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Message from the Chairs

It is our pleasure to present to you, on behalf of the entire conference organizing committee and the
workshop organizers, the proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference,
held on March 27, 2015, in Brussels, Belgium.

The International Conference on Extending Database Technology (EDBT) and the International
Conference on Database Theory (ICDT) are two prestigious venues for the exchange of the latest
research results in data management and the theoretical foundations of database systems. While
having the same overarching goal of presenting cutting-edge results, ideas, techniques, and theoreti-
cal advances in databases, the workshops of the EDBT/ICDT joint conference are separately tasked
by focusing on emerging topics that complement the areas covered by the main technical program.

This year, our program includes workshops focusing on seven exciting topics:

o Algorithms for MapReduce and Beyond (BeyondMR), aiming to explore algorithms and models
computational for the specialized systems that have recently been developed to serve the needs
of “big data”,

e Data (Co-)Processing on Heterogeneous Hardware (DAPHNE), investigating challenges and
opportunities for data processing on existing and upcoming heterogeneous hardware architec-
tures, ranging from multi-core CPUs to massively parallel accelerators, heterogeneous mobile
phone processors to FPGAs,

e FEnergy Data Management (EnDM), focusing on conceptual and system architecture issues
related to the management of very large-scale data sets specifically in the context of the
energy domain,

e FEwvent Processing, Forecasting and Decision-Making in the Big Data Era (EPForDM), bringing
together computer scientists with interests in the fields of event processing, event forecasting
and event-driven decision-making to present recent innovations, find topics of common interest
and stimulate further development of new approaches to make sense of Big Data.

o Querying Graph Structured Data (Graph@)), which aims to encourage discussions on how to
efficiently and effectively support graph queries in different application domains and seeks
to provide the opportunity for cross-fertilization among teams working on graph-structured
data, with a particular focus on the querying issues.

o Linked Web Data Management (LWDM), aiming at stimulating participants to discuss about
data management issues related to the Linked Data and the relationships with other Semantic
Web technologies, and proposes a glance at new issues,

e Privacy and Anonymity in the Information Society (PAIS), which provides a platform for
researchers and practitioners from computer science and other fields that are interacting with
computer science in the privacy area, such as statistics, healthcare informatics, and law, to
discuss and present research challenges and advances in data privacy and anonymity research.
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This broad range of inciting workshops would not have been possible without the contributions
and the support which we have received. First of all, we would like to thank all workshop organizers
who have put together a highly interesting program as well as to all authors who submitted their
works to the workshops. We specially thank the authors of the accepted papers and the invited
speakers who presented their works in the workshops program. Needless to say, we are grateful to
the members of the workshop program committees and external reviewers who have helped to put
together a high-quality workshops program and we would like to acknowledge the conference orga-
nizers for their invaluable help at various stages of the process. We would also to thank the editors
of the CEUR Workshop Proceedings (CEUR-WS.org) who have agreed to host these proceedings
as well as ACM who are indexing them.

Sincerely,

Peter M. Fischer, Workshops Chair
Gustavo Alonso, EDBT Program Chair
Marcelo Arenas, ICDT Program Chair
Floris Geerts, General Chair
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Jedi: A Storage Manager for SIMD-aware, Worst-case
Optimal Join Processing

Christopher Ré,
Stanford University

ABSTRACT

This talk describes a new graph-pattern engine called Jedi.
Using a recent simplification of worst-case optimal join al-
gorithms due to Ngo et al., Jedi translates join queries into
a series of set intersection and union operations. Such set
operations are ideally suited to modern CPUs that provides
single-instruction, multiple data (SIMD) instructions. Using
these ideas, we demonstrate that Jedi outperforms special-
ized graph engines by over an order of magnitude and rela-
tional systems by over two orders of magnitude on standard
graph processing queries over real data.
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bilistic data management, Chris received the SIGMOD 2010
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first join algorithm with worst-case optimal running time,
which won the best paper at PODS 2012. He also helped
develop a framework for feature engineering that won the
best paper at SIGMOD 2014. In addition, work from his
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Cloudera’s Impala and products from Oracle, Pivotal, and
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2011, an Alfred P. Sloan Fellowship in 2013, and a Moore
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ABSTRACT

We consider the problem of 2-way interval join, where we want to
find all pairs of overlapping intervals, i.e., intervals that share at
least one point in common. We present lower and upper bounds
on the replication rate for this problem when it is implemented in
MapReduce. We study three cases, where intervals in the input
are: (i) unit-length and equally-spaced, (ii) variable-length and
equally-spaced, and (iii) equally-spaced with specific distribution
of the various lengths. Our algorithms offer intuition as how to
build algorithms for other cases, especially when we have some
statistical knowledge about the distribution of the lengths of the
intervals. E.g., if mostly large intervals interact with small intervals
and not within themselves, then we believe our techniques can be
extended to achieve better replication rate.

1. INTRODUCTION

MapReduce [3] is a programming model used for parallel
processing of large-scale data. A mapper is an application of a
(user-defined) map function to a single input and provides outputs
in the form of (key, value) pairs. A reducer is an application of
a (user-defined) reduce function to a single key and its associated
list of values. The reducer capacity — an important parameter —
is an upper bound on the sum of the total number of inputs that are
assigned to the reducer. We denote the capacity of a reducer by g,
and all the reducers have an identical capacity. Interval join using
MapReduce was introduced by Chawda et al. [2].

Example: Employees involved in the phases of a project.
We show an example to illustrate temporal relations (a relation
that stores data involving timestamps), intervals, and the

*Supported by the project Handling Uncertainty in Data Intensive
Applications, co-financed by the European Union (European Social
Fund) and Greek national funds, through the Operational Program
“Education and Lifelong Learning,” under the program THALES

TSupported by the Rita Altura Trust Chair in Computer Sciences,
Lynne and William Frankel Center for Computer Sciences, Israel
Science Foundation (grant 428/11), the Israeli Internet Association,
and the Ministry of Science and Technology, Infrastructure
Research in the Field of Advanced Computing and Cyber Security.

(©2015, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015,
Brussels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of
this paper is permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0
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Figure 1: Two temporal relations (Project(Phase, Duration) and
Employee( Empld, Name, Duration)) and their representation
on a time diagram.

need for interval join of overlapping intervals. Consider
two (temporal) relations (i) Project(Phase, Duration) that
includes several phases of a project with their durations, and
(ii)y Employee(Empld, Name, Duration) that shows data of
employees according to their involvement in the project’s phases
and their durations; see Figure 1. Here, the duration of a phase or
the duration of an employee’s involvement in a phase is given by an
interval. It is interesting to find all the employee that are involved
in a phase of the project. Formally, a query: find the name of all
employees who worked in a phase of the project; requires us to join
the relations to find all overlapping intervals of the relations. For
example, the answer to the query includes employees U with id ey,
W with id e3, X with id e4, and Y with id e5 are involved in RA
phase the project.
Problem Statement. We consider the problem of interval join of
overlapping intervals, where two relations X and Y are given. Each
relation contains binary tuples that represent intervals, i.e., each
tuple corresponds to an interval and contains the starting point and
ending point of this interval. Each pair of intervals {x;, y;), where
z; € X and y; € Y, V4, 7, such that intervals x; and y; share at
least one common time, corresponds to an output.

A MapReduce job can be described by a mapping schema.
A mapping schema, for this problem, assigns each interval to
a number of reducers (via the formation of key-value pairs) so
that (i) for each output (i.e., pair of overlapping intervals), there
exists a reducer that receives the corresponding pair of overlapping
intervals that participate in the computation of this output and (ii)
each reducer has a capacity (denoted by g hereon) that constraints
the total number of intervals assigned to this reducer. The
replication rate of a mapping schema is the average number of
key-value pairs for each interval and is a significant performance
parameter in a MapReduce job. We analyze here lower and upper
bounds on the replication rate for the problem of overlapping
intervals.

Our Contribution. We provide lower and almost matching



upper bounds for three cases: (i) unit-length and equally-spaced
(Section 3), (if) variable-length and equally-spaced, and (iii)
equally-spaced with specific distribution of the various lengths
(Section 4.1). In the third case, we assume that one set contains
only small intervals and the other set only large intervals. We
offer an algorithmic simple technique that takes advantage of this
knowledge to build an algorithm that improves the replication rate
of the second case above.

Related Work. Several types of join operations and a detailed
review of join algorithms for temporal relations are given in [4].
MapReduce-based 2-way and multiway interval join algorithms
of overlapping intervals without regarding the reducer capacity
are presented in [2]. However, the analysis of a lower bound on
replication of individual intervals is not presented; neither is an
analysis of the replication rate of the algorithms offered therein.

2. THE SETTING

A (time) interval, 4, is represented by a pair of times [T, T7], T <
T¢, where T? and T¢ show the starting-point and the ending-point
of the interval i, respectively. T¢ - T? is the length of the interval 7.
Two intervals, say interval ¢ and interval j are called overlapping
intervals if the intersection of both the interval is nonempty.
Mapping Schema. A mapping schema is an assignment of
overlapping intervals to some given reducers under the following
two constraints: (i) a reducer is assigned only ¢ intervals, and (ii)
for each output, we must assign the corresponding intervals to at
least one reducer in common.

Replication rate, r: The replication rate [1] is the average number
of key-value pairs created for an interval.

3. UNIT-LENGTH
EQUALLY-SPACED INTERVALS

Two relations X and Y, each of n unit-length intervals are given.
We assume that all the intervals have their starting-points in a
closed interval [0, k], i.e., there is no interval that starts before 0
or after k. Thus, the space between every two successive intervals
is % < 1 < k. In other words, the first interval starts at time 0, the
second interval starts at time %, the third interval starts at time 2

n °

AND

and the last n*" interval starts at time k — %; see Figure 2.

