testing the scalability
of the approach on larger model collections; (iii) automatic
tuning of the Chalmers algorithm parameters; (iv) perform-
ing efficiency comparison with existing indexing techniques
for graph-edit distance (e.g. Closure tree [7]); and (v) tun-
ing the search order in the search algorithm, by matching
vertices with less candidates first.

8. REFERENCES
[1] B. Bislimovska. Textual and content based search in

software model repositories. PhD thesis, Politecnico di
Milano, 2014.

[2] B. Bislimovska, A. Bozzon, M. Brambilla, and
P. Fraternali. Textual and content-based search in
repositories of web application models. ACM
Transactions on the Web (TWEB), 8(2):11, 2014.

[3] A. Bongio, P. Fraternali, M. Brambilla, S. Comai, and
M. Matera. Morgan Kaufmann series in data
management systems: Designing data-intensive Web
applications. Morgan Kaufmann, 2003.

[4] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling
Language (WebML): a modeling language for
designing Web sites. Computer Networks,
33(1-6):137–157, 2000.

[5] M. Chalmers. A linear iteration time layout algorithm
for visualising high-dimensional data. In
Visualization’96. Proceedings., pages 127–131. IEEE,
1996.

[6] D. Grigori, J. C. Corrales, M. Bouzeghoub, and
A. Gater. Ranking bpel processes for service discovery.
Services Computing, IEEE Transactions on,
3(3):178–192, 2010.

[7] H. He and A. K. Singh. Closure-tree: An index
structure for graph queries. In Data Engineering,
2006. ICDE’06. Proceedings of the 22nd International
Conference on, pages 38–38. IEEE, 2006.

[8] T. Jin, J. Wang, M. La Rosa, A. Ter Hofstede, and
L. Wen. Efficient querying of large process model
repositories. Computers in Industry, 64(1):41–49, 2013.

[9] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan. Nema:
Fast graph search with label similarity. Proceedings of
the VLDB Endowment, 6(3):181–192, 2013.

[10] A. G. Kleppe, J. B. Warmer, and W. Bast. MDA
explained: the model driven architecture: practice and
promise. Addison-Wesley Professional, 2003.

[11] V. Krishna, N. Ranga Suri, and G. Athithan.
Mugram: An approach for multi-labelled graph
matching. In International Conference on Recent
Advances in Computing and Software Systems
(RACSS), 2012, pages 19–26. IEEE, 2012.

[12] M. La Rosa, H. A. Reijers, W. M. Van Der Aalst,
R. M. Dijkman, J. Mendling, M. Dumas, and
L. Garćıa-Bañuelos. Apromore: An advanced process
model repository. Expert Systems with Applications,
38(6):7029–7040, 2011.

[13] D. Lucrédio, R. P. d. M. Fortes, and J. Whittle.
Moogle: a metamodel-based model search engine.
Software & Systems Modeling, 11(2):183–208, 2012.

[14] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to information retrieval, volume 1.
Cambridge university press Cambridge, 2008.

[15] A. Morrison, G. Ross, and M. Chalmers. Fast
multidimensional scaling through sampling, springs
and interpolation. Information Visualization,
2(1):68–77, 2003.

[16] M. Niemann, M. Siebenhaar, S. Schulte, and
R. Steinmetz. Comparison and retrieval of process
models using related cluster pairs. Computers in
Industry, 63(2):168–180, 2012.

[17] A. Sanfeliu and K.-S. Fu. A distance measure between
attributed relational graphs for pattern recognition.
Systems, Man and Cybernetics, IEEE Transactions
on, (3):353–362, 1983.

[18] Y. Tian and J. M. Patel. Tale: A tool for approximate
large graph matching. In IEEE 24th International
Conference on Data Engineering, 2008. ICDE 2008.,
pages 963–972. IEEE, 2008.

[19] Z. Yan, R. Dijkman, and P. Grefen. Fast business
process similarity search. Distributed and Parallel
Databases, 30(2):105–144, 2012.

[20] J. Yang, S. Zhang, and W. Jin. Delta: indexing and
querying multi-labeled graphs. In Proceedings of the
20th ACM international conference on Information
and knowledge management, pages 1765–1774. ACM,
2011.

170

Graph Data Exchange with Target Constraints

Iovka Boneva Angela Bonifati Radu Ciucanu
University of Lille & INRIA, France

{iovka.boneva, angela.bonifati, radu.ciucanu}@inria.fr

ABSTRACT
Data exchange is the problem of translating data structured
under a source schema according to a target schema and a set
of source-to-target constraints known as schema mappings.
In this paper, we investigate the problem of data exchange
in a heterogeneous setting, where the source is a relational
database, the target is a graph database, and the schema
mappings are defined across them. We study the classical
problems considered in data exchange, namely the existence
of solutions and query answering. We show that both prob-
lems are intractable in the presence of target constraints,
already under significant restrictions.

1. INTRODUCTION
Data exchange is the problem of translating data struc-

tured under a source schema according to a target schema
and a set of source-to-target constraints [11]. Such a problem
has been studied in settings where both the source and target
schemas belong to the same data model, in particular rela-
tional and nested relational [15, 11], XML [3], or graph [5].
Settings in which the source and the target schema are of
heterogeneous data models have not been considered so far,
apart from combinations of relational and nested relational
schemas in schema mapping tools [15, 13].

In this paper, we focus on the problem of exchanging
data between relational sources and graph-shaped target
databases, which might occur in several interoperability sce-
narios in the Semantic Web, such as ontology-based data
access [14] and direct mappings [16]. Motivations to map
relational data to graphs abound, due to the far majority of
data residing in relational databases and the need of inte-
grating large amounts of linked data.

We express the relationships between the source and the
target via schema mappings [15, 11, 7] i.e., logical asser-
tions between two conjunctive queries, one on the source and
the other on the target. Schema mappings between graph
databases have already been introduced in [5] and we adopt
their syntax for expressing the consequents of relational-to-

c© 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

graph schema mapping assertions. We point out that the
setting without target constraints directly follows from the
results in [5] on graph-to-graph data exchange. Further-
more, motivated by the fact that target constraints have
been largely investigated within relational data exchange
but so far disregarded for graph data exchange [5], we add
them to our setting.

In particular, we focus on two fundamental problems of in-
terest: existence of solutions (i.e., given a source schema and
an instance of it, a target schema, a set of source-to-target
constraints, and a set of target constraints, decide whether
there exists an instance of the target schema satisfying all
given constraints) and query answering (i.e., computing the
answers that hold for all solutions).

Our main contributions are the following:

‚ We show that in the presence of target equality-genera-
ting dependencies [6], both existence of solutions and
query answering are intractable (NP-hard and coNP-
hard, respectively). This holds even under significant
restrictions.

‚ We relax the notion of target constraints by introduc-
ing sameAs1 target constraints, inspired by RDF2. We
show that the existence of solutions becomes tractable
while query answering is intractable (coNP-hard) for
the same restrictions as for the previous case.

‚ We show that the notion of graph patterns [4], em-
ployed for graph data exchange [5] as universal repre-
sentatives of all solutions, cannot be used as such when
adding target constraints.

We point out that our hardness results stand in terms of
query complexity since in the proofs we have used a fixed
source schema and instance, while the target schema and
the mappings are part of the input.

We also point out that none of our results is specific to the
relational-to-graph setting, and hold in any setting where
the target is a graph and the source is an arbitrary data
model projecting on relational tuples. The source data can
then be either XML, graph-shaped, or any other complex
format as long as the left-hand sides of mappings extract
relational tuples from it. Indeed, we shall pinpoint that the
constraints on the target graph are solely responsible for
the intractability results. Nevertheless, in the remainder of
the paper, we focus on a relational data source for ease of
presentation.

1http://www.w3.org/wiki/WebSchemas/sameAs
2http://www.w3.org/RDF/

171

Organization. In Section 2, we define our problem setting.
In Section 3, we illustrate particular cases that can be solved
using techniques from relational and graph data exchange.
In Section 4, we characterize the complexity of the problems
of interest. In Section 5, we present the challenges of defining
and querying universal solutions. We discuss conclusions
and future work in Section 6.

2. PROBLEM SETTING
Let us assume a countably infinite set of constants V that

we use both as domain of relational databases and as node
identifiers (or simply node ids) of graph databases.

Source schemas and queries. A source schema R is a fi-
nite collection of relational symbols. Each relational symbol
has an arity that is a positive integer. An instance I of R is
a function associating to each relational symbol R from R a
set of tuples over V having the same arity as R. We abuse
notation and use R to denote both relational symbol and its
instance. A source query is a conjunction of atoms over R
that uses only variables.

Target schemas and queries. A target schema Σ is a finite
alphabet. An instance over Σ is a directed, edge-labeled graph
G “ pV,Eq, where V Ď V is a finite set of node ids and
E Ď V ˆ Σ ˆ V is a finite set of edges. A nested regular
expression (NRE) is an expression of the following grammar:

r :“ ε | a pa P Σq | a´ pa P Σq | r ` r | r ¨ r | r˚ | rrs,
where “`” stands for disjunction, “¨” for concatenation, “˚”
for Kleene star, “´” for traversing edges backwards, and “r s”
for nesting. An NRE r defines a binary relation over graph
nodes: JrKG is the set of pairs of nodes in G s.t. there exists
a path defined by r between the two nodes. We consider the
semantics of NREs as in [5]. A target query is a conjunction
of nested regular expressions (CNRE) using variables only.
We illustrate CNREs in Example 2.2.

Schema mappings. A schema mapping is a set of source-
to-target tuple-generating dependencies [6] (or simply s-t tgds)
i.e., a set of formulas of the form

@x. pφRpxq Ñ Dy. ψΣpx, yqq,
where φRpxq is query over R and ψΣpx, yq is a query over
Σ. By x and y we denote vectors of variables. Moreover,
all variables in x appear free in φRpxq, all variables in y
appear free in ψΣpx, yq, and the variables in x that appear
in ψΣpx, yq are free.

Target constraints. We consider two well-known types of
target constraints:

‚ target equality-generating dependencies [6] (or simply
egds) i.e., @x. pψΣpxq Ñ px1 “ x2qq,

‚ target tuple-generating dependencies [6] (or simply tar-
get tgds) i.e., @x. pφΣpxq Ñ Dy. ψΣpx, yqq.

In the aforementioned definitions, φΣpxq and ψΣpxq are CN-
REs over Σ, and x1 and x2 are among the variables in x.
Moreover, we introduce sameAs target constraints that are
a special case of target tgds i.e.,

@x. pψΣpxq Ñ px1, sameAs, x2qq.

In the sequel, we omit w.l.o.g. the universal quantifiers in
front of a formula.

Definition 2.1 A (relational-to-graph) data exchange set-
ting Ω “ pR,Σ,Mst,Mtq consists of a relational source
schema R, a graph target schema Σ, a set Mst of s-t tgds,
and a set Mt of target constraints.

Solutions. Given a setting Ω “ pR,Σ,Mst,Mtq, an in-
stance I of R and a graph database G over Σ, we say that
G is a solution for I under Ω if pI,Gq satisfies Mst and G
satisfies Mt. We denote the set of all solutions by SolΩpIq.
Usually, in relational data exchange, one aims at finding
the universal solutions, from which there exist homomor-
phisms to all solutions [11]. This notion has been redefined
for graph data exchange as universal representatives cap-
tured with graph patterns [5] that we discuss in detail in
Section 3.2.

Example 2.2 Take a source schema R consisting of two
relations: Flight storing information about flights that may
have intermediate stops between the source and destination
cities, and Hotel storing information about the hotels in
which the passengers of such flights have stopped. More-
over, take the following instance I:

Flight Hotel
flight id src dest

01 c1 c2
02 c3 c2

flight id hotel id
01 hx
01 hy
02 hx

Take a target schema consisting of the alphabet Σ “ tf, hu.
The edges labeled by f indicate a direct flight between two
cities while the edges labeled by h indicate that a city has a
hotel. Moreover, consider the following s-t tgd that basically
requires that for each hotel where the passengers of a flight
have stopped, there exists a city where the respective hotel
is situated, and there exist flights from src to such city and
from such city to dest :

Mst : Flightpx1, x2, x3q ^Hotelpx1, x4q Ñ
Dy. px2, pf ¨ f˚q, yq ^ py, h, x4q ^ py, pf ¨ f˚q, x3q.

Notice thatMst uses a CNRE on its right hand side. Then,
a natural constraint is that a hotel is situated in exactly one
city, which can be captured either by the egd Mt or by the
sameAs constraint M1

t:

Mt : px1, h, x3q ^ px2, h, x3q Ñ px1 “ x2q,
M1

t : px1, h, x3q ^ px2, h, x3q Ñ px1, sameAs, x2q.
The two ways of expressing the aforementioned target con-
straint yield two different settings Ω “ pR, Σ, Mst, Mtq
and Ω1 “ pR,Σ,Mst,M1

tq, respectively. We illustrate in
Figure 1 solutions for I under these two settings: the graphs
G1 and G2 are solutions under Ω, while G3 is a solution un-
der Ω1. ˝

Problems of interest. We are interested in studying the
following two problems:

1. Existence of solutions. Given a setting Ω “ pR, Σ,
Mst, Mtq and an instance I of R, decide whether

172

c1

c3

N

hx

hy

c2

f

f
f

h

h

(a) G1.

c1

c3

N1

N2

hx

hy

c2

f

f

f f

f

h

h

(b) G2.

c1 N1 N2 hy

c3 N3

hx

c2

f

f f

f

f

h

h

h

(c) G3.

Figure 1: Solutions from Example 2.2. The dotted edges are labeled by sameAs.

there exists a solution for I under Ω. Additionally,
we are interested in finding in our heterogeneous set-
ting a mechanism similar to universal solutions [11] or
universal representatives [5].

2. Query answering. Given a setting Ω “ pR, Σ, Mst,
Mtq, an instance I of R, and a query Q over Σ, we are
interested in the certain answers of Q w.r.t. I under Ω,
denoted certΩpQ, Iq, which are the answers that hold
for all solutions i.e., the set

ŞtJQKG | G P SolΩpIqu
(where by JQKG we denote the set of tuples of nodes
of G selected by the query Q). The query answering
problem consists of deciding whether a given tuple of
constants belongs to certΩpQ, Iq or not.

Example 2.2 (continued). Take the above instance I
of the relations Flight and Hotel, and the above setting Ω.
Then, take the query

Q “ px1, f ¨ f˚rhs ¨ f´ ¨ pf´q˚, x2q.
Intuitively, this query selects the pairs of nodes px1, x2q from
which the same hotel can be reached, or in other words,
one can fly (possibly with connections) from the city x1 to
another city that has a hotel and an ingoing flight (possibly
with connections) whose origin x2 we want to select. Recall
that the graphs G1 and G2 are both solutions for I under
Ω. On these two graphs, the query Q selects as follows:

JQKG1 “ tpc1, c1q, pc1, c3q, pc3, c1q, pc3, c3qu,
JQKG2 “ tpc1, c1q, pc1, c3q, pc3, c1q, pc3, c3q,

pc1, N1q, pc3, N1q, pN1, c1q, pN1, c3q, pN1, N1qu.
Notice that only four pairs of nodes are common to these
answer sets for the two considered graphs. Also notice that
these four pairs of nodes are in fact the certain answers of
Q w.r.t. I under Ω:

certΩpQ, Iq “ tpc1, c1q, pc1, c3q, pc3, c1q, pc3, c3qu.
On the other hand, notice that if we want to pose the same
query Q under the other aforementioned example of set-
ting (i.e., Ω1), we obtain a different set of certain answers:
certΩ1pQ, Iq “ tpc1, c1q, pc3, c3qu. Intuitively, this happens
because the egds from the setting Ω ensure that in all of its
possible solutions the nodes having the same hotel have been
merged. In the second setting, this natural requirement has
been encoded using a sameAs constraint, which is not ex-
ploited by the query Q, hence some of the certain answers
of Q under Ω are no longer certain under Ω1. ˝

3. BACKGROUND
In this section, we show that in two particular cases of

our problem setting existing techniques from relational and
graph data exchange can be applied (Section 3.1 and Sec-
tion 3.2, respectively). This does not happen in the general
case, as we show in the next section.

3.1 Relational data exchange
If we consider s-t tgds having on the right hand side con-

junctions of NREs of the form a (with a P Σ), our prob-
lem setting reduces to a particular case of relational data
exchange and the techniques from relational data exchange
can be naturally applied. In particular, we can see the target
schema as a set of binary relational symbols (one for each
symbol of the target alphabet) and the chase [11] returns
a universal solution that can be essentially seen as a graph
since it consists of a set of binary relations.

Example 3.1 Take the schemas R and Σ, the instance I,
and the egdsMt from Example 2.2. Since we consider only
NREs of the form a (with a P Σ), we cannot express the
same Mst as in Example 2.2. However, we can express the
following:

M1
st : Flightpx1, x2, x3q ^Hotelpx1, x4q Ñ
Dy. px2, f , yq ^ py, h, x4q ^ py, f, x3q.

We illustrate in Figure 2 the chased solution for I under
pR,Σ,M1

st,Mtq. Notice that there is no solution that has
N1 and N2 on the same path from c1 to c2. Such a condition
is desirable for a flight from c1 to c2 whose passengers have
stopped in both hotels hy and hx, situated in the cities N1

and N2, respectively. We finally point out that we cannot
capture solutions satisfying this kind of constraints for flights
with an arbitrary number of stops without using the Kleene
star (as in Example 2.2). ˝

c1

c3

N1

N2

hy

hx

c2

f

f

f

h

h

f

f

Figure 2: Solution from Example 3.1.

173

3.2 Graph data exchange
If we consider s-t tgds only, the existence of solutions and

query answering can be solved using techniques from graph-
to-graph data exchange [5]. In particular, solutions always
exist and all solutions are captured by universal representa-
tives defined as graph patterns.

Graph patterns. Let N be a countably infinite set of la-
beled null values. A graph pattern π over a finite alpha-
bet Σ is a pair pN,Dq, where N Ď V Y N is a finite set
of node ids or null values, and D Ď N ˆ NREpΣq ˆ N ,
where NREpΣq denotes the set of all NREs over Σ. The
semantics of graph patterns are defined in terms of homo-
morphisms [4]. Given a graph pattern π “ pN,Dq and a
graph database G “ pV,Eq, a homomorphism from π into
G is a total function h : N Ñ V s.t.:

1. h is the identity over N X V (i.e., over the node ids
from N),

2. for all edges pu, r, vq P D (u, v P N, r P NREpΣq), it
holds that phpuq, hpvqq P JrKG.

We write π Ñ G if there exists a homomorphism from π to
G. The set of all graphs represented by π over Σ, denoted
RepΣpπq is the set of all graphs G over Σ such that π Ñ G.

Universal representatives. Given a setting Ω “ pR, Σ,
Mst, Hq and an instance I of R, a graph pattern π is a uni-
versal representative of I under Ω if SolΩpIq “ RepΣpπq [5].
In graph data exchange, universal representatives are com-
puted using an adaptation of the standard chase procedure
from relational data exchange [11]. Moreover, the variant
of chase that is tailored for graph data exchange [5] can be
easily adapted to construct a universal representative in our
relational-to-graph heterogeneous setting. We illustrate a
result of this procedure in Example 3.2. Then, query an-
swering reduces to querying the graph pattern [4] chased as
universal representative.

Example 3.2 Take the schemas R and Σ, the instance I,
and the s-t tgdsMst from Example 2.2. The graph pattern
π in Figure 3 is a universal representative of all solutions for
I under pR,Σ,Mst,Hq i.e., all graphs to which there exists
a homomorphism from π are solutions. ˝

c1

c3

N1

N2

hy

hx

c2

N3

f ¨ f˚

f ¨ f˚

f ¨ f˚
f ¨ f˚

h

h

h

f ¨ f˚

f ¨ f˚

Figure 3: Graph pattern from Example 3.2.

However, notice that the sole s-t tgds might not capture
interesting mapping scenarios involving graphs. As an ex-
ample, the target constraint “a hotel is situated in exactly
one city” cannot be expressed in settings such as the one
presented in Example 3.2.

4. COMPLEXITY RESULTS
In this section, we present our main contributions. More

precisely, we study the complexity of the two problems of
interest, namely existence of solutions and query answering,
for settings that exhibit target egds (Section 4.1) or target
tgds (Section 4.2), respectively.

4.1 Complexity of target egds
First, let us show the intractability of the existence of

solutions when we allow egds to our setting.

Theorem 4.1 Given a setting Ω “ pR,Σ,Mst,Mtq where
Mt consists of egds, and an instance I of R, deciding whether
there exists a solution for I under Ω is NP-hard.

Proof. We prove by reduction from 3SAT, known as
an NP-complete problem. The reduction works as follows.
Given a formula ρ “ C1 ^ . . .^ Ck in 3CNF over the set of
variables tx1, . . . , xnu, we construct

– The setting Ωρ “ pRρ,Σρ,Mρst ,Mρtq s.t.

‚ Rρ “ tR1, R2u, both unary relations,

‚ Σρ “ ta, t1, f1, . . . , tn, fnu.
‚ Mρst contains a unique s-t tgdR1pxq^R2pyq Ñ px, a, yq^
px, t1 ` f1, xq ^ . . .^ px, tn ` fn, xq.

‚ Mρt contains two types of egds:

(*) px, ptj ¨ fj ¨ aq, yq Ñ px “ yq, for 1 ď j ď n,

(**) px, pbi1 ¨ bi2 ¨ bi3 ¨ aq, yq Ñ px “ yq, for 1 ď i ď k,
for 1 ď i1, i2, i3 ď n, xi1 , xi2 , xi3 are the variables
used in clause Ci, and for 1 ď l ď 3, bil is til
if xil appears in a negative literal in Ci, and fil ,
otherwise.

– The instance Iρ “ tR1pc1q, R2pc2qu.
Intuitively, the egds are defined such that a graph col-

lapses if each variable has more than one valuation (*) or
the valuation of the variables makes the formula false (**).

We illustrate the construction on the formula ρ0 “ px1 _
 x2_x3q^ p x1_x3_ x4q. We have the s-t tgd R1pxq^
R2pyq Ñ px, a, yq^px, pt1`f1q, xq^ . . .^px, pt4`f4q, xq, the
egds of type (*) px, pti ¨fi ¨aq, yq Ñ px “ yq (with 1 ď i ď 4),
and the egds of type (**) px, pf1 ¨ t2 ¨ f3 ¨ aq, yq Ñ px “ yq
and px, pt1 ¨ f3 ¨ t4 ¨ aq, yq Ñ px “ yq. Then, the graph
in Figure 4 is a solution that encodes the valuation v s.t.
vpx1q “ vpx2q=true and vpx3q “ vpx4q=false that makes ρ0

true.
We claim that there exists a solution for Iρ under Ωρ iff

ρ P3SAT.
For the if part, we show that the existence of a valu-

ation making ρ true implies the existence of a solution.
Take a valuation v : tx1, . . . , xnu Ñ ttrue, falseu making
ρ true. Then, construct the graph G “ ptc1, c2u, Eq s.t.
E “ tpc1, a, c2qu Y tpc1, ti, c1q | 1 ď i ď n and vpxiq “
trueuYtpc1, fi, c1q | 1 ď i ď n and vpxiq “ falseu. Note that
G and Iρ satisfy the s-t tgd. Since there is exactly one edge
labeled bi P tti, fiu from c1 to c2, the egds of type (*) are
satisfied. Moreover, since the bi’s correspond to a valuation
making ρ true, there is at least one satisfied literal in every
clause of ρ, hence the egds of type (**) are also satisfied.
Thus, G is a solution.

For the only if part, take a solution G. Since G satisfies
the s-t tgd, we infer that G encodes at least one valuation

174

of every variable. Since G satisfies the egds of type (*), we
infer that G encodes at most one valuation of every variable.
Thus, G encodes exactly one valuation of every variable.
Since G satisfies the egds of type (**), we conclude that G
encodes a valuation making ρ true. ˝

c2c1
a

t1, t2, f3, f4

Figure 4: Solution for ρ0.

We point out that Theorem 4.1 holds even under signif-
icantly restricted assumptions that have been used in the
proof: (i) fixed source schema consisting of two unary rela-
tions only, (ii) fixed source instance, (iii) s-t tgds using only
conjunctions of NREs of the form a or a` b (with a, b P Σ)
that is a slight relaxation of the restriction from Section 3.1,
and (iv) egds that use only NREs of the form a1 ¨ . . . ¨ an,
with pairwise distinct a1, . . . , an P Σ (NREs referred to as
“SORE(¨)” [2]). Next, we prove that query answering is in-
tractable under the same assumptions and for queries con-
sisting of NREs that use disjunction and concatenation only.

Corollary 4.2 Given a setting Ω “ pR,Σ,Mst,Mtq where
Mt consists of egds, an instance I of R, a NRE r, and a tu-
ple of constants pc1, c2q, deciding whether pc1, c2q P certΩpr, Iq
is coNP-hard.

Proof. We take the proof of Theorem 4.1, and we ad-
ditionally consider the NRE rρ “ a ¨ a. We claim that
pc1, c2q P certΩρprρ, Iρq iff ρ R3SAT. For the if part, notice
that ρ R3SAT implies that there is no solution hence pc1, c2q
is a certain answer. For the only if part, since pc1, c2q is a
certain answer, we infer that either (i) there is no solution
or (ii) there is at least a solution and pc1, c2q is an answer
for all solutions. But (ii) is false since there exist solutions
for which pc1, c2q is not an answer for rρ (e.g., in Figure 4).
Both parts follow directly from the proof of Theorem 4.1. ˝

Finally, we point out that in our reduction the source schema
and instance are fixed while the target schema and the map-
pings are part of the input. Hence, our hardness results
stand in terms of query complexity. Similar intractability
results in the presence of target constraints (particularly in
combined complexity) have been shown for relational and
XML data exchange [12, 3, 1, 10]. However, our contribu-
tion is novel since to the best of our knowledge target con-
straints on a graph target schema have not been previously
considered in the literature, and moreover, we use a fixed
source schema and instance in the proof. We also point out
that our results are not specific to the relational-to-graph
setting and hold in any setting where the target is a graph.

4.2 Complexity of target tgds
In this section, we use sameAs constraints instead of egds.

First, let us show that the existence of solutions becomes
trivial. More precisely, a solution can be computed as fol-
lows: (i) chase a graph pattern π using the s-t tgds only, (ii)
take a graph G s.t. π Ñ G, and (iii) add in G the necessary
sameAs edges to satisfy the sameAs constraints. Recall that
the difficulty of deciding the existence of solutions in the case
of egds was that we cannot merge two constants. Notice that

this difficulty is overcome since we can add sameAs edges
between any two nodes, even between two constants.

Next, we prove that in the presence of sameAs constraints
the problem of certain answers is intractable under the same
assumptions as in Section 4.1.

Proposition 4.3 Given a setting Ω “ pR,Σ,Mst,Mtq where
Mt consists of sameAs constraints, an instance I of R, a
NRE r, and a tuple of constants pc1, c2q, deciding whether
pc1, c2q P certΩpr, Iq is coNP-hard.

Proof. We take from the proof of Theorem 4.1 the same
Rρ, Iρ, Σρ, Mρst , and we replace each px “ yq from Mρt

by px, sameAs, yq to obtain the set of sameAs constraints
M1

ρt and Ω1ρ “ pRρ,Σρ Y tsameAsu,Mρst ,M1
ρtq. Then,

take r1ρ “ sameAs. We claim that pc1, c2q P certΩ1
ρ
pr1ρ, Iρq

iff ρ R3SAT, which follows similarly to Theorem 4.1. ˝

Moreover, we observe that sameAs constraints are a partic-
ular case of target tgds, and therefore, query answering is
intractable in the presence of target tgds.

Corollary 4.4 Given a setting Ω “ pR,Σ,Mst,Mtq where
Mt consists of target tgds, an instance I of R, a NRE r,
and a tuple of constants pc1, c2q, deciding whether pc1, c2q P
certΩpr, Iq is coNP-hard.

5. TOWARDS UNIVERSAL SOLUTIONS
Next, we study a natural adaptation of the standard chase

procedure [11] to take into account egds. The result of our
adapted chase is a graph pattern π. To this purpose, we
consider two types of chase steps: (1) for s-t tgds we do
similarly to [5] when computing universal representatives in
graph data exchange without target constraints, and (2) for
egds, for each ψΣpxq Ñ px1 “ x2q, (i) if the images in π of
both x1 and x2 are constants, then the chase fails, (ii) if one
has as image in π a constant and the other a labeled null,
then the chase replaces in π the labeled null by the constant,
and (iii) if both have labeled nulls as images in π, the chase
chooses one of them and replaces it in π with the other.

Example 5.1 For the setting pR,Σ,Mst,Mtq and the in-
stance I from Example 2.2, by applying the aforementioned
adapted chase we obtain the graph pattern in Figure 5. ˝

c1

c3

N1

N2

hy

hx

c2

ff˚

ff˚

ff˚

h

h

ff˚

ff˚

Figure 5: Graph pattern from Example 5.1.

As for relational data exchange, if the chase fails, then there
is no solution. As opposed to relational data exchange, we
observe that a successful chase does not guarantee the exis-
tence of a solution. Intuitively, the difficulty comes from the
fact that the chase result is a graph pattern with NREs on
the edges (unlike a graph with symbols on the edges). Con-
sequently, there might not exist any graph G s.t. π Ñ G and

175

G satisfies the target constraints because it may be the case
that there is no path satisfying the NREs and the egds at the
same time. The following example shows such a situation.

Example 5.2 Take the source schema tR,P u, an instance
Rpc1q and P pc2q, the target schema ta, b, cu, the s-t tgd
Rpxq ^ P pyq Ñ px, a ¨ pb˚ ` c˚q ¨ a, yq, and the egd px, a `
b` c, yq Ñ px “ yq. The aforementioned adapted chase suc-
ceeds and returns the graph pattern π in Figure 6(a). Al-
though the chase has not failed, no solution exists because
there is no graph G s.t. π Ñ G and G satisfies the egds. In
particular, the graph G (s.t. π Ñ G) from Figure 6(b) sat-
isfies the s-t tgd but if we try to transform it in a solution
we fail because we attempt to merge two constants. ˝

c1 c2
a ¨ pb˚ ` c˚q ¨ a

(a) Graph pattern π.

c1 N c2
a a

(b) Graph G.

Figure 6: Result of a successful chase.

We next show that, even when solutions exist, graph pat-
terns as such cannot be used as universal representatives in
the presence of egds.

Proposition 5.3 Given a setting Ω “ pR,Σ,Mst,Mtq where
Mt consists of a non-empty set of egds, and an instance I
of R, there does not exist a graph pattern π s.t. SolΩpIq “
RepΣpπq.
Intuitively, let us assume that there exists a graph pattern π
s.t. SolΩpIq “ RepΣpπq. Then, if we take a graph G P SolΩ

and a homomorphism h : π Ñ G, we can construct the
graph G1 by adding nodes and edges to G s.t. some egd is
no longer satisfied, thus G1 is not a solution for I under Ω,
but h : π Ñ G1 is still a homomorphism. The next example
clarifies when such a situation can occur.

Example 5.4 The graph in Figure 7 is not a solution for
the mappings and instance from Example 2.2 although there
exists a homomorphism from the chased graph pattern from
Figure 5. ˝

c1

c3

N

hx

hy

c2

f

f
f

h

h

h
h

Figure 7: Graph from Example 5.4.

To address the problem of universal representatives in set-
tings involving egds, a natural approach is to define the uni-
versal representative as a pair (graph pattern, set of egds).
In this case, the solutions are the graphs satisfying the egds
and s.t. there exists a homomorphism from the pattern.
For example, the universal representatives for Example 2.2
would be the pattern in Figure 5 together with the egd in
Mt from Example 2.2. We also point out that the above
discussion can be easily generalized for sameAs constraints
or arbitrary target tgds.

6. CONCLUSIONS AND FUTURE WORK
We have presented our work on relational-to-graph data

exchange. Our main results are the proofs of intractability
of the existence of solutions and query answering that hold
even under considerable restrictions of the problem setting.
As future work, we would like to investigate the complexity
upper bounds of these problems and look for tractable frag-
ments to have a complete picture of the difficulty of our set-
ting. A natural question that remains open is how to query
universal representatives consisting of a pair (graph pattern,
set of target constraints). We would also like to investigate
practical scenarios of relational-to-RDF data exchange and
other classes of heterogeneous schema mappings. Addition-
ally, it would be interesting to combine existing learning
techniques for relational [9] and graph [8] queries in order
to propose algorithms that automatically infer relational-to-
graph mappings from examples provided by the user.

7. REFERENCES
[1] S. Amano, C. David, L. Libkin, and F. Murlak. XML

schema mappings: Data exchange and metadata
management. J. ACM, 61(2):12, 2014.

[2] T. Antonopoulos, F. Neven, and F. Servais.
Definability problems for graph query languages. In
ICDT, pages 141–152, 2013.

[3] M. Arenas and L. Libkin. XML data exchange:
Consistency and query answering. J. ACM, 55(2),
2008.

[4] P. Barceló, L. Libkin, and J. L. Reutter. Querying
graph patterns. In PODS, pages 199–210, 2011.

[5] P. Barceló, J. Pérez, and J. L. Reutter. Schema
mappings and data exchange for graph databases. In
ICDT, pages 189–200, 2013.

[6] C. Beeri and M. Y. Vardi. A proof procedure for
data dependencies. J. ACM, 31(4):718–741, 1984.

[7] Z. Bellahsene, A. Bonifati, and E. Rahm, editors.
Schema Matching and Mapping. Springer, 2011.

[8] A. Bonifati, R. Ciucanu, and A. Lemay. Learning
path queries on graph databases. In EDBT, 2015.

[9] A. Bonifati, R. Ciucanu, and S. Staworko. Interactive
inference of join queries. In EDBT, pages 451–462,
2014.

[10] A. Cal̀ı, G. Gottlob, and M. Kifer. Taming the
infinite chase: Query answering under expressive
relational constraints. J. Artif. Intell. Res. (JAIR),
48:115–174, 2013.

[11] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: semantics and query answering.
Theor. Comput. Sci., 336(1):89–124, 2005.

[12] P. G. Kolaitis, J. Panttaja, and W. C. Tan. The
complexity of data exchange. In PODS, pages 30–39,
2006.

[13] P. G. Kolaitis, R. Pichler, E. Sallinger, and
V. Savenkov. Nested dependencies: structure and
reasoning. In PODS, pages 176–187, 2014.

[14] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,
M. Lenzerini, and R. Rosati. Linking data to
ontologies. J. Data Semantics, 10:133–173, 2008.

[15] L. Popa, Y. Velegrakis, R. J. Miller, M. A.
Hernández, and R. Fagin. Translating web data. In
VLDB, pages 598–609, 2002.

[16] J. Sequeda, M. Arenas, and D. P. Miranker. On
directly mapping relational databases to RDF and
OWL. In WWW, pages 649–658, 2012.

176

Topic Detection Using a Critical Term Graph on
News-Related Tweets

Paraskevas Tsantarliotis
Department of Computer Science & Engineering

University of Ioannina
Ioannina, Greece

ptsantar@cs.uoi.gr

Evaggelia Pitoura
Department of Computer Science & Engineering

University of Ioannina
Ioannina, Greece

pitoura@cs.uoi.gr

ABSTRACT
Social media and online social networks are playing an in-
creasingly important role in our lives, as they attract mil-
lions of users around the world. Twitter, one of the most
popular micro-blogging services, holds a special position
among them, since information shared through this service
spreads faster than it would have been possible with tra-
ditional sources. There are many interesting works analyz-
ing the information that flows through Twitter. Most of
such research focuses on trending topic detection, i.e. what
are the people talking about right now. We propose a new
method to detect topics using a graph, where nodes corre-
spond to terms and edges correspond to co-occurrence of
the two terms in the tweet stream. Dense subgraphs, of this
graph, pose special interest, as the nodes that are highly
connected share a special relation. Thus, the corresponding
terms potentially share a relation too. To explore this fact,
we apply a community detection algorithm on the graph.
The resulting communities correspond to topics related to
various real world events. Experimental evaluation of the
results of this technique is also provided on both synthetic
and real data.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering;
H.4.m [Information Systems Applications]: Miscella-
neous

General Terms
Algorithms

Keywords
topic detection, community detection, term mining

1. INTRODUCTION
In recent years, usage of social media has overcome any

expectation. Millions of users from all over the world post

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

content on online social networks, forums or their blogs or
subscribe to micro-blogging services. As a result, social me-
dia, especially online social networks, have been transformed
to a powerful mean of disseminating news (e.g. describing
real-world events).

In particular, Twitter [15] is both an online social network
and a micro-blogging service, which enables users to send
and read short 140-character text messages, called ”tweets”.
The context of tweets varies from chit-chat to political sen-
timent, creating a very interesting stream of information.
Thus, Twitter can be described as an information/data net-
work. Such a network contains important data and poses
exploration opportunities and challenges, such as discover-
ing and browsing valuable information.

Most of the efforts focus on trending topic detection.
There are many reasons why researchers focus on this par-
ticular problem. First of all, it describes what the people
are talking about right now. Furthermore, this can be a
powerful tool for marketing specialists and opinion track-
ing companies, since trending topics can describe the opin-
ion and intentions of a large group of people. There are a
lot of services and sites dedicated to finding trending top-
ics, such as Trends241, TrendsMap2 and WhatTheTrend3.
Usually, these services use - one or two - frequent terms or
frequent hashtags (”#”) to describe a topic. However, us-
ing more than a couple of terms to describe a topic would
be more informative, e.g. instead of ”Edward, Snowden”,
we would prefer something like: ”Edward, Snowden, NSA,
surveillance, illegal”, which is much more expressive.

In this paper, we propose a new intuitive way to detect
topics on data streams where a topic is described by a num-
ber of terms. We construct a graph whose nodes correspond
to terms appearing in tweets. Two nodes are connected if
only they co-occur in the same tweet and the weight of the
edge corresponds to the co-occurrence frequency. We call
this graph critical term graph. Constructing such a graph
can be very expensive for large documents, but is suitable
for short document, such as tweets. We will discuss how this
graph is constructed and its properties in detail later in this
paper. Based on this graph, we extract topics from its dense
subgraphs. We use a community detection algorithm, which
partitions the graph into sets of nodes that are tightly con-
nected with each other and sparsely connected with nodes
that belong to different communities. Thus, in this case the
communities represent the topics. The output of the algo-

1http://trends24.in
2http://trendsmap.com
3http://whatthetrend.com

177

rithm is displayed using the visualization tool Gephi[1]. We
also provide an evaluation of our system and its variants
both on real and synthetic datasets.

In this paper we focus on detecting topics in general and
not trending topics. Nevertheless, the technique we propose
could possibly work for real time trending topic detection.
The main contribution of the paper is the study of the crit-
ical term graph and the feasibility of applying community
detection algorithms on this graph to identify topics. To
this end, we design a new model for generating synthetic
tweets by controlling the number of topics and the overlap
between them. We also test our algorithms on real news-
related tweets, empirically evaluating our model.

In Section 2 we describe works related to ours and in Sec-
tion 3 we describe in detail the problem and the proposed
solution. Evaluation of our results are presented in Section
4. Finally, in Sections 5, we discuss future work and sum-
marize our conclusions.

2. RELATED WORK
Work related to ours includes research both in the broad

areas of mining data streams and graph mining, specifically
in the areas of topic detection in micro-blogging services and
community detection.

There are many papers that focus on identifying trend-
ing topics on Twitter like [5, 7, 17, 19]. The authors of
[5] describe some interesting methodologies of detecting and
identifying trending topics, but they limit their results to
unigrams and bigrams. The authors of [17] present Twitter-
Monitor, which detects bursty keywords and groups them to
form clusters. In that short paper, it is made clear that a sin-
gle pass over the data stream is not enough to detect bursty
keywords, but no algorithmic nor experimental details are
given. Another interesting approach is described in [7], they
focus on detecting trending topics based on metrics that in-
volve both the frequency of the terms and the authority of
the users, who wrote the tweets. However, their method re-
quires high computational load. Furthermore, information
about the users may not be available in large datasets, be-
cause of the restrictions of the Twitter API.

In [19], the authors propose a complete system for de-
tecting trending topics from Twitter posts in near-real time.
Their algorithm is similar to the Apriori approach [4] and re-
lies on finding frequent multi-word clusters, that represent
a topic, and then calculating the burstiness of each topic.
Their approach is based on a hypothesis, similar to ours,
that if AB, BC and AC are frequent terms pairs then ABC
is frequent. This is not necessarily true, but as we see in
our results, it is very likely. Consequently, this hypothesis
introduces false positive results. Furthermore, the algorithm
used in [19] for topic detection is also interesting, because
their work could possibly be extended to be used on the
graph-based model we propose.

Graph mining is also related to our work, since we use
such techniques to extract useful information. Currently,
we focus on community detection algorithms, but other algo-
rithms may be considered in the future. Community detec-
tion in graphs is thoroughly investigated in [10]. In general,
community detection is used to uncover relation between
nodes in complex networks in biology, computer science, so-
ciology, etc. For example, in [9], they use similar technique
in the Web to discover communities of Web pages dealing
with the same topic. The authors of [8] propose an algo-

rithm for dense subgraph extraction and they test it on a
graph that represents the relationships between terms, ob-
tained by a news agency. Their technique manages to group
in the same subgraphs, terms that tend to be used together.
However, no further analysis is provided. In [13] authors
use a similar approach to ours, in order to detect topics re-
lated to a particular event, but their main focus is on the
evolution of these topics through time. Instead, we use the
model to detect topics under real conditions and provide
more information about the model.

3. MODEL
In this section, we describe the basic concepts of our ap-

proach and the algorithm which we use to detect topics. For
the description of the model, we assume one segment of the
tweet stream. We discuss later how the method is extended
to be applied to to a sequence of segments.

Topic. Similar to other works [17, 19] we define a topic
to be a set of terms. Usually, a topic consists of three or
more terms, in order to capture its essence. Terms in each
set must be frequent, i.e. surpass some threshold, and co-
occur with some other words in the topic. Thus, we are
interested in looking for frequent term pairs and our goal is
to merge these pair to form lager sets, which represent the
topics.

Critical Pairs. Similar to [19], in order to detect fre-
quent pairs of terms, we use a support measure:

sup(τi, τj) =
|Dij |
|D| ,

where τi, τj are terms, Dij is the set of tweets that the two
terms co-occur and D is the total set of tweets. A term pair
is frequent if its support is equal or larger than a support
threshold. In [19], the authors define a static value for the
support. There are some drawbacks when a fixed support is
used. As the input size varies, the output of the algorithms
may elide some topics, or include too many topics. Instead
of a static support threshold, we use a method defining a
dynamic support threshold, i.e. the threshold adapts to the
size and the content of the input. To achieve this, we sort
the co-occurrence frequency of all possible two-word pairs in
descending order. The N first pairs are called critical pairs
and we use the support of the N -th pair as threshold.

Critical Term Graph. Here, we describe the basic con-
cept of our work. Using the critical pairs, we create a graph,
where nodes represent terms that are used in the tweets and
edges indicate co-occurrence of the two terms in them. We
assign a value to each node, which equals to the term fre-
quency in the tweet corpus. Similarly, we assign to each edge

Figure 1: Number of unique terms in tweets.

178

Figure 2: Results from November 12 2014.

a weight that corresponds to the co-occurrence frequency of
its incident terms in the tweets. A normalization of these
values, may also be considered.

An important property of this graph is that as the num-
ber of tweets increases, the number of newly seen terms de-
creases and at some point we expect to have more tweets
than unique terms, i.e. the tweet corpus obeys to the Heap’s
Law. In Figure 1, we compare the number of unique terms
to the number of tweets in a random stream of all public
tweets, acquired by Twitter API4. At first, the number of
unique terms is larger than the number of tweets, but in the
end there are more tweets than unique terms. We expect
this diagram to flat out much faster when tweets focus on
specific topics, because the vocabulary should be limited.
Thus, as the number of tweets increases, it is more likely
new edges to be created or the existing edges to become
stronger.

Generally, we expect the critical graph to be sparse, not
well connected and have community structure (Figure 2).
The communities are formed from terms that co-occur in the
tweets, thus creating topics. The graph contains a lot of non-
connected components. Usually, the small non-connected
components (of size < 10) correspond to standalone topics
that have no common terms with the other topics. The
number of larger non-connected components, on the other
hand, is much smaller and these components contain more
topics.

3.1 Community Detection Algorithm
Preprocessing. When a new tweet arrives at the system,

it gets preprocessed and then stored. Preprocessing involves
splitting the tweet in a term list, removing stopwords, stem-
ming the terms and generating all possible term pairs from
the term list. We keep a record for the co-occurrence fre-
quency of each term pair, in every time segment.

To detect communities we use a modularity based algo-
rithm [6]. Several algorithms have been proposed to de-
tect communities efficiently. Newman and Girvan [18] in-
troduced modularity as a measure for the quality of the re-
sulting communities. Modularity measures the density of
edges inside a community compared to the expected density
if the edges were distributed at random. Modularity ranges
between -1 and 1. If the modularity of a subgraph tends
to 1, it means that the sub-graph is tightly connected and
may be a community and vice versa. In weighted networks

4https://dev.twitter.com/streaming/

modularity is defined in [6] as:

1

2m

∑

i,j

[
Aij − kikj

2m

]
δ(ci, cj),

where Aij represents the weight of the edge between i and j,
ki = ΣjAij is the sum of the weights of the edges attached
to vertex i, ci is the community to which node i is assigned,
the δ-function δ(u,v) is 1 if u = v and 0 otherwise and m =
1
2

ΣijAij .
It is easy to see that the community detection problem

is equivalent to modularity optimization in a graph. In [6],
the authors propose an algorithm consisting of two phases
that are repeated iteratively.

Initially, every node is a community. Let i be a node
of the graph and j its neighbors. The algorithm evaluates
the gain of modularity that would be achieved if node i was
removed from its community and placed in the community
of j. If the maximum gain is positive, then node i is placed
in the community for which the gain is maximum, otherwise
the node i stays in its community. This step is repeated for
every node in the graph until there is no improvement of
modularity. Note that each node can be considered several
times, during this phase.

In the second phase, a new graph is built with nodes
the communities found in the first phase and edges that
have weights equal to the sum of weight of the edges be-
tween nodes in the corresponding two communities (edges
between nodes of the same community are marked as self-
loops). Phase one is applied to the new graph. The two
phases are repeated until there are no changes and modular-
ity is maximized.We chose this algorithm because it is fast;
its complexity is linear on typical and sparse data [6]. In ad-
dition, the algorithm follows an unsupervised approach, so
we need no previous knowledge about the number of topics
we are looking for.

It is known that modularity optimization algorithms suf-
fer a resolution limit [11], i.e. they fail to resolve com-
munities smaller than a certain scale, even if they are well
defined. However, because this algorithm, in intermediate
steps, merges communities in order to create new communi-
ties, there is a sense of hierarchy. Thus, we are able to use
this hierarchical structure to detect smaller communities.

3.2 Snapshots
So far, we have considered topics in a single sequence of

tweets. To handle streams of tweets, we divide the stream in
small segments of fixed time length. Each segment is marked

179

with a time id, based on its start and end timestamps. For
each segment we store all the possible term pairs and their
frequencies, that we have extracted from tweets.Given a time
range, to detect topics within this time range, we first iden-
tify the appropriate segments that correspond to this specific
segment. Then, we group all the term pairs from the appro-
priate segments, get the critical pairs and finally create the
critical term graph. This graph is a snapshot of the graph
for the specific time range. Snapshots are useful for track-
ing topics over time, which is considered as future work (see
Section 5).

4. EXPERIMENTAL RESULTS
In this section, we demonstrate the initial results of our

approach both on synthetic and real data.

4.1 Synthetic Data
One of the difficulties we faced is the lack of datasets

with known ground truth. In order to test our approach un-
der various conditions, we created a model to generate syn-
thetic datasets similar to the one described in [14]. Since real
tweets obey to the Heaps’ law, the synthetic tweets should
be generated by randomly sampling terms based on a Zipf
distribution. We present a short description and preliminary
results of the model we used to generate synthetic tweets.

We assume that we have k topics. Our goal is to generate
tweets for each of the k topics. Initially, we generate the
terms, which will be used in the tweets. Similar to [14],
we consider k+1 topic vocabulary bags, i.e. bag Bi=1,...,k
contains the terms for the i-th topic and bag Bk+1 contains
general terms. General terms can be used in all topics, they
are like stopwords but contain more valuable information for
the topic.

Then, we create a k × (k+1) matrix P. Each cell Pij

of the matrix corresponds to the probability to pick a term
from vocabulary bag Bj while generating tweets for the i-
th topic. We call overlap between topics, the case in which
when we generate a tweet for a topic i, we include a term
from a bag Bj that is different from the bag corresponding
to the topic, i.e., Bi ̸= Bj Note that vocabulary bag Bk+1

should have similar probability in every topic. We describe
the process that generates tweets for each topic below.

Let t and M be the topic that the tweets refer to and
the number of tweets we want to generate for this topic,
respectively. At first, we assign occurrence frequency to all
terms based on Pareto distribution. We must point out that
general terms should have the same frequency in all topics,
in order to avoid special relation with any topic. Then,
we generate M tweets for the topic. Note that we do not
want duplicate tweets. Tweets are considered as a set of
terms that make up the tweet. We noticed in our dataset
that the number of terms used in the tweets (not including
stopwords) follows the Poisson distribution. Thus, we first
decide the size of the tweet S and then pick S terms. Term
picking can be summarized in two steps:

1. Select a vocabulary bag Bi based on the probability of
matrix Pk.

2. Select term from Bi based on occurrence frequency, i.e.
terms with high occurrence frequency are more likely
to be picked. Note that we don’t want duplicate terms
to avoid spam.

We also need to check if the tweet is unique. If so, we de-
crease the frequency of each term used in the tweet by 1.
Otherwise, we create a new tweet. This process is repeated
until we create tweets for all k topics. Therefore, the output
the of the model is k·M synthetic tweets.

In order to evaluate the results of our model, we consider
community detection as a problem of assigning all similar
nodes to the same communities [3]. Thus, based on pair
counting, we can predict the following cases:

• True Positive (TP): Term pairs that belong to the same
topic are assigned to the same communities.

• True Negative (TN): Term pairs that belong to differ-
ent topics are assigned to different communities.

• False Negative (FN): Term pairs that belong to the
same topic are assigned to different communities.

• False Positive (FP): Term pairs that belong to different
topics are assigned to the same community.

Using the above, we can calculate the following evaluation
measures, which are defined in [3, 12]:

• Precision: P =
TP

TP + FP

• Recall: R =
TP

TP + FN

• Jaccard Coefficient: J =
TP

TP + FP + FN

• Rand Statistic: RS =
TP + TN

TP + TN + FP + FN

Figures 3 and 4 show the results of our approach. In
Figure 3, we present three different plots comparing the
number of topics that our model estimated to the real num-
ber of topics. We test our model using different amounts
of critical pairs, in three different percentages of overlap be-
tween topics, 5%, 15% and 25%. The overlap between topics
is distributed randomly. The synthetic datasets are gener-
ated using 3% general terms in each topic and they contain 3
to 10 frequent topics and 2 to 10 less frequent topics, for each
experiment. Note that the experiments have been repeated
multiple times and we present average values.

We notice that our model in most cases predicts the cor-
rect number of topics. The maximum discord, between the
estimated and the real number of topics occurs when using
1000 critical pairs to detect topics in larger datasets. In
these cases, the model predicts less topics than the actual.
But as we can see in Figure 4 the detected topics are the
frequent ones, because all the evaluation metrics are close
to 1. We must also point out that using more than 1000
critical pairs in the datasets with 5 to 10 topics does not
perform well. Even though the model predicts almost the
correct number of topics, the critical pairs contain noise and
this leads to estimating false topics. As we can see in Fig-
ure 4 as the noise increases the corresponding metrics are
decreasing.

The number N of critical pairs affects the number of top-
ics detected. A default value of 2000 seems to work in most
cases. By reducing N, we may end up loosing some topics,
however, the ones detected are the most important (i.e., the
most frequent) ones. By increasing N, we may get false re-
sults when the number of actual topics is small. This is one

180

Figure 3: Comparison of the number of estimated topics to the number of real topics, using different amounts
of critical pairs and increasingly overlapping topics ((a) 5%, (b) 15% and (c) 25%).

Figure 4: Evaluation metrics on synthetic datasets using 1000 and 3000 critical pairs and increasingly over-
lapping topics ((a) & (d) 5%, (b) & (e) 15% and (c) & (f) 25%).

of the issues we plan to address in future work. An initial
idea is to dynamically adjust N, by looking at the actual
frequency of the N -th pair in adjacent segments.

4.2 Real Data
We provide a set of experimental results based on real

data and discuss their quality. The datasets used in these
experiments are closely related to news, sports and lifestyle.
This can help us to get an empirical evaluation of the re-
sults. We have implemented a crawler, which follows pub-
lic accounts of popular news agencies, magazines, politi-
cians, celebrities, etc and people that are related to them.
For example, some of the accounts are Barak Obama, The
Guardian, various journalists, N.A.S.A. and F.I.F.A.com.
Most of these accounts are verified by Twitter, to avoid
spam, and their tweets are written in English.

Thus, the context of the dataset varies from political to
sport related events. We have to point out that the tweets
are related to real world events, the popularity of these
events directly affects our results. An example it is shown

in Figure 2. We got 10 topics that happened at November
12 of 2014. The most obvious of the them refers to first ever
successful land of a spacecraft (Philae) on a comet (Comet
67P). We can also see information about the U.S.-China
emissions deal, the Forex scandal, the Ebola outbreak and
a rather bizarre news about a loose tiger near Paris.

Similarly, Figure 5 displays topic from (Monday) De-
cember 1 2014. We see topics that refer to World AIDS
Day, new Star Wars movie trailer, cyber Monday and black
Friday sales. Another interesting example in the same fig-
ure is that the algorithm manages to detect different topics
for two different protests in two different places, Hong Kong
and Ferguson U.S. respectively, even though they have some
common words. Still, there are some terms that could be-
long to both topics, but since the algorithm produces non-
overlapping communities, this is not possible.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a model to detect topics in

181

Figure 5: Results from December 1 2014.

short text documents, such as tweets, using a graph-based
model, the critical term graph. This graph consists of nodes,
which represent the terms found in tweets, and edges, which
represent the co-occurrence frequency of the corresponding
terms. Detecting communities in such graph can be an ef-
ficient tool for topic detection. We empirically proved the
effectiveness of our model with experiments on real news-
related tweets. In addition, we proposed a method to create
synthetic tweets, and tested our model under various condi-
tions.

There are many possible improvements and extensions.
At first, we can improve the critical term graph, using Nat-
ural Language Processing techniques on the tweets. Syn-
onyms could be considered duplicate information in the crit-
ical term graph, thus these terms could be grouped. Fur-
thermore, verbs could also be eliminated, because in most
cases they do not add much valuable information. These
improvements would reduce the graph size and potentially
improve the performance of the model. Both synonyms and
verbs can be detected using simple dictionary based meth-
ods, such as WordNet[2]. Alternatively, synonyms can be
detected using more advanced methods like [16].

Furthermore, an evaluation process of the results based
on real data can be considered by using information from
external sources, such as Google Trends or news agencies.

We are currently focusing on different ways on assign-
ing weights on the edges and how the algorithm responds
to these changes. The quality of results when using other
overlapping and non-overlapping community detection (or
graph partitioning) algorithms is, also, another interesting
topic.

Another extension could be the use of this model in trend-
ing topic detection. This can be achieved by using the con-
cept of burstiness. In [19], the authors define the trending
topics as topics that exhibit high frequency in a specific time
segment compared to its previous segments. In our model,
this could be achieved by using additional constraints on se-
lecting the critical pairs, e.g. the occurrence frequency of
the corresponding terms should exhibit bursty behavior.

Our ultimate goal is to use the critical term graph for
tracking the evolution of the topics through time. We are
considering two approaches on this problem. The first ap-
proach involves building different critical term graphs for
each snapshot and then trying to map communities, and
thus the corresponding topics, between these snapshots. Al-

ternatively, we can maintain a single critical term graph and
incrementally update the graph by adding, modifying or re-
moving edges and nodes.

6. ACKNOWLEDGMENTS
This work was co-financed by the European Union

(ERDF) and Greek national funds through the Operational
Program Thessaly-Mainland Greece and Epirus 2007-2013
of the NSRF 2007-2013. We also thank A. Likas for the
insightful discussions and suggestions.

7. REFERENCES
[1] Gephi, https://gephi.org/.
[2] Wordnet, http://wordnet.princeton.edu/.
[3] Social Media Mining, chapter 6. Cambridge University

Press, 2014.
[4] R. Agrawal, R. Srikant, et al. Fast algorithms for mining

association rules. In Proc. 20th int. conf. VLDB, volume
1215, pages 487–499, 1994.

[5] J. Benhardus and J. Kalita. Streaming trend detection in
twitter. International Journal of Web Based Communities,
9(1):122–139, 2013.

[6] V. D. Blondel, J. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of community hierarchies in
large networks. CoRR, abs/0803.0476, 2008.

[7] M. Cataldi, L. Di Caro, and C. Schifanella. Emerging topic
detection on twitter based on temporal and social terms
evaluation. In Proceedings of the Tenth International
Workshop on Multimedia Data Mining, page 4. ACM, 2010.

[8] J. Chen and Y. Saad. Dense subgraph extraction with
application to community detection. Knowledge and Data
Engineering, IEEE Transactions on, 24(7):1216–1230,
2012.

[9] G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee.
Self-organization and identification of web communities.
Computer, 35(3):66–70, 2002.

[10] S. Fortunato. Community detection in graphs. Physics
Reports, 486(3):75–174, 2010.

[11] S. Fortunato and M. Barthelemy. Resolution limit in
community detection. Proceedings of the National Academy
of Sciences, 104(1):36–41, 2007.

[12] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Cluster
validity methods: Part I. SIGMOD Record, 31(2):40–45,
2002.

[13] S. Higuchi, T. Hashimoto, T. Kuboyama, and K. Hirata.
Exploring social context from buzz marketing
site-community mapping based on tree edit distance. In
PERCOM Workshops, 2013 IEEE International
Conference, pages 187–192. IEEE, 2013.

[14] A. Kalogeratos and A. Likas. Document clustering using
synthetic cluster prototypes. Data Knowl. Eng.,
70(3):284–306, 2011.

[15] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a
social network or a news media? In Proceedings of the 19th
international conference on WWW, pages 591–600. ACM,
2010.

[16] Y. Li, B.-J. P. Hsu, C. Zhai, and K. Wang. Mining entity
attribute synonyms via compact clustering. In Proceedings
of the 22nd ACM CIKM, pages 867–872. ACM, 2013.

[17] M. Mathioudakis and N. Koudas. Twittermonitor: Trend
detection over the twitter stream. In Proceedings of the
2010 ACM SIGMOD, pages 1155–1158. ACM, 2010.

[18] M. E. Newman and M. Girvan. Finding and evaluating
community structure in networks. Physical review E,
69(2):026113, 2004.

[19] N. Pervin, F. Fang, A. Datta, K. Dutta, and
D. Vandermeer. Fast, scalable, and context-sensitive
detection of trending topics in microblog post streams.
ACM TMIS, 3(4):19, 2013.

182

Graph Databases and

Railway Operations Research Requirements
Alexander Kuckelberg

VIA Consulting & Development GmbH
Römerstr. 48-50
D-52064 Aachen

+49 241 463 662-16

a.kuckelberg@via-con.de

ABSTRACT

In this work-in-progress paper we describe requirements,

scenarios and mandatory functionalities of graph databases within

the application field of railway operations research (ROR).

The underlying railway infrastructure data of all ROR tasks can

naturally be described by graph structures and can therefore be

managed by graph databases; railway operations research

functionalities might consequently be described as database

functions on its graphs.

While the infrastructure data should remain persistent, a graph

database might be a good choice to match the persistence needs

quite close or even identical to the data structures to be managed.

Moreover, the functionalities might be transformed into database

functionality.

In current, productive systems, relational databases respectively

models are still the most widely-used models, on which current

infrastructure persistence is realized.

The work-in-progress focuses on the question, if graph databases

with database supported functionalities might be a good

alternative compared to current solutions on top of relational

models.

This paper tries to outline a generic graph model as it can be used

in ROR, to define requirements and framework conditions. It tries

to summarize generic demands and to describe the query and

functionality requirements that have to be satisfied by such

databases. This paper presents basic ideas and the origin point of

intended and starting database research projects and cooperation

with universities in the next month and years.

Keywords

Railway infrastructure data, persistence of graph topology,

railways operations research functionality, infrastructure database.

1. INTRODUCTION
The application field of railway operations research is a quite

special field which is usually associated to other topics than graph

databases or graph structured data and their management.

Usually railway operations research deals with topics like delay

propagation, robustness of timetables, capacity of infrastructure,

capacity allocation or evaluation of infrastructure modification

effects. Such topics can be analyzed and answered on behalf of

analytical, constructive or simulative approaches [5].

While the main focus of ROR activities usually lies on sufficient

algorithms, formulas or modelling approaches the mostly

unmentioned basic of all functionality is an infrastructure graph,

which acts as the basis for running time computations, blocking or

minimum headway time determination and the ability to select

alternative routes, additional stops or to perform rescheduling

operation.

Therefore, an essential but usually unconsidered component of all

railway operations research activities is an infrastructure network

graph, on which all functionalities are based.

The railway infrastructure network consists of rails, switches,

crossings, buffer stops etc. and can mathematically be described

as a (directed) graph, which is the most static part of a railway

operations research project1.

Based on this graph – the infrastructure graph – functionalities are

defined and tasks are performed. The most elementary

functionality is the determination of running times and the

determination of infrastructure occupation but also the search for

matching routes, alternative stop policies or the evaluation of

infrastructure capacities based on timetables or queueing theory.

The following chapters try to introduce approaches to

infrastructure graph modelling, existing exchange formats and

perspectives onto such graphs.

A generic graph definition as a consensus of different views and

approaches is derived and typical functionalities performed on

such graphs are outlined.

The last chapter finally describes our work in progress and

summarizes currently ongoing database research activities,

primarily targeting a performant prototype and accompanying

prove of concept of the approach described in this paper and their

suitability with respect to manageability on behalf of graph

databases.

1 Usually several timetables and their robustness of delay behavior

are evaluated for a given network infrastructure, therefore the

infrastructure is considered as “most static” within a project.

 (c) 2015, Copyright is with the authors. Published in the Workshop

Proceedings of the EDBT/ICDT 2015 Joint Conference (March 27,

2015, Brussels, Belgium) on CEUR-WS.org (ISSN 1613-0073).

Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0

183

2. DATA MODEL AND FUNCTIONALITY
To describe the requirements and functionalities a graph database

that is tightly fitting the application field of railway operations

research should satisfy, it is worth to take short looks into existing

models, data exchange formats and systems, focusing on

infrastructure models.

To introduce more aspects from railway operations research – not

only the basic infrastructure network and graph-

like topology – some typical tasks and questions

are shortly described to allow a better

understanding of required functionalities.

From that starting point it hopefully becomes

clearer, what is expected from graph databases

for this quite specific task, in functionality, data

model and performance requirements.

2.1 Proprietary models
Proprietary data models for railway operations

research were introduced decades ago. While

old systems for timetabling support in the 80s

used quite specific track and infrastructure

models like sequences of elements for single or

double track lines, specific configuration records

to describe the characteristic (and track

existences) of stations etc. the graph topology

approach became popular in the 90s with the

increased availability of personal computers and

their performance.

It became clear, that graph models are the most

flexible structures and best fitting

representations of the real network, but

computation power and the acceptance of

computer based systems still had to grow.

Typical systems of this time use either tool specific, binary and

size dense data and file formats or standard database models like

the relational one to store and manage the network data

persistently. While relational databases were considered to be

performant, widely available and standardized such databases

only support railway operations functionality in a quite limited

manner. Databases are primarily used as persistence stores to

guarantee ACID characteristics when working with network

infrastructure data.

The functionality is usually implemented on top of the standard

database system. The computation of e.g. possible routes cannot

be implemented directly within the relational database domain2.

So currently ROR functionality is performed on behalf of data

loaded into main memory with corresponding performance and

accessibility benefits but with the drawback, that database

functionalities like transactional control is not available. Finally

the evaluation of graph database based approaches for data

persistency has to be compared against this “traditional” scenario:

load from database and restore the network graph, perform

functionalities within main memory, and probably store

2 The relational model and SQL was extended by specific

functionality, e.g. closure operators, but nevertheless these

functionalities are not really used within current systems for

different reasons like performance, portability or even

availability within a specific RDBMS.

manipulated data back into the database in contrast to the directly

performed functionalities within graph databases.

2.2 Graph models and UIC RailTopoModel
Even if the graph model is currently considered to be a sufficient

and suitable approach to model network infrastructure, the content

of these models differs, especially when considering different

levels of granularity as Figure 1 illustrates.

There are several more or less widely used approaches,

philosophies and granularities used by different systems. Mostly,

these models were implied by legacy systems, research prototypes

or available data sources.

There are node weighted or edge weighted and attributed

approaches, which both have advantages and disadvantages with

respect to redundancies, performance or expressional strength.

There are microscopic and macroscopic models considering the

network topology and network elements in varying detail depth.

Microscopic models consider not only the track related topology

but also signals, liberation equipment, curve radius, track

gradients, tunnels, switches or stopping positions, balises, speed

profiles etc., usually in precise of meters. Beside this, specific

tools used for infrastructure planning might moreover contain

much more elements and positioning precise.

Moreover, the application field a tool is designed for as well as

the local technical requirements and circumstances determine the

content of the infrastructure network graph3.

3 In Germany there is e.g. a train protection system called LZB

(lineare Zugbeeinflussung) which requires to model LZB areas,

marker boards for area characteristics and which is not available

in most other countries. The same is true for several other

systems, which usually are country centered developments.

Figure 1: Microscopic, mesoscopic and macroscopic

network infrastructure graphs and node aggregation into

operational control points, stations, junctions and lines.

.

184

Several country specific, national models and modelling

approaches exists, e.g. in Germany, the DB Netz AG uses a node

weighted graph model – the Spurplan – within their timetabling

systems RUT-K [8] that defines a wide range of allowed elements

and element instances to set up a network. The same is true for a

Belgium specific approach to an infrastructure graph model, the

INT graph [6].

To generalize and abstract the overall problem of infrastructure

network graph modelling and its management within database

systems, a scientific, generic model has to be used or to be

derived.

One quite interesting project targeting such a generic

infrastructure model is the RailTopoModel initiated by the UIC

[1]. One of the ideas behind is to model network topologies for

macroscopic as well as for microscopic approaches and to define

mapping and transformation functionalities between different

levels of granularity (Figure 2).

Consequently the UIC RailTopoModell is a (at least currently)

promising approach to set up a generic network

graph model that might cover a bright range of

generic requirements. It therefore is one source

of the overall graph model which should be

implemented and supported by a graph database

targeted by our ongoing work.

One crucial aspect which constantly causes

problems with respect to generalization and

universal usability and acceptance of such

models are nationally affected (non-functional)

requirements, e.g. a regulatory for clustering the

network into operation control points (OCP),

the aggregation of tracks within lines,

separation of grids and intergrids and much

more. Such classification criterion and

requirements are often the background for a

specific modelling and might be generally be

described as graph clustering, coverage and

overlapping problems (chapter 3.2).

2.3 Exchange Formats
Similar to graph models the exchange formats

evolved. Besides “owning” a graph model it

makes sense to define a sufficient exchange format for data fitting

to this model.

While for the proprietary formats mentioned within section 2.1

usually binary file formats were used, nowadays data exchange

formats are XML based, e.g. defined by XSD schemata.

The German Spurplan used by DB Netz AG implied the (company

internal) XML-ISS standard for railway research operation tools.

For more operation and planning centered systems other standards

exists and are currently under development, e.g. within the

PlanPro project [7].

The RailML project [2] is another example, where an

international partnership tries to define an exchange format (not

only for infrastructure) in a more or less generic and universally

valid manner. Unfortunately, this approach again focusses on a

quite specific model – a track oriented view – which contradicts

the initially expressed universality. Moreover in practice, missing

semantic specifications reduces the universal validity of exchange

formats like RailML to a pairwise agreement and convention,

which again strongly contradicts any standardization intention of

this project.

3. GRAPH DATABASES
This paper wants to gain insight into ongoing work. This work

focuses on graph databases and how such (new4) database

approaches might be used in a beneficial manner to support,

replace or extend the nowadays systems, their functionalities and

performances.

The ongoing work focuses on research and evaluation activities

and join-projects with universities and the determination of

solutions which matches the application field requirements in a

quite optimal manner.

In the following subsections requirements and demands are

outlined, that have to be considered when designing and

evaluating graph databases and their functionalities to be enabled

to compare such rather new and alternative approaches to existing

ones.

3.1 Base Topology and requirements
As mentioned before, a generic graph model fits the network

graph modelling requirements in a best way, similar to the

mentioned UIC RailTopoModel (Figure 3). Additionally to this

simple model, an infrastructure graph database must consider

several more aspects outlined in the following subsections.

From our point of view, the core and elementary rail network

topology should be modelled by a directed graph similar to the

one proposed by the UIC RailTopoModel:

4 At least within the application field considered.

Figure 2: Micro-/macroscopic infrastructure modelling

(UIC RailTopoModel).

.

Figure 3: Rail network and network graphs.

.

185

 A network graph is a graph G=(N, E) where N is a set of

nodes and E is a set of (directed) edges with EN×N.

 The directed cardinality |n|=(se, sl) of a node nXN is

defined by the number se of edges entering n and the

number sl of edges leaving n.

 A node nXN is called an inner node if |n|=(1,1) and

edge node otherwise.

 The graph is considered to be a node weighted graph,

where characteristic values, e.g. speeds allowed,

changing gradients or signaling functionality is assigned

to nodes.

 Track sections are paths throughout the graph starting

and terminating at edge nodes with only inner nodes

within the path. For a path P=(n1, .., nm) of nodes, ni is

an inner node for i=2…m-1 and (ni, ni+1)XE for

i=1…m-1. A track section contains at least two nodes

(m>1).

 All inner nodes are attributed by direction validity, e.g.

a node is valid for train running within the direction of

the associated edge of in opposite direction (or both).

This validity has to be considered by all functionalities

like running or occupation time computation as well as

routing and route evaluation.

 For all nodes of a track section P=(n1,…,nm) a layout

position within a defined (from many possible)

positioning system is given. This might be a GIS

coordinate in case of GIS systems or the layout

coordinates of a linearized or user friendly display of

the network graph.

 For all nodes of a track section P=(n1,…,nm) a (relative)

positioning information pos(n) is assigned with

pos(n1)=0, pos(nm)=1 and pos(ni)≤pos(ni+1) for i=1…m-

1.

 The mileage of nodes respectively section elements is

derived from location information (GIS/meters/etc.)

assigned to the section start and end due to the

positioning information.

Nodes might additionally be distinguished due to their semantic,

for which area or length they are valid. Most nodes respectively

corresponding infrastructure element are usually point elements,

whose semantic is related to a specific point, e.g. a speed change,

a stopping position (the “H”-board) or the location of a signal.

But nevertheless semantic might be extended to area and length

validity, e.g. speed restriction zones, level crossings etc. The

validity semantic is expressed by node attributes.

3.2 Topology Coverage and Clustering
Some of the most problematic issues towards a unified topology

model are national rules and regulations as mentioned before. E.g.

in Germany infrastructure elements are logically organized with

operation control points as the top-most classification criteria. In

other countries grids or inter-grids are the primary structuring

criteria; sometimes a track line is the major criteria.

The topology graph model we consider for the intended graph

database implementation tries to generalize all these approaches

on behalf of graph coverages and graph node clustering:

 The cluster C of a network graph G=(N, E) is a graph

GC=(NC, EC)G such that NCN and for all n1,n2 XNC

with (n1,n2)XE, also (n1,n2)XEC holds.

 A coverage CV={C1, …Cm} of a network graph G=(N,

E) is a set of clusters of G.

 A total coverage TC={C1, …Cm} of a network graph

G=(N, E) is a set of clusters of G such that Ci=(Ni, Ei)

for i=1,…,m and Ni, Nj (i,j=1,…,m, iKj) are disjunctive

node sets whose union is N.

With this clustering, it is possible to define the varying logical

orderings and classifications as mentioned before:

 The logical separation of a network graph G into

operation control points is a coverage of G.

 A network graph G can be separated into grids and

inter-grids. A grid-inter-grid-approach is a total

coverage TC={C1, …Cm} (m>0) of G such that a cluster

Ci is a grid, whenever there is a node nXCi with |n|=(xin,

xout) and xin>1 or xout>1 (switch or crossing), and an

inter-grid otherwise. All edges from G not contained in

TC always connect nodes from grids to nodes from

inter-girds or wise versa.

 Lines L={C1, …Cm} (m>0) of a network graph G are a

(not total) coverage of G where all nodes of each cluster

Ci (i=1…m) are part of at least one path within Ci.

 Power supply areas of a network graph G are areas

within the corresponding network, where (electrical)

power is supplied by one or more transformer

substations. Therefore the power supply areas of G can

be modelled as a (not total) coverage of G.

All examples stated before are examples of different logical

clustering of the overall network graph and should illustrate

the functionality which has mandatorily to be supported by

database, especially the support of clustering and additional

cluster constraints.

3.3 Interlocking Routes
Several existing infrastructure data models for railway networks

concentrate on a quite limited view on the rail (and graph)

topology as a primary (and only) modeling aspect, as e.g. RailML

does until nowadays.

For railway operations research tools this view is not sufficient.

Track related systems like railways basically rely on interlocking

techniques and therefore this aspect has to be supported by

models and consequently by databases as well.

A route of an infrastructure graph G is a path within G

corresponding to the technical circumstances given by the

186

concrete settings of an interlocking station and its ability to

control signals, switches and track accessibility.

So one additional requirement a graph database for infrastructure

graph management has to fulfill is to support coverages

representing routes and paths within the graph.

In contrast to “usual” routing and path finding functionality

(which nevertheless is required but considered later on within the

paper) specific route data has to be stored, because such routing

information has to be enriched by application field specific

attributes. Therefore it could be said that the graph database has to

be able to manage attributed routing information. Such attributes

might be information about the usability (electrification, axle

weights, stopping positions offered etc.) that are available in

addition to the pure infrastructure information, the classification

of certain routes or the relevance for different train types

respectively train classes5. With such route information several

railway operations research functionalities are supported like

computer based routing or rescheduling.

Routes typically start at one graph node and describe a path to

another graph node. Such nodes can be signals, track

ends/boundaries or even specific reference nodes6.

3.4 Temporal Validity
One aspect typically not considered by infrastructure models is

the spatio-temporal validity of the infrastructure network. Railway

operations research functionality typically concentrates on a

specific network graph, but this consideration is not necessarily

true in any case.

Within timetabling periods there are more or less important

changes somewhere in the network. Switches are added or

removed, interlocking stations are extended or modified, tracks or

even complete areas are closed for maintenance work etc.

Therefore it must be ensured, that a universally usable graph

network considers temporal validities and retrieves network

graphs and topologies depending on requested times respectively

time periods.

So one essential question for this work in progress is how graph

databases can be used to access different topologies changing over

time and with which performance.

3.5 Routing and path finding
Last but not least another elementary functionality for the

considered application field is the routing functionality as known

from several similar application fields like route guidance and

navigation systems.

The graph database has to offer this functionality on behalf of

interlocking routes as described in section 3.3. In practice, queries

for routes between two graph nodes have to consider the train

5 Often there are tracks and lines dedicated e.g. to freight or

passenger trains, even if both types are physically comparable

(same gauge, same locomotive etc.) but routes are more relevant

for on type than for the other. Therefore a route might have a

high priority for freight trains and a very low one for passenger

trains.

6 This corresponds to the interlocking paradigms, where exactly

one origin and one target have to be defined before the

interlocking process – e.g. setting up switches and signals – is

accepted and started.

characteristic and priority of the routes as well as the attributed

routing information.

While this “plain” routing functionality is used e.g. for

timetabling, the routing for railway operation simulation or

analytical evaluation has to perform this search slightly different.

Usually along the train run overtaking sections for the specific

train have to be determined. Overtaking sections are areas of a

network graph, where in practice no change of train order can be

performed. The two ends of an overtaking section are

characterized by the ability to change this train order, concretely

to allow one train to overtake or to be overtaken by another train.

This is again determined by alternative routing selecting sufficient

routes at the section ends which e.g. offer a sufficient stopping

position and electrification.

3.6 Summary
In this chapter, requirements against a graph database to handle

network graphs for railway operations research purpose were

mentioned and introduced. Roughly speaking, the most important

are:

 Support of (node weighted) graphs with different

positioning and layout systems.

 Temporal validities and the ability to retrieve time

specific graph topologies.

 Clustering and coverage of network graphs to ensure

generality.

 Management of interlocking routes and routing

functionality on top of these routes.

With this functional “specification” the evaluation of graph

databases as a sufficient persistent storage system can be started.

4. WORK IN PROGRESS/NEXT STEPS
The handling of infrastructure network data and ensuring its

persistency is an elementary component of nowadays railway

operations research tools.

The current legacy system landscape usually uses “traditional,

relational” approaches to store and manage such data. There is an

obvious mismatch between the relation and set oriented paradigms

of these databases and the topology, semantic and structure of

graphs which are a “natural” model for railway network

infrastructure.

If functionalities like simulation, timetabling, capacity evaluation

or other tasks from the application field of railway operations

research should be performed, they are currently performed on in-

memory data structures which had been created from the

relational data sets while loading them.

The existence of graph databases obviously closes the gap

between the database model and the one of the specific

application domain. A central question for commercial tools is if

it is worth to shift to new, less evaluated approaches like graph

databases.

For this reason we work on an evaluation of the performance and

functional capabilities of graph databases in comparison to

“traditional, relational” approaches.

At the Workshop on Querying Graph Structured Data 2015

(GraphQ 2015) we expect to be able to present and show first

results, provide an insight into current settings of this ongoing

187

evaluation or at least discuss aspects of this problem field at the

workshop itself.

The evaluation is intended to start soon as a joint-project between

VIA Consulting & Development GmbH as initiator of this work,

different students and universities specialized on graph database

techniques and the railway infrastructure manager DB Netz AG in

Germany.

It is expected to provide graph and route data from existing

systems with expected graph sizes up to several hundred-thousand

nodes and thousands of interlocking routes for the whole German

railway network. In this way it will be ensured, that the research

and evaluation work is related to practical conditions and

requirements.

The next steps from the current stage of the ongoing work are the

definition and selection of different evaluation and comparison

scenarios and modelling approaches with respect to specific

databases. As a basis of comparison, a relational database as it is

currently used in practice is considered.

5. REFERENCES/LITERATURE
[1] UIC – International Union of Railways, UIC

RailTopoModel: Railway Network Description – A

conceptual model to describe a railway network,

http://documents.railml.org/science/280714_uic_railtopomod

el_rc2.pdf

[2] railML.org Initiative, http://www.railml.org

[3] Hansen, I. A.; Pachl, J. (eds.): Railway Timetabling &

Operations. Analysis - Modelling - Optimisation -

Simulation - Performance Evaluation. Eurailpress 2014,

ISBN 978-3777104621

[4] Kuckelberg, A.; Seybold, B.: “Adaptive Rule-Based

Infrastructure Modelling” – In: Proc. of the 5th International

Seminar on Railway Operations Modelling and Analysis,

Copenhagen, 13.-15.05.2013.

[5] Janecek, D.; Kuckelberg, A.; Nießen, N.:

“Kapazitätsermittlung von Eisenbahnknoten und Strecken” –

In: Eisenbahntechnische Rundschau (ETR) 61 (2012) 10, pp.

30-36.

[6] INT – Graph Model Design, Infrabel internal working paper,

INT RFT.04

[7] PlanPro, Durchgängige Datenhaltung der Leit- und

Sicherungstechnik (LST) von der Planung bis zum Bestand

(in German), DB Netze,

http://fahrweg.dbnetze.com/fahrweg-

de/start/technik/innovationen/planpro

[8] K. Wölfle, RUT-K – Computer-Aided Train-Path

Management, Paris, 13.10.05, Talk at UIC

188

Linked Web Data Management (LWDM)

Devis Bianchini (Università di Brescia),
Valeria De Antonellis (Università di Brescia),
Roberto De Virgilio (Università Roma Tre)

189

An Extensible Framework for Query Optimization on
TripleT-Based RDF Stores

Bart G. J. Wolff
Eindhoven University of

Technology
b.g.j.wolff@alumnus.tue.nl

George H. L. Fletcher
Eindhoven University of

Technology
g.h.l.fletcher@tue.nl

James J. Lu
Emory University

jlu@emory.edu

ABSTRACT
The RDF data model is a key technology in the Linked Data
vision. Given its graph structure, even relatively simple
RDF queries often involve a large number of joins. Join
evaluation poses a significant performance challenge on all
state-of-the-art RDF engines. TripleT is a novel RDF in-
dex data structure, demonstrated to be competitive with
the current state-of-the-art for join processing. Query opti-
mization on TripleT, however, has not been systematically
studied up to this point. In this paper we investigate how the
use of (i) heuristics and (ii) data statistics can contribute to-
wards a more intelligent way of generating query plans over
TripleT-based RDF stores. We propose a generic framework
for query optimization, and show through an extensive em-
pirical study that our framework consistently produces effi-
cient query evaluation plans.

Categories and Subject Descriptors
H.2.4 [Database Management]: Query processing

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
RDF, SPARQL, TripleT, indexing, query processing

1. INTRODUCTION

Motivation. The goal of the Linked Data vision is to cre-
ate a global “web of data”: an infrastructure for machine-
readable semantics for data on the web [9]. This vision aims
to make data from a wide variety of sources available under
the standardized RDF data model, allowing for this data to
be shared across different domains using web standards.

As adoption of the linked data vision grows, data stores
have to be able to deal with increasingly large datasets.

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

This poses a scalability problem, both for storage and in-
dexing, as well as for query evaluation. By its triple-centric
graph-like nature, even the most basic RDF queries involve a
large number of (self-)joins, which pose a significant perfor-
mance challenge on state-of-the-art RDF database engines.
At present, real-world RDF datasets can involve hundreds
of millions or even billions of triples, making it challenging
to offer interactive query response time.

When compared to relational database technology, RDF
stores are a relatively new concept. A number of RDF stores
exist, one of them being the Three-way Triple Tree data
structure (TripleT) [6], which features a value-based, role-
free indexing scheme, unique among the current state-of-
the-art. Research has shown this approach to be competi-
tive with, and often at an advantage to, alternative indexing
schemes, in terms of both storage and query evaluation costs
[6]. However, query optimization on TripleT-based RDF
stores has not been systematically studied up to this point.

Our contributions. In this paper, we present our experi-
ences and results of a comprehensive investigation of query
optimization on TripleT [18]. In particular, we study how
the use of (i) heuristics and (ii) dataset statistics can con-
tribute towards a more effective generation of query plans,
minimizing query execution time over the TripleT RDF store.
Our aim here is to understand the effectiveness of various
parts of the heuristics that influence query plan generation.
These query plans are tailored to (and evaluated on) our
implementation of the TripleT store, which we also describe
in this paper.

The novelties of our work include an extensible generic
rule-based framework for query optimization over TripleT,
and an extensive empirical study into the effectiveness of
proposed rules in generating optimized query plans. Fur-
thermore, the complete experimental framework, including
both disk-based storage and the query processing pipeline,
is available as open-source code for further study.1

Our proposed optimization framework, together with a
few key heuristics rules, is able to consistently produce ef-
ficient query plans for a wide variety of query types and
datasets. In comparing heuristics-based and statistics-based
rules, our aim was to understand the benefit offered by the
use of statistics. Our study shows that not only do rules
using statistics in general offer little performance improve-
ments compared to heuristics-only rules, but also that a
purely heuristics-based approach may exhibit an order of
magnitude reduction in evaluation costs in certain situa-

1https://github.com/b-w/TripleT

190

tions. These observations support those of Tsialiamanis et
al. in their study of heuristics-based optimization of RDF
queries [17].

2. BACKGROUND

Definitions. We present the basics of data and queries.
Further details can be found in [1, 18]. Let U be a set of URIs
and L be a set of literals, such that U∩L = ∅. Then we define
an RDF triple as an element (s, p, o) ∈ U×U× (U∪L). We
define an RDF dataset (or, alternatively, an RDF graph), de-
noted T, as a set of n ≥ 0 RDF triples: T = {t1, t2, · · · , tn}.

At the core of many RDF query languages such as SPARQL
lies the concept of Basic Graph Patterns (BGPs) [1]. A BGP
is a conjunction of Simple Access Patterns (SAPs), where
each SAP is a triple consisting of some combination of fixed
values (atoms) and unfixed values (variables). Formally, let
A = U∪L be a set of atoms, and let V be a set of variables,
such that A ∩ V = ∅. Then we define an SAP as a triple
S = (s, p, o) ∈ (U ∪ V)× (U ∪ V)× (A ∪ V). We then define
a BGP as a conjunction of SAPs: P = S1 ∧ S2 ∧ · · · ∧ Sn,
for some n ≥ 0. Equivalently, P may be regarded as the set
{S1, S2, . . . , Sn}.

A binding for BGP P is a function B from the variables
occurring in P to the set of atoms A. We define the applica-
tion of binding B to P , denoted B(P), as the set of triples
resulting from replacing every occurrence of every variable
v in P with B(v). Finally, the result of querying graph T
with P , denoted P (T), is the set of all bindings B such that
for each B ∈ B it holds that B(P) ⊆ T.

We indicate variables with the prefix ‘?.’ As a small exam-
ple, the BGP P = (jan, knows, ?p) ∧ (?p, fanOf,mozart)
on graph

T = {(jan, knows, sue), (jan, knows, tim),

(sue, fanOf,mozart)}
evaluates to P (T) = {〈?p : sue〉}.

Related work. Numerous RDF stores and indexes have been
developed in recent years. Notable examples include Virtu-
oso [5], RDF-3X [15], and Sesame.2 We refer the reader to
Luo et al. [12] for a thorough survey of storage and indexing
solutions for massive RDF datasets.

The study of query optimization is as old as the study
of database systems. On the topic of RDF, Neumann and
Weikum [14, 15] address some of the scalability problems
that arise when processing join queries on very large RDF
graphs. Optimizations for BGPs using statistics for selec-
tivity estimation are discussed by Stocker et al. [16], while
Tsialiamanis et al. present a number of heuristics for BGP
static analysis and optimization [17]. Various studies have
been made on techniques for selectivity and cardinality esti-
mation using precomputed information over RDF datasets
[7, 10, 13, 15].

TripleT was originally proposed by Fletcher and Beck [6].
Value-based indexing for join processing was also shown to
be effective in the context of relational and complex-object
databases (e.g., [2, 3, 4]). Some prior work exists featuring
TripleT. The performance of different join algorithms on the
TripleT index was investigated by Li [11]. An extension of

2http://www.openrdf.org

TripleT was used by Haffmans and Fletcher [8] as physical
representation of data used for a proposed RDFS entailment
algorithm, where it was shown to be good candidate for
RDFS data storage.

3. A THREE-WAY TRIPLE TREE
The primary novelty of the TripleT index is that it is

built over the individual atoms in a dataset, rather than
over complete triple patterns. TripleT uses a number of
buckets that store the actual triples in the dataset. Each
bucket stores all the (s, p, o) triples in the dataset, ordered
on some permutation of {s, p, o}. For instance, an SOP-
bucket would (conceptually) store the triples sorted first on
subject, then on object, and lastly on predicate. The possible
bucket orderings are thus SPO, SOP, PSO, POS, OSP, and
OPS, though in our implementation we limit ourselves to
using SOP-, PSO-, and OSP-buckets only. The remaining
permutations, SPO, POS, and OPS, are symmetrical and
are not considered in our investigation. Of important note
is that each bucket does not contain the triple part (s, p, or o)
that corresponds to its primary sort order. This information
is implied by the index and does not need to be repeated.

There is one entry in the index for each unique atom in
the dataset. This entry contains a number of pointers to
triple ranges in each of the bucket files. For instance, the
index entry for an atom a might contain a pointer to range
[x · · · y] in the SOP-bucket, meaning that in this bucket,
which is sorted on subject, triples from position x to position
y contain the value a in their subject position. Similarly,
the same entry might contain pointers to triple ranges in
the PSO- and OSP-buckets that contain a in the predicate-
and object positions, respectively.

The index supports retrieval of bindings matching a single
SAP. The sort ordering of a bucket determines how suitable
it is for retrieving triples matching a particular SAP. An
SOP-bucket, for example, would be well suited for retriev-
ing triples matching (a, ?x, ?y), but would be inefficient at
retrieving triples matching (?x, a, ?y). For the latter case the
bucket ordering implies the entire bucket needs to be read
in order to find all possible matches, while for the former
case the index entry for a directly points to the range in the
bucket where any matches must be contained.

Implementation details. Our work is based on our own
open-source implementation of the TripleT RDF store [18];
we briefly highlight salient features here and refer the reader
to the full report for further details and design rationale. A
single TripleT database is stored on disk across eight dif-
ferent physical files. We use a dictionary to translate be-
tween“friendly”representations and internal representations
of atoms. This dictionary is stored in two BerkeleyDB3 hash
databases. The TripleT index is stored in a single Berke-
leyDB hash database. There is one entry for each unique
atom in the dataset. Each bucket belonging to a TripleT
database is stored in its own separate file. There are three
buckets for each database. The bucket files themselves are
flat binary files containing sequences of triples. Each bucket
contains all triples belonging to the dataset, although the
files themselves contain only the parts of each triple that are
not already present in the index. The statistics of a TripleT
database are stored in a BerkeleyDB hash database. The

3
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb

191

a
1

b
1

c
2

d
3

e
3

?x
1,2

?y
2,3

(a) The atom collapse CP1

a
1

b
1

c
2

d
3

e
3

?x
1,2

?y
2,3

(b) A join graph JP1

Figure 1: Example graphs for the BGP P1 =
(a, b, ?x)1 ∧ (?x, c, ?y)2 ∧ (?y, d, e)3

statistical database contains information for estimating out-
put sizes for single SAPs or joins between two SAPs, as well
as some summarizing statistics [18].

4. QUERY OPTIMIZATION
Our framework for generating optimized query plans for

BGPs over the TripleT index consists of a generic algorithm
in which a number of decision points can be manipulated
by a given set of rules. In this section, P is defined as a
BGP, consisting of k SAPs (s1, p1, o1), · · · , (sk, pk, ok), de-
noted S1, · · · , Sk, resp.

4.1 Atom collapses
We define the atom collapse CP of P as the undirected

edge-labeled graph with the atoms and variables of P as
nodes, and edges to indicate there is a shared variable be-
tween the SAPs associated with nodes.

Formally, the set of nodes consists of atom-nodes and vari-
able-nodes. For each SAP Si ∈ P we have an atom-node
(a, {Si}) for each unique atom a ∈ Si. We have a variable-
node (v, Pv) for each unique variable v ∈ P with Pv ⊆ P
being the set of SAPs which contain v. For the special case
of SAPs that do not contain any atoms, we have a special
atom node (a0, {Si}), where a0 is a nil-atom.

Let (x,X) and (y, Y) be nodes in the collapse graph. In
the set of edges we have an undirected edge (x,X)− (y, Y)
with label L if and only if there exists some variable v such
that v ∈ SX , SX ∈ X and v ∈ SY , SY ∈ Y and SX 6= SY .
Label L consists of a set of (Si, Sj , v, pi, pj) tuples, where
there are tuples for every variable v such that v ∈ Si, Si ∈ X
and v ∈ Sj , Sj ∈ Y with Si 6= Sj and with pi and pj denoting
the positions (s, p, or o) that variable v has in Si and Sj

respectively. Note that one variable can occur in multiple
tuples in one label, as long as each tuple as a whole is unique
within L.

As an example, Figure 1(a) shows the atom collapse for

the BGP P1 = (a, b, ?x)1 ∧ (?x, c, ?y)2 ∧ (?y, d, e)3. For ease
of reference, we have numbered the SAPs. Here we have an
edge between (e, {S3}) and (?x, {S1, S2}), due to the shared
variable ?y of S3 and S2, but no edge between (e, {S3}) and
(a, {S1}), since S3 and S1 do not share a variable.

4.2 Join graphs
We define a join graph JP of P as a subgraph of atom

collapse CP , with the nodes from JP being a subset of the
atom-nodes from CP such that for each SAP Si ∈ P there
is exactly one node (a, {Si}) in JP , and the edges from JP
being the same as those from CP . The nodes from the join
graph are known as seed nodes as they represent the physical
access path for each of the SAPs, which is the TripleT bucket
used for retrieving them.

Formally, the set of nodes in JP is defined as

NODES(JP) ⊆ {(x,X) ∈ NODES(CP) | x is an atom}
such that ∀Si ∈ P.(∃!(x,X) ∈ NODES(JP).(X = {Si})).
The set of edges is defined as

EDGES(JP) = {((x,X)− (y, Y) : L) ∈ EDGES(CP)

| (x,X), (y, Y) ∈ NODES(JP)}.
Note that P can have multiple distinct, valid join graphs.

Figure 1(b) shows a possible join graph for P1.

4.3 Decision points
The goal of the optimizer is to generate a query plan over

the TripleT engine, where a query plan is a tree consisting of
physical operators as internal nodes and index bucket scans
as leaves, for evaluating P . Our optimization framework
takes the BGP P as input, first computes its atom collapse
CP , then a join graph JP , and lastly produces a query plan
QP for JP .

The computation features four distinct decision points,
and we follow a rule-based approach for dealing with them.
For computing the join graph there is one such point: (1)
deciding which seed node to select from the collapse graph
CP of P . The computation of JP proceeds by selecting seeds
until all SAPs of P are accounted for. For computing the
query plan QP from JP there are three: (2) deciding which
join edge to select from JP ; (3) deciding which join type
to apply for the selected join edge; and, (4) deciding what
scan to select for a given SAP. All four decision points are
resolved by a number of configurable rules that are separate
from the rest of the algorithm.

The rules. Decision points 1 and 4 are identical (both in-
volve selecting a seed for an SAP) and can be resolved by
two possible rules. Rule seed-1 (S1) selects one preferred
seed for each distinct SAP in the input set based on the
positions of the atoms in the SAP, following the ordering
s � o � p. The intuition here is that subjects are more
selective than objects, which in turn are more selective than
predicates. Rule seed-2 (S2) does the same but prioritizes
the atoms in the SAP according to their selectivity as indi-
cated by dataset statistics.

Decision point 2 has the greatest influence on query re-
sponse time, as it determines the order of joins in the query
plan. It is resolved by five rules. Rule join-1 (J1) aims
to prioritize those joins for which it is possible to do a
merge join, which is intuitively cheaper to perform given

192

the TripleT index organization. Rule join-2 (J2) prioritizes
joins involving the most selective SAPs, where selectivity
is determined through the ordering (s, p, o) � (s, ?, o) �
(s, p, ?) � (?, p, o) � (s, ?, ?) � (?, ?, o) � (?, p, ?) � (?, ?, ?).
Here, s, p, o denote arbitrary atoms and ? denotes an ar-
bitrary variable; and, S � T indicates pattern S is more
selective than pattern T . Rule join-3 (J3) aims to prior-
itize joins between two SAPs that have the most selective
positioning of join variables, following the ordering s ./ p �
o ./ p � s ./ o � s ./ s � o ./ o � p ./ p. Rule join-4 (J4)
prioritizes joins between SAPs which feature a literal value
(e.g. “Sue”) in one of its positions, over those featuring only
URIs (e.g. “http://example.org/Sue”). The intuition behind
rules J2-J4 generalizes our intuition behind S1. Rule join-5
(J5) prioritizes joins between SAPs which, according to the
statistics database over the dataset, produce the smallest
intermediate result sets.

Decision point 3 is resolved by a fixed heuristic: whenever
it is possible to do a merge join (i.e. the left- and right input
sets involved in the join are both sorted on their shared join
variables), we do so; if not, we perform a hash join instead.

The rules for resolving decision points 1, 2, and 4 can
be used in any configuration (i.e. which rules are and are
not used, and in which order are they applied). Hence at
each decision point there is a variable, ordered list of rules R
which act as filters and which are applied in sequence on the
set of options in order to arrive at a final choice. Each rule
r ∈ R reduces the set of options I to a set of options I ′ ⊆ I
through filter step I

r−→ I ′. Any items in I ′ are then said to
be equivalent under r. Similarly, an ordered list of rules R

performs filtering step I
R−→ I ′, with any items remaining in

I ′ being called equivalent under R.

5. EXPERIMENTAL STUDY
The goal of our experiments is to gather evidence relevant

to answering the following questions:

1. How effective is each individual rule for generating op-
timized query plans?

2. How effective are combinations of rules for generating
optimized query plans?

3. Does the order in which rules are applied matter?

4. What is the impact of using statistics?

5. How do our optimization techniques perform under dif-
ferent types of queries?

6. How do our optimization techniques perform under dif-
ferent kinds of datasets?

These questions can be divided into four sections: (a) the
value of rules, (b) the value of statistics, (c) the difference
between queries, and (d) the difference between datasets.

The value of rules. As discussed in Section 4.3, our opti-
mization techniques make use of a number of different rules,
which are applied in a certain sequence when we arrive at
a decision point where a choice needs to be made. Most of
them work based on some heuristic. One would not expect
each rule to be just as effective as the next; in fact, such
would be a highly surprising outcome. Instead, one would
expect there to be noticeable differences in the effectiveness
of individual rules. One would also expect that certain com-
binations of rules will prove to be highly effective, more so

than what the sum of the parts might suggest. The order
in which rules are applied at a decision point would be ex-
pected to matter to a certain degree but be less important
than which rules are and are not used.

The value of statistics. Although we have described only
two rules in Section 4.3 which make use of statistics, their
purpose is the same as that of all of our heuristics-based
rules: to minimize intermediate result sizes produced during
query plan execution. Of course, the use of these statistics-
based rules comes at a cost: a full statistics database needs
to be computed and maintained over the dataset.

The difference between query types. There are several
different types of queries we use in our experiments. As our
datasets are essentially graphs and our queries are graph
patterns, it’s easy to visualize them as such. In Figure 2
the four common query shapes that our queries are based
around are shown, where a query’s SAPs are represented by
nodes which are connected if they share a variable.

(a)
Chain
query

(b)
Star
query

(c) Star-chain
query

(d) Loop
query

Figure 2: Different query shapes we study

Aside from their shape, other variables we study are
query size (in number of SAPs), and query selectivity.
The influence of query size on execution time is difficult to
predict. On one hand, more SAPs means more joins; on the
other, more SAPs can also mean higher selectivity which
can be exploited by the plan generator. As for query selec-
tivity, a query which features more atoms in more selective
positions in its SAPs generally produces a smaller result set.
Again, selective SAPs in a query can be favorably exploited
by the plan generator.

The collection of concrete queries used in our experiments
– covering the full range of combinations of shape, size, and
selectivity – is detailed in Wolff [18].

The difference between datasets. The test data we have
used comes from three different sources, covering both real
and synthetic data: DBpedia,4 SP2Bench,5 and UniProt.6

From each source we have obtained three different datasets:
one 100.000 (100K) triples dataset, one 1.000.000 (1M) triples
dataset, and one 10.000.000 (10M) triples dataset. For all
datasets, the 100K set is a strict subset of the 1M set, which
in turn is a strict subset of the 10M set.

Plan of study. In our experiments we primarily compare
different rule sets to each other. Hence, the composition of
the rule set is the main variable in each experimental run.
We define a run in our experiment as testing one particular
rule set on every dataset using every available query. Here,
testing some rule set x on dataset y using query z is com-

4
http://dbpedia.org/

5
http://dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/

6
http://www.uniprot.org/

193

Table 1: Results overview on 1M datasets: execution time (ms)

SP2Bench 1M UniProt 1M
Chain Star Star-chain Selective Non-selective Chain Star Star-chain Selective Non-selective

Run A-3 9975,5 6806,2 5070,5 2376,5 12191,6 1151,9 24328,1 25884,0 17512,9 16729,7
Run A-4 18121,6 6293,4 198520,0 55936,2 92687,1 1194,7 39200,0 2173,3 1472,3 26906,4
Run D-2 12173,2 6876,5 5195,6 3018,5 13145,0 1158,0 28490,1 3620,1 4010,5 18168,2

prised of: opening the TripleT database for dataset y; telling
the query plan generator to use rule set x; feeding query z to
the database; enumerating and immediately discarding the
query results; closing the database. Each run is tested five
times, each time “cold”, i.e. without preserving any caches
between tests, with average costs reported.

The runs we have performed are detailed in Table 2, where
a number indicates that a particular rule was used in that
run, the number itself indicating the order (a lower number
denoting a higher priority). Each of the runs has a particular
purpose: the A-runs are designed to test the heuristics rules
against the statistics rules; the B-runs aim to get a sense
of the value of the individual heuristics rules; the C-runs
focus on the ordering of rules; the D-runs are used to test
different subset combinations of rules.

Table 2: Runs and their rule sets

Rules

Runs

S1 S2 J1 J2 J3 J4 J5

A-1 1 1 2 3 4
A-2 1 1
A-3 1 2 1 2 3 4 5
A-4 2 1 2 3 4 5 1
B-1 1 1 2 3
B-2 1 1 2 3
B-3 1 1 2 3
B-4 1 1 2 3
C-1 1 4 3 2 1
C-2 1 3 2 1 4
C-3 1 2 1 4 3
D-1 1 1 3 2
D-2 1 2 1
D-3 1 1 2 3

5.1 Empirical results
In the interest of space, we highlight only a few of our

main observations here and refer the reader to Wolff [18] for
a detailed presentation and analysis of all results.

The A-runs. These runs were designed to test the per-
formance of the heuristics-based rules (runs A-1 and A-3)
against the statistics-based rules (runs A-2 and A-4).

We focus our discussion on A-3 and A-4 as illustrations of
these two groups. Table 1 presents results for the SP2Bench
and UniProt 1M datasets. We visualize results over all
dataset sizes in Figure 3, where we plot the average query
execution time over all queries, along with the average stan-
dard deviation. These results confirm that the heuristics-
based A-3 rule set offers better performance overall.

For the SP2Bench datasets, the heuristics-based A-3 is
most effective, with execution time of A-4 reaching up to an
order of magnitude higher. The DBPedia datasets showed
performance similar to that of SP2Bench. On UniProt the
differences are less pronounced, though we note that A-4
failed to scale up to the 10M set for the star-chain query.

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

100K 1M 10M

E
xe

cu
tio

nr
tim

er
(m

s,r
lo

gs
ca

le
)

Datasetr sizer (numberr ofr triples)

RunD-2 Runr A-3 Runr A-4

(a) SP2Bench

1E-00

1E-01

1E-02

1E-03

1E-04

1E-05

1E-06

100K 1M 10M

RunwD-2 Runw A-3 Runw A-4

E
xe

cu
tio

nw
tim

ew
Km

sAw
lo

gs
ca

le
M

Datasetw sizew Knumberw ofw triplesM

R

RwExcludingw15w/w60wdatawpointswwithwvaluesw>w1E-06

(b) UniProt

Figure 3: Results overview of runs A-3, A-4, and
D-2

Here, a combination of primarily heuristics rules with statis-
tics as back-up worked best, as seen with A-3.

On closer inspection, the general cause for A-4’s perfor-
mance is that its plans feature more hash joins than those
produced by A-3. Performing a hash join can result in a
significant amount of intermediate result materialization,
whereas this is not the case with the merge join because
it can take advantage of the fact that the input streams are
guaranteed to be sorted. This is illustrated by the actual
plans generated by A-3 and A-4 as presented in Figure 4,
for the following small selective star-chain SP2Bench query:

(?1, http://www.w3.org/1999/02/22-rdf-syntax-ns#type,
http://localhost/vocabulary/bench/Article),

(?1, http://purl.org/dc/elements/1.1/creator,
http://localhost/persons/Paul Erdoes),

(?1, http://swrc.ontoware.org/ontology#journal, ?3)
(?1, http://purl.org/dc/terms/references, ?4),
(?5, http://www.w3.org/1999/02/22-rdf-syntax-ns#type,

http://localhost/vocabulary/bench/Article),
(?5, http://purl.org/dc/elements/1.1/creator,Dell Kosel),
(?5, http://swrc.ontoware.org/ontology#journal, ?3),
(?5, http://purl.org/dc/terms/references, ?7)

The B- and C-runs. These runs were designed to get
a sense of the value for each individual heuristics rule and
to measure the importance of rule ordering, respectively. In

194

(a) Run A-3

(b) Run A-4

Figure 4: Plans generated for a small selective star-
chain query on the SP2Bench 1M dataset

short, we observed in these experiments that the J1 rule
is the single most important heuristics rule: configurations
that gave it a lower priority often failed to scale up to the
10M datasets. Aside from that there appeared to be no clear
winner in individual rules or ordering of the rules.

The D-runs. In these runs we look at configurations
which use a limited subset of rules. These experiments
showed that minimal rule sets are quite stable and effective
in performance. As a point of comparison with A-3 and A-4,
we present the results for D-2 in Table 1 and Figure 3. Here
we see that even this very limited rule set is always competi-
tive with both A-3 and A-4. The D-2 run appears to provide
the best, consistent performance over all three datasets, and
preferring the J2 rule (selectivity) over the J1 rule (merge-
joins) is one of the few configurations to perform well on
the UniProt star- and star-chain queries, which proved to
be some of the most difficult queries we have tested. This
performance by the D-2 run is somewhat surprising, as this
configuration consists of only three heuristics rules (one seed
rule, two join rules), and does not use statistics at all.

5.2 Discussion
We have seen through an extensive empirical evaluation

how the value of individual rules used by the plan generator
can vary greatly. Especially the merge join prioritization
rule, which is given preference in A-3, appears to be in-

valuable for the generation of efficient query plans. As a
heuristic, there are of course practical scenarios which vio-
late this good behavior of merge join prioritization. In our
experiments, we experienced this only in the case of UniProt
star-chain queries. Indeed, here the performance generally
improved when this rule was given a lower priority, as in D-
2, where the selectivity prioritization rule proved to have the
largest positive impact. The benefits of the three remaining
heuristics rules are similar. In particular, in their absence,
the impact on query response time is roughly the same.

In general, we have observed that the impact of statistics
and the statistical prioritization join rule is measurable but
limited. When used alone or as the primary join rule, the
statistics rule produces query plans significantly worse than
those produced by the heuristics rules, as evidenced by run
A-4. This suggests that the value of statistics rules is found
mostly in a supporting role.

In summary, we recommend the D-2 rule configuration for
general use, as it is a purely heuristic and minimal approach
which delivers excellent results across the board. Overall,
our findings corroborate results obtained by Tsialiamanis
et al. [17], where a heuristics-based planner for SPARQL
queries is shown to be competitive with the cost-based ap-
proach taken in the state of the art RDF-3X store [15].

6. CONCLUDING REMARKS
In this paper we have presented results of a study of query

optimization on TripleT-based RDF stores. We have pro-
posed a query optimization framework that takes the shape
of a generic, rule-based algorithm. We also proposed a num-
ber of heuristic and statistical rules for use by this algorithm.

We have evaluated this framework in an extensive series
of experiments. These experiments have shown that a small
number of relatively simple heuristics can consistently pro-
duce efficient evaluation plans for a wide variety of queries
and datasets. We have also seen that while statistics do
add value, the value is minimal, and not within reasonable
proportion to the costs involved in constructing and main-
taining statistical data structures over massive graphs.

A number of interesting avenues for future work remain
open. A study of runtime optimization strategies in our
framework, such as sideways information passing [14], and
further sophisticated join-ordering [7] strategies are both
naturally rich areas for exploration. We have also encoun-
tered various challenges with using statistics for query opti-
mization. Additional work in this area would be interesting,
and may yet help our optimization framework produce even
more efficient query plans.

Acknowledgments. We thank Antonio Badia, Paul De Bra,
and Herman Haverkort for their helpful comments.

References
[1] M. Arenas, C. Gutierrez, and J. Pérez. Foundations of

RDF databases. In Reasoning Web, pages 158–204, Brixen-
Bressanone, 2009.

[2] B. C. Desai. Performance of a composite attribute and join
index. IEEE TSE, 15(2):142–152, 1989.

[3] A. Deshpande and D. Van Gucht. A storage structure for
nested relational databases. In Nested Relations and Com-
plex Objects, LNCS 361, pages 69–83. Springer, 1987.

[4] A. Deshpande and D. Van Gucht. An implementation for
nested relational databases. In VLDB, pages 76–87, Los An-
geles, 1988.

195

[5] O. Erling and I. Mikhailov. RDF support in the Virtuoso
DBMS. In T. Pellegrini et al, editor, Networked Knowledge
- Networked Media, pages 7–24. Springer, 2009.

[6] G. H. L. Fletcher and P. W. Beck. Scalable indexing of RDF
graphs for efficient join processing. In CIKM, pages 1513–
1516, Hong Kong, 2009.

[7] A. Gubichev and T. Neumann. Exploiting the query struc-
ture for efficient join ordering in SPARQL queries. In EDBT,
pages 439–450, Athens, Greece, 2014.

[8] W. J. Haffmans and G. H. L. Fletcher. Efficient RDFS entail-
ment in external memory. In SWWS, pages 464–473, 2011.

[9] T. Heath and C. Bizer. Linked Data: Evolving the Web into
a Global Data Space. Synthesis Lectures on the Semantic
Web. Morgan & Claypool Publishers, 2011.

[10] H. Huang and C. Liu. Estimating selectivity for joined RDF
triple patterns. In CIKM, pages 1435–1444, Glasgow, 2011.

[11] K. Li. Cost analysis of joins in RDF query processing using
the TripleT index. Master’s thesis, Emory University, 2009.

[12] Y. Luo, F. Picalausa, G. H. L. Fletcher, J. Hidders, and
S. Vansummeren. Storing and indexing massive RDF
datasets. In R. De Virgilio et al, editor, Semantic Search
over the Web, pages 31–60. Springer, 2012.

[13] T. Neumann and G. Moerkotte. Characteristic sets: Accu-
rate cardinality estimation for RDF queries with multiple
joins. In ICDE, pages 984–994, Hannover, Germany, 2011.

[14] T. Neumann and G. Weikum. Scalable join processing on
very large RDF graphs. In SIGMOD, pages 627–640, Provi-
dence, Rhode Island, USA, 2009.

[15] T. Neumann and G. Weikum. The RDF-3X engine for scal-
able management of RDF data. VLDB J., 19(1):91–113,
2010.

[16] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and
D. Reynolds. SPARQL basic graph pattern optimization us-
ing selectivity estimation. In WWW, pages 595–604, Beijing,
2008.

[17] P. Tsialiamanis, L. Sidirourgos, I. Fundulaki,
V. Christophides, and P. Boncz. Heuristics-based query
optimisation for SPARQL. In EDBT, pages 324–335, Berlin,
2012.

[18] B. G. J. Wolff. A framework for query opti-
mization on value-based RDF indexes. Master’s
thesis, Eindhoven University of Technology, 2013.
http://alexandria.tue.nl/extra1/afstversl/wsk-i/wolff2013.pdf.

196

Towards an RDF validation language based on Regular
Expression derivatives

Jose Emilio Labra Gayo
∗

University of Oviedo
Spain

Eric Prud’hommeaux
W3c

Stata Center, MIT

Sławek Staworko
LINKS, INRIA & CNRS

University of Lille, France

Harold Solbrig
Mayo Clinic, College of

Medicine
Rochester, MN, USA

ABSTRACT
There is a growing interest in the validation of RDF based solutions
where one can express the topology of an RDF graph using some
schema language that can check if RDF documents comply with it.

Shape Expressions have been proposed as a simple, intuitive lan-
guage that can be used to describe expected graph patterns and to
validate RDF graphs against those patterns. The syntax and seman-
tics of Shape Expressions are designed to be familiar to users of
regular expressions.

In this paper, we propose an implementation of Shape Expres-
sions inspired by the regular expression derivatives but adapted to
RDF graphs.

1. INTRODUCTION
The industry need to describe and validate conformance of RDF

instance data with some schema has motivated a W3C Workshop [24]
and the chartering of W3C RDF Data Shapes Working Group.1

Here, a schema defines an RDF graph structure where a node has
expected properties with defined cardinalities, connecting to literal
values or other described nodes.

As currently defined, RDF Schema [2] and OWL [22] are widely
recognized as being insufficient to fulfil this task, leading to pro-
posals like the RDF vocabulary Resource Shapes2 and the Shape
Expressions3 language.

The operational semantics of Shape Expressions has been pre-
sented at [23] and the complexity and expressiveness of the lan-
guage has been studied at [1]. A Shape Expression is a labelled
pattern that describes RDF nodes using a syntax inspired by regu-

∗Corresponding author
1http://www.w3.org/2014/data-shapes/
2http://www.w3.org/Submission/shapes/
3http://www.w3.org/Submission/shex-defn/

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

lar expressions.

Example 1. The following shape expression describes Person
shapes as nodes that have one property foaf:age with values of
type xsd:int, one or more properties foaf:name with values
of type xsd:string and zero or more properties foaf:knows
with values of shape Person.

<Person> {
foaf:age xsd:integer

, foaf:name xsd:string+
, foaf:knows @<Person>*
}

It is possible to automatically check which nodes comply with
the declared shapes in an RDF Graph.

Example 2. The nodes :john and :bob in the following graph
have shape Person while the node :mary does not have that
shape.

:john foaf:age 23;
foaf:name "John";
foaf:knows :bob .

:bob foaf:age 34;
foaf:name "Bob", "Robert" .

:mary foaf:age 50, 65 .

Shape expressions can be used to describe and validate the con-
tents of linked data portals [16] and there are several implementa-
tions and online validation tools like ShEx Workbench4 and RDF-
Shape5.

Regular expressions are a well-known formalism to describe the
shape of sequences of characters. They have also been employed to
describe the shape of XML trees and form the theoretical basis of
RelaxNG. In 1964, Janusz Brzozowski proposed a method for di-
rectly implementing a regular expression recognizer based on reg-
ular expression derivatives [3]. In this paper, we adapt the deriva-
tives approach to RDF Graph based recognizers. We define regular
4http://www.w3.org/2013/ShEx/FancyShExDemo
5http://rdfshape.weso.es

197

shape expressions, which form the basis of the Shape Expressions
language, and present the algorithm that can be used to check if
an RDF node has a given Shape. The algorithm has been imple-
mented and the performance results are better than a backtracking
implementation.

2. PRELIMINARIES
Given a set S, we denote S∗ as the powerset of S, {} denotes the

empty set and {a1, . . . , an} denotes a set with elements a1, . . . , an.
The singleton set {a} will be simplified as a.

Let Vs = vocabulary of subjects, Vp = vocabulary of predicates
and Vo = vocabulary of objects. In RDF, if we define I as the set
of IRIs, B as the set of blank nodes and L as the set of literals, we
have Vs = I ∪ B, Vp = I and Vo = I ∪ B ∪ L.

A graph Σ is defined as a set of triples 〈s, p, o〉 such that s ∈ Vs,
p ∈ Vp and o ∈ Vo. Σ* denotes all possible graphs. The expression
t o ts represents the addition of triple t to a graph ts. Given two
graphs g1 and g2, g1 ⊕ g2 denotes the union of g1 and g2. Notice
that we are using union of RDF graphs instead of merging. Union
of two RDF graphs preserves the identity of blank nodes shared
between graphs while merging does not [11].

The decomposition of a graph g is defined as the set {(g1, g2)|g1⊕
g2 = g}. The decomposition of a graph with n triples is an expo-
nential operation that generates a graph with 2n pairs of graphs that
can be obtained by calculating the powerset of g and pairing each
element with its complement.

Example 3. Let g = {〈n, a, 1〉, 〈n, b, 1〉, 〈n, b, 2〉}, the decom-
position of g is:

{ ({},{〈n, a, 1〉,〈n, b, 1〉,〈n, b, 2〉}),
({〈n, a, 1〉},{〈n, b, 1〉,〈n, b, 2〉}),
({〈n, b, 1〉},{〈n, a, 1〉,〈n, b, 2〉}),
({〈n, b, 2〉},{〈n, a, 1〉,〈n, b, 1〉}),
({〈n, a, 1〉,〈n, b, 1〉},{〈n, b, 2〉}),
({〈n, a, 1〉,〈n, b, 2〉},{〈n, b, 1〉}),
({〈n, b, 1〉,〈n, b, 2〉},{〈n, a, 1〉}),
({〈n, a, 1〉,〈n, b, 1〉,〈n, b, 2〉},{}),

}

We define the shape of a node n in a graph g, Σg
n as the set of

triples related to n in graph g. It is formed by all the triples of the
form 〈n, p, o〉 ∈ g . We define Σ∗ as all possible shapes that a node
n can have.

3. WHY NOT SPARQL?
Shape Expressions have been proposed as a high level, intuitive

language to validate RDF. This problem can also be partially solved
using SPARQL queries [14] which leverage on the whole expres-
siveness of the SPARQL query language.

The main issue of SPARQL queries is that they can become un-
wieldy and difficult to generate, manage and debug by hand.

Example 4. A SPARQL query that can express part of exam-
ple 1 is:

ASK {
{ SELECT ?Person {

?Person foaf:age ?o .
} GROUP BY ?Person HAVING (COUNT(*)=1)}
{ SELECT ?Person {

?Person foaf:age ?o .
FILTER (isLiteral(?o) &&

datatype(?o) = xsd:integer)

} GROUP BY ?Person HAVING (COUNT(*)=1)}
{ SELECT ?Person (COUNT(*) AS ?Person_c0) {

?Person foaf:name ?o .
} GROUP BY ?Person HAVING (COUNT(*)>=1)}
{ SELECT ?Person (COUNT(*) AS ?Person_c1) {

?Person foaf:name ?o .
FILTER (isLiteral(?o) &&
datatype(?o) = xsd:string)

} GROUP BY ?Person HAVING (COUNT(*)>=1)}
FILTER (?Person_c0 = ?Person_c1)

{ {
{ SELECT ?Person (COUNT(*) AS ?Person_c2){

?Person foaf:knows ?o .
} GROUP BY ?Person}
{ SELECT ?Person (COUNT(*) AS ?Person_c3){

?Person foaf:knows ?o .
FILTER ((isIRI(?o) || isBlank(?o)))
}

GROUP BY ?Person HAVING (COUNT(*) >= 1)}
FILTER (?Person_c2 = ?Person_c3)

} UNION { SELECT ?Person {
OPTIONAL { ?Person foaf:knows ?o }
FILTER (!bound(?o))

}}}}

Representing RDF validation constraints as SPARQL queries is
not practical for large data portals and there is a need for a higher
level, declarative language with a more intuitive semantics.

Apart from that, the previous example is not completely right as
it has omitted the recursive definition where it should validate that
the values of foaf:knows all have the shape of Person. Try-
ing to represent recursive definitions in SPARQL is not possible in
general.6 From our point of view SPARQL can be used as a lower
level language for constraint validation in the sense that Shape Ex-
pressions can be mapped to SPARQL queries. In fact, one of our
implementation of Shape Expressions is already able to generate
those SPARQL queries from Shape Expressions.

4. INTRODUCING REGULAR SHAPE EX-
PRESSIONS

In this section we define Regular Shape Expressions as a sim-
plified language based on the whole Shape Expressions language.
This language will be used as the basis for our implementations. A
regular shape expression E defines the triples related with a given
node in a graph. Although the concept presented in this paper is
focused on RDF graphs, we consider that these definitions can be
applied to describe the topology of other graph structures.

Given three non-empty sets Vs, Vp, Vo and vs ⊆ Vs, vp ⊆ Vp

and vo ⊆ Vo, the abstract syntax of regular shape expressions (E)
over Vs, Vp, Vo is:

E,F ::= ∅ empty, no shape
| ε empty set of triples
|

vp−→ vo arc with predicate
p ∈ vp and object o ∈ vo

| E∗ Kleene closure (0 or more E)
| E ‖ F And (unordered concatenation)
| E | F Alternative

We do not provide the concatenation operator from string based
regular expressions because the arcs in a graph are not ordered. The
6This particular query could be represented using zero-length paths
as proposed by Joshua Taylor in StackOverflow http://goo.
gl/uMoXBQ

198

And operator (‖) for unordered concatenation appears in [1] and is
similar to interleave or shuffle [6, 10] although in the case of graphs
and regular shape expressions there is no ordered concatenation
operator.

The operators E+ (one or more) and E? (optional) can be de-
fined as:

E+ = E ‖ E ∗
E? = E | ε

The Shape Expressions language also contains a range operator
E{m,n} which represents between m and n repetitions of E. It
can be defined as:

E{m,n} =





E{m,n− 1}|E if m < n

E{m− 1, n− 1} ‖ E if m = n > 0

ε if m = n = 0

Example 5. The regular shape expression

a−→ 1 ‖ b−→ {1, 2}∗

declares a shape that contains one arc with predicate a and value 1,
and one or more arcs with predicate b and values 1 or 2.

Example 6. We can consider xsd:int and xsd:string as
subsets ofL (the set of Literals) in RDF, so we can define the shape:

foaf:age−−−−−→ xsd:integer ‖ (
foaf:name−−−−−−→ xsd:string)+

that declares nodes that must have an arc with predicate foaf:
age and value in xsd:int and one or more arcs with predicate
foaf:name and value in xsd:string. In ShEx notation it can
be represented as:

<Example> {
foaf:age xsd:integer

, foaf:name xsd:string+
}

Given a node n, the shape of a regular shape expression e with
respect to n, denoted as Sn[[e]] is the set of graphs Sn[[e]] ⊆ Σ∗

generated by the following rules:

Sn[[∅]] = ∅
Sn[[ε]] = {}

Sn[[
vp−→ vo]] = {〈n, p, o〉|p ∈ vp and o ∈ vo}
Sn[[e∗]] = {} ∪ Sn[[e ‖ e∗]]

Sn[[e1 ‖ e2]] = {t1 ∪ t2| t1 ∈ Sn[[e1]] and t2 ∈ Sn[[e2]]}
Sn[[e1 | e2]] = Sn[[e1]] ∪ Sn[[e2]]

Example 7. Let e =
a−→ 1 ‖ b−→ {1, 2}∗, then

Sn[[e]] = {{〈n, a, 1〉},
{〈n, a, 1〉, 〈n, b, 1〉},
{〈n, a, 1〉, 〈n, b, 2〉},
{〈n, a, 1〉, 〈n, b, 1〉, 〈n, b, 2〉}}

For any expression x, the operators ‖, |, ε and ∅ obey the follow-
ing simplification rules:

∅ | x = x

x | ∅ = x

∅ ‖ x = ∅
x ‖ ∅ = ∅
ε ‖ x = x

x ‖ ε = x

5. MATCHING REGULAR SHAPE EXPRES-
SIONS

Given a regular shape expression e and a node n in a graph g, we
want to determine if Σg

n (the subgraph formed by the triples related
with n) matches the regular shape expression Sn[[e]], i.e. we want
to determine if Σg

n ∈ Sn[[e]].
The semantics of Regular Shape Expressions is defined by a rela-

tion e ' Σg
n (e matches Σg

n) which can be expressed using axioms
and inference rules [23]. Figure 1 presents the operational seman-
tics of Regular Shape Expressions. Those rules can be directly im-
plemented using backtracking.

Example 8. Let e =
a−→ 1 ‖ b−→ {1, 2}∗ and a graph g

where Σg
n = {〈n, a, 1〉, 〈n, b, 1〉, 〈n, b, 2〉}, a trace of the match-

ing algorithm is represented in figure 2. Notice that we have to
decompose the matching graph g in all the pairs of graphs g1 and
g2 whose union give g. In this case, the decomposition returns all
the pairs depicted in example 3.

As can be seen, a naïve implementation of Regular Shape ex-
pression matching using backtracking leads to exponential growth
and has poor performance.

6. REGULAR SHAPE EXPRESSION DERIVA-
TIVES

The derivative of a shape Sn(E) ⊆ Σ∗ with respect to a triple
t ∈ Σ is a shape that includes only the remaining triples that when
appended to t will become Sn(E).

Definition 1. The derivative of a Shape Sn(E) ⊆ Σ∗ with re-
spect to a triple t ∈ Σ is defined as ∂t(Sn(E)) = {ts|t o ts ∈
Sn(E)}

We need a helper function ν : E → Bool (also called nul-
lable) that checks if a regular shape expression can match the empty
graph.

ν(E) =

{
true if E matches the empty graph
false otherwise

ν(∅) = false

ν(ε) = true

ν(
vp−→ vo) = false

ν(e∗) = true

ν(e1 ‖ e2) = ν(e1) ∧ ν(e2)

ν(e1 | e2) = ν(e1) ∨ ν(e2)

The following rules, inspired from Brzozowski [3], compute the
derivative of a regular shape expression with respect to a triple t.

199

Or1
r1 ' g
r1|r2 ' g

Or2
r2 ' g
r1|r2 ' g

And
r1 ' g1 r2 ' g2

r1 ‖ r2 ' g1 ⊕ g2

Empty
ε ' {}

Star1
r∗ ' {} Star2

r ' g1 r∗ ' g2

r∗ ' g1 ⊕ g2

Arc
p ∈ vp o ∈ vo
vp−→ vo ' 〈s, p, o〉

Figure 1: Inference rules for Shape expression rules

a−→ 1 ‖ b−→ {1, 2}∗ ' {〈n, a, 1〉, 〈n, b, 1〉, 〈n, b, 2〉}

a−→ 1 ' {}
b−→ {1, 2}∗ ' {〈n, a, 1〉, 〈n, b, 1〉, 〈n, b, 2〉}

g1 = {}
g2 = {〈n, a, 1〉, 〈n, b, 1〉, 〈n, b, 2〉}

a−→ 1 ' {〈n, a, 1〉}
b−→ {1, 2}∗ ' {〈n, b, 1〉, 〈n, b, 2〉}

b−→ {1, 2}'{}
b−→ {1, 2}∗ ' {〈n, b, 1〉, 〈n, b, 2〉}

g1 = {}
g2 = {〈n, b, 1〉, 〈n, b, 2〉}

b−→ {1, 2} ' {〈n, b, 1〉}
b−→ {1, 2}∗ ' {〈n, b, 2〉}

b−→ {1, 2}'{}
b−→ {1, 2}∗ ' {〈n, b, 2〉}

g1 = {}
g2 = {〈n, b, 2〉}

b−→ {1, 2} ' 〈n, b, 2〉
b−→ {1, 2}∗ ' {}

g1 = {〈n, b, 2〉}
g2 = {}

g1 = {〈n, b, 1〉}
g2 = {〈n, b, 2〉}

g1 = {〈n, a, 1〉}
g2 = {〈n, b, 1〉, 〈n, b, 2〉}

Figure 2: Regular Shape Expression matching using backtracking

200

∂t(∅) = ∅
∂t(ε) = ∅

∂〈s,p,o〉(
vp−→ vo) =

{
ε if p ∈ vp and o ∈ vo
∅ otherwise

∂t(e∗) = ∂t(e) ‖ e∗
∂t(e1 ‖ e2) = ∂t(e1) ‖ e2 | ∂t(e2) ‖ e1

∂t(e1 | e2) = ∂t(e1) | ∂t(e2)

Example 9. Let e =
a−→ 1 ‖ b−→ {1, 2}∗, the derivative of e

with respect to 〈n, a, 1〉 is b−→ {1, 2}∗. A trace of the derivatives
calculation can be:

∂〈n,a,1〉(
a−→ 1 ‖ b−→ {1, 2}∗)

= ∂〈n,a,1〉(
a−→ 1) ‖ b−→ {1, 2} ∗

| ∂〈n,a,1〉(
b−→ {1, 2}∗) ‖ a−→ 1

= ε ‖ b−→ {1, 2} ∗
| ∂〈n,a,1〉(

b−→ {1, 2}) ‖ b−→ {1, 2}∗ ‖ a−→ 1

=
b−→ {1, 2} ∗

| ∅ ‖ b−→ {1, 2}∗ ‖ a−→ 1

=
b−→ {1, 2} ∗

| ∅ ‖ a−→ 1

=
b−→ {1, 2} ∗ | ∅

=
b−→ {1, 2}∗

Notice that the derivative of a Regular Shape Expression can
grow in its size.

Example 10. The regular shape expression e = (
a−→ {1, 2}| b−→

{1, 2})∗,checks that there are the number of arcs with predicate
a and values in {1, 2} and arcs with predicate b and values in
{1, 2} is the same. The derivative of e with respect to 〈n, a, 1〉
is b−→ {1, 2} ‖ (

a−→ {1, 2}| b−→ {1, 2})∗. Notice that it grows
because once it finds an arc with predicate a, it needs to find another
arc with predicate b and continue with the rest of the graph.

The rules can be extended to graphs (sets of triples) as follows:

∂{}(e) = e

∂tots(e) = ∂ts(∂t(e))

7. MATCHING USING DERIVATIVES
For any graph g, we have that Σg

n ∈ Sn[[e]] if, and only if, ε ∈
Sn[[∂Σ

g
n

(e)]] which is true when ν(∂Σ
g
n

(e)) = true. We can
express the algorithm in terms of the relation e ' Σg

n defined as
the smallest relation satisfying:

e ' {} ⇔ ν(e)

e ' to ts ⇔ ∂t(e) ' ts
It is straightforward to show that e ' Σg

n if, and only if, Σg
n ∈

Sn[[e]].
Notice that when a regular shape expression matches a set of

triples, we compute the derivative for each of the triples in the set.

Example 11. Let e =
a−→ 1 ‖ b−→ {1, 2}∗ and Σg

n =
{〈n, a, 1〉, 〈n, b, 1〉, 〈n, b, 2〉}, the matching algorithm proceeds as:

a−→ 1 ‖ b−→ {1, 2}∗ ' {〈n, a, 1〉, 〈n, b, 1〉, 〈n, b, 2〉}
⇔ ∂〈n,a,1〉(

a−→ 1 ‖ b−→ {1, 2}∗) ' {〈n, b, 1〉, 〈n, b, 2〉}
⇔ b−→ {1, 2}∗ ' {〈n, b, 1〉, 〈n, b, 2〉}
⇔ ∂〈n,b,1〉(

b−→ {1, 2}∗) ' {〈n, b, 2〉}
⇔ b−→ {1, 2}∗ ' {〈n, b, 2〉}
⇔ ∂〈n,b,2〉(

b−→ {1, 2}∗) ' {}
⇔ b−→ {1, 2}∗ ' {}
⇔ ν(

b−→ {1, 2}∗)
⇔ true

As can be seen the derivatives algorithm takes a linear approach
where it is consuming a triple in each step and calculating the corre-
sponding derivative of the regular shape expression. The algorithm
does not need to decompose the graph or to do backtracking. The
main complexity of the algorithm comes from the process of calcu-
lating and representing derivatives of shape expressions.

Example 12. Let e =
a−→ 1 ‖ b−→ {1, 2}∗ and Σg

n =
{〈n, a, 1〉, 〈n, a, 2〉, 〈n, b, 1〉}, the matching algorithm proceeds as:

a−→ 1 ‖ b−→ {1, 2}∗ ' {〈n, a, 1〉, 〈n, a, 2〉, 〈n, b, 1〉}
⇔ ∂〈n,a,1〉(

a−→ 1 ‖ b−→ {1, 2}∗) ' {〈n, a, 2〉, 〈n, b, 1〉}
⇔ b−→ {1, 2}∗ ' {〈n, a, 2〉, 〈n, b, 1〉}
⇔ ∂〈n,a,2〉(

b−→ {1, 2}∗) ' {〈n, b, 1〉}
⇔ ∅ ' {〈n, b, 1〉}
⇔ false

8. SHAPE EXPRESSION SCHEMAS
In this section, we extend the regular shape expressions language

to include labels for shape expressions. We assume a finite set of
labels Λ.

A Shape Expression Schema is a tuple (Λ, δ) where δ is a shape
definition function that maps labels to regular shape expressions
over Vs ∪ Λ, Vp ∪ Λ, Vo ∪ Λ. Typically, we present a schema as a
collection of rules of the form λ 7−→ e where λ ∈ Λ and e ∈ E

Example 13. Let Λ={p}, we can define the following Shape Ex-
pression Schema: The regular shape expression

p 7−→ a−→ 1

‖ b−→ {1, 2}+

‖ c−→ p∗

declares a schema where nodes of shape p contain an arc with
predicate a and value 1, one or more arcs with predicate b and val-
ues 1 or 2, and zero or more arcs with predicate c and values of
shape p. Notice that shape expression schemas can contain recur-
sive references.

Example 14. Let Λ={person}, we can define the following

201

Shape Expression Schema which corresponds to example 1

person 7−→ foaf:age−−−−−→ xsd:int

‖ foaf:name−−−−−−→ xsd:string+

‖ foaf:knows−−−−−−−→ person∗
A shape typing is a mapping from nodes in a graph to labels.

Given a graph and a regular shape schema, we define a type infer-
ence algorithm which assigns a shape typing to the nodes in the
graph. The expression Γ ` n 's s represents the shape typings
generated when matching a node n with a shape s in the context Γ.

The context contains the current typing which can be accessed
through Γ.typing. The expression Γ{n → t} means the addition
of type t to n in context Γ. The semantic definition of 's is de-
picted in Figure 3.

We define the following definitions on shape typings:
� = Empty typing
n→ s : τ = Add shape type s to node n in typing t
τ1] τ2 = Combine typings τ1 and τ2

The operational semantics presented in figure 1 can be extended
to handle shape typings. The definitions are presented in figure 4.
As can be seen the definitions are straightforward. The main nov-
elty is the semantics of arcs which have been divided in two cases.
Arctype handles the case where the shape expression contains a
value set, while Arcref handles the case where the shape expres-
sion contains a reference to a label. In that case, the object is
matched against the shape expression associated with that label.

In order to adapt the inference rules to employ the derivatives
algorithm, we modify the derivative function ∂t(e,Γ) to take a new
parameter Γ that represents the typing context and to return a pair
(e′, τ) where e ∈ E represents the derivative and τ represents the
resulting typing. The new definition is:

∂t(∅,Γ) = (∅,�)

∂t(ε,Γ) = (∅,�)

∂〈s,p,o〉(
vp−→ vo,Γ) =

{
(ε,Γ.τ) if p ∈ vp and o ∈ vo
(∅,�) otherwise

∂〈s,p,o〉(
vp−→ l,Γ) =

{
(ε, τ) if Γ{o→ l} ` δ(l) 's Σg

o τ

(∅,�) otherwise

∂t(e∗) = let (e′, τ) = ∂t(e,Γ)

in e′ ‖ e∗
∂t(e1 ‖ e2) = let (e′1, τ1) = ∂t(e1,Γ)

let (e′2, τ2) = ∂t(e2,Γ)

in (e′1 ‖ e2 | e′2 ‖ e1, τ1] τ2)

∂t(e1 | e2) = let (e′1, τ1) = ∂t(e1,Γ)

let (e′2, τ2) = ∂t(e2,Γ)

in (e′1 | e′2, τ1] τ2)

The algorithm presented in this paper has been implemented in
Scala7 and Haskell8. The Scala implementation contains several
extensions like reverse arcs, relations, negations, etc. that have been
omitted in this paper for brevity while the Haskell prototype fol-
lows the simplified definitions presented here. Comparing the per-
formance between the backtracking and the derivatives approach,
we noticed that the latter obtains better results than the former.
7http://labra.github.io/ShExcala/
8http://labra.github.io/Haws/

Although the theoretical complexity of Shape Expression vali-
dation, which has been characterized in [1], remains the same, the
derivatives algorithm behaves much better than the backtracking
one. Further work needs to be done to check if we can identify
a subset of the language with better complexity results while be-
ing expressive enough. In particular, the Single Occurrence Regu-
lar Bag Expressions subset defined in that paper offers a tractable
language which could be expressive enough. In the future we are
planning to adapt our implementation to that subset and study its
performance behaviour in practice.

9. RELATED WORK
Regular expression derivatives where introduced by Brzozowski

in 1964[3] and were used for string based recognizers of regular
expressions. In 1999, Joe English proposed the use of derivatives
for XML validation [9]. That idea was taken by James Clark to im-
plement RelaxNG [4]. An updated presentation of regular expres-
sion derivatives is presented in [21] where the authors describe how
to handle large character sets (Unicode). Our presentation follows
the notations used in that paper adapted to regular shape expres-
sions. With regards to the implementation, we took some inspira-
tion by the Haskell implementation of a W3C XML Schema regular
expression matcher maintained by Uwe Schmidt [26] which con-
tains a definition for the interleave operator. There has also been
some recent work applying regular expression derivatives to sub-
matching [28] and parsing [17] and comparing it with the more tra-
ditional approach to regular expression matching based on NFA [7].

The main inspiration for Shape Expressions has been RelaxNG [30],
a Schema language for XML that offers a good trade-off between
expressiveness and validation efficiency. The semantics of Re-
laxNG has also been expressed using inference rules in the spec-
ification document [20] and is based on tree grammars [19]. In-
spired by that specification, we presented the semantics of Shape
Expressions using type inference rules in [23]. Our first prototype
implementation of Shape Expressions in Haskell9 employed a di-
rect translation of the inference rules using a backtracking monad
transformer. We consider that the equational reasoning presenta-
tion of the algorithm can be used to proof its correctness using an
inductive representation of RDF graphs [15].

Besides Shape Expressions, there are several approaches that
have been proposed to validate RDF Graphs which can be roughly
classified as: inference based, SPARQL-based and grammar-based
approaches.

OWL based approaches try to adapt RDF Schema or OWL to ex-
press validation semantics. However, using Open World and Non-
unique name assumption limits validation possibilities. [5, 29, 18]
propose the use of OWL expressions with a Closed World Assump-
tion to express integrity constraints.

SPARQL-based approaches use the SPARQL Query Langugage
to express the validation constraints. SPARQL has much more
expressiveness than Shape Expressions and can even be used to
validate numerical and statistical computations [14]. SPARQL In-
ferencing Notation (SPIN)[12] constraints associate RDF types or
nodes with validation rules. These rules are expressed as SPARQL
queries. There have been other proposals using SPARQL com-
bined with other technologies, Simister and Brickley[27] propose
a combination between SPARQL queries and property paths which
is used in Google and Kontokostas et al [13] proposed RDFUnit
a Test-driven framework which employs SPARQL query templates
that are instantiated into concrete quality test queries.