The output we want to produce is a set of all pairs of intervals
such that one interval overlaps with the other interval in the pair.
The problem is not really interesting if all these intervals exist on
the input. The real assumption is that some fraction of them exist,
and the reducer capacity q is selected so that the expected number
of inputs that actually arrive at a given reducer is within the desired
limits, e.g., no more than what can be processed in main memory.
In addition, the case of unit-length and equally-spaced interval is
not realistic, but is explored because it gives us an idea of what
optimal algorithms for more general and more realistic cases would
look like.

A solution to the problem of interval join of overlapping
unit-length and equally-spaced intervals is a mapping schema that
assigns each interval of the relation X with all its overlapping
intervals of the relation Y to at least one reducer in common,
without exceeding q. Since every two consecutive intervals have
an equal space (f), an interval z; € X overlaps with at least
2[1/2] +1 = 2|2] + 1 intervals of Y, where at least |2 ]
intervals of the relation Y have their ending-points between the
starting-point and the ending-point of x;, at least L%J intervals of
the relation Y have their starting-points between the starting-point
and the ending-point of x;, and an interval y; € Y that have
identical end-points as x; (this inequality does not true for the

0 0250500.75 1 12515 1.75 2 2.25
¥ 1
' B T
Figure 2: An example of unit-length and equally-spaced intervals,
where n = 9 and k = 2.25.

intervals that have starting-points before 1 and after £ — 1). In
this section, we will show a lower bound on the replication rate
for interval join of overlapping unit-length and equally-spaced
intervals. After that, we provide an algorithm, its correctness, and
an upper bound on the replication rate obtained by the algorithm.

Theorem 1 (Minimum replication rate) For two relations, X
and Y, of unit-length and equally-spaced intervals, the minimum
replication of an interval, for joining each interval of the relation
X with all its overlapping intervals of the relation Y, is (i) at

least 2 when 2n > q > QL%J + 2, and (ii) at least %L%J when

2<qg<?2 L%J + 2, where each relation holds n intervals, q is the
reducer capacity, and k denotes that the starting points of intervals
are in [0, k).

PROOF. First, we consider the case of 2n > ¢ > QL%J + 2.
When ¢ > 2n, a single reducer is enough to hold all the intervals
of both the relations, and hence, the reducer is able to provide
all output pairs (of interval join of overlapping intervals). When
2[ %] + 1 < ¢ < 2n, a single reducer may hold an interval i € X
and all its 2| % | + 1 corresponding overlapping intervals of the
relation Y, and such a reducer is enough to provide all-pairs of
the interval ¢ with its overlapping intervals. However, at the same
time, there must be at least a single interval, say interval j, that is
assigned to the same reducer where the interval ¢ is assigned, but
the interval j is not assigned with all its corresponding overlapping
intervals. Hence, the interval j must be assigned to at least one
more reducer to be coupled with all its 2L%J + 1 overlapping
intervals. Therefore, the minimum replication of an interval is at
least 2.

Now, we consider the case of 2 < ¢ < 2 L%J + 2. Consider
an interval ¢. Since the interval ¢ has at least 2 L%J + 1 overlapping
intervals, all these (QL%J + 2) intervals cannot be assigned to a
single reducer. The interval ¢ can share a reducer with at most ¢ — 1
(< 2 L%J + 1) intervals (of the relation Y'). In order to assign the
interval ¢ with all the remaining overlapping intervals, it is required
to assign subsets of the 2 L%J + 1 intervals, each subset with at most
q—1 intervals. Such an assignment results in at least 2 L%J +1/g—1
subsets of 2 L%J + 1 overlapping intervals. Thus, the interval ¢ must
be sent to atleast 2| % | +1/¢g — 1 > %L%J reducers. []

Algorithm 1. We propose an algorithm for interval join of
overlapping intervals, where two relations X and Y (each is of n
intervals of unit-length and equally-spaced) are inputs. Recall that
it is expected that not all possible intervals are present.

We divide the time-range from O to k into equal-sized partition
of length w = ﬁ, where ¢ = [%] + 2. Consider that
by partitioning of the time-range, we have P partitions. We now
arrange P reducers, one for each partition. We consider a partition
pi, 1 < i < P, and assign all the intervals of the relation X
that exist in the partition p; to the i*" reducer. Tn addition, we
assign all the intervals of the relation Y that have their starting or
ending-point in the partition p; to the i*" reducer.

Explaining pseudocode of Algorithm 1. A mapper takes an
interval z; € X (line 2) and produces (key, value) pairs (line 4).
The key represents a partition where the interval x; exists and the
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[ Cases [ Solutions | Theorems | Replication rate |
The lower bounds
Unit-length and 1 2 or g [%J
equally-spaced intervals
Variable-length and 3 2or % Ll’"%j
equally-spaced intervals
The upper bounds
Unit-length and | Algorithm 1 5 qT‘i 53
equally-spaced intervals
Variable length ) and | Algorithm 2 5 qTS_ 55
equally-spaced (big-small)
intervals
Variable length | Algorithms 3 and 4 5 qT%S 5
(different-length) and
equally-spaced intervals

Table 1: The bounds for interval joins of overlapping intervals.

Algorithm 1: 2-way interval join algorithm for overlapping
intervals of unit-length and equally-spaced intervals.

Inputs: X and Y': two relations, each is of n intervals.
Variables: k: A point on the timeline after that no interval can
have a starting-point; w: The length of a partition w = %,
where ¢ = {%] + 2; P: The total number of partitions and
reducers.
Partition the time-range into P partitions, each of length w
Function Map_for_X (z; € X) begin
z < count_partitions(z;)
for j < 1to z do emit(j, z;) ;
Function Map_for_Y (y; € Y) begin
sp < starting_points(y;), ep < ending_points(y;)
emit(sp, yi), emit{ep,y;)
Function reduce({key, list_of _values[])) begin
for j < 1to P do
Reducer i is having
(2, list_of _values[xa, b, - - -, Ya, Yo, - - -])
Perform interval join over overlapping intervals

Function count_partitions(z;) begin
L ¢ <— Count the total number of partitions that z; crosses
return ¢

total number of (key, value) pairs for the interval z; depends on
the total number of partitions that the interval x; crosses, by calling
function count_partitions() (lines 3 and 12). Also, a mapper
processes an interval y; € Y (line 5) and produces at most two
(key, value) pairs (line 7), where the first pair and the second pair
are corresponding to a partition where y; has the starting-point and
the ending-point, respectively (line 6). The value represents the
interval x; or y; itself. In the reduce phase, a reducer ¢ fetches all
the intervals of the relations X and Y that have a key 4 (line 10)
and provides the final outputs, line 11.

Theorem 2 (Algorithm correctness) Letc = [ 2] +2andlet q =
3w [%w + ¢, Algorithm I assigns each pair of overlapping intervals
to at least one reducer in common, where each relation, X and
Y, holds n intervals, q is the reducer capacity, k denotes that the
starting points of intervals are in [0, k], and w is the length of a
partition.

PROOF. Since every two successive intervals have % spacing,
an interval ¢ € X can overlap with at most 2| % | intervals of the
relation Y. First, we consider w < 1; in a partition, p of length

w, an interval ¢ can overlap with at most 2w (%] intervals of the

relation Y. Note that there are at most w(%] intervals (of the

relation X)) that have their starting-points after the starting-point

of the interval ¢ in the partition p, and we called these intervals
n

post-intervals of the interval 4. Also, there are at most ¢ = [ %]
intervals (of the relation X') that have either their ending-points
in the partition p or cross the partition p; we call these intervals
pre-intervals of the interval <.

Thus, forw < 1, q = 3[%] + ¢, we can assign the interval
i, post-intervals of ¢ that lie in the partition p, and pre-intervals of
¢ that lie in partition p at a single reducer. Such an assignment
occupies w [%] + ¢ — 1 capacity of the reducer. The remaining
capacity, 2w [%-‘ + 1, of the reducer is used to assign all 2w [%]
overlapping intervals of the interval 7 and an interval, i’ € Y
that have an identical starting-point as the interval ¢. (Note that
i’ is an overlapping interval for some of the pre-intervals and the
post-intervals of ¢.) Thus, the interval 7 is assigned to a reducer with
all its 2w [%W overlapping intervals of the relation Y. Further, the
interval ¢ will also be paired with all its remaining 2 [%W — 2w [%]
overlapping intervals at some reducers.

Now, we consider w > 1. In this case, for a partition p,
there must be an interval ¢ € X that can be assigned to a reducer
with all its 2[ %] overlapping intervals of the relation Y. Also,
there are at most [ 7] post-intervals and ¢ = [%] pre-intervals
(of the interval 7) that lie in the partition p. Thus, we can assign
interval ¢, post-intervals of ¢, and pre-intervals of ¢ at a single
reducer. In addition, an interval, i’ € Y such that i and 7’ have an
identical starting-point, is also assigned to the reducer. Therefore,
the interval i is paired with all 2[ 2] overlapping intervals (of the
relation Y') at the reducer. [

4. VARIABLE-LENGTH
EQUALLY-SPACED INTERVALS

Two relations X and Y, each of n intervals, are given, where
all intervals can have non-identical length but equally-spaced.
We assume that the first interval starts at time 0, and the space
between every two successive intervals is s < 1; see Figure 3,
where a relation X has 6 intervals, and a relation Y has also 6
intervals. A solution to the problem of interval join of overlapping
variable-length and equally-spaced intervals is a mapping schema
such that each pair of overlapping intervals, one from each of
the relations, is sent to at least one reducer in common without
exceeding q.

We consider two types of intervals, as follows: (i) big and
small intervals: one of the relation, say X, is holding most of the
intervals of length [ and the other relation, say Y, is holding most
of the intervals of length I’ > [; we call intervals of the relations
X and Y as small intervals and big intervals, respectively; and (ii)
different-length intervals: all the intervals of both the relations are
of different-length (we will consider the second case in Appendix).
In this section, we will provide lower bounds on the replication
rate for both types of intervals. We then provide algorithms for
interval join of overlapping intervals and show a upper bound on the
replication rate. Throughout this section, we will use the following
notations: lpna: the maximum length of an interval, l,:,: the
minimum length of an interval, and w: length of a partition.

AND

4.1 Big and small intervals
In this section, we consider a special case of variable-length and
equally-spaced intervals, where all of the intervals of two relations
X and Y have length lii, and lpqz, respectively, such that [y, <
lmaz; see Figure 3. We call the intervals of the relations X and Y
as small intervals and big intervals, respectively.

Since every two successive intervals have an equal space, s, an
interval x; € X of length [,,,;, can overlap with at least 2 V’MJ +1

s

intervals of the relation Y, where at least L@J intervals of the

s



Figure 3: An example of big and small length but equally-spaced
intervals, where n = 6 and s = 0.7.

relation Y have their ending- pornts between the starting and the
ending-points of x;, at least L "“”J intervals of the relation Y have
their starting-points between the starting and the ending-points of
xi, and an interval y; € Y has an identical starting-point as x;.
In addition, an interval x; € X of length [, can overlap with
at most ZLZ"””J + 1 intervals of the relation Y, where at most
| fmez | intervals of the relation Y have the ending-points between

the starting and the ending-points of x; and at most L maz J intervals
of the relation Y have the starting-points between the starting and
the ending-points of z;, and an interval y; € Y has an identical
starting-point as ;.

Theorem 3 (Minimum replication rate) For a relation X of n
small and equally-spaced intervals and a relation Y of n big and
equally-spaced intervals, the minimum replication of an interval,
for joining each interval of the relation X with all its overlappmg
intervals of the relation'Y', is (i) at least 2 when 2n > q > QL i J

and (ii) at least E|- "”"J when 2 < q < 2{ ””"J, where q is the

S
reducer capacity, s is the spacing between every two successive

intervals, and b,y is the length of the smallest interval.

PROOF. First we consider the case of 2n > ¢ > 2{ "”"J + 2.
When ¢ > 2n, all the 2n intervals of the relations X and Y
can be assigned to a srngle reducer, which is able to provide all
output pairs. When 2| | + 2 < ¢ < 2n, a single reducer
cannot hold all the 2n intervals of the relations X and Y. Hence,
at least a single interval, say j, that is not assigned with all its
2| min | 4+ 1 overlapping intervals must be assigned to another
reducer. Therefore, the minimum replication of an interval is at
least 2.

Now, we consider the case of 2 < ¢ < 2| ‘i | 4 2. Consider
an interval ¢ of length /,;,. Since the interval ¢ has at least
2| fmin | + 1 overlapping intervals, all these (2| i | + 2) intervals
cannot be assigned to a single reducer. The interval ¢ can share
a reducer with at most ¢ — 1 intervals of the relation Y. Hence,
in order to assign the interval 7 with all the remaining overlapping
intervals, it is required to assign subsets of overlapping intervals of
the relation Y such that each subset holds at most ¢ — 1 intervals.
Thus, the interval 7 must be sent to at least 2L i, J +1/g—1>

2| bmin
; | ‘22 | reducers. [

Algorithm 2. Algorithm 2 for interval join of overlapping intervals
of a relation X of small and equally-spaced intervals and a relation
Y of big and equally-spaced intervals works in a similar fashion
as Algorithm 1 performs the join operation. However, Algorithm
2 creates P partitions of the time-range (from O to ns), each of
length of length w = m, where ¢ = ["“”] + 2. Note
that in Algorithm 2, small intervals are assigned to several reducers
corresponding to their partitions that they cross, and large intervals
are assigned to only two reducers corresponding to their stating and
ending points’ partitions. The correctness of Algorithm 2 proves
that each pair of overlapping intervals is assigned to at least one
reducer in common, where ¢ = 3w( "”ﬂ + ¢, where ¢ = W"%-‘ +
2.

4.2 An upper bound for the general case
In this section, we show an algorithm and an upper bound on the
replication rate for the problem of interval join of variable-length

but equally-spaced intervals. We use the following notations: 7"
the length of time in which all intervals exist, i.e., all intervals
begin at some time greater than or equal to 0 and end by time T’
n: the number of intervals in each of the two relations, X and Y,
S the total length of all the intervals in one relation; and w: the
length of time corresponding to one reducer, i.e., we divide T into
% equal-length segments, each of length w.

Algorithm 3. Algorithm 3 works in a manner similar to Algorithms
1 and 2 do. But this algorithm does more than Algorithms 1 and
2. It finds all intervals that intersect, regardless of whether they
overlap, are superimposed, or any other relation. We divide the
time-range into % equal-sized partitions and arrange % reducers,
one for each partition. After that, we follow the same procedure as
followed in Algorithms 1 and 2.

Theorem 4 (Algorithm correctness) Algorithm 3 assigns each
pair of overlapping intervals to at least one reducer in common,
where ¢ = % each of the two relations, X and Y, holds n
intervals, q is the reducer capacity, S is the total length of all the
intervals in one relation, w is the length of a partition, and T is the
length of time in which all intervals exist.

PROOF. Following the algorithm, each of the n intervals of the
relation Y is sent to at most two reducers. Since there are %
reducers, a reducer receives T inputs from Y in average. Since
the length of all the 1ntervals of the relation X is S, the average
length of intervals is > S, Following the algorlthm an interval of X
issentto 14 Ti; reducers Since there are 3 reducers the reducer
receives (1 + -2)2% inputs from X in average. Thus, a reducer
receives at most 2% + M0 (] 4 £y = 3nWES jnpygs, which is
equal to the given reducer capacity. [

Theorem 5 (Replication rate) Forq = w and two relations,

X and Y, of variable-length but equally-spaced, the replication
rate of an interval, for joining each interval of the relation X with
all its overlapping intervals of the relation Y is —2— 2

qT—S 2
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APPENDIX

We consider a case of different-length intervals, i.e., all the n
intervals of each relation, X and Y, can have different-length. For
a relation X and a relation Y, each is of n different-length but
equally-spaced intervals, the minimum replication of an interval,
for joining each interval of the relation X with all its overlapping
intervals of the relation Y, is same as given in Theorem 3.

Algorithm 4. We propose an algorithm for interval join of
overlapping different-length and equally-spaced intervals, which
belong to two relations X and Y, each is of n intervals. Algorithm
4 works identically to Algorithms 1, 2, and 3. However, Algorithm
4 is different from Algorithms 1, 2 and 3, when it divides the
time-range from O to ns into P partitions, each of length w =
m, where ¢ = W’”%W + 2. The algorithm correctness shows
that Algorithm 4 assigns each pair of overlapping intervals to at
least one reducer in common, where ¢ = 3w[l7"7‘”] + ¢, where

¢=[mm] 42
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ABSTRACT

The need to analyze massive scientific data sets on the one
hand and the availability of distributed compute resources
with an increasing number of CPU cores on the other hand
have promoted the development of a variety of languages
and systems for parallel, distributed data analysis. Among
them are data-parallel query languages such as Pig Latin or
Spark as well as scientific workflow languages such as Swift
or Pegasus DAX. While data-parallel query languages focus
on the exploitation of data parallelism, scientific workflow
languages focus on the integration of external tools and li-
braries. However, a language that combines easy integration
of arbitrary tools, treated as black boxes, with the ability to
fully exploit data parallelism does not exist yet. Here, we
present Cuneiform, a novel language for large-scale scien-
tific data analysis. We highlight its functionality with re-
spect to a set of desirable features for such languages, in-
troduce its syntax and semantics by example, and show its
flexibility and conciseness with use cases, including a com-
plex real-life workflow from the area of genome research.
Cuneiform scripts are executed dynamically on the work-
flow execution platform Hi-WAY which is based on Hadoop
YARN. The language Cuneiform, including tool support for
programming, workflow visualization, debugging, logging,
and provenance-tracing, and the parallel execution engine
Hi-WAY are fully implemented.

1. INTRODUCTION

Over the recent years, data sets in typical scientific (and
commercial) areas have grown tremendeously. Also, the
complexity of analysis procedures has increased at es-
sentially the same pace. For instance, in the field of
bioinformatics the cost and speed at which data can
be produced is improving steadily [3, 18, 35]. This
makes possible entirely novel forms of scientific discov-
eries which require ever more complex analysis pipelines

@2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org <http://ceur-ws.org/> (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the Creative Com-
mons license CC-by-nc-nd 4.0

(e.g., personalized medicine, meta-genomics, genetics at
population scale) developed by tens of thousands of sci-
entists around the world. Analysis infrastructures have
to keep up with this development. In particular, they
must be able to scale to very large data sets, and they
must be extremely flexible in terms of integrating and
combining existing tools. Scientific workflow manage-
ment systems have been proposed to deal with the lat-
ter problem [12]. Scientific workflows are descriptions
of data processing steps and the flow of information
between them [10]. Most scientific workflow langua-
ges like Galaxy [17] or Taverna [21] allow the user to
create light-weight wrappers around existing tools and
libraries. In doing so, they avoid the necessity of reim-
plementing these tools to conform with the API of the
execution environment. However, many scientific work-
flow systems do not take advantage of splitting input
data into partitions to exploit data parallelism which
limits their scalability. In contrast, partitioning input
data to achieve data parallelism is a main advantage
of the execution environments underlying data-parallel
query languages like Pig Latin [16, 33] or Spark [45],
thus, addressing the former issue. However, these are
not designed to make native integration of external tools
easy. Instead, they require developers to create heavy
wrappers around existing tools as well as to perform
costly conversion of data from their native formats to
the system-specific data model, or they expect develop-
ers to reimplement all algorithms in their specific data-
parallel languages. While creating wrappers is labori-
ous, error-prone, and incurs runtime penalties, reim-
plementation is infeasible in areas like genomics where
new algorithms, new data types, and new applications
emerge essentially every day.