Grammar based approaches define a domain specific language to

9Available at https://github.com/labra/haws

202

MatchShape
Γ{n→ l} ` δ(l) ' Σg

n τ

Γ ` l 's n τ

Figure 3: Inference rule to match shapes

Or1
Γ ` r1 ' g τ

Γ ` r1|r2 ' g τ
Or2

Γ ` r2 ' g τ

Γ ` r1|r2 ' g τ

And
Γ ` r1 ' g1 τ1 Γ ` r2 ' g2 τ2

Γ ` r1 ‖ r2 ' g1 ⊕ g2 τ1] τ2

Empty
Γ ` ε ' {} �

Star1
Γ ` r∗ ' {} � Star2

Γ ` r ' g1 τ1 Γ ` r∗ ' g2 τ2
Γ ` r∗ ' g1 ⊕ g2 τ1] τ2

Arctype
p ∈ vp o ∈ vo

Γ ` vp−→ vo ' 〈s, p, o〉 �
Arcref

Γ ` l 's o τ

Γ ` vp−→ l ' 〈s, p, o〉 τ

Figure 4: Inference rules for Shape expression schemas

declare the validation rules. OSLC Resource Shapes [25] have been
proposed as a high level and declarative description of the expected
contents of an RDF graph expressing constraints on RDF terms.
Shape Expressions have been inspired by OSLC although they offer
more expressive power. Dublin Core Application Profiles [8] also
define a set of validation constraints using Description Templates
with less expressiveness than Shape Expressions.

10. CONCLUSIONS AND FUTURE WORK
The industrial adoption of an RDF schema language will depend

on rigorous analysis of efficiency of Shape Expressions and other
approaches to schema.

In this paper, we propose an implementation of Shape Expres-
sions inspired by derivatives of regular expressions.

There are two main lines of future work: On one hand, we are
planning to develop a set of benchmarks that will enable us to as-
sess the performance of the different shape expression implemen-
tations. On the other hand, we are currently working on the im-
plementation of new features for the Shape Expression language.
The evolution of the recently chartered W3c Data Shapes Work-
ing group will affect the adoption of those features. In this paper
we offered a minimal set of language features which we consider
representative. However, there are several extension proposals like
inverse arcs, negations, predicates, etc. that could also be imple-
mented using the proposed approach.

11. ACKNOWLEDGEMENTS
We thank Joshua Taylor for his careful review of this paper and

his help in the definition of SPARQL queries. This work has been
partially funded by the Spanish project MICINN-12-TIN2011-27871
ROCAS (Reasoning On the Cloud by Applying Semantics).

12. REFERENCES
[1] I. Boneva, J. E. Labra Gayo, S. Hym, E. G. Prud’hommeaux,

H. Solbrig, and S. Staworko. Complexity and expressiveness
of ShEx for RDF. In International Conference on Database
Theory (ICDT), 2015.

[2] D. Brickley and R. V. Guha. RDF Schema 1.1.
http://www.w3.org/TR/rdf-schema/, 2014.

[3] J. A. Brzozowski. Derivatives of regular expressions. J.
ACM, 11(4):481–494, 1964.

[4] J. Clark. An algorithm for RELAX NG validation.
http://www.thaiopensource.com/relaxng/
derivative.html, 2002.

[5] K. Clark and E. Sirin. On RDF validation, stardog ICV, and
assorted remarks. In RDF Validation Workshop. Practical
Assurances for Quality RDF Data, Cambridge, Ma, Boston,
September 2013. W3c,
http://www.w3.org/2012/12/rdf-val.

[6] D. Colazzo, G. Ghelli, and C. Sartiani. Efficient inclusion for
a class of xml types with interleaving and counting. Inf. Syst.,
34(7):643–656, Nov. 2009.

[7] R. Cox. Regular expression matching in the wild. http:
//swtch.com/~rsc/regexp/regexp3.html,
March 2010.

[8] K. Coyle and T. Baker. Dublin core application profiles.
separating validation from semantics. In RDF Validation
Workshop. Practical Assurances for Quality RDF Data,
Cambridge, Ma, Boston, September 2013. W3c,
http://www.w3.org/2012/12/rdf-val.

[9] J. English. How to validate XML. http://www.
flightlab.com/~joe/sgml/validate.html.

[10] W. Gelade. Succinctness of regular expressions with
interleaving, intersection and counting. Theoretical
Computer Science, 411(31-33):2987 – 2998, 2010.

[11] P. J. Hayes and P. F. Patel-Schneider. RDF 1.1 Semantics.
http://www.w3.org/TR/rdf11-mt/, 2014.

[12] H. Knublauch. SPIN - Modeling Vocabulary. http:
//www.w3.org/Submission/spin-modeling/,
2011.

[13] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann,
J. Lehmann, R. Cornelissen, and A. Zaveri. Test-driven
evaluation of linked data quality. In Proceedings of the 23rd
International Conference on World Wide Web, WWW ’14,
pages 747–758, Republic and Canton of Geneva,
Switzerland, 2014. International World Wide Web
Conferences Steering Committee.

203

[14] J. E. Labra Gayo and J. M. Álvarez Rodríguez. Validating
statistical index data represented in RDF using SPARQL
queries. In RDF Validation Workshop. Practical Assurances
for Quality RDF Data, Cambridge, Ma, Boston, September
2013. W3c,
http://www.w3.org/2012/12/rdf-val.

[15] J. E. Labra Gayo, J. Jeuring, and J. M. Álvarez Rodríguez.
Inductive representations of RDF graphs. Science of
Computer Programming, 95, Part 1(0):135 – 146, 2014.
Special Issue on Systems Development by Means of
Semantic Technologies.

[16] J. E. Labra Gayo, E. Prud’hommeaux, H. Solbrig, and J. M.
Alvarez Rodríguez. Validating and describing linked data
portals using RDF Shape Expressions. In 1st Workshop on
Linked Data Quality, Sept. 2014.

[17] M. Might, D. Darais, and D. Spiewak. Parsing with
derivatives: A functional pearl. SIGPLAN Not.,
46(9):189–195, Sept. 2011.

[18] B. Motik, I. Horrocks, and U. Sattler. Adding Integrity
Constraints to OWL. In C. Golbreich, A. Kalyanpur, and
B. Parsia, editors, OWL: Experiences and Directions 2007
(OWLED 2007), Innsbruck, Austria, June 6–7 2007.

[19] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy
of xml schema languages using formal language theory.
ACM Trans. Internet Technol., 5(4):660–704, Nov. 2005.

[20] OASIS Committee Specification. RELAX NG Specification:.
http://relaxng.org/spec-20011203.html, 2001.

[21] S. Owens, J. Reppy, and A. Turon. Regular-expression
derivatives re-examined. Journal of Functional
Programming, 19(2):173–190, 2009.

[22] W. OWL Working Group. OWL 2 Web Ontology Language:
Document Overview. W3C Recommendation, 2012.
Available at

http://www.w3.org/TR/owl2-overview/.
[23] E. Prud’hommeaux, J. E. Labra, and H. Solbrig. Shape

expressions: An RDF validation and transformation
language. In 10th International Conference on Semantic
Systems, Sept. 2014.

[24] RDF Working Group W3c. W3c validation workshop.
practical assurances for quality rdf data, September 2013.

[25] A. G. Ryman, A. L. Hors, and S. Speicher. OSLC resource
shape: A language for defining constraints on linked data. In
C. Bizer, T. Heath, T. Berners-Lee, M. Hausenblas, and
S. Auer, editors, Linked data on the Web, volume 996 of
CEUR Workshop Proceedings. CEUR-WS.org, 2013.

[26] U. Schmidt. Regular expressions for XML Schema.
http://www.haskell.org/haskellwiki/
Regular_expressions_for_XML_Schema, 2010.

[27] S. Simister and D. Brickley. Simple application-specific
constraints for rdf models. In RDF Validation Workshop.
Practical Assurances for Quality RDF Data, Cambridge,
Ma, Boston, September 2013. W3c,
http://www.w3.org/2012/12/rdf-val.

[28] M. Sulzmann and K. Z. M. Lu. POSIX regular expression
parsing with derivatives. In M. Codish and E. Sumii, editors,
Functional and Logic Programming - 12th International
Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6,
2014. Proceedings, volume 8475 of Lecture Notes in
Computer Science, pages 203–220. Springer, 2014.

[29] J. Tao, E. Sirin, J. Bao, and D. L. McGuinness. Integrity
constraints in OWL. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI-10). AAAI,
2010.

[30] E. van der Vlist. Relax NG: A Simpler Schema Language for
XML. O’Reilly, Beijing, 2004.

204

RDF Constraint Checking

Peter M. Fischer, Georg Lausen, Alexander Schätzle
Univ. of Freiburg, Faculty of Engineering, 79110 Freiburg, Germany

{peter.fischer,lausen,schaetzle}@informatik.uni-freiburg.de

Michael Schmidt
metaphacts GmbH, Industriestraße 39c, 69190 Walldorf, Germany

ms@metaphacts.com

ABSTRACT
Linked Open Data (LOD) sources on the Web are increas-
ingly becoming a mainstream method to publish and con-
sume data. For real-life applications, mechanisms to de-
scribe the structure of the data and to provide guarantees
are needed, as recently emphasized by the W3C in its Data
Shape Working Group. Using such mechanisms, data provi-
ders will be able to validate their data, assuring that it is
structured in a way expected by data consumers. In turn,
data consumers can design and optimize their applications
to match the data format to be processed.

In this paper, we present several crucial aspects of RDD,
our language for expressing RDF constraints. We introduce
the formal semantics and describe how RDD constraints can
be translated into SPARQL for constraint checking. Based
on our fully working validator, we evaluate the feasibility
and efficiency of this checking process using two popular,
state-of-the-art RDF triple stores. The results indicate that
even a naive implementation of RDD based on SPARQL 1.0
will incur only a moderate overhead on the RDF loading pro-
cess, yet some constraint types contribute an outsize share
and scale poorly. Incorporating several preliminary opti-
mizations, some of them based on SPARQL 1.1, we provide
insights on how to overcome these limitations.

1. INTRODUCTION
Linked Open Data (LOD) sources on the Web using RDF

are increasingly becoming popular. As a consequence mech-
anisms are needed that can be used to validate RDF datasets.
Using such means data providers can validate their data to
assure that they are providing information structured in a
way as expected by data consumers, and other way round,
data consumers can validate their interfaces against the data
to be processed. As RDF is a graph based data model, vali-
dation not only should refer to single triples, but also graph
patterns must be considered. The RDF Validation Work-
shop [16] states a gap between the current standards offering

c©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0

and the industry needs for validation of RDF data. More
recently, in continuation of the workshop, a W3C working
group is in the process of being established [4]. As major is-
sues, this working group will address the definition and pub-
lication of topology and value constraints of RDF graphs,
validation of such constraints and optimization of SPARQL
queries based on it. To tackle these issues, in continuation
of our previous work [9], we have developed a constraint lan-
guage RDD (RDF Data Descriptions) [13, 14] that captures
a broad range of constraints including keys, cardinalities,
subclass, path and subproperty restrictions, making it easy
to implement RDD checkers and clearing the way for seman-
tic query optimization.

The intention of an RDD is similar to SPIN [5], IBM’s
Resource Shapes [11], and Stardog ICV [6], where among
these systems Stardog ICV seems to be the one an RDD
is mostly related to. In Stardog ICV [6], constraints are
stated using OWL and considered relative to a certain infer-
ence machinery whose type may range from no inferencing,
RDFS- to OWL-inferencing. In contrast, RDD is a language
using a compact special-purpose syntax designed for only ex-
pressing constraints independent of a specific inference ma-
chinery. This makes RDD in particular applicable for RDF
under ground semantics, which is a common scenario in the
Linked Data context.

Just recently two other interesting validation methods have
been proposed. Shape Expressions [10] semantically act as a
type inference system that can derive types for given nodes
in an RDF graph. Its functionality resembles schema lan-
guages for XML, in particular RelaxNG. A test-driven ap-
proach for validation is suggested in [8]. Test cases may be
manually derived or automatically from existing RDFS/OWL
specifications. These approaches are similar to RDDs in
the sense that the final validation can be performed us-
ing SPARQL query expressions. However, while Shape ex-
pressions are based on regular expressions, RDDs incorpo-
rate relational constraints to RDF and therefore support the
mapping of relational databases to RDF using R2RML [2],
for example. While [8] is based on templates which are in-
stantiated and afterwards executed to determine the degree
to which corresponding constraints are fulfilled, RDD con-
straints are checked for fulfillment and in case they are vi-
olated, for efficiency reasons, only a small number of coun-
terexamples is listed. As a distinctive feature, different to
both discussed approaches, RDDs are based on a human
readable language in a similar vein to relational databases.
Finally, the topic of our current paper is measuring the cost
of various constraint patterns in particular for data sets of

205

varying size to get more information about scalability and
starting points for optimization. Neither [10] nor [8] elab-
orate on these aspects. However, we emphasize that the
constraint types considered in these works are similiar to a
large degree to the ones imposed by RDDs, such that many
of the results on efficient constraint checking via SPARQL
proposed in this work carry over to these approaches as well.

In the current paper we elaborate on checking constraints
described using RDDs. We first describe an RDD constraint
checker which maps a given RDD into a set of SPARQL 1.0
queries. The main contribution of the current paper is a
comprehensive experimental evaluation of the checking pro-
cess. We analyze the overhead induced by the various con-
straint types and demonstrate the effectiveness of different
kinds of optimization, where some optimizations are based
on SPARQL 1.1 language features. We show that constraints
proposed in RDD can be validated with moderate cost com-
pared to the initial loading of a respective RDF graph.

The paper is organized as follows. In Section 2 we present
RDD, the RDF Data Description language [13], which we
use to define constraints over RDF graphs. Section 3, to
have a formal basis, presents a first-order logic (FOL) se-
mantics of RDDs. Section 4 describes our RDD Checker
implementation of RDD based on a mapping from FOL to
SPARQL and Section 5 presents the findings of our RDD
Checker evaluation. In Section 6 we then discuss several
ideas on how to optimize the RDD to SPARQL mapping
and illustrate their potential impact on the efficiency of the
checking process in Section 7. Section 8 concludes the paper
and gives an outlook on future work.

2. RDF DATA DESCRIPTION (RDD)
The RDF data description language (RDD)[13, 14] allows

to express the following kinds of constraints:

• A RangeTypeConstraint indicates that the prop-
erty prop points to either a URI, BlankNode, Resource,
or a (possibly typed) Literal.

• A Min/MaxConstraint indicates that the property
prop occurs at least or at most a number of times,
respectively.

• A Domain/RangeConstraint indicates a guaran-
teed domain or range for subject and objects asso-
ciated with property prop, respectively.

• A PathConstraint indicates that the value of prop-
erty prop can as well be reached by following a given
path of properties.

• A SubPropertyConstraint indicates that for every
triple using property subProp, there is also an identical
triple using property prop.

• A Partiality/TotalityConstraint expresses that
property prop occurs at most or exactly one time, re-
spectively.

All these constraints may occur in unqualified form, i.e. hold
for a property independently of its context, or in qualified
form, i.e. hold for a property only when the property is used
in combination with a subject of a given (fixed) class. While
the above mentioned constraints all refer to properties, the
following class-specific constraints exist:

• A SingletonConstraint indicates that a class has
exactly one instance.

• A KeyConstraint indicates the properties uniquely
identifying the entities of a class in all possible class
instances.

• A SubclassConstraint allows for the inheritance of
constraints along class hierarchies.

PREFIX ex: <http://www.example.com#>
...
CWA CLASSES {
OWA CLASS foaf:Person SUBCLASS ex:Student {
KEY rdfs:label : LITERAL
MAX(2) foaf:mbox : LITERAL
TOTAL foaf:age : LITERAL(xsd:integer)
RANGE(foaf:Person) foaf:knows : IRI }

OWA CLASS ex:Student {
KEY ex:matricNr : LITERAL(xsd:integer)
MIN(1), RANGE(ex:Course) ex:course : RESOURCE
PATH(ex:course/ex:givenBy),
RANGE(foaf:Person) ex:taughtBy : IRI }

OWA CLASS ex:Course { ... }
}

OWA PROPERTIES {
PARTIAL foaf:nick : LITERAL
foaf:knows SUBPROPERTY ex:taughtBy

}

Figure 1: Example RDF Data Description

class : IRI
subClasses : List<IRI>
isSingleton : Boolean
isOWA : Boolean
keys : List<Key>
qpcs : List<PropertyConstraint>

ClassConstraint

prop : IRI
PropConstraint (abstract)

nr : Integer
MaxConstraint

domain : IRI
DomainConstraint

keyProps : List<IRI>
Key

range : IRI
RangeConstraint

PartialityConstraint

TotalityConstraint path : List<IRI>
PathConstraint

subProps : List<IRI>
SubPropertyConstraint

ccs : ClassConstraintSec
pcs : PropConstraintSec

RDD

ccs : List<ClassConstraint>
isOWA : Boolean

ClassConstraintSec

rangeType: RangeType
RangeTypeConstraint

nr : Integer
MinConstraint

upcs : List<PropConstraint>
isOWA : Boolean

PropConstraintSec

Figure 2: Structural Overview of the RDD Language

Figure 1 provides an example RDD demonstrating the
usage of the various constraint types. At top-level, an RDDs
consist of two main sections:

(i) A class constraint section (keyword CLASSES) defin-
ing qualified property constraints and class-specific con-
straints.

(ii) A global property constraint section (keyword PROP-
ERTIES) defining unqualified property constraints.

The class constraint section contains a list of CLASS defi-
nitions, where each may contain a set of (qualified) property
constraints. The RDD in Fig. 1 defines a class foaf:Person,
where property rdfs:label as KEY uniquely identifies a per-
son, which has at most two mailboxes (foaf:mbox) asso-
ciated, exactly one age (foaf:age) and foaf:knows always

206

points to objects of type foaf:Person. It also defines a class
ex:Student as a subclass of foaf:Person. With RDDs fo-
cusing on instance-level constraints, this is not a subclass
relation in the sense of RDFS, but guarantees that every in-
stance of class ex:Student satisfies the same constraints as
defined for foaf:Person. Additionally, every student must
be uniquely identified by a property ex:matricNr as KEY

and is enrolled in at least one course (ex:course always
pointing to objects of type ex:Course). Moreover, for ev-
ery property ex:taughtBy there is a path along the prop-
erties (edges) ex:course followed by ex:givenBy pointing
to the same entity of type foaf:Person. The OWA speci-
fications coming with the class definitions for foaf:Person,
ex:Student, and ex:Course say that these classes are inter-
preted under open world assumption, i.e. an instance may
carry properties other than those listed in the body. Differ-
ing in its semantics, the CWA constraint associated with the
top-level CLASSES section implies that there are no classes
other than those specified in its body (i.e., foaf:Person,
ex:Student, and ex:Course); keyword OWA associated with
the PROPERTIES section indicates that no such constraint
is imposed at property level. This example illustrates that
RDDs allow to specify a mix of open and close world se-
mantics at different levels. Finally, the property constraint
section defines that every person or student may have one
nickname (foaf:nick) and if it has a ex:taughtBy property
pointing to x, it also has property foaf:knows pointing to x.

Figure 2 visualizes the syntactical structure and concepts
of RDD in a UML-style notation. Boxes denote concepts,
arrowed lines sub-concepts relationships and the remaining
line type a uses-relationship. A more detailed description of
the RDD syntax can be found in [14].

3. RDD SEMANTICS
We first like to introduce the basic RDF notation [3]. Let

U be a set of URI references, B a set of blank nodes and L a
set of literals. A triple t := (s, p, o) ∈ (U∪B)×U×(U∪B∪L)
is called an RDF triple; s is called subject, p property and
o object. A finite set of triples is called an RDF graph.

Let an RDF graph G and an RDD r be given. Following
[14] we shall now demonstrate how a corresponding set cs of
FOL constraints can be derived. We stick to the following
two notational conventions. Variables are distinguished from
other terms by using $ as a prefix. Moreover, formulas of the
kind ∀$x1, . . . , $xnφ are abbreviated to φ thereby assuming
that all free variables in φ are globally ∀-quantified. We
shall use four unary relations IRI, BNode, Resource, and
Literal containing all IRIs, blank nodes, resources (i.e. IRIs
and blank nodes), and literals that appear in any position of
any triple in G, respectively. An RDF graph G is modeled
as a ternary relation G(s, p, o) representing the triples of the
respective graph in the obvious way. To improve readability,
we define the following two shortcuts:

allDist($x1, . . . , $xn) :=
∧

1≤i<j≤n $xi 6= $xj , and

someEq($x1, . . . , $xn) :=
∨

1≤i<j≤n $xi = $xj ,

enforcing that the n variables passed as parameters are
all pairwise distinct (allDist) or some of them are equal
(someEq). In the following, we present the constraint types
that are imposed through the constructs in RDDs.

Unqualified CWAP .
Whenever CWA PROPERTIES is specified in r, the un-

qualified property constraint cwaP is used to restrict the
usage of properties to only those which are mentioned in
the RDD’s property section. Let p1, . . . , pn be the proper-
ties mentioned in the unqualified property constraint sec-
tion. Then cwaP is defined as follows:

cwaP : G($s, $p, $o)→ $p = p1 ∨ · · · ∨ $p = pn

Unqualified Property Constraints.
The unqualified range type restriction enforces the range

type of a property, according to one of the keywords IRI,
BNODE, RES(OURCE), LIT(ERAL) or some given
type R specified in the RDD specification. This gives rise to
the following kinds of constraints:

range(p, IRI) : G($s, p, $o)→ IRI($o)
range(p,BNODE) : G($s, p, $o)→ BNode($o)
range(p,RES) : G($s, p, $o)→ Resource($o)
range(p,LIT) : G($s, p, $o)→ Literal($o)
range(p,R) : G($s, p, $o)→ G($o, rdf:type, R)

The remaining unqualified property constraints are do-
main, min, max, total, subprop, part and defined as follows:

domain(p,D) : G($s, p, $o)→ G($s, rdf:type, D)
min(p, n), n ≥ 1 : Resource($s)→ ∃$o1, . . . $on

(G($s, p, $o1) ∧ · · · ∧G($s, p, $on) ∧ allDist($o1, . . . , $on))
max(p, n), n ≥ 1 : G($s, p, $o1) ∧ · · · ∧G($s, p, $on+1)
→ someEq($o1, . . . , $on+1)

total(p) : min(p, 1) ∧max(p, 1)
part(p) : max(p, 1)
subprop(p, ps) : G($s, ps, $o)→ G($s, p, $o)
path(p, q1, . . . , qn), n ≥ 1 : G($s, p, $o)→ ∃$o1, . . . , $on−1

(G($s, q1, $o1) ∧ · · · ∧G($on−1, qn, $o))

Note that total and part both define functional restriction
of a property p; using total(p) the property pmust be defined
for all subjects, whereas for part(p) there may exist subjects
in G where p is not defined.

Qualified CWAP and Qualified Property Constraints.
The qualified versions of constraints are different from the

unqualified only in that their application is restricted to a
corresponding class C, i.e. conjugating G($s, rdf:type, C)
to the prerequisites of the corresponding constraint. For
example, a range restriction qualified by class C is of the
following form:

range(p, C,R) :
G($s, rdf:type, C) ∧G($s, p, $o)→ G($o, rdf:type, R)

Class Constraints.
Finally, as part of the constraint section of a class C, class

constraints key and singleton can be specified1:

key(C, p1, . . . , pn, R1, . . . , Rn) :
range(p1, C,R1) ∧ . . . ∧ range(pn, C,Rn)∧
total(p1, C) ∧ . . . ∧ total(pn, C)∧
(G($s1, rdf:type, C) ∧G($s2, rdf:type, C) ∧

1subclass constraints are handled as described in [14] and
need not be considered in the context of the current paper.

207

G($s1, p1, $o1) ∧ · · · ∧G($s1, pn, $on) ∧
G($s2, p1, $o1) ∧ · · · ∧G($s2, pn, $on)→ $s1 = $2)

singleton(C) :
∃$s(G($s, rdf:type, C))∧
(G($s1, rdf:type, C) ∧G($s2, rdf:type, C)→ $s1 = $s2)

Moreover, whenever CWA CLASSES is specified in r,
the constraint cwaC can be used to restrict the usage of
classes to only those which are mentioned in the RDD. Let
c1, . . . , cn be the classes mentioned in the class section. Then
cwaC is the constraint:

cwaC : G($s, rdf:type, $c)→ $c = c1 ∨ · · · ∨ $c = cn

Finally, we define the consistency of an RDF graph w.r.t. a
given RDD as follows:

Definition Let G be an RDF graph and let cs be the set of
first-order logic constraints defined by a corresponding RDD
r. RDF graph G is consistent with respect to cs if and only
if for all constraints c ∈ cs it holds that c is valid in G,
i.e. G |= c, respectively, G |= cs.

It is well-known that for a fixed set of FOL constraints
consistency of a given arbitrary RDF data set can be decided
in polynomial time. In particular, in the following sections
we will discuss an appropriate mapping into SPARQL.

4. RDD CHECKER
We have implemented the aforementioned decomposition

of an RDD into the corresponding set of FOL constraints
which can be used for further investigation, e.g. it may serve
as input to an FOL reasoner. Furthermore, we have also
implemented a mapping from the generated FOL constraints
to corresponding SPARQL 1.0 queries which can be used to
check the consistency of an RDF dataset w.r.t. a given RDD.
As the resulting queries are compliant to the SPARQL 1.0
spec, they can be executed with any SPARQL 1.0 query
engine. Our implementation comes with built-in bindings
for Sesame [1], such that a given RDD can be verified against
any RDF dataset out of the box. In addition, the checker can
be pointed at arbitrary SPARQL endpoints. The binaries
and source code of our RDD Checker (implemented in Java)
are available for public download2.

In the following we give an exemplary depiction of how
we can use SPARQL to check whether an RDD constraint
in FOL holds on a given RDF document. For more details on
the connection between SPARQL and FOL, the interested
reader may be referred to, e.g., [9, 15].

Consider the totality constraint (TOTAL foaf:age) on class
foaf:Person taken from Figure 1. This constraint assures
that every entity in an RDF dataset of type foaf:Person

needs to have exactly one foaf:age property defined. As
defined in Section 3, a total(p) constraint is a combination
of min(p, 1) and max(p, 1) requiring that every person has
at least and at most one age, respectively. This gives rise to
the following two (qualified) FOL rules:

min(foaf:age, foaf:Person, 1) :
G($s, rdf:type, foaf:Person)→ ∃$o1(G($s, foaf:age, $o1)
max(foaf:age, foaf:Person, 1) :
G($s, rdf:type, foaf:Person) ∧
G($s, foaf:age, $o1) ∧G($s, foaf:age, $o2)→ $o1 = $o2
2http://dbis.informatik.uni-freiburg.de/forschung/
projekte/rdd/

We do not use a pattern-based translation approach where
there is a query pattern for each constraint type but instead
define it along the structure of the corresponding FOL rules.
The concept of our mapping from an RDD constraint c to
SPARQL is to define a query for every FOL rule imposed
by c that retrieves those entities from an RDF graph G vi-
olating the rule. If no such entities exist for every rule of
c, then G |= c. The generic idea is to define a graph pat-
tern matching the body of the rule, and use a filter expres-
sion to select only those entities matching the graph pattern
that do not fulfill the head of the rule. As a single witness
already leads to violation, we can limit the number of re-
sults such that a query engine does not have to compute
all results, if supported. Our RDD Checker implementation
uses a customizable default value of three. The correspond-
ing SPARQL queries for the given min and max rules from
above are listed in Figure 3.

MIN(1):

SELECT ?s {
?s rdf:type foaf:Person
OPTIONAL { ?s foaf:age ?o1 }
FILTER (!BOUND(?o1))

} LIMIT 3

MAX(1):

SELECT ?s {
?s rdf:type foaf:Person .
?s foaf:age ?o1 . ?s foaf:age ?o2
FILTER (!(?o1=?o2))

} LIMIT 3

Figure 3: SPARQL queries for constraint total(foaf:age) on
class foaf:Person

The atoms of a rule can be represented by triple pat-
terns (i.e. triples with variables) in the SPARQL query,
e.g.G($s, foaf:age, $o1) can be mapped to ?s foaf:age ?o1.
The concatenation of atoms in the body of a rule can then
be equivalently represented by a set of AND(.) connected
triple patterns forming a so-called basic graph pattern. The
following filter expression then defines the negation of the
rule’s head. An equality-generating head can be simply rep-
resented by a FILTER where we negate (denoted by !) the
conditions of the head (see max constraint). In the case
of an existentially quantified head we use a combination of
OPTIONAL and !BOUND as SPARQL 1.0 does not have a nat-
ural support for negation (see min constraint). This way,
the FILTER only accepts those bindings for variable ?s where
OPTIONAL did not find any binding for ?o1, hence those enti-
ties (persons) that do not have an a foaf:age property. This
construct is equivalent to the explicit FILTER NOT EXISTS

functionality added in SPARQL 1.1.
This is a rather direct mapping and we can apply this

strategy to all RDD constraints to generate queries that ad-
here to the SPARQL 1.0 spec. Our RDD Checker implemen-
tation currently uses this mapping such that every available
SPARQL 1.0 query engine can be used to check the validity
of RDD constraints on an arbitrary RDF dataset.

Though this one-to-one mapping gives us a correct and
complete realization of RDD, it is not an optimal solution
in terms of efficiency. As the example already illustrates,
an RDD constraint can consist of more than one FOL rule
in general and hence lead to more than one SPARQL query
for verification. As many queries have to iterate over the

208

whole dataset or the same parts of it, this naturally raises
the issue of efficiency of the checking process and possible
optimizations to reduce the number of iterations over the
whole dataset. In the following section, we first present the
findings of our RDD Checker evaluation based on the map-
ping to SPARQL as described in this section. In Section 6 we
then discuss several ideas on how to optimize the represen-
tation of RDD constraints in SPARQL and illustrate their
potential impact on the efficiency of the checking process in
Section 7.

5. RDD CHECKER EVALUATION
The goal of our evaluation is to determine how validation

compares with common database operations and how indi-
vidual constraints contribute to it. From these findings, we
can then derive potential opportunities for optimizations.

Setup.
We perform our evaluation on top of Sesame [1] 2.7.12

and Virtuoso Open Source 7.1.0, which are commonly used,
highly compliant and feature-complete SPARQL implemen-
tations. Sesame supports a range of storage backends, out
of which we picked the Native Java Disk Storage without
Schema Reasoning, as it supports almost arbitrary data sizes
and does not impose any additional cost. The experiments
were performed on a system with a single Xeon X5667 with 4
physical cores (8 hyperthreaded) at 3.06 GHz, 32 GB RAM
and 12 TB of disk storage (LSI MegaRaid with 4x4TB LGST
7200 rpm SATA Deskstar disks in a RAID 5 configuration),
running Ubuntu Linux 12.04 LTS. The Java for Sesame heap
size was set to 28 GB, sufficient to keep even the largest
dataset we tested in memory. Virtuoso is a native program,
so no such tuning was needed.

Data and Constraints.
We studied the modeling of constraints and the cost of

validating them on the SP2 Benchmark [12]. SP2Bench con-
tains a well-defined and rather structured RDF dataset with
documented constraints and data distributions, which mod-
els a publication database similar to DBLP. In contrast to
most RDF datasets, it includes a generator that can generate
a wide of range of scalings while maintaining distributions
and correlations. For the scope of this paper, we evaluated
datasets ranging from 10K to 100M triples, corresponding
to 1.1 MB to 11 GB when stored as N3 files. This range
covers a majority of typical, real-life RDF datasets.

Our RDD file takes a class-centric approach (similar to re-
lational or object-oriented modelling), describing 12 classes
with mixed OWA/CWA settings, key, partial, total and
range definitions. In total it contains 215 constraints that
were mined from the SP2Bench dataset, and hold over all
scalings tested. The RDD is available for download from our
project website3. All RDDs were translated and directly val-
idated using our RDD checker implementation, yielding 251
SPARQL queries, since the translation of e.g., total or key
constraints needs several SPARQL queries for a single con-
straint (c.f. Section 4). These queries are set to use the
SELECT form of SPARQL with a LIMIT of 3 as to produce
a small number of witnesses of the violations. We study
lifting this limit in Section 7.

3http://dbis.informatik.uni-freiburg.de/forschung/
projekte/rdd/

0,1

1

10

100

1000

10000

100000

10K 50K 100K 500K 1M 5M 10M 25M 50M 100M

R
u

n
ti

m
e

 (
s)

Data Size (Triples)

Loading Validation w/o MAX MAX

(a) Sesame

0,1

1

10

100

1000

10000

100000

10K 50K 100K 500K 1M 5M 10M 25M 50M 100M

R
u

n
ti

m
e

 (
s)

Data Size (Triples)

Loading Validation w/o MAX MAX

(b) Virtuoso

Figure 4: Cost of RDD Validation compared to loading

Validation vs. Loading.
In our first experiment, we compare the cost of validating

our RDD file with the cost of loading data. We consider
such bulk validation a common application in order to pub-
lish stable or slowly changing data. Figure 4 shows this
comparison over the entire range of data sizes we analyzed
for both triple stores. Sesame and Virtuoso show the same
behaviour, with just overall higher performance for Virtu-
oso. The results show that the cost and scaling validation
needs to broken down in two, very distinct sets: Without
the max constraints, validation scales well, even better than
loading. At lower scales, validation is actually held back by
the effort of invoking 251 individual queries, which in turn
mostly need to access the full dataset each, highlighting sig-
nificant optimization potential. The max constraints have
much higher cost and scale much worse. Beyond a scale of
5m triples, many individual max queries take longer than
90 minutes, which we had set as a timeout (corresponding
to the load time of the largest data set). This high cost and
bad scaling is caused by the need to express violations of
a max(n) constraint by a n + 1-way join (see Section 6.1),
pointing out a massive inefficiency.

Individual Constraints.
In our second experiment we further investigated the im-

pact of individual constraint classes, giving us insights into
possible optimizations and design guidelines. The second
most expensive clause is CWA for classes, since it needs to
visit all triples belonging to a specific class and check if their

209

predicates belong to these in the class definition. Next, key
stands out of the remainder because it needs to employ a
join on object (to find same key value for different instances)
which is not well supported. min would suffer from the same
issues as max, but the RDD file does not contain any min
constraints with a high threshold.

We also investigated the effect of scoping on the valida-
tion, gradually moving constraints that are shared over al-
most all classes or can be shared with certain relaxations
(e.g., a higher max value) to the global properties section.
Clearly, these constraints now need to be tested over a larger
set of data, but the number of tests will be smaller (one test
per property, not one test per property and class) and the
test queries themselves will be simpler (avoiding a join on the
class type). In the first step, we moved partial and range
constraints, if possible, from the classes section to the global
properties section as they are non-conflicting. This change
reduced the number of constraints by around 50 percent
and yielded a runtime saving of around 25-30 percent. In
the second step, we consolidated the max constraints of the
same property in various classes into a single global property.
Since not all classes had the same max(n) value for the same
property, we always chose the maximum n, thus weakening
the precision of checking. The number of max constraints
goes down from 10 to 2, but we mostly eliminate those with
a small threshold. As a result, the savings are rather lim-
ited, yielding only 2 to 5 percent. The corresponding RDDs
are also available for download on the project website.

6. OPTIMIZATIONS
It is fairly obvious that the one-to-one mapping of FOL

rules representing RDD constraints to SPARQL queries, as
described in Section 4, leaves a lot of leeway for optimiza-
tions in various directions. Since these optimization rely on
deeper understanding of the constraint semantics, SPARQL
optimizers cannot detect them. First, there is a potential for
intra-query optimization, i.e. the individual SPARQL query.
Second, intra-constraint optimization can reduce the num-
ber of SPARQL queries required for checking an individual
constraint. And third, inter-constraint optimization may
give the chance to check several constraints at once in a
single query (e.g. several max constraints for different prop-
erties), also reducing the total number of queries.

In the following we give some insights on intra-query and
intra-constraint optimization that we have identified in our
RDD Checker evaluation (see Section 5). A study of inter-
constraint optimization is left for future work.

6.1 Intra-Query Optimization
If we look at the meaning of RDD constraints, many of

them are intended to restrict the number of occurrences of
specific properties in one way or another, e.g. min, max,
part, total. This kind of restriction naturally leads to group-
ing and counting the elements of a group, which is not pro-
vided by SPARQL 1.0 directly. Instead, it can be realized
by a series of joins as described in the following.

Consider the maximum constraint (MAX(2) foaf:mbox)
on class foaf:Person taken from Figure 1, assuring that
every person has at most two mailboxes. This gives rise to
the following (qualified) FOL rule:

max(foaf:mbox, foaf:Person, 2) :
G($s, rdf:type, foaf:Person) ∧G($s, foaf:mbox, $o1) ∧

G($s, foaf:mbox, $o2) ∧G($s, foaf:mbox, $o3)
→ $o1 = $o2 ∨ $o1 = $o3 ∨ $o2 = $o3

If we look at the corresponding mapping to SPARQL 1.0
in Figure 5, following the strategy described in Section 4,
we can see that it results in a graph pattern consisting of
four triple patterns. To retrieve the result of this pattern, a
query engine typically has to compute three joins between
subsets of the data. In the following filter expression we
then have to check whether any two variables are bound
to the same entity. If not, there exists a person with at
least three mailboxes violating the constraint. It is obvious
that the complexity of the query increases with the specified
maximum. In general, a max(p, C, n) query following this
strategy contains n+ 1 joins and

(
n+1
2

)
filter conditions.

SPARQL 1.0:

SELECT ?s {
?s rdf:type foaf:Person .
?s foaf:mbox ?o1 . ?s foaf:mbox ?o2 . ?s foaf:mbox ?o3
FILTER (!(?o1=?o2 || ?o1=?o3 || ?o2=?o3))

} LIMIT 3

SPARQL 1.1:

SELECT ?s {
?s rdf:type foaf:Person . ?s foaf:mbox ?o1

} GROUP BY ?s HAVING (COUNT(?o1) > 2)
LIMIT 3

Figure 5: Intra-query optimization for constraint
max(foaf:mbox, 2) on class foaf:Person

One of the functionalities introduced in SPARQL 1.1 is
the support for groupings and aggregations similar to those
in SQL. Using these features we can simplify the correspond-
ing SPARQL query as also illustrated in Figure 5, reducing
the number of joins to only a single one. In fact, the query
structure in SPARQL 1.1 is independent from the speci-
fied maximum as it only affects the counting threshold. As-
suming that query engines (which are typically based on
simple algebraic rewritings) are not capable of performing
such complex optimizations, one may expect the query in
SPARQL 1.1 to be much more efficient than in SPARQL
1.0 for larger maximum values. This assumption could be
clearly confirmed in our experiments (see Section 7). A very
similar optimization is also possible for min constraints.

6.2 Intra-Constraint Optimization
Following the mapping from FOL rules to SPARQL queries

described in Section 4, some RDD constraints generate more
than one SPARQL query for verification. This raises the is-
sue if we can combine some of these to reduce the total num-
ber of queries. Here, we focus on the combination of queries
for an individual constraint, whereas generally it might also
be possible to combine queries of different constraints.

As an example, consider again the totality constraint illus-
trated in Section 4, total(foaf:age, foaf:Person), and the
corresponding queries listed in Figure 3. Limited to the func-
tionality of SPARQL 1.0 we cannot usefully combine both
queries as they are structurally different from each other.
The only way would be to use a UNION of both patterns but
it is very likely that query engines will not be able to combine
them and just compute both patterns the same way as for
different queries which would not reduce the computation
cost at all.

210

But, as already illustrated in Section 6.1, with SPARQL
1.1 we can write min and max queries using groupings and
aggregations. In this way, both queries can be easily com-
bined as they exhibit a very similar structure. Figure 6
shows the combined query in SPARQL 1.1 that retrieves all
persons (i.e. entities of type foaf:Person) where the num-
ber of occurrences of property foaf:age is not equal to one.
If such a person exists, the total constraint is violated.

Combine MIN(1) and MAX(1) using SPARQL 1.1:

SELECT ?s {
?s rdf:type foaf:Person
OPTIONAL { ?s foaf:age ?o1 }

} GROUP BY ?s HAVING (COUNT(?o1) != 1)
LIMIT 3

Figure 6: Intra-constraint optimization for constraint
total(foaf:age) on class foaf:Person

The structural difference to the max query as illustrated
in Section 6.1 is that we have to use an OPTIONAL clause for
the triple pattern matching the constraint property (here
foaf:age). This is required because the query must also
retrieve those persons that have no specified age property as
this is a violation of the min(1) requirement and thus also
a violation of the total constraint. If we would use a simple
basic graph pattern (as we can do it for a max constraint)
these persons would not be part of the query result.

In the following experiments (Section 7) we demonstrate
that an individual rewriting of both queries, min(1) and
max(1), to use SPARQL 1.1 does not give a performance
benefit compared to the representation in SPARQL 1.0 (the
performance is actually even worse). However, the combina-
tion of both queries into a single one leads to a performance
improvement between 30 and 50 percent.

7. OPTIMIZATION EXPERIMENTS
We have done some experiments on the impact of the

aforementioned optimizations on the efficiency of the check-
ing process, especially for max constraints as they have
proven to be by far the most expensive constraint type in
our evaluation (cf. Section 5).

Intra-Query Optimizations.
We begin our study with optimizations on individual queries.

Our main focus is on max, given its cost and the potential
benfits it can draw from SPARQL 1.1 features. Further-
more, max provides insights into min, total, partial and
key constraints, which can be expressed at least partially as
variants of max. For this purpose, we tested the optimized
queries explained in Section 6.1.

We compare the join-based approach of max against the
group-based approach (possible only in SPARQL 1.1), both
in qualified (i.e, within a class definition) and unqualified
(i.e, as a global property) variants. Furthermore, we use
variants without the LIMIT clause to determine the cost of
generating witnesses for all violations. Figure 7 show the
results of this comparison when varying the max(n) thresh-
old between 1 and 9, using a dataset with 1M triples. The
overall results are the same for Sesame and Virtuoso, but
there are subtle differences.

Without a LIMIT clause, the join based approach shows
exponential growth, roughly tripling the cost when increas-

0,001

0,01

0,1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9

R
u

n
ti

m
e

 (
s)

Max Value

Qualified

Qualified (Limit)

Qualified (Optimized)

Unqualified

Unqualified (Limit)

Unqualified (Optimized)

(a) Sesame

0,001

0,01

0,1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9

R
u

n
ti

m
e

 (
s)

Max Value

Qualified (no limit)

Qualified (with limit)

Qualified (Optimized - no limit)

Qualified (Optimized - with limit)

Unqualified (no limit)

Unqualified (with limit)

Unqualified (Optimized - no limit)

Unqualified (Optimized - with limit)

(b) Virtuoso

Figure 7: Cost of Max Constraints for 1M triples

ing the threshold by one. In contrast, the group based ap-
proach (Optimized) has a constant cost, since the the cost
of creating groups does not depend on the threshold value,
which in turn can be checked in constant time. In all these
cases, the unqualified variant takes about twice as much time
than the qualified variant, given the larger set of candidates
to consider. For Sesame, the group-based variant always
outperforms the join-based variant without limits, while for
Virtuoso this is only true for threshold values greater than
4, as joins are faster, but grouping slower.

When we consider LIMIT clauses, we gain a number of in-
sights on the intricacies of optimizing queries for validation:
As long as the constraint is violated, the join-based approach
now clearly outperforms the group-based approach, which is
not at all affected by the LIMIT clause. Grouping always has
to be performed over the whole dataset, while the optimizers
of both systems can perform an early stop on joins, similar
to the optimizations possible in SQL [7]. When there are
no violations and thus no results, the entire dataset needs
to be considered, explaining why at larger thresholds the
benefit of LIMIT disappears. We performed this analysis on
different dataset sizes, yielding the same overall results.

We also evaluated additional triple storage schemes (or
indexes), but we did not determine any speedup: Nearly all
queries use subject joins and predicate selections, which fits
well with the default storage of both systems.

Overall, grouping is a well suited strategy if it is unclear
if the constraint holds. Joins with limits work well if the
threshold is small and a constraint is expected to not hold.

Intra-Constraint and Inter-Constraint Optimizations.
In our last experiment, we provide a first insight into opti-

mization spanning multiple queries and constraints, enabling
us to reduce the number of times the data needs to be ac-
cessed. The grouping-based optimization lends itself well for
composition, as the same aggregated values can be checked
against multiple constraints. We investigate the tradeoffs by
following the example in Section 6.2, comparing the runtime

211

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

100K 500K 1M 5M 10M 25M 50M 100M

re
la

ti
ve

 r
u

n
ti

m
e

Data Size (triples)

Min+Max

Min+Max (optimized)

Combined

(a) Sesame

0,1

1

10

re
la

ti
ve

 r
u

n
ti

m
e

Data Size (triples)

Min+Max

Min+Max Optimized

Combined

(b) Virtuoso

Figure 8: Query Combination Optimization

of the parts of a total constraint (max(1) and min(1)) in
their optimized and non-optimized form against a combined
query. As we show in Figure 8, the runtime of the combined
eventually falls below the sum of the runtimes of the indi-
vidual queries. Furthermore, it shows that grouping comes
at a cost: For Sesame, the difference is moderate, since the
existential check needed for min(1) can be performed faster
than a grouping, for Virtuoso the cost of grouping is pro-
hibitive for small scales.

8. CONCLUSION
In this paper, we presented the methodology as well a

working system to validate an expressive RDF constraint
language using standard SPARQL queries in a ”bulk” fash-
ion. Using pure SPARQL is not only conceptually desir-
able, but also allows the validation of such constraints with-
out having to modify the often loosely coupled and hetero-
geneous RDF storage systems present in the Linked Open
Data environment. The results of our evaluation on state-
of-the-art SPARQL databases and a well-established RDF
dataset show that such a SPARQL-based validation is fea-
sible with acceptable cost, matching typical loading times.
We did, however, identify certain classes of constraints which
are expensive to validate using SPARQL 1.0. In turn, we
investigated several direction on how to overcome this chal-
lenge. Within the scope of individual queries, using a num-
ber of SPARQL 1.1 features improves scalability. In the
near future, we plan to cross-validate our results on different
datasets (e.g., DBPedia, Linked Sensor Data or Bio2RDF)
and other RDF constraint languages like RDF Shapes.

Our current work opens up several avenues of further re-
search: Considering that currently several 100s of queries

need to be run in order to validate a single RDD and each
of these queries has to touch the full dataset, sharing as
many validation steps as possible seems to be very promis-
ing. On the language side it is currently not clear if the ex-
pressiveness of SPARQL 1.1 is sufficient for this purpose, in
particular with the flexibility and composability of GROUP
BY. On a more conceptual side, we want to understand how
far this combination can go and if we can determine a lower
limit. Such a limit ties also into an evaluation of the ex-
pressive power and cost of some of the competing proposals
(such as RDF shapes) in order to identify a ”sweet spot” of
expressive power and validation cost over these proposals.

Acknowledgements.
The implementation of the RDD prototype was supported

by Deutsche Forschungsgemeinschaft grant LA 598/7-1.

9. REFERENCES
[1] OpenRDF Sesame. http://www.openrdf.org/.

[2] R2RML: RDB to RDF Mapping Language.
http://www.w3.org/TR/r2rml/.

[3] Rdf 1.1 semantics.
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/.

[4] Rdf data shapes working group charter.
http://www.w3.org/2014/data-shapes/charter.

[5] RDF Specification Overview (W3C). http://www.w3.org/
Submission/2011/SUBM-spin-overview-20110222/.

[6] Stardog. http://Stardog.com/.

[7] Michael J. Carey and Donald Kossmann. Reducing the
Braking Distance of an SQL Query Engine. In Proceedings
of the 24rd International Conference on Very Large Data
Bases,VLDB, pages 158–169, 1998.

[8] Dimitris Kontokostas et al. Test-driven Evaluation of
Linked Data Quality. In Proceedings of the 23rd
International World Wide Web Conference, WWW, pages
747–758, 2014.

[9] Georg Lausen, Michael Meier, and Michael Schmidt.
SPARQLing Constraints for RDF. In Proceedings of the
11th International Conference on Extending Database
Technology, EDBT, pages 499–509, 2008.

[10] Eric Prud’hommeaux, Jose Emilio Labra Gayo, and Harold
Solbrig. Shape Expressions: an RDF Validation and
Transformation Language. In SEM ’14: Proceedings of the
10th International Conference on Semantic Systems, pages
32–40, 2014.

[11] Arthur Ryman, Arnaud Le Hors, and Steve Speicher. OSLC
Resource Shape: A Language for Defining Constraints on
Linked Data. In Proceedings of the WWW2013 Workshop
on Linked Data on the Web, LDOW, 2013.

[12] Michael Schmidt, Thomas Hornung, Georg Lausen, and
Christoph Pinkel. SP2 Bench: A SPARQL Performance
Benchmark. In Proceedings of the 25th International
Conference on Data Engineering, ICDE, pages 222–233,
2009.

[13] Michael Schmidt and Georg Lausen. Pleasantly Consuming
Linked Data with RDF Data Descriptions. In Proceedings
of the Fourth International Workshop on Consuming
Linked Data, COLD, 2013.

[14] Michael Schmidt and Georg Lausen. Pleasantly Consuming
Linked Data with RDF Data Descriptions.
http://arxiv.org/abs/1307.3419, 2013.

[15] Michael Schmidt, Michael Meier, and Georg Lausen.
Foundations of SPARQL Query Optimization. In
Proceedings of the 13th International Conference on
Database Theory, ICDT, pages 4–33, 2010.

[16] W3C. RDF Validation Workshop, Practical Assurances for
Quality RDF Data. http://www.w3.org/2012/12/rdf-val/,
2013.

212

Peer-to-Peer Semantic Integration of Linked Data

Mirko Michele Dimartino
London Knowledge Lab

Birkbeck, University of London
mirko@dcs.bbk.ac.uk

Andrea Calì
∗

London Knowledge Lab
Birkbeck, University of London
andrea@dcs.bbk.ac.uk

Alexandra Poulovassilis
London Knowledge Lab

Birkbeck, University of London
ap@dcs.bbk.ac.uk

Peter Wood
London Knowledge Lab

Birkbeck, University of London
ptw@dcs.bbk.ac.uk

ABSTRACT
We propose a framework for peer-based integration of linked
data sets, where the semantic relationships between data at
different peers are expressed through mappings. We provide
the theoretical foundations for such a setting and we devise
an algorithm for processing graph pattern queries, discussing
its complexity and scalability.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—distributed
databases, query processing

General Terms
Algorithms

Keywords
Rewriting, SPARQL, RDF, Peer-to-Peer, Semantic Web

1. INTRODUCTION
In recent years the World Wide Web has gradually ex-

panded from a simple network of hyper-linked documents to
a more complex structure where both documents and data
are easily published, consumed and reused. As a result of
this rapid transformation, new techniques are required in or-
der to integrate these heterogeneous data into a single global
data space, the so-called Linked Open Data (LOD) cloud
[2], building on Web infrastructure (URIs and HTTP), Se-
mantic Web standards (such as the Resource Description
Framework (RDF) and RDF Schema (RDFS)), and vocab-
ularies. These practices have led to the creation of a world-
wide database covering a wide range of domains, varying in

∗Also affiliated to the Oxford-Man Institute of Quantita-
tive Finance, University of Oxford, andrea.cali@oxford-
man.ox.ac.uk .

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

type from personal and corporate to statistical and scientific
data and reviews [3]. Ideally, users should be able to access
an open, global data space with an approach similar to how
a local database is queried today, in order to obtain more
extensive answers as new data sources appear on the Web.
However, linked data poses challenges inherent to integrat-
ing and querying highly heterogeneous and distributed data,
so the above-stated vision has yet to be entirely realised.

In the LOD environment, it is common for several datasets
to describe overlapping domains, often using different stan-
dards of data modelling and naming. Therefore a global
ontological conceptualisation is impracticable and a more
flexible approach for semantic integration is needed. This
represents a major research challenge for the web of data.

To cope with these limitations, some work in the literature
addresses the problem of answering SPARQL queries over
disparate sources, proposing new SPARQL rewriting algo-
rithms that entail semantic mappings between RDF databases
[18, 10, 19, 20]. These techniques address query rewrit-
ing from one source to another, while the LOD cloud is a
dynamic environment that comprises several data sources
with arbitrary mapping topologies in a peer-to-peer fashion.
In fact, in this scenario, an implementation of the exist-
ing rewriting algorithms may lack computability, especially
in the presence of mapping cycles. The open problem is
then developing new data integration techniques to support
SPARQL query answering over several heterogeneous RDF
sources whose semantic mappings have arbitrary topologies.

The following example considers a typical use-case of query-
ing Linked Data.

Example 1. Figure 1 illustrates an RDF graph containing
triples from three different sources. Sources 1 and 2 contain
data about films, while Source 3 describes people and their
properties. We can see that URIs representing the same
entities (e.g., DB1:Spiderman and DB2:Spiderman2002, for
the film Spiderman) are linked by the built-in OWL property
sameAs1, which states that the linked URIs represent the
same real-world entity (best practices for owl:sameAs are
given in [15]). It is clear that there is a semantic equivalence
mapping between URIs linked by sameAs. We can also see
that there is a semantic equivalence mapping between pairs
of triples of the form (a starring _z) and (_z artist b)

in Source 1 and triples of the form (a actor b) in Source 2;
both represent the relationship that“actor b acted in the film

1http://sameas.org

213

Figure 1: Example of an RDF graph from three data
sources.

a”. Now assume that a user poses the following SPARQL2

query:

SELECT ?x ?y

WHERE { DB1:Spiderman starring ?z . ?z artist ?x .

?x age ?y }

This query returns an empty result on the data of Figure 1,
since the sameAs property is missing from the query, and
SPARQL does not automatically exploit semantic mappings
between RDF resources. As stated above, adopting exist-
ing rewriting techniques to entail the semantic mappings is
impractical for this scenario, since there are more than two
RDF sources and the mapping topologies are arbitrary. In
this regard, we propose a decentralised, easily extensible,
RDF-oriented peer data management system. We provide
the theoretical foundations for such a setting and we devise
an algorithm for processing graph pattern queries, discussing
its complexity and scalability.

Related work: As previously stated in this section, few
papers in the literature deal with the challenges of answering
SPARQL queries over data, leveraging the semantic map-
pings between similar vocabularies. For instance, the work
in [18] presents a query rewriting algorithm over virtual
SPARQL views; and, similarly, [10] introduces a SPARQL
rewriting algorithm based on the encoding of rules for RDF
patterns, involving entity equivalence functions for the se-
mantics of the property owl:sameAs. In [19, 20] Makris et al.
instead adopt Description Logic rules between overlapping
OWL ontologies. These works address query answering over
two-tiered architectures, while we wish to explore the most
general case, where the number of sources and the mapping
topologies are arbitrary.

Several peer-to-peer systems for RDF datasources can be
found in the literature. For instance, in [5, 6] the authors
describe a distributed RDF metadata storage, querying and
subscription service as a structured P2P network. Similarly,
work in [23] proposes routing strategies for RDF-based P2P
networks. Similar work can be found in [21, 22, 17]. How-
ever, all of these papers focus on technical issues relating to
peer networks (such as efficiency of query routing, network

2http://www.w3.org/TR/rdf-sparql-query/

traffic load, etc.), and so leave a gap between the RDF data
model and peer-to-peer semantic integration.
Paper outline: The paper is organised as follows. In

Section 2 we present our new framework for RDF peer-to-
peer integration. Then, in Section 3 we explore the query
answering problem under RDF Peer Systems and we pro-
pose a query answering algorithm that terminates in poly-
nomial time. In Section 4 we explore query rewriting tech-
niques in our setting, showing that our mapping rules are
not first-order-rewritable. We conclude with a discussion in
Section 5.

2. THE FRAMEWORK
In this section, we introduce our framework for peer-to-

peer RDF semantic data integration. We present a new peer
mapping language suitable for the RDF data model that ex-
tends the goals of relational P2P models to achieve seman-
tic integration in accordance with Linked Data technologies.
Our goal is to leverage the techniques for specifying seman-
tic mappings between RDF sources, extending them beyond
a two-tiered architecture. In our framework, each peer is
represented by its peer schema, comprising the set of URIs
adopted in the peer to model data. Integration is achieved
by means of mappings between these sets of URIs. To for-
mally specify the problem of query answering, we generalize
the notion of certain answers [1] to our context.

2.1 Graph pattern queries
To formalise the problem, we introduce the notion of graph

pattern queries for RDF databases (for details of RDF for-
malisation, see [14]). Assume there are pairwise disjoint in-
finite sets I, B, and L (IRIs [11], Blank nodes, and Literals,
respectively). A triple (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L)
is called an RDF triple. In this triple, s is the subject, p the
predicate, and o the object. Also, we assume the existence of
an infinite set of variables V disjoint from (I ∪ B ∪ L). An
RDF database is then a set of RDF triples.

A graph pattern is defined recursively as follows:

1. A tuple from (I ∪ L ∪ V)× (I ∪ V)× (I ∪ L ∪ V) is a
graph pattern. Specifically, it is a triple pattern.

2. If GP1 and GP2 are graph patterns, then the expres-
sion (GP1 AND GP2) is a graph pattern.

We denote by var(GP) the set of variables VGP ⊆ V that
appear in the graph pattern GP .

A graph pattern query Q of arity n is of the form

q(x)← GP

where GP is a graph pattern, and x = x1, . . . , xn ∈ var(GP)
denote the free variables of the query. All the elements in
var(GP) that are not free variables denote the existentially
quantified variables of the query.

In order to define the semantics of graph pattern queries,
we introduce some terminology from [24, 4] for the evalua-
tion of a graph pattern over an RDF database.

A mapping µ from V to (I ∪ B ∪ L) is a partial function
µ : V → (I ∪B ∪L). The domain of µ, denoted by dom(µ),
is the subset of V where µ is defined. Given a mapping µ
and a variable v ∈ dom(µ) we denote by µ(v) the value in
(I ∪B ∪L) obtained by applying the function µ to v. Also,

214

abusing notation, for a triple pattern t we denote by µ(t)
the triple obtained by replacing the variables in t according
to µ. Two mappings µ1 and µ2 are compatible when for all
x ∈ dom(µ1) ∩ dom(µ2), it is the case that µ1(x) = µ2(x),
i.e. when µ1 ∪ µ2 is also a mapping.

Let Ω1 and Ω2 be sets of mappings. Then the join of Ω1

and Ω2 is defined as follows [24, 4]:

Ω1 ./ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2

and µ1, µ2 are compatible mappings}

The semantics of graph patterns is then defined by a func-
tion J · KD over a set of RDF triples D, also called an RDF
graph or RDF database, which takes a graph pattern as in-
put and returns a set of mappings that matches the database
D [4, 24].

Definition 1. (Evaluation of a graph pattern). The eval-
uation of a graph pattern GP over an RDF dataset D, de-
noted by JGP KD, is defined recursively as follows:

1. IfGP is a triple pattern t, then JGP KD = {µ | dom(µ) =
var(t) and µ(t) ∈ D}

2. If GP is of the form (GP1 AND GP2), then JP KD =
JGP1KD ./ JGP2KD.

We are ready to define the semantics of graph pattern
queries. We denote by QD the set of n-tuples returned by
the evaluation of the graph pattern query Q of arity n over
the dataset D. We define the semantics of QD as follows:

QD := {(µ(x1), . . . , µ(xn)) | µ ∈ JGP KD
and µ(x1), . . . , µ(xn) ∈ (I ∪ L)},

where GP is the graph pattern of the query Q and x1 . . . xn
are the free variables of Q.

As we can see from the above definition, tuples contain-
ing elements in B (blank nodes) are not returned from the
evaluation of the query. Blank nodes are used in the RDF
triples as placeholders for unknown resources [16]; in other
words, they denote variables which may take values in the
set of IRIs and literals (I ∪ L). In this regard, a graph pat-
tern query retrieves only full information, dropping all the
tuples containing partial information.

In fact, we define the semantics of blank nodes so as to be
equivalent to the semantics of labelled nulls in the relational
model, which are placeholders for unknown values and are
not included in query results. For completeness, we also de-
fine a semantics of graph pattern queries which does include
blank nodes in the result set. This semantics will be used
later on to exploit the expressiveness of equivalence map-
pings in our RDF Peer System. We denote this semantics
by Q∗D, where

Q∗D := {(µ(x1), . . . , µ(xn)) | µ ∈ JGP KD}.

Note that the graph pattern query language can be seen
as a “conjunctive fragment” of SPARQL, so a graph pattern
query can always be translated to a conjunctive SPARQL
query and vice versa.

2.2 RDF Peer Systems
An RDF Peer System (RPS) P constitutes a set of peers

and a set of mappings that specify the semantic relationships
between peers. Formally, an RPS P is defined as a tuple
P = (S, G,E), where:

• S is the set of the peer schemas in P. Each peer schema
S ∈ S is simply the set of all the constants u ∈ I
adopted by the corresponding peer to describe data in
the form of RDF triples. Informally, the schema of a
peer is a subset of I (the set of all the IRIs in Linked
Data) comprising only the IRIs adopted by the peer.
Two peer schemas then need not be disjoint sets: this
is in accordance with real Linked Data sources, where
two different RDF databases may share some IRIs in
the RDF triples.

• G is a set of graph mapping assertions, each of which
is an expression of the form Q; Q′, where Q and Q′

are graph pattern queries of the same arity, expressed
over the schemas S and S′, respectively, of two peers
in P. Formally, the graph pattern GP in the query Q
contains triple patterns from (S ∪ L ∪ V)× (S ∪ V)×
(S ∪ L ∪ V), and the graph pattern GP ′ in the query
Q′ contains triple patterns from (S′ ∪ L ∪ V) × (S′ ∪
V)× (S′ ∪ L ∪ V).

• E is a set of equivalence mappings of the form c ≡e c
′,

where c ∈ S and c′ ∈ S′ and S, S′ ∈ S.

2.3 Semantics of RDF Peer Systems
We assume that we are given an instance of the data stored

in the peers in the form of a set of RDF triples for each
peer in the system. Formally, for each peer defined by its
schema S ∈ S in P, we have a database d, that is, a set of
triples (s, p, o) ∈ (S ∪ B)× S × (S ∪ B ∪ L). Consequently,
a stored database D of an RPS P is the union of all the
peer databases d of all the peers in P. Then, a peer-to-peer
database of an RPS P is simply an arbitrary RDF database
containing triples (s, p, o) ∈ (S1 ∪ · · · ∪ Sn ∪B)× (S1 ∪ · · · ∪
Sn)× (S1 ∪ · · · ∪ Sn ∪B ∪ L), where S1, . . . , Sn ∈ S are the
peer schemas in P.

We also denote by subjQ(c), predQ(c) and objQ(c) three
special graph pattern queries:

• subjQ(c) := q(xpred, xobj)← (c, xpred, xobj)

• predQ(c) := q(xsubj , xobj)← (xsubj , c, xobj)

• objQ(c) := q(xsubj , xpred)← (xsubj , xpred, c)

where c ∈ (S1 ∪ · · · ∪ Sn ∪ L).
The evaluation of subjQ(c) over an RDF dataset is the set

of pairs of the form (t.pred, t.obj) containing the predicate
and object of all triples in the dataset where the constant c
occurs as the subject. The queries predQ(c) and objQ(c) are
defined similarly, with the constant c now occurring as the
predicate and the object of an RDF triple, respectively.

Below we give formal definitions for a solution for an RPS
P and the set of certain answers for a query posed against
P. Informally, a peer-to-peer database is a solution of an
RPS P if it contains the stored database of P, as well as all
triples inferred by the mappings of P. The certain answers
to a query against P are those which appear in all possible
solutions of P.

215

Definition 2. A peer-to-peer database I is said to be a
solution for an RPS P based on a stored database D if:

1. For every stored database d ∈ D, we have that d ⊆ I.

2. For every graph mapping assertion in G of the form
Q; Q′, we have that QI ⊆ Q′I .

3. For every equivalence mapping in E of the form c ≡e

c′, all of the following hold:

subjQ(c)∗I = subjQ(c′)∗I

predQ(c)∗I = predQ(c′)∗I

objQ(c)∗I = objQ(c′)∗I

Definition 3. We define the certain answers ans(q,P, D)
to an arbitrary graph pattern query q of arity n, based on
a stored database D of an RPS P, as the set of n-tuples t
of constants in (S1 ∪ · · · ∪ Sn ∪L) such that, for every peer-
to-peer database I that is a solution for the system P based
on D, we have that t ∈ qI .

The query answering problem is defined as follows: given
an RPS P, a stored database D and a graph pattern query
q, find the certain answers ans(q,P, D).

3. QUERY ANSWERING
To evaluate the complexity of the query answering prob-

lem we show that the problem of finding ans(q,P, D) is sub-
sumed by CQ answering in data exchange for the relational
model. Specifically, we show that a solution of an RPS can
be seen as a solution of a special data exchange setting.

A data exchange setting is defined by a source relational
alphabet S, a target relational alphabet T , a set Σst of
source-to-target dependencies and a set Σt of target depen-
dencies. Instances over S are called source instances, while
instances over T are called target instances. Given a source
instance I, the problem is to find a solution J over the target
schema such that I ∪ J satisfies the source-to-target depen-
dencies and J satisfies the target dependencies [12].

For a given RPS P = (S, G,E) and a stored database
D for P, we can define a data exchange setting such that
a solution for the data exchange problem is a solution for
P. We define the relational alphabets Rs := {ts, rs} and
Rt := {tt, rt}, where ts and tt are ternary relational symbols
and rs and rt are unary relational symbols. These relational
alphabets describe the RDF triples (ts) and the identified
resources (rs) stored by the peers in D, and the RDF triples
(tt) and the identified resources (rt) inferred in a peer-to-
peer database of P.

Given a relational alphabet A, we denote by LA the set of
function-free first-order logic (FOL) formulas whose relation
symbols are in A and whose constants are in (I ∪ B ∪ L).
Then, given a graph pattern query Q of the form q(x)← GP
we can define the term Qbody(x,y) as the conjunction of
the atoms in LRt representing triple patterns in GP , where
x = x1, . . . , xn ∈ var(GP) are the free variables, and y =
y1, . . . , ym ∈ var(GP) are the existentially quantified vari-
ables in Q. For example, given the following graph pattern
query

Gfather := q(x1, x2)←
(x1, father, y) AND (y, father, x2),

Gfatherbody(x,y) is the conjunction of atoms

tt(x1, father, y) ∧ tt(y, father, x2),

where x = x1, x2 and y = y. In this regard, evaluating a
graph pattern query Q over an instance of a RPS is equiva-
lent to evaluating the following conjunctive query (CQ) over
an interpretation of the relations in Rt:

{x | ∃y Qbody(x,y) ∧ rt(x1) ∧ · · · ∧ rt(xn)}.

Given an RPS P = (S, G,E), we are now ready to define
a data exchange setting whose solution (seen as an RDF
database) is also a solution for P. The relational alphabets
Rs and Rt are the source and target relational alphabets of
the data exchange setting. The source-to-target dependen-
cies express the semantics of item 1 in Definition 2, which
states that the peer-to-peer database of the RPS must con-
tain all the triples in the stored database. They are of the
form:

∀x∀y∀z ts(x, y, z)→ tt(x, y, z),
∀x rs(x)→ rt(x).

The target dependencies express the semantics of the graph
mapping assertions and the equivalence mappings. For each
graph mapping assertion Q ; Q′ ∈ G, we have the depen-
dency

∀x∃y Qbody(x,y) ∧ rt(x1) ∧ · · · ∧ rt(xn)→ ∃z Q′body(x, z),

and for each equivalence mapping c ≡e c
′ ∈ E, we have the

dependencies

∀y∀z tt(c, y, z)→ tt(c
′, y, z),

∀y∀z tt(c′, y, z)→ tt(c, y, z),
∀x∀z tt(x, c, z)→ tt(x, c

′, z),
∀x∀z tt(x, c′, z)→ tt(x, c, z),
∀x∀y tt(x, y, c)→ tt(x, y, c

′),
∀x∀y tt(x, y, c′)→ tt(x, y, c).

In this regard, query answering under an RPS is equivalent
to the problem of CQ answering in data exchange, under the
special data exchange setting defined above.

The set of certain answers in the data exchange problem is
computed by evaluating queries over the so-called universal
solution of the data exchange setting. To generate a univer-
sal solution, a source database is “chased” using the set of
dependencies. Each step of the chase “extends”the database
so that the chosen dependency is satisfied. For instance,
given a dependency φ(x) → ∃y ψ(x,y) and a mapping h
(from the variables in φ(x) to constants) for which the de-
pendency is not satisfied, the chase step generates new facts
in the target instance in order to satisfy the dependency.
The new facts are generated by: (a) extending h to h′ such
that each existentially quantified variable in ψ(x,y) is as-
signed a freshly created constant, a labelled null, followed
by: (b) taking the image of the atoms of ψ under h′ (see
[12], Section 3 for more details of the chase procedure).

In our specific data exchange setting, there are no atoms
of type rt(x) in the head of any dependency such that the

216

variable x is existentially quantified. Therefore, the set of
IRIs and literals remains constant during the chase proce-
dure. Thus, the chase generates new blank nodes as labelled
nulls. Without loss of generality, we will use the term newly
created blank nodes when we want to denote labelled nulls.

In an RPS P = (S, G,E), only dependencies in G contain
existentially quantified variables in the body, therefore they
are the only dependencies for which the chase may generate
new constants, i.e., newly created blank nodes. Since newly
created blank nodes cannot trigger any of these rules, the
chase sequence is then bounded by a finite number of steps.
This leads to the following theorem:

Theorem 1. The problem of finding all certain answers
ans(q,P, D) to an arbitrary graph pattern query q, for a
given RDF Peer System P and a stored database D, has
PTIME data complexity.

Due to lack of space, we omit a formal proof of the theo-
rem, which will appear in an extended version of this paper.

In data exchange, the set of certain answers of a query
is then computed by evaluating the query over the univer-
sal solution and eliminating all the tuples in the result that
contain labelled nulls. In our RDF model, the semantics of
a graph pattern query QD eliminates all the answer tuples
containing blank nodes, so we can generate the certain an-
swers by simply evaluating the graph pattern query over the
universal solution. The algorithm that computes the certain
answers, Algorithm 1, is listed in the Appendix.

Figure 2: RDF graph of a universal solution for the
peer system. Dotted arrows and dashed arrows rep-
resent triples inferred by the equivalence mappings
and the graph mapping assertions, respectively.