To the best of our knowledge, a language for large-
scale scientific computing that offers both light-weight
wrapping of foreign tools and high-level data-parallel
structures currently does not exist. Here, we present
Cuneiform, a language that aims at filling this gap. Cu-
neiform is a universal functional workflow language of-
fering all important features currently required in scien-



tific analysis like abstractions and a dynamic execution
model in a language with implicit state. Its main focus,
however, is (i) the ease with which external tools writ-
ten in any language can be integrated, and (ii) the sup-
port for a rich set of algorithmic skeletons (or second-
order functions) enabling automatic parallelization of
execution. Cuneiform is fully implemented and comes
with decent tool support, including executable prove-
nance traces, visualization of conceptual and physical
workflow plans, and debugging facilities. Cuneiform
workflows can be executed on the workflow execution
engine Hi-WAY which builds on Hadoop YARN. To-
gether, Cuneiform and Hi-WAY form a fully functional,
scalable, and easily extensible scientific workflow sys-
tem.

The remaining parts of this paper are structured in
the following way: Section 2 introduces characteristics
of workflow languages important for scientific analysis
that drove the design of Cuneiform. We introduce Cu-
neiform by example in Section 3. In Section 4 we explain
the implementation of two exemplary workflows in Cu-
neiform to highlight its versatility and expressive power.
Hi-WAY is briefly introduced in Section 5.! Related
work is presented in Section 6, and Section 7 concludes
the paper.

2. LANGUAGE CHARACTERIZATION

In this section we outline the language properties that
we consider important for parallel scientific analysis and
that drove the design of Cuneiform. We categorize dif-
ferent types of languages and discuss important lan-
guage features.

First, we can distinguish languages with implicit state
and explicit state [36]. Implicit state languages do not
have mutable memory. Purely functional languages like
Haskell or Miranda have implicit state. In these lan-
guages variables are only place-holders for immutable
expressions. In contrast, imperative languages like C or
Java and multi-paradigm languages like Scala or Lisp
have explicit state. In these languages variables can
change their values throughout the execution of a pro-
gram.

Scientific workflow languages are typically implicit
state languages while Spark [44, 45], FlumeJava [7], or
DryadLINQ [14, 43] inherit explicit state from their re-
spective host languages. There are arguments promot-
ing either of both approaches: Implicit state languages
profit from their ability to fully exploit task parallelism
because the order of tasks is constrained only by data
dependencies [6].? Explicit state is preferable if func-

!Note that the focus of this paper is on Cuneiform, while a
complete description of Hi-WAY will be published elsewhere.
2Taverna is an exception as it introduces control links to
explicitly constrain the task execution order in addition to
data dependencies.

tions need to learn from the past and change their be-
havior [36]. However, the introduction of explicit state
incurs additional constraints on the task execution or-
der, thereby, limiting the ability to automatically infer
parallelism.

In the following we outline the requirements towards
a scalable workflow specification language. By focusing
on this specific set of requirements, we define the scope
for the discussion of Cuneiform and for the compari-
son of different languages. This list of requirements is,
however, not comprehensive.

Abstractions In the Functional Programming (FP)
paradigm the term abstraction refers to an expres-
sion that binds one (or more) free variables in its
body. When a value is applied to the expression,
the first bound variable is replaced with the ap-
plied value. In scientific workflows, abstractions
are referred to as subworkflows where the subwork-
flow’s input ports represent the bound variables.
While abstractions are common in functional lan-
guages for distributed computation (like Eden [5,

]) or distributed multi-paradigm languages (like
Spark), some scientific workflow languages do not
allow for the definition of abstractions in the form
of subworkflows, e.g., Galaxy [17]. Other scientific
workflow languages like Pegasus DAX [13], KN-
IME [4], Swift, or Taverna do provide subwork-
flows. Pig Latin [16, 33] introduces abstractions
through its macro definition feature. Since ab-
stractions facilitate the reuse of reoccurring pat-
terns, they are an important feature of any high-
level programming model.

Conditionals A conditional is a control structure that
evaluates to its then-branch only if a condition
is true and otherwise evaluates to its else-branch.
Like abstractions, conditionals are common in func-
tional and multi-paradigm languages. Many sci-
entific workflow languages provide conditionals as
top-level language elements [2], e.g., KNIME, Tav-
erna, or Swift. However, in some other scientific
workflow languages they are omitted, e.g., Galaxy
or Pegasus DAX. Also, Pig Latin comes without
conditionals that would allow for alternate exe-
cution plans depending on a boolean condition.
Spark, on the other hand, inherits its conditionals
from Scala. Conditionals are important when a
workflow has to follow a different execution path
depending on a computational result that cannot
be anticipated a priori. For instance, consider a
scenario where two algorithms can be employed to
solve a problem. One algorithm performs compa-
rably better on noisy input data, while the other
performs better on clean data. If assessing the
quality of the data is part of the workflow then



the decision what algorithm to use has to be made
at execution time. Another example is the appli-
cation of an iterative learning algorithm. If the
exit condition of the algorithm is determined by
some convergence criterion, the number of itera-
tions cannot be anticipated a priori. This way,
conditionals introduce uncertainty in the concrete
workflow structure making it impossible to infer
a workflow’s invocation graph prior to execution.
Nevertheless, conditionals are an important lan-
guage feature.

Composite data types Composite data types are da-

ta structures composed of atomic data items. Lists,
sets, or bags are composite data types. In many
cases, languages with support for composite data
types also provide algorithmic skeletons (see be-
low) to process them, e.g., map, reduce, or cross
product. Swift, KNIME, and Taverna are scien-
tific workflow languages with support for compos-
ite data types. Other scientific workflow langua-
ges, like Galaxy or Pegasus DAX, support only
atomic data types. Data-parallel query languages,
like Spark or Pig Latin, however, provide exten-
sive support for composite data types. Note that
composite data types, like conditionals, introduce
uncertainty in the concrete workflow structure be-
fore its actual execution. For instance, if a task
outputs a list with an unknown size and each list
item is consumed by a proper subsequent task, the
number of such tasks is unknown prior to execu-
tion. This calls for a dynamic, adaptive approach
to task scheduling. Using composite data types is
a powerful and elegant way to specify data-parallel
programs.

Algorithmic skeletons Algorithmic skeletons are sec-

ond order functions that represent common pro-
gramming patterns. From the perspective of im-
perative languages, they can be seen as templates
that outline the coarse structure of a computa-
tion [8]. To exploit the capabilities of parallel, dis-
tributed execution environments, a language can
emphasize parallelizable algorithmic skeletons and
de-emphasize structures that could impose unnec-
essary constraints on the task execution order. For
instance, expressing the application of a function
to each element of a list as a for-loop with an exit
condition dismisses the parallel character of the
operation. Expressing the exact same operation
as a map, on the other hand, retains the paral-
lelism of the operation in its language represen-
tation. Some scientific workflow languages, like
Pegasus DAX or Galaxy, do not provide any algo-
rithmic skeletons. In contrast, Taverna, Swift, or
KNIME provide algorithmic skeletons in various

forms. For instance, Taverna implicitly iterates
lists if an unary task is applied to a list. Moreover,
Taverna provides cross- and dot product skeletons.
Swift provides the foreach and iterate-until skele-
tons. Algorithmic skeletons are particularly im-
portant in Scala. Thus, Spark exposes a number of
algorithmic skeletons to control distributed com-
putation [44]. Pig Latin uses algorithmic skele-
tons based on the SQL model of execution. Like
general abstractions, algorithmic skeletons facili-
tate the reuse of reoccurring algorithmic patterns.
Such patterns commonly appear in scientific data
analysis applications.

Foreign Function Interface (FFI) An FFI allows a

program to call routines written in a language other
than the host language. Many programming lan-
guages provide an FFI with the goal of accelerating
common subroutines by interfacing with machine-
oriented languages like C. Scientific workflow lan-
guages provide FFIs in the form of simple wrap-
pers for external tools. For instance, Swift and
Pegasus DAX allow language users to integrate
Bash scripts. Taverna provides Beanshell and R
services, and KNIME provides snippet-nodes for
Java, R, Perl, Python, Groovy, and Matlab. These
FFIs do not have the purpose to accelerate rou-
tines but to integrate existing tools and libraries
with minimum effort. In Pig Latin or Meteor [19],
User Defined Functions (UDFs) are provided in the
form of Java libraries which need to be wrapped
by an extra layer of code providing particular data
transformations from the tools native file formats
to the system’s data model and back. Similar
wrappers have to be implemented to use foreign
tools in Spark. The FFI is the language feature
that makes integration of external tools and li-
braries easy. It is the entry point for any piece
of software that has not been written in the host
language itself. A general and light-weight FFI
enables researchers to reuse their tools in a data-
parallel fashion without further adaptation or the
additional layer of complexity of a custom wrap-
per.

Universality Universal languages can express any com-

putable function. Most general purpose program-
ming languages are universal. Scientific workflow
languages including Swift, Galaxy, Taverna, and
Pegasus DAX are not universal. Additionally, some
data-parallel query languages like Pig Latin are
not universal. In contrast, Skywriting is an exam-
ple for a universal language for distributed compu-
tation [28]. Spark inherits the universality prop-
erty from Scala. Similarly, FlumeJava and Dryad-
LINQ inherit the universality property from their



respective host languages Java and C#. We do not
consider universality a requirement for a workflow
specification language. Nonetheless, it is a lan-
guage property worth investigating.

3. CUNEIFORM

In this section we present Cuneiform. We show that
it is simple to express data-parallel structures and to
integrate external tools in Cuneiform. Furthermore, we
demonstrate fundamental language features by example
and discuss how Cuneiform workflows are evaluated and
mapped to distributed compute resources for scheduling
and execution.

Cuneiform is a Functional Programming (FP) lan-
guage with implicit state. Cuneiform has in common
with scientific workflow languages its light-weight, ver-
satile FFT allowing users to directly use external tools or
libraries from scripting languages including Lisp, Mat-
lab, Octave, Perl, Python, and R. In principle, Cunei-
form can interface with any programming language that
has support a string and list data type. Cuneiform has
in common with data-parallel query languages that it
provides facilities to exploit data parallelism in the form
of composite data types and algorithmic skeletons to
process them. Cuneiform comes in the form of a uni-
versal FP language providing abstractions and condi-
tionals.

In the following, we introduce important concepts of
Cuneiform by example. We highlight the interplay of
Cuneiform’s features using more complex workflows in
Section 4, while Section 5 briefly sketches the Hi-WAY
execution environment.

3.1 Task definition and Foreign Function In-
terface

The deftask statement lets users define Cuneiform tasks,
which are the same as functions in FP languages. It
expects a task name and a prototype declaring the in-
put/output variables a task invocation consumes,/pro-
duces. A task definition can be either in Cuneiform or
in any of the supported foreign scripting languages. In
the following example we define a task greet in Bash
which consumes an input variable person and produces
an output variable out.

deftask greet( out : person )in bash *{
out="Hello $person"

Fx

The task defined in this listing can be applied by bind-
ing the parameter person to a value. In this example
we bind it to the string “Peter”.

greet (_person: 'Peter' );

The value of this expression is the string “Hello Peter”.
Cuneiform assumes foreign tasks to be side effect-free.
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Le., the result of a task should be deterministic and
depend only on the value of its arguments. However
Cuneiform has no way of enforcing this behavior.

3.2 Lists

Cuneiform has one built-in composite data type: the
list. There is no atomic data type. In the following
example, we define a variable friends to be a list of two
strings being “Jutta” and “Peter”.

"Jutta’
greet( person: friends );

friends = 'Peter’;

Applying the function greet to this list, evaluates to a
list with two string elements: “Hello Jutta” and “Hello
Peter”. Thus, the standard way of applying a task to a
single parameter, is to map this task to all elements in
the list.

To consume a list as a whole, we have to aggregate
the list. We can mark a parameter as aggregate by sur-
rounding it with angle brackets. The following listing
defines the task cat that takes a list of files and con-
catenates them.

deftask cat
(out( File ) : <inp( File )> )in bash *{
cat ${inpl@]} > $out

Fx

When a list is aggregated in a foreign task call, Cu-
neiform has to hand over this list as a whole. Thus,
Cuneiform loses control over the way data parallelism
is exploited in processing this list. Furthermore, the in-
terpreter has to defer the aggregating task unless the
whole list has been computed.

3.3 Parallel algorithmic skeletons

Cuneiform provides three basic algorithmic skeletons:
aggregate, n-ary cross product, and n-ary dot product.
A map can be viewed as any unary product. These ba-
sic skeletons are the building blocks to form arbitrarily
complex skeletons. If a task has multiple parameters,
the standard behaviour is to apply the function to the
cross product of all parameters.

Suppose there is a command line tool sim that takes
a temperature in °C and a pH value, performs some
simulation, and outputs the result in the specified file.
We could wrap and call this tool in the following way:

deftask simulate
( out( File ) : temp ph )in bash *{
sim -o $out -t $temp -p $ph

F*

-5 0 5 10 15 20 25 30;

temp =
=56789;

ph

simulate( temp: temp ph: ph );




This script performs a parameter sweep from —5 to
30°C and from pH value 5 to 9. Herein, each of the
8 temperature values is paired with each of the 5 pH
values resulting in 40 invocations of the sim tool. How
multiple lists are combined is generally determined by
the prototype of a task. The cross product is the default
algorithmic skeleton to combine task parameters.

Lastly, suppose we are given two equally long lists of
strings. We want to concatenate each string from the
first list with each string from the second list separated
by a white space character. A dot product between two
or more parameters is denoted in the task prototype by
surrounding them with square brackets. We choose to
perform the string concatenation in Python.

deftask join( c¢ :
at' '+b

[a b] )in python *{
c =

Fx

In the following listing we define the variables a and b
to be a pair of two-element lists and call the previously
defined task join on them. The result of this operation
is a two-element list with the members "Hello world"
and "Goodnight moon".

'Hello'
'world'

a =
b =

'Goodnight';
'moon"';

join( a: a b: b );

3.4 Execution semantics

Cuneiform workflow scripts are parsed and transformed
into a graph representation prior to interpretation. Vari-
ables are associated not with concrete values but with
uninterpreted expressions thereby constituting a call-
by-name evaluation strategy. Consequently, an expres-
sion is evaluated only if that expression is actually used
(lazy evaluation). This ensures, not only, that all com-
putation actually contributes to the result, but also,
since evaluation is deferred to the latest possible mo-
ment, that parallelization is performed on the level of
the whole workflow rather than the level of only subex-
pressions. Furthermore, instead of traversing the work-
flow graph during execution, Cuneiform performs work-
flow graph reduction. This means that subexpressions
in the workflow graph are continuously replaced with
what they evaluate until the result of the computation
remains. Accordingly, workflow execution is dynamic,
i.e., the order in which which tasks are evaluated is
determined only at runtime, a model which naturally
supports data dependent loops and conditions. This as-
pect discerns Cuneiform from many other systems that
require a fixed execution graph to be compiled from
the workflow specification. Herein, Cuneiform resem-
bles Functional Programming language interpretation.
When an expression involves external software, a ticket

11

‘corpus.tar'
untar
l Y
untar
wc pry
groupby T

Figure 1: Static call graph (left) and invocation
graph (right) for canonical word count with a
corpus of 2 text files.

is created and passed to the execution environment. Ex-
pressions depending on that ticket are deferred while
other expressions continue to be evaluated. A ticket,
encapsulating a concrete task on a concrete input, thus,
is the basic computational unit in Cuneiform. For any
given point in time, the set of available tickets may be
evaluated in any order. This order has to be detem-
ined by the scheduler of the runtime environment, tak-
ing into account the currently available resources. Each
time the execution environment finishes evaluation of
a ticket, the result is reported back to the Cuneiform
interpreter which then continues reduction of the re-
spective expression. When there are no more tickets to
evaluate and the expression cannot be further reduced,
execution stops and the workflow result is returned.

4. WORKFLOW EXAMPLES

In this section we present two example workflows in Cu-
neiform. The first, a canonical word count example, is
chosen for its simplicity and comparability with other
programming models (e.g., MapReduce [11]). The sec-
ond workflow performs variant calling on Next-Genera-
tion Sequencing data [34].

4.1 Canonical word count

The canoncical word count workflow consumes a corpus
of text files and, for each file, counts the occurrences of
words. It outputs a table that sums up the occurrences
of words in all files. The workflow consists of two steps.
In the first step, words are counted individually in each
file. In a second step, the occurrence tables are ag-
gregated by summing up the corresponding occurrence
counts. Figure 1 displays (a) the static call graph auto-
matically derived from the workflow script and (b) the
invocation graph that unfolds during workflow execu-



tion. Herein, the static call graph is a visualization
that takes into account only the unevaluated workflow
script. In contrast, the invocation graph is derived from
the workflow execution trace. Each yellow line in the
invocation graph stands for a single data item. Each
blue line stands for a task invocation. A task invoca-
tion depends only on its predecessors connected to it
via directed edges.

To specify the word count workflow we express both
tasks separately as R scripts. First, we use R’s table
function to extract word counts from a string:

deftask wc( csv( File ) : txt( File ) )in r *{
dtm <- table( scan( txt, what='character' ) )
df <- as.data.frame( dtm )
write.table( df, csv, col.names=FALSE,
row.names=FALSE )
Fx

Next, we use the function rbind to concatenate the list
of tables, generated in the previous step and aggregate
the resulting table using ddply which is part of the R
library plyer.

deftask groupby
( result( File ) : <csv( File )> )in r *{
library( plyr )
all <- NULL
for( 1 in csv )
all <- rbind( all,
read.table( i, header=FALSE ) )
x <- ddply( all, .( V1 ), summarize,
count=sum( V2 ) )
write.table( x, result, col.names=FALSE,
row.names=FALSE )
Fx

To extract all files in an archive holding the text corpus
to be analyzed we use the following task definition:

deftask untar
( <1list( File )>
tar xf $tar
list="tar tf $tar’
Fx

: tar( File ) )in bash *{

The workflow definition calls the tasks untar, we, and
groupby in order. Finally, we query the workflow result:

txt = untar( tar: 'corpus.tar' );
csv = we( txt: txt );

result = groupby( csv: csv );
result;

Called this way, wc is invoked once for each file. Each
invocation is processed in parallel by Hi-WAY. In con-
trast, the tasks groupby and wuntar each have a single
invocation.

Note that the two tasks, wc and groupby, implement a
complete word count, including file I/O, parsing, dictio-
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'hg38/hg38.tar'

gunzip gunzip bowtie2-build ‘

bowtie2-align
samtools-view
samtools-sort

samtools-faidx

samtools-mpileup

varscan ‘annodb/hg38db.tar'

annovar

'hg38'

Figure 2: Static call graph for variant calling

workflow

nary management, and two-phase counting. No other
tools are needed. Furthermore, we are free to choose
the programming language. For instance, in a differ-
ent implementation we might use Perl libraries or the
command line tool awk.