Example 2. Let us consider again the RDF sources of Ex-
ample 1. We define an RPS P = (S, G,E) as follows:

• S := {S1, S2, S3} where Si is the set of IRIs in the
ith source. For example, S2 := {DB2:Spiderman2002,
DB2:Willem Dafoe,DB2:Pleasantville, actor} (in this
case, we consider owl:sameAs triples stored in Source
1 and Source 3).

• G is a single graph mapping assertion of the formQ2 ;

Q1, where:

– Q1 := q(x, y)← (x, starring, z) AND (z, artist, y),

– Q2 := q(x, y)← (x, actor, y).

• E contains an equivalence mapping c ≡e c
′ for each

triple of the form (c, sameAs, c′).

Figure 2 illustrates an RDF database which is a universal
solution for P. Let us consider again the SPARQL query
used in Example 1. Now, evaluating the query over the uni-
versal solution, we obtain the result in Listing 1. It is impor-
tant to observe that the user poses a query over Sources 1
and 3 but retrieves additional information also from Source 2
in a transparent way. The RPS, in fact, not only captures
the semantics of the owl:sameAs property, but also performs
integration of similar sources in order to return additional
answers to the user. This integration can be performed dy-
namically as new data sources appear, and requires no input
from the user.

#Query

SELECT ?x ?y

WHERE { DB1:Spiderman starring ?z .

?z artist ?x .

?x age ?y }

#Result

DB1:Toby_Maguire "39"

foaf:Toby_Maguire "39"

DB1:Kirsten_Dunst "32"

foaf:Kirsten_Dunst "32"

DB2:Willem_Dafoe "59"

foaf:Willem_Dafoe "59"

#Result without redundancy

DB1:Toby_Maguire "39"

DB1:Kirsten_Dunst "32"

DB2:Willem_Dafoe "59"

Listing 1: SPARQL query over the universal solu-
tion.

4. QUERY REWRITING
The chase algorithm is a useful tool for query answering,

however materialising the universal solution for an RDF peer
system may be impractical in the Linked Data scenario due
to the large volumes of data involved.

A more efficient approach would involve a rewriting of the
original query that, when evaluated directly over the sources,
returns the set of certain answers. In other words, given a
stored database D, a query q and the set Σ of TGDs that
entail the peer mappings, we want to compute a rewriting
of q based on Σ, named qΣ, such that qΣ

D = qJ , where J =
chase(D,Σ) is the universal solution for the peer system. In
this case qΣ is a perfect rewriting of q since it preserves a
sound and complete answer of the original query based on
the extensional database D and the “ontological theory” Σ.

Several works have addressed query rewriting under TGDs.
[8, 9] introduced sets of TDGs, namely sticky sets, that en-
joy the property of being FO-rewritable, i.e., for every query
that needs to be evaluated under such dependencies it is

217

possible to compute a first-order query as a perfect rewrit-
ing. The algorithm has as input a Boolean CQ q, a database
D and a sticky set of TGDs Σ, and it outputs “Accept” if
chase(D,Σ) |= q. We recall that the two problems of CQ
and BCQ evaluation under TGDs are logspace-equivalent.

Stickiness is a sufficient syntactic condition that ensures
the so-called sticky property of the chase, which is as follows.
For every instance D, assume that during the chase of D
under a set Σ of TGDs, we apply a TGD σ that has a variable
V appearing more than once in its body; assume also that
V maps (via homomorphism) onto the constant z, and that
by virtue of this application the atom a is generated by the
chase step. In this case, for each atom b in the body of σ, we
say that a is derived from b. Then, we have that z appears
in a, and in all atoms resulting from some chase derivation
sequence starting from a, “sticking”to them (hence the name
“sticky sets of TGDs”).

The formal definition of sticky sets of TGDs, given in [9],
is an efficient testable condition involving variable marking.

Definition 4. Consider a set Σ of TGDs over a relational
alphabet R. A position r[i] in R is identified by the predi-
cate r ∈ R and its i-th argument (or attribute). We mark
the variables that occur in the body of the TGDs of Σ ac-
cording to the following procedure. First, for each TGD
σ ∈ Σ and for each variable V in body(σ), if there exists an
atom a in head(σ) such that V does not appear in a, then
we mark each occurrence of V in body(σ). Given a predi-
cate symbol r, r[i] identifies its i-th argument (or attribute).
Now, we apply exhaustively (i.e., until a fixpoint is reached)
the following step: for each TGD σ ∈ Σ, if a marked vari-
able in body(σ) appears at a position π, then for every TGD
σ′ ∈ Σ (including the case σ′ = σ), we mark each occur-
rence of the variables in body(σ′) that appear in head(σ′) at
the same position π. We say that Σ is sticky if and only if
there is no TGD σ ∈ Σ such that a marked variable occurs
in body(σ) more than once.

Given an RPS P = (S, G,E), the set E of TGDs for equiv-
alence mappings enjoys the sticky property of the chase, as
well as linearity. Graph mapping assertions in G do not
preserve the same property. We can easily show this by ap-
plying the variable marking on the following example of a
graph mapping assertion:

∀x∀y∃z tt(x,A, ẑ) ∧ tt(ẑ, B, y) ∧ rt(x) ∧ rt(y)→ tt(x,C, y),

where A,B and C are URIs. Here, applying the variable
marking results in the variable z appearing more than once
in the body of the TGD. This violates the stickiness condi-
tion.

It is important to observe that the set Σ of TGDs in an
RPS is neither sticky, nor linear, nor weakly-acyclic [12],
nor guarded [7], nor weakly-guarded [7]. In fact our sets of
TGDs are incomparable to the above known classes of TGDs
under which query answering is decidable. �

In [13] the authors propose the query rewriting algorithm
TGD-rewrite which takes as input a BCQ and a set of TGDs
each with just one head-atom, containing at most one exis-
tentially quantified variable, which occurs only once. The al-
gorithm generates a union of BCQs (i.e., a FO-query) which
is a perfect rewriting of the original query. It is shown that
query answering under this setting is logspace-equivalent
to query answering under (general) TGDs, and thus the re-
sult holds for arbitrary TGDs. The algorithm TGD-rewrite

guarantees termination under linear, sticky or sticky-join
sets of TGDs (a generalisation of sticky TGDs and linear
TGDs).

Proposition. 2. Given an RPS P = (S, G,E), a stored
database D and a Boolean query q, if G is either linear,
sticky, or sticky-join, then we can generate a FO-query qP ,
such that qP

D = qJ , where J is the universal solution for P
based on D.

Example 3. Consider again the RPS in Example 2. The
set G of graph mapping assertions is linear, hence, follow-
ing from Proposition 2, we can generate an FO-rewriting of
a given Boolean query to entail the mapping assertions of
the RPS. Listing 2 shows an example rewriting based on the
SPARQL query and the RDF stored database shown in the
introduction. To compute the set of certain answers of the
given query, first we generate the set of all the possible 2-
tuples from the stored database. Then we iterate over each
2-tuple t and decide whether or not t is in the set of cer-
tain answers, by substituting t into the SPARQL query to
obtain a Boolean query (note that this is a polynomial-time
reduction of the problem, since there are polynomially many
k-tuples from the source database). Each Boolean query can
be rewritten as an FO-query according to the mapping as-
sertions in the RPS. In our case, the rewriting generates a
union of SPARQL queries. Due to lack of space, we show
only one possible step of the query rewriting, which makes
use of the dependency

∀y∀z tt(foaf:Toby Maguire, y, z)→
tt(DB1:Toby Maguire, y, z)

to rewrite the triple pattern (DB1:Toby_Maguire age "39").

#Original query

SELECT ?x ?y

WHERE { DB1:Spiderman starring ?z .

?z artist ?x .

?x age ?y }

#Boolean query:

#ask if the tuple (DB1:Toby_Maguire ,"39")

#is in the query result.

ASK { DB1:Spiderman starring ?z .

?z artist DB1:Toby_Maguire .

DB1:Toby_Maguire age "39" }

false

#Rewritten query

ASK {{ DB1:Spiderman starring ?z .

?z artist DB1:Toby_Maguire .

DB1:Toby_Maguire age "39" }

UNION

{ DB1:Spiderman starring ?z .

?z artist DB1:Toby_Maguire .

foaf:Toby_Maguire age "39" }}

true

Listing 2: SPARQL Boolean query rewriting.

218

Let us now evaluate the general case.
Consider the TGD σ = A(x, z) ∧ A(z, y) → A(x, y) and

observe that σ is not FO-rewritable since it captures the
transitive closure of the relation A, which cannot be done
using a finite number of first-order queries. Let us now con-
sider an instance of a RPS P defined only by the following
mapping assertion:

∀x∀y∃z tt(x,A, z) ∧ tt(z,A, y) ∧ rt(x) ∧ rt(y)→ tt(x,A, y),

We assume without loss of generality that the sources in D
do not contain blank nodes. Now we transform the mapping
assertion into the following set Σ of TGDs:

∀x∀y tt(x,A, y)→ A(x, y)
∀x∀y A(x, z) ∧A(z, y)→ A(x, y)
∀x∀y A(x, y)→ tt(x,A, y).

Note that we can drop the atoms rt(x), rt(y) in the body
of the TGDs because for any D we have that D |= ∀x rt(x),
and the same condition holds for every partial instance of
the chase in each chase step.

The auxiliary predicates, being introduced only during
the above construction, do not match any predicate sym-
bol in any query q, and hence chase(D,Σ) |= q if and only if
chase(D,P) |= q; therefore query answering under the RPS
P is equivalent to query answering under Σ. Note that Σ
now contains TGDs computing the transitive closure, so if
we assume that the set of TGDs Σ are FO-rewritable, then
the transitive closure is also FO-rewritable which is a con-
tradiction.

This leads to the following result.

Proposition. 3. The sets of TGDs corresponding to the
mapping assertions of RPSs are not FO-rewritable.

5. DISCUSSION
In this paper we have addressed the problem of integrating

RDF data sources in a peer-based fashion, where mappings
are defined between arbitrary peers, without a centralised
schema. We have proposed a formalisation of the notion
of a peer-to-peer semantic integration system, where RDF
triples are represented as relational tuples and mappings are
expressed as tuple-generating dependencies. Following that,
we have shown that answering graph pattern queries on an
RDF peer system can be done in polynomial time in terms
of data complexity. Finally, we have shown that it is not
possible to process queries in general RDF peer systems by
rewriting them into first-order queries.

This is a preliminary report which poses several new chal-
lenges. As future work, we plan the following.

1. We want to improve the efficiency of the query pro-
cessing algorithm. Our query answering algorithm is
näıve as it generates the whole universal solution under
the given dependencies; this is far from ideal, as map-
pings may be subject to change and we might need
to compute the information inferred from the TGDs
dynamically. We intend to investigate the possibil-
ity of adopting a combined approach, where only part
of the universal solution is computed, and queries are
rewritten according to some of the dependencies only.
Another possible approach is to devise a rewriting al-
gorithm that produces rewritten queries in a language
more expressive than FO-queries, for instance Datalog.

2. We intend to investigate the query answering problem
for more expressive query languages, in particular for
larger subsets of SPARQL.

3. We want to be able to discover mappings between
peers automatically. We are investigating relevant ar-
eas such as probabilistic logics and state-of-the-art tech-
niques for automatic schema/ontology-alignment and
for managing uncertain semantic mappings.

4. Finally, we are building a prototype system to validate
our techniques on real and synthetic data sets and de-
termine their scalability properties. Our prototype is
a SPARQL query engine which provides unified access
to the mapped sources. The user poses a query ex-
pressed in any vocabulary known by the system, and
the query is processed as follows:

(a) A query rewriting module rewrites the original
SPARQL query in order to retrieve all the certain
answers.

(b) A query module performs federated querying over
the sources. It stores SPARQL access points of
the RDF sources, up-to-date RDF data dumps
and other information in order to query feder-
ated sources in a transparent way for the user.
After query rewriting, sub-queries are posed to
the relevant RDF sources and sub-query results
are joined, taking into account efficiency of the
join operations between the RDF triple patterns.
The final result is returned to the user.

Acknowledgments.
Andrea Cal̀ı acknowledges support by the EPSRC project

“Logic-based Integration and Querying of Unindexed Data”
(EP/E010865/1).

6. REFERENCES
[1] S. Abiteboul and O. M. Duschka. Complexity of

answering queries using materialized views. In Proc. of
PODS, pages 254–263, 1998.

[2] S. Auer, J. Lehmann, and A.-C. N. Ngomo.
Introduction to Linked Data and its lifecycle on the
web. In Proc. of RW, pages 1–75, 2011.

[3] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data -
the story so far. Int. J. Semantic Web Inf. Syst.,
5(3):1–22, 2009.

[4] C. Buil-Aranda, M. Arenas, and O. Corcho. Semantics
and optimization of the SPARQL 1.1 federation
extension. In Proc. of ESWC, pages 1–15, 2011.

[5] M. Cai and M. Frank. RDFPeers: A scalable
distributed RDF repository based on a structured
peer-to-peer network. In Proc. of WWW, pages
650–657, 2004.

[6] M. Cai, M. R. Frank, B. Yan, and R. M. MacGregor.
A subscribable peer-to-peer RDF repository for
distributed metadata management. J. Web Sem.,
2(2):109–130, 2004.

[7] A. Cal̀ı, G. Gottlob, and M. Kifer. Taming the infinite
chase: Query answering under expressive relational
constraints. In Proc. of KR, pages 70–80, 2008.

219

[8] A. Cal̀ı, G. Gottlob, and A. Pieris. Advanced
processing for ontological queries. PVLDB,
3(1):554–565, 2010.

[9] A. Cal̀ı, G. Gottlob, and A. Pieris. Query answering
under non-guarded rules in Datalog+/-. In Proc. of
RR, pages 1–17, 2010.

[10] G. Correndo, M. Salvadores, I. Millard, H. Glaser, and
N. Shadbolt. SPARQL query rewriting for
implementing data integration over linked data. In
Proc. of EDBT/ICDT, 2010.

[11] M. Duerst and M. Suignard. RFC 3987:
Internationalized Resource Identifiers (IRIs). RFC
3987 (Proposed Standard), January 2005.

[12] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: semantics and query answering. TCS,
336(1):89–124, 2005.

[13] G. Gottlob, G. Orsi, and A. Pieris. Ontological
queries: Rewriting and optimization (extended
version). CoRR, abs/1112.0343, 2011.

[14] C. Gutierrez, C. Hurtado, and A. O. Mendelzon.
Foundations of semantic web databases. In Proc. of
PODS, pages 95–106, 2004.

[15] H. Halpin, P. Hayes, J. McCusker, D. McGuinness,
and H. Thompson. When owl:sameas isn’t the same:
An analysis of identity in linked data. In Proc. of
ISWC, volume 6496, pages 305–320, 2010.

[16] P. Hayes and B. McBride. RDF semantics. W3C
recommendation, Feb. 2004.

[17] G. Kokkinidis and V. Christophides. Semantic query
routing and processing in P2P database systems: The
ICS-FORTH SQPeer middleware. In Proc. of EDBT,
pages 486–495, 2004.

[18] W. Le, S. Duan, A. Kementsietsidis, F. Li, and
M. Wang. Rewriting queries on SPARQL views. In
Proc. of WWW, pages 655–664, 2011.

[19] K. Makris, N. Bikakis, N. Gioldasis, and
S. Christodoulakis. SPARQL-RW: transparent query
access over mapped RDF data sources. In Proc. of
EDBT, pages 610–613, 2012.

[20] K. Makris, N. Gioldasis, N. Bikakis, and
S. Christodoulakis. Ontology mapping and SPARQL
rewriting for querying federated RDF data sources. In
Proc. of OTM, pages 1108–1117, 2010.

[21] W. Nejdl. Design issues and challenges for RDF- and
schema-based peer-to-peer systems. In Proc. of
DBISP2P, page 1, 2003.

[22] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. S. A. Naeve,
M. Nilsson, M. Palmer, and T. Risch. Edutella: A
P2P networking infrastructure based on RDF. In
Proc. of WWW, pages 604–615, 2002.

[23] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz,
M. Schlosser, I. Brunkhorst, and A. Löser.
Super-peer-based routing strategies for RDF-based
peer-to-peer networks. WWW, 1(2):177–186, 2003.

[24] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. TODS, 34(3):16:1–16:45,
2009.

APPENDIX

Algorithm 1: Using the chase to compute the certain
answers ans(q,P, D).

Data: Graph pattern query q, system P, stored
instance D.

Result: The set t of the certain answers ans(q,P, D).
Initialize instance J = ∅;
/* Chase procedure to generate a universal

solution */

while some of the mappings of P are not satisfied in J
do

case (d 6⊆ J for some d ∈ D):
add d to J ;

case (for some graph mapping assertion in P, we
have QJ 6⊆ Q′J):

for each tuple t ∈ QJ \Q′J do
generate the boolean query bQ′ by
substituting t in the free variables Q′;
add triples to J generating new blank nodes,

such that bQ′J = true;

case (for some equivalence mapping to P, we
have c 6≡e c

′)
switch subjQ(c)∗J 6⊆ subjQ(c′)∗J do

for each tuple
(p, o) ∈ (subjQ(c)∗J \ subjQ(c′)∗J) do

add the triple (c′, p, o) to J ;

switch subjQ(c′)∗J 6⊆ subjQ(c)∗J do
for each tuple
(p, o) ∈ (subjQ(c′)∗J \ subjQ(c)∗J) do

add the triple (c, p, o) to J ;

switch predQ(c)∗J 6⊆ predQ(c′)∗J do
for each tuple
(s, o) ∈ (predQ(c)∗J \ predQ(c′)∗J) do

add the triple (s, c′, o) to J ;

switch predQ(c′)∗J 6⊆ predQ(c)∗J do
for each tuple
(s, o) ∈ (predQ(c′)∗J \ predQ(c)∗J) do

add the triple (s, c, o) to J ;

switch objQ(c)∗J 6⊆ objQ(c′)∗J do
for each tuple
(s, p) ∈ (objQ(c)∗J \ objQ(c′)∗J) do

add the triple (s, p, c′) to J ;

switch objQ(c′)∗J 6⊆ objQ(c)∗J do
for each tuple
(s, p) ∈ (objQ(c′)∗J \ objQ(c)∗J) do

add the triple (s, p, c) to J ;

/* End of chase */

compute the certain answers t := qJ ;
/* The certain answers are generated by

evaluating the query over the universal

solution */

return t;

220

Interpreting linked data search results using Markov Logic

Duhai Alshukaili
School of Computer Science

University of Manchester
Oxford Road, Manchester

M13 9PL, UK
duhai.alshukaili@gmail.com

Alvaro A.A. Fernandes
School of Computer Science

University of Manchester
Oxford Road, Manchester

M13 9PL, UK
alvaro@cs.man.ac.uk

Norman W. Paton
School of Computer Science

University of Manchester
Oxford Road, Manchester

M13 9PL, UK
norm@cs.man.ac.uk

ABSTRACT
Linked Data (LD) follows the web in providing low barriers
to publication, and in deploying web-scale keyword search
as a central way of identifying relevant data. As in the
web, searches initially identify results in broadly the form
in which they were published, and the published form may
be provided to the user as the result of a search. This will
be satisfactory in some cases, but the diversity of publish-
ers means that the results of the search may be obtained
from many different sources, and described in many differ-
ent ways. As such, there seems to be an opportunity to add
value to search results by providing users with an integrated
representation that brings together features from different
sources. This involves an on-the-fly and automated data
integration process being applied to search results, which
raises the question as to what technologies might be most
suitable for supporting the integration of LD search results.
In this paper, we investigate the use of Markov Logic, which
brings together first order logic and probabilistic graphical
models to support both learning and inference in uncertain
domains. Specifically, we: (i) characterise key features of
LD search results that are relevant to their integration; (ii)
discuss how these motivate the use of an approach based on
Markov Logic; (iii) describe some initial experiences in the
use of Markov Logic for interpreting search results; and (iv)
present some avenues for future investigation.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed databases; H.3.5
[Online Information Services]: Data sharing; H.3.5 [Online
Information Services]: Web-based services

1. INTRODUCTION
Linked Data (LD) seeks to do for data what the web did
for documents. In essence, LD involves publication of data
according to a small collection of principles that indicate
how data resources are identified and represented, and that
encourage the creation of links [1]. Publishers make data

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

available following the principles, and users access or pro-
cess the resulting data using either generic tools or bespoke
applications.

As in the web of documents, keyword search engines are an
important element in the tool set. However, although search
results in the web of documents provide a result that was de-
signed for human use, search results in the web of data tend
to be collections of RDF resources that may be time con-
suming and cumbersome to explore. Furthermore, the re-
sults of a search may involve values of different types, which
are interleaved in a search result. For example, a search
for Bob Dylan using the Sindice search engine [22] returns
results that represent a person, (several) albums and (sev-
eral) songs. A manually created report over such a search
result might pull together the properties of the individual
Bob Dylan from several resources into a heading and a list
of properties, and then might provide separate tables for the
collections of albums and songs about which information was
retrieved.

Could such a report be generated automatically? The cre-
ation of such a report requires, at a minimum, identifying:

• the (real-world) entity types that are represented in
the search result;

• the individuals entity instances that are represented
in the search result, and in particular which ones are
individuals and which ones belong to collections; and

• the properties of each of the relevant entity instances.

Although this is a data integration problem, it is quite un-
like classical data integration, in which typically there is a
known target (or global) schema to which source data should
be mapped, and there is some level of human engagement in
the data integration. This raises the question as to what ap-
proaches might be suitable for interpreting and integrating
search results.

We know of one previous proposal to address this problem,
namely Sig.ma [24], which generated a report that integrated
the top hits from the Sindice search engine. In Sig.ma, sev-
eral steps were followed to integrate the data, as discussed
more fully in Section 2, but the overall approach assumed
that the result of the search described a single entity in-
stance. Although Sig.ma was important in identifying the

221

opportunity and in developing an initial realisation of the
vision, the data integration component of Sig.ma was quite
restrictive and seemed rather ad hoc. As such, there seems to
be scope to explore additional approaches that seek to make
the result integration both more general and more system-
atic. We would expect there to be several very different ways
of addressing this problem, one of which is explored in this
paper.

Here we discuss an approach based on Markov Logic [6],
in which we: (i) postulate rules that capture relationships
that exist within search results, which are expressed using
logic; (ii) learn weights for these rules that represent their
strengths as constraints; and (iii) use the resulting weighted
rules over search results to infer (with uncertainty) the en-
tity types and instances that are represented in the result.
We are motivated to use Markov Logic as it provides a well
founded approach to integrating evidence of different types
to support conclusions that can inform data integration.
Markov logic has been applied to a range of tasks of relevance
to data integration, including classification, entity resolution
and knowledge-base construction, as discussed more fully in
Section 2.

This paper investigates the application of Markov Logic to
the integration of LD search results. In so doing, it uses the
following structure. In Section 2, we review related work in
linked data search, linked data integration and applications
of Markov Logic. In Section 3 we provide an overview of
Markov Logic, and in Section 4 we describe how it can be
applied for identifying entity types and instances in linked
data search results. In Section 5 we draw some conclusions
and outline directions for future work.

2. RELATED WORK
In this section we discuss work that is relevant to the prob-
lem of linked data search result integration, specifically by
reviewing results on Linked Data Search, Data Integration
for Linked Data and Markov Logic for Data Integration.

Linked Data Search. The increase in the amount of RDF
data published in the web has given rise to a number of LD
search proposals. Swoogle [5] is an early LD search engine
that indexed RDF(s) and OWL ontologies using inverted in-
dexes. Given a set of terms, Swoogle returns ontologies that
mention these terms. As such, Swoogle adopts a document-
centric approach for indexing LD ontologies [12]. Unlike
Swoogle, the Falcons [3] search engine was tailored towards
the search of arbitrary data while providing an entity-centric
search approach in which the objective is to identify the most
relevant RDF resources rather than the most relevant docu-
ments that contain them. Falcons included components for
crawling, parsing, organizing, ranking, sorting and querying
RDF data. In order to extract terms from RDF documents,
it employed the notion of a virtual document as an interme-
diate representation that enables the consolidation of data
from multiple sources. This consolidation is based on URI
reuse and the mention of an entity in different sources. Fal-
cons also includes a reasoning component aimed at inferring
class hierarchies of indexed entities. These hierarchies pro-
vide a means for restricting the search result based on the
types of resources. Sindice [22] adopts a document-centric

approach and aimed to provide a range of search services
over RDF documents. The services offered include keyword
search over RDF, searching for entities (classes, properties
and individuals) matching a term in RDF documents, and
providing APIs to expose search services to software agents.
Sindice consolidates entities while indexing, based on inverse
functional properties. It also implements a localized reason-
ing component for discovering additional information about
entities. From this brief review, it can be seen that LD
search engines often carry out some preliminary result con-
solidation tasks, but falls short of a concerted approach to
result integration.

Sig.ma [24], however, does address result integration in a
more comprehensive manner. Sig.ma uses search results
from Sindice [22] to collect RDF data and build an ag-
gregated view of the results in the form of entity profiles.
Sig.ma uses a recursive search step that collects RDF data
which contains resource identifiers that match a search term.
A first search step collects the source URLs that contain
the search terms. A second step is performed to search for
sources containing the URI identifiers found in the results
of the first step. The collected RDF data is decomposed
into chunks (called resource descriptions) that describe dis-
tinct entities, and ranked against the search term. Sig.ma
collects additional data when it encounters an owl:sameAs
predicate. The resulting resource descriptions are consoli-
dated by combining the values of lexically similar attributes.
Hand-crafted rules such as the removal of “has” from “has
title” or replacement of attributes that may share similar
values such as “web page” and “homepage” with the term
“Web page” are applied in the consolidation step. In ad-
dition, Sig.ma allows users to interact with the resulting
entity profiles, either through navigating to other sources
of information, or by refining the results. The refinement
capabilities allow users to reject or accept the sources that
contribute data to the generated entity profiles. However,
Sig.ma does not provide any means for resolving semantic
heterogeneities in the data before attempting to construct
the integrated view. For example, if a user is interested in
information about Manchester University, Sig.ma combines
data on the university, on Manchester Grammar School, and
on a railway station. While it brings together lots of cor-
rect information, some incorrect data is often included. Our
aim is to develop a more principled approach that enables
us to resolve such heterogeneities through the identification
entities and their types using Markov Logic.

Data Integration for Linked Data. Low barriers to pub-
lication, as well as diversity of publishers without central
coordination, have led to LD being published with incon-
sistencies both at the conceptual and at the instance levels.
At the conceptual level, this comes in the form of different
conceptualizations of the same domain, inconsistencies in
the structural representation of concepts in LD terminolo-
gies, etc. At the instance level, there may be many different
resources that describe the same real world entities, redun-
dant information, and contradictory attribute values. There
is a plethora of approaches that deal with the alignment and
matching of RDF sources. These approaches can be divided
into two broad categories: ontology matching and instance
matching approaches [2]. The goal of ontology matching ap-

222

proaches is to align schema level elements of RDF sources
using information from the schema level, the instance level,
or both [7]. On the other hand, instance level approaches
try to resolve the multiplicity of data resources that describe
the same real world entity [8]. RDF instance matching tools
such Silk [16, 15], ObjectCoref [14], and LIMES [18] discover
owl:sameAs identity links at the instance level. Our work
aims not just to resolve identities between pairs of resources
in the search results but also to infer a ER schema structure
for the results and populate with data provided in the in-
stances of the search. In this regard, there have been a num-
ber of proposals for structure inference from RDF sources [4,
27, 28, 25]. Such approaches take as an input a data graph
and produce a structural summary that is homomorphic to
the original data graph using techniques such as hierarchical
clustering [4, 28], association rule mining [25], and inference
using Bayesian Networks [27]. However, these approaches
are often evaluated on a specific dataset at time (i.e. Mag-
natune or DBpedia). This is different from inferring a struc-
ture from search results because the relevant sources in the
results often vary in terms of the datasets they originate
from. For example, a search for a film title (e.g. Godfather)
on Sindice [22] returns results from at least three datasets:
DBpedia1, freebase2, and LinkedMDB 3. This makes the
structure inference problem harder as mappings between the
dataset need to be inferred or incorporated as evidence.

In addition to research in linking RDF at the conceptual
and instance levels, there have been some studies on map-
ping properties across RDF sources [9, 26, 10]. The aim
of such approaches is to find similar [9] or equivalent [26,
10] properties using statistical measures that utilize subject
and object overlap of properties. These approaches, as well
as approaches that map between ontology concepts and in-
stances across datasets can be utilized as additional sources
of evidence in in our approach (see Section 5).

Markov Logic for Data Integration. Markov Logic brings
together two prominent paradigms within artificial intelli-
gence, namely first-order logic and Markov networks [6].
The basic idea is that the syntax of first order logic is used to
describe constraints that hold on the set of possible worlds,
but that the constraints are no longer necessarily hard. In-
stead, each formula is associated with a weight that indicates
how strong the constraint is; the higher the weight the more
likely a constraint is to hold. A set of weighted formulas is
referred to as a Markov logic network (MLN).

Markov Logic (ML) has been applied to data integration
tasks such as entity resolution [23], knowledge base construc-
tion [20] and ontology matching [19]. Sigla and Domingos
[23] described a domain-specific MLN that performs an en-
tity resolution task on bibliography entries. They used an
MLN to encode knowledge about the similarity of the publi-
cations based on the similarity of the venue, authors and ti-
tles. They demonstrated that such an MLN, combined with
predicate equivalence and reverse predicate equivalence ax-
ioms, can achieve superior results to established approaches.

1http://www.dbpedia.org
2http://rdf.freebase.com
3http://data.linkedmdb.org/

Figure 1: The ER metamodel that is to be populated from
search results.

In contrast with this approach, the rules we use in our MLN
do not currently encode domain-specific knowledge. In seek-
ing to integrated data from multiple sources, our work is
similar to Elementary [20]. The goal of Elementary is the
construction of a knowledge base of entities based on infor-
mation extracted from web pages. It uses an MLN inference
engine for discovering co-referent entity mentions of peo-
ple and organizations. It also links between such entities
by using the co-occurrence pattens as evidence in the infer-
ence process. Elementary combine various forms of evidence,
such as data extracted from standard NLP toolkits, domain
knowledge, lexical matching, and user feedback in the in-
ference process. In the context of LD, Niepert et al. [19]
utilized ML for ontology and RDF instance matching prob-
lems. Their approach to ontology matching was combining
logical axioms expressed in ontologies with lexical similari-
ties to map between the concepts and attributes in different
ontologies. In their instance matching problem they utilized
a similarity metric [21] to infer matches between instances.
They used the constraints defined in the ontologies of these
instances to prevent the MLN from making incorrect infer-
ences. While this approach demonstrates how semantic and
syntactic evidence can be combined using ML, this approach
assumes that ontology definitions are available with the in-
stance data, which is not necessarily the case for LD search
results.

3. MARKOV LOGIC
Markov Logic combines first-order logic and Markov net-
works in a unifying representation for the definition of prob-
abilistic models.

Formally, a Markov logic network (MLN) is a set of pairs
(Fi, wi), where Fi is a first-order logic formula and wi is
a real value representing its weight. Formulas can be seen
as constraints on a set of possible worlds. The higher the
weight, the stronger the constraint is, and therefore, the less
probable is a world that violates the constraint. In an MLN,
a formula with a negative weight w can be replaced with its
negated formula with a weight of −w. A formula can also
be assigned an infinite weight to indicate a constraint that
should not be violated. Given as set of constants in some
domain, an MLN defines a ground Markov network where
the nodes correspond to ground predicates.

223

//Evidence Predciates
Triple1(uri , uri , uri)
Triple2(uri , uri , literal)

//Query Predicates
Entity(uri)
EntityType(uri)
Attribute(uri)
AttributeValue(literal)
LnkAttributeValue(uri)
Has(uri,uri)
IsInstanceOf(uri , uri)

(a) Predicates

Triple1(s , rdf :type,o) => Entity(s) ˆ EntityType(o) ˆ IsInstanceOf(s,o) R1

Triple2(s ,p,o) ˆ Attribute(p) ˆ AttributeValue(o) => Entity(s) R2

Triple1(s ,p,o) ˆ Attribute(p) ˆ LnkAttributeValue(o) => Entity(s) R3

Triple2(s ,p,o) ˆ Entity(s) ˆ AttributeValue(o) => Attribute(p) R4

Triple1(s ,p,o) ˆ Entity(s) ˆ LnkAttributeValue(o) => Attribute(p) R5

Triple1(s ,p,o) ˆ Entity(s) ˆ Attribute(p) => LnkAttributeValue(o) R6

Triple2(s ,p,o) ˆ Entity(s) ˆ Attribute(p) => AttributeValue(o) R7

Triple1(s , rdf :type,type) ˆ Triple2(s ,p,o) R8

ˆ EntityType(type) ˆ Attribute(p) => Has(type,p)
Triple1(s , rdf :type,type) ˆ Triple1(s ,p,o) R9

ˆ EntityType(type) ˆ Attribute(p) => Has(type,p)

(b) Rules

Figure 2: An MLN rule set that uses RDF triples to derive ER construct extensions

An MLN formula is defined over a set of predicates. The
predicates can be categorized into query and evidence pred-
icates. The MLN formulas define relationships using these
predicates. The MLN in Figure 2 describes relationships be-
tween evidence predicates that represent search results and
query predicates that represent the constructs of the entity
relationship (ER) meta model in Figure 1. The evidence and
query predicates are then related to each other by formulas
such as:

Triple1(s, ”rdf : type”, o) =⇒ EntityType(s).

In this formula, s and o are variables that represent the sub-
ject and object of a triple in a search result. The formula
states that where there is a triple in which s is related to o
by rdf : type, we can infer that s is an EntityType. Now, in
fact, this may not always be the case, and the weight associ-
ated with the formula in the MLN captures the strength of
the constraint represented by the rule. We discuss the evi-
dence and query predicates, as well as the formulas in our
MLN model, in more detail in Section 4.

Given a domain of interest, there are three tasks to be per-
formed by the modeller: structure learning, weight learning
and inference. An overview of these tasks now follows.

Structure Learning
Given a set of predicates and example data for the domain
of interest, the ML structure learning process learns first-
order logic formulas that define the relationships between
the given declared predicates from the evidence provided
in the form of example data in the domain. The structure
learning process uses a beam search strategy to find the best
clauses to add to the MLN [6]. In theory, structure learn-
ing provides an alternative to relying on domain experts to
write rules that capture the semantics of the domain. How-
ever, the structure learning process is known to give rise to
scalability issues for large datasets [17]. Given that, in this
case, the presumed MLN structure is known a priori, i.e.,
we have developed a meta-model of ER models, and written
rules for populating this meta-model based on the evidence
in the form of triples from the search result. Thus, we have
not performed structure learning and hence do not report
any results in this respect.

Weight Learning
Given a set of rules and a database of evidence from the do-
main of interest, the weights of the rules can be learned. In
this process, one or more predicates whose truth values are
unknown are designated as query predicates. The learning
procedure optimizes the learned weights with respect to such
predicates assuming that all the truth values of the remain-
ing predicates are given. The weight produced for each rule
can be either positive, negative, or zero. A positive weight
is an indication that a rule is supported in the domain given
the evidence. On the other hand, a learned negative weight
−w is an indication that a rule is not supported by domain
evidence, and in fact its negation is supported in the do-
main with weight w. Finally, a weight 0 suggests that a rule
has no evidence (either for or against) in the domain. This
occurs when groundings of the rule are not provided in the
evidence.

Inference
The inference process takes as input a weighted MLN and
a database consisting of ground evidence predicates, and
outputs the marginal probabilities of query predicates of the
most likely world given the evidence. This involves finding
the truth assignment that maximises the sum of the weights
of satisfied clauses [6].

4. INTERPRETING LINKED DATA SEARCH
RESULTS

The problem we address is that of inferring, from search re-
sults, the entities, entity types, attributes and relationships
that are described in the results. By these terms, we mean
the constructs that are familiar from entity-relationship (ER)
conceptual modelling. Identifying what entities and attributes
are described from the user’s point of view is a task with
uncertain outcomes. This is because not every resource de-
scribed using RDF is seen as an entity by the user. For
example, the RDF resource depicted in Figure 3(a) that de-
scribes an organization named “Universities UK” may not
be considered an entity in a search for members of a collec-
tion of UK universities. Also, not all RDF predicates that
are used in the description of a resource can be seen as at-
tributes of interest to the end user. An example of this is
dbo:wikiPageID, which denotes a Wikipedia page identifier
from the DBpedia dataset.

To model such uncertainty, we use ML to define a number of
hypotheses as to what the URIs and literals in the resources

224

dbr:Universities UK

schema:Organization

rdf:
type

dbo:Organisation

rdf:type

dbyago:Group100031264

rd
f:
ty
p
e

dbr:London

dbp:
loca

tion

134
dbp:membership

Universities UK

db
p:
na
m
e

(a)

dbr:Open University

schema:Organization

rdf
:typ

e

dbo:Organisation
rdf:type

dbo:University

rdf:type

dbyago:Group100031264

rd
f:
ty
p
e

dbr:David Puttnam

dbo
:cha

nce
llor

14405
dbp:postgrad

253075

dbo:numberOfStudents

158464

db
o:
w
ik
iP
ag
eI
D

(b)

Figure 3: An Example of search result for a search of “Universities UK”

denote in terms of ER constructs. Inference from such hy-
potheses allows us to build an ER view of the data in the
search results, and thereby to organize the results in a form
that is suitable for the user. A key advantage of using ML
for this task is that it provides an opportunity for incorpo-
rating different forms of evidence, including using feedback
as typical of the pay-as-you-go approach to data integration
[11]. We now describe an MLN for learning the uncertainty
of constructing such ER views from the search results. We
also describe the learning and inference processes. Finally,
we present the initial experimental results of our investiga-
tion.

4.1 An MLN for search results
We now describe the MLN in Figure 2 that we use to inter-
pret RDF search results. The evidence predicates represent
observed variables with known truth values in the ground
Markov network. The query predicates represent the unob-
served variables for which the inference process estimates a
probability distribution given the evidence. In this MLN,
the evidence predicates represent the observed triple pat-
terns in the RDF data. These predicates are defined over the
uri and literal domains. Partitioning the space of triples
provides a simpler, more direct way for writing rule bodies.
As such, we use Triple1 to represent RDF triples that have
URIs in the object position, and Triple2 to represent RDF
triples what have literals in the object position. Then, for
example, we can use the Triple2 predicate in Rule R7 in
Figure 2 for the query predicate AttributeValue because we
expect a literal in the object position. Such partitioning can
be extended to include BNodes, although, here we only use
uri and literal domains.

There are seven query predicates that characterize the hy-
potheses we want to substantiate using the evidence, which
represent the constructs in the meta-model in Figure 1. The
Entity, EntityType, and Attribute predicates model whether
a given URI represents an entity, entity type, or attribute.
For example, given the RDF graph shown in Figure 3(b),
the following are true:

Entity(dbr:Open University),
Attribute (foaf :name), and
EntityType(schema:Organization).

Conversely, given the graph shown in Figure 3(a),the follow-
ing are false:

Entity(dbp:name),
Attribute (dbr:London), and
EntityType(dbr:Universities UK).

We also define predicates for Has and IsInstanceOf. Has
models a relationship between two URIs where the first is
an entity type and the second is an attribute of that type.
IsInstanceOf models a relationship between two URIs where
the first is an entity, the second is an entity type, and the
first is an instance of the second. Examples from Figure 3
are:

Has(dbo:Organisation,dbp: location), and
IsInstanceOf(dbr:Open University,dbo:Organisation).

Finally, we use two predicates to interpret values in the ob-
ject position of RDF triples, viz., AttributeValue and
LnkAttributeValue.

In addition to the described predicates, the MLN contains
rules that encode knowledge about the relationships between
MLN predicates. Rules R1, R8 and R9 utilize the rdf : type
construct for the inference of Entity, EntityType, IsInstanceOf
and Has. Note that R1 makes a direct inference from the ev-
idence, whereas R8 and R9 additionally rely on EntityType
and Attribute .

4.2 Experiments
Dataset
To our knowledge, there is no publicly available standard
dataset that allows us to evaluate our proposed approach.
In order to learn the weights for the MLN described in Sec-
tion 4.1 we conducted 10 searches using the Sindice [22] LD
search engine. The terms used in these searches are shown in
Table 1. The results were pre-processed by removing triples
containing rdf : type objects that belong to the yago4 and
dbyago5 name-spaces. The reason is that such types are
used for categorizing resources as opposed to assigning real-
world entity types to resources. These types cannot be eas-
ily assigned specific attributes. Also triples which contain
domain-independent RDF predicates and have literal ob-
jects were removed: dct : abstract , rdfs :comment, rdfs : label ,
skos: prefLabel , skos: altLabel , skos:note and dce: description .

4http://yago-knowledge.org/resource/
5http://dbpedia.org/class/yago/

225

Predicate Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
Entity 0.41 0.51 0.41 0.61 0.90 0.568 ± 0.203
EntityType 0.95 0.97 0.88 0.92 0.97 0.938 ± 0.038
Attribute 0.25 0.15 0.24 0.14 0.17 0.190 ± 0.051
Has 0.06 0.08 0.04 0.04 0.07 0.058 ± 0.018
InstanceOf 0.85 0.89 0.90 0.90 0.77 0.862 ± 0.055

Table 3: AUC PR scores per fold

Domain Search Terms
Cities Berlin,Manchester
Movies Godfather,Casablanca
Organizations Apple Inc.,Microsoft
People Tim Berners-Lee, Chris Bizer
Collections Godfather actors, UK universities

Table 1: 10 search terms used in constructing the learn-
ing/evaluation dataset

Entity(dbr:Open University)
Entity(dbr:Open University)
EntityType(dbo:Organisation)
EntityType(dbo:University)
Has(dbo:University,dbp:postgrad)
Has(dbo:University,dbo:chancellor)
IsInstanceOf(dbr:Open University,dbo:University)
IsInstanceOf(dbr:Open University,dbo:Organisation)

Figure 4: Ground truth annotation for the RDF in Figure
3(b)

From each search, the top five results were selected to be an-
notated with the ground truth. Figure 4 shows an example
of the ground truth annotation for the RDF graph shown in
Figure 3(b).

Methodology and Results
To learn the weights of the rules in the MLN, we used a
5-fold cross-validation procedure on the annotated dataset.
To ensure that the weights are not skewed towards a par-
ticular domain of search, we randomized the search results
to ensure that every split contained search results from ev-
ery one of the domains shown in Table 1. Table 2 shows
the average weights learned for the MLN rules. A positive
weight of a rule is an indication that the rule is supported
by the evidence present in the data. The higher the weight,
the stronger the evidence for the corresponding rule. One
obvious observation is that the weight of R1 is much higher
than the weight of other rules. The reason for this is that
rdf : type provides the strongest signal that URI represents
an entity as opposed to the strength of the signal for the
other query predicates in the MLN.

As mentioned in Section 3, the ML inference engine returns
the probability that a query atom is true. To evaluate the
inference results we measured the area under precision/re-
call (AUC PR) curves for all query predicates in the MLN
model. The precision/recall curve is computed by varying
the threshold above which a query atom is predicted to be
true. Table 3 shows the AUC PR scores obtained for every
query predicate for different test folds. We note that while

Rule ID Average Weight
1 55.259± 2.255
2 1.433± 0.151
3 1.793± 0.188
4 4.051± 0.121
5 4.161± 0.111
6 2.903± 0.248
7 3.227± 0.086
8 1.140± 0.358
9 1.229± 0.249

Table 2: Average weights learned for each rule

the standard deviation for Entity is rather high, for all other
query predicates it is relatively small.

The MLN seems to perform well on Entity, EntityType, and
IsInstanceOf; it is able to extract the signal from the data
that allows the inference of these predicates. On the other
hand, the MLN does not perform well on Attribute and Has.
This could be attributed to inference chains in the body of
the rules that define these predicates. In ML, longer chains
mean that the inference engine has a larger space to sam-
ple from, which reduces the likelihood of finding the correct
answer for the query predicate. Note that Attribute and
Has atoms correspond to schema elements with weak signal
from the data (e.g., no one-step inference from rdf : type as
with rule R1). Previous research has shown that schema in-
ference from instance data is challenging [4]. In LD search,
this problem is even harder because of the variability in the
data resources in terms of the descriptions they use. In Sec-
tion 5 we discuss proposals for improving the performance
of the MLN.

5. CONCLUSIONS AND FUTURE WORK
Search results over the web of data consist of collections of
triples from a range of sources, and typically contain RDF
resources that describe real-world entities of different types.
In addition, search results often contain assertions that pro-
vide additional metadata about the entities, which means
that the result of a search is a complex data set that may
be difficult to interpret automatically.

With a view to managing this complexity, we have inves-
tigated the use of Markov Logic to infer, with uncertainty,
which triples in a search result represent types, individu-
als, attributes and attribute values. This we have done by
learning the weights of an MLN, where the associated rules
express various hypotheses about the relationships between
the triples in a search result and the roles the elements in
those triples may be able to play in an entity relationship
diagram. The reason for targeting an entity relationship

226

diagram is that we would expect to be able to generate in-
tuitive tabular reports capturing features of search results
from such a representation.

The initial results might be considered to be somewhat dis-
appointing. Although we have been able to identify entity
types and instance-of relationships from the search domain
with high confidence, entity instances and attributes are not
being identified reliably by our MLN. Although there are dif-
ferent possible reasons for this (e.g. that the rules for identi-
fying such features could be improved upon), our preferred
interpretation is that the rules are plausible, it is simply that
the evidence to support them in actual search results is rel-
atively weak. In this context, the evidence may be lacking
because, for example, different publishers publish the data
in different ways, or a significant fraction of the data re-
trieved is not directly concerned with the structure of the
data in the domain. This in turn suggests that the problem
of capturing the domain knowledge in a search result, from
the contents of that result, is a difficult one.

Given these challenges, what might be the way ahead? The
Markov Logic framework is quite a general one, and we se-
lected it for use with this problem in part because this seems
to be an evidence-rich problem, in which the results of the
search can be combined with additional information to en-
able well founded inferences to be drawn. We envisage that
the following avenues can be pursued:

• Additional generic integration rules. To date, the in-
tegration rules have focused on the identification of
concepts from entity relationship diagrams using the
data from the search result. However, it would be pos-
sible to write additional generic rules. For example,
none of the current rules make use of the search terms,
and no attempt is made to identify duplicate triples or
entities across resources retrieved by the search. Ad-
ditional rules that capture such relationships may be
useful in distinguishing between the domain knowledge
in a result and associated metadata.

• Domain-specific integration rules. Successful applica-
tions of Markov Logic, for example in entity resolution
or knowledge base construction, have often made use
of domain-specific rules. As such, although searches
are generic, it would be possible to write rules that
know about certain domains, and the widely used ter-
minologies in such domains. For example, rules could
be written that are informed by common searches in
search logs, or that cover terminologies that are widely
used in practice [13]. Another possibility here is writ-
ing rules that use mappings between instance level or
schema level elements produced by exiting tools.

• Integration of results of other analyses. The current
rules act directly on the search results. However, it
would be possible to run additional analyses on these
search results, which in turn could be reflected in rules.
For example, analyses could carry out ontology align-
ment between search results, or could cluster triples
based on attribute values. The results of such anal-
yses could then be used as evidence predicates, and
included in additional generic or domain-specific inte-
gration rules.

• Integration of feedback. In Sig.ma, users are able to
refine the reports produced by ruling in/out specific
sources of data. However, in pay-as-you-go data inte-
gration, feedback of different forms can be provided,
for example on the correctness or relevance of specific
results. Such feedback could be used as evidence by
an MLN to inform the inference of results for different
query predicates.

6. REFERENCES
[1] C. Bizer, T. Heath, and T. Berners-Lee. Linked data -

the story so far. Int. J. Semantic Web Inf. Syst.,
5(3):1–22, 2009.

[2] Silvana Castano, Alfio Ferrara, Stefano Montanelli,
and Gaia Varese. Ontology and instance matching. In
Georgios Paliouras, ConstantineD. Spyropoulos, and
George Tsatsaronis, editors, Knowledge-Driven
Multimedia Information Extraction and Ontology
Evolution, volume 6050 of Lecture Notes in Computer
Science, pages 167–195. Springer Berlin Heidelberg,
2011.

[3] Gong Cheng and Yuzhong Qu. Searching linked
objects with falcons: Approach, implementation and
evaluation. International Journal on Semantic Web
and Information Systems (IJSWIS), 5(3):49–70, 2009.

[4] Klitos Christodoulou, Norman W Paton, and
Alvaro AA Fernandes. Structure inference for linked
data sources using clustering. In Proceedings of the
Joint EDBT/ICDT 2013 Workshops, pages 60–67.
ACM, 2013.

[5] Li Ding, Tim Finin, Anupam Joshi, Rong Pan, R Scott
Cost, Yun Peng, Pavan Reddivari, Vishal Doshi, and
Joel Sachs. Swoogle: a search and metadata engine for
the semantic web. In Proceedings of the thirteenth
ACM international conference on Information and
knowledge management, pages 652–659. ACM, 2004.

[6] P. Domingos and D. Lowd. Markov Logic: An
Interface Layer for Artificial Intelligence. Morgan &
Claypool, 2009.

[7] Jérôme Euzenat, Pavel Shvaiko, et al. Ontology
matching, volume 18. Springer, 2007.

[8] Alfio Ferraram, Andriy Nikolov, and François Scharffe.
Data linking for the semantic web. Semantic Web:
Ontology and Knowledge Base Enabled Tools,
Services, and Applications, page 169, 2013.

[9] Linyun Fu, Haofen Wang, Wei Jin, and Yong Yu.
Towards better understanding and utilizing relations
in dbpedia. Web Intelligence and Agent Systems,
10(3):291–303, 2012.

[10] Kalpa Gunaratna, Krishnaprasad Thirunarayan,
Prateek Jain, Amit Sheth, and Sanjaya Wijeratne. A
statistical and schema independent approach to
identify equivalent properties on linked data. In
Proceedings of the 9th International Conference on
Semantic Systems, pages 33–40. ACM, 2013.

[11] Cornelia Hedeler, Khalid Belhajjame, Norman W
Paton, Alessandro Campi, Alvaro AA Fernandes, and
Suzanne M Embury. Dataspaces. In Search
Computing, pages 114–134. Springer, 2010.

[12] Aidan Hogan. Exploiting RDFS and OWL for
Integrating Heterogeneous, Large-Scale, Linked Data
Corpora. PhD thesis, National University of Ireland,

227

Galway, 2011.

[13] Aidan Hogan, Jürgen Umbrich, Andreas Harth,
Richard Cyganiak, Axel Polleres, and Stefan Decker.
An empirical survey of linked data conformance. J.
Web Sem., 14:14–44, 2012.

[14] Wei Hu, Jianfeng Chen, and Yuzhong Qu. A
self-training approach for resolving object coreference
on the semantic web. In Proceedings of the 20th
international conference on World wide web, pages
87–96. ACM, 2011.

[15] Robert Isele and Christian Bizer. Active learning of
expressive linkage rules using genetic programming.
Web Semantics: Science, Services and Agents on the
World Wide Web, 23:2–15, 2013.

[16] Robert Isele, Anja Jentzsch, and Christian Bizer. Silk
server-adding missing links while consuming linked
data. In COLD, 2010.

[17] Hassan Khosravi and Bahareh Bina. A survey on
statistical relational learning. In Advances in Artificial
Intelligence, pages 256–268. Springer, 2010.

[18] Axel-Cyrille Ngonga Ngomo and Sören Auer. Limes: a
time-efficient approach for large-scale link discovery on
the web of data. In Proceedings of the Twenty-Second
international joint conference on Artificial Intelligence
- Volume Volume Three, IJCAI’11, pages 2312–2317.
AAAI Press, 2011.

[19] Mathias Niepert, Jan Noessner, Christian Meilicke,
and Heiner Stuckenschmidt. Probabilistic-logical web
data integration. In Reasoning Web. Semantic
Technologies for the Web of Data, pages 504–533.
Springer, 2011.

[20] Feng Niu, Ce Zhang, Christopher Ré, and Jude
Shavlik. Elementary: Large-scale knowledge-base
construction via machine learning and statistical
inference. International Journal on Semantic Web and
Information Systems (IJSWIS), 8(3):42–73, 2012.

[21] Jan Noessner, Mathias Niepert, Christian Meilicke,
and Heiner Stuckenschmidt. Leveraging terminological
structure for object reconciliation. In The Semantic
Web: Research and Applications, pages 334–348.
Springer, 2010.

[22] E. Oren, R. Delbru, M. Catasta, R. Cyganiak,
H. Stenzhorn, and G. Tummarello. Sindice.com: a
document-oriented lookup index for open linked data.
IJMSO, 3(1):37–52, 2008.

[23] P. Singla and P. Domingos. Entity resolution with
markov logic. In Data Mining, 2006. ICDM ’06. Sixth
International Conference on, pages 572–582, Dec 2006.

[24] G. Tummarello, R. Cyganiak, M. Catasta,
S. Danielczyk, R. Delbru, and S. Decker. Sig.ma: Live
views on the web of data. J. Web Semantics, 8(4):355
– 364, 2010.

[25] Johanna Völker and Mathias Niepert. Statistical
schema induction. In The Semantic Web: Research
and Applications, pages 124–138. Springer, 2011.

[26] Ziqi Zhang, Anna Lisa Gentile, Isabelle Augenstein,
Eva Blomqvist, and Fabio Ciravegna. Mining
equivalent relations from linked data. In ACL (2),
pages 289–293, 2013.

[27] Man Zhu, Zhiqiang Gao, Jeff Z Pan, Yuting Zhao,
Ying Xu, and Zhibin Quan. Ontology learning from
incomplete semantic web data by belnet. In Tools with

Artificial Intelligence (ICTAI), 2013 IEEE 25th
International Conference on, pages 761–768. IEEE,
2013.

[28] Nansu Zong, Dong-Hyuk Im, Sungkwon Yang, Hyun
Namgoon, and Hong-Gee Kim. Dynamic generation of
concepts hierarchies for knowledge discovering in
bio-medical linked data sets. In Proceedings of the 6th
International Conference on Ubiquitous Information
Management and Communication, page 12. ACM,
2012.

228

TripleGeo-CSW: A Middleware for Exposing Geospatial
Catalogue Services on the Semantic Web

Spiros Athanasiou§ Nikos Georgomanolis§ Kostas Patroumpas†,§

Michalis Alexakis§ Thodoris Stratiotis§
§Institute for the Management of Information Systems, "Athena" Research Center, Hellas

†School of Electrical & Computer Engineering, National Technical University of Athens, Hellas
{spathan, ngeorgomanolis, kpatro, alexakis, stratiot}@imis.athena-innovation.gr

ABSTRACT
A wealth of data and services are available on the Web, and
often have geographical context as well. But the vast quan-
tity of offered geospatial information is rather difficult to
explore, and its quality hard to assess, due to lack of suf-
ficient metadata. Hence, the Open Geospatial Consortium
has specified application profiles for publishing, accessing,
and searching over collections of spatial metadata with stan-
dardized Catalogue Services for the Web (CSW). Unfortu-
nately, existing spatial metadata remain largely unexploited
by Semantic Web technologies. In this paper, we introduce
TripleGeo-CSW, a middleware that can be used to discover
metadata from existing CSWs through a virtual SPARQL
endpoint. Acting as broker between a request (in SPARQL)
and catalogue services (in XML/GML), this platform can
provide on-the-fly information (as RDF triples) on available
geodata according to multiple, user-specified criteria (e.g.,
area of interest, date of last update, keywords). As a proof
of concept, we have set up an instance of this middleware
against CSWs from public authorities across Europe, which
involve datasets complying with the EU INSPIRE Directive.
Our experience testifies that TripleGeo-CSW can assist stake-
holders to repurpose existing CSWs with minimal overhead
and readily expose spatial metadata on the Semantic Web.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS ; H.3.5 [Information Storage
and Retrieval]: Online Information Services—Web-based
services

General Terms
Design, Management, Standardization

Keywords
Catalogue services, geospatial data, metadata, CSW, RDF,
GeoSPARQL, INSPIRE.

c©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0.

1. INTRODUCTION
Proliferation of location-aware devices (smartphones, car

navigators, etc.) over the past decade has led to an un-
precented offering of geospatial information on the Web.
Not only maps of the finest detail or satellite imagery of
the entire planet, but also geotagged photographs and ge-
olocation hashtags in social networking underscore the im-
portance of geography in our everyday life and activities.
Crowdsourcing has also become a valuable means of provid-
ing up-to-date geodata for free, thanks to initiatives such
as OpenStreetMap [21], GeoNames [10], or Wikimapia [34]
that engage thousands of volunteers worldwide.

However, all this geospatial information comes in so many
different formats, heterogeneous schemas, proprietary sys-
tems, customized services, etc., such that assessing its qual-
ity becomes a burden even for experts. For example, choos-
ing an unreliable road network for a routing application may
disappoint users despite its friendly interface; having up-
dated locations for points of interest (restaurants, cinemas,
bars, etc.) in a digital city guide could be the key to com-
mercial success; and an accurate geological map is indispens-
able in mineral exploration or when constructing transport
infrastructures. With so many geospatial data coming from
commercial vendors, governmental agencies, or crowdsourc-
ing, the need for precise metadata is indisputable. Such
metadata can provide a brief summary about the content,
purpose, quality, location of the spatial data, and also re-
port on its creation procedures. Indeed, information about
the geographical reference (i.e., its Coordinate Reference
System– CRS), resolution (i.e., the map scale used in digiti-
zation), date of last update, or textual keywords describing
the content of digital maps, can greatly assist users to choose
the geospatial features that best suit their needs.

ISO standard 19115:2003 [12] (recently updated to ISO
19115-1:2014 [13]) offers specifications for standardized meta-
data that can support users in effective discovery and re-
trieval of geodata. With the endorsement of the Open Geo-
spatial Consortium (OGC), this standard establishes a com-
mon terminology for metadata elements on geospatial fea-
tures, properties, and entire collections of geodata. Further-
more, catalogue services are important in publishing and
searching collections of metadata for geospatial data and
related web services. Metadata in catalogues represent re-
source characteristics that can be queried and presented for
evaluation and further processing by both humans and soft-
ware. OGC standard on Catalogue Services for the Web
(CSW) [18] specifies a framework and interfaces for defining
application profiles of services based on geospatial metadata.

229

This metadata can be queried in order to return results in
well-known content models (metadata schemas) and encod-
ings, e.g., in Geography Markup Language (GML) [19]. For
example, returned metadata records may contain informa-
tion about the title of datasets, their format, geographical
extent (i.e., their Bounding Box in latitude and longitude co-
ordinates), the Coordinate Reference System, licensing poli-
cies, as well as links to other associated metadata.

Unfortunately, accessing such spatial catalogue services
is currently disjoint from the Semantic Web, without any
means to repurpose the contents of existing catalogues ac-
cording to the Linked Data paradigm [3]. Having high-
quality linked metadata resources on available geodata could
offer great advantages for users and applications. Catalogue
contents would become machine reabable and potentially in-
terlinked with information from third parties. Fortunately,
the recent OGC GeoSPARQL standard [20] proposes struc-
tures for storing RDF geometries, querying them through a
SPARQL extension [31] equipped with a variety of spatial
operations [2], as well as with support for spatial reason-
ing on Linked Open Data (LOD). We regard this as a great
opportunity to expose spatial metadata from catalogues en-
coded in RDF [30] and queried through GeoSPARQL.

Yet another development may also act as a catalyst for
publishing linked spatial metadata. By 2020, implementa-
tion of the INSPIRE Directive (INfrastructure for SPatial
InfoRmation in Europe) [7] will enable discovery, download,
and visualization of geospatial information across the Euro-
pean Union in a common, cross-boundary manner. Paving
the way towards geospatial data interoperability and dis-
semination, several public organizations across Europe have
begun publishing metadata in spatial catalogues according
to the ISO and OGC specifications. Availability of such
official, diachronic, high-quality information can have ma-
jor benefits to governance, research, and enterpreneurship.
In case such metadata were made accessible via SPARQL
endpoints, they would certainly offer great perspectives for
extracting spatial knowledge and interlinking.

Towards these goals, we introduce TripleGeo-CSW [1], which
is essentially an open-source CSW-to-RDF middleware. Eas-
ily coupled with a web interface so as to constitute a virtual
GeoSPARQL enpoint, it allows users to explore the quantity
and quality of spatial datasets available from several exist-
ing Catalogue Services according to multiple search criteria.
With TripleGeo-CSW, GeoSPARQL queries are translated
on-the-fly into requests against CSW on remote servers over
HTTP protocols. Using RDF mappings for XML/GML en-
codings of standard geospatial metadata, the server response
is suitably transformed via XSL stylesheets [33] into RDF
triples that are finally returned as answers. To the best of
our knowledge, this is the first attempt to build an abstrac-
tion layer on top of the CSW and INSPIRE infrastructures
based on GeoSPARQL concepts, thus making spatial cata-
logues accessible and discoverable as linked metadata with
geometries. Our contribution can be summarized as follows:

• We have implemented TripleGeo-CSW, a middleware
that enables searching for available geodata through a
virtual GeoSPARQL interface for CSW.

• We have specified application profiles that can be used
as templates for transforming geospatial XML/GML
metadata into RDF by an XSLT parser.

• As a proof of concept, we exposed existing INSPIRE-
aligned catalogue services as linked data sources in
RDF. With minimal overhead, this web interface en-
ables queries in GeoSPARQL for discovering geospatial
resources across Europe.

The remainder of this paper proceeds as follows. In Sec-
tion 2, we survey related work on standards regarding spatial
metadata and catalogue services. In Section 3, we present
the architecture of TripleGeo-CSW by examining its compo-
nents, the processing flow, and its current implementation
status. In Section 4, we present a working case study on
data discovery over INSPIRE catalogue services. Section 5
concludes the paper.

2. BACKGROUND & RELATED WORK

2.1 Catalogue Services for the Web (CSW)
Catalogue Services for the Web (CSW) is an OGC stan-

dard [18] that describes application profiles for publishing,
accessing, and searching over collections of metadata on geo-
spatial data, services, and related resources. This meta-
data must be encoded in XML and the schema of its records
is usually conformant to more specific standards (like ISO
19139 [15], Dublin Core [6], or INSPIRE [7]). The spatial
extent of a dataset is given with its bounding box encoded in
GML [19]. Users may submit a number of different requests
(either GET or POST HTTP methods) to a CSW and the re-
sponse is encoded in an XML document as well. Typical
requests that must be always supported by a CSW are:

• GetCapabilities can be used to retrieve metadata de-
scribing the type of requests the CSW can accept (e.g.,
version, acceptable parameters, output formats, etc.).

• DescribeRecord returns a description of the metadata
records’ model, i.e., an XML schema definition (XSD).

• GetRecords retrieves actual metadata records that sat-
isfy criteria and filters specified in the request. Fig-
ure 4 illustrates one such request to CSW, asking for
available geodata within a rectangular area (given in
longitude/latitude coordinates) and matching specific
textual criteria on the subject of the dataset and its
associated keywords.

• GetRecordsById returns records matching a list of spe-
cific identifiers given as parameters in the request.

Other requests are non-mandatory for CSWs, like:

• GetDomain returns the range of values of a metadata
record field or a request parameter.

• Transaction can be used to create metadata records,
as well as to edit or delete existing ones.

• Harvest pulls metadata from third-party sources to
create new records or update existing ones in the CSW.

2.2 Spatial Metadata as Linked Data Sources
There are mainly two (often complementary) approaches

to cataloguing linked metadata. Data Catalogue Vocabulary
(DCAT) [28] is an RDF vocabulary designed to facilitate
interoperability between data catalogues published on the

230

<dct:conformsTo>
<dct:Standard>
<dct:title xml:lang=’en’>
<xsl:value-of select=’//gmd:report//gmd:title/gco:CharacterString’/>

</dct:title>
<dct:issued rdf:datatype=’http://www.w3.org/2001/XMLSchema#date’>
<xsl:value-of select=’//gmd:report//gco:Date’ />

</dct:issued>
</dct:Standard>

</dct:conformsTo>

Figure 1: Excerpt of XSL stylesheet for transforming metadata elements into RDF.

Web. The VoID Vocabulary (VoID) [32] makes use of an
RDF Schema vocabulary to express metadata about RDF
datasets, and aims at data discovery, cataloguing and archiv-
ing. However, both approaches make extensive use of terms
from other vocabularies, in particular Dublin Core [6].

Based on similar vocabularies, a few initiatives and case
studies headed towards linked metadata on spatial datasets.
Among them, the Mimas Linked Data Project for LandMap
Spatial Discovery in the UK has made some preliminary
work [17], mostly by identifying vocabularies and defining
RDF mappings for a subset of their datasets. An open
source prototype for Data Catalogue Vocabulary services
based on DCAT is being implemented in GeoNetwork [11],
and would eventually provide support to harvest, search
and link catalogue contents with other interlinked resources.
Public authorities across Europe have also begun publishing
spatial metadata through SPARQL enpoints, such as the
municipality of Zaragoza in Spain [35].

With regard to the particular task of exposing spatial
metadata as linked open data, the crosswalking approach
is suggested in [24, 16]. Metadata crosswalking involves
mappings from popular geospatial metadata schemas to the
Dublin Core vocabulary, addition of extra metadata ele-
ments, and finally expressing the metadata terms as RDF.
The authors in [24] suggest an alternative method for pub-
lishing geospatial metadata provisioned by custom catalogue
services as linked open metadata. In this case, RDF meta-
data terms are published directly from the UML represen-
tation of the underlying custom schemas.

The Joint Research Centre (JRC) of the European Com-
mission has begun an exploratory investigation [23] regard-
ing geospatial metadata on the Semantic Web. Of course,
they mainly focus on alignment with the EU INSPIRE Di-
rective [7] towards a LOD-enabled INSPIRE prototype, by
creating a corpus of RDF metadata exposed via a SPARQL
endpoint. Still, their preliminary version of RDF mappings
for INSPIRE metadata elements offers a concrete RDF rep-
resentation [9] for spatial metadata based on DCAT-AP and
other relevant vocabularies (such as DCT, SKOS, vCard,
etc.). In this work, we take advantage of such mappings and
we offer generic stylesheets in XSL (EXtensible Stylesheet
Language) [33], which can be used to transform XML files
with OGC-compliant spatial metadata into an equivalent
RDF representation. To the best of our knowledge, ours is
the first attempt to offer application profiles in RDF for stan-
dardized geospatial metadata through catalogue services.

3. MIDDLEWARE ARCHITECTURE
In this Section, we present TripleGeo-CSW, an open-source

middleware for data discovery from geospatial catalogue ser-

Table 1: Some RDF mappings for spatial metadata.
Metadata element RDF mapping of attribute
Resource title dct:title
Resource language dct:language
Keyword dcat:keyword
Geographic Bounding Box dct:spatial
Responsible organization – Owner dct:rightsHolder

vices on the Semantic Web. We first describe the way that
spatial metadata elements can be translated into RDF triples.
Then, we analyze the processing flow in TripleGeo-CSW, as
well as its capabilities of searching against CSW with mul-
tiple criteria via a virtual GeoSPARQL endpoint.

3.1 Metadata Application Profiles in RDF
Although still a work-in-progress, the RDF mappings sug-

gested by the JRC [9] offer a valuable basis to develop a
methodology for transforming spatial metadata elements into
RDF. Our goal is to facilitate such transformations on-the-
fly, such that contents from existing CSWs can be made ac-
cessible through (Geo)SPARQL. We are mostly interested
in exposing the spatial coverage of data, as well as the tem-
poral range of their lifecycle (i.e., when data was created,
published or modified). However, many more metadata ele-
ments are important as well, such as descriptions (e.g., title,
abstract, subject, keywords), content assessments (like qual-
ity, provenance, or conformity), as well as their legal status
(owner, license, point of contact, etc.). A few RDF mappings
from indicative metadata elements to vocabularies such as
DCAT and DCT are shown in Table 1. Once this metadata
gets exposed on the Semantic Web, it may be potentially
interlinked with other features, such as terms in code lists
or multilingual thesauri [23].

In practice, we manually created an application profile
for such metadata as a set of templates employed in XSLT
transformation [33]. Our custom XSL stylesheet1 accepts
an XML file with metadata records obtained as a response
from a request to a CSW. Once invoked with an XSLT
parser, the stylesheet turns metadata elements into suitable
RDF statements according to the mapping; the result is an
RDF/XML representation of original OGC-compliant meta-
data records. The XSL stylesheet is generic, covers all ele-
ments, and can be reused against any metadata conforming
to OGC/ISO specifications. The excerpt shown in Figure 1
refers to handling of elements related with dataset confor-
mity. Regarding the geographical coverage, its bounding box
can be suitably expressed either as a GeoSPARQL polygon

1Stylesheet Metadata2RDF.xsl is included in the source code [1];
it has been also integrated into our TripleGeo tool [22] for directly
transforming locally stored metadata files from XML into RDF.

231

Figure 2: Flow diagram for processing GeoSPARQL
queries in the TripleGeo-CSW middleware.

or a 2-dimensional rectangle BOX2D.
Our design adheres to reusing existing URIs as much as

possible, especially in statements concerning spatial, tempo-
ral, and identification elements. However, blank nodes exist
in the resulting triples, since these RDF mappings are based
on the abstract schema of metadata elements. Such blank
nodes are used as locally-scoped artifacts, which need not
be explicitly labelled. Provided that the user is aware of the
underlying schema (ISO/OGC), formulating (Geo)SPARQL
queries against such metadata is straightforward.

3.2 Processing GeoSPARQL Queries over CSW
We assume that a list of catalogue services (CSW) ex-

ists, and each service is operational and accepts HTTP re-
quests. In order to facilitate discovery of matadata from
such CSWs through (Geo)SPARQL, we have implemented
the TripleGeo-CSW middleware. The processing flow of this
middleware is illustrated in Figure 2. It is triggered by a
(Geo)SPARQL query, where the user can specify one or
more conditions according to the spatial metadata ontol-
ogy, as explained in Section 3.1. We developed a parser,
which identifies several types of such conditions, including
spatial predicates as documented next. The OGC standard
defines a specific model for CSW requests (POST/GET HTTP
protocols), which covers several cases. However, our major
concern here is the CSW <Filter> element, which controls
whether metadata should be retained according to specific
criteria. Hence, the user-specified GeoSPARQL conditions
must be internally rewritten and then integrated into the
<Filter> element of a GetRecords request for CSW. Thanks
to the OGC standard for CSW [18], an identical such re-
quest will be submitted simultaneously via POST HTTP pro-
tocol against each of the listed catalogues. Once each CSW
provides its response as a collection of qualifying metadata
records in a separate XML file. With the XSL stylesheet de-
scribed in Section3.1, these metadata records (conforming to
ISO 19115) are finally converted into XML/RDF triples and
are available for download by the user.

Note that integrity and consistency of metadata informa-
tion is a responsibility of the owners (governments, orga-
nizations, etc.), so each metadata element is supposed to
come from a single CSW. Thus, resolving conflicts is not em-
ployed when compiling the resulting RDF triples from mul-
tiple sources. Of course, the final output is OGC-compliant
metadata, since the XSLT transformation uses templates
that map each metadata element into DCAT elements.

This open-source software has been developed in Python
2.7.3, and it makes use of several additional libraries:

• urllib22, a Python module for fetching URLs (Uni-
form Resource Locators) and posing requests;

• re3 provides Perl-style regular expression pattern match-
ing and is used for parsing such expressions in users’
SPARQL requests;

• etree4 performs XML parsing using the concepts of
the ElementTree API for Python.

In its current release, TripleGeo-CSW can support user re-
quests to discover whether there are any available, updated
spatial datasets according to criteria that may involve a
given geographical area, a certain thematic category (e.g.,
transport, hydrography), or particular keywords (e.g., “wa-
ter”, “rail”). More specifically, a (Geo)SPARQL query that
can be handled by this middleware consists of two parts:

– a SELECT or CONSTRUCT clause identifies the attributes
that will appear in the query results, and

– a WHERE clause provides the basic graph pattern to
match against the metadata, as well as FILTER criteria.

Typically, a graph pattern in a WHERE clause consists of
a triple with subject, predicate and object; this pattern is
checked for matching against the metadata records. A pat-
tern is formatted as ?s ?p ?o, where ?s is the sought ele-
ment and ?o is either a specific value (e.g., a string literal like
“Environment”) or a binding variable. Hence, search involves
only triples satisfying match patterns ?s ?p ?o (Case 1) or
?s ?p "literal" (Case 2). In order to handle the matching
candidates, we make use of a List and a Dictionary structure.
The list is used for handling all triples with a variable as their
object (Case 1). The dictionary is a set of <key:value>

pairs with the requirement that keys are unique; so, it actu-
ally contains <element:value> pairs with unique metadata
elements (Case 2). In the evaluation, triple patterns are
checked one by one for matches, since multiple such criteria
may be present in a query. Currently, no query optimiza-
tion or check for syntax errors is performed; we defer dealing
with such issues in future releases.

Concerning filtering, TripleGeo-CSW supports GeoSPARQL
queries that may include any of the following criteria:

• Matching regular expressions (REGEX) against string lit-
erals. Through FILTER conditions in SPARQL, the
user can check wildcard pattern matchings of string
values (e.g., "^water*") with keywords, titles, sub-
jects, and other textual properties in the metadata.

• Date comparisons make use of typical operators (>, <,
<=, >=) and a constant date value as an argument, in
order to identify datasets issued, modified or published
before or after that particular date.

• Spatial filtering. OGC-compliant metadata include the
BoundingBox of the geographical extent for each dataset

2https://docs.python.org/2/library/urllib2.html
3https://docs.python.org/2/library/re.html
4https://docs.python.org/2/library/xml.etree.
elementtree.html

232

PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX dc: <http://purl.org/dc/terms/>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/geosparql/function/>
CONSTRUCT { ?m dcat:keyword ?k . ?s dc:subject ?sub . ?f geo:hasGeometry ?fWKT }
WHERE { ?m dcat:keyword ?k .

?s dc:subject "Environment" .
?f geo:hasGeometry ?fWKT .
FILTER (REGEX(str(?k),"^water*") && geof:sfWithin(?fWKT, "BOX2D(-8.24 54.02,-5.18 55.32)"^^geo:wktLiteral)) };

Figure 3: Example GeoSPARQL query against spatial metadata exposed in CSW.

as an indication of its coverage area. Hence, it makes
much sense to allow users discover availability of data
in their region of interest, specified as a 2-dimensional
rectangle (BOX2D) with four geographical coordinates.
The parser recognizes typical GeoSPARQL topological
predicates [20] like sfWithin(), sfContains(), sfIn-
tersects(), sfOverlaps(), etc., which can be trans-
lated into equivalent CSW spatial filters over rectan-
gles. For instance, operator sfWithin() checks whether
a user-specified BOX2D is totally within the coverage of
a dataset, sfIntersects() identifies whether a given
BOX2D intersects the coverage of a dataset, etc.

Logical operators for conjunction (&&) and disjunction (||)
can be used to combine filtering criteria, whereas a UNION

clause can bind statements specifying alternative patterns
(e.g., searching for datasets characterized by subjects like
“road” or “rail”). For instance, issuing the GeoSPARQL
query in Figure 3 will retrieve spatial metadata (in any of
the listed CSWs) for environmental features related to water
and within the given rectangular area. Note that no RDF
graph is specified, as neither do we make use of a phys-
ically stored semantic repository nor any RDF triples get
materialized or permanently retained. The TripleGeo-CSW
middleware automatically rewrites this query into an equiv-
alent GetRecords request (shown in Figure 4), which may
be submitted to each of the available CSWs. Consequently,
all RDF results are generated on-the-fly by XSLT transfor-
mation of the XML response received from these CSWs.

3.3 Implementation Status
TripleGeo-CSW is free software and its current version 1.0

is publicly available [1], including the source code in Python
and several query examples. TripleGeo-CSW can be redis-
tributed and modified under the terms of the GNU General
Public License. The software can work in standalone mode,
but it can also be coupled with a web interface.

A basic web interface consists of a client-side JavaScript
application that allows the user to edit a query, specify the
format for results, and download the qualifying RDF triples.
In addition, a server-side PHP application acts both as an
API proxy and an abstraction layer. Once it receives a query,
this proxy validates it, then builds the properly formulated
HTTP request against the list of available CSWs, and finally
sends back the results to the user.

Adding or removing a CSW simply involves editing a con-
figuration file in TripleGeo-CSW, i.e., adding or deleting the
related URL of that catalogue service. In essence, all pro-
cessing components are wrapped under this virtual Geo-
SPARQL endpoint, thus offering flexibility to interact di-
rectly with any number of remote catalogues and repurpose

<?xml version=’1.0’ encoding=’utf-8’?>
<GetRecords

xmlns="http://www.opengis.net/cat/csw/2.0.2"
xmlns:csw="http://www.opengis.net/cat/csw/2.0.2"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ows="http://www.opengis.net/ows"
xmlns:dcat="http://www.w3.org/ns/dcat#"
xmlns:dc="http://purl.org/dc/terms/"
xmlns:gml="http://www.opengis.net/gml"
xmlns:gmd="http://www.isotc211.org/2005/gmd"
xmlns:apiso="http://www.opengis.net/cat/csw/apiso/1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
service="CSW"
version="2.0.2"
startPosition="1"
resultType="results"
maxRecords="100"
outputFormat="application/xml"
outputSchema="http://www.isotc211.org/2005/gmd"
xsi:schemaLocation="http://www.opengis.net/cat/csw/2.0.2
http://schemas.opengis.net/csw/2.0.2/CSW-discovery.xsd">

<Query typeNames="gmd:MD_Metadata">
<ElementSetName typeNames="gmd:MD_Metadata">full
</ElementSetName>
<Constraint version="1.1.0">
<ogc:Filter>
<ogc:And>
<ogc:PropertyIsEqualTo>
<ogc:PropertyName>dc:subject</ogc:PropertyName>
<ogc:Literal>Environment</ogc:Literal>

</ogc:PropertyIsEqualTo>
<ogc:PropertyIsLike wildCard="^" singleChar="_">
<ogc:PropertyName>dcat:keyword</ogc:PropertyName>
<ogc:Literal>^water*</ogc:Literal>

</ogc:PropertyIsLike>
<ogc:Within>
<ogc:PropertyName>ows:BoundingBox</ogc:PropertyName>
<gml:Envelope>
<gml:lowerCorner>-8.24 54.02</gml:lowerCorner>
<gml:upperCorner>-5.18 55.32</gml:upperCorner>

</gml:Envelope>
</ogc:Within>

</ogc:And>
</ogc:Filter>

</Constraint>
</Query>

</GetRecords>

Figure 4: The GetRecords request to CSW corre-
sponding to the GeoSPARQL query in Figure 3.
Note that the spatial condition is translated into
an equivalent enclosure within a gml:Envelope spec-
ified with the given geographical coordinates. The
graph pattern and regular expression matching cri-
teria in the query are respectively transformed
into equivalent conditions ogc:PropertyIsEqualTo and
ogc:PropertyIsLike, recognizable by CSW services.

233

Table 2: INSPIRE-aligned metadata available through several CSWs across Europe.
INSPIRE Discovery Service in the Czech Republic: http://geoportal.cuzk.cz/SDIProCSW/service.svc/get?request=GetCapabilities&service=CSW
Estonian National Geoportal: http://inspire.maaamet.ee/geoportal/csw/discovery?request=GetCapabilities&Service=csw&language=eng
Irish Spatial Data Exchange: http://catalogue.isde.ie/geonetwork/srv/en/csw?request=GetCapabilities&service=CSW
National CSW for Norway: http://www.geonorge.no/geonetwork/srv/nor/csw-inspire?service=CSW&request=GetCapabilities
Discovery Service for the UK Location catalogue: http://csw.data.gov.uk/geonetwork/srv/en/csw?request=GetCapabilities&service=CSW
Spanish National Geographic Institute: http://www.ign.es/csw-inspire/srv/eng/csw?Service=CSW&Request=GetCapabilities
Metadata Catalogue of the SDI for Spain: http://www.idee.es/csw-inspire-idee/srv/eng/csw?request=GetCapabilities&service=CSW

their spatial metadata. The only prerequisite for such cata-
logues is that they must be compatible with the OGC stan-
dard for CSW [18] and thus support the related requests, as
discussed in Section 2.1.

4. A USE CASE: DISCOVERING INSPIRE
THROUGH GEOSPARQL QUERIES

In this Section, we present a use case where TripleGeo-
CSW has been applied in practice. This validation of the
middleware concerns discovery of INSPIRE-aligned spatial
datasets from catalogue services across Europe through a
virtual GeoSPARQL endpoint.

4.1 INSPIRE as a Source for Linked Data
The INSPIRE Directive 2007/2/EC [7] sets a unified frame-

work for Spatial Data Infrastructures (SDI) across the EU,
so that by 2020 spatial information can be shared among
European public authorities in order to assist in environ-
mental policies. Its foundations include technical interoper-
ability standards for geospatial metadata, data and online
services, as well as uniform legal rules for data interchange
and reuse. Towards establishing such a pan-European SDI,
INSPIRE specifications prescribe catalogues of available re-
sources using metadata, common access policies and stan-
dards, as well as network services for discovery, viewing,
downloading, transformation, etc. for spatial datasets.

Implementing Rules [8] for INSPIRE-compliant metadata
propose a schema for describing datasets, dataset series,
services and thematic layers across Europe. This schema
is designed according to ISO standards [12, 13] and con-
tains metadata elements for data regarding its identification,
topic, quality, geographical and temporal extent, as well as
points of contact with the responsible parties. In addition,
ISO-19119 [14] defines a framework for developing services
that can be used to access and process geospatial data. This
framework supports access to different data sources through
a generic, platform-neutral application interface. INSPIRE
metadata should not violate these ISO standards, but since
the latter require many more elements (e.g., points of con-
tact, restrictions) these have to be provisioned as well. On
the other hand, metadata published according to the ISO-
19115 core is not guaranteed to conform with the INSPIRE
ontology, so an alignment is necessary.

Unfortunately, no complete INSPIRE ontology in RDF/
OWL [29] currently exists. This reflects the difficulty of
bridging the ”closed world” assumption of UML models in
INSPIRE with the ”open world” view of RDF. Admittedly,
this limitation refers not only to INSPIRE, since exposing
geospatial information as open linked data is a relatively new
research topic. Especially for INSPIRE SDIs, some promi-
nent opportunities of utilizing linked open data have been
highlighted [25] by the Joint Research Centre of the Euro-
pean Commission, along with the requirements for achiev-

ing it. Exposing INSPIRE datasets as linked data has at-
tracted some research interest. The proposed approaches ei-
ther translate INSPIRE-compliant GML data models as se-
mantic OWL ontologies [26], or generate an ontology model
mixing a number of different existing ontologies and vocab-
ularies along with tools for RDF extraction and interlink-
ing [27], or even deriving linked data from GML data and
reusing existing concepts from vocabularies [5].

In contrast to the aforementioned approaches on spatial
data, there has not been any attempt to expose INSPIRE
metadata from existing catalogues according to the Geo-
SPARQL standard [20], as we present next. Our TripleGeo-
CSW suite for the Semantic Web can not only be used by
stakeholders that wish to make their SDI contents accessible
in RDF, but also for discovering available third-party data
via GeoSPARQL requests against CSWs.

4.2 Data Discovery from INSPIRE CSWs
Catalogue services for INSPIRE-compliant metadata have

become already available in various European countries, even
in non-EU member states like Norway, as indicated in Ta-
ble 2. Our work is focused on exposing such CSWs on
the Semantic Web through our CSW-to-RDF middleware
TripleGeo-CSW. In short, we wish to enable GeoSPARQL
queries with user-specified criteria against the contents of
such catalogues, so as to facilitate INSPIRE data discovery.
In this case, TripleGeo-CSW acts as a broker between a vir-
tual GeoSPARQL endpoint and a list of INSPIRE-compliant
CSWs, and undertakes to request any available information
from the CSWs, collect the partial XML results, and finally
return any qualifying metadata as RDF triples.

Towards this goal, we have made use of INSPIRE meta-
data from CSWs across Europe (Table 2). We stress that
this is just an indicative list of currently operating CSWs.
Of course, this list may be extended as more INSPIRE-
compliant such services become available, without necessi-
tating absolutely any change in our existing framework. It
only requires including any additional CSW into the list of
such services, i.e., editing the respective configuration file
that is accessible by the middleware.

In order to provide a simple and uniform interface to end-
users, we have implemented a web application that offers
the ability to issue GeoSPARQL queries against CSWs and
receive response in a variety of formats (RDF/XML, CSV,
HTML, etc.). This web interface is publicly available at:

http://geodata.gov.gr/sparql/

Users wishing to explore available INSPIRE geodata across
Europe must choose “A collection of INSPIRE CSW cata-
logues’’ as their (virtual) target store. We stress that no
triple store is used to physically retain any RDF metadata
received from such CSW services. Instead, qualifying meta-
data records are collected in XML and transformed on-the-
fly into a RDF serialization.

234

Figure 5: The virtual GeoSPARQL endpoint at http://geodata.gov.gr/sparql/ over INSPIRE CSWs.

This web interface (illustrated in Figure 5) includes a
few predefined (Geo)SPARQL query examples against these
CSW services. We have employed CONSTRUCT queries in or-
der to receive results as RDF triples, and also verify the
robustness of our middleware and validate its functionality.
These queries explore a wide range of metadata features,
e.g., keywords, subjects, titles, as well as the geographi-
cal area covered by the INSPIRE datasets referenced in the
CSWs. Indicatively, users can:

• Search for datasets tagged with a given keyword (e.g.,
“administrative”);

• Find available datasets that specify the given subject
(like “Environment”) in the metadata;

• Find datasets with spatial coverage inside a given rect-
angle (i.e., Bounding Box);

• Identify datasets on a given subject (e.g., “Environ-
ment”) and whose title includes a particular term (e.g.,
“network”).

Users may submit such queries ”as is”, modify them to
reflect their specific search criteria, and of course, write
their own queries in order to discover INSPIRE-compliant
datasets offered by the available CSWs.

5. SUMMARY
In this paper, we introduced an open-source software that

can be used to repurpose existing catalogue services (CSW)
on geospatial metadata as high quality Linked Data sources.
In effect, TripleGeo-CSW acts as a CSW-to-RDF middleware,
which translates a given GeoSPARQL query into an equiv-
alent request for available metadata records against multi-
ple CSWs. As soon as the response is collected, the origi-
nal XML metadata elements are transformed on-the-fly into
RDF triples and returned as answers.

As a proof of concept, we have successfully enabled users
to search for INSPIRE datasets from remote CSW services
across Europe, by providing a virtual GeoSPARQL interface
on top of TripleGeo-CSW. This ensures that INSPIRE Cat-
alogue Services are accessible with Semantic Web technolo-
gies and thus INSPIRE data are discoverable with negligible
overhead from stakeholders.

6. ACKNOWLEDGEMENTS
This work was partially supported by the European Com-

mission under FP7-ICT-2011-8 grant #318159 “GeoKnow –
Making the Web an Exploratory Place for Geospatial Knowl-
edge” and FP7-ICT-2013-SME-DCA grant #609608 “Pub-
licaMundi – Scalable and Reusable Open Geospatial Data”.
We also wish to thank Andrea Perego and Michael Lutz (Eu-
ropean Commission – JRC) for helpful discussions regarding
RDF mappings of INSPIRE-aligned metadata.

7. REFERENCES
[1] Athena R.C. TripleGeo-CSW open source middleware.

https://github.com/GeoKnow/TripleGeo-CSW

[2] R. Battle and D. Kolas. GeoSPARQL: Enabling a
Geospatial Semantic Web. Semantic Web Journal,
3(4): 355-370, 2012.

[3] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data
– The Story So Far. IJSWIS, 5(3): 1-22, 2009.

[4] DBpedia. http://dbpedia.org

[5] L. van den Brink, P. Janssen, W. Quak, and J. Stoter.
Linking spatial data: semi-automated conversion of
geo-information models and GML data to RDF.
IJSDIR, 9: 59-85, 2014.

[6] Dublin Core Metadata Initiative. Dublin Core
Metadata element set, Version 1.1. July 1999.
http://dublincore.org/documents/dcmi-terms/

[7] European Commission (EC). INSPIRE Directive –

235

Infrastructure for Spatial Information in the European
Community. http://inspire.jrc.ec.europa.eu/

[8] EC. INSPIRE Implementing Rules. http:
//inspire.ec.europa.eu/index.cfm/pageid/47

[9] EC. Alignment of INSPIRE metadata with
DCAT-AP. https://ies-svn.jrc.ec.europa.eu/
projects/metadata/wiki/Alignment_of_INSPIRE_

metadata_with_DCAT-AP

[10] GeoNames database. http://www.geonames.org/

[11] GeoNetwork Data Catalog Vocabulary services.
http://trac.osgeo.org/geonetwork/wiki/

proposals/DCATandRDFServices

[12] ISO 19115:2003. Geographic information – Metadata.
http://www.iso.org/iso/catalogue_detail.htm?

csnumber=26020

[13] ISO 19115-1:2014. Geographic information – Metadata
– Part 1: Fundamentals.
http://www.iso.org/iso/home/store/catalogue_

ics/catalogue_detail_ics.htm?csnumber=53798

[14] ISO 19119:2005. Geographic Information – Services.
http://www.iso.org/iso/home/store/catalogue_

tc/catalogue_detail.htm?csnumber=39890

[15] ISO/TS 19139:2007. Geographic Information –
Metadata – XML schema implementation.
http://www.iso.org/iso/catalogue_detail.htm?

csnumber=32557

[16] F.J. Lopez-Pellicer, A.J. Florczyk, J. Nogueras-Iso,
P.R. Muro-Medrano and F. J. Zarazaga-Soria.
Exposing CSW Catalogues as Linked Data. In
Geospatial Thinking, pp. 183-200, 2010.

[17] Mimas Linked Data Project (UK).
http://mimasld.wordpress.com/

[18] Open Geospatial Consortium (OGC). Catalogue
Service.
http://www.opengeospatial.org/standards/cat

[19] OGC Geography Markup Language Encoding
Standard, 2007. http://portal.opengeospatial.
org/files/?artifact_id=20509

[20] OGC GeoSPARQL Standard - A Geographic Query
Language for RDF Data, 2012. https://portal.
opengeospatial.org/files/?artifact_id=47664

[21] OpenStreetMap project.
http://www.openstreetmap.org/

[22] K. Patroumpas, M. Alexakis, G. Giannopoulos, and S.
Athanasiou. TripleGeo: an ETL Tool for Transforming
Geospatial Data into RDF Triples. In LWDM, pp.
275-278, 2014.

[23] A. Perego. Inspiring Data? Cross-domain
Interoperability for EU Spatial Data. In Using Open
Data Workshop, Brussels, Belgium, June 2012.

[24] J. Reid, W. Waites, and B. Butchart. An
Infrastructure for Publishing Geospatial Metadata as
Open Linked Metadata. In AGILE, 2012.

[25] S. Schade and M. Lutz. Opportunities and Challenges
for using Linked Data in INSPIRE. In Workshop on
Linked Spatiotemporal Data, 2010.

[26] S. Tschirner, A. Scherp, and S. Staab. Semantic access
to INSPIRE – How to publish and query advanced
GML data. In Terra Cognita, pp. 75-87, 2011.

[27] L.M. Vilches-Blázquez, B. Villazón-Terrazas, V.
Saquicela, A. de León, O. Corcho, and A.

Gómez-Pérez. GeoLinked Data and INSPIRE through
an Application Case. In ACM SIGSPATIAL GIS, pp.
446-449, November 2010.

[28] W3C. Data Catalog Vocabulary (DCAT).
http://www.w3.org/TR/vocab-dcat/

[29] W3C. OWL Web Ontology Language Overview.
http://www.w3.org/TR/owl2-overview/

[30] W3C. Resource Description Framework 1.1.
http://www.w3.org/TR/rdf11-new/

[31] W3C. SPARQL 1.1 Query Language for RDF.
http://www.w3.org/TR/sparql11-query/

[32] W3C. VoID Vocabulary (3/3/2011).
http://www.w3.org/TR/void/

[33] W3C. XSL Transformations (XSLT).
http://www.w3.org/TR/xslt

[34] Wikimapia. http://wikimapia.org

[35] Zaragoza municipality SPARQL endpoint.
http://www.zaragoza.es/datosabiertos/sparql

236

Frequent Subgraph Mining
from Streams of Linked Graph Structured Data

Alfredo Cuzzocrea
ICAR-CNR & Uni. Calabria

Rende (CS), Italy
cuzzocrea@si.deis.unical.it

Fan Jiang
University of Manitoba
Winnipeg, MB, Canada

umjian29@cs.umanitoba.ca

Carson K. Leung
University of Manitoba
Winnipeg, MB, Canada

kleung@cs.umanitoba.ca

ABSTRACT
Nowadays, high volumes of high-value data (e.g., semantic
web data) can be generated and published at a high velocity.
A collection of these data can be viewed as a big, interlinked,
dynamic graph structure of linked resources. Embedded in
them are implicit, previously unknown, and potentially use-
ful knowledge. Hence, efficient knowledge discovery algo-
rithms for mining frequent subgraphs from these dynamic,
streaming graph structured data are in demand. Some exist-
ing algorithms require very large memory space to discover
frequent subgraphs; some others discover collections of fre-
quently co-occurring edges (which may be disjoint). In con-
trast, we propose—in this paper—algorithms that use lim-
ited memory space for discovering collections of frequently
co-occurring connected edges. Evaluation results show the
effectiveness of our algorithms in frequent subgraph mining
from streams of linked graph structured data.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—graphs and networks; E.2
[Data]: Data Storage Representations—linked representa-
tions; H.2.8 [Database Management]: Database Appli-
cations—data mining

General Terms
Algorithms; Design; Experimentation; Management; Perfor-
mance; Theory

Keywords
Data mining, frequent patterns, graph structured data, linked
data, extending database technology, database theory

1. INTRODUCTION
Nowadays, high volumes of valuable semantic web, life sci-
ence, social network, or bibliographical network data can be
generated from diverse real-life applications [3, 14, 23]. For
example, semantic web data—such as blogs, forums, wikis,

c⃝2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015,
Brussels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of
this paper is permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0.

and users’ reviewers—can be published and connected at a
high velocity as the web enables users to link related re-
sources (e.g., related documents and related data). These
linked data [19] are commonly published by using technolo-
gies like (i) uniform resource identifiers (URIs) which iden-
tify resources, (ii) hypertext transfer protocol (HTTP) which
retrieves or describes resources, and (iii) resource description
framework (RDF) which graphically models linkage among
resources. A collection of these data can be viewed as a
big, interlinked, and dynamic graph structure of linked re-
sources. Embedded in these data are implicit, previously
unknown, and potentially useful knowledge. Having tech-
niques for modelling, querying, and reasoning these linked
data [13, 15] is desirable. In this paper, we focus on min-
ing frequent subgraphs from these dynamic streaming graph
structured data. Note that some existing algorithms require
very large memory space to mine frequent subgraphs; some
others discover collections of frequently co-occurring edges
(which may be disjoint). In contrast, we propose—in this
paper—algorithms that use limited memory space for discov-
ering collections of frequently co-occurring connected edges.

1.1 Related Works
Since the introduction of the frequent pattern mining prob-
lem [2], numerous algorithms have been proposed [25, 27,
28]. For example, FP-growth [18] uses an in-memory ex-
tended prefix-tree structure called Frequent Pattern tree
(FP-tree)—which captures the content of the transaction
database—for mining sets of frequently co-occurring items
(e.g., shopper market baskets of frequently purchased mer-
chandise items) from traditional static databases (e.g., con-
taining shopper market transactions). Some works [6, 17]
use disk-based structure for mining. However, they mine
from static databases.

As technology advances, dynamic streams of graph struc-
tured data (e.g., streams of semantic web, sensor network,
social network, and road network data [10]) can be easily
generated at high velocity. When comparing with mining
from traditional static databases, mining from dynamic data
streams [20, 29, 30] is more challenging due to the following
properties of data streams: (i) Data streams are continuous
and unbounded. To find frequent patterns from streams, we
no longer have the luxury of performing multiple data scans.
Once the streams flow through, we lose them. Hence, we
need some data structures to capture the important con-
tents of the streams (e.g., recent data—because users are
usually more interested in recent data than older ones [11,
12]). (ii) Streaming data are not necessarily uniformly dis-
tributed; their distributions are usually changing with time.

237

A currently infrequent pattern may become frequent in the
future, and vice versa. So, we have to be careful not to
prune infrequent patterns too early; otherwise, we may not
be able to get complete information such as frequencies of
certain patterns (as it is impossible to retract those pruned
patterns). To mine frequent patterns from data streams,
both approximate and exact algorithms have been proposed.
For instance, approximate algorithms (e.g., FP-streaming
[16], TUF-streaming [24]) focus mostly on efficiency. How-
ever, due to approximate procedures, these algorithms may
find some infrequent patterns or miss frequency informa-
tion of some frequent patterns (i.e., some false positives or
negatives). An exact algorithm mines only truly frequent
patterns (i.e., no false positives and no false negatives) by
(i) constructing a Data Stream Tree (DSTree) [26] to cap-
ture contents of the streaming data and then (ii) recursively
building FP-trees for projected databases based on the in-
formation extracted from the DSTree.

The aforementioned properties play an important role in
the mining of data streams in general; they play a more chal-
lenging role in the mining of a specific class of streaming
data—namely, streams of graph structured data. State-of-
the-art solutions to these challenges include the following:
Aggarwal et al. [1] studied the research problem of mining
dense patterns in graph streams, and they proposed proba-
bilistic algorithms for determining such structural patterns
effectively and efficiently. Bifet et al. [4] mined frequent
closed graphs on evolving data streams. Their three innova-
tive algorithms work on coresets of closed subgraphs, com-
pressed representations of graph sets, and maintain such sets
in a batch-incremental manner. Moreover, Valari et al. [31]
discovered top-k dense subgraphs in dynamic graph collec-
tions by means of both exact and approximate algorithms.
Furthermore, Chi et al. [9] proposed a fast graph stream
classification algorithm that uses discriminative clique hash-
ing (DICH), which can be applicable for OLAP analysis over
evolving complex networks. We [5, 7] previously mined fre-
quent patterns—in the form of collections of frequently co-
occurring edges—from dense graph streams.

1.2 Our Contributions
Our previous solution [7] finds collections of frequently co-
occurring edges, which include connected as well as disjoint
edges. In many real-life situations (e.g., social or business
applications [21, 22]), it is desirable to obtain collections
of frequent disjoint edges so as to help the discovery of the
missing links (e.g., connect two or more disjoint groups of so-
cial entities sharing common research or business interests).
However, in some other situations, it is more efficient to find
only the collections of frequent connected edges. Hence, in
this paper, we propose algorithms that find collections of fre-
quently co-occurring connected edges from streaming graph
structured data. The algorithms either prune irrelevant (dis-
joint) edges at a post-processing step or push such a prune
step early in the mining process. Consequently, only relevant
patterns (i.e., frequent connected subgraphs) are returned to
users. Moreover, as high volumes of streaming graph struc-
tured data can be generated at a high velocity, data may be
too big to fit into memory. Our algorithms were designed in
such a way that they use limited memory.

This paper is organized as follows. Background is pro-
vided in Section 2. Section 3 presents our algorithms that
first build an on-disk data structure to capture and main-

tain relevant streaming graph structured data, recursively
discover collections of frequent edges, and then prune those
disjoint edges at a post-processing step. Section 4 presents
an improved algorithm that pushes the prune step early in
the mining process. Section 5 shows experimental results.
Finally, conclusions are given in Section 6.

2. BACKGROUND
In this section, we provide background information on three
different structures for capturing streaming data.

2.1 DSTree
When mining frequent patterns from streaming data, an
exact algorithm [26] first constructs a Data Stream Tree
(DSTree), which is then used as a global tree for recursive
generation of smaller FP-trees (as local trees) for projected
databases. Due to the dynamic nature of data streams, fre-
quencies of items are continuously affected by the insertion
of new batches (and the removal of old batches) of transac-
tions. Arranging items in frequency-dependent order may
lead to swapping—which, in turn, can cause merging and
splitting—of tree nodes when frequencies change. Hence,
in the DSTree, transaction items are arranged according to
some canonical order (e.g., alphabetical order), which can be
specified by the user prior to the tree construction or min-
ing process. Consequently, the DSTree can be constructed
using only a single scan of the streaming data. Note that
the DSTree is designed for processing streams within a slid-
ing window. For a window size of w batches, each tree node
keeps (i) an item and (ii) a list of w frequency values (instead
of a single frequency count in each node as in the FP-tree for
frequent pattern mining from static databases). Each entry
in this list captures the frequency of an item in each batch of
dynamic streams in the current window. By so doing, when
the window slides (i.e., when new batches are inserted and
old batches are deleted), frequency information can be up-
dated easily. Consequently, the resulting DSTree preserves
the usual tree properties that (i) the total frequency (i.e.,
sum of w frequency values) of any node is at least as high
as the sum of total frequencies of its children and (ii) the
ordering of items is unaffected by the continuous changes in
item frequencies.

After the construction of the (global) DSTree, it is al-
ways kept up-to-date when the window slides. The actual
mining process is “delayed” until it is needed. To start min-
ing, the algorithm first traverses relevant tree paths upwards
and sums the frequency values of each list in a node repre-
senting an item (or a set of items)—to obtain its frequency
in the current sliding window—for forming an appropriate
projected database. Afterwards, the algorithm constructs a
(local) FP-tree for the projected database of each of these
frequent patterns of only 1 item (i.e., 1-itemset) such as
an {x}-projected database (in a similar fashion as in the
FP-growth algorithm for mining static data [18]). There-
after, the algorithm recursively forms subsequent FP-trees
for projected databases of frequent k-itemsets where k ≥ 2
(e.g., {x, y}-projected database, {x, z}-projected database,
etc.) by traversing paths in these FP-trees. As a result, the
algorithm finds all frequent patterns. Note that, as items are
consistently arranged according to some canonical order, the
algorithm guarantees the inclusion of all frequent items us-
ing just upward traversals. Moreover, there is also no worry
about possible omission or double-counting of items during

238

the mining process. Furthermore, as the DSTree is always
kept up-to-date, all frequent patterns—which are embedded
in batches within the current sliding window—can be found
effectively.

2.2 DSTable
The success of mining with the DSTree mainly relies on
the assumption—usually made for many tree-based algo-
rithms [18]—that all tree (i.e., the global tree together with
subsequent FP-trees) fit into the memory. For example,
when mining frequent patterns from the {x, y, z}-projected
database, the global tree and three subsequent local FP-trees
(for the {x}-, {x, y}- and {x, y, z}-projected databases) are
all assumed to be fit into memory. However, there are sit-
uations (e.g., for streaming graph structured data) where
the memory is so limited that not all these trees can fit
into memory. To handle these situations, the Data Stream
Table (DSTable) [8] was proposed. The DSTable is a two-
dimensional table that captures on the disk the contents of
transactions in all batches within the current sliding win-
dow. Each row of the DSTable represents a domain item.
Like the DSTree, items in the DSTable are arranged accord-
ing to some canonical order (e.g., alphabetical order), which
can be specified by the user prior to the construction of the
DSTable. As such, table construction requires only a single
scan of the stream. Each entry in the resulting DSTable
is a “pointer” that points to the location of the table entry
(i.e., which row and which column) for the “next” item in
the same transaction. When dealing with streaming data,
the DSTable also keeps w boundary values (to represent the
boundary between w batches in the current sliding window)
for each item. By doing so, when the window slides, trans-
actions in the old batch can be removed and transactions in
the new batch can be added easily.

Once the DSTable is constructed and updated, the algo-
rithm first extracts relevant transactions from the DSTable.
Then, the algorithm (i) constructs an FP-tree for the pro-
jected database of each of these 1-itemsets and (ii) recur-
sively forms subsequent FP-trees for projected databases of
frequent k-itemsets (where k ≥ 2) by traversing the paths
of these FP-trees. On the positive side, the algorithm finds
all frequent patterns. On the negative side, to facilitate
easy insertion and deletion of contents in the DSTable when
the window (of size w batches) slides, the DSTable keeps
w boundary values for each row (representing each of the
m domain items). Hence, the DSTable needs to keep a total
of m × w boundary values. Moreover, each table entry is a
“pointer” that indicates the location in terms of row name
and column number of the table entry for the “next” item
in the same transaction. When the data stream is sparse,
only a few “pointers” need to be stored. However, when the
graph stream is dense, many “pointers” need to be stored.
Given a total of |T | transactions in all batches within the
current sliding window, there are potentially m×|T | “point-
ers” (where m is the number of domain items). Further-
more, during the mining process, multiple FP-trees need to
be constructed and kept in memory (e.g., FP-trees for all
{a}-, {a, c}- and {a, c, d}-projected databases are required
to be kept in memory).

2.3 DSMatrix
The use of a two-dimensional structure called Data Stream
Matrix (DSMatrix) [7] solves the aforementioned problems

while mining frequent patterns from data streams with lim-
ited memory because this matrix structure captures the con-
tents of transactions in all batches within the current sliding
window by storing them on the disk. The DSMatrix is a bi-
nary matrix, which represents the presence of an item x in
transaction ti by a “1” in the matrix entry (ti, x) and the
absence of an item y from transaction tj by a “0” in the ma-
trix entry (tj , y). With this binary representation of items
in each transaction, each column in the DSMatrix captures
a transaction. Each column in the DSMatrix can be con-
sidered as a bit vector. The DSMatrix keeps track of any
boundary between two batches so that, when the window
slides, transactions in the older batches can be easily re-
moved and transactions in the newer batches can be easily
added. Unlike the DSTable (in which boundaries may vary
from one row representing an item to another row repre-
senting another item due to the potentially different num-
ber of items present), boundaries in DSMatrix are the same
from one row to another because we put a binary value (0
or 1) for each transaction. Hence, the DSMatrix only keeps
w boundary values (where w ≪ m×w) for the entire matrix,
regardless how many domain items (m) are here. Moreover,
as DSMatrix uses a bit vector to indicate the presence or
absence of items in a transaction, the computation does not
require us to keep track of the index of the last item in every
row and thus incurring a lower computation cost. Given a
total of |T | transactions in all batches within the current slid-
ing window, there are |T | columns in our DSMatrix. Each
column requires only m bits. In other words, the DSMatrix
takes m × |T | bits (cf. potentially 64m × |T | bits for dense
data streams required by the DSTree).

3. FREQUENT CONNECTED SUBGRAPH
MINING WITH A POST-PROCESSING
STEP

To find collections of frequent edges in streams of graph
structured data, our proposed algorithms first construct a
DSMatrix to capture and maintain within the current win-
dow those relevant streaming data. When a new batch
of streaming graph structured data comes in, the window
slides. Transactions in the oldest batch in the sliding win-
dow are then removed from the DSMatrix so that transac-
tions in this new batch can be added. In other words, the
mining is “delayed” until it is needed. Once the DSMatrix
is constructed, it is kept up-to-date on the disk. See Exam-
ple 1.

Example 1. For illustrative purpose, let us consider a slid-
ing window of size w = 2 batches (i.e., only two batches are
kept) and the following stream of graphs, where each graph
G = (V, E) consists of |V | = 4 vertices (Vertices v1, v2, v3

and v4) and |E| ≤ 6 edges:

• At time T1, E1 = {(v1, v4), (v2, v3), (v3, v4)};

• At time T2, E2 = {(v1, v2), (v2, v4), (v3, v4)};

• At time T3, E3 = {(v1, v2), (v1, v4), (v3, v4)};

• At time T4, E4 = {(v1, v2), (v1, v4), (v2, v3), (v3, v4)};

• At time T5, E5 = {(v1, v2), (v2, v3), (v2, v4), (v3, v4)};

• At time T6, E6 = {(v1, v2), (v1, v3), (v1, v4)};

• At time T7, E7 = {(v1, v2), (v1, v4), (v3, v4)};

• At time T8, E8 = {(v1, v2), (v1, v4), (v2, v3), (v3, v4)};

• At time T9, E9 = {(v1, v3), (v1, v4), (v2, v3)}.

239

See Figure 1. These graphs may represent some insertions,
deletions, and/or updates on the linkages among linked data
or documents in a semantic web. For simplicity, we repre-
sent these edges by six symbols a, b, c, d, e and f . Conse-
quently, we get (i) edges E1 = {c, d, f}, E2 = {a, e, f} and
E3 = {a, c, f} in the first batch B1; as well as (ii) edges E4 =
{a, c, d, f}, E5 = {a, d, e, f} and E6 = {a, b, c} in the second
batch B2. Then, the DSMatrix stores the following infor-
mation at the end of time T6:

DSMatrix (capturing E1–E6):
Boundaries: Cols 3 & 6

Row Contents
Row a: 0 1 1; 1 1 1
Row b: 0 0 0; 0 0 1
Row c: 1 0 1; 1 0 1
Row d: 1 0 0; 1 1 0
Row e: 0 1 0; 0 1 0
Row f : 1 1 1; 1 1 0

DSMatrix keeps track of the global boundary information
(which is applicable for all rows).

When the third batch B3 of streaming graph structured
data flows in, the window slides. DSMatrix uses the bound-
ary information to remove data in all columns up to Col 3
while keeping data in Col (3+1) to Col 6 (or more pre-
cisely, shifting all columns from Cols 4–6 to Cols 1–3. After
the removal of the first three columns, DSMatrix appends
three columns representing (iii) edges E7 = {a, c, f}, E8 =
{a, c, d, f} and E9 = {b, c, d} in the third batch B3. In other
words, DSMatrix stores the following information for E4–E9

in batches B2 & B3 at the end of time T9.

DSMatrix (capturing E4–E9):
Boundaries: Cols 3 & 6

Row Contents
Row a: 1 1 1; 1 1 0
Row b: 0 0 1; 0 0 1
Row c: 1 0 1; 1 1 1
Row d: 1 1 0; 0 1 1
Row e: 0 1 0; 0 0 0
Row f : 1 1 0; 1 1 0

Again, DSMatrix keeps track of the global boundary infor-
mation (which is applicable for all rows).

3.1 Mining with Multiple FP-trees
After constructing a DSMatrix, our first algorithm extracts
columns from the DSMatrix to build a tree in memory for
each {x}-projected database (which is a collection of all the
edges containing x). Afterwards, the algorithm recursively
finds collections of frequent edges from the tree for this pro-
jected database. See Example 2.

Example 2. At the end of time T9, our first algorithm
mines frequent patterns with the DSMatrix capturing E4–E9

in Example 1 by first forming the {a}-projected database.
We examine Row a. For every column with a value “1”,
we extract its column downwards (e.g., from edges/items b
to e if they exist). Specifically, when examining Row a,
we notice that columns 1, 2, 3, 4 and 6 contain values “1”
(which means that edges a appears in those five graphs
in the two batches of streaming graph structured data in
the current sliding window). Then, from Column 1, we

Figure 1: A stream of graph structured data (Ex-
ample 1).

extract {c, d, f}. Similarly, we extract {d, e, f} and {b, c}
from Columns 2 and 3. We also extract {c, f} and {c, d, f}
from Columns 4 and 5. All these form the {a}-projected
database, from which an FP-tree can be built. From this FP-
tree for the {a}-projected database, we find that edge-pairs
{a, c}, {a, d} and {a, f} are frequent. Hence, we then form
{a, d}- and {a, f}-projected databases, from which FP-trees
can be built. (Note that we do not need to form the {a, c}-
projected database as it is empty after forming both {a, d}-
and {a, e}-projected databases.) When applying this step
recursively in a depth-first manner, we obtain frequent edge-
triplets {a, c, d}, {a, c, f} and {a, d, f}, which leads to FP-
trees for the {a, d, c}-projected database. (Again, we do not
need to form the {a, f, c}- or {a, d, f}-projected databases
as they are both empty.) At this moment, we keep FP-
trees for the {a}-, {a, d}- and {a, d, c}-projected databases.
Afterwards, we also find that edge-quadruplet {a, c, d, f} is
frequent. In the context of graph streams, this is a fre-
quent collection of 4 edges—namely, Edges a, c, d and f .
To recap, in addition to the five frequent singletons (i.e.,
edges a, b, c, d and f), a total of seven collections of fre-
quent edges were found from the {a}-projected database:
{a, c}, {a, c, d}, {a, c, d, f}, {a, c, f}, {a, d}, {a, d, f} & {a, f}.

Afterward, we backtrack and examine the next frequent
singleton {b}. For Row b, we notice that Columns 3 and 6
contain values “1” (which means that b appears in those
two graphs in the current sliding window). For these two
columns, we extract downward to get {c} and {c, d} that
appear together with b (to form the {b}-projected database).
The corresponding FP-tree contains {c}:2 meaning that c
occurs twice with b (i.e., edge-pair {b, c} is frequent with
frequency 2). To recap, a total of 1 collection of frequent
edges was found from the {b}-projected database: {b, c}.

Similar steps are applied to other frequent singletons {c},
{d} and {f} in order to discover all collections of frequent
edges. For instance, a total of 3 collections of frequent edges

240

were found from the {c}-projected database: {c, d}, {c, d, f}
and {c, f}. Similarly, a total of 1 collection of frequent edges
was found from the {d}-projected database: {d, f}. Conse-
quently, our first algorithm found a total of 5+7+1+3+1
= 17 collections of frequent edges, which include some con-
nected edges like {a, d} ≡ {(v1, v2), (v2, v3)} as well as some
disjoint edges such as {a, f} ≡ {(v1, v2), (v3, v4)}.

3.2 Frequency Counting on a Single FP-tree
In Example 2, the mining process requires multiple FP-trees
to be kept in the memory during the mining process. How-
ever, when the memory space is limited, not all of the mul-
tiple FP-trees can fit into the memory. One way to solve
this problem is to apply an effective frequency counting tech-
nique: Once an FP-tree for the projected database of a fre-
quent singleton is built, the algorithm traverses every tree
node in a depth-first manner (e.g., pre-order, in-order, or
post-order traversal). For every first visit of a tree node, the
algorithm generates the collection of edges represented by
the node and its subsets. We also compute their frequen-
cies.

Example 3. Revisit Example 2 but with the frequency
counting techniques applied to a single FP-tree. Specifically,
our second algorithm first constructs an FP-tree for the {a}-
projected database. It then traverses every node in such an
FP-tree. When traversing the leftmost branch ⟨c:4, b:1⟩,
we visit nodes “c:4” (which represents edge-pair {a, c} with
frequency 4) and “b:1” (which gives {a, b} with frequency 1
and {a, b, c} with frequency 1). Next, we traverse the mid-
dle branch ⟨c:4, f :3, d:2⟩. By visiting nodes “f:3” and “d:2”,
we get {a, f} and {a, c, f} both with frequencies 3, as well
as {a, d}, {a, c, d}, {a, d, f} and {a, c, d, f} all with frequen-
cies 2. Finally, we visit nodes“f:1”and“d:1” in the rightmost
branch ⟨f :1, d:1⟩, from which we get the frequency 1 for both
{a, d}, {a, d, f} and {a, f}. This frequency value is added to
the existing frequency count of 2 (from the middle branch) to
give the frequency of {a, d} and {a, d, f} equal to 3. Hence,
with the minsup threshold set to 2, we obtain frequent pat-
terns {a, c}:4, {a, c, d}:2, {a, c, d, f}:2, {a, c, f}:3, {a, d}:3,
{a, d, f}:3 and {a, f}:4. Note that, during this mining pro-
cess for the {a}-projected database, we count frequencies of
subgraphs without recursive construction of FP-trees.

Afterwards, we build an FP-tree for the {b}-projected
database and count frequencies of all frequent subgraphs
containing item b. Similar steps are applied to the FP-trees
for the {c}- and {d}-projected databases. Consequently, our
second algorithm found the same 17 collections of frequent
edges as those in Example 2. However, at any moment
during the mining process, only one FP-tree needs to be
constructed and kept in the memory (cf. multiple FP-trees
required by our first algorithm described in Section 3.1).

3.3 Mining a Single FP-tree in a Top-Down
Fashion

An alternative way to avoid the construction of multiple FP-
trees is to apply top-down tree mining (similar to that of
the TD-FP-growth algorithm [32]). Specifically, we (i) form
only a projected database for each frequent singleton (cf.
Section 3.1, in which projected databases for singletons and
non-singletons are recursively formed) and (ii) in reverse
order—i.e., the top-down order (cf. bottom-up fashion as in
the FP-growth algorithm or that described in Section 3.1).

Example 4. When applying this top-down tree-based min-
ing, our third algorithm found the same 17 collections of
frequent edges as those in Examples 2 and 3.

3.4 Vertical Mining
With the representation of relevant graph structured data in
the DSMatrix, it is logical to mine frequent subgraphs ver-
tically. Specifically, our fourth algorithm examines each row
(representing an edge). The row sum (i.e., total number of
1s) gives the frequency of the edge represented by that row.
Once the frequent singleton edges are found, we intersect
the bit vectors for two edges. If the row sum of the resulting
intersection ≥ the user-specified minsup threshold, then we
find a frequent edge-pair. We repeat these steps by inter-
secting two bit vectors of frequent patterns to find frequent
subgraphs consisting of multiple edges.

Example 5. Revisit Examples 2, 3 and 4. Our fourth al-
gorithm first computes the row sum for each row (i.e., for
each domain item). As a result, we find that edges a, b, c, d
and f are all frequent with frequencies 5, 2, 5, 4 and 4,
respectively. Afterwards, the algorithm intersects the bit
vector of a (i.e., Row a) with any one of the remaining four
bit vectors (i.e., any one of the four rows) to find frequent
edge-pairs {a, c}, {a, d} and {a, f} with frequencies 4, 3 and
4, respectively, because (i) the intersection of a⃗ and c⃗ gives a

bit vector 101110, (ii) the intersection of a⃗ and d⃗ gives a bit

vector 110010, and (iii) the intersection of a⃗ and f⃗ gives a

bit vector 110110. Next, we intersect (i) −→ac with
−→
ad, (ii) −→ac

with
−→
af and (iii)

−→
ad with

−→
af to find frequent edge-triplets

{a, c, d}, {a, c, f} and {a, d, f}. We also intersect
−→
acd with−→

acf to find frequent edge-quadruplet {a, c, d, f}. These are
all collections of frequent edges containing a.

Afterwards, we repeat similar steps with the bit vectors

for other edges. For instance, we intersect b⃗ with c⃗, d⃗ and

f⃗ . We find out that, among them, only {b, c} is frequent

with frequency 2. We also intersect c⃗ with d⃗ and f⃗ to find
frequent edge-triplets {c, d} and {c, f}, each with frequen-
cies of 3. We also find frequent edge-quadruplet {c, d, f} by

intersecting
−→
cd and

−→
cf . Finally, we intersect d⃗ and f⃗ to find

frequent edge-pair {d, f} with frequency 3. Consequently,
our fourth algorithm found the same 17 collections of fre-
quent edges as those in Examples 2, 3 and 4.

3.5 Post-Processing Step
So far, we have described how our four algorithms find col-
lections of all frequent edges, which include connected edges
such as {a, d} ≡ {(v1, v2), (v2, v3)} as well as disjoint edges
such as {a, f} ≡ {(v1, v2), (v3, v4)}. To filter out disjoint
edges, we apply the following post-processing step to check
every frequent edges. We look up the vertex information of
each edge such as (v1, v2) for edge a. See Table 1. Let X rep-
resent a collection of multiple frequent edges. Then, for each
edge e ≡ (vi, vj) ∈ X (where |X| ≥ 2), count the frequency
(or occurrence) of vi and vj in X. If frequency of vi (or vj)
is at least 2 in X, then vi (or vj) is a vertex connecting at
least 2 edges (i.e., these 2 edges are connected):

• ∀e≡(vi, vj) ∈ X, [frequency(vi) ≥ 2 or frequency(vj)
≥ 2] ⇒ X is a connected subgraph.

Otherwise—i.e., there exists an edge e′ ≡ (v′
i, v

′
j)—such that

frequency of v′
i and that of v′

j are both less than 2 in X, such
an edge e′ is disjoint (i.e., an isolated edge):

241

Table 1: Table capturing vertices of each edge
Edge Vertices

a (v1, v2)
b (v1, v3)
c (v1, v4)
d (v2, v3)
e (v2, v4)
f (v3, v4)

• ∃e′≡(v′
i, v

′
j)∈X ′, [frequency(v′

i) < 2 and frequency(v′
j)

< 2] ⇒ X ′ is not a connected subgraph.

For instance, we check and keep {a, d} because it is a pair
of connected edges; we check and prune away {a, f} because
it is a pair of disjoint edges.

Example 6. Continue with Examples 2, 3, 4, or 5. Be-
fore the post-processing step, each algorithm finds a total of
17 collections of frequent edges from the streaming graph
structured data. Among them, let us consider {a, c} ≡
{(v1, v2), (v1, v4)} = X. (i) For (v1, v2), frequency(v1) =
2 (and frequency(v2) = 1); (ii) for (v1, v4), frequency(v1) = 2
(and frequency(v4) = 1). So, for each edge in X, it satisfies
the condition that [frequency(vi) ≥ 2 or frequency(vj) ≥ 2].
Hence, X is a connected subgraph.

In contrast, consider {a, f} ≡ {(v1, v2), (v3, v4)} = X ′.
For (v1, v2), frequency(v1) = 1 and frequency(v2) = 1. Hence,
there exists an edge (v1, v2) ∈ X ′ such that [frequency(v1)
< 2 and frequency(v2) < 2]. Hence, X ′ is not a connected
subgraph.

Similarly, consider {c, d} ≡ {(v1, v4), (v2, v3)} = X ′′. For
(v1, v4), frequency(v1) = 1 and frequency(v4) = 1. Hence,
there exists an edge (v1, v4) ∈ X ′′ such that [frequency(v1)
< 2 and frequency(v4) < 2]. Hence, X ′′ is not a connected
subgraph.

Applying a similar post-processing step to check all 17 col-
lections of frequent edges, we find that {a, f} ≡ {(v1, v2),
(v3, v4)} (consisting of two disjoint edges a ≡ (v1, v2) and
f ≡ (v3, v4)) and {c, d} ≡ {(v1, v4), (v2, v3)} (consisting of
two disjoint edges c≡(v1, v4) and d ≡ (v2, v3)) are both
not connected subgraphs, and thus can be pruned. Con-
sequently, only 15 frequent connected subgraphs are then
returned to the user.

4. DIRECT FREQUENT CONNECTED
SUBGRAPH MINING

So far, we have described how to mine frequent connected
subgraphs by finding all collections of frequent edges and
then pruning collections of disjoint edges in a post-processing
step. When the number of vertices increases, chances of hav-
ing disjoint edges also increase. Consequently, a lot of time
and effort may have been spent on mining all collections of
frequent edges including many disjoint edges, which are then
pruned. To deal with this issue, we propose an alternative
algorithm that mines frequent connected subgraphs directly.

Specifically, our fifth algorithm directly mines frequent
connected subgraphs vertically. First, to mine frequent sin-
gletons, we examine each row (representing an edge). The
row sum (i.e., total number of 1s) gives the frequency of the
edge represented by that row. If the row sum ≥ the user-
specified minsup threshold, then we find a frequent edge.

Table 2: Table capturing neighbors of each edge
Edge Neighboring edges

a b, c, d, e
b a, c, d, f
c a, b, e, f
d a, b, e, f
e a, c, d, f
f b, c, e, d

Once the frequent singleton edges are found, we intersect
the bit vectors for two connected edges based on the neigh-
borhood information. See Table 2. If the row sum of the
resulting intersection ≥ the user-specified minsup threshold,
then we find a frequent connected subgraph consisting of
2 edges. We repeat these steps by intersecting two bit vec-
tors of frequent connected subgraphs to find frequent con-
nected subgraph of multiple edges.

During the mining process, the neighborhood information
for frequent edge can be looked up from Table 2. The neigh-
borhood information for a frequent connected pair {x, y} can
be computed by the following:

neighbor({x, y})

= neighbor({x}) ∪ neighbor({y}) − {x, y}, (1)

where y ∈ neighbor({x}). Similarly, the neighborhood infor-
mation for a frequent connected subgraph X∪{y} consisting
of k edges can be computed by the following:

neighbor(X ∪ {y})

= neighbor(X) ∪ neighbor({y}) − X − {y}, (2)

where (i) y ∈ neighbor(X) and (ii) |X| = k − 1.

Example 7. Revisit Example 6. Our direct algorithm first
computes the row sum for each row (i.e., for each edge). As
a result, we find that edges a, b, c, d and f are all frequent
with frequencies 5, 2, 5, 4 and 4, respectively. Afterwards,
we intersect the bit vector of a (i.e., Row a) with bit vectors
of any of its neighbor neighbor({a}) = {b, c, d, e} to find the
following:

• connected subgraph {a, b} consisting of 2 edges a & b
and with frequency 1 and thus infrequent;

• connected subgraph {a, c} consisting of 2 edges a & c
and with frequency 4 and thus frequent; as well as

• connected subgraph {a, d} consisting of 2 edges a & d
and with frequency 3 and thus frequent.

Note that, as the algorithm only intersects vectors of fre-
quent edges, it does not intersect with infrequent edge e even
though e ∈ neighbor({a}). Moreover, when compared with
Example 5, our direct algorithm does not produce {a, f}.
Although single edge f is frequent, it is not in the neighbor-
hood of {a} and thus not connected with a.

Next, we intersect (i) −→ac with
−→
d to find frequent con-

nected edge-triplet {a, c, d} because d ∈ neighbor({a, c}),
which can be computed as neighbor({a}) ∪ neighbor({c}) −
{a, c} = {b, d, e, f}. Then, we intersect (i)

−→
acd with

−→
f

to get connected edge-quadruplet {a, c, d, f} because f ∈
neighbor({a, c, d}), which is computed as neighbor({a, c})
∪neighbor({d}) −{a, c, d} = {b, e, f}. Similarly, we inter-

sect (i) −→ac with
−→
f to find frequent connected edge-triplet

242

{a, c, f} as f ∈ neighbor({a, c}). We also intersect (i)
−→
ad

with
−→
f to get frequent connected edge-triplet {a, d, f} be-

cause neighbor({a, d}) = neighbor({a}) ∪neighbor({d}) −
{a, d} = {b, c, e, f} contains f . These are all collections of
frequent connected edges containing a. In the above proce-
dure, we only extend on connected subgraphs.

Afterwards, we repeat similar steps with the bit vectors

for other edges. For instance, we intersect b⃗ with c⃗, d⃗ and f⃗ .
We find out that, among them, only {b, c} is frequent with

frequency 2. We also intersect c⃗ with f⃗ to find frequent
connected edge-pair {c, f} with frequency 3. Note that

we do not intersect c⃗ with d⃗ because d ̸∈ neighbor({c}) =
{a, b, e, f}. However, we find frequent edge-triplet {c, d, f}
by intersecting

−→
cf and

−→
d because d ∈ neighbor({c, f}) =

neighbor({c})∪neighbor({f})−{c, f} = {a, b, d, e}. Finally,

we intersect d⃗ and f⃗ to find frequent edge-pair {d, f} having
frequency 3.

5. EXPERIMENTAL EVALUATION
To acquire streams of linked graph structured data, we first
generated random graph models via a Java-based genera-
tor by varying model parameters (e.g., topology, average
fan-out of nodes, edge centrality, etc.). We then gener-
ated graph streams as nodes and node-edge relationships
derived from the above graph models, and obtained node
values from popular data stream sets available in literature
(stored in the projected database). In addition, we also
used many different databases including IBM synthetic data,
real-life databases (e.g., connect4) from the UC Irvine Ma-
chine Learning Depository as well as those from the Frequent
Itemset Mining Implementation (FIMI) Dataset Repository.
For example, connect4 is a dense data set containing 67,557
records with an average transaction length of 43 items, and
a domain of 130 items. Each record represents a graph of
legal 8-ply positions in the game of connect 4. All experi-
ments were run in a time-sharing environment in a 1 GHz
machine. We set each batch to be 6K records and the win-
dow size w=5 batches. The reported figures are based on the
average of multiple runs. Runtime includes CPU and I/Os;
it includes the time for both tree construction and frequent
pattern mining steps.

In the first experiment, we measured the accuracy of min-
ing with the following structures: (i) DSTree [26], (ii) DS-
Table [8], and (iii) DSMatrix. Experimental results show
that the four mining algorithms that use the DSMatrix with
the post-processing steps (Section 3) gave the same min-
ing results as the direct algorithm (Section 4) that uses the
DSMatrix without the post-processing step. Experimental
results also show that these five algorithms (which all use the
DSMatrix) gave the same mining results as any algorithms
that conduct mining with the DSTree or DSTable.

In the second experiment, we measured the space effi-
ciency. Experimental results show that mining with the
DSTree stored one global DSTree and multiple local FP-
trees in main memory, and thus took the largest main mem-
ory space. Mining with the DSTable and DSMatrix required
less memory because the DSTable and DSMatrix were kept
on disk. Among those algorithms that mine with the DS-
Matrix, the first algorithm (i.e., the one mines with multiple
FP-trees and described in Section 3.1) required the largest
amount of memory space because it keeps at most k FP-trees
in the memory during the entire mining process, where k is

Figure 2: Experimental results on vertical mining.

the maximum number of edges in any collection of frequent
edges. The algorithms that mine with a single FP-tree (Sec-
tions 3.2 and 3.3) required less space because they keep at
most one FP-tree in the memory during the entire mining
process. The two vertical mining algorithms (Sections 3.4
and 4) required the least amount of memory space because
they both work with bit vectors.

In the third experiment, we measured the time efficiency.
Among those algorithms that mine with the DSMatrix, the
first algorithm (i.e., the one mines with multiple FP-trees
and described in Section 3.1) required the longest runtime
because it recursively constructs FP-trees during the entire
mining process. The algorithms that mine with a single FP-
tree (Sections 3.2 and 3.3) required shorter runtime because
they construct at most one FP-tree for each frequent edge
(i.e., for a total of at most m FP-trees, one for each of the
|E| edges) during the entire mining process. The two vertical
mining algorithms (Sections 3.4 and 4) required the shortest
runtime because they both work with bitwise and set inter-
section operators. Between these two vertical mining algo-
rithms, as expected, the one with the post-processing step
required longer runtime than the direct algorithm because
the latter mines frequent connected subgraphs directly. Fig-
ure 2 shows the runtimes of our fourth algorithm (i.e., verti-
cal mining with post-processing step) and our fifth algorithm
(i.e., direct vertical mining).

We also performed some additional experiments (e.g., eval-
uating the effect of minsup). Results show that the run-
time decreased when minsup increased. In another exper-
iment, we tested scalability with the number of batches in
the stream of graph structured data. The results show that
the scalability of our (five) algorithms, especially the two
vertical mining algorithms.

As future work, we plan to conduct more extensive exper-
iments on various datasets (including Big data) with differ-
ent parameter settings (e.g., varying minsup, the number of
vertices and edges in graph structured data and/or linked
data).

6. CONCLUSIONS
Motivated by the demand of having algorithms that use lim-
ited memory space for discovering collections of frequently
co-occurring connected edges from big, interlinked, dynamic
graph structures of linked data, we proposed five algorithms
for frequent subgraph mining. All our algorithms use a DS-
Matrix to capture important contents of streams of graph
structured linked data. The DSMatrix is updated when the
window slides. The discovery of frequent connected sub-

243

graphs is “delayed” until the mining is needed. Three of
our algorithms use horizontal tree-based mining approaches:
(i) The first algorithm builds multiple FP-trees recursively
in a bottom-up fashion; (ii) the second algorithm builds FP-
trees in a bottom-up fashion, but builds only a single FP-
tree for each singleton; and (iii) the third algorithm also
builds only a single FP-tree for each singleton, but builds
in a top-down fashion. The fourth algorithm uses a vertical
bitwise mining approach. Note that all these four algorithms
mine collections of all frequent (connected or disjoint) edges,
and prune those disjoint edges at a post-processing step. In
contrast, our fifth algorithm also uses a vertical bitwise min-
ing approach, but directly mines collections of all connected
edges. Experimental results show the space and time effi-
ciency of vertical frequent subgraph mining from streams of
linked graph structured data.

7. ACKNOWLEDGEMENTS
This project is partially supported by NSERC (Canada) and
University of Manitoba.

8. REFERENCES
[1] C.C. Aggarwal, Y. Li, P.S. Yu, & R. Jin. On dense

pattern mining in graph streams. PVLDB, 3(1–2),
pp. 975–984 (2010)

[2] R. Agrawal & R. Srikant. Fast algorithms for mining
association rules. In Proc. VLDB 1994, pp 487–499.

[3] D. Bianchini, S. Castano, V. de Antonellis, A. Ferrara,
E. Quintarelli, & L. Tanca. RUBIK: proactive,
entity-centric and personalized situational web
application design. TLDKS, 13, pp. 123–157 (2014)

[4] A. Bifet, G. Holmes, B. Pfahringer, & R. Gavaldà.
Mining frequent closed graphs on evolving data
streams. In Proc. ACM KDD 2011, pp. 591–599.

[5] P. Braun, J.J. Cameron, A. Cuzzocrea, F. Jiang, &
C.K. Leung. Effectively and efficiently mining frequent
patterns from dense graph streams on disk. Procedia
Computer Science, 35, pp. 338–347 (2014)

[6] G. Buehrer, S. Parthasarathy, & A. Ghoting.
Out-of-core frequent pattern mining on a commodity.
In Proc. ACM KDD 2006, pp. 86–95.

[7] J.J. Cameron, A. Cuzzocrea, F. Jiang, & C.K. Leung.
Frequent pattern mining from dense graph streams. In
Proc. EDBT/ICDT 2014 Workshops, pp. 240–247.

[8] J.J. Cameron, A. Cuzzocrea, & C.K. Leung. Stream
mining of frequent sets with limited memory. In Proc.
ACM SAC 2013, pp. 173–175.

[9] L. Chi, B. Li, & X. Zhu. Fast graph stream
classification using discriminative clique hashing. In
Proc. PAKDD 2013, Part I, pp. 225–236.

[10] A. Cuzzocrea. CAMS: OLAPing multidimensional
data streams efficiently. In Proc. DaWaK 2009,
pp. 48–62.

[11] A. Cuzzocrea & S. Chakravarthy. Event-based lossy
compression for effective and efficient OLAP over data
streams. DKE, 69(7), pp. 678–708 (2010)

[12] A. Cuzzocrea, F. Furfaro, G.M. Mazzeo & D. Saccà. A
grid framework for approximate aggregate query
answering on summarized sensor network readings. In
Proc. OTM Workshops 2004, pp. 144–153.

[13] A. Cuzzocrea, C.K. Leung, & S.K. Tanbeer. Mining of
diverse social entities from linked data. In Proc.
EDBT/ICDT 2014 Workshops, pp. 269-274.

[14] R. de Virgilio & D. Bianchini. SeeVa: a model based
framework for semantic web service discovery.
TLDKS, 14, pp. 51–82 (2014)

[15] A. Ferrara, L. Genta, & S. Montanelli. Linked data
classification: a feature-based approach. In Proc.
EDBT/ICDT 2013 Workshops, pp. 75–82.

[16] C. Giannella, J. Han, J. Pei, X. Yan, & P.S. Yu.
Mining frequent patterns in data streams at multiple
time granularities. In Data Mining: Next Generation
Challenges and Future Directions, ch. 6 (2004)

[17] G. Grahne & J. Zhu. Mining frequent itemsets from
secondary memory. In Proc. IEEE ICDM 2004,
pp. 91–98.

[18] J. Han, J. Pei, & Y. Yin. Mining frequent patterns
without candidate generation. In Proc. ACM
SIGMOD 2000, pp. 1–12.

[19] T. Heath & C. Bizer Linked data: evolving the web
into a global data space. Synthesis lectures on the
semantic web: theory and technology, Morgan &
Claypool, 2011.

[20] R. Jin & G. Agrawal. An algorithm for in-core
frequent itemset mining on streaming data. In Proc.
IEEE ICDM 2005, pp. 210–217.

[21] F. Jiang & C.K. Leung. A business intelligence
solution for frequent pattern mining on social
networks. In Proc. IIEEE ICDM Workshops 2014,
pp. 789–796.

[22] F. Jiang, C.K. Leung, D. Liu, & A.M. Peddle.
Discovery of really popular friends from social
networks. In Proc. IEEE BDCloud 2014, pp. 342–349.

[23] W. Lee, C.K. Leung, & J.J. Song. Reducing noises for
recall-oriented patent retrieval. In Proc. IEEE
BDCloud 2014, pp. 579–586.

[24] C.K. Leung, A. Cuzzocrea, & F. Jiang. Discovering
frequent patterns from uncertain data streams with
time-fading and landmark models. LNCS TLDKS, 8,
pp. 174–196 (2013)

[25] C.K. Leung & F. Jiang. A data science solution for
mining interesting patterns from uncertain big data.
In Proc. IEEE BDCloud 2014, pp. 235–242.

[26] C.K. Leung & Q.I. Khan. DSTree: a tree structure for
the mining of frequent sets from data streams. In
Proc. IEEE ICDM 2006, pp. 928–932.

[27] C.K. Leung, R.K. MacKinnon, & S.K. Tanbeer. Fast
algorithms for frequent itemset mining from uncertain
data. In Proc. IEEE ICDM 2014, pp. 893–898.

[28] R.K. MacKinnon, T.D. Strauss, & C.K. Leung. DISC:
efficient uncertain frequent pattern mining with
tightened upper bounds. In Proc. IIEEE ICDM
Workshops 2014, pp. 1038–1045.

[29] O. Papapetrou, M. Garofalakis, & A. Deligiannakis.
Sketch-based querying of distributed sliding-window
data streams. PVLDB, 5(10), pp. 992–1003 (2012)

[30] S. Tirthapura & D.P. Woodruff. A general method for
estimating correlated aggregates over a data stream.
In Proc. IEEE ICDE 2012, pp. 162–173.

[31] E. Valari, M. Kontaki, & A.N. Papadopoulos.
Discovery of top-k dense subgraphs in dynamic graph
collections. In Proc. SSDBM 2012, pp. 213–230.

[32] K. Wang, L. Tang, J. Han, & J. Liu. Top down
FP-growth for association rule mining. In Proc.
PKDD 2002, pp. 334–340.

244

Privacy and Anonymity in the Information
Society (PAIS)

Traian Marius Truta, (Northern Kentucky University),
Li Xiong, Emory University),
Farshad Fotouhi (Wayne State University)

245

Transparency and Disclosure Risk in Data Privacy

Vicenç Torra
University of Skövde, Sweden

ABSTRACT
k-Anonymity and differential privacy can be considered ex-
amples of Boolean definitions of disclosure risk. In contrast,
record linkage and uniqueness are examples of quantitative
measures of risk. Record linkage is a powerful approach be-
cause it can model different types of scenarios in which an
adversary attacks a protected database with some informa-
tion and background knowledge.

Transparency holds in data privacy when data is published
together with details on their processing. This includes the
data protection method used and its parameters. Intruders
can use this information to improve their attacks. Specific
record linkage algorithms can be defined to take into account
this information, and to define more accurate disclosure risk
measures.