4.2 NGS variant calling

The second workflow demonstrates how variant calling
in the application domain of Next-Generation Sequenc-
ing (NGS) can be performed in Cuneiform. In this
workflow, a set of DNA sequence read files in FastQ
format is mapped against a reference genome. Subse-
quently, the alignments are sorted, a multiple pileup
is performed, and variants are called and annotated.
As typical for scientific analysis pipelines, all steps are
performed by external command line tools [34]. Fig-
ure 2 shows the static call graph and Figure 3 shows
the invocation graph for this workflow. In the following
discussion we omit all foreign task definitions.?

The input to the workflow is a reference genome, a
set of sample files, as well as an annotation database.
The workflow calls two nested subworkflows per-sample
and per-chromosome which reflect the data paralleliza-
tion scheme. Up to this point, we defined only variable
assignments which would not trigger any computation.
Thus, we need to query the variables fun and exonicfun
to define the workflow output.

3The full workflow can be downloaded from https://
github.com/joergen7/cuneiform/blob/master /cuneiform-
dist /src/main/cuneiform /variant-callll.cf



hg38-tar = 'hg38/hg38.tar';
fastql-gz =
'1000genomes/SRR062634_1.filt.fastq.gz'
'1000genomes/SRR062635_1.filt.fastq.gz"';
fastq2-gz =
'1000genomes/SRR062634_2.filt.fastq.gz'
'1000genomes/SRR062635_2.filt.fastq.gz';
db = 'annodb/hg38db.tar"';
deftask per-chromosome (
vcf( File )
: fa( File )
[fastql( File ) fastq2( File )] ) {

bt2idx = bowtie2-build( fa: fa );
fai = samtools-faidx( fa: fa );
sam = bowtie2-align(

idx: bt2idx

fastql: fastql

fastq2: fastq2 );
sam );

bam = samtools-view( sam:

sortedbam = samtools-sort( bam: bam );
mpileup = samtools-mpileup(
sortedbam:
fa:
fai:

sortedbam
fa
fai );

vef =

¥

varscan( mpileup: mpileup );

deftask per-sample(
fun exonicfun
: <fa( File )> db( File )
[fastql( File ) fastq2( File )] ) {

vcf = per-chromosome (
fa: fa
fastql: fastql
fastq2: fastq2 );

fun exonicfun = annovar(
vef: vcf
db: db
buildver: 'hg38' );

In this workflow parallelism is exploited along two di-
mensions: (i) Each self-contained region in the refer-
ence genome can be processed individually and (ii) each
sample can be processed individually. Consequently,
the workflow interpreter performs a cross-product of ref-
erence regions and samples. This leads to a high degree
of parallelism not only for read alignment, which is the
computationally most expensive task, but also for all
subsequent tasks. The cross product behavior needs no
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fa = untar( tar: hg38-tar );
fastql = gunzip( gz: fastql-gz );
fastq2 = gunzip( gz: fastq2-gz );

fun exonicfun = per-sample(

fa: fa
fastql: fastql
fastq2: fastq2
db: db );
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Figure 3: Invocation graph for variant calling
workflow

extra denotation in the task prototypes since it is the
default behavior. Thus, we can exploit data parallelism
in variant calling to execute the workflow in a parallel,
distributed compute environment while reusing estab-
lished tools.

S. EXECUTION PLATFORM

In this section we describe Hi-WAY, an execution en-
vironment for Cuneiform workflows. Cuneiform, as a
workflow specification language, depends on an execu-
tion environment that executes tasks in parallel. To
this end, the Cuneiform interpreter can either execute a
script on a single, multi-threaded machine (using a sim-
ple built-in greedy task scheduler) or feed a distributed
workflow engine. Currently, it interfaces only with Hi-
WAY, a novel scientific workflow management system
running on top of Apache Hadoop. Hi-WAY offers fea-
tures like adaptive scheduling and, this way, embraces
the dynamic nature of Cuneiform workflows. By us-
ing Hi-WAY as its distributed execution environment,
Cuneiform takes advantage of the Hadoop ecosystem,
including the distributed file system HDFS, multi-user
resource management, job monitoring, and failure re-
covery. Details on Hi-WAY will be published in a sep-
arate publication.

As a proof-of-concept, the variant calling workflow
described in Section 4.2 has been executed using Cu-
neiform and Hi-WAY on a Hadoop YARN cluster com-
prising 24 Xeon E52620 2GHz nodes each representing
one Hadoop YARN container with 24GB main mem-
ory and 24 logical cores at its disposal (as well as 2
additional master nodes). 12 Samples from the 1000
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genomes project [38] amounting to 10GB of compressed
input data have been processed. Figure 4 shows the
runtime behaviour for the variant calling workflow for
different cluster sizes. Within the limits of this experi-
ment the workflow shows a linear scaling behaviour with
an increasing number of available containers.

6. RELATED WORK

A number of scientific workflow systems have emerged,
some with a particular focus on large scale data analy-
sis. The exponential growth of data sets in many scien-
tific areas, such as Next-Generation Sequencing (NGS),
promotes scientific workflow systems that run in par-
allel and distributed environments, like e-Science Cen-
tral [20], Pegasus [13], or Swift [42]. Some scientific
workflow systems have been extended to this end, e.g.,
Kepler [41] or Galaxy [17]. These systems, however,
either do not take full advantage of partitioning input
data to exploit data parallelism or their integration with
data-parallel compute platforms is only partial.

The advent of data-parallel query languages enabled
researchers to exploit parallel, distributed compute in-
frastructures to analyze large-scale data sets. A num-
ber of dataflow systems with their according query lan-
guages have been proposed, most notably Pig [16, 33],
FlumeJava [7], Flink [1], DryadLINQ [14, 43|, and Spark
[44, 45]. Their aptitude for NGS problems has been as-
sessed [16] and they are the underlying execution envi-
ronments for a number of emerging workflow systems
like Nova [32] or Oozie [22]. However, the integration
of external tools in these systems can be achieved only
through wrapping or reimplementing the external tools.
The speed-up potential from data parallelism has been
exploited in many scientific application domains and
particularly in NGS: CloudBurst [37] is a read align-
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ment implementation for Hadoop. Crossbow [25] wraps
the read aligner Bowtie [24] to run on Hadoop. Both
Adam [27], an alignment processor, and Avocado [30],
a variant caller, are algorithm reimplementations for
Spark. The BioPig [29] project extends Pig Latin by
providing User Defined Functions (UDFs) that wrap
tools commonly used in NGS data analysis. These ap-
proaches show that it is feasible to integrate diverse sci-
entific algorithms in data-parallel programming models
either through wrapping or reimplementing. However,
in use cases in which the cost for tool reimplementation
is prohibitive (and in which the scientific community is
very reluctant to accept algorithm reimplementations
from outside their domain), the optimal programming
model is one that minimizes the effort to create wrap-
pers for existing tools.

Scientific workflow systems and data-parallel query
languages are linked to Functional Programming (FP).
Pig Latin maps execution plans to MapReduce, a pro-
gramming model inspired by the algorithmic skeletons
map and reduce which originate from FP [11, 15]. Spark
extends Scala, a multi-paradigm language that com-
bines concepts from Object Orientation and FP [31].
Furthermore, Scala provides a large number of algorith-
mic skeletons, of which Spark uses a subset including
map, reduceByKey, and crossProduct to derive paral-
lelism and distribute computation [44]. The scientific
workflow language Taverna has its semantics defined in
functional terms [40] and Kelly et al. [23] showed that
scientific workflow languages can be considered a sub-
set of FP. A number of FP languages are designed for
parallel, distributed environments. For instance, Sky-
writing is a universal functional scripting language for

distributed computation [28]. GUM [39] is a parallel
implementation of Haskell and Eden [5, 26] extends
Haskell with parallel algorithmic skeletons. However,

in many parallel, distributed FP languages the user has
to take control over the way parallelism is exploited,
how processes are created, or how computation is dis-
tributed.

7. CONCLUSION

We presented Cuneiform?, a functional workflow lan-
guage for parallel and distributed execution that facili-
tates the reuse of existing tools and libraries. Cuneiform
can process large-scale data sets by providing data par-
allel algorithmic skeletons operating on lists. Further-
more, it can integrate foreign tools in a straightforward
way by providing a versatile Foreign Function Interface
and offers many of the high-level language features com-
monly encountered in Functional Programming langua-
ges. We have contrasted the advantages and disadvan-
tages of current scientific workflow languages and data-
parallel query languages and discussed their relation to

“https://github.com/joergen7/cuneiform



Functional Programming. We demonstrated the ver-
satility and power of Cuneiform using two exemplary
workflows. In its current implementation Cuneiform
can be executed locally on a single machine or using
Hi-WAY?, a scientific workflow execution environment
running on Hadoop YARN. In future work, we intend
to integrate Cuneiform with scientific computing plat-
forms other than Hadoop like, e.g, HT Condor [9] which
enjoys wide adoption. Furthermore, we intend to create
compilers that consume Pegasus or Galaxy workflows
and generate Cuneiform scripts. This way, researchers
may run their existing Pegasus and Galaxy workflows
in any data-parallel execution environment supporting
Cuneiform without extra effort.
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ABSTRACT

Several areas, such as science, economics, finance, busi-
ness intelligence, health, and others are exploring big data
as a way to produce new information, make better decisions,
and move forward their related technologies and systems.
Specifically in health, big data represents a challenging pro-
blem due to the poor quality of data in some circumstances
and the need to retrieve, aggregate, and process a huge amount
of data from disparate databases. In this work, we focused
on Brazilian Public Health System and on large databases
from Ministry of Health and Ministry of Social Development
and Hunger Alleviation. We present our Spark-based ap-
proach to data processing and probabilistic record linkage of
such databases in order to produce very accurate data marts.
These data marts are used by statisticians and epidemiolo-
gists to assess the effectiveness of conditional cash transfer
programs to poor families in respect with the occurrence of
some diseases (tuberculosis, leprosy, and AIDS). The case
study we made as a proof-of-concept presents a good per-
formance with accurate results. For comparison, we also
discuss an OpenMP-based implementation.