Machine learning and optimization techniques also per-
mits us to increase the effectiveness of record linkage algo-
rithms.

This talk will be focused on disclosure risk measures based
on record linkage. We will describe how we can improve
the performance of the algorithms under the transparency
principle, as well as using machine learning and optimization
techniques.

Short Bio
Vicenç Torra is a professor in the School of Informatics at
the U. of Skövde in Sweden. Until 2014 he was Associate
Prof. - Research Track at the Artificial Intelligence Research
Institute of the Spanish National Research Council (IIIA-
CSIC). His fields of interest are data privacy, information
fusion and approximate reasoning.

He is ECCAI Fellow (2010), Elected Member of ISI (2013).
He has published over 200 publications and 4 books. One un-
dergraduate course on artificial intelligence (in Catalan and
Spanish), one graduate text (Modeling decisions, Springer,
2007; with Y. Narukawa), a book on the history of computer
science (From the Abacus to the digital revolution, RBA,
2010) published in Spanish, Portuguese, Italian, French, En-

c©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0

glish, Polish, Russian, and another one on decisions and
elections (The mathematics of elections, RBA, in press).

He founded and is the editor in chief of the journal Trans-
actions on Data Privacy (http://www.tdp.cat/). He is asso-
ciate editor of Information Sciences (Elsevier) and member
of the editorial board of Fuzzy Sets and Systems (2004-),
Progress in Artificial Intelligence (2011-), J. of Advanced
Computational Intelligence and Intel. Informatics (2007-),
Int. J. of Computational Intelligence System (2008-). He
founded the annual MDAI conference series in 2004 and is
PC co-chair ever since. His research has been funded by
national and international agencies.

246

Privacy-Integrated Graph Clustering Through Differential
Privacy

Yvonne Mülle
∗

University of Zurich,
Switzerland

muelle@ifi.uzh.ch

Chris Clifton
Purdue University, USA

clifton@cs.purdue.edu

Klemens Böhm
Karlsruhe Institute of

Technology (KIT), Germany
klemens.boehm@kit.edu

ABSTRACT
Data mining tasks like graph clustering can automatically
process a large amount of data and retrieve valuable infor-
mation. However, publishing such graph clustering results
also involves privacy risks. In particular, linking the result
with available background knowledge can disclose private
information of the data set. The strong privacy guarantees
of the differential privacy model allow coping with the arbi-
trarily large background knowledge of a potential adversary.
As current definitions of neighboring graphs do not fulfill the
needs of graph clustering results, this paper proposes a new
one. Furthermore, this paper proposes a graph clustering
approach that guarantees 1-edge-differential privacy for its
results. Besides giving strong privacy guarantees, our ap-
proach is able to calculate usable results. Those guarantees
are ensured by perturbing the input graph. We have thor-
oughly evaluated our approach on synthetic data as well as
on real-world graphs.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering;
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Security

Keywords
Clustering, Graph Mining, Differential Privacy

1. INTRODUCTION
For many types of data, the proper representation is a

graph structure. There exist many approaches which auto-
matically retrieve valuable information from graphs. One
such approach is graph clustering. Clustering groups similar
objects together and assigns dissimilar objects to different
groups. In the context of social networks, graph clustering
helps to better understand the structure of these networks.

∗Work originated while author was at Purdue University.

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

Being able to collect and process such graph data does not
only have its opportunities, but also involves privacy risks.
The Gaydar project [1] of two MIT students illustrates such
a risk: by linking the Facebook friends of a person with the
knowledge of the gender and sexuality of those friends, it
has been possible to predict if the person is gay. Let us now
assume that an operator of a social network wants to publish
information on the community structure (i.e., cluster struc-
ture) of the network. The operator decides to publish the
result of a graph clustering algorithm, i.e., the community
structure of the network, without the actual graph struc-
ture. Such a clustering result can still put the users’ privacy
at risk. Dependent on the background knowledge, an out-
sider can retrieve actual connections between users from the
community structure. In the worst case, it might even be
possible to not only identify certain connections but to re-
construct the entire social network. In consequence, it is
necessary to publish the community structure and thus the
clustering result in a privacy preserving manner. As differen-
tial privacy gives strong privacy guarantees, it is desirable to
publish a differentially private graph clustering result. For
differentially private graph clustering, no approach exists so
far. The paper focuses on proposing such an approach.

In order to apply differential privacy to graph clustering,
the following challenges have to be solved. 1. It needs to be
determined which parts of the graph information that the
clustering result exposes are relevant to privacy: a node, that
node’s edges, or any edges in the graph. 2. A noise-adding
mechanism must be developed to protect this information.
As a consequence, only the graph parts to be protected
should be perturbed. Choosing the appropriate perturba-
tion is challenging as, for instance, minor changes in the
edge structure of the graph can significantly alter the clus-
tering result. 3. The ever present trade-off between privacy
and usability must be solved so that both are preserved at a
reasonable level. This also includes determining which prop-
erties a graph clustering algorithm and graphs must have in
order to still produce a usable clustering result.

In this paper, we propose solutions to these challenges.
An important category of graph clustering approaches cal-
culates their results only based on the edge structure. The
nodes are used to represent a cluster. Thus changes in the
node set are directly visible in the clustering result. There-
fore, we propose m-edge-differential privacy. It relies on a
new neighboring graphs definition that guarantees privacy
for the edges of a node, but does not require changing the
node set. We also investigate if it is necessary to protect
all edges of a node or if it is sufficient to only protect some

247

of them. Additionally, we propose PIG, an approach that
combines the perturbation of the input graph with exist-
ing graph clustering approaches. PIG guarantees 1-edge-
differential privacy, a notion that can be generalized to m-
edge-differential privacy. The amount of noise created by the
perturbation is configurable via a parameter that represents
the trade-off between privacy and usability. We develop rec-
ommendations on how to set this parameter to achieve spe-
cific privacy goals.

2. RELATED WORK
Privacy for data mining tasks can be achieved by releas-

ing sanitized data sets or by developing private data mining
algorithms. The approaches not only differ in how data min-
ing is performed, but also in the underlying privacy model.

Privacy-preserving clustering approaches perform cluster-
ing on tabular data where the data is distributed among
several parties. They are based on the concept of secure
multi-party computation. The goal is that each party only
learns the final clustering result, but no intermediate val-
ues. Privacy preserving k-means clustering [26, 11, 10] and
privacy-preserving DBSCAN [15] have been studied. All
these approaches have in common that they perform clus-
tering on tabular data and therefore are not able to deal with
many instances of graph data. Furthermore, unlike differ-
ential privacy they provide no protection against the result
inherently revealing individual information. A clustering re-
sult contains new, so far probably unknown correlations be-
tween entries or nodes and thus has the potential to reveal
sensitive information.

Differentially private data analysis is the task of publish-
ing a graph in a differentially private manner. [19] uses a
Kronecker graph model in order to publish a differentially
private maximum likelihood estimator for graphs. [24] pro-
poses an approach that uses the degree correlations of the
original graph to generate a differentially private dK-graph
model. Thus, it aims to preserve as much structure of the
unmodified graph as possible. Both approaches publish the
synthetic graph for a general purpose. However, as data
mining tasks often differ in what data they need, the accu-
racy of the result is expected to increase when the data is
sanitized for a specific task.

Differentially private data mining approaches exist for
tabular data as well as for graph data. Differentially pri-
vate data mining techniques have been proposed for fre-
quent itemsets [2, 17] and pattern mining [9, 25], but also
for clustering and graph analysis. The challenge how to per-
form clustering in a differentially private manner has been
addressed by [6], [22], and [7]. All approaches focus on k-
median and k-means queries on tabular data. [6] realizes the
task by publishing private coresets that are representative
subsets of a database which preserve some geometric prop-
erties. [22] releases private clustering results by perturbing
the coordinates of the center points that represent a cluster.
[7] proposes an approach for differentially private k-median
clustering. The approach uses the exponential mechanism
to swap center points with non-center points.

The following approaches release individual graph proper-
ties in an edge-differentially private manner. Graph proper-
ties like the degree distribution [8], frequent graph patterns
[25], counting queries for k-triangles and k-stars [12], and
clustering coefficients [27] have been considered. Guaran-
teeing node-differential privacy has been taken into account

for the number of edges in a graph, counting queries like
triangles, k-cycles, k-stars and certain estimators for power
law graphs [13].

Differential privacy was successfully applied to all those
data mining tasks. However, differentially private graph
clustering has not yet been addressed. Thus, we focus on
how graph clustering results can be released in a differen-
tially private manner.

3. FOUNDATIONS

3.1 Graph Clustering
Clustering groups similar objects in so-called clusters. In

contrast to clustering on tabular data, graph clustering also
– or even exclusively – considers the structural data given by
the edges of the graph. The following four criteria specify
a graph clustering approach: the graph type, the cluster
definition, the clustering realization and the representation
of the graph clustering result.

The graph type contains the information on what sort of
graph the clustering approach can be performed. Defini-
tion 1 formalizes the term graph as used in this paper.

Definition 1. Graph G = (V,E)
A graph G = (V,E) consists of a set of nodes V and a

set of edges E ⊆ V × V . The graph is non-attributed and
unweighted. The edges between nodes are undirected.

A cluster definition contains the properties that a set of
nodes must fulfill in order to form a cluster. No universally
accepted graph cluster definition exists. We consider cluster
definitions that group nodes together based on their connec-
tivity and other structural properties. Such properties are
reachability, inter-cluster connectivity, and neighborhood.

The realization of the cluster definition consists of two
steps: how many clusters a node can belong to and the con-
crete procedure of calculating the clustering result based on
the given cluster definition. We do not restrict the realiza-
tion of the cluster definition.

A graph clustering result Res = {C1, . . . , Cj} is a set of
clusters, each of which consists of a set of node IDs. This
general solution is mostly used in state-of-the-art graph clus-
tering algorithms. Furthermore, it contains all essential in-
formation and does not reveal additional structural infor-
mation that could increase the privacy risk of a clustering
result.

To sum up, this paper focuses on graph clustering ap-
proaches that fulfill the following requirements: (R1) They
require an undirected, unweighted and non-attributed graph
as input. (R2) Their cluster definition is based on connectiv-
ity and other structural properties of the graph. (R3) Their
representation of the clustering result consists of node IDs.

3.2 Differential Privacy
Differential privacy [3] is a privacy model that gives strong

privacy guarantees. It assumes a powerful adversary. The
adversary has a broad, nearly unlimited background knowl-
edge. He even is aware of all entries – except for a single
one – of the data set. Despite this strong adversary, differ-
ential privacy protects against determining if the unknown
individual is even in the data. This is the case as query re-
sults on the data set remain indistinguishable, independent
of whether a single database entry has participated in the
result calculation or not.

248

An algorithm A is differentially private if the following
holds true: For any possible result, it cannot be determined
beyond a specific certainty if it was calculated on a graph
G1 or on its neighboring graph G2.

Definition 2. ε-Differential Privacy
A graph clustering algorithm GCA is ε-differentially pri-

vate if for all neighboring graphs G1 and G2 ∈ N (G1), and
for all subsets S of the set of all possible outputs {Res1, . . . ,
Resi},

Pr[GCA(G1) ∈ S] ≤ exp(ε) · Pr[GCA(G2) ∈ S]

N (G1) is the set of all neighboring graphs of graph G1.

The term neighboring graphs for graph clustering is dis-
cussed in Subsection 4.1. In general, deterministic algo-
rithms cannot achieve differential privacy (if the result is
dependent on the input data set). But they can be converted
into non-deterministic algorithms by adding non-deterministic
noise. Noise-adding mechanisms for graph clustering ap-
proaches are discussed in Subsection 4.2.

4. GRAPH CLUSTERING MEETS DIFFER-
ENTIAL PRIVACY

4.1 Neighboring Graphs
[8] has proposed two adaptations of differential privacy

for graph data. k-edge-differential privacy assumes that the
edges contain the sensitive information and thus up to any
k edges in the graph should be protected. In contrast, node-
differential privacy states that a node and all its adjacent
edges contain the sensitive information. In the following,
we analyze which requirements a neighboring graphs defini-
tion for graph clustering must fulfill. As a result we show
that the neighboring graphs definition of node-differential
privacy does not meet the needs of graph clustering and
k-edge-differential privacy covers more neighboring graphs
than required. Limiting the set of neighboring graphs to
its sufficient set might simplify achieving differentially pri-
vate graph clustering. Thus, we propose a new neighboring
graphs definition based on the requirements we identify in
the following.

Requirement: Node Set. A graph clustering result is
represented by node IDs. Thus, adding or removing a node
can be directly visible in the clustering result. Therefore,
it is necessary that neighboring graphs consist of the same
node set. This is why the neighboring graph definition of
node-differential privacy is not applicable.

Requirement: Edge Set. We consider graph cluster-
ing approaches that calculate their result based on the edge
structure of the graph. Thus, the clustering result provides
information about structural similarities in the graph. Con-
cealing private information encoded in the clustering result
directly means concealing the existence of certain edges in
the graph. When differential privacy is applied to tabular
data, a certain row is both used to calculate the clustering
result and at the same time should be concealed in the re-
sult. Analogously, the edges of a particular node are what
determines the clustering – thus it stands to reason that this
is the property that should be concealed in this case. This is
why the neighboring graph definition of k-edge-differential
privacy is too broad and thus not appropriate here.

Requirement: Number of Protected Edges. Is it suffi-
cient to protect some of the edges of a node or is it necessary
to protect all of them? Most real-world graphs are power law
distributed, i.e., there exist many nodes with few edges and
only few nodes with many edges. For instance, in a social
network like Facebook, it is more likely that the highly con-
nected nodes represent companies and public figures. Com-
panies and public figures actively decided to reveal more
information about their relationships to other participants
than a private person would do. As a consequence, it is suffi-
cient to protect the relationships (and thus edges) of private
persons with few edges. Our neighboring graphs definition
allows protecting m edges of a node. Setting m to a value
that covers the number of edges a private person will have,
allows protecting (almost) all edges of some nodes (if they
have a low degree) and preserve the privacy of some edges
for highly connected nodes.

Neighboring Graphs Definition. Definition 3 formal-
izes the term neighboring graphs. Its flexibility allows pre-
serving all edges of a node or only a single edge in the whole
graph. How many edges of a node are preserved is dependent
on parameter m.

Definition 3. Neighboring Graphs
Let m ∈ N be given. Two graphs G1 = (V1, E1) and

G2 = (V2, E2) (according to Definition 1) are neighboring
graphs iff

1. V2 = V1

2. ∃x ∈ V1 : E2 = (E1 − Ea(x)) ∪ Eb(x) with

Ea(x) ⊆ {(u, v) ∈ E1|u = x ∨ v = x} and
Eb(x) = {(u, v) ∈ E2|u = x ∨ v = x ∧ (u, v) /∈ E1}

3. |E1 \ E2|+ |E2 \ E1| ≤ m

N (G1) is the set of all neighboring graphs of graph G1.

Note that for the case m = k = 1, there is no differ-
ence between the neighboring graphs definition of k-edge-
differential privacy and our definition. For m = k > 1
m-edge-differential privacy covers a subset of neighboring
graphs compared to k-edge-differential privacy.

Impact of Definition 3 on Clustering Results. Our
neighboring graphs definition allows removing edges from
and adding edges to a neighboring graph. Thus, comparing
the clustering results of two neighboring graphs can result in
the following differences: none, only a small number of nodes
are clustered differently, or most nodes belong to different
clusters, see Example 1.

Example 1. The original graph and two neighboring graphs
are shown in Figure 1. Nodes within a circle represent a
cluster. A cluster contains at least four nodes which are
connected to at least three other nodes in the cluster. In
graph G there exist three different clusters. Removing a
single edge as in graph G2 results in the removal of Clus-
ter 1 because its nodes no longer fulfill the cluster definition
in G2. Removing the edge between Node 1 and Node 6 as
it is the case for graph G3 does not have an impact on the
clustering result at all because the two nodes are also not
clustered in G. However, adding two new edges to G3 (com-
pared to G) results in a new cluster in the clustering result
of graph G3: Cluster 4.

249

Node 6

Cluster 2

Cluster 3

Node 11

Node 13

Node 12Node 1

Node 5

Node 4

Node 3

Node 2
Cluster 1

(a) Original graph G

Node 6

Cluster 2

Cluster 3

Node 11

Node 13

Node 12

Node 5

Node 1

Node 2

Node 3

Node 4

(b) G2 ∈ N (G) (m ≥ 1).

Node 6

Cluster 2

Cluster 3

Cluster 4

Node 11

Node 13

Node 12Node 1

Node 2

Node 4

Node 5

Node 3

(c) G3 ∈ N (G) (m ≥ 4).

Figure 1: Illustration of the term neighboring graphs.

4.2 Perturbation Mechanisms
We are aware of three different types of perturbation in

the literature: sampling, output perturbation and input per-
turbation. In the following, we discuss if they are suitable
for our purposes.

Sampling. Sampling integrates the perturbation into the
proceeding of the clustering approach. A possibility would
be to only consider a sample of potential edges, which may
change the result set. For instance, a clique clustering algo-
rithm would have a non-zero probability of creating a cluster
out of a set of nodes even though they are not fully connected
to each other if it draws a sample of edges that make the
nodes fully connected. An advantage of sampling could be
that the required amount of noise can be adapted during the
execution of the clustering algorithm. At this stage, more
information on how to choose the sample could be available.
This might reduce the influence of the perturbation on the
clustering result. However, sampling has the following two
drawbacks: (1) Each of the many existing graph clustering
approaches must be separately adapted dependent on the
individual cluster definitions and its realizations. (2) Inte-
grating the perturbation into the clustering algorithm makes
the analysis of privacy properties complex. In order to prove
differential privacy, it is required to analyze the probabili-
ties of clustering results for a specific algorithm. This is
particularly challenging as the output space of a graph clus-
tering algorithm is discrete, rewulting in difficulty specifying
a probability density function except by (intractable) enu-
meration. Additionally, finding a closed-form solution for
the upper and lower bounds of the probabilities may become
very difficult for complex clustering algorithms.

The aforementioned problems can be avoided if the per-
turbation is a separate step of the algorithm. This allows
the perturbation to be analyzed individually.

Output Perturbation. Output perturbation means that
the perturbation is performed on the graph clustering re-
sult. For instance, the cluster assignment of the nodes can

be changed. However, a clustering result only indirectly con-
tains the information that should be protected – the edges
of a node. Thus, there exists no intuitive mapping between
how the cluster assignment has to be changed and the guar-
antee of protecting the existence of the edges of a node. The
only possibility would be to additionally take the input data
into account.

Input Perturbation. Input perturbation adds noise to
the input graph. With this method, it is possible to per-
turb two neighboring graphs in a way that they are indistin-
guishable with a certain probability for the graph clustering
algorithm. As a consequence, the probabilities of a graph
clustering result do not need to be calculated; the output of
an algorithm on differentially private input is differentially
private. In the following, we discuss how the input pertur-
bation must be realized to be appropriate for graph cluster-
ing. (1) According to Definition 3, perturbing the graph by
changing its number of nodes is not an option. (2) Thus,
it is only possible to perturb the graph by adding and re-
moving edges. (2.1) Doing only one of the two (adding or
removing edges) is not an option. The reason is that there
always exist cases where such a procedure is not possible: If
a graph is fully connected, no edges can be added. If a graph
does not contain any edges, no edges can be removed. Thus,
the clustering result probabilities would also not be affected,
and only those results that are calculated for those graphs
would be possible. (2.2) Determining the number of edge
changes according to the global sensitivity of a clustering
approach is not a possibility. The global sensitivity [4] con-
tains the information about the maximum distance between
two clustering results of neighboring graphs. There does not
exist a correlation between the number of edge changes and
the distance between graph clustering results: There is no
guarantee that adding or removing l edges will result in a
distance increased or decreased by l – yet the distance is
what the global sensitivity is based on.

Thus, in order to achieve both differentially private results
independent of the algorithm and allow for useful results, we
propose an approach that combines edge sampling with edge
perturbation in Section 5.

5. PIG
We propose PIG – Privacy-Integrated Graph clustering

approach – as a general approach for guaranteeing 1-edge-
differential privacy. It is independent of a concrete graph
clustering algorithm as long as the clustering approach ful-
fills the requirements given in Subsection 3.1. Furthermore,
PIG perturbs the input graph by perturbing the adjacency
matrix of the graph dependent on differential privacy’s pa-
rameter ε. As future work, PIG will be extended to m-edge-
differential privacy.
PIG consists of two steps: the perturbation of the input

graph, called PIGpert, and the graph clustering algorithm
applied to the perturbed graph. The idea behind PIG is as
follows: If the perturbed versions of neighboring graphs are
the same, the graph clustering approach will calculate the
same clustering result.

The perturbation step of PIG is shown in Algorithm 1.
The perturbation method is a combination of edge sampling
and edge flipping, i.e., edge randomization. It operates on
the adjacency matrix A of the input graph. aij refers to
the entry of A in row i and column j and thus contains
the information if an edge between node i and node j ex-

250

Algorithm 1 Graph Perturbation Algorithm PIGpert
1: function perturbGraph(Graph G = (V,E), privacy

parameter s)
2: construct graph Gpert = (V ′, E′) where V ′ = V
3: construct adjacency matrix A from E of G
4: initialize the adjacency matrix A′ for E′ of Gpert

5: for all aij ∈ A with i < j do
. Preservation

6: if aij is chosen with probability 1− s then
7: set a′ij = a′ji = aij in A′ of Gpert

8: else
. Randomization

9: if 0 is chosen with probability 1
2
then

10: set a′ij = a′ji = 0 in A′ of Gpert

11: else
12: set a′ij = a′ji = 1 in A′ of Gpert

13: end if
14: end if
15: end for
16: return Gpert

17: end function

ists. The existence of an edge is represented by a value
of one, whereas an absence is represented as zero. As the
input graph is undirected, the adjacency matrix is symmet-
ric. This property is preserved in the perturbation step. As
the definition of self-loops does not make sense in the case
of undirected graphs, the corresponding entries aii are and
also remain zero in the perturbed entries a′ii.

The perturbation consists of the following mechanism: For
each entry in the adjacency matrix, it is first determined if
preservation or randomization should be performed. In or-
der to make this choice, we introduce a privacy parameter s
(s ∈ (0, 1]). Preservation is chosen with probability (1− s),
whereas randomization is chosen with probability s. The
higher s is, the more entries in the matrix are randomized.
In the case of preservation, the original entry of the adja-
cency matrix of the unperturbed graph is preserved in the
perturbed version of the graph. With randomization, the
entry in the perturbed version of the graph gets assigned 1
with probability 1

2
and 0 with the same probability. The as-

signment and thus the absence or presence of this particular
edge in the graph is independent of its existence or absence
in the original input graph.

Theorem 1. Edge-Differentially Private PIG
PIG guarantees 1-edge-differential privacy for ε ≥ ln(2

s
−

1) (s ∈ (0, 1]).

The idea behind the proof of Theorem 1 is as follows: The
proof is based on proving the basic definition of differential
privacy (see Definition 2). The probability that PIG cal-
culates a certain clustering result consists of two terms: the
probability that PIGpert returns a certain perturbed version
of the original graph and the probability that the graph clus-
tering algorithm used in PIG calculates that result on the
perturbed graph. In 1-edge-differential privacy neighboring
graphs can only differ in one edge. Thus, the ratio of the
probabilities that two neighboring graphs are perturbed to
an equal graph is only dependent on the ratio of the proba-
bilities that the differing edge gets assigned the same value
in PIGpert. According to Algorithm 1, an entry preserves its

original value in the perturbed graph with a probability of
1− 1

2
s, and gets assigned its opposite value with a probabil-

ity of 1
2
s. With this information, the probability ratio that

two neighboring graphs are perturbed to the same graph can
be expressed and Theorem 1 can be proven. For the proof
of Theorem 1 please refer to [20].

Choice of Privacy Parameter s.
Due to its correlation with parameter ε in ε-differential

privacy, PIG’s privacy parameter directly influences the ex-
tent of privacy that PIG is able to guarantee. But what is
a sufficient value for s? It is necessary to find a trade-off
between the quality of PIG’s clustering result and privacy
guarantees in order to choose parameter s.

Ideally, an adversary cannot say for any edge in the per-
turbed graph whether or not it existed in the original graph
with any greater confidence than if they were to flip a coin,
i.e., a confidence greater than 50%. The idea to achieve this
is to set s to such a value that the expected density of the
perturbation result will be twice the original density. This
implies that for each edge in the perturbed graph, an ad-
versary can never say with more than 50% confidence that
this edge was also present in the original graph. This is
particularly relevant for very sparse graphs. For small s it
occurs rarely that the perturbation will both be at an entry
in the adjacency matrix where the edge is set to exist and
the perturbation changes that entry.

Theorem 2. Choice of privacy parameter s
If privacy parameter s has the following value, it then

holds that the expected density in the perturbed graph is twice
the original density d (d ≤ 25%).

(1− s) · d+
s

2
≥ 2 · d

⇔ s ≥ 2 · d
1− 2 · d

The derivation of the expected density is shown in The-
orem 4. This way of choosing s is possible up to a density
of 25% because the maximum value for s is reached at that
point. However, this density limit covers virtually all real-
world graphs. At higher densities, a new trade-off between
privacy and usability would have to be found.

Influence on Graph Structure.
As PIGpert changes the edge structure of the input graph,

we examplarily analyze the following three important graph
properties upon which cluster definitions are based: (1) con-
nectivity that depends on the knowledge of the exact graph
structure, and (2) the number of edges, and (3) the density
that both are calculated based on the number of edges in
the graph. We determine the expected changes of the graph
properties in terms of the properties of the original graph.
Given a graph G = (V,E), n = |V |,m = |E|, we refer to
P = (VP , EP) as a perturbed version of graph G. PIGpert
preserves an entry in the adjacency matrix with probability
1 − 1

2
· s; an entry gets assigned the opposite value in the

perturbed graph with probability 1
2
· s.

Connectivity As the perturbation mechanism operates
on one edge at a time and does not take the other entries of
the adjacency matrix into account, it is possible that the per-
turbed version of a connected input graph is unconnected.

Number of Edges. The expected number of edges E[|EP |]
in the perturbed graph P depends on the expected number

251

of preserved edges and that of added edges (i.e., flipped en-
tries in the adjacency matrix of G). The adjacency matrix

of G contains (n·(n−1)
2

−m) changeable zero entries which
can result in added edges in P . The main diagonal of the
matrix contains non-changeable zero entries as self-loops are
not allowed in the graph.

Theorem 3. Expected Number of Edges in P

E[|EP |] = (1− 1

2
· s) ·m+ (

n · (n− 1)

2
−m) · 1

2
· s

= (1− s) ·m+
n · (n− 1)

4
· s

In a sparse graph, there exist only few edges and many
changeable zero entries in its adjacency matrix. Thus, per-
turbing such a graph results in a high increase in the number
of edges. The perturbed version of a graph with half of the
maximum number of possible edges is expected to have the
same edge count as before. If more than half of the possi-
ble edges are present, the number of edges decreases in the
perturbed graph.

Density. The density of a graph G is defined as the ratio
of the number of edges in G and its number of possible edges.
The number of possible edges only depends on the number of
nodes in the graph and the fact that the graph is undirected.
Thus, it is not influenced by the graph perturbation, which
only operates on the edge set of a graph.

Theorem 4. Expected Density dP of P

E[dP] =
E[|EP |]
n·(n−1)

2

= (1− s) · d+
s

2

6. EVALUATION
The goal of our empirical evaluation is to analyze the im-

pact of PIG on cluster quality, i.e., its influence on the clus-
tering result. Furthermore, we perform our evaluation on
synthetic graphs that vary in their density. This is inter-
esting as the behavior of PIGpert changes with increasing
density. We use certain graphs and two graph clustering ap-
proaches, and from there we generalize our results to prop-
erties a graph and clustering approaches must have in order
to cope with the perturbation introduced with PIG.

Setup.
Graphs. The synthetic graphs are generated based on

[16]: both the community sizes and the number of edges per
nodes are power law distributed. As real-world graphs, we
use the Disney graph [21] that is a subgraph of the Amazon
co-purchasing network with a small number of nodes and the
Facebook graph [18] with more than ten times the nodes.

The cluster quality is measured by means of the F1 score.
The non-perturbed clustering result is used as ground truth.

Graph Clustering Approaches. We use PIG with two
different graph clustering approaches: SCAN [28] and Graph
k-Medoids [23]. SCAN adapts the cluster definition of DB-
SCAN [5] to graphs. The cluster definition is based on the
density of the neighborhood (ε-neighborhood), i.e., with how
many neighboring nodes a node shares a certain number of
neighboring nodes. If the size of the ε-neighborhood ex-
ceeds a threshold µ, the node becomes a core object. The
graph perturbation of PIG directly influences this property.

Adding and removing edges in a graph changes which nodes
are in the neighborhood of a certain node. As the perturba-
tion is done randomly, similar neighborhoods of neighboring
nodes may become dissimilar when common nodes vanish
and disjoint new node sets can be added to the neighbor-
hood. Graph k-Medoids adapts the cluster definition of
k-medoids [14] to graphs. On the one hand, its cluster def-
inition is based on shortest paths which PIGpert can affect
to a great extent. On the other hand, it has the two charac-
teristics that the number of clusters is set to k and that all
nodes are assigned to exactly one cluster. Thus, it is inter-
esting whether these characteristics can reduce the influence
of PIGpert on the clustering result.

Cluster Quality.
Increasing parameter s means having more changes in the

input graph. In Theorem 2, we have presented a heuristic
that guarantees a sufficient amount of privacy while mini-
mizing the required amount of perturbation. Thus, we eval-
uate the impact of the perturbation on cluster quality for a
range of s around following minimum values resulting from
the heuristic.

Density s ≥ ε ≤
Synthetic graph (506 nodes) 1.29% 0.027 4.292
Disney graph 4.39% 0.096 2.988
Facebook graph 1.08% 0.022 4.499

As a general result, increasing privacy parameter s be-
yond a certain range around the minimum value and thus
decreasing ε increases the privacy guarantees at the cost of
usable clustering results. Due to space limitations, the de-
tailed evaluation of this aspect is in [20].
PIG-SCAN. Figure 2 shows the cluster quality of PIG-

SCAN for the real-world graphs, compared to the clustering
results of SCAN. It also contains the corresponding cluster
result statistics. The key original means that the same pa-
rameters as for the clustering on the non-perturbed graph
are used. The key optimal means that we use those param-
eters that result in the highest F1 score. Thus, the com-
parison with the optimal parameter setting shows how close
the clustering results on the perturbed and non-perturbed
graphs are at best. However, it is difficult or impossible
to determine the optimal parametrization without first per-
forming the clustering on the non-perturbed graph and using
the result as ground truth. Such a proceeding can result in
a privacy risk, as the perturbed clustering result contains
additional information on the non-perturbed one. This is
not the case if the parametrization is independent of the
non-private clustering result.

For the Disney as well as the Facebook graph the clus-
ter qualities are very close to each other for the different
parametrizations. First, we consider the Disney graph in
Figure 2. The decrease in the cluster quality for the original
parameter setting is the result of the decrease of the number
of clustered nodes. The higher s is, the more random edges
are added. This influences the neighborhood structure of
the nodes and thus the similarity of the neighborhoods be-
tween neighboring nodes. Adding random neighbors implies
that adding the same new neighbors to nodes of the former
neighborhood is unlikely. As a result, the ε-threshold of
SCAN can no longer preserve the same set of core objects.
If this set changes, the set of nodes which are candidates
for a cluster also changes. Thus, the cluster structure itself

252

0
0.2
0.4
0.6
0.8

1

0 0.05 0.1 0.15 0.2 0.25

3.66 2.94 2.51 2.20 1.95
F

1

Privacy Parameter s

ε (Differential Privacy)

optimal original

0
0.2
0.4
0.6
0.8

1

0 0.05 0.1 0.15 0.2 0.25

3.66 2.94 2.51 2.20 1.95

C
lu

st
er

ed
N

o
d
es

(i
n

%
)

Privacy Parameter s

ε (Differential Privacy)

optF1 original

(a) Disney data set.

0
0.2
0.4
0.6
0.8

1

0 0.02 0.04 0.06 0.08 0.1

5.29 4.18 3.66 3.32 3.06

F
1

Privacy Parameter s

ε (Differential Privacy)

optimal original

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1

5.29 4.18 3.66 3.32 3.06
C

lu
st

er
ed

N
o
d
es

(i
n

%
)

Privacy Parameter s

ε (Differential Privacy)

optF1 original

(b) Facebook data set.

Figure 2: Cluster quality of PIG-SCAN.

greatly differs from the non-private clustering result. Thus,
for s = 0.1, the F1 score is only about 0.3.

Result 1. Graphs with a high density like the Disney graph
(4.39%) require a relatively high s value and thus a lot of
perturbation. Additionally, if such a graph does not contain
clearly separated clusters in its non-perturbed version – as
it is the case for the Disney graph – those changes in the
graph structure have an even higher impact. This makes it
difficult for density-based approaches like SCAN to come
up with a useful private clustering result.

For the quality results on the Facebook graph in Figure 2,
the F1 score is almost constant for s ∈ [0.01, 0.07]. This
behavior can be explained with SCAN ’s parameter setting
together with the structure of the Facebook graph. The
Facebook graph is a graph with 4,039 nodes and a den-
sity of 1.08%. The non-private clustering result only con-
tains six clusters with almost 90% clustered nodes. Using
SCAN with µ = 160 requires that core objects must have
many neighbors, and this results in a high intra-cluster con-
nectivity. SCAN ’s ε is the minimum threshold of how sim-
ilar the neighborhoods of neighboring nodes must be. Thus,
setting SCAN ’s ε= 0.1 reduces the required similarity. This
particular parameter setting can cope very well with the ad-
ditional noise in the graph, resulting in an F1-score of about
0.7 for the minimum required value s = 0.03. However, us-
ing such an extreme parametrization does not always result
in stability against the perturbation. The number of clus-
tered nodes for the original parametrization is about 20%
less than the number for the non-private result. The fact
that this results in a high F1 score and accuracy means that
most of the nodes are true positives wrt. the non-perturbed
clustering result.

Result 2. Sparse graphs like the Facebook graph which
allows clustering almost all nodes in few, clearly separated
clusters can preserve their strong intra-cluster connectivity
upon perturbation. Thus, the impact of PIG on the cluster
quality is small and results in useful clustering results.

Result 3. SCAN ’s thresholds do not strictly bound the
neighborhood size, but allow variations in the size that still
pass them. Thus, graph clustering approaches which do not
require an exact edge structure, but can cope with neighbor
changes, and which bound their requirements by thresholds
seem to be able to cope with PIG.

PIG-Graph k-Medoids. We evaluate the impact of
PIG-Graph k-Medoids on the quality of the clustering re-
sult on the synthetic graphs with 506 nodes and the Disney
graph. We use the same parametrization for the clustering
on the perturbed graph as used on the non-perturbed one.
The cluster quality of PIG-Graph k-Medoids is shown in
Figure 3. For the synthetic graph, the F1 score is quite low.
For the minimum recommended value of s = 0.03, there are
only quality values under 0.4. Thus, the perturbed cluster-
ing result is no longer able to imitate the non-private cluster-
ing result very well. The reason is that its cluster definition
uses shortest paths that are highly sensitive to edge changes.
As a consequence, we have to negate the hypothesis that the
two characteristics of Graph k-Medoids can reduce the im-
pact of PIG on cluster quality. An interesting outcome is
that PIG with Graph k-Medoids produces clustering results
of higher quality on the Disney graph than with SCAN, es-
pecially as the result of PIG-SCAN are the worst on this
graph. For the minimum recommended s = 0.1, the F1 score
is almost 0.4. We hypothesize that the positive outcome is
correlated with the special structure of this real-world graph
and thus the perturbation can only influence the shortest
path structure to a small extent.

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1

5.29 4.18 3.66 3.32 3.06

F
1

Privacy Parameter s

ε (Differential Privacy)

(a) Synthetic graph (506 nodes).

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25

3.66 2.94 2.51 2.20 1.95

F
1

Privacy Parameter s

ε (Differential Privacy)

(b) Disney graph.

Figure 3: Cluster quality of PIG-Graph k-Medoids.

Result 4. Clustering algorithms whose cluster definition
is based on metrics that are highly sensitive to edge changes
do not perform well with PIG. For such approaches, the
privacy guarantees dominate the usability.

Graph Density Variation. In the synthetic graphs, the
nodes have many edges within their cluster and only few
edges to nodes outside of it. Thus, increasing the density
for those graphs means strengthening the structure within
the communities and then adding more connections to nodes
outside the community. With this behavior in mind, the
cluster quality results shown in Figure 4 are as expected. For
both node sizes, the densest graph has the highest cluster
quality. We vary the density in 0.5% steps up to a density
of 2.5%. Much higher densities are not possible with the
graph generator used and 40 communities. The minimum
recommended s values are as follows:

1.0% 1.5% 2.0% 2.5%

506 nodes s ≥ 0.03 0.04 0.05 0.06

253

0
0.2
0.4
0.6
0.8

1

0 0.02 0.04 0.06 0.08 0.1

4.60 3.89 3.48 3.18
F

1

Privacy Parameter s

ε (Differential Privacy)

0.98 %
1.46 %

1.95 %
2.43 %

0
0.2
0.4
0.6
0.8

1

0 0.02 0.04 0.06 0.08 0.1

4.60 3.89 3.48 3.18

C
lu

st
er

ed
N

o
d
es

(i
n

%
)

Privacy Parameter s

ε (Differential Privacy)

0.98 %
1.46 %

1.95 %
2.43 %

Figure 4: PIG-SCAN and density variation on synthetic
graphs with 506 nodes.

The F1 score on the graph with density 0.98% is slightly
better than the one on the graph with density 2.43%. An
interesting outcome is the cluster quality on the graph with
density 1.46%. For s > 0.02, the cluster quality is the worst
compared to the quality on the other graphs. A reason is
the percentage of clustered nodes: The higher s is, the fewer
nodes are clustered. Compared to the results on the other
graphs, it has the lowest clustered-nodes-rate. This has to
do with the concrete graph structure and is not dependent
on the density. The degree distribution can also not explain
why the percentage of clustered nodes is the smallest. The
graph with the lowest density has a similar degree distribu-
tion.

Result 5. The cluster quality highly depends on the s
value chosen. The denser the graph is, the higher s must
be. Thus, better cluster quality results on denser graphs are
relativized compared to sparser graphs. This is because the
denser ones require higher s values.

7. CONCLUSIONS
Publishing usable graph clustering results while giving

strong privacy guarantees is an important and challenging
task. It is important as a graph clustering result can reveal
information that is not directly encoded in the result, e.g.,
parts of the original graph structure.

In this paper, we have adapted differential privacy to
graph clustering. We have developed a neighboring graphs
definition suitable for graph clustering results. Based on
this definition, we have proposed m-edge-differential pri-
vacy. Furthermore, using graph perturbation as noise adding
mechanism allows guaranteeing differential privacy for arbi-
trary graph clustering approaches. Based on those results,
we proposed PIG that guarantees 1-edge-differential pri-
vacy. It independently perturbs each entry of the adjacency
matrix. In a thorough evaluation, we have analyzed the
impact of PIG on the graph structure and cluster quality.
We have shown that PIG can lead to good results and can
preserve the cluster structure up to a certain extent.

This paper is a first stab at the problem of differentially
private graph clustering. We see several topics worthy of
further research. First, it might be worthwhile to classify
the existing graph clustering approaches according to their
ability to cope with a perturbation such as the one of PIG.
Then, a user can better choose a clustering algorithm for
PIG and can get a good and at the same time private clus-
tering result. Second, we want to develop adaptation tech-
niques for each category: Slightly adapting the graph clus-
tering algorithm could result in more robustness against the
perturbation of PIG.

8. REFERENCES
[1] Gaydar Project at MIT, 2013. last accessed December 30,

2013.

[2] R. Bhaskar et al. Discovering Frequent Patterns in
Sensitive Data. In KDD, 2010.

[3] C. Dwork. Differential Privacy. In Automata, Languages
and Programming, volume 4052. 2006.

[4] C. Dwork et al. Calibrating Noise to Sensitivity in Private
Data Analysis. In Theory of Cryptography, volume 3876.
2006.

[5] M. Ester et al. A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. In KDD,
1996.

[6] D. Feldman et al. Private Coresets. In STOC, 2009.
[7] A. Gupta et al. Differentially Private Approximation

Algorithms. CoRR, abs/0903.4510, 2009.
[8] M. Hay et al. Accurate Estimation of the Degree

Distribution of Private Networks. In ICDM, 2009.
[9] S.-S. Ho and S. Ruan. Differential Privacy for Location

Pattern Mining. In SPRINGL, 2011.
[10] G. Jagannathan, K. Pillaipakkamnatt, and R. N. Wright. A

New Privacy-Preserving Distributed k-Clustering
Algorithm. In SDM, 2006.

[11] S. Jha, L. Kruger, and P. McDaniel. Privacy Preserving
Clustering. In Computer Security (ESORICS), volume
3679. 2005.

[12] V. Karwa et al. Private Analysis of Graph Structure.
Proceedings of the VLDB Endowment, 4(11), 2011.

[13] S. Kasiviswanathan et al. Analyzing Graphs with Node
Differential Privacy. In A. Sahai, editor, Theory of
Cryptography, volume 7785. 2013.

[14] L. Kaufman and P. Rousseeuw. Clustering by Means of
Medoids. Reports of the Faculty of Mathematics and
Informatics. Delft University of Technology. 1987.

[15] K. Kumar and C. Rangan. Privacy Preserving DBSCAN
Algorithm for Clustering. In Advanced Data Mining and
Applications, volume 4632. 2007.

[16] A. Lancichinetti and S. Fortunato. Benchmarks for Testing
Community Detection Algorithms on Directed and
Weighted Graphs with Overlapping Communities. Physical
Review E (Statistical, Nonlinear, and Soft Matter Physics),
80(1), 2009.

[17] N. Li et al. PrivBasis: Frequent Itemset Mining with
Differential Privacy. Proceedings of the VLDB Endowment,
5(11), July 2012.

[18] J. McAuley and J. Leskovec. Learning to Discover Social
Circles in Ego Networks. In Advances in Neural
Information Processing Systems 25, 2012.

[19] D. Mir and R. Wright. A Differentially Private Graph
Estimator. In ICDMW, 2009.

[20] Y. Mülle. Sanitizing Graph Clustering and Community
Detection Results Through Differential Privacy. Master’s
thesis, Karlsruhe Institute of Technology (KIT), 2014.

[21] E. Müller et al. Ranking Outlier Nodes in Subspaces of
Attributed Graphs. In ICDEW, 2013.

[22] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth
Sensitivity and Sampling in Private Data Analysis. In
STOC, 2007.

[23] M. J. Rattigan, M. Maier, and D. Jensen. Graph clustering
with network structure indices. In ICML, 2007.

[24] A. Sala et al. Sharing Graphs Using Differentially Private
Graph Models. In IMC, 2011.

[25] E. Shen and T. Yu. Mining Frequent Graph Patterns with
Differential Privacy. In KDD, 2013.

[26] J. Vaidya and C. Clifton. Privacy-Preserving k-Means
Clustering over Vertically Partitioned Data. In KDD, 2003.

[27] Y. Wang et al. On Learning Cluster Coefficient of Private
Networks. In ASONAM, 2012.

[28] X. Xu et al. SCAN: A Structural Clustering Algorithm for
Networks. In KDD, 2007.

254

Big Graph Privacy

Hessam Zakerzadeh
University of Calgary

hzakerza@ucalgary.ca

Charu C. Aggarwal
IBM T.J. Watson Research

Center
charu@us.ibm.com

Ken Barker
University of Calgary

kbarker@ucalgary.ca

ABSTRACT
Massive graphs have become pervasive in a wide variety of data
domains. However, they are generally more difficult to anonymize
because the structural information buried in graph can be lever-
aged by an attacker to breach sensitive attributes. Furthermore,
the increasing sizes of graph data sets present a major challenge to
anonynization algorithms. In this paper, we will address the prob-
lem of privacy-preserving data mining of massive graph-data sets.
We design a MapReduce framework to address the problem of at-
tribute disclosure in massive graphs. We leverage the MapReduce
framework to create a scalable algorithm that can be used for very
large graphs. Unlike existing literature in graph privacy, our pro-
posed algorithm focuses on the sensitive content at the nodes rather
than on the structure. This is because content-centric perturbation
at the nodes is a more effective way to prevent attribute disclo-
sure rather than structural reorganization. One advantage of the
approach is that structural queries can be accurately answered on
the anonymized graph. We present experimental results illustrating
the effectiveness of our method.

1. INTRODUCTION
Network data has become increasingly important in recent years

because of the greater importance of various application domains
such as the Web, social networks, biological networks, and com-
munication networks. The semantics and the interpretation of the
nodes and the links may vary significantly with application domain,
e.g. in a social network nodes can represent individuals and their
connections capture friendship, while in a gene regulatory network
nodes are genes and connections refer to their interactions. These
graph data carries valuable information and are analyzed in various
ways to extract new knowledge. For example, social networks pro-
vide significant insight about psychological behavior of individuals
or gene regulatory networks are widely studied to elucidate mech-
anism of diseases.

A major problem with the release of various social networks is
that the nodes are often associated with sensitive information about
the individual, such as their posts, tweets, interests, hobbies or their
political opinions. Individuals might be willing to share such infor-
mation with their friends, close circles or a particular community

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.
PAIS ’15 Brussels, Belgium
.

but not necessarily with the broader public. An example is the so-
cial network published by [18] which captures the sexual contacts,
shared drug injections and HIV status of individuals. In such cases,
a straightforward elimination of only the directly identifying infor-
mation, such as the name or the Social Security Number (SSN)
is usually used. However, such an approach, referred to as naive
anonymization, is generally not successful in protecting privacy for
graph data[5, 12], as the case for multidimensional data.

The structural pieces of information (e.g. friendship links) in a
social network are usually either far less sensitive than the personal
information of a user or are publicly available. An example is a
co-authorship network in which links are publicly available, how-
ever each author may consider details of his/her ongoing research
sensitive. On the other hand, for a social network release to be truly
useful, such content-centric information needs to be released along
with the social network structure.

In the context of graphs, a major challenge is that the structural
information embedded in graphs such as the node degrees are often
highly revealing information. Such information can be leveraged
by an adversary to launch privacy attacks. In general, attacks on
graph data are categorized as either active or passive [5]. In active
attacks, an adversary has the ability to influence the structure of
the graph, such as the social network. In such cases, the adversary
may construct a highly distinguishable pattern (subgraph), and es-
tablish carefully chosen connections with target victim nodes. The
adversary can then leverage their actively created subgraph to effi-
ciently determine the identity of the targeted nodes in the released
network, even when it is anonymized. In passive attacks, the adver-
sary does not have the ability to influence the structure of the graph.
The released graph is only “passively” available to the adversary.
The adversary may then use all the publicly available background
information to learn more about sensitive information belonging
to the individual. This can result in privacy violation. Passive at-
tacks are more realistic because attackers can usually access the
network modification platform in only a local or limited way, and
consequently are not able to significantly alter the overall graph
structure.

The privacy of individuals (nodes) in graphs can be breached in
three different ways. The first is referred to as identity disclosure.
This refers to the fact that the identity of individuals associated with
graph nodes are disclosed. The second is that of link disclosure. In
this case, relationships between individuals are considered sensi-
tive and an adversary aims at disclosing the relationship between
victims. The identity and link disclosure attacks are generally re-
lated because the disclosure of a sensitive link requires the identi-
fication of the node identities as an intermediate step. Both forms
of privacy are fully related to structural anonymization, and do not
even assume that content is released along with the graph. The fi-

255

nal setting is that of attribute disclosure. In this case, an attacker
aims at finding out sensitive content attribute(s) associated with a
victim. In this setting, content attributes are always released along
with graph nodes, and a user may not wish to disclose this infor-
mation. The structural information about the graph increases the
ease of making content-centric attacks in this case. Even though
this kind of disclosure poses a more significant problem, it remains
almost completely unaddressed in the literature. This is the main
focus of this paper.

Many privacy models[14, 24, 26, 23, 8] have recently been de-
signed for private release of network data. The models make dif-
ferent assumptions about the background information of the adver-
sary. For example, Liu and Terzi[14] proposed a model, namely
k-degree, to prevent identity disclosure against an attacker who has
knowledge about the victim node’s degree. The k-neighborhood
model[24] prevents identity disclosure against an attacker enriched
with knowledge about the immediate neighbors of a target victim.
Algorithms to enforce these privacy models typically suffer from
two problems. First, they are expensive and particularly difficult
to implement for very large graphs. This is important, because the
sizes of graphs have continued to increase significantly in recent
years. Secondly, all recent methods focus almost exclusively on
structural anonymization, with little or no focus on the interplay
between content and structure in the context of sensitive attribute
disclosure of nodes. The latter is usually much more sensitive. In-
dividuals do not wish their views, controversial opinions, and pro-
clivities to be released in the open without their knowledge. Struc-
tural anonymization dramatically degrades the graph structure, and
provides little attribute-wise protection in return for this large loss
in utility. It is important to point out that different graph domains
have different levels of relative sensitivity of links and attributes.
For example, in some domains, the sensitivity of attribute disclo-
sure is much greater than link disclosure. Generally, graph data is
sufficiently complex that it is impractical to prevent all forms of
disclosure with a single anonymization approach. In such cases,
it makes little sense to perturb the structure of the graph. Rather,
the use of traditional attribute-centric modification is sufficient as
long as the graph structure is taken into account during attribute
perturbation. Taking the structure into account during attribute per-
turbation ensures that important real-world properties of graphs,
such as homophily and content-structure locality, are preserved by
the anonymization process.

In this work, we devise the first approach to cope with these
content-centric issues in the context of very large graphs. Our ap-
proach is a simple, yet efficient algorithm to prevent attribute dis-
closure attacks in the passive scenario, while publishing the full
graph structure. Our anonymization technique is best suited to the
big-graph scenarios where there are millions or billions of nodes
and edges. The existing works which prevent different types of dis-
closure either fail or suffer from long running time when applied on
such graphs. Hence our proposed algorithm, which is a MapReduce
algorithm, is the first attempt to address the privacy of big graphs.
1.1 The Problem

An attacker may obtain different kinds of structural background
knowledge about victim nodes. Hay et al. [12] systematically cap-
tures three prominent types of background knowledge: vertex knowl-
edge, subgraph knowledge and hub fingerprint knowledge. Ver-
tex knowledge refers to node degrees, while subgraph and hub
fingerprint knowledge describe (partial) subgraphs around nodes
and their distances from hub nodes, respectively. However, some
types of background knowledge are more difficult to acquire so the
precise kind of knowledge available depends on the problem set-
ting. Some existing proposals [24, 26] consider very powerful ad-

Figure 1: Example of two published graphs. Nodes sensitive
attributes are shown by each nodes. The graph in (a) does
not provide any protection against attribute disclosure attack,
while the graph in (b) satisfies 2-diversity.

(a) Vulnerable graph (b) Satisfying 2-diversity
versaries with subgraph or hub fingerprint knowledge. Our work
currently considers adversaries with vertex knowledge (i.e. victim
nodes degrees) in the context of big graphs, because this represents
a large class of potential attackers and a readily available form of
background knowledge. We anticipate considering more sophisti-
cated attack models in future work. We assume that node-degree
information is known to the attacker and their goal is to determine
sensitive attribute(s) values associated with victim node(s). In other
words, the adversary is undertaking an attribute disclosure attack
with node-degree information. Figure 1 illustrates an anonymized
graph in which the identity of a person is anonymized with respect
to the degree. However, an attacker, supplied with nodes degrees,
can easily conclude that individuals with node-degree value of 2
are suffering from HIV.

To prevent this attack, we leverage the privacy models in rela-
tional data and mandate that the values of sensitive attributes of
nodes with the same degree should be well-represented. Although
our proposed MapReduce algorithm is capable of adopting all types
of diversity (e.g., recursive `-diversity, t-closeness), depending on
different requirements on sensitive value distribution, we only con-
sider distinct `-diversity in this work because of its simplicity and
fundamental nature. Therefore, we enforce the relative frequency
of each sensitive value for the set of nodes with the same degree to
be at most 1

`
.

The `-diversity concepts in the relational setting can be gener-
alized to graphs as follows. Each record corresponds to an indi-
vidual in the relational model, while nodes represent individuals in
the graph data. The quasi-identifiers are a subset of attributes in
relational data and records having the same value for their quasi-
identifiers form an equivalence class. On the other hand, the node-
degree is the quasi-identifier and nodes with the same degree form
an equivalence class in graph data. Figure 1b illustrates a published
graph satisfying 2-diversity in which degree-based diversification
of sensitive attributes assures a confidence of at least 1

2
.

We consider the problem of attribute disclosure attack in the con-
text of big graph data with the use of the `-diversity model. Pre-
serving the privacy of such a graph can be enabled with the use of
distributed frameworks such as MapReduce. Therefore, we address
the following question in this work:
“How to prevent attribute disclosure attacks using the `-diversity
privacy model in big graphs?".

2. RELATED WORK
The problem of privacy preservation was first studied in [3]. This

approach was based on noise-based perturbation of the underlying
data. Subsequently and starting with Samarati’s seminal work[19],
a significant amount of research has been done on the problem of
privacy preservation and numerous privacy-preserving models (e.g.
k-anonymity[19], `-diversity[15], t-closeness[13], δ-presence [16],
or differential privacy[9, 10]) have been proposed to protect pub-
lished data against attackers. Each privacy model can prevent par-

256

ticular types of attacks and makes some assumptions about the at-
tacker’s background knowledge. Besides, each type of data, e.g. re-
lational data, streaming data or graph data, poses its own unique re-
quirements and challenges and mandates a different privacy model.

Backstorm et al. [5] were the first to point out that simply re-
moving identifier information from nodes in a graph does not pre-
vent identity disclosure. The re-identification can occur through
structural information that an attacker can obtain through various
sources. Hay et al. [12] systematically modeled major variants of
adversary structural background information.

Starting with the work of [5], graph privacy received increasing
attention. The models generally aim to prevent three categories of
attacks: identity disclosure attack, link disclosure attack, and at-
tribute disclosure attack. The identity disclosure attack has been
studied in works such as [14, 24, 26]. Liu and Terzi[14] consid-
ered an adversary armed with node-degree information and pro-
posed an edge addition/deletion technique for anonymization. The
solution alters an input graph such that for every node v, there exist
at least k − 1 other nodes with the same degree as v in the pub-
lished graph. Zhou and Pei[24] assumed that the attacker is aware
of subgraph constructed by immediate neighbors (1-neighborhood
subgraph) of a victim node. They proposed an algorithm which or-
ganizes nodes into groups, according to their neighborhoods, and
then anonymizes the neighborhoods of vertices in the same group.
In [26], the authors adopted a more general assumption and inves-
tigated a scenario where the attacker knows any subgraph around
a victim node (d-neighborhood subgraph). The authors then aimed
to construct a graph in which there exist at least k isomorphic sub-
graphs, in the published graph, to each given subgraph in the input
graph.

Other works such as [23, 20, 21] focused on the link disclo-
sure attacks. Zheleva and Getoor[23] devised and investigated the
effectiveness of several strategies to hide sensitive links within a
graph. The work in [20] investigated the interplay between addi-
tion/deletion and edge switch techniques and the graph spectrum.
The authors have also proposed a spectrum preserving algorithm
to prevent link disclosure attacks. Potential disclosure of sensitive
links in graph generation algorithms was also examined in [21].

The attribute disclosure attack is explored in a few works[25,
22]. The authors in [25] extended the k-neighborhood privacy such
that the `-diversity is preserved over the sensitive attribute of nodes
within each group. Yuan et al.[22] considered three gradually in-
creasing levels of attacker’s background information. Their pro-
posed solution alters the graph structure by adding fake edges and
nodes along with generalizing the sensitive values to provide per-
sonalized protection. In addition, the graph nodes and their sen-
sitive attributes or a rich social network, in general, can be mod-
eled as a bipartite graph and be anonymized using the techniques
proposed by Cormode et al.[7]. However, all the proposed works
manipulate the graph structure to provide a certain level of pri-
vacy. Structural modification dramatically affects the utility that a
graph structure provides. In this paper, we put forward an algorithm
to prevent the attribute disclosure attack without manipulating the
graph structure.

3. PROBLEM DEFINITION
Let the quadruplet G(V,E, S, f) be a simple graph in which V

represents a set of nodes (vertices), E is the set of edges, S is the
set of sensitive values and f : V → S is a mapping function that
relates each node to its sensitive value. Table 1 summarizes the
list of commonly-used notations in this work. Next we define the
notion of `-diversity for a set of nodes.

DEFINITION 1 (`-DIVERSITY PRIVACY CONDITION). A sub-

Table 1: List of notations
notation explanation

vi ithvertex

f(vi) function returning the sensitive value of vi
deg(vi) degree of vertex vi

eqd set of nodes with degree d (an equivalence class)

Ni set of immediate neighbors of vi
SX set of sensitive values of set of nodes X

|.| size of a set

set of nodes Vj ⊂ V in graphG(V,E, S, f) satisfies the `-diversity
privacy condition if and only if ∀vi ∈ Vj and multiset of sensitive
values (SVj , g) where SVj = {f(vi)|vi ∈ Vj} and g(·) returns the
frequency of each sensitive value in Vj , ∀x ∈ SVj the inequality

g(x,Vj)∑
y∈SVj

g(y,Vj)
≤ 1

`
holds.

Next, we generalize the notion of `-diversity for a subset of nodes
to the full graph G.

DEFINITION 2 (`-DIVERSIFIED GRAPH). A graphGwith de-
gree set D is called an `-diversified graph if and only if ∀d ∈ D,
the set of nodes eqd with degree d satisfies the `-diversity privacy
condition.

This is the generalization of the distinct `-diversity model[15] to
the graph data model. It is possible to define stricter conditions such
as recursive or entropy `-diversity. Furthermore, related notions
such as t-closeness can be defined.

Our contribution in this work is the proposal of the first MapRe-
duce algorithm to create `-diversified big graphs, particularly social
networks, so that an attacker supplied by degree information cannot
succeed in launching attribute disclosure attacks. The algorithm re-
leases the graph structure intact and in its entirety, thus structural
queries can be accurately answered using the published graph. In
addition, the algorithm is fully scalable and capable of anonymiz-
ing big graphs.

4. MapReduce-BASED PRIVACY ALGORI-
THMS

As discussed in the social networking literature[6, 11], many big
graphs (e.g., social networks, biological networks) are scale-free
networks and their degree distribution follow a power-law distribu-
tion. This behavior is illustrated in Figure 5. As a rule of thumb,
many nodes in a big social network satisfy the privacy condition
for practical values of the privacy parameters (e.g. `). Therefore,
it is more reasonable to first filter the privacy-condition-satisfying
nodes out and not involve them in further processing. This dramat-
ically reduces the complexity of privacy preservation process. Al-
gorithm 1 illustrates the steps required to enforce the privacy con-
dition on a big graph. The output of this algorithm is the original
graph in which the sensitive values of some nodes are released in
group.

In this algorithm, nodes vi are initially assigned to equivalence
classes according to their degrees. In other words, EQ = {eqd|d ∈
D} and eqd = {vi ∈ V |deg(vi) = d} where D is the graph
degree set. The privacy condition is then checked for each equiv-
alence class eq in EQ, and nodes in equivalence classes not sat-
isfying the `-diversity condition are appended to a list of violat-
ing nodes. These privacy-violating nodes are then clustered such
that the nodes within each cluster satisfy the `-diversity condition.
To cluster nodes, we use an agglomerative clustering in which two
clusters are merged in each iteration. However, the merging process
must be designed for satisfying the privacy condition. A suitable

257

Algorithm 1 Big Graph Anonymization Steps
1: AnonymizationScheme(G)
2: //G is a simple graph of form (V ,E,S,f)
3: EQ= assign nodes with degree d to equivalence class eqd

and form equivalence classes set
4: foreach (eq in EQ)
5: if (eq does not satisfy the `-diversity condition)

append nodes vi ∈ eq to the violating nodes set V N
6: C=cluster nodes vj ∈ V N such that each cluster c ∈ C

satisfies the `-diversity condition
7: define function f ′ : V → S × N such that
8: foreach (vi in V)
9: if (vi not in V N)

10: f ′(vi) = (f(vi), 1)
11: else
12: f ′(vi) = the multiset of sensitive values of nodes in

cluster c ∈ C|vi ∈ c
13: publish G′(V,E, S, f ′)

merging criterion is the entropy of sensitive values. Two clusters
ci and cj are selected when the constituent nodes are connected by
at least one edge and cause the maximum change in entropy as a
result of the merging. The entropy criterion is stated as follows.

argmax
ci,cj

d(ci, cj) = H(ci ∪ cj)−H(ci)−H(cj)

where function H(X) denotes the entropy function.
The set of all formed clusters are referred to as C. At the end, the

full graph structure is published. However, the sensitive value of
node vj not originally satisfying the privacy condition is replaced
by the multiset of sensitive values of nodes in cluster c ∈ C that
contains vj (vj ∈ c). In other words, sensitive values of privacy-
violating nodes are released at the cluster level instead of the node
level.

Figure 2: Illustration of 2-diversification process of a graph.
This process leaves nodes initially satisfying the 2-diversity con-
dition intact and only generalizes sensitive values of 2-diversity-
violating nodes.

(a) A 2-diversity violating
graph

(b) 2-divertised version of
(a)

In the clustering step (line 6, Algorithm 1), satisfying the `-
diversity condition for each cluster mostly depends on frequencies
of sensitive values, which is defined as the function g(f(vi), c) :
S → N. This definition of g() results in a Sensitive Value Fre-
quency aWare (SVFW) clustering. However, g() can be defined in
a more relaxed way g(f(vi), c) : S → 1, which basically ignores
the frequency of sensitive values within each cluster and turns the
process into a Sensitive Value Frequency aGnostic (SVFG) clus-
tering. As soon as the number of distinct sensitive values reaches
` within a cluster, further merging is no longer performed on that
cluster in SVFG, while it may not be case in SVFW. In fact, the
SVFG is a relaxed version of SVFW, and apparently an `-diversity-
satisfying cluster under SVFW is an `-diversity satisfying cluster
under SVFG too, whereas the vice versa may not hold. It is easy

to show that SVFG satisfies the `-diversity condition as each node
within a given cluster can be related to any of the sensitive values.

Pathological cases might exist in both SVFW and SVFG in which
the clustering ends up with a cluster not satisfying the privacy con-
dition. Under such circumstances, sensitive values of nodes be-
longing to the cluster must be suppressed. Figure 2a demonstrates
a graph in which nodes with degrees one, three and four do not sat-
isfy 2-diversity. Applying the anonymization steps in Algorithm 1
results in the 2-diversity-satsifying graph shown in Figure 2b. In
this anonymized graph both SVFW and SVFG result in the same
anonymized graph as each sensitive value occurs only once in the
formed cluster.

A data user, after obtaining the published anonymized graph
must instantiate a graph from it. Instantiation means randomly as-
signing a sensitive value to those nodes whose sensitive values are
released as a multiset. A query can be more accurately answered
by averaging over multiple instantiations. Figure 3 exemplifies two
possible instantiated graphs from the 2-diversity satisfying graph
shown in Figure 2b.

Section 4.2 describes how Algorithm 1 can be converted into
MapReduce jobs to satisfy the `-diversity condition on big graphs.
However, before proceeding further, we provide a very brief intro-
duction to the MapReduce framework.

Figure 3: Two possible instantiations of 2-diversified graph
shown in Fig. 2b

(a) Instantiation 1 (b) Instantiation 2

4.1 MapReduce
MapReduce is a programming framework proposed by Google

to enable efficient data processing. As implied by its name, the
approach uses distributed Map step, followed by a Reduce step.
These steps must be designed by the application programmer. The
MapReduce framework splits the data into equal-size chunks, and
feeds each chunk to a separate mapper. Each mapper processes its
own chunk, and outputs (key, value) pairs. Pairs with the same
key are transferred to one reducer by the framework. The set of all
reducer outputs are used to construct the final result. An arbitrary
function combiner can also be defined to reduce the amount of data
transfer between mappers and reducers by aggregating the values
belonging to each key. There is also a user (driver) program that
executes/runs the MapReduce program. Figure 4 illustrates the data
flow of a MapReduce job. We do not define the combiner function
in our MapReduce jobs as its effect in reducing the data transfer is
not significant, considering the mapper output.

4.2 Privacy Algorithm Transformation to Ma-

pReduce Jobs
Algorithm 1 consists of two phases, which are referred to as the

pruning phase and the clustering phase, respectively. The prun-
ing phase corresponds to lines 1-5 and the clustering phase to the
line 6 in the algorithm. Lines 7-13 involve publishing the resulting
anonymized graph, and can also be carried out by a separate job,
as will be explained shortly. Here, we demonstrate how each phase
can be converted into MapReduce jobs.

As a de facto standard, we assume edges and attribute informa-

258

Figure 4: The data flow of a MapReduce job

tion of a graph are stored in two separate files: the relationship and
the meta-info file. Each line in the relationship file shows an edge
and each line in the meta-info file corresponds to one node and con-
tains the values of different attributes of that node. Minor modifica-
tion is required for other sorts of graph representations. Besides, for
the sake of simplicity, we assume that each node contains only one
sensitive attribute, however extension to multi sensitive attributes is
straightforward.

4.2.1 Pruning Phase
The pruning phase comprises two MapReduce jobs. The first

job discovers the immediate neighbors of each node and the second
one does the actual filtering (pruning) task based on whether an
equivalence class satisfies the `-diversity condition or not.

MapReduce Job for Neighborhood Discovery
This job discovers neighbors of each node. The input to this job is
both the relationship and the meta-info files. The mapper and the
reducer of this job are as follows:

Mapper: As there are two different input files, mappers are dif-
ferentiated according to the data chunk they are fed with and their
outputs differ depending on whether a mapper gets a chunk of the
relationship or meta-info file. If the chunk is coming from the re-
lationship file, then for each record “vi,vj” (corresponding to an
edge), the mapper outputs two pairs <vi,vj> and <vj ,vi>. How-
ever, providing that the mapper is fed by a chunk of meta-info file,
it outputs the vertex as the key and its sensitive value as the value.

Algorithm 2 Neighborhood Discovery Job
1: Mapper(k,v)
2: // v can be either of form (vi,vj) or (vi,f(vi))
3: if (input chunk belongs to the relationship file)
4: emit(vi,vj)
5: emit(vj ,vi)
6: else
7: emit(vi,f(vi))

Reducer: All neighbors of a given vertex (let’s say vi) as well as
its sensitive value (f(vi)) are brought together in a reducer. Thus,
the reducer receives pair <vi, Ni+f(vi)> whereNi is the set of all
vi’s immediate neighbors. The ’+’ sign is a simple string concate-
nation operator. Each reducer then emits the pair <vi/f(vi), Ni>.
The output file of this job is fed into the second MapReduce job as
input.
MapReduce Job for Filtering
This MapReduce job filters out nodes originally satisfying the `-
diversity condition and leaves us with only violating nodes. As
discussed earlier, it can be modified for other types of `-diversity
or even t-closeness.

Algorithm 3 Neighborhood Discovery Job
1: Reducer(k,V)
2: // k is a vertex and V contains all neighbours and the sensitive

value f(k)
3: emit(k/f(k),V)

Mapper: Each mapper reads a data chunk which has been output
from the reducer in the first job. The value of each input record
in the chunk is of form (vi/f(vi),Ni)1. The mapper then emits
a pair where the key is the degree of vi, |Ni|, and the value is
<vi/f(vi), Ni>. Ni will be used in the clustering phase later.

Algorithm 4 Filtering Job
1: Mapper(k,v)
2: //v is of form (vi/f(vi), Ni)
3: emit(|Ni|,<vi/f(vi), Ni>)

Reducer: All vertices with the same degree (eqd) as well as
their sensitive values Sd are transferred to the same reducer. The
reducer can then simply decide on whether the equivalence class
eqd satisfies the `-diversity or not. If so, all vertices in eqd are
ruled out, otherwise they are output. Therefore, each line in the
the reducers’ output file contains a privacy-violating node and its
sensitive value. The output file(s) will be used as input for the next
MapReduce job in the clustering phase.

Algorithm 5 Filtering Job
1: Reducer(k,V)
2: //V is a list of (vi/f(vi), Ni) where deg(vi) = d
3: violation=false
4: foreach (vi/f(vi), Ni) ∈ V
5: if (freq(f(vi),S

d)

|Sd| > 1
`

)
6: violation=true
7: break
8: if (violation)
9: foreach (vi/f(vi), Ni) ∈ V

10: emit(vi/f(vi), Ni)

4.2.2 Clustering Phase
The clustering phase has only one MapReduce job. This job

groups the privacy violating vertices and forms clusters in which
the sensitive values are well-represented. An agglomerative hier-
archical clustering algorithm can be used for the clustering. How-
ever, merging two clusters must enable `-diversity satisfaction. To
achieve this goal, we consider the similarity measure between two
neighbor clusters ci and cj to be the difference in entropy of sen-
sitive values in the resulting cluster and the original clusters, i.e.
H(ci ∪ cj) − H(ci) − H(cj)

2. A cluster is removed from fur-
ther merging as soon as it satisfies the `-diversity condition. The
sensitive values of vertices in the remaining cluster may need to be
suppressed when they do not satisfy the `-diversity condition.

MapReduce Job for Clustering
The clustering job is in charge of clustering vertices according to
sensitive values entropy.

Mapper: Each mapper is fed a chunk consisting of privacy vio-
lating vertices (output by the Filtering job). It buffers all the input
nodes and clusters them according to entropy increase criterion.
1Note that by default the key for each record in the mapper is the
record’s offset in the input file.
2If ci and cj are not connected, their similarity will be zero. This
can be determined using Ni.

259

Note that the clustering is influenced by the number of mappers
and size of the chunks as violating nodes are split among different
mappers. That means a better clustering, in terms of fewer sup-
pressed sensitive values, is expected with fewer mappers or larger
chunk size. One mapper operating over all the violating nodes is
the ideal case, however it may become a bottleneck in case of hav-
ing large number of violating nodes.

The output of the Clustering MapReduce job is referred to as the
Generalized Sensitive Value (GSV) file(s). Each line in the GSV
file contains a node name along with the multiset of the cluster
sensitive values to which the node belongs. Algorithm 6 shows the
pseudocode of this job. Function multiset(c) takes a cluster and
returns the multiset of its constituent node sensitive values.

Algorithm 6 Clustering Job
1: Mapper(k,v)
2: // v is of form (vi/f(vi), Ni)
3: append each pair (vi/f(vi), Ni) to buffer
4: if (no more pair)
5: C = cluster(buffer) //either SVFW or SVFG clustering
6: for (c in C)
7: for (vj in c)
8: emit(vj , multiset(c))

There is no reducer required for this MapReduce job and the
mapper’s output should be considered as the job’s output. To pub-
lish the final anonymized graph (lines 7-13, Algorithm 1), the rela-
tionship file must be released as original, nonetheless the sensitive
values of originally-privacy-violating nodes in the meta-info file
must be swapped with their corresponding values in the GSV file.
There exist two alternatives to carry out the swap:

1. A MapReduce job which caches GSV file and takes the meta-
file as input. It then goes through the meta-info file and sim-
ply does the swaps. This alternative is suitable when the GSV
file is of small size.

2. A MapReduce job which joins the meta-info and the GSV
files and changes the sensitive values of violating nodes in
the meta-info with the corresponding value from the GSV
file. This approach is more appropriate for a large GSV file.

The new meta-info file must also be released at the end.

5. DATA TRANSFER ANALYSIS
As shown in Figure 4, each MapReduce job involves two data

transfers. The first involves data transfer between mappers and
combiners. The second involves data transfer between combiners
and reducers. Since each mapper and its corresponding combiner
run on one node, the first data transfer is local. However, the sec-
ond data transfer may occur across the network and become a bot-
tleneck. As we have not specified a combiner in this work, we only
analyze the amount of data transferred in the second case here.

First MapReduce Job, Pruning Phase
The mapper in the first job doubles the size of the relationships
file because it outputs two pairs per input record of the relation-
ships file, but leaves the size of meta-info file unchanged. |E|
and |V | show the number of input records from the relationships
and the meta-info files, respectively and let b denote the number
of bytes required to store a node name (or a sensitive value). So,
the mapper’s input and output data are of size 2b.|E|+ 2b.|V | and
4b.|E|+ 2b.|V |.

The reducer then outputs one record per node in which there is
the node name, its sensitive value and the list of node’s neighbors.
The average size of each record is (2 + µ).b where µ is the average

node degree in the input graph. As shown in the social networks lit-
erature [4, 6], degree distribution in many social networks follows a
power law probability distribution p(x) ∼ x−λ where 2 < λ < 3.
Newman[17] also proved that the average degree in a graph fol-
lowing power law distribution is µ = λ−1

λ−2
(given λ > 2). Thus,

the reducers’ output will be of average size (2 + λ−1
λ−2

).b.|V |. In
summary, the asymptotical data transfers are:

mapper’s input:
O(|E|+ |V |)

mapper’s output (reducer’s input):

O(|E|+ |V |)
reducer’s output:

O(
λ− 1

λ− 2
.|V |)

Hereafter we only consider the asymptotical analysis of the data
transfer.
Second MapReduce Job, Pruning Phase
The second MapReduce job is fed by the output of the first job
which is of size O(λ−1

λ−2
.b.|V |). It then outputs one pair for each

input record in which the key is the node’s degree and the value
consists of node’s name, its sensitive value and neighbors. Thus,
the mapper’s output has the same magnitude of the input which is

O(
λ− 1

λ− 2
.|V |)

Afterwards, the reducer prunes out nodes originally satisfying
the privacy condition and outputs privacy-condition-violating nodes
as well as their sensitive values. Number of output nodes is highly
dependant to the sensitive values distribution within different equiv-
alence classes and cannot be easily estimated. However, consider-
ing the power law for degree distribution, we can estimate the lower
bound of output nodes. The number of nodes for a given degree
(let’s say x) as follows:

n

|V | ∼ x
−λ → n ∼ |V |.x−λ

Provided that the number of nodes for a given degree (x) is less
than the privacy level (`), nodes with degree x are output by the
reducer3. To find an estimated lower bound for x we must have:

|V |.x−λ > `→ x ? λ

√
|V |
`

so the estimated size of reducer’s output is

Ω(
λ− 1

λ− 2
.|V |.

∑

x=
λ
√

|V |
`

x−λ)

Third MapReduce Job, Clustering Phase
The input to this MapReduce job is the output of the previous job
and has the same magnitude. For each input record, which is formed
of a node name along with its sensitive value, one pair consisting of
the node name and its multiset of sensitive values is output. There-
fore, the output size is

O(|V |.
∑

x=
λ
√

|V |
`

x−λ)

6. EXPERIMENTAL RESULTS
In this section, we will study the effectiveness, efficiency, and

running time characteristics of the anonymization algorithm. The
3Although existence of at least ` nodes with degree x is not enough
for `-diversity condition to satisfy, it is a necessary condition.

260

experiments were carried out on Hadoop 1.0.44, an open source im-
plementation of the MapReduce framework, on the Hadoop clus-
ters running on ACENet5. It has 32 nodes connected through a
Gigabit Ethernet connection, each having 16 cores and 64 GB of
RAM running Red Hat Enterprise Linux 4.8. Table 2 lists the
Hadoop parameters in our experiments6.

Recall Section 2 stated there is no existing work that prevents at-
tribute disclosure attacks with the fairly limited restrictions associ-
ated with our assumptions regarding attacker’s background knowl-
edge. For example, Zhou and Pei [25] consider an attacker with
1-neighborhood background knowledge and Yuan et al. [22] as-
sumes knowledge about node labels is also available to an attacker.
Unfortunately, divergent assumptions about the knowledge held by
attackers makes the comparison with our solution impossible. We
also note that our goal is to address big graphs while the solutions
proposed by other, due to the increased complexity associated with
protecting against sophisticated attacks, means these alternative ap-
proaches have only been shown to work on comparatively small
graphs.

Our anonymization algorithm does not change the graph struc-
ture, so all graph properties remain intact and structural queries can
be answered accurately using the anonymized graph. However, the
sensitive values for some nodes are released as a multiset and in
cluster level. This ambiguity introduces some error in answering
queries involving the sensitive values, however can be ameliorated
by averaging over multiple instantiations. To measure the effect
of sensitive values ambiguity, we measure the change of certain
queries’ results between the original and the anonymized graphs.
We considered three types of queries:

• Pair query (one hop query): this type of query involves pairs
of nodes which are connected. It demonstrates how many
nodes from one subpopulation have relation with nodes from
another subpopulation in the graph. An example query in
this type is "how many users of 19 years old are friends with
users of 28 years old?".
• Trio Query (two hop query): these queries involve three

connected nodes in the graph. it in fact counts triples that sat-
isfy a given condition. A sample query of this type is "how
many users of 19 years old are friends with users of 28 years
old who are friends with users of 50 years old?"
• Triangle queries: this sort of query counts the number of

triangles (cliques of size three) that holds a query condition.
For instance, "how many users of 19 years old are friends
with users of 28 and 70 years old who are friends with each
other?".

The utility loss is measured by the average relative query er-
ror for each type of query over multiple instantiations. For an
anonymized graph and set of n queries {q1, q2, ..., qn}, the aver-
age relative error is calculated as 1

n

∑n
i=1

|qi(a)−qi(o)|
qi(o)

where qi(a)

and qi(o) denote the results of running query qi on the anonymized
and the original graphs, respectively.

The anonymization process only affects a (small) portion of nodes
in the big graph. That is, the result of executing these three types
of queries on a great portion of the anonymized graph is exactly
the same as the original graph. Therefore, to better show the im-
pact of anonymization on each type of query, we extract subgraph
which results in different answer for a given type of query between
the original and the anonymized graphs and only report the error of
executing queries on the subgraph. It is worth noting that the total
4http://www.hadoop.com
5http://www.ace-net.ca
6The rest of the parameters have the default value.

Table 2: Parameters of Hadoop
Parameter Name Value
fs.block.size 64MB
io.sort.mb 1024MB

io.sort.factor 50
dfs.replication 3

Figure 5: Degree distribution in the Patent and LastFM data
sets

0 100 200 300
0

0.5

1

1.5

2

2.5
x 10

5

Degree

F
re

q
u

e
n

c
y

(a) Patent data set

0 200 400
0

2000

4000

6000

Degee

F
re

q
u

e
n

c
y

(b) LastFM data set

error (the error on the entire graph) will be much smaller than the
reported one because the total error must be calculated on the whole
graph in which most nodes remained intact. This subgraph for the
pair and triangle queries is the subgraph formed by the initially-
privacy-violating nodes and their immediate neighbors (neighbors
with distance one). For trio queries, this subgraph is constructed
by the initially-privacy-violating nodes and as well as nodes within
distance one and two from them. Besides, the running time was
measured in terms of the wall-clock time (milliseconds). This pro-
vides a good indicator of the overall scalability of the method.

6.1 Data Sets
We used two real big graphs described below:

• US Patent Citation Graph: The citation graph includes all
citations made by patents granted between 1975 and 1999
and is maintained by National Bureau of Economic Research[2].
This data set contains over 2.9 million nodes and 16.5 million
edges. Although it is a directed graph, we consider it as undi-
rected since there is no pair of nodes citing each other. The
meta-file also contains the patents’ year which is considered
as a sensitive attribute.
• LastFM co-Group Graph: Last.fm is a popular music web-

site which recommends music to users according to their mu-
sic taste. An anonymous random walk crawl of Last.fm is
released by Networking group at UC Irvine [1]. The data
set contains up to 177K users (nodes) and more than 10M
friendship relations (edges) among them. Besides, the meta-
file includes users’ ages which we consider as the sensitive
attribute.

Although these two data sets might fit in the RAM of a commod-
ity PC, they are among the biggest graph data sets publicly available
with nodes’ attributes. So we utilized them to show the behavior of
our proposed solution. As shown in Figure 5, the degree distribu-
tion in these graphs follow a power-law distribution. For the sake
of clarity, these figures only show the tail and the central part of the
degree distribution and the head part is mostly removed.
6.2 Results

Each anonymized graph was instantiated 30 times and 50 ran-
dom queries generated by uniformly sampling from the set of sen-
sitive values. The generated queries ran on each instantiated graph
and the reported error is averaged over all 1500 queries for each
anonymized graph. We set the number of mappers and reducers to
30 and the running time is averaged over three runs. The number
of mappers in the clustering phase have also been set to 1 for the

261

Patent and 10 for the LastFM data set. The selection is due to
the number of nodes involved in the clustering. The diversity level
(`) also ranges from 2 to 6 in the experiments.

The average relative errors in answering different types of queries
on the Patent and LastFM data sets versus the diversity level
are shown in Figure 6 through 8. These figures reveal that typi-
cally the SVFG technique results in smaller error in answering dif-
ferent types of queries than SVFW technique. We conjecture that
this phenomenon is mainly due to fine grain clusters formed in the
SV FG technique which can largely eliminates the randomness in
the instantiation process. Besides, these figures show that no rela-
tion exists between the diversity level and average error.

As Figure 9 confirms, the running time and the number of nodes
involved in the diversification process have a direct relationship.
The increase in the running time is mainly due to the clustering part
and can be alleviated by executing more mappers in the clustering
phase.

Figure 6: Average relative error of one-hop queries vs. `

2 3 4 5 6
0

0.1

0.2

diversity level (l)

A
v
g

.
e
rr

o
r

SVFW

SVFG

(a) Patent data set

2 3 4 5 6
0

0.1

0.2

diversity level (l)

A
v
g

.
e
rr

o
r

SVFW

SVFG

(b) LastFM data set
Figure 7: Average relative error of two-hop queries vs. `

2 3 4 5 6
0

0.1

0.2

diversity level (l)

A
v
g

.
e
rr

o
r

SVFW

SVFG

(a) Patent data set

2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

diversity level (l)

A
v
g

.
e
rr

o
r

SVFW

SVFG

(b) LastFM data set
Figure 8: Average relative error of triangle queries vs. `

2 3 4 5 6
0

0.1

0.2

diversity level (l)

A
v
g

.
e
rr

o
r

SVFW

SVFG

(a) Patent data set

2 3 4 5 6
0

0.1

0.2

0.3

0.4

diversity level (l)

A
v
g

.
e
rr

o
r

SVFW

SVFG

(b) LastFM data set

7. CONCLUSION
Even though publishing social networks between individuals or

entities provides various benefits, it poses serious privacy concerns
for the underlying individuals or entities. Therefore, the social net-
work must undergo a non-trivial anonymization process before it is
released. Anonymization techniques typically alter the graph struc-
ture to protect privacy, however the structure manipulation may dra-
matically degrade the utility of the published graph and turns to be
counter intuitive. In addition, the existing anonymization solutions
do not scale up and are not practically applicable on real big social
network graphs. This work is the first attempt to protect the privacy
of individuals in big graphs with no structure manipulation by tak-
ing advantage of MapReduce paradigm. This approach publishes a

Figure 9: Running time vs. `

2 3 4 5 6
0

1

2

3

4
x 10

5

diversity level (l)

R
u

n
n

in
g

 t
im

e
 (

m
s
)

SVFW

SVFG

(a) Patent data set

2 3 4 5 6
0

2

4

6

8

10

x 10
5

diversity level (l)

R
u

n
n

in
g

 t
im

e
 (

m
s
)

SVFW

SVFG

(b) LastFM data set

graph in which sensitive attributes are protected and also is capable
of answering structural queries as accurate as the original graph. As
our future work, we plan to consider more powerful attackers and
also leverage MapReduce to design fully scalable anonymization
techniques to protect other sorts of sensitive information within big
social networks such as sensitive links.

8. REFERENCES
[1] Lastfm data set. http://odysseas.calit2.uci.edu/doku.php. Accessed: Feb 2014.
[2] Patent data set. http://www.nber.org/patents/. Accessed: Feb 2014.
[3] R. Agrawal and R. Srikant. Privacy-preserving data mining. ACM Sigmod

Record, 29(2):439–450, 2000.
[4] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks.

Reviews of modern physics, 74(1):47, 2002.
[5] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou r3579x?:

anonymized social networks, hidden patterns, and structural steganography. In
WWW, 2007.

[6] A.-L. Barabási and R. Albert. Emergence of scaling in random networks.
science, 286(5439):509–512, 1999.

[7] S. Bhagat, G. Cormode, B. Krishnamurthy, and D. Srivastava. Class-based
graph anonymization for social network data. 2009.

[8] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang. Anonymizing bipartite graph
data using safe groupings. VLDB, 2008.

[9] C. Dwork. Differential privacy. In ICALP, 2006.
[10] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to

sensitivity in private data analysis. In TTC. 2006.
[11] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the

internet topology. In ACM SIGCOMM Computer Communication Review, 1999.
[12] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis. Resisting structural

re-identification in anonymized social networks. In VLDB, 2008.
[13] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond

k-anonymity and l-diversity. In ICDE, 2007.
[14] K. Liu and E. Terzi. Towards identity anonymization on graphs. In SIGMOD,

2008.
[15] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam.

l-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge
Discovery from Data (TKDD), 1(1):3, 2007.

[16] M. E. Nergiz, M. Atzori, and C. Clifton. Hiding the presence of individuals
from shared databases. In SIGMOD, 2007.

[17] M. E. Newman. Power laws, pareto distributions and zipf’s law. Contemporary
physics, 46(5):323–351, 2005.

[18] J. Potterat, L. Phillips-Plummer, S. Muth, R. Rothenberg, D. Woodhouse,
T. Maldonado-Long, H. Zimmerman, and J. Muth. Risk network structure in the
early epidemic phase of hiv transmission in colorado springs. Sexually
transmitted infections, 2002.

[19] P. Samarati. Protecting respondents identities in microdata release. IEEE
TKDE, 13(6):1010–1027, 2001.

[20] X. Ying and X. Wu. Randomizing social networks: a spectrum preserving
approach. In SDM, 2008.

[21] X. Ying and X. Wu. Graph generation with prescribed feature constraints. In
SDM, 2009.

[22] M. Yuan, L. Chen, and P. S. Yu. Personalized privacy protection in social
networks. VLDB, 2010.

[23] E. Zheleva and L. Getoor. Preserving the privacy of sensitive relationships in
graph data. In Privacy, security, and trust in KDD. 2008.

[24] B. Zhou and J. Pei. Preserving privacy in social networks against neighborhood
attacks. In ICDE, 2008.

[25] B. Zhou and J. Pei. The k-anonymity and l-diversity approaches for privacy
preservation in social networks against neighborhood attacks. Knowledge and
Information Systems, 28(1):47–77, 2011.

[26] L. Zou, L. Chen, and M. T. Özsu. K-automorphism: A general framework for
privacy preserving network publication. VLDB, 2009.

262

Opening up government data while maintaining data
privacy

Caroline Tudor
Office for National Statistics

Segensworth Road
Titchfield, PO15 5RR, UK

+441329444730

caroline.tudor@ons.gov.uk

Philip Lowthian
Office for National Statistics

Segensworth Road
Titchfield, PO15 5RR, UK

+442075928640

philip.lowthian@ons.gov.uk

Keith Spicer
Office for National Statistics

Segensworth Road
Titchfield, PO15 5RR, UK

+441329444983

keith.spicer@ons.gov.uk

ABSTRACT

In this paper, we describe a UK approach to opening up microdata

collected by government with examples of actual use-cases of

anonymising datasets. We describe briefly the reasoning behind

the Open Data movement and the challenges faced in trying to

release data openly in practice. Several case studies are provided

including that of the Department of Energy and Climate Change

(DECC) public use file, and the microdata teaching file from the

2011 UK Census. The anonymisation approach mainly involves

detecting quasi-identifier attributes in the data and then modifying

the dataset to ensure relative anonymity based on those attributes.

This approach is aligned with the principles of k-anonymity. It

also involves intruder testing to simulate linking attacks, whereby

friendly intruders attempt to attack the dataset and find

vulnerabilities to further inform disclosure risk assessment.

Categories and Subject Descriptors
J.1 [Computer Applications]: Administrative Data Processing -

Government , K.4 [Computers and Society]: Public Policy Issues

– Privacy.

General Terms
Security

Keywords

Disclosure risk, open data, government data, intruder testing, k-

anonymity, linking attack.

1. INTRODUCTION
This paper examines one approach the UK Office for National

Statistics (ONS) recommends for opening up government record

level data while maintaining data anonymity. Section 2 provides

some background to the Open Data movement and how this has

largely been enabled by technological advances allowing data to

be processed and shared far more easily. We also describe what is

meant by open data. Section 3 examines the impact of privacy

attacks within an open data framework with reference to the

jigsaw (mosaic) effect perhaps known more widely in the privacy

literature as a linking attack. In section 4 we put this into the

context of government data and set out the value that open

datasets have as well as their limitations.

(c) 2015, Copyright is with the authors. Published in the Workshop

Proceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015,
Brussels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of

this paper is permitted under the terms of the Creative Commons license

CC-by-nc-nd 4.0.

We usefully summarize a general approach to opening up micro-

datasets. The approach broadly operates on the principle of k-

anonymity such that information for any person is hidden amongst

k-1 other individuals. Sampling as well as suppression and

recoding of variable categories are used to achieve this. We

describe intruder testing which is used to help inform risk

assessment and appropriate selection of quasi-identifiers. Our

overall goal is to try to achieve k-anonymity with a small k value

(e.g. k = 2) to at least remove all uniques, and a weak k-

anonymity with a larger k value (e.g. k = 3 or more) for subsets of

records which are more vulnerable to attack. This procedure

works well to satisfy real-world requirements for a balance of

risk-utility. Section 5 describes application of our anonymisation

approach to examples of open government datasets and the steps

taken to minimize disclosure risk. Section 6 concludes with a

short discussion including a summary of the challenges ONS have

faced in creating useful open data.

2. OPEN DATA CONTEXT
Web-based technology has allowed increasing numbers of people

to share and link data. Information disclosure can now be in

digital form: downloadable from the internet and easily

processible by computer. In 2008, the Open Data movement

undertook to make more data public and accessible, particularly

data collected by government, with the argument that this

information collected on our behalf should be made freely

available to hold government to account. Open data as a concept

simply encompasses data that are made available by

organizations, businesses and individuals for anyone to access,

use and share1 no matter where they are and what they want to do

with the data. Advocates of the open data movement espouse

innovative combining of datasets leading to improved citizen

engagement and empowerment, being a driver of economic

growth and leading to better delivery and efficiency of services.

However the UK government, along with other participating

countries, faces a number of challenges in order to transition

towards open data, one of which is to reconcile the right to

information with the right to privacy. While open data must be

data that do not relate to an identified or identifiable data subject,

achieving this in practice is difficult due to the linking attacks,

also known as the jigsaw effect of comparing multiple datasets to

eventually reveal disclosive information about one or more

identifiable individuals. Two or more datasets each posing

negligible disclosure risk in isolation, present an increased risk

when the information from these datasets is pieced together in

some way.

1 http://theodi.org/guides/what-open-data

263

Traditionally UK government release many sensitive datasets at

record level under licence; either End User Licence (EUL),

Special Licence (SL) or within a safe setting. These have

conditions attached which include signing up to a set of conditions

on use of the data (EUL) to registration of the user and detailing

the purpose of use (SL). There has more recently been a greater

emphasis on releasing data with minimum restrictions for the user.

As part of the government’s commitment to the open data agenda,

the UK National Archives developed the Open Government

Licence (OGL) which enables and encourages free use of

government information. The user is allowed to publish, adapt and

combine with other data as long as the information is not personal

data. Personal data means data relating to a living individual who

is or can be identified either from the data or from the data in

conjunction with other information that is in, or is likely to come

into, the possession of the data controller (UK Data Protection

Act, 1988). It is therefore a difficult balancing act between

producing open data which are of some use and protected to a

reasonable level even when combined with other data sources.

In this paper we discuss some real-world examples of how some

government datasets have been made open datasets and thus made

available publicly, taking account of privacy considerations, and

the resulting limitations on such datasets. We discuss publicly

released datasets from the department of Business, Innovation and

Skills (BIS), Department for Energy and Climate Change

(DECC), the 2011 Census microdata, and also take a look at the

licensed survey datasets within the Office for National Statistics

and how they were assessed for potential open release.

3. ASSESSING RISK OF LINKING

ATTACKS ON OPEN DATA
In order for data to be released under OGL, it is first necessary to

reduce the risk of identification. All explicit identifiers such as

name and date of birth should be removed from the dataset. Once

data have been de-identified so that it is no longer possible to

establish links to particular individuals, data may be considered

for release openly and used for a wide range of purposes.

However there may be a small residual risk that identifiable data

could be revealed. Sets of attributes may still be linked with

external data to uniquely identify individuals in the population

and are called quasi-identifiers as defined in [1].

The risk of a linking attack becomes more likely when many

similar data are available, to a large number of people. As set out

in [2] the risk of jigsaw identification/linking attack with the

inclusion of anonymised databases in a transparency programme

increases due to three reasons (adapted here in summary):

1. The very concept of open data precludes the possibility

of withdrawing access to data if need be.

2. The amount of data on the web grows annually thanks

to information on social networking sites and local press

coverage.

3. Jigsaw identification is computationally complex.

However dramatic increases in computer power have

made this easier and complete future-proofing against

such disclosure is almost impossible.

Crucially, the responsibility for preventing linking attacks lies

with the releasing agency. According to [2], this depends on the

nature of the information, the availability of other information,

and the technology in place that could facilitate the process of

identification. Determining the level of acceptable risk in open

data according to these factors is therefore complex.

Privacy risk is regulated at the European level by an EU

Directive2 which states that to determine whether a person is

identifiable, account should be taken of all the means likely to be

reasonably used either by the controller or by any person to

identify the said person. In the UK, the Information

Commissioner’s Office (ICO) - which is responsible for

enforcement of the Data Protection Act (DPA) - released in 2012

its “Anonymisation: managing data practice protection risk code

of practice”3 online. This details how to release anonymised data

with the caution that publication under an open government

licence is a release to the wider world and carries more risk. The

stance from the ICO Anonymisation Code of Practice4 is for data

providers to assess whether it is reasonably likely that an

individual can be identified from the data and to consider what

other data are available and how and why the data could be

linked. It suggests that data providers should establish an

auditable process for ensuring an adequate level of

anonymisation. One particular assessment that the Code of

Practice advocates is a test of whether an intruder might be able to

achieve re-identification. This would be done by way of a

‘motivated intruder test’ as part of a risk assessment. In section 5

we describe how such a practical test provides useful additional

information to support risk assessments of datasets, particularly in

reference to linking attacks.

4. AN ANONYMISATION APPROACH TO

OPENING UP GOVERNMENT DATA
In a government context, a primary purpose of open datasets is for

teaching or as training datasets. These allow code to be tested and

checked before using it on a more complete dataset released under

end-user or special licence. These datasets permit researchers to

get a feel for what the data may be like and to allow preliminary

hypotheses to be formed. At present, most open government

datasets are generally not suitable for research projects other than

making initial speculations and for some simple tabulations.

Our anonymisation approach essentially implements variations of

the k-anonymity principle as a way of cutting down the detail into

a much reduced open dataset. The concept of k-anonymity was

first introduced by [3] as a way of preserving privacy. In essence

a release of data is said to have the k-anonymity property if the

information for each person contained in the release is hidden

amongst k-1 other individuals. In practice this means that any

quasi-identifier in the released table must appear in at least k

records. So if the quasi-identifiers are age and sex, then it will

ensure that there are at least k records with 30-year old females

for example. This property can be achieved by generalization and

suppression. Generalization refers to publishing more general

values which can be done by recategorizing age into bands for

2http://ec.europa.eu/justice/policies/privacy/docs/wpdocs/2007/wp

136_en.pdf

3https://ico.org.uk/for_organisations/guidance_index/~/media/doc

uments/library/Data_Protection/Practical_application/anonymis

ation-codev2.pdf

4https://ico.org.uk/for_organisations/data_protection/topic_guides/

anonymisation

264

example. Suppression can be done by removing outliers or by

providing only a sample of records. Sampling has the benefit that

an intruder can never be sure whether a person is contained within

the dataset.

In the context of real-world data, using algorithms to find optimal

anonymous tables can be unpractical and even for optimal

solutions, the distortion of the data can be too high leading to un-

useful tables ([4]). The balance of risk-utility is absolutely crucial

in practice for government data releases. [4] discusses an

alternative known as weak k-anonymity which requires it to be

enforced in just a subset of the records. This of course means that

there is a possibility that those variables which are not controlled

via k-anonymity can be used to identify someone. However this

risk is generally small when interest in these variables is low and

so is typically a more practical option. Our approach aims for k-

anonymity enforced on the entire dataset with a small k value e.g.

k=2 to remove all uniques as a minimum; and a weak k-

anonymity (on a subset of records) with a larger k e.g. k = 3 or

more, depending on the dataset and its particular vulnerabilities.

K-anonymity involves consideration of sets of attributes that can

be linked with external information to re-identify the respondents

to whom the information refers. As in [5] a data release is said to

satisfy k-anonymity if every combination of values of quasi-

identifiers can be indistinctly matched to at least k individuals.

This information can be known only by linking the released data

with externally available data. We make use of intruder testing to

help refine the appropriate set of quasi-identifiers.

The general procedure that ONS advise here for creating open

datasets is outlined as follows:

i. Assess dataset background

ii. Choose the key variables that might be used for

identification (key variables described in [6])

iii. Consider how a dataset might be disclosive under

intruder scenarios (see [7])

iv. Analyse variable combinations / quasi-identifiers

[‘uniques’ analysis or similar]

v. Carry out a formal intruder test and refine steps above

vi. Generalize (recode variables) and/or suppress (reduce

dataset/sample) to make suitable for public release to

achieve properties of k-anonymity

(i) Dataset Background

Disclosure risk assessment should commence by talking to

potential users of the data to understand the types of research that

the data will be used for. This step is sometimes ignored, to the

detriment of the final dataset. Main considerations might be the

variables in which they are most interested and the level of detail

that is needed, and particularly the required level of geography. It

is also important to understand whether the original dataset is a

survey sample, an administrative dataset or a census. General

consideration must be afforded to any existing protection in the

dataset due to an intruder’s uncertainty as to whether an individual

is actually present in the data.

(ii) Assess disclosure under intruder scenarios

Having done this preparatory knowledge gathering, the next stage

is to consider how a dataset could be shown to be disclosive by

looking at a number of intruder scenarios. An intruder (or

attacker) is somebody who attempts to discover personal

information about an individual, household or business in the

dataset. This is most likely to occur if the intruder has some initial

knowledge about a particular member of the dataset with respect

to a number of variables known as key. For example an individual

in the data could be a relative, neighbour or work colleague These

intruder scenarios include combining the dataset with other data

sources.

(iii) Analyse variable combinations

Based on the intruder scenarios that fit with a particular dataset,

the procedure is then to select a set of key variables (five or six for

each dataset) to form an identification key and tabulate

combinations (also referred to as quasi-identifiers in the privacy

literature) to create a series of two, three and four dimension

tables. These combinations should be plausible i.e. likely to be

similar to tables required by researchers.

In general, knowledge of the data should lead to a suitable range

of combinations being selected. It should be noted that creating

tables with a large number of variables will be counterproductive

as patterns may emerge that would not be noticed by a researcher.

Most records are unique if a large number of variables are

combined. Instead, we should consider just a limited set of

variables, the values of which are what an intruder is likely to

know. These are the aforementioned identification key, the

variables likely to be used by an intruder to identify the individual

and then discover the rest of the information in the remaining

variables.

Variable combinations which are rare or unique will indicate

potential disclosure issues and variables will need to be recoded or

excluded if required. This approach of looking for rare

combinations of variables is similar to the more formal k-

anonymity method described in [3] and [8].

(iv) Carry out a formal intruder test

This involves using “friendly intruders” to try and see if they can

re-identify anyone in the dataset. These friendly intruders should

have some background knowledge of the data (as a data user

might) but should not be specialist hackers using advanced

techniques. This is in consideration of the phrase “means likely

and reasonably” as referenced in the EU directive and UK Data

Protection Act. The intruder motives would not be malicious.

They would not release their findings into the public domain but

would feed back their finding to aid in the publication of a secure

dataset. One of the main purposes of such a test is to try and

capture what other information may be linked to the dataset by the

intruder to attempt disclosure. Thus appropriate selection of

intruders in terms of awareness of similar data sources and good

penetration skills (able to search and analyze the data) are

important to get accurate results. The information resulting from

the intruder test may be used to refine the previous steps,

particularly with regards to which variable combinations are

considered to be quasi-identifiers and therefore utilized in the

identification key. For a more detailed discussion of intruder

testing, please see [9].

(v) Generalize and Suppress

The last stage of the process involves taking steps to minimize

overall risk in the dataset. Our approach is to ensure that k-

anonymity is achieved to a low k value, i.e. at least k =2 to ensure

no uniques (or k = 3 to eliminate pairs) in the data. This is usually

achieved by sampling. The next stage is to recode variable

categories to reduce detail (generalization) so that weak k-

265

anonymity is achieved to a higher k value for a subset of the data

where there are particular vulnerabilities.

5. EXAMPLES OF MAKING DATA OPEN
In this section we consider how the general procedure outlined in

section 4 is applied in practice to three examples of open datasets

produced by the UK government. One of these is a sample of

microdata from the UK 2011 Census collected by the Office for

National Statistics (ONS) while the second is a sample from an

administrative dataset produced by the Department for Energy and

Climate Change (DECC) on domestic gas and electricity

consumption. The steps followed in order to produce these

datasets are shown below. There are many similarities in

producing these datasets but some important differences. There

were fewer variables that could easily be recoded in the DECC

data leading to less flexibility in reshaping the data. The DECC

data is typical of a lot of datasets which contain a lot of

information but not a lot of variables which can be recoded in a

straightforward way. Most variables are dataset specific and any

recategorization would reduce the utility significantly. An

ongoing project to publish education data held by the Department

for Business, Innovation and Skills (BIS) is also discussed briefly

as our third example.

In all three cases, statistical disclosure control has to be applied to

ensure that sufficient protection is given to avoid an individual,

household, business or other statistical unit being re-identified. As

detailed in section 4, data might be recoded and/or only a limited

number of variables released. For a more general discussion of

statistical disclosure control techniques that might be applied

during this process, the reader is referred to [10].

5.1 2011 UK Census microdata
The 2011 UK Census is a rich data source with many published

tabular outputs available from the ONS website. In addition to

these tables, record level data are being made available to

researchers; a teaching dataset at individual level was published in

2014. The data can be accessed through the link below. Note that

more detailed datasets will shortly be available under more

prohibitive licensing and access conditions. This dataset is a

random 1% sample of records for England and Wales published to

encourage a wider use of census data and as an introduction to

these more detailed datasets.

http://www.ons.gov.uk/ons/rel/census/2011-census/2011-census-

teaching-file/index.html

The broad approach was to use both sampling and suppression of

variables to remove uniques/pairs and achieve k-anonymity to a k

of at least 2 in the published database, and then recoding to further

achieve weak k-anonymity to a larger k based on the most

identifying variables which were age, ethnic group, industry,

economic activity and religion.

Producing the Census Microdata teaching file

A small sample size is used in order to aid protection (among

other factors such as imputation for non-response), since a

potential identification might be uncertain because the intruder

will have doubt as to who is in the sample (and who is not). An

intruder may find a record which corresponds to an individual for

whom they are searching, possibly somebody unique in the

sample with respect to specific visible characteristics. However

they cannot be certain as to whether this sample unique is the

person they are attempting to find because of the small sample

size. The individual who is unique in the sample will not

necessarily be the person they are looking for and there is no

certainty that they would be unique in the population.

Starting from a large dataset – containing most variables and some

further derived variables, with all the standard categories – it

would clearly be possible to identify an individual, either directly

or indirectly from these data. Hence some work was necessary to

create a dataset suitable for ‘open’ data and public release:

 Remove all direct personal identifiers such as Name, Address

and Date of Birth. The released file will have to contain no

information allowing identification of an individual or

household so this is the initial step in producing the data

 Decide on the variables to include in the data. Only a subset

of census variables should be present in this teaching dataset,

including basic demographic information and those variables

used in the most popular tables. The level of Geography is to

be Region (9 Regions for England plus Wales). Other

variables include Sex, Ethnic group, Country of Birth,

Industry, Marital Status and Household composition.

 Identify the key variables. These are the variables (usually in

combination) which are most likely to assist an intruder to

identify an individual in the data. These variables are usually

those that are in the public domain such as Sex, Age, Ethnic

group or those which a friend, relative or work colleague

might know such as Occupation, Marital Status, Hours

worked/week along with more sensitive variables such as

Health.

 Create tables from the 1% sample using combinations of the

key variables. Any low counts could lead to an individual in

the data being identified. Note that this is a sample so there

will be considerable doubt if a unique combination of

variables in the sample is equivalent to a unique combination

in the population.

 Create the same tables from the population data. Look for

unique or rare combinations

 The most identifying variables were found to be

 Geography

 Sex

 Age

 Ethnic group

 Industry

 Economic Activity

 Religion

 Country of Birth

 Recode some of these variables to protect the data.

 Recode Age into 8 Categories

 Recode Ethnic group from 16 to 5 categories

 Recode Industry from 17 to 12 categories

 Recode Economic Activity from 13 to 9 categories

 Recode Religion from 10 to 8 categories

 Recreate the tables from earlier using the recoded variables.

The results show many combinations with sample uniques but

very few with population uniques.

 Swap a small number of records (include these population

uniques along with other records) between Region.

266

 Intruder testing was used as confirmation that risk was

reduced to an acceptable level based on the number of

correct identifications (if any).

 Publish the Data as an open data microdata file

5.2 DECC – ENERGY DATA
DECC has published two datasets from the National Energy

Efficiency Data Framework (NEED) One of these is a Public Use

File (open data) to be discussed here (49,815 records). The other

is a file released under End User Licence (4,086,448 records).

Both datasets are based on samples of properties which have been

assessed for an energy performance certificate (EPC). Variables

relating to the property are included along with gas and electricity

consumption values.

The same methodology was applied in producing these datasets. A

link to the Public Use File is shown here.

https://www.gov.uk/government/publications/national-energy-

efficiency-data-framework-need-anonymised-data-2014

In this example the broad approach was again to use sampling and

suppression of variables to achieve k-anonymity across the entire

published dataset with a low k value. Intruder testing is used to

confirm which variables might be used for identification and the

“Year of EPC Assessment” variable subsequently removed.

Recoding of variables was also applied to achieve weak k-

anonymity with a higher k, for a subset of the most identifying

variables.

The process was as follows for the production of the open data

microdata file.

 A consultation period with potential users of the data was set

up. This gave an indication of the level of detail users

expected in the output data.

 Direct identifiers and detailed geographical indicators were

removed from the data.

 The most visible variables were selected as key variables.

These are the variables most likely to be used by intruders in

attempts to identify a property. These variables are shown

below along with plausible intruder scenarios.

 Property Type (for example detached or end terrace).

This would be obvious to anybody walking past the

property in many cases, although there could be some

doubt. For example is a house a single property or has it

been divided into flats?

 Property Age. An estimate of this can be made,

although it may not be correct. Specialist property

knowledge could be required for an accurate estimate. If

the exact date of construction was known and the

variable published at this level of detail it would provide

an ideal starting point for an intruder.

 Floor area. The floor area band would not be easy to

estimate from outside. A visitor to the property would

have a much better idea of this value, although even

then a correct estimate may not be easy.

 Geography. At a lower level of geography there will be

fewer properties thus making a correct identification

more likely. This is to be taken into consideration when

deciding whether to release the data at National, Region

or Local Authority levels.

 Look at distributions of the visible variables both

individually and in combination. Are there low counts at

National, Region and LA levels? If a property can be

identified as belonging to a particular combination, much

additional detail including the approximate gas and/or

electricity consumption could be determined. If combinations

of these variables produce low counts then certain variables

may require recoding. The response variable of major

interest is gas / electricity consumption. Low counts in the

bands would give some information about the property but

possibly not too much. Look out for values at the top and

bottom of the range which are highlighted in the

consumption data. In combination with the visible variables

they could require protection.

 As a result of this analysis both Property Age and Floor area

size are recoded into a smaller number of categories to

reduce the number of low cell counts. It was also decided

that the data would be released at Region level and not Local

Authority level.

 The actual gas and electricity consumption values are given

additional protection by being rounded to the nearest

multiple of 5. This ensures that the actual value is not

released in the dataset.

 A small number of records were swapped between Regions.

 Intruder testing was carried out by post graduate students at

Southampton University. A cash prize was offered for a

correct identification. There were no correct identifications

but as the ‘year of the energy performance certificate’ was

considered to be of particular use by the 'intruders' this

variable was removed from the published open dataset,

although it remains in the End User Licence data.

 Publish the Data as an open data microdata file.

5.3 BIS – FURTHER EDUCATION DATA
The Department of Business, Innovation and Skills (BIS) is

planning to publish an open dataset of Further Education Learning

aims, Providers and outcomes. This is a large dataset with many

millions of records. It was hoped that a number of 'essential'

variables would be included in the published data. These include

variables relating to the type of course and an outcome grade

variable.

In this example we achieve k-anonymity for a low k by

suppressing variables non-essential to the user, as well as weak k-

anonymity for a higher k by removing entire records within

certain regions.

The process was as follows:

 From the list of essential variables decide on which are most

visible and therefore key variables.

 Age group (3 categories)

 Sex

267

 Learning aim (equivalent to a detailed course description)

 Delivery Provider (a college or a company)

 The Region in which the learning took place was used as a

geography variable.

 Tables of combinations of the key variables resulted in many

unique combinations. The data could not be published in the

current form. There was a requirement that the learning aim

variable was retained and the following approach was

followed.

 Age group to be recoded into 2 groups. Sex was dropped

from the dataset.

 Records with a Learning Aim with fewer than a pre-defined

number of enrolments within a Region were excluded from

the data.

 Records which were unique with respect to Age group,

Provider and Learning Aim within a Region were removed

from the data.

 Data are currently in the process of being distributed for

intruder testing before final release as an open dataset.

5.4 Should all licensed data (EUL) instead be

released under OGL?
Currently many outputs from the UK Data Service5 are released

under a more restrictive End User Licence (EUL). The EUL is a

'light touch' licence with users promising not to attempt disclosure

and to ensure that any outputs passed on do not compromise the

confidentiality of individuals. Users of the EUL should keep the

data confidential and not attempt to identify organizations,

individuals or households in the data. In practice these datasets are

designed so that the possibility of disclosure is remote. On this

basis, the ONS recently conducted an intruder testing exercise to

see whether the EUL was too conservative and whether these data

could potentially be released under OGL. The Labour Force

Survey and Living Costs and Food Survey microdata were used as

two example datasets for assessment (see [11]). These were

interesting cases as the intruder testing assumed the intruder had

response knowledge of who was in the sample.

The disclosure scenario of response knowledge was considered a

reasonable possibility under an OGL since the data would then be

available to a much wider audience who would not be signing to a

set of agreed conditions, unlike with the EUL. It was subsequently

found from the intruder testing that re-identification was possible

for certain individuals. Response knowledge meant that intruders

would have much wider knowledge of individual attributes

beyond the limited set of quasi-identifiers used to achieve k-

anonymity under traditional EUL intruder scenarios. The

conclusion from this was therefore that the conditions of an OGL

mean extra precaution should be taken with releasing government

data and to make careful assessments on a case-by-case basis.

Significantly reducing detail by limiting the number of variables

and their categorical breakdown is paramount to reducing the

additional risk that comes with releasing open data.

5 http://ukdataservice.ac.uk/

6. SUMMARY AND DISCUSSION
This paper has discussed the approach the ONS has taken towards

opening up government data. Broadly speaking, suppression of

variables and sampling (in two of the examples) are used to

guarantee k-anonymity for a low k value (generally to remove

uniques as a minimum). As a second stage,

recoding/recategorisation of variables is used to generalize the

dataset so that weak k-anonymity is achieved for a higher k value

for a subset of records that are more likely to be attacked. Intruder

testing is used to help inform the process in consideration of

external information that might be linked to the dataset. The three

examples discussed demonstrate the limited amount of

information that can be made available openly. The purpose of

these open datasets is usually only for use as teaching or training

datasets. We briefly discussed how more detailed datasets

available under End User Licence were not suitable for open

release in their current form.

We have shown with our examples the difficult balancing act

between producing Open Data which are of some use and

protected to a reasonable level so that they remain non-personal

data. Increases in technology in the past ten to fifteen years have

changed the data environment beyond recognition. The

consideration of other publicly available data sources is virtually

impossible with the continual addition of data on the web.

Intruder testing goes some way towards testing this in a practical

way but is dependent on using knowledgeable and skilled

intruders. As mentioned in the ICO anonymisation code of

practice, this should be carried out periodically as the risk of re-

identification may change with time bearing in mind likely

increases in computing power and as the public availability of

data increases. Feedback on intruder testing has been mostly

positive and some of the benefits of this approach are outlined in

[9]. Benefits include learning which variables and which types of

individuals might be vulnerable to attack, and perceptions of

disclosure. These provide a practical feel for data controllers of

the level of risk. Further work would be helpful in developing

expertise further in undertaking intruder testing, including

working towards establishing reasonable standards and guidance.

These would include the methodology employed, the length of

time reasonable for an intruder to attempt disclosures, the level of

‘uncertainty’ that is reasonable, and better advice on the use of

external information. However the importance of theoretical and

sound practical risk measures should not be forgotten since the

use of intruder testing is very much a snapshot of risk specific to

each intruder and the parts of the data they are given (e.g.

intruders might only assess particular geographies local to them

and which they are knowledgeable about).

It also follows from this that there is a need to establish how much

effort is “reasonable”, (as mentioned in the ICO code) and where

to set the line of acceptable risk. What values of ‘k’ are acceptable

in open data? Can we measure units of anonymity to help data

controllers make a decision? There is a clear link here to the

concept of differential privacy – how much extra we can learn

from an individual being included in a database as opposed to not

including them. The purpose of a statistical office is both to

collect and disseminate statistical information that will aid policy

and research and, generally, be for the ‘public good’. Hence it is

an unreasonable, and usually unattainable goal to aim for only

releasing datasets that are zero risk or in these examples to

obligate strong k-anonymity. Ultimately, there is a legal

interpretation – what risks would it be reasonable to protect

against, so that the data publisher has a defence.

268

The future of anonymisation is unclear given the ever increasing

amount of information being made publicly available. Open

datasets only add to the disclosure risk. Currently these data

generally have poor utility for answering complex research

questions. An alternative we mention very briefly here is the

potential use of synthetic or modelled data in an attempt to move

towards a much richer set of data retaining at least all primary

properties of interest to the researcher. One may argue that

synthetic data have little or no risk as they do not represent the

original data. However the creation of synthetic datasets that are

truly representative of the population is very much an art. There is

a related cost-benefit argument to whether the idea of open data is

sustainable given the amount of effort government agencies need

to produce such datasets. It is also important to remember that due

to lack of research value, many open government data are still

released alongside other licensed datasets (as is the case with the

DECC data for example) Work for the future is not only about

how to make open data as useful as possible but must also address

all associated wider issues: data privacy but also technical, legal,

economic and policy issues.

7. ACKNOWLEDGMENTS
The authors would like to thank Mary Gregory from DECC and

Johanna Hutchinson from BIS for allowing us to reference their

datasets. The authors are also grateful for the reviewers’

comments which helped to improve this paper.

8. REFERENCES

[1] Machanavajjhala, A., Kifer, D., Gehrke, J.,

Venkitasubramaniam, M., L-diversity: Privacy beyond k-

anonymity, ACM Transactions on Knowledge Discovery from

Data (TKDD), v.1 n.1, p.3-es, March 2007

[2] O'Hara, K, Whitley, E and Whittall, P (2011) Avoiding the

Jigsaw Effect: Experiences With Ministry of Justice Reoffending

Data.(unpublished briefing paper) http://eprints.lse.ac.uk/45214/

[3] Sweeney, A.L.. K-anonymity: a model for protecting privacy.

International Journal on Uncertainty, Fuzziness and Knowledge-

based Systems, 10 (5), 2002; 557-570

[4] Atzori, D.M.. Weak k-Anonymity: A Low-Distortion Model

for Protecting Privacy. Information Security Lecture Notes in

Computer Science Volume 4176, 2006, pp 60-71

[5] Samarati P., (2001) Protecting Respodents’ Identities in

Microdata Release, “IEEE Trans. Knowl. Data Eng., no 6, 1010-

1027.

[6] Elliot, M.J., and Dale, A. Disclosure risk for microdata:

Workpackage DM1.1 What is a key variable? Report to the

European Union ESP/204 62/DG III , 1998

[7] Elliot, M. J., and Dale, A. Scenarios of attack: The data

intruder’s perspective on statistical disclosure risk. Netherlands

Official Statistics. Vol 14, Spring 1999, 6-10.

[8] Sweeney, B. L.. Achieving k-anonymity privacy protection

using generalization and suppression. International Journal on

Uncertainty, Fuzziness and Knowledge-based Systems, 10 (5),

2002; 571-588

[9] Tudor, C, Cornish, G, and Spicer, K. Intruder Testing on the

2011 UK Census: Providing Practical Evidence for Disclosure

Protection. Journal of Privacy and Confidentiality: Vol. 5: Iss. 2,

Article 3, 2014

Available at: http://repository.cmu.edu/jpc/vol5/iss2/3

[10] Hundepool A., Domingo-Ferrer J., Franconi L., Giessing S.,

Schulte Nordholt E., Spicer K., de Wolf P., Statistical Disclosure

Control; Wiley (2012)

[11] Elliot,M. Mackey, E., O’Shea, S., Tudor, C., Spicer K., EUL

to OGD: A Simulated Attack on Two Social Survey Datasets. CD

– only proceedings of Privacy in Statistical Databases,

International Conference, Ibiza, Spain, September 17-19, 2014.

269

Private Computation of the Longest Increasing
Subsequence in Data Streams

Luca Bonomi
Dept. of Mathematics and Computer Science

Emory University
Atlanta, GA

lbonomi@emory.edu

Li Xiong
Dept. of Mathematics and Computer Science

Emory University
Atlanta, GA

lxiong@emory.edu

ABSTRACT
In this paper, we study the problem of privately computing ordered
statistics with the goal of monitoring sequential data streams. De-
spite the broad series of techniques for time-series monitoring, only
few works provide provable privacy guarantees employing the for-
mal notion of differential privacy. While these solutions are well es-
tablished, their focus is mostly limited to count based statistics (e.g.
number of distinct elements, heavy hitters). In this paper, we con-
sider a more general problem of privately computing the length of
the longest increasing subsequence (LIS) in the data stream model.
This important statistic can be used to detect trends in time-series
data (e.g. finance) and perform approximate string matching in
computational biology domains. Our proposed approaches employ
the differential privacy notion which provides strong and provable
privacy guarantees. Our solutions estimate the length of the LIS us-
ing block decomposition and local approximation techniques. We
provide a rigorous analysis to bound the approximation error of our
algorithms in terms of privacy level and length of the stream.

1. INTRODUCTION
Sequential data are central in a broad range of domains and appli-

cations, such as biomedical, financial and health-care setting where
data are continuously collected for monitoring purpose or for min-
ing behavioral patterns. For example, individual household power
consumption data may be collected by smart meters to provide
billing information or for monitoring purpose. Despite the impor-
tance of these tasks, the release of the real data value may disclose
sensitive user information. Therefore privacy preserving solutions
are employed to compute the required statistics while providing
privacy for users. Among them, the popular notion of differential
privacy [6] is used to construct privacy preserving algorithms. The
privacy is achieved by bounding the adversary inference ability in
determining the presence of any event in the data stream [7, 10,
9, 4]. Despite the strength of such a privacy model, the current
solutions are limited to count based statistics.

In this paper, we study the problem of privately computing or-
dered statistics with the goal of enabling applications to monitor
sequential data streams. Consider for example, a user who may

c©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-
nd 4.0

wish to be advised in his/her financial decisions without incurring
the risk of disclosing his/her financial information. In such a set-
ting, it is crucial to design effective solutions that enable third-party
to detect user’s financial trends while preserving the sensitive infor-
mation. To address this problem, we propose to study the privacy
preserving computation of longest increasing subsequence (LIS) in
the stream model.

The computation of the LIS provides useful information about
the sortedness of the data stream and it can be used to detect trends
in time-series data. In general, the task of computing the sortedness
of a data stream is receiving considerable attention from the com-
puter science community [16, 12, 1, 13, 5, 19, 11]. The sortedness
of data stream has important implications from both practical and
theoretical perspectives. Many applications rely on ranked data and
the massive amount of information dynamically generated cannot
be processed in an off-line fashion requiring solutions to have small
update time and memory requirements.

The computation of the LIS in the data stream model rises new
challenges compared to the traditional privacy setting. First of all,
privacy requirements in protecting sensitive information for this
ordered statistic have a greater impact on the final utility. Count
based statistic over a stream are typically computed by decomposi-
tion which leads to a considerable reduction of perturbation noise
required by the privacy mechanism. However, ordered statistics are
generally not easy to approximate via decomposition since they re-
quire a global view of the entire stream. Second, the LIS has higher
memory requirements compared to standard counting based statis-
tics (e.g. counts, heavy hitters). In fact, it has been shown in [12]
that there exists a space lower bound of Ω(T) for any randomized
algorithm that computes the LIS exactly over a stream of length
T . This strong separation between count based functions and LIS
impacts both efficiency and utility of the solutions for this problem.

To address these challenges, we propose a series of solutions for
privately computing the LIS while minimizing the error introduced
by the perturbation and approximation. The detailed contributions
are reported below.

Our Contributions. In this paper, we study the problem of pri-
vately computing the LIS in a time-bounded stream of length T .
1) Our proposed solutions compute the length of the LIS provid-
ing strong and provable privacy guarantees based on the notion of
differential privacy. 2) We propose a decomposition framework for
approximating the length of the LIS using local information in the
stream. This technique allows us to reduce the error due to per-
turbation noise from the privacy mechanism. Using the Patience
Sorting algorithm [15] as a black box for locally computing the
exact length of the LIS, we provide an error bound for our frame-
work. 3) We conduct an output-sensitive utility analysis for two
cases based on the length of the output LIS. In particular, we as-

270

Algorithm 1 Patience Sorting

1: procedure PATIENCE SORTING(σ)
Input: event stream σ
Output: LIS(σ) length of the longest increasing subsequence

2: P (j)← ∅ for j = 0, 1, . . . ,m− 1
3: for (any new element σ(i)) do
4: Find the largest P (j) such that P (j) ≤ σ(i)
5: P (j + 1) = σ(i)
6: Output the largest j such that P (j) 6= ∅
7: end for
8: end procedure

Figure 1: Running example of the Patience Sorting algorithm over the
stream σ = 3, 4, 1, 2, 5, 7, 6.

sume LIS(σ) =
√
T/β, where T is the length of the input stream

σ, and β is a parameter in the range [1/
√
T ,
√
T]. For each so-

lution, we bound the approximation error in the case of long and
short LIS respectively depending on the value of β. 4) We propose
a new streaming approach which computes the LIS using a hierar-
chy structure of the stream. Our algorithm achieves a (1 − T−b

T+b
)-

approximation to the length of the LIS in the worst case, where the
parameter b controls both the perturbation noise to achieve the de-
sired level of privacy and the accuracy. 5) We provide a discussion
about possible extensions of our solutions to address time-series
stream monitoring and string matching problems. To the best of
our knowledge, we are the first to investigate the problem of pri-
vately computing the longest increasing subsequence.

The rest of the paper is organized as follows. Section 2 provides
the problem definition and presents the privacy model. Section 3
illustrates our decomposition schema and Section 4 describes our
hierarchy solution. In Section 5, we provide a summary of our re-
sults and also describe some possible extensions. Finally, Section 6
concludes the paper.

2. PRELIMINARIES
Given a sequence σ of elements σ(i) = ai defined over a finite

alphabet Σ = {0, 1, . . . , N − 1}, an increasing sequence of length
k in σ is a subsequence {i0, i1, . . . , ik−1} such that i0 < i1 <
· · · < ik−1 and ai0 ≤ ai1 ≤ · · · ≤ aik−1 . Furthermore, let
σ[i, j] denote the contiguous sequence σ(i)σ(i+ 1) . . . σ(j) in the
stream σ, and let LIS(σ) be the length of the longest increasing
subsequence in σ.

The problem of computing the LIS has received much attention
in the streaming setting (see [2] for a survey of results), where the
sequence σ is given an element at a time. In such model, data
arrive continuously and at every time i algorithmic solutions are
required to reportLIS(σ[0, i]) by using a small amount of memory
and performing only few passes over the stream. In the rest of the
section, we briefly summarize the non-private techniques present in
literature by categorizing them as exact and approximate solutions.

Exact Solution. The study of LIS in the streaming setting was ini-
tiated by Liben-Nowell et al. in [16], where the authors developed
an exact one pass algorithm that requires O(k) space for deciding
if the length of longest increasing subsequence is at least k. In ad-
dition to this technique, the classical algorithm for computing the
LIS is based on the Patience Sorting procedure [15]. This approach
can be interpreted as a one pass streaming algorithm for computing
the exact LIS inO(T) space and it requiresO(logLIS(σ)) update

time. Since we use this approach to build our solutions, we briefly
describe this algorithm here.

In the Patience Sorting procedure, the length of the longest in-
creasing subsequence is computed using a set of sorted pilesP (0) <
P (1) < · · · < P (m) each storing an element of the stream σ.
For any new element σ(i) that appears in the stream, the algorithm
places σ(i) in the leftmost pile P (j) such that P (j) > σ(i). The
number of non empty piles represents the length of the LIS at any
time point. An overview of the Patience Sorting algorithm is illus-
trated in Algorithm 1. Below, we describe a running example of
this algorithm.

EXAMPLE 1. Let σ = 3, 4, 1, 2, 5, 7, 6 be a stream in input.
The algorithm starts with a set of empty pilesP (j) for j = 0, . . . ,m−
1. When the first element arrives in the stream it is placed in the
first pile P (0). After the arrival of the second element, the situation
in the piles is illustrated in Figure 1 (a). The number of piles de-
notes the length of the longest increasing subsequence at each time.
Therefore, in this case the length of the LIS is two. When the third
element σ(2) = 1 arrives in the stream, the algorithm places this
element in P (0), as shown in Figure 1 (b). Following the steps of
the algorithm, the final set of piles is reported in Figure 1 (c). At the
end of the stream the length of the longest increasing subsequence
is four.

Despite the simplicity of this procedure, the Patience Sorting al-
gorithm is optimal from the space complexity perspective. In fact,
Gopalan et al. [12] showed a space lower bound of Ω(n) for any
randomized algorithm that computes the LIS exactly.

Approximate Solution. In [12] the authors proposed a (1 + ε)-
approximation for the LIS computation using O(

√
T/ε) space. A

series of works have been developed to estimate the length of the
LIS using the number of inverted elements in the stream. In this
direction, Ajtai et al. [1] proposed a (1 + ε)-approximation which
requires O(1

ε
log log T) space to estimate the number of inverted

pairs. Later this result has been improved by Gupta and Zane [13].
Cormode et al. [5] proposed a series of algorithmic solutions based
on distance preserving embeddings. Recently in [19], the authors
investigated the problem of computing the LIS in asymmetric edit
distance setting.

2.1 Differential Privacy
Differential privacy [6] is a recent notion of privacy that aims

to protect the disclosure of information when data statistics are re-
leased. In the streaming setting, due to the dynamics of the data,
the classical differential privacy notion has been redefined such that
the privacy is guaranteed at event-level [7, 10, 9, 4]. In other words,
the privacy goal is to protect the presence or absence of any single
event in the stream. The formal definition of the differential privacy
notion adopted in our work is reported below.

DEFINITION 1 (DIFFERENTIAL PRIVACY [4, 9]). Two streams
σ and σ′ of the same length are neighboring streams if they differ
exactly in one element at time t. A privacy mechanism M gives α-
differential privacy if for any two neighboring streams σ, σ′, and
for any set of outcomes S ⊆ Range(M),

Pr[M(σ) ∈ S] ≤ eα × Pr[M(σ′) ∈ S] (1)

The parameter α is called the privacy parameter and it defines the
privacy level of the mechanism. Higher values of α lead to lower
level of privacy, while smaller values pose a stronger privacy guar-
antee. Intuitively, a mechanism is differentially private if an adver-
sary is unable to determine whether an event of interest took place
or not by observing the output of the mechanism over the stream.

271

Our goal consists in designing a mechanism that, at any time t in
the stream, reports the length of the longest increasing subsequence
while achieving differential privacy. In addition, we would like the
mechanism to be useful, that is, its output well approximates the
real length of the LIS. To evaluate our solutions, we introduce the
following utility notion.

DEFINITION 2 ((ε, δ)-USEFUL). A streaming algorithm A is
(ε, δ)-useful, if for any input stream σ and query q, with prob-
ability at least 1 − δ, the relative distance between the approxi-
mate answer from A and the real answer of q is within ε, formally
P
[
‖A(σ)−q(σ)‖

q(σ)
< ε
]
≥ 1− δ

To achieve differential privacy, one well established technique is
the Laplace Mechanism [8]. Dwork et al. [8] showed that to obtain
a α-differentially private solution it is sufficient to perturb the real
output of the function by adding a random variable (noise) from a
Laplace distribution with probability density function pdf(x|λ) =
1
2λ
e−|x|/λ, where the parameter λ is determined by α and the sen-

sitivity of the function to compute. The sensitivity measures the
contribution of any single element on the final output. We will use
the Laplace mechanism and some other statistical tools to design
our privacy preserving solutions.

Statistical tools. In our approaches, we make use of the Laplace
Mechanism to achieve differential privacy and sequential composi-
tion property of differential privacy. Furthermore, in our construc-
tion the noise may not come from a single Laplace distribution, but
rather is composed by a sum of independent Laplace distributions.
Therefore, here we state two useful results for sum of independent
Laplace distributions.

THEOREM 1 (LAPLACE MECHANISM [8]). For a function f :
DT → Rd, let GS(f) be the sensitivity of f defined as

GS(f) = max
D,D′

‖f(D)− f(D′)‖1 (2)

whereD′ andD are neighbouring, then the algorithm that outputs:
f̃(D) = f(D) +Lap(GS(f)/α)d satisfies α-differential privacy.

THEOREM 2 (SEQUENTIAL COMPOSITION [17]). LetMi be
a non-interactive privacy mechanism which providesαi-differential
privacy. Then, a sequence of Mi(D) over the database D provides
(
∑
i αi)-differential privacy.

LEMMA 1 (SUM OF LAPLACE DISTRIBUTIONS [4]). Let Y =∑n
i=1 li be the sum of l1, . . . , ln independent Laplace random vari-

ables with zero mean and parameter bi for i = 1, . . . , n, and
bmax = max{bi}. Let ν ≥

√∑n
i=1 b

2
i , and 0 < λ < 2ν2

bmax
.

Then Pr[Y > λ] ≤ exp{− λ2

8ν2
}

COROLLARY 1 (MEASURE CONCENTRATION [4]). Let Y , {bi}i,
λ and bmax defined as in Lemma 1. Suppose 0 < δ < 1 and ν >

max{
√∑

i b
2
i , bmax

√
2 ln 2

δ
}. Then Pr[|Y | > ν

√
8 ln 2

δ
] ≤ δ

2.2 Differentially Private Computation of the
LIS - A Baseline Approach

In the rest of the paper, we present our solutions for computing
the length of the LIS in the stream. Our approaches require the
stream to be time-bounded, we assume in fact that the length of the
stream is T and it is given a priori.

Here we consider a baseline approach that solves the problem
of privately computing the length LIS by perturbing directly its

Figure 2: Block Decomposition example at time i: expired blocks (solid
lines), active blocks (gray) and the future blocks (dashed lines).

real value at every time point. In particular, for every new ele-
ment σ(i) = ai in the stream, the algorithm first computes the real
LIS(σ[0, i]) (e.g. using any non-private solution, Patience Sort-
ing in this case) and then it adds a perturbation noise ηi. Given
the privacy parameter α, due to the composition property of dif-
ferential privacy, to obtain an overall mechanism of α-differential
privacy, the baseline approach applies the Laplace mechanism at
each time point with parameter α′ = α/T . For each new incom-
ing element, it samples a Laplace variable ηi ∼ Lap(1/α′) which
will be used to perturb the real value of LIS(σ[0, i]). Therefore, at
every time i, the algorithm will answer the LIS query by returning
l̃(σ[0, i]) = LIS(σ[0, i]) + ηi. We can observe that the sensitivity
for the LIS function is 1, since replacing an element from the stream
may change the length of the longest increasing subsequence by at
most 1. Therefore, perturbing the real value of LIS(σ[0, i]) with
ηi is sufficient to achieve privacy. The utility of this approach is
reported in the following theorem.

THEOREM 3 (BASELINE UTILITY). The baseline algorithm is
(β
√
T

α
ln 1

δ
, δ)-useful for computing the longest increasing subse-

quence.

PROOF. The released length of the LIS at each time i is obtained
by perturbing the real length of the LIS with Laplace noise. There-
fore, at every time step in the stream we have that the additive error
from the noise can be bounded as follows:

Pr[|ηi| > γ] ≤ 2

∫ ∞

γ

α

2T
e−xα/T dx = e−γα/T (3)

Hence, with probability at most δ the additive error is at least
T
α

ln 1
δ

. The final result follows by normalizing the error by the
LIS(σ) =

√
T/β.

Space and Time Analysis. The memory and time complexity for
this approach are the same as the non-private algorithm used to
compute the real length of the LIS. Therefore, using the Patience
Sorting algorithm for example, the space and update time required
are O(LIS(σ)) and O(logLIS(σ)) respectively.

3. DECOMPOSITION FRAMEWORK
The baseline approach introduces an additive error that grows

linearly with the length of the stream. Therefore, for small LIS
this error could dramatically degenerate the utility of this solution.
The reason for this large perturbation noise is due to the fact that
each individual element in the stream could affect all the possible
outputs of the algorithm over the entire stream. This phenomenon
could also occur for more sophisticated streaming algorithms that
compute the LIS by using a small sketch of stream ([12, 19] for
example). Although such solutions could reduce the space require-
ments, the use of a sketch does not directly reduce the error due to
the perturbation noise since an element of the stream could still
affect a large number of outputs (e.g. linear with the length of
stream).

To overcome this problem, we decompose the computation of
the LIS over segments of the stream. This intuition follows the

272

idea proposed by Chan et al. [4] where a linear and binary decom-
position frameworks are employed to privately compute the num-
ber of non-zero elements in a binary stream. Despite the similarity
in these decompositions, the computation of the longest increasing
subsequence is harder to achieve than the simple count function.
For this reason, we study the utility loss in approximating the LIS
inflicted by using the local information of the stream. Due to space
limitation, we consider only an extension of the binary decomposi-
tion since it provides better utility with respect to the linear decom-
position proposed in the original paper [4].

In our work, we investigate the implications of decomposing the
LIS computation over blocks (i.e. stream segments) both from the
utility and complexity perspective. It is important to note that the
nature of the decomposition should be data-independent to avoid
additional privacy cost. In principle, any algorithmALIS that com-
putes the LIS (either exact or approximate way) can be used as a
building block to compute the LIS on each stream segment so that
the perturbation noise required by the privacy mechanism can be
reduced with respect to the direct use of ALIS . On the other hand,
by limiting our computation on segments we introduce an approxi-
mation error.

In the rest of the section, we use the Patience Sorting algorithm [15]
as a simple building block. We prove the reduction in the pertur-
bation noise and the approximation error of our solution. We focus
on this particular algorithm because it allows us to have an internal
procedure that computes the exact length of the LIS over segments
of the stream. In this way, we can directly measure how our de-
composition impacts the exact solution. Since the original Patience
Sorting algorithm computes not only the length of the LIS but also
the elements forming the sequence, we use a modified version that
only keeps the top element of the piles in the data structure as illus-
trated in the Algorithm1. In this way, we can compute the length of
the LIS but using only O(LIS(σ)) space.

Before presenting our technique, we illustrate some concepts that
will be useful in explaining our algorithm. A block B = σ[j, j +
b − 1] of size b represents a continuous segment of b symbols in
the stream σ. Due to the dynamics of the data in the stream, a
block assumes three different states over stream depending on the
current time. At time i, the block B can be in one of the following
states: expired hence the new arrival does not affect the block B
(i.e. j + b − 1 < i), active when the new arrival is contained
in the block B (i.e. j ≤ i ≤ j + b − 1) and future hence B
contains only upcoming elements (i.e. j > i). An example of block
decomposition of the stream is illustrated in Figure 2. The life cycle
of a blockB consists of starting as a future block, becoming active,
and finally the block expiration.

3.1 Binary Decomposition
We start observing that in general the decomposition of the LIS

over blocks may incur large approximation error. In fact, by sim-
ply dividing the stream into blocks and combining the length of
their LIS as a answer could lead to an approximation error that is
proportional to the number of blocks used in the decomposition. To
reduce this error, we develop a decomposition using variable length
blocks, where the number of blocks in the stream decomposition is
O(log T). We organize the blocks in a binary tree where at time
i the tree has log i levels. Each level l = 0, . . . , log i in the tree
partitions the stream into disjoint blocks of length i/2l. Figure 3
illustrates an example of binary decomposition of the stream.

Using this representation, each node k in the tree is associated
with a block Bk and it stores the perturbed value of the LIS(Bk).
At any time i the algorithm updates the noisy LIS of the active
blocks in the binary tree, and it answers the query LIS(σ[0, i]) as

Figure 3: Binary Decomposition example. At time 5 (six symbols), the
algorithm updates the active blocks (in gray). It computes the answer to the
LIS query by summing the contributions of B2 and B4 containing the 2
and 4 most recent symbols respectively.

Algorithm 2 Binary Decomposition

1: procedure BINARY DECOMPOSITION(T, α, σ)
Input: upper bound on the stream length T ; privacy parameter α; event stream σ

Output: l̃(σ) released longest increasing subsequence

2: for (i = 0, 1, . . . , T − 1) do
3: for (every activeB at time i) do
4: UPDATE PILES(B, σ(i))
5: end for
6: for (every blockB that will expire at time i+ 1) do
7: LIS(B)← number of piles for the blockB
8: l̃(B)← LIS(B) + Lap(2 log T/α)
9: end for
10: Let i1 < i2 < · · · < im be the positions of non-zeros in the binary

representation of i+ 1

11: l̃(σ)← 0
12: k ← i
13: for (j = i1, i2, . . . , im) do
14: B ← σ(k − 2j + 1) · · ·σ(k) . Retrieve the block to reconstruct

the LIS
15: k ← k − 2j

16: l̃(σ)← l̃(σ) + l̃(B) . Sum the noisy contributions of the expired
blockB

17: end for
18: Output l̃(σ)
19: end for
20: end procedure

illustrated in Algorithm 2.