Categories and Subject Descriptors

J.1 [Administrative data processing]: Government;
D.1.3 [Concurrent Programming)]: Distributed pro-
gramming.
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1. INTRODUCTION

The term big data [18] was coined to represent the
large volume of data produced daily by thousands of de-
vices, users, and computer systems. These data should
be stored in secure, scalable infrastructures in order
to be processed using knowledge discovery and analy-
tics tools. Today, there is a significant number of big
data applications covering several areas, such as finance,
entertainment, e-government, science, health etc. All
these applications require performance, reliability, and
accurate results from their underlying execution envi-
ronments, as well as specific requisites depending on
each context.

Healthcare data come from different information sys-
tems, disparate databases, and potential applications
that need to be combined for diverse purposes, inclu-
ding the aggregation of medical and hospital services,
analysis of patients’ profile and diseases, assessment of
public health policies, monitoring of drug interventions,
and so on.

Our work focuses on the Brazilian Public Health Sys-
tem [23], specifically on supporting the assessment of
data quality, pre-processing, and linkage of databases
provided by the Ministry of Health and the Ministry of
Social Development and Hunger Alleviation. The data
marts produced by the linkage are used by statisticians
and epidemiologists in order to assess the effectiveness
of conditional cash transfer programs for poor families
in relation to some diseases, such as leprosy, tuberculo-
sis, and AIDS.

We present a four-stage workflow designed to pro-
vide the functionalities mentioned above. The second
(pre-processing) and third (linkage) stages of our work-
flow are very data-intensive and time-consuming tasks,
so we based our implementation in the Spark scalable
execution engine [41] in order to produce very accu-



rate results in a short period of time. The first stage
(assessment of data quality) is made through SPSS [17].
The last stage is dedicated to the evaluation of the data
marts produced by our pre-processing and linkage algo-
rithms and is realized by statisticians and epidemiolo-
gists. Once approved, they load these data marts into
SPSS and Stata [6] in order to perform some specific
case studies.

We evaluate our workflow by linking three databases:
CadUnico (social and economic data of poor families
— approximately 76 million records), PBF (payments
from “Bolsa Familia” program), and SIH (hospitaliza-
tion data from the Brazilian Public Health System —
56,059 records). We discuss the results obtained with
our Spark-based implementation and also a comparison
with an OpenMP-based implementation.

This paper is structured as follows: Section 2 presents
the Brazilian Healthcare System to contextualize our
work. In Section 3 we discuss some related works spe-
cially focusing on record linkage. Our proposed work-
flow is detailed in Section 4 and its Spark-based im-
plementation is discussed in Section 5. We present re-
sults obtained from our case study, both in Spark and
OpenMP, in Section 6. Some concluding remarks are
presented in Section 7.

2. BRAZILIAN HEALTHCARE SYSTEM

As a strategy to combat poverty, the Brazilian go-
vernment implemented cash transfer policies for poor
families, in order to facilitate their access to educa-
tion and healthcare, as well as to offer them allowances
for consuming goods and services. In particular, the
“Bolsa Familia” Program [25] was created under the
management of the Ministry of Social Development and
Hunger Alleviation to support poor families and pro-
mote their social inclusion through income transfers.

Socioeconomic information about poor families are

kept in a database called CadastroUnico (CadUnico) [24].

All families with a monthly income below half the mi-
nimum wage per person or a total monthly income of
less than three minimum wages can be enrolled in the
database. This registration must be renewed every two
years in order to keep updated data. All social pro-
grams from the federal government should select their
recipients based on data contained in CadUnico.

In order to observe the influence of certain social in-
terventions and their positive (or negative) effects for
their beneficiaries, rigourous impact evaluations are re-
quired. Individual cohorts [19] have emerged as the
primary method for this purpose, supporting the pro-
cess of improving public policies and social programs
in order to qualify the transparency of public invest-
ments. It is expected that these transfer programs can
positively contribute to the health and the education of
beneficiary families, but studies capable to prove this

18

are highly desirable and necessary for the evaluation of
public policies.

From an epidemiological standpoint, tuberculosis and
leprosy are major public health problems in Brazil, with
poverty as one of their main drivers. In addition, there
is a broad consensus on the bidirectional relationship
between these infectious diseases and poverty: one can
lead to another. It is therefore clear that to reduce
morbidity and mortality from poverty-related diseases
is necessary to plan interventions that address their so-
cial determinants.

This work pertains to a project involving the longi-
tudinal study of CadUnico, PBF (“Bolsa Familia” pro-
gram), and three databases from the Brazilian Public
Health System (SUS): SIH (hospitalization), SINAN
(notifiable diseases), and SIM (mortality). Table 1 shows
these databases with their years of coverage to which we
have access. The main goal is to relate individuals in
the existing SUS databases with their counterparts in
the PBF and CadUnico, through a process called lin-
kage (or pairing). After linkage, the resulting databases
(data marts) are used by statisticians and epidemiolo-
gists to analyze the incidence of some diseases in fami-
lies benefiting from “Bolsa Familia”’ compared to non-
beneficiary families.

Databases ‘ Years

1998 to 2011
2000 to 2010
2000 to 2010
2007 to 2013
2007 to 2013

STH (hospitalization)

SINAN (notifications)

SIM (mortality)

CadUnico (socieconomic data)
PBF (payments)

Table 1: Brazilan governmental databases.

The major obstacle for linkage is the absence of com-
mon identifiers (key attributes) in all databases, which
requires the use of probabilistic linkage algorithms, re-
sulting in a significant number of comparisons and in a
large execution time. In addition, handling these data-
bases requires the use of secrecy and confidentiality poli-
cies for personal information, especially those related to
health data. Therefore, techniques for data transforma-
tion and anonymisation should be employed before the
linkage stage.

The longitudinal study requires the pairing of all avai-
lable versions for certain databases within the period
to be analyzed. In the scope of our project, we must
link versions of CadUnico, PBF, and SIH between 2007
and 2011 to allow a retrospective analysis of the inci-
dence of diseases in poor families and, thereafter, draw
up prospects for the coming years. In this scenario, the
amount of data to be analyzed, processed, and anonymi-
sed tends to increase significantly.



3. CHALLENGES AND RELATED WORK

Record linkage is not a new problem and its classic
method was first proposed by [13]. This approach is the
basis for most of the models developed later [5]. The
basic idea is to use a set of common attributes present in
records from different data sources in order to identify
true matches.

In [32], probabilistic and deterministic record linkage
methods were used to evaluate the impact of the ”Bolsa
Familia” program in education, using some informa-
tion also contained in CadUnico. They have proven
the importance of database relationships as a tool ca-
pable of allowing an integrated view of the information
available from various sources, ensuring efficient compa-
rative analysis and increasing the quality and quantity
of information required for a search. In public health,
many studies use matching records to evaluate impacts
or to find patterns [27].

In [11], the authors used probabilistic methods to
match records from two SUS databases — SIH (hos-
pitalization) and SIM (mortality) — to identify deaths
from ill-defined causes. They developed routines for
standardizing variables, blocking based on identification
keys, comparison algorithms, and calculation of simila-
rity scores, They also used RecLink [4] to check du-
bious records for reclassification (as true pairs or not)
purposes.

A crucial point is that as the size of databases in-
creases, and therefore the number of comparisons re-
quired for record matching, traditional tools for data
processing and analysis may not be able to run such
applications in a timely manner. In the midst of se-
veral studies on software for record linkage, there are
few that discuss issues related to the parallelization of
processes and data distribution. In [33], some ways to
parallelize matching algorithms are discussed, showing
good scalability results.

MapReduce paradigm and following technologies have
contributed to advance the big data scenario. Some
methods to adapt the MapReduce model to deal with
record matching are discussed in [16]. Despite these ef-
forts, it is still difficult to find references addressing the
problem of matching records using the advantages of
MapReduce or similar tools.

Computation techniques related to the preparation
steps for record linkage, such as data cleansing and
standardization, are still few discussed in the literature.
In [31], the authors claim that the cleansing process can
represent 75% of the total linkage effort. In fact, prepa-
ration steps can directly affect the accuracy of results.

It is possible to observe that management and some
aspects of service provision in this context are not yet
sufficiently explored [22]. Regarding databases under
coordination of public sectors, as CadUnico and SUS
databases, we can observe a high sensitivity and strict
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requirements for processing and storing such databases
in private clusters. Also, there is a lack, mainly in
Brazil, of probabilistic matching references over large
databases that use the benefits of big data tools.

4. PROPOSED WORKFLOW

Our workflow is divided in four stages, further dis-
cussed in the following sections. The first stage cor-
responds to the analysis of data quality, aiming at to
identify, for each database, the attributes more suit-
able for the probabilistic record linkage process. The
set of attributes is chosen based on metrics such as mis-
sing values or misfiled records. This step is performed
with the support of SPSS software. For security and
privacy reasons, the ministries do not allow direct ac-
cess to their databases; instead, they give us flat files
extracted from the databases listed in Table 1. Two
people of our team are the ones that manipulate these
data based on a strict confidentiality term.

The next stage is pre-processing, being responsible
for applying data transformation and cleansing routines
in these attributes. We based our implementation on
ETL (extract, transform, and load) techniques com-
monly found in data warehouse tools for standardizing
names, filling null/missing fields with default values,
and removing duplicate records.