Algorithm Description. In the loop at lines 3-5, the algorithm
updates the piles for the active blocks associated with the time i.
In particular, the procedure Update Piles implements the Pa-
tience Sorting algorithm as in Algorithm 1, where in this case the
update is performed independently on each active block B for any
new coming element σ(i). At lines 6-9, the noisy length of the LIS
for each block that will expire is computed. At line 10, we compute
the binary representation of i+1 and let i1 < i2 < · · · < im be the
positions of non-zeros in such representation. Then the answer for
LIS(σ[0, i]) is computed by summing up the length of the LIS for
the blocks containing the most recent 2i1 , 2i2 , . . . , 2im elements
respectively. Therefore at each time i, the output result is obtained
by adding the contributions of at most Θ(log i) blocks in the loop
at lines 13-17.

Privacy Analysis. We can observe that each element affects at
most log T blocks; therefore, perturbing the LIS of each block with
a random variable from Lap(log T/α) is sufficient to satisfy the
privacy requirement.

THEOREM 4 (BINARY DECOMPOSITION PRIVACY). The Bi-
nary Decomposition achieves α-differential privacy.

PROOF. In this decomposition, each element σ(i) participates
in the LIS of at most log T active blocks. Therefore, for any two
neighboring streams the difference in L1-norm of their outputs can

273

be bounded by log T . Therefore using Theorem 1, it is sufficient to
add to each LIS of each block a random variable from a Laplace
distribution with parameter log T/α to satisfy the privacy require-
ment.

Utility Analysis. This decomposition with variable length blocks
allows us to reduce the perturbation error due to the privacy mech-
anism. However, in this way we introduce an approximation er-
ror that depends on the number of blocks. We can observe that at
most O(log T) blocks of variable length are needed to answer a
LIS query. The utility results for this decomposition are reported
below.

LEMMA 2 (BINARY BLOCK ERROR BOUND). Let σ be a stream
of T symbols, and let LIS(σ) =

√
T
β

, where β is positive. With-
out loss of generality we assume T = 2t − 1, and we consider a
partition of the stream σ into B0, B1, . . . , Bt−1 non-overlapping
blocks, where each block Bk is of size 2k. Then in reporting the
sum of the longest increasing subsequence in each block, lis(σ) =∑t−1
k=0 LIS(Bk), we incur the following approximation error.

LIS(σ) ≤ lis(σ) ≤
{

log T · LIS(σ) β ≥ 1

(1 + log β
√
T) · LIS(σ) β ∈ [1/

√
T , 1)

(4)

PROOF. First, we start noticing the following lower-bound lis(σ) ≥
LIS(σ). In fact, the part of the real longest increasing subse-
quence which is contained in each block is at most the length of the
longest increasing subsequence in the stream segment represented
by the block. Second, we prove the two cases separately. For short
value of LIS(σ) (β ≥ 1), we consider the case where each seg-
ment in each block is monotonic but none of them can be concate-
nated to form an increasing sequence in the entire stream. Then, we
have that LIS(σ) ≥ LIS(Bk), for k = 0, . . . , t− 1, which leads
to log T · LIS(σ) ≥ ∑t−1

k=0 LIS(Bk) = lis(σ). For the case of
long value of LIS (β ∈ [1/

√
T , 1)), we proceed as follows. Let j

be a positive integer such that 2j−1 <
√
T/β ≤ 2j . Therefore, for

all the blocks Bk with k ≥ j we have that LIS(Bk) ≤
√
T/β,

otherwise there exists a monotonic sequence which is longer than
the longest increasing subsequence, hence we have a contradiction.
Furthermore, due to the binary tree decomposition the sum of the
length of the LIS for the blocks Bk with k = 0, . . . , j − 1 can be
bounded as follows.

j−1∑

k=0

LIS(Bk) ≤
j−1∑

k=0

2k = 2j − 1 ≤ 2
√
T/β (5)

Therefore, the reported lis(σ) can be upper bounded with the value
below.

lis(σ) =

t−1∑

k=0

LIS(Bk) ≤
j−1∑

k=0

LIS(Bk) +

t−1∑

k=j

LIS(Bk)

≤ 2
√
T/β + (t− j)

√
T/β

≈
√
T/β(1 + log β

√
T) (6)

This concludes the proof of the Lemma.

THEOREM 5 (BINARY DECOMPOSITION UTILITY). The bi-
nary decomposition algorithm for computing the length of the longest
increasing subsequence achieves the following utility results.
{

((log T − 1) + β log3/2 T

α
√
T

ln 1
δ
, δ)-useful β ≥ 1

(log β
√
T + β log3/2 T

α
√
T

ln 1
δ
, δ)-useful β ∈ [1/

√
T , 1)

PROOF. This decomposition has the advantage that the num-
ber of blocks combined in estimating the length of the LIS is only
logarithmic which leads to an approximation error as shown in
Lemma 2. This decomposition introduces a perturbation noise which
is a sum of at most O(log T) i.i.d. Laplace random variables with
parameter O(log T/α). Let ξ =

∑
k ηk denote the error due to

the sum of the Laplace random variables, we can use the result in

Corollary 1 to bound this quantity. Choosing ν =
√∑

k
log T
α

√
2 ln 2

δ

with probability at least 1−δ, the quantity ξ is at mostO(log3/2 T
α

ln 2
δ
).

Therefore, the final utility follows using the results from Lemma 2
and by normalizing this value by the LIS(σ).

Space Analysis. The space requirement for this approach is related
to the number of active blocks that need to be updated and to the
space complexity of the internal procedure. Due to the nature of
the binary decomposition at any time i there are Θ(log T) blocks
that are active. Using a similar argument as in Theorem 5, we can
show that the space complexity is O(LIS(σ) ln(β2LIS(σ))).

THEOREM 6 (BINARY DECOMPOSITION SPACE COMP.). Let
LIS(σ) be the length of the longest increasing subsequence in
the stream σ, then the Binary decomposition framework has space
complexity O(LIS(σ) ln(β2LIS(σ))).

PROOF. We begin by recalling that the internal procedure for
computing the length of the LIS is the Patience Sort algorithm,
where we keep only the top of the piles. At any time i in the stream,
log T blocks are active, one in each level of the tree structure. Fur-
thermore, let j be a positive integer such that 2j−1 < LIS(σ) ≤
2j . Therefore for the blocks in any level i > j in the tree, we can
upper bound their space requirements withLIS(σ)(log T−j+1),
since LIS(σ) is the current length of the longest increasing subse-
quence. On the other hand, due to the nature of the binary tree the
space required by the blocks below the level i is 2j − 1. Therefore
the space complexity for this approach is O(LIS(σ)(log T − j +

1)). Using the notion thatLIS(σ) =
√
T/β and j = log(LIS(σ)),

the previous requirements can be rewritten asO(LIS(σ) ln(β2LIS(σ))).

Time Analysis. The total update time for this solution is related
to the updates of the active blocks. Since at every time i there are
Θ(log T) active blocks, the update time is O(log T logLIS(σ))
using Patience Sorting algorithm.

4. HIERARCHY MECHANISM
In the previous section, we showed that the binary decomposi-

tion considerably reduces the perturbation noise in the final output
compared to the baseline approach. However, such technique suf-
fers from the fact that the computation of the LIS is generally hard
to be decomposed in blocks leading in some cases to a large ap-
proximation error. To overcome this problem, we propose a new
algorithm which computes the LIS over the stream by simulating
the behavior of the Patience Sorting algorithm. In contrast to our
previous approaches, this solution computes the length of the LIS
by smoothing the impact of each element with the purpose of re-
ducing the perturbation noise while achieving a good approxima-
tion ratio.

The main idea is to reduce the impact of those elements that stay
too long in the LIS so that the total noise required by the privacy
mechanism is decreased. Given an integer b > 0, we construct a se-
ries of m = Θ(ln T

b
) layers l0, l1, . . . , lm−1 with b buckets each,

where at layer i each bucket contains 2i elements. Given the se-
ries of elements with index {1, 2, . . . , T} in the stream, each layer

274

Figure 4: Running example of the Hierarchy mechanism on the input stream 4, 5, 1, 6, 2, 3, 7, 8, b = 4 and m = 2.

simulates the behavior of the Patience Sorting algorithm where in
this case the original piles are replaced with buckets that can con-
tain multiple elements. In fact, at layer i the elements in the range
[(j − 1)2i + 1, j2i] can be placed into the same bucket j. Intu-
itively, each layer has a different granularity, in fact l0 keeps the
exact top elements in the most recent b piles in the Patience Sorting
algorithm, while l1 keeps an approximation of the next 2b piles and
so forth for the other layers. As the original algorithm, our pro-
cedure computes the length of the LIS by counting the number on
non-empty buckets. In our case multiple elements may fall in the
same bucket; therefore, we use a scaling factor equal to the length
of the bucket to compute the contribution of each layer. Further-
more, in addition to insertion and replacement moves allowed in the
Patience Sorting algorithm, we introduce an expiration move that
forces elements that stay in a bucket at layer li for more than 2ib
iterations to be moved up to layer li+1. The algorithm computes
the length of the LIS in the stream by adding the contribution at
each layer. The code for this procedure is reported in Algorithm 3.

Algorithm Description. The algorithm starts initializing a set of
m layers containing b buckets each, at lines 2-3. Within a layer i,
each bucket is denoted with Pi(j), for j = 1, . . . , b and it has size
2ib. In the main loop, lines 4-21, each new element coming in the
stream is inserted in the first layer using the the same rule as the
Patience Sorting algorithm, lines 5-7. In the inner loop at lines 9-
13, the algorithm checks layer by layer to find the expired elements.
When an expired element p in a pile Pi(j) is found, the algorithm
removes p and inserts it in the next layer. At line 14, the number
of non-empty buckets for each layer is computed by normalizing
the number of elements within each bucket with the corresponding
bucket’s size. In the loop at lines 16-19, the perturbation noise is
applied to each count and finally the length of the LIS is returned.

We illustrate our hierarchy mechanism in the example below.

EXAMPLE 2. Consider the situation in Figure 4. When the first
element arrives in the stream it is placed in the first bucket at l0
as shown in (a). The second element that arrives is 5, since it is
larger than 4 it is placed in the next bucket (b). The third element
in the stream is 1. Since the insertion of the elements in the buck-
ets follows the same rules as the Patience Sorting algorithm, we
find the bucket that contains the smallest element larger than 1 and
insert this element in that bucket. Therefore, in our case, 1 over-
writes 4 in the first bucket (c). At this point the length of the LIS
is 2, as represented by the number of non empty buckets in l0. The
algorithm proceeds in a similar manner of the next three incoming
elements (d),(e) and (f). After these new elements, the element 1 in
l0 is moved up to l1 since it has been present in l0 for more than
b steps and the new incoming element 7 is inserted in l0 (g). In
the next step, the element 2 is moved up, and it is inserted in the
same bucket with the element 1. At the same time the new element
8 is inserted in l0 (e). The reported length of the LIS is obtained by
summing the contribution of each layer. Layer l0 contributes with
Ne0 = 3 and l1 contributes with Ne1 = 1. Hence the algorithm
reports a length of the LIS of 4 while the exact length is 5.

Algorithm 3 Hierarchy Mechanism

1: procedure HIERARCHY MECHANISM(T, α, σ, b)
Input: upper bound on the stream length T ; privacy parameter α; event stream
σ; accuracy parameter b
Output: l̃(σ) released longest increasing subsequence

2: m = Θ(ln T
b)

3: Initialize each layer li = [Pi(1), . . . , Pi(b)] i = 0, . . . ,m − 1 with b
empty buckets

4: for (i = 0, 1, . . . , T − 1) do
5: Insert σ(i) in l1
6: Find the largest P1(j) such that P1(j) ≤ σ(i)
7: P1(j + 1) = σ(i)
8: for (i = 0, . . . ,m− 1) do
9: Let p be the element that expires at li
10: Remove p from li and insert it in li+1

11: Find the largest element in Pi+1(j) such that Pi+1(j) ≤ p
12: Pi+1(j + 1) = p
13: end for
14: LetNei be the number of non-empty buckets at layer li
15: l̃(σ)← 0
16: for (i = 0, 1, . . . ,m− 1) do
17: N̂ei ← Nei + Lap(mb/α)

18: l̃(σ)← l̃(σ) + N̂ei . Sum the noisy contribution of each layer
19: end for
20: Output l̃(σ)
21: end for
22: end procedure

Privacy Analysis. In this algorithm the contribution of each ele-
ment on the LIS is progressively decreased according to the layer
in which the element appears. The privacy result for our hierarchy
mechanism is reported in the following theorem.

THEOREM 7 (HIERARCHY MECHANISM PRIVACY). The Hi-
erarchy Mechanism achieves α-differential privacy.

PROOF. Given any two neighboring streams, we can observe
that each element can affect at mostm layers over the entire stream.
In particular, at l0 an element contributes to the LIS with a factor 1
for b times, at l1 contributes with factor 1/2 for 2b and at the gen-
eral level li contributes with factor 1/2i for 2ib times. Let Ne be
the vector of contributions for each layer for the input stream σ =
a1, . . . , ai . . . , aT . Then, ∀i ∈ [1, T] and σ′ = a1, . . . , a

′
i . . . , aT

we have that

‖Ne(σ)−Ne(σ′)‖ ≤ mb (7)

Then adding a random Laplace noise with parameter mb/α to the
contribution of each layer i, is sufficient to satisfies α-differential
privacy. Furthermore, using Corollary 1 we can see that the addi-
tive error introduced by noise is onlyO(b

α
log3/2(T

b
) log(2

δ
)).

Approximation Error. Our algorithm smooths the contribution
of each element in the stream according to its layer leading to an
underestimated value for the length of the LIS. The following The-
orem summarizes the approximation ratio in the worst case.

THEOREM 8 (HIERARCHY APPROXIMATION ERROR). Let σ
be a stream of length T , and b be the number of buckets in each

275

Table 1: Summary of results for LIS query over entire stream.

Method Error Memory Update Time
Baseline O(β

√
T
α ln 1

δ) O(LIS(σ)) O(log
√
T
β)

Binary
O((log T − 1) + β log3/2 T

α
√
T

ln 1
δ) where β ≥ 1

O(log β
√
T + β log3/2 T

α
√
T

ln 1
δ) where β ∈ [1/

√
T , 1)

O(LIS(σ) ln(β2LIS(σ))) O(log T log
√
T
β)

Hierarchy O((1− T−b
T+b) + bβ√

Tα
log3/2(Tb) log(2

δ)) O(LIS(σ)) O(log b log T
b)

layer of our algorithm. Then, the hierarchy mechanism returns a
(1− T−b

T+b
)-approximation of the length of LIS.

PROOF. Let k be the length of the LIS over the entire stream. We
begin by showing that this algorithm never overestimates the length
of the LIS and then proceed by showing the error in the underesti-
mate. To understand why this algorithm always reports a length of
the LIS less or equal to the real length we consider the following
case. Let us assume that there exists an element σ(j) in a bucket
at level i > 0 in our algorithm that differs from the Patience Sort.
Since this element is extra in our algorithm it means that there is
an element σ(j′), j′ > j that replaces σ(j) in the exact Patience
Sort. Since σ(j′) < σ(j), we have that in our structure σ(j′) has
replaced another element σ(j′′). Due to the nature of our algo-
rithm this operation could only occur in a layer i′ < i, hence in
replacing σ(j′′) with σ(j′) in our algorithm we have a larger loss
of contribution than replacing σ(j). Therefore we cannot have an
overestimate length of the LIS.

Now, we examine the error in underestimating the length of the
LIS. Consider a worst case scenario where only the first k sym-
bols in σ contribute to the LIS, while the rest of the stream does
not increase the length of the LIS. In this situation, as the stream
proceeds the elements of the LIS that initially are in layer 0 are
progressively moved up introducing a small additive error. Below,
we quantify this error. Let m = log(T

b
+ 1) − 1 be the number

of layers in our structure, then the maximum additive errors on the
LIS is achieved when all the elements forming the LIS are in layer
m. This quantity is computed as follows.

m∑

i=1

k

2i
= k

(
T − b
T + b

)
(8)

Hence the returned value from our algorithm is lower bounded by
LIS(σ)(1 − T−b

T+b
). This shows that our returned length l̃(σ) sat-

isfies the following inequality.

LIS(σ)

(
1− T − b

T + b

)
≤ l̃(σ) ≤ LIS(σ) (9)

Therefore, our algorithm provides a (1 − T−b
T+b

)-approximation of
the length of LIS.

Space Analysis. Since this algorithm simulates the Patience Sort-
ing algorithm by keeping only the top of the piles forming the LIS,
it follows that the space complexity is linear with the length of the
LIS in the stream O(LIS(σ)).

Time Analysis. For any new incoming element in the stream, the
total running time is given by the cost required for updating each
pile. There are at most m − 1 buckets, one for each level, that
need update, where each operation requires O(log b) time. Since
m = Θ(log T

b
), the update time is O(log b log T

b
).

This solution points out a strong connection between the approx-
imation ratio and the noise required to achieve privacy. We can see

that increasing b has a beneficial effect on the approximation ratio
but on the other hand increases the privacy cost. In fact, as an ex-
treme case using b = T the algorithm returns the exact length of
the LIS but incurs a large perturbation noise. Compared with our
decomposition framework, this algorithm provides the user with a
way to balance the approximation ratio and the noise due to the
privacy mechanism.

5. SUMMARY OF RESULTS
Table 1 summarizes the utility results of our proposed solutions.

We can see that both our strategies outperform the baseline ap-
proach in many perspectives. We notice that the baseline approach
incurs a large perturbation error which could dramatically compro-
mise the utility. Specifically, the additive error in the baseline strat-
egy grows linearly with the length of the stream. For the binary
decomposition instead, we provide output-sensitive utility results
showing the benefits of this technique for different lengths of LIS.
Due to the use of disjoint blocks, this approach incurs a consider-
ably smaller perturbation error with respect to the baseline solution.
In fact, the dependency of the error with respect to the perturbation
noise is only polylogarithmic in this case. Furthermore, we can ob-
serve that the decomposition framework has small space require-
ments and update time. In principle, the space and time complexity
of this solution could be further improved by using more sophis-
ticated algorithms (e.g. [12, 19]) as internal procedure instead of
relying on the Patience Sorting. For count based statistic the bi-
nary decomposition has been shown very effective; however due
to the nature of the LIS, this strategy incurs an approximation er-
ror. Our hierarchy approach specifically addresses the LIS problem
by directly simulating the Patience Sorting algorithm. This pro-
cedure incurs a smaller computational time and it has small mem-
ory requirements. Comparing the worst case performance of this
technique with the binary decomposition, we can observe that the
decomposition framework is still superior leading to a smaller ad-
ditive error with the same approximation ratio. This result is due to
the fact that the hierarchy strategy suffers when the LIS constitutes
the initial part of the stream. In fact, as the execution proceeds the
elements in the sketch are moved in higher level increasing the ap-
proximation error over the stream. However, we can notice that in
real scenarios such situation is unlikely to occur because in many
applications we can assume that the stream presents trends over
time.

5.1 Extensions
In this section, we describe how to employ our developed tech-

niques to solve real world problems.

Detecting trends in time-series data. Our proposed techniques
can be extended to effectively detect trends in time-series data by
restricting the computation of the LIS over windows in the stream.
In fact, in monitoring applications, recent data is more important
than distant data; therefore, using a sliding windowW , we limit the
computation of the LIS on the most W recent data. For example, a
sudden increase of price in financial data will lead to an increment

276

in the length of the LIS in the current window. Constraining the
computation of the LIS on a sliding window of length W is ben-
eficial both from the utility and complexity perspective. In fact, it
has been shown in [3] that for the binary mechanism the use of a
sliding window reduces the impact of the privacy to a factor that is
independent from the length of the stream but it is only related to
the size of the window W . A similar result can be also derived for
the hierarchy mechanism, where in this case, the number of layers
in the data structure depends only on the length of W rather than
the entire stream.

Approximate String Matching. The problem of computing the
LIS is a classical string matching problem that has been extensively
studied in computational biology [14]. However, only few solu-
tions have been proposed to privately match biological sequences.
Generally, these approaches provide privacy and security in match-
ing strings by applying cryptographic techniques [18]. However,
due to their high complexity these approaches may not be effec-
tive in real scenarios. In this setting, we believe that our solutions
can be very promising by providing formal privacy guarantee and
incurring a small computational overhead. Since the problem struc-
ture of the LIS is similar to other popular problems for computing
string similarity measures (e.g. edit distance), we believe that our
hierarchy approach could be a first step toward the design of effi-
cient privacy preserving algorithms for matching strings.

6. CONCLUSIONS
In this paper, we considered the problem of privately detecting

trends in stream data. Specifically, we addressed the problem of
computing the length of the LIS while protecting the presence of
single event in the stream. We developed two different solutions
that provide formal guarantee of privacy. The first approach ap-
proximates the length of the LIS by assembling local information
computed on segments of the stream. The second approach con-
structs a small sketch of the stream by exploiting the structure of the
problem. Using a rigorous analysis, we showed that these strategies
provided significant benefits over the baseline approach.

For the future, we consider to investigate two possible research
directions. First, we plan to further develop our extensions and
turn our theoretical results into concrete algorithms to be applied to
solve time-series monitoring and string matching problems. Sec-
ond, our proposed solutions provide important insights about the
privacy implications for computing complex ordered statistics. There-
fore, we plan to better understand what kind of privacy sketching
algorithms can benefit in this setting.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the National Sci-

ence Foundation under Grant No. 1117763.

8. REFERENCES
[1] Miklós Ajtai, T. S. Jayram, Ravi Kumar, and D. Sivakumar.

Approximate counting of inversions in a data stream. In
Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, STOC ’02, pages 370–379. ACM,
2002.

[2] David Aldous and Persi Diaconis. Longest increasing
subsequences: From patience sorting to the
baik-deift-johansson theorem. Bull. Amer. Math. Soc,
36:413–432, 1999.

[3] Jean Bolot, Nadia Fawaz, S. Muthukrishnan, Aleksandar
Nikolov, and Nina Taft. Private decayed predicate sums on

streams. In Proceedings of the 16th International Conference
on Database Theory, ICDT ’13, pages 284–295, New York,
NY, USA, 2013. ACM.

[4] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and
continual release of statistics. ACM Trans. Inf. Syst. Secur.,
14(3), November 2011.

[5] Graham Cormode, S. Muthukrishnan, and Süleyman Cenk
Sahinalp. Permutation editing and matching via embeddings.
In Proceedings of the 28th International Colloquium on
Automata, Languages and Programming,, ICALP ’01, pages
481–492, 2001.

[6] Cynthia Dwork. Differential privacy. In ICALP, 2006.
[7] Cynthia Dwork. Differential privacy in new settings. In

SODA, pages 174–183, 2010.
[8] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam

Smith. Calibrating noise to sensitivity in private data
analysis. In TCC 2006.

[9] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N.
Rothblum. Differential privacy under continual observation.
In Proceedings of the Forty-second ACM Symposium on
Theory of Computing, STOC ’10, pages 715–724, New York,
NY, USA, 2010. ACM.

[10] Cynthia Dwork, Moni Naor, Toniann Pitassi, Guy N.
Rothblum, and Sergey Yekhanin. Pan-private streaming
algorithms. In ICS, pages 66–80, 2010.

[11] Funda Ergun and Hossein Jowhari. On distance to
monotonicity and longest increasing subsequence of a data
stream. In Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithms, SODA ’08, pages
730–736, 2008.

[12] Parikshit Gopalan, T. S. Jayram, Robert Krauthgamer, and
Ravi Kumar. Estimating the sortedness of a data stream. In
Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, SODA ’07, pages 318–327, 2007.

[13] Anupam Gupta and Francis X. Zane. Counting inversions in
lists. In Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms, SODA ’03, pages
253–254, 2003.

[14] Dan Gusfield. Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, New York, NY, USA, 1997.

[15] J. M. Hammersley. A few seedlings of research. In
Proceedings of the Sixth Berkeley Symposium on
Mathematical Statistics and Probability, pages 345–394,
Berkeley, Calif., 1972. University of California Press.

[16] David Liben-Nowell, Erik Vee, and An Zhu. Finding longest
increasing and common subsequences in streaming data. In
Proceedings of the 11th annual international conference on
Computing and Combinatorics, COCOON’05, pages
263–272, 2005.

[17] Frank D. McSherry. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. In SIGMOD
’09.

[18] S. Rane and Wei Sun. Privacy preserving string comparisons
based on levenshtein distance. In Information Forensics and
Security (WIFS), 2010 IEEE International Workshop on,
pages 1–6, Dec 2010.

[19] Michael Saks and C. Seshadhri. Space efficient streaming
algorithms for the distance to monotonicity and asymmetric
edit distance. In SODA, pages 1698–1709, 2013.

277

Efficient Sanitization of Unsafe Data Correlations

Bechara AL Bouna
Department of Computer
Science and Engineering

Qatar University & Antonine
University

Doha, Qatar - Baabda,
Lebanon

bechara.albouna@upa.edu.lb

Chris Clifton
Department of Computer

Science
Purdue University

West Lafayette, Indiana - USA
clifton@cs.purdue.edu

Qutaibah Malluhi
Department of Computer
Science and Engineering

Qatar University
Doha, Qatar

qmalluhi@qu.edu.qa

ABSTRACT
In this paper, we present a study to counter privacy vio-
lation due to unsafe data correlation. We propose a safe
correlation requirement to keep correlated values bounded
by l-diversity and evaluate the trade-off to be made for the
sake of a strong privacy guarantee. Finally, we present a
correlation sanitization algorithm that enforces our safety
constraint and demonstrates its efficiency.

1. INTRODUCTION
Preserving privacy in outsourced databases has received

considerable attention in the last decade. Several privacy
constraints [23, 22, 16, 11] have been defined on datasets to
prevent disclosure of sensitive information related to indi-
viduals. These constraints are based on generalizations that
transform quasi-identifiers values into a general form and
create quasi-identifier groups to eliminate possible linking
attacks. A second approach is table decomposition: Quasi-
identifiers and sensitive values are placed in separate tables,
and tuples are divided into groups that are linked in a way
that provides sufficient uncertainty in the join criteria to
meet privacy constraints. This approach has been alter-
nately termed anatomy [29], fragmentation [4] and slicing
[14]; we will use the term anatomy to refer to this class
of approaches, as it does not have other meanings in the
database community.

Anatomy has the advantage that exact data values are
maintained, allowing data and actions on individual data
values to be outsourced. Only the link between identifying
and sensitive values is generalized. We envision this work
being used in the context of [20], where the actual links
(and in our case, some data values) are encrypted to ensure
the server cannot violate privacy, while still enabling some
server-side use of the data.

As an example, Figure 1a shows prescription history, where
the attribute DrugName is sensitive. Figure 1b represents
an anatomized version of Table Prescription with attributes

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc- nd 4.0
.

separated into PrescriptionQIT and PrescriptionSNT . The
anonymized table satisfies the 2-diversity privacy constraint[16];
given the 2-diverse table, an adversary can at best link a pa-
tient to a drug with a probability equal to 1/2.

Despite anatomy’s efficiency in preserving privacy and
data fidelity, it and other generalization based techniques
defects when some types of correlation exist in the data.

The most obvious problem is when values in identifiers (or
quasi-identifiers) are directly correlated with sensitive val-
ues as discussed in [27] and [8]. Based on knowledge of such
correlation (possibly learned from the data), an adversary
may increase the probability that a given individual is linked
to a given sensitive value with probability greater than the
1/l enforced by the anatomization groups. The inter quasi-
identifying group correlation between United States and Retinoic
Acid given in Figure 1 shows that with respect to knowledge
mined from the anonymized data, an adversary is able to as-
sert knowledge regarding the global distribution of countries
and drugs. Such global distribution increases the probability
of linking individuals to sensitive values on the basis of their
countries. The authors of [27, 8] demonstrated how correla-
tion can be used to violate privacy constraints. They argued
that the (sometimes implicit) assumptions of an i.i.d. model
and random worlds model, when tuple independence does
not hold in the actual data, allows adversaries to learn and
use cases where these assumptions do not hold to violate pri-
vacy. In this paper, we shed more light on the threat of data
correlation that could be found after a näıve anonymization
of a table, and give methods to control that risk. While we
use the anatomy model [29] in our examples, this work also
applies to other bucketization techniques such as fragmen-
tation [4] and slicing [14].

1.1 Contributions
We present a study to counter privacy violations and at

the same time preserve data utility. Our contributions can
be summarized as follows:

• We propose a safe correlation requirement to reduce
the threat of exposed correlations between quasi-identifier
and sensitive attributes. We show that under this re-
quirement, correlations can be bounded by a trade-off
between utility and privacy.

• We provide a sanitization algorithm to ensure safety
from correlations by solving a linear programming prob-
lem in a post-anonymization process.

The key idea is that we do not completely hide correlations

278

Country Manufacturer Drug Name
United States Envie De Neuf Mild Exfoliation
Columbia Gep-Tek Azelaic acid
United States Raphe Healthcare Retinoic Acid
United States Envie De Neuf Mild Exfoliation
France Raphe Healthcare Azelaic acid
United States Raphe Healthcare Retinoic Acid
Columbia Jai Radhe Cytarabine
United States Raphe Healthcare Azelaic acid
Columbia Raphe Healthcare Retinoic Acid
France Jai Radhe Cytarabine
United States Raphe Healthcare Azelaic acid
United States Raphe Healthcare Retinoic Acid
Columbia PQ Corp. Epsom. Magnesium
United States Envie De Neuf Mild Exfoliation
United States Jai Radhe Adapalene

(a) Original Prescription table

Country Manufacturer GID GID Drug Name
United States Envie De Neuf 1 1 Mild Exfoliation
Columbia Gep-Tek 1 1 Azelaic acid
United States Raphe Healthcare 1 1 Retinoic Acid
United States Envie De Neuf 2 2 Mild Exfoliation
France Raphe Healthcare 2 2 Azelaic acid
United States Raphe Healthcare 2 2 Retinoic Acid
Columbia Jai Radhe 3 3 Cytarabine
United States Raphe Healthcare 3 3 Azelaic acid
Columbia Raphe Healthcare 3 3 Retinoic Acid
France Jai Radhe 4 4 Cytarabine
United States Raphe Healthcare 4 4 Azelaic acid
United States Raphe Healthcare 4 4 Retinoic Acid
Columbia PQ Corp. 5 5 Epsom. Magnesium
United States Envie De Neuf 5 5 Mild Exfoliation
United States Jai Radhe 5 5 Adapalene

(b) Anonymized Prescription table PrescriptionQIT and
PrescriptionSNT

Figure 1: Example scenario

(we want to support learning from the data), this follows
the spirit of t-closeness [11], but building on anatomy allows
us greater grouping flexibility without the utility loss from
over-generalizing data values.

2. ADVERSARY MODEL
We assume that both the adversary and defender have

knowledge of correlations in the data; in the case of the ad-
versary, his/her knowledge is mainly based on what can be
learned from the anonymized data. As for the defender, it
can include any correlations that can be learned from the
original data. We also assume that an adversary has out-
side information enabling it to link (quasi)-identifying in-
formation with individuals. Thus all quasi-identifiers and
identifiers are considered individually identifiable.

We assume that the adversary does not have prior knowl-
edge of sensitive values for specific individuals. For example,
if an adversary knew the prescriptions being taken by all of
the individuals in Figure 1b except for a specific individual,
then it is clearly possible for the adversary to determine
his/her prescriptions. While there are methods to deal with
data analysis under such a scenario up to a point (e.g., [5]),
they violate our goal of storing and disclosing actual data
values. Full protection against other kind of background
knowledge is impossible while still maintaining data utility
[5].

3. RELATED WORK
The anatomy [29], fragmentation [4] and slicing [14] mod-

els have been proposed to provide a technique that ensures
privacy and preserves data granularity lost using general-
ization - based approaches such as k-anonymity [22, 23],
l-diversity [16], (α, k)-anonymity [28], and t-closeness [11].

Unfortunately, these models fail to provide the promised
privacy because of the dependencies that might exit in the
data. In [14] the authors provide a technique that combines
both generalization and bucketization to protect datasets
against membership disclosure. Despite its originality, this
approach remains vulnerable to negative correlations even
while grouping attributes that are highly correlated. In [25]
[15], disassociation is applied in a way to preserve both, the
original terms to leverage utility and the km-anonymity pri-

vacy constraint. A privacy breach can still occur due to the
lack of diversity. Particularly, when ensuring km-anonymity
without using generalization which makes the technique vul-
nerable to homogeneity attacks.

An adversary discovering correlations in the data can use
these correlations to discover information about individuals
[27] [8]. In [27], the authors consider correlations as fore-
ground knowledge that can be mined from anonymized data.
They use the possible worlds model to compute the probabil-
ity of associating an individual with a sensitive value based
on a global distribution. In [8], a Näıve Bayesian model
is used to compute association probability. They use ex-
changeability [2] and DeFinetti’s theorem [21] to model and
compute patterns from the anonymized data.

There are two components to each of these papers. The
first is a relatively simple idea - that we can use correla-
tions to link identifying information to sensitive values. A
much deeper aspect is that they show how an adversary can
find such correlations in the anonymized data. Our work
addresses the first component directly: We ensure that even
given knowledge of the true correlations present in the data,
the probability that a particular sensitive value can be linked
to a particular individual is below a threshold (e.g., 1/l for
l-diversity, or α for (α, k)-anonymity.) This ensures that
our method prevents not only the attacks in [27, 8], but any
other correlation-based attacks that may be developed. Fur-
thermore, we try to preserve and expose correlations where
possible, increasing utility of the data. In [13], the authors
deal with background knowledge that can be mined from the
data. In their paper, they focus mainly on what is known as
negative correlations limiting by that the ability to handle
positive and exposed correlations.

[5] defines the notion of differential privacy to handle pri-
vate data publishing efficiently. The technique gained much
popularity among computer scientists providing strong as-
sumptions on the way that data should be released. In
essence, differential privacy guarantees privacy without mak-
ing any assumption on the adversary’s background knowl-
edge. More accurately, it shows robustness when a certain
number of tuples in the dataset are known by the adversary.
Despite its originality, differential privacy tends to be less
efficient when correlation among the tuples is high [9]. In
addition, the appropriate value of ε to achieve the needed

279

real-world privacy is unclear [10].
While there are approaches that bridge differential privacy

and generalization for data release [17, 12], they are not ap-
plicable in our environment. For example, [17] releases noisy
group sizes; if applied in our model, the server would likely
be able to use query history to distinguish true vs. fake tu-
ples and thus reduce this noise, violating ε-differential pri-
vacy. Alternatively, [12] uses sampling to show that at some
point k-anonymization techniques can achieve a relaxation of
ε-differential privacy with a small error probability δ. This,
however, significantly decreases the utility of the data which
already suffers from constraints imposed by generalization.

4. FORMALIZATION
We first define basic concepts and notations used in the

paper (see also Table 1).
Given a table T with a set of attributes {A1, ..., Ab}, t[Ai]

refers to the value of attribute Ai for the tuple t. Attributes
of a table are divided as follows:

• Quasi-identifiers Aqi represent attributes that can be
used (possibly with external information available to
the adversary) to identify the individual associated
with a tuple in a table. Name, Gender, Age and Zip-
code are examples of quasi-identifiers.

• Sensitive attributes As contain sensitive information
that must not be linkable to an individual. In our
example (Table 1), DrugName is considered sensitive
and should not be linked to an individual.

Definition 1 (Equivalence class / QI-group). [22] A quasi-
identifier group (QI-group) is defined as a subset of tuples
of T =

⋃m
j=1QIj such that, for any 1 ≤ j1 6= j2 ≤ m,

QIj1 ∩QIj2 = φ.

Table Prescription shown in Figure 1a is composed of 6
different quasi-identifier groups identified by their GID at-
tribute’s values.

Definition 2 (l-diversity). [16] a table T is said to be l-
diverse if each of the QI-groups QIj(1 ≤ j ≤ m) is l-diverse;
i.e., QIj satisfies the condition cj(vs)/|QIj | ≤ 1/l where

• m is the total number of QI-groups in T

• vs is the most frequent value of As in QIj

• cj(vs) is the number of tuples of vs in QIj

• |QIj | is the size (number of tuples) of QIj

For instance, quasi-identifier group QI1 in Figure 1a is
3-diverse containing 3 distinct sensitive values.

Definition 3 (Anatomy). Given a table T , we say that T
is anatomized if it is separated into a quasi-identifier table
(TQIT) and a sensitive table (TSNT) as follows:

• TQIT has a schema (A1, ..., Ad, GID) where Ai (1 ≤
i ≤ d) is either a nonsensitive or quasi-identifier at-
tribute and GID is the group id of the QI-group.

• TSNT has a schema (GID,Asd+1) where Asd+1 is the
sensitive attribute in T .

Table 1: Notations

T a table containing individuals related tuples

ti a tuple of T

u an individual described in T

A an attribute of T

Aqi a quasi-identifier attribute of T

As a sensitive attribute of T

QIj a quasi-identifier group

T∗ Anonymized version of table T

CD a set of correlation dependencies

cd : Aqi 99K As a correlation dependency between attribute Aqi

and the sensitive attribute As

Figure 1b is an anatomized version of Table Prescription
in Figure 1a in which only the links between individuals and
their sensitive values are generalized.

To express correlations between attributes of an anonymized
table T ∗, we use the term correlation dependencies CD for-
mally defined as follows:

Definition 4 (Correlation Dependency). Let Aqi be an at-
tribute of T ∗, and As be the sensitive attribute of T ∗. A
correlation dependency (cdqi ∈ CD) of the form of cdqi :
Aqi 99K As ∈ CD exists over T ∗ if ∃vs ∈ As and vqi ∈ Aqi
s.t. P (vs|vqi) >> P (vs).

We assume that dealing with correlation dependencies is
not a straightforward process in which we can assume that
every correlation is unsafe. Such assumption contradicts the
basic utility of data outsourcing and causes dramatic dam-
age to the utility of aggregate analysis. It is important to
specify to what extent correlation is unsafe and define its le-
gitimate boundaries during the anonymization process. For
completeness, we define the significance of a sensitive value
vs w.r.t. a quasi-identifier value vqi based on a confidence
and support measures to be discussed below.

Definition 5 (Significant Sensitive Value). Given a corre-
lation dependency of the form cdqi : Aqi 99K As over a table
T , we say that a sensitive value vs is significantly related to
vqi iff

• conf(vqi, vs) = Pr(As = vs, A
qi = vqi)/Pr(A

qi = vqi)
is less than or equal to minConf threshold (conf(vqi, vs)
≤ minConf) or greater than or equal to a maxConf
threshold (conf(vqi, vs) ≥ maxConf) and,

• sup(vqi, vs) ≥ minSup where minSup is defined to cap-
ture sensitive values that are frequently correlated with
the quasi-identifier values.

We use confidence (conf), easily mined from the data dur-
ing anonymization, to determine the strength of a correla-
tion dependency and limit the number of significantly re-
lated sensitive values. Specifically, a sensitive value related
to a quasi-identifier value by a correlation dependency is
significant if its confidence is at least equal to a maximum
confidence (maxConf) threshold or at the most equal to a
minimum confidence (minConf) threshold, and it has a sup-
port greater than a minimum support (minSup) threshold.
minConf, maxConf and minSup are set to satisfy safety re-
quirements as shown in the next section.

280

5. CORRELATION-BASED PRIVACY VIO-
LATION

High correlation would allow us to use the values of one at-
tribute to predict the values of other attributes. While this
is valuable knowledge, it can also violate the privacy con-
straints. The problems detailed in [27, 8] lie with the ability
of an adversary to extract patterns (correlations) from an
anonymized table that can be used to violate privacy. Sum-
marizing, we define here the privacy problem as follows:

Definition 6 (Privacy Problem). A privacy violation occurs
if for a given individual u, Pr(us = vs|T ∗) > 1/l, where vs
is a sensitive value of As, and T ∗ is an l-diverse anonymized
version of T .

Definition 6 provides a general perspective of the privacy
breach but yet we cannot assume that every correlation is
unsafe. As mentioned earlier, such an assumption contra-
dicts the basic utility of data outsourcing. For this reason,
we consider that for a given an anonymized table T ∗, if an
adversary is able to associate a significant sensitive value
vs to an individual u with a probability greater than 1/l
based on the assumed adversary knowledge, we say that the
privacy principle has been violated.

It is essential to enforce proper safety requirements dur-
ing the anonymization process to keep significant correla-
tions bounded and eliminate by that any possible breach of
privacy.

We present in the following our safe correlation safety
constraint to bound correlation dependencies of the form
cdqi : Aqi 99K As.

Safety Constraint (Safe Correlation). Given a correlation
dependency of the form (cdqi : Aqi 99K As) over T . Let vqi
be a value of quasi-identifier attribute Aqi and vs ∈ As be
a sensitive value significantly related to vqi. We say a safe
correlation constraint is satisfied for T ∗ iff

1. significant sensitive values are uniformly distributed
such that Pr(As = vsi , A

qi = vqi|T ∗) = 1/λvqi for
(1 ≤ i ≤ |S(vqi)|) and,

2. there are at least l distinct significant sensitive values
for vqi, |S(vqi)| ≥ l

where

• S(vqi) is the set of sensitive values significantly re-
lated to vqi and,

• λvqi ≥ l is the correlation constant.

Using this safe correlation requirement we provide bound-
aries to correlation while making sure that the most frequent
correlated value does not appear too frequently, and that the
low correlation values do not appear too rarely in T ∗. We
note that the correlation constant λvqi depends on the ac-
tual correlation between a quasi-identifying value vqi and
the significant sensitive values. λvqi is determined in a post-
anonymization process explained in the next section.

Theorem. An adversary cannot use his/her previous knowl-
edge of some of the significant correlations to link individuals
to sensitive values in the anonymized dataset.

Proof. Given that Pr(As = vs, u|T ∗) can be written as
Pr(As = vs, tvqi |T ∗) where tvqi is individual u’s tuple and

t[Aqi] = vqi. Assuming that vs is significantly related to
vqi meaning that vs ∈ S(vqi) and thus Pr(As = vs, A

qi =
vqi|T ∗) is equal to 1/λqi. If a privacy violation occurs as such
Pr(As = vs, tvqi |T ∗) > 1/l, the correlation itself must vio-
late our assumptions. According to the safe correlation con-
straint, significant correlations between sensitive and quasi-
identifying values are bounded by l-diversity. In other terms,
there are l − 1 other sensitive values such that Pr(As =
vsi , A

qi = vqi|T ∗) = 1/λvqi for (1 ≤ i ≤ l − 1).

Figure 2 shows how we can achieve this safety constraint
using the correlation sanitization algorithm defined in Sec-
tion 6. As we can see, several values have been suppressed
to make sure that both probabilities remain equal after the
anonymization process.

Country Manufacturer GID GID Drug Name
United States Envie De Neuf 1 1 Mild Exfoliation
Columbia Gep-Tek 1 1 Azelaic acid
United States Raphe Healthcare 1 1 Retinoic Acid
United States Envie De Neuf 2 2 Mild Exfoliation
France Raphe Healthcare 2 2 Azelaic acid
United States Raphe Healthcare 2 2 Retinoic Acid
Columbia Jai Radhe 3 3 Cytarabine
* Raphe Healthcare 3 3 Azelaic acid
Columbia Raphe Healthcare 3 3 Retinoic Acid
France Jai Radhe 4 4 Cytarabine
* Raphe Healthcare 4 4 Azelaic acid
* Raphe Healthcare 4 4 Retinoic Acid
Columbia PQ Corp. 5 5 Epsom. Magnesium
United States Envie De Neuf 5 5 Mild Exfoliation
United States Jai Radhe 5 5 Adapalene

Figure 2: Safe correlation: a post-anonymization safety con-
straint.

One subtle remaining issue is multi-dimensional correla-
tions, where several combined attribute values can corre-
late with a sensitive attribute. Formally, we define a p-
dimensional correlation dependency as follows:

Definition 7 (p-Dimensional Correlation Dependency). Let
Aqi be quasi-identifying attribute of table T , we say a corre-
lation dependency of the form cdp : (Aqi1 , ..., A

qi
p) 99K As is

p-dimensional where As is a sensitive attribute of T iff ∃ p
values v1 ∈ Aqi1 , ..., vp ∈ Aqip such that for a given vs ∈ As,
vs is significantly related to (vqi1 , ..., vqip).

Typically, dealing with p-dimensional correlation depen-
dencies cannot be done while assuming a straightforward
extension of the safety constraint. It is essential to consider
parameters related to data utility with respect to safety.
While this is left for a future work, we assume that safety
is guaranteed if and only if any subset of possible attribute
combinations of the p-dimensional correlation dependency
antecedent is ’safe’.

6. PRIVACY ENFORCEMENT
We now provide the correlation sanitization algorithm, a

mechanism to enforce the safe correlation requirement.

6.1 Correlation Sanitization: a Linear Program-
ming Problem

Given an anonymized table T ∗, the correlation between
a significant sensitive value vs and a quasi-identifying value
vqi can be referred to as Pr(As = vs, A

qi = vqi|T ∗) and

281

determined as follows:

Pr(As = vs, A
qi = vqi|T ∗) =

∑
QIj∈QI(vqi) cj(vqi)× Pr(A

s = vs, ti|QIj)∑
QIj∈QI(vqi) cj(vqi)

(1)

To achieve the safe correlation constraint, we solve the linear
programming (LP) problem subject to maximizing the sum
of count of QI-values in each QI-group in T ∗ such that, ∀vs ∈
S(vqi),

∑m
j=1 pj,kxi,j = 1

λvqi
× c(vqi), where

• xi,j is a variable that represents the count of vqi in
QI-group QIj denoted by cj(vqii),

• pj,k represents the probability of associating a tuple ti
with the sensitive value vsk in QI-group QIj denoted
by Pr(As = vsk , ti|QIj), and

• c(vqii) is the total number of tuples with vqii in T ∗.

The problem can be viewed as an anonymization problem
in which we determine the number of QI-values that should
be suppressed in each QI-group in order to guarantee an
appropriate correlation constant (1/λvqi). To summarize,
the linear programming problem can be expressed as follows:

max
∑
i,j xi,j

s.t. 0 ≤∑
j pj,kxi,j − xi ≤ ε, if vsk ∈ S(vqii)

0 ≤∑
j pj,kxi,j ≤ c(vqii : vsk), if vsk /∈ S(vqii)

0 ≤ xi,j ≤ cj(vqii)
0 ≤ xi ≤ c(vqii)× 1

l
.

where,

• xi is a variable that expresses the correlation constant
te be determined during the anonymization process.
We note that xi is equal to 1

λvqii

× c(vqii) such that

xi ≤ 1
l
× c(vqii). Figure 3 shows the set of constraints

of the LP problem including variables xi.

• ε is a user defined error bound.

• c(vqii : vsk) is the actual correlation of vqii and vsk
determined from the anonymized table T ∗

The constraints coefficients matrix is computed based on
the set of constraints expressed in Figure 3.

��� …	 ���

��	
 ��,� …	 ��,�

…

… …

��	
 ��,� …	 ��,�

��
 …	 ���

��� ��,� …	 ��,�

… … …

��� ��,� …	 ��,�

×

(��	
 , ��
)	 ��	 = ��,���,� +	…+ ��,���,� − ����

(��	
 , ���)	 ��	 = ��,���,� +	…+ ��,���,� − ����

… …

(��	
 , ����
)	 �(�×�)	��	 = ��,�����,� +	…+ ��,�����,� − ����

(��	
 , ���) ��×�	 = ��,���,� +	…+ ��,���,� − ����

Figure 3: Constraints for LP problem formed based on T ∗

Algorithm 1 Correlation Sanitization

Require: a table T , a correlation dependency (cdqi : Aqi 99K
As), a minimum and maximum confidence thresholds
(minConf , maxConf), a minimum support threshold
minSup, l the privacy constant and ε the error bound

Ensure: safe correlation for T ∗

/**Pre-anonymization: determine significant sensitive values
*/

1: for each distinct vqi in Aqi do
2: S(vqi)={vs | vs is a sensitive value significantly related to

vqi w.r.t minConf , maxConf and minSup}
3: if |S(vqi)| < l then
4: for each vs in S(vqi) do

5: Suppress (c(vqi, vs)) tuples with t[Aqi] = vqi and
t[As] = vs in T

6: end for
7: end if
8: end for
9: T ∗ = Anonymize(T, l)

/**Post-anonymization: formalizing an LP problem */ /**
1 - Determine structural variables X for objective function
z =

∑
i,j xi,j from T ∗ */

10: cl = 0;
11: for each distinct vqii in Aqi do
12: for each QI in T ∗ do
13: X[cl]← xi,j
14: Set 0 ≤ xi,j ≤ cj(vqii)
15: cl = cl + 1;
16: end for
17: end for
18: for each distinct vqii in Aqi do
19: if S(vqi) is not empty then
20: X[cl]← xi
21: Set 0 ≤ xi ≤ 1

l
× c(vqii)

22: cl = cl + 1;
23: end if
24: end for

/** 2- Determine constraints coefficients matrix from T ∗ */
25: cI = 0, r = 0, C[][] = 0;
26: for each distinct vqii in Aqi do
27: cI = i ∗m;
28: for each distinct vsk in As do
29: cl = cI;
30: for each QIj in T ∗ do
31: C[r][cl] = pj,k;
32: cl = cl + 1;
33: end for
34: if vsk ∈ S(vqii) then
35: cl = getColFor(vqii);
36: C[r][cl] = −1;
37: B[r] = ε;
38: else
39: B[r] = getCorrelation(vqii , vsk);
40: end if
41: r = r + 1;
42: end for
43: end for
44: Solve LP problem {max. z|CX ≤ B}

/**Anonymize QI-Values*/
45: for each QIj in T ∗ do
46: Suppress cj(vqii)− xi,j values of vqii in QI
47: end for

Now that we have shown how we can guarantee the safe
correlation safety constraint, we present our correlation san-
itizer algorithm that ensures that the most frequent corre-
lated values do not appear too frequently, and that the less
frequent correlated values do not appear too rarely in T ∗.
The algorithm takes a table T , a quasi-identifier correla-
tion dependency cdqi, minimum and maximum confidence
thresholds (minConf , maxConf), the minimum support

282

threshold minSup and the error bound ε. It ensures the
safe correlation requirement for T .

The algorithm is composed of two main tasks, pre- anonymiza-
tion and post-anonymization. In pre-anonymization, from
Step 1 to 8, the algorithm retrieves the set of significant
sensitive values S(vqi) for each distinct value vqi in the quasi-
identifier attribute Aqi, based on minConf , maxConf and
minSup. Hence, a privacy breach could occur at this level
when an adversary is able to determine possible associations
with sensitive values based on the size of S(vqi). That is why
the algorithm from Step 3 to 7 suppresses the tuples related
to vqi and vs if |S(vqi)| is less than l.

In post-anonymization, we ensure that the probability of
associating vqi with any of its significantly related sensitive
values vs ∈ S(vqi) is equal to 1/λvqi which is achieved by
solving the linear programming problem discussed in the
previous section. It first retrieves the structural variables
from T ∗ (Step 10 to 24). Each variable xi,j representing
the count of vqii in QIj is bounded by cj(vqii), variable
xi expressing 1

λvqii

× c(vqi) is determined based on the LP

solution. Note that xi is bounded by 1
l
× c(vqi).

In the second block of post-anonymization from Step 25 to
43, the algorithm determines the constraints coefficients ma-
trix. In Step 31, we store pj,k corresponding to Pr(ti, A

s =
vsk |QIj) and associated with variable xi,j of column cl in
the constraint coefficient matrix C. In order to guarantee
safe correlation, the algorithm verifies if vsk ∈ S(vqii) where
Pr(As = vsk , A

qi = vqii |T ∗) should be equal to 1/λvqi . In
this case, the algorithm stores a −1 coefficient for variable
xi ≤ a corresponding to vqii for column cl in C and the
error bound ε in B. On the other hand, if vsk /∈ S(vqii),
the auxiliary variable in this case is bounded by the actual
correlation of vsk and vqii as shown in Step 39.

The LP problem is solved in Step 44 such that for each
QI-group QIj , a number of cj(vqii)−xi,j is suppressed from
Step 45 to 47.

Framing this as an optimization problem raises concerns
of a minimality attack [26]. The safety constraint addresses
this: Because of the requirement that all exposed values have
equal number, the optimal suppression will always remove
the more numerous values. A minimality attack will thus as-
sume that the suppressed values are only the more common
values. This would be the (presumably known) correlations;
the probability of any given value being suppressed is based
on its probability given correlations. In other words, the
optimality of the suppression tells us that what we can es-
timate from the data is exactly what we would expect from
just knowing the correlation.

There is still an issue of minimality attacks on the underly-
ing anonymization method. This can be addressed through
using a non-deterministic approach in Step 9. This protects
against minimality attacks, as described in [3].

Let |Aqi|, |As| be the number of distinct quasi-identifying
and sensitive values in attributes Aqi and As respectively,
the time complexity of the sanitization algorithm can be
estimated by O(m · |Aqi| · |As|) where m is the number of
QI-groups in T ∗.

In addition, based on the linear programming problem
defined in 6.1, we can say that the sanitization algorithm
scales. In fact, ∀i, j, if xi,j and xi are equal to zero, we can
easily verify that all constraints are satisfied.

7. EXPERIMENTAL EVALUATION
We now present a set of experiments to evaluate the effi-

cacy of our approach. We implemented the correlation san-
itization code in Java based on the Anonymization Toolbox
[7], running on an Intel XEON 2.4GHz PC with 2GB RAM.

7.1 Evaluation Dataset
In keeping with much work on anonymization, we use

the Adult Dataset from UCI Machine Learning Repository
[6]. We treat Occupation as a sensitive attribute; other at-
tributes are presumed to be (quasi- or actual-) identifiers.

We used cdqi : Education 99K Occupation as a correlation
dependency for the adult dataset containing 32561 tuples.
We note that using such correlation dependency, an adver-
sary is able to identify the occupation of an individual in the
dataset according to education.1

In the next section, we present and discuss results ob-
tained from running our algorithm.

7.2 Evaluation Results
We conducted a set of measurements to evaluate the effi-

ciency of our correlation sanitization algorithm. These mea-
surements can be summarized as follows:

• Evaluating the correlation threat after anonymization,

• Determining anonymization cost represented by the
loss metric to capture the fraction of tuples that must
be (partially or totally) generalized, suppressed, or en-
crypted in order to satisfy the safety constraints, and

• Comparing anonymization cost in two different datasets
w.r.t several minimum and maximum confidence val-
ues (minConf and maxConf),

7.2.1 Correlation Evaluation
We evaluate here the remaining correlation in the dataset

after a näıve anonymization using the correlation sanitiza-
tion algorithm. In fact, we compare the outcome of anonymiza-
tion techniques, more precisely anatomy and correlation san-
itization, using a java-based implementation of Wong’s ap-
proach [27]. We use in this test l = 3, 4 and 5 for several
significant sensitive values as shown in Figure 4.

We note that in order to calculate Pr(As = vs, ti|QIj)
defined in the correlation sanitization algorithm, we used the
possible world model with actual correlations as shown in the
example of Section 5 for the following significant sensitive
values; Handlers cleaner, Craft repair, Exec managerial and
Adm clerical.

As expected, the correlation sanitization algorithm bounds
the correlations with confidence greater than 0.9 and lower
than 0.1 while others eventually remain representing the y-
axis in the Figures 4b, 4c and 4d expressing residual non-
violating correlations related to non-significant sensitive val-
ues that could not be exposed.

7.2.2 Anonymization Cost Evaluation
We evaluate our proposed correlation sanitization algo-

rithm to determine the number of tuples and values that
are suppressed to achieve the safety constraint. We use the
following loss metric to quantify such loss of data fidelity.

1We invite the reader to check out [27] for more details
on how to compute the global distribution and the privacy
breach value for each attribute value.

283

Definition 8 (Loss Metric (LM)). Let g(T ∗, v) be a func-
tion that returns the number of tuples where the value v is
suppressed in the anonymization T ∗ of T . The loss metric
(LM) for table T ∗ and value v is

LM(T, v) =
g(T ∗, v)

|T | (2)

Figure 2 shows an anonymized version of table prescrip-
tion where the grouping is safe. The loss metric for this
anonymization has a loss metric equal to
LM(Prescription, UnitedStates) = 1/3.

3 4 5

Anatomy 386 687 656

Correlation

Sanitizer
0 0 0

0

100

200

300

400

500

600

700

800

#
 C

o
rr

e
la

ti
o

n
s

Vs=Handlers_cleaner

(a) vs = Handlers cleaner

3 4 5

Anatomy 2567 2737 1904

Correlation

Sanitizer
5 0 0

0

500

1000

1500

2000

2500

3000

#
 C

o
rr

e
la

ti
o

n
s

Vs = Exec_managerial

(b) vs = Exec managerial

3 4 5

Anatomy 2661 2432 1636

Correlation

Sanitizer
248 19 1

0

500

1000

1500

2000

2500

3000

#
 C

o
rr

e
la

ti
o

n
s

Vs = Adm_clerical

(c) vs = Adm clerical

3 4 5

Anatomy 3196 2630 2471

Correlation

Sanitizer
199 7 0

0

500

1000

1500

2000

2500

3000

3500

#
 C

o
rr

e
la

ti
o

n
s

Vs = Craft_repair

(d) vs = Craft repair

Figure 4: Correlation Sanitization for l = 3, 4 and 5

We applied the algorithm on table T to ensure safe corre-
lation for values for cdqi : Education 99K Occupation with
minConf , maxConf and minSup equal to 0.1, 0.9 and 0.2.

Results in Figure 5 show explicitly the trade-off between

privacy and utility such that for the sensitive value Craft
repair and l = 5, LM reaches 56%. At some point, we

can see that the result can be dwarfed by the loss of util-
ity. We have not identified any inherent reason why this
must hold. Further research into more effective anonymiza-
tion algorithms may produce techniques that meet privacy
requirements while increasing the ability to learn from the
data.

7.2.3 Cost Evaluation in Different Datasets
We also compared the anonymization costs computed when

applying the correlation sanitization algorithm to the Adult
dataset and the Bank Marketing Dataset used in [19]. In the
latter, we treat Balance as a sensitive attribute while the
remaining attributes are presumed to be (quasi- or actual-
) identifiers. For computational reasons, we generalize the
values of attribute Balance to 21 intervals to reduce the total
number of distinct sensitive values. The results are shown in
Figure 6 for l = 2, 3 and 4 with 5 different values for minConf
and maxConf respectively represented in the X-axis.

Not surprisingly, the results are similar for both datasets
showing that the cost increases when anonymizing the cor-
relations. This is only to confirm as in [12] that there is a
trade-off to be made at the stake of utility in order to meet
strong privacy requirements. While this could be limiting
to generalization techniques, it remains debatable in our ap-
proach where exact data values are maintained2.

Handlers_cleaner

Adm_clerical

Exec_managerial
Craft_repair

0.00%

20.00%

40.00%

60.00%

3
4

5

Lo
ss

 M
e

tr
ic

 (
%

)

3 4 5

Handlers_cleaner 11.78% 15.84% 20.73%

Adm_clerical 23.20% 39.00% 50.26%

Exec_managerial 33.12% 41.36% 51.92%

Craft_repair 24.64% 39.27% 56.67%

Figure 5: Evaluating loss for Correlation Sanitization

8. CONCLUSION
In this paper, we presented new methods to cope with

defects of anonymization techniques resulting from unsafe
data correlation. We defined a new safety constraint to deal
with correlation between quasi-identifier and sensitive at-
tributes. We provided a sanitization algorithm to ensure
the safe correlation in a post-anonymization process. Fi-
nally, we showed, using a set of experiments, that there is
a trade-off to be made between privacy and utility. This
trade-off is quantified based on the number of tuples and
values to be anonymized using anonymization algorithms.

A related problem is coping with correlations in transac-
tional datasets where multiple tuples could be related to an

2Note that while suppression prevents privacy violations, it
does not necessarily prevent discovery of correlations. Pre-
liminary results on a decision tree learning approach cus-
tomized to anatomized data show comparable classification
accuracy to decision trees learned on the original data.

284

0.00%

10.00%

20.00%

30.00%

0.1_0.9
0.2_0.8

0.3_0.7
0.4_0.6

0.5_0.5

ℓ=2

Adult

Bank

(a) Bank vs. Adult dataset with l=2

30.00%

32.00%

34.00%

36.00%

38.00%

0.1_0.9
0.2_0.8

0.3_0.7
0.4_0.6

0.5_0.5

ℓ=3

Adult

Bank

(b) Bank vs. Adult dataset with l=3

44.00%

46.00%

48.00%

50.00%

52.00%

0.1_0.9
0.2_0.8

0.3_0.7
0.4_0.6

0.5_0.5

ℓ=4

Adult

Bank

(c) Bank vs. Adult dataset with l=4

Figure 6: Correlation Sanitization for l = 2, 3 and 4

individual [1]. Under such assumption, a straightforward
extension of safety constraint could not be achieved leading
eventually to more sophisticated privacy violation detection
and elimination methods. Achieving sufficient utility in such
environments may also need to consider alternative privacy
models such as LKC-privacy [18] or (k,m)-anonymity [24].

9. ACKNOWLEDGEMENTS
This publication was made possible by an NPRP grant

09-256-1-046 from the Qatar National Research Fund. The
statements made herein are solely the responsibility of the
author[s].

10. REFERENCES
[1] B. al Bouna, C. Clifton, and Q. M. Malluhi. Using safety

constraint for transactional dataset anonymization. In DBSec,
pages 164–178, 2013.

[2] D. J. Aldous. Exchangeability and related topics. In École d’été
de probabilités de Saint-Flour, XIII—1983, volume 1117 of
Lecture Notes in Math., pages 1–198. Springer, Berlin, 1985.

[3] G. Cormode, N. Li, T. Li, and D. Srivastava. Minimizing
minimality and maximizing utility: Analyzing method-based
attacks on anonymized data. In Proceedings of the VLDB
Endowment, volume 3, pages 1045–1056, 2010.

[4] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga,
S. Paraboschi, and P. Samarati. Extending loose associations to
multiple fragments. In Proceedings of the 27th International
Conference on Data and Applications Security and Privacy
XXVII, DBSec’13, pages 1–16, Berlin, Heidelberg, 2013.
Springer-Verlag.

[5] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In Proceedings of
the Third Conference on Theory of Cryptography, TCC’06,
pages 265–284, Berlin, Heidelberg, 2006. Springer-Verlag.

[6] A. Frank and A. Asuncion. UCI machine learning repository,
2010.

[7] M. Kantarcioglu, A. Inan, and M. Kuzu. Anonymization
toolbox, 2010.

[8] D. Kifer. Attacks on privacy and definetti’s theorem. In
SIGMOD Conference, pages 127–138, 2009.

[9] D. Kifer and A. Machanavajjhala. No free lunch in data
privacy. In SIGMOD Conference, pages 193–204, 2011.

[10] J. Lee and C. Clifton. Differential identifiability. In The 19th
ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 1041–1049, Beijing, China, Aug. 12-16 2012.

[11] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy
beyond k-anonymity and l-diversity. In ICDE, pages 106–115,
2007.

[12] N. Li, W. Qardaji, and D. Su. On sampling, anonymization,
and differential privacy or, k-anonymization meets differential
privacy. In Proceedings of the 7th ACM Symposium on
Information, Computer and Communications Security,
ASIACCS ’12, pages 32–33, New York, NY, USA, 2012. ACM.

[13] T. Li and N. Li. Injector: Mining background knowledge for
data anonymization. In ICDE, pages 446–455, 2008.

[14] T. Li, N. Li, J. Zhang, and I. Molloy. Slicing: A new approach
for privacy preserving data publishing. IEEE Trans. Knowl.
Data Eng., 24(3):561–574, 2012.

[15] G. Loukides, J. Liagouris, A. Gkoulalas-Divanis, and
M. Terrovitis. Disassociation for electronic health record
privacy. Journal of Biomedical Informatics, 50(0):46 – 61,
2014. Special Issue on Informatics Methods in Medical Privacy.

[16] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-diversity: Privacy beyond
k-anonymity. ACMTransactions on Knowledge Discovery
from Data (TKDD), 1(1), Mar. 2007.

[17] N. Mohammed, R. Chen, B. C. Fung, and P. S. Yu.
Differentially private data release for data mining. In
Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD
’11, pages 493–501, New York, NY, USA, 2011. ACM.

[18] N. Mohammed, B. C. M. Fung, P. C. K. Hung, and C. kwong
Lee. Anonymizing healthcare data: a case study on the blood
transfusion service. In KDD, pages 1285–1294, 2009.

[19] S. Moro, R. Laureano, and P. Cortez. Using data mining for
bank direct marketing: An application of the crisp-dm
methodology. In P. N. et al., editor, Proceedings of the
European Simulation and Modelling Conference - ESM’2011,
pages 117–121, Guimaraes, Portugal, Oct. 2011. EUROSIS.

[20] A. E. Nergiz and C. Clifton. Query processing in private data
outsourcing using anonymization. In The 25th IFIP WG 11.3
Conference on Data and Applications Security and Privacy
(DBSEC-11), Richmond, Virginia, July 11-13 2011.

[21] P. Ressel. De Finetti-type theorems: an analytical approach.
Ann. Probab., 13(3):898–922, 1985.

[22] P. Samarati. Protecting respondents’ identities in microdata
release. IEEE Trans. Knowl. Data Eng., 13(6):1010–1027,
2001.

[23] L. Sweeney. k-anonymity: a model for protecting privacy.
International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5):557–570, 2002.

[24] M. Terrovitis, N. Mamoulis, and P. Kalnis. Privacy-preserving
anonymization of set-valued data. Proceedings of the VLDB
Endowment, 1(1):115–125, Aug. 2008.

[25] M. Terrovitis, N. Mamoulis, J. Liagouris, and S. Skiadopoulos.
Privacy preservation by disassociation. Proc. VLDB Endow.,
5(10):944–955, June 2012.

[26] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei. Minimality
attack in privacy preserving data publishing. In VLDB, pages
543–554, 2007.

[27] R. C.-W. Wong, A. W.-C. Fu, K. Wang, P. S. Yu, and J. Pei.
Can the utility of anonymized data be used for privacy
breaches? ACM Trans. Knowl. Discov. Data, 5(3):16:1–16:24,
Aug. 2011.

[28] R. C.-W. Wong, J. Li, A. W.-C. Fu, and K. Wang. (alpha,
k)-anonymity: an enhanced k-anonymity model for privacy
preserving data publishing. In KDD, pages 754–759, 2006.

[29] X. Xiao and Y. Tao. Anatomy: Simple and effective privacy
preservation. In Proceedings of 32nd International Conference
on Very Large Data Bases (VLDB 2006), Seoul, Korea, Sept.
12-15 2006.

285

	Message from the Chairs
	Algorithms for MapReduce and Beyond (BeyondMR)
	Jedi: A Storage Manager for SIMD-aware, Worst-case Optimal Join Processing
	Bounds for Overlapping Interval Join on MapReduce
	Cuneiform: a Functional Language for Large Scale Scientific Data Analysis
	A Spark-based Workflow for Probabilistic Record Linkage of Healthcare Data
	Communication Cost in Parallel Query Processing
	Assignment of Different-Sized Inputs in MapReduce
	Lower Bounds on the Communication of XPath Queries in MapReduce
	Computing NFA Intersections in Map-Reduce

	Data (Co-)Processing on Heterogeneous Hardware (DAPHNE)
	Declarative query processing in imperative managed runtimes
	Local vs. Global Optimization: Operator Placement Strategies in Heterogeneous Environments
	Massively Parallel Analysis of Similarity Matrices on Heterogeneous Hardware

	Energy Data Management (EnDM)
	Enhancing Energy Awareness through the Analysis of Thermal Energy Consumption
	Hybrid Multidimensional Design for Heterogeneous Data Supported by Ontological Analysis: an Application Case in the Brazilian Electric System Operation
	Measuring and Comparing Energy Flexibilities
	What’s Wrong with my Solar Panels: a Data-Driven Approach
	What are the Most Important Research Challenges in Energy Data Management? (panel)

	Event Processing, Forecasting and Decision-Making in the Big Data Era (EPForDM)
	Challenges from Industrial Data Analytics
	Complex Event Processing under Uncertainty: A Short Survey
	Extending Event-Driven Architecture for Proactive Systems
	Towards Flexible Event Processing in Distributed Data Streams
	Latent Fault Detection With Unbalanced Workloads
	What You See Is What You Do: applying Ecological Interface Design to Visual Analytics

	Querying Graph Structured Data (GraphQ)
	Using Graph Traversal in Scientific Data Interpolation
	A Parallel Tree Pattern Query Processing Algorithm for Graph Databases using a GPGPU
	Implementing Flexible Operators for Regular Path Queries
	Beta-Algebra: Towards a Relational Algebra for Graph Analysis
	Graph Search of Software Models Using Multidimensional Scaling
	Graph Data Exchange with Target Constraints
	Topic Detection Using a Critical Term Graph on News-Related Tweets
	Graph Databases and Railway Operations Research Requirements

	Linked Web Data Management (LWDM)
	An Extensible Framework for Query Optimization on TripleT-based RDF Stores
	Towards an RDF validation language based on Regular Expression derivatives
	RDF Constraint Checking
	Peer-to-Peer Semantic Integration of Linked Data
	Interpreting Linked Data Search Results using Markov Logic
	TripleGeo-CSW: A Middleware for Exposing Geospatial Catalogue Services on the Semantic Web
	Frequent Subgraph Mining from Streams of Linked Graph Structured Data

	Privacy and Anonymity in the Information Society (PAIS)
	Transparency and Disclosure Risk in Data Privacy
	Privacy-Integrated Graph Clustering Through Differential Privacy
	Big Graph Privacy
	Opening up Government Data while Maintaining Data Privacy
	Private Computation of the Longest Increasing Subsequence in Data Streams
	Efficient Sanitization of Unsafe Data Correlations