An important step within this stage regards data pri-
vacy. We apply a technique based on Bloom filters [34]
to anonymize relevant fields prior to the record lin-
kage stage. As stated before, pre-processing is a time-
consuming, data-intensive stage, so we use Spark to
perform data transformation, cleansing, anonymization,
and blocking.

The record linkage stage applies deterministic and
probabilistic algorithms to perform pairing. Between
CadUnico and PBF databases, we can use a determi-
nistic algorithm for record linkage based on a common
attribute called NIS (social number ID). All beneficiaries
of PBF are necessarily registered in CadUnico and there-
fore have this attribute. Linkage between CadUnico
and any SUS database (SIH, SINAN, and SIM) must
be done through probabilistic algorithms, since there
are no common attributes to all databases.

Within SUS databases, the occurrence of incomplete
records is quite high, since many records correspond to
children or homeless people, which do not always have
identification documents or are not directly registered
in CadUnico. In such cases, we try to find a record
of an immediate family member, when available. Ano-
ther very common problem regards incomplete or ab-
breviated names, which difficults pairing. Again, we
use Spark to execute our linkage algorithms in a timely
manner and produce the resulting data marts (files with
matched and non-matched records).

The last stage is performed by statisticians and epi-



demiologists with the support of statistical tools (Stata
and SPSS). The goal is to evaluate the accuracy of the
data marts produced by the linkage algorithms, based
on data samples from the databases involved. This step
is extremely important to validate our implementation
and provide some feedback for corrections and adjust-
ments in our workflow.

In the following sections, we discuss a case study on
the linkage of CadUnico and SIH databases made as
a proof-of-concept of our workflow. The goal was to
generate a data mart covering such databases that is
used to analyze the incidence of tuberculosis in PBF
beneficiaries and non-beneficiaries families. We chose
the databases of the year 2011, respectively with ap-
proximately 76 million records and 56,059 records.

4.1 Data Quality Assessment

Attributes suitable for probabilistic matching should
be chosen taking into account their coexistence in all
databases, their discriminatory capacity, and their qua-
lity in terms of filling requirements and constraints. The
occurrence of null or missing values is the major pro-
blem considered at this stage. This problem can occur
by omission or negligence of the operator responsible for
filling out forms or by the faulty implementation of the
involved information systems. The analysis of missing
values is extremely important, because using a variable
that has a high incidence of empty fields brings little or
no benefit to the matching process.

In our case study, we analyzed the occurrence of null
and missing values in the CadUnico and SIH databases.
Tables 2 and 3 show the results obtained for the most
significant attributes in each database. Based on the re-
sults, we chose three attributes: NOME (person’s or pa-
tient’s name), NASC (date of birtyp), and MUNIC_RES
(city of residence).

Attribute | Description | Missing (%)
NIS Social number ID 0,7
NOME Person’s name 0
DT_NASC Date of birth 0
MUNIC_RES City of residence 55,4
SEXO Gender 0
RG General ID 48,7
CPF Individual taxpayer 1D 52,1
Table 2: CadUnico — missing values.

4.2 Data Pre-processing

Datamarts produced in our case study are composed
of linked information that reflect the pairing process
output. They should contain information about people
hospitalized in 2011 with a primary diagnosis of tuber-
culosis and their socioeconomic data, if registered in
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Attribute | Description | Missing (%)

MUNIC_RES City of residence 0
NASC Date of birth 0
SEXO Gender 0
NOME Patient’s name 0
LOGR Street name 0,9

NUM_LOGR House number 16,4

COMPL_LOGR | Address’ complement 80,7

Table 3: SIH — missing values.

Cadljnico, relevant for epidemiological studies.

To facilitate the linkage and increase accuracy, the va-
lues of NOME attribute are transformed to uppercase
and accents (and possible pontuaction) are removed,
so as not to influence the similarity degree between
two records. Attributes with null or missing values are
treated through a simple substitution to predefined va-
lues. This ensures all records are in the same format
and contain the same information pattern.

A fundamental concern in our work is confidentiality.
We must use privacy policies to guarantee that per-
sonal data is protected throughout the workflow. Lin-
kage routines should not be able to identify any person
in any database. To accomplish this, we use Bloom
filters for record anonymization. Bloom filter is an ap-
proach that allows to check if an element belongs to a
set. An advantage of this method is that it does not
allow false negatives: if a record belongs to the set, the
method always returns true. Furthermore, false posi-
tives (two records that do not represent the same en-
tity) are allowed. This could be advantageous if the
goal is to include records containing small differences in
the matched pairs.

The construction of Bloom filters is described in [34]
and involves a vector initially populated with 0’s. De-
pending on each attribute, specific positions of this vec-
tor, determined by hash functions, are replaced with 1’s.
Our approach considers an array of 110 positions that
maps each bigram (two characters) of the attributes in-
volved. Each attribute affects a fraction of the vector:
NOME comprises the first 50 bits, NASC comprises the
following 40 bits, and MUNIC_RES the last 20 bits, as
shown in Figure 1.

Fractions were chosen considering two aspects: the
ideal size a filter must have in order to represent an
attribute with a minimum probability error and the in-
fluence (or “weight”) each field has in the matching de-
cision. Accuracy depends on the filter size (and thus the
weight of each attribute), the number of hash functions,
and the number of elements added to the filter [36].
The smaller the filter, more errors and false positives
are expected because different records can generate very
similar vectors with 1’s coincidentally mapped in same



Maria dos Santos Oliveira

1953-10-23 Salvador

11100100111101111110011111100001110000010101100110 |1010100100100000000010110000010000010000 I 100000000101001001010011000010 ‘

Figure 1: Bit vector generated by Bloom filter.

positions. So, there is a classic tradeoff between size
and performance: the vector must be large enough to
increase accuracy and, at the same time, small enough
to not overload the similarity tests.

For testing our Bloom filter, we constructed three
controlled scenarios and use two databases with 50 and
20 records, respectively. The idea was to determine the
best vector size and the distribution (number of bits
for each field) that provides the best accuracy. Ta-
ble 4 shows our simulation results. In scenario 3, we
simulated filling errors. We can observe that when one
attribute has similarity index lower than the expected
value, pairing can be saved by the other two attributes
that have satisfactory similarity index.

Among all distributions that provide correct results,
the distribution with 50, 40, and 20 bits is better for
all scenarios. In this sense, the attribute MUNIC_RES
must have less influence than NOME because the pro-
bability that the same value for NOME in different
databases refers to the same person is more significant
than two identical values for city.

Another important task performed during the pre-
processing stage is blocking construction. The record
linkage process requires all records from both databases
be compared in order to determine whether they match
or not. So, it demands M z N comparisons, being M
and N the sizes of the databases. However, most of the
comparisons will result in non-matched records.

In our case study, the number of comparisons between
CadUnico (approximately 76 million records) and STH
(56,059 records) could be quite prohibitively, so we de-
cide to group records in each database according to a
similarity criterion. We chose the MUNIC_RES (city
of residence) attribute as blocking key, so that only in-
dividuals who live in the same city will be compared.
As blocking strategies are a difficult problem, we are
also considering another approaches such as adaptative
blocking [2], predicates, and phonetic codes (such as
Soundex [38], Metaphone [30], and BuscaBR [7]).

4.3 Calculation of Similarity

The decision on pairing two records depends on the
analysis of their similarity factor. In this work, we use
the Sgrensen index [35], also known as Dice [9], to cal-
culate the similarity based on bigrams (two characters)
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extracted from the bit vector generated by the Bloom
filter.

Given a pair of records similar to those shown in Fig-
ure 1, the similarity test runs through every bit from
both vectors in order to find three metrics: h — re-
presenting the count of 1’s in the same position in both
vectors, a and b — representing the total of 1’s in the
first and second vectors, respectively, regardless their
positions. With these values, it is possible to calculate
the Sgrensen index using the following formula:

Dab = 2h / (|a| + |b])

Perfect result expects the number of 1’s contained in
the first vector added to the second vector be exactly
equal to twice the number of common 1’s. When this
happens, we have a result equal to 1 (great accuracy).
If two records turn out different, the value of h decreases
and the ratio starts to be smaller than 1.

We use a product by 10,000 to represent the Dice
coefficient, therefore values ranging from 0 to 10,000
are used to represent the similarity degree between two
vectors. Records are inserted in three distinct groups, as
depicted in Figure 2. Every pair whose similarity degree
is less than 9,000 is considered non-matched. Values
between 9,000 and 9,600 are included in an indecison
group for manual analysis, whereas values above 9,600
are considered true matches.

I:‘ True pairs

0600 Possible pairs -
requires validation
2000 VA False pairs

Figure 2: Similarity degrees for Dice calculation.

4.4 Record Linkage

Practical applications of record linkage exist in se-
veral areas. For the impact assessment of strategies, for
example, it is often necessary to use individual search
methods to prove if a specific situation happens in the



Scenario 1 Scenario 2 Scenario 3
Total size No matched Five perfectly matched | Expected five matched records
and weight records expected records expected with one incorrect character
distribution | Expected | Pairings | Expected Pairings Expected Pairings
pairings found pairings found pairings found
20x20x20 0 310 5 347 5 348
30x30x30 0 29 5 41 5 42
40x40x40 0 11 5 17 5 16
50x50x50 0 0 5 5 5 5
50x50x40 0 0 5 5 5 5
50x40x40 0 0 5 5 5 5
50x40x30 0 0 5 5 5 5
50x30x30 0 2 5 6 5 6
50x40x20 0 0 5 5 5 5

Table 4: Comparison of different vector sizes and weight distributions.

whole group being analysed. Therefore, record linkage
is a suitable method to follow cohorts of individuals
by monitoring databases that contain continuous out-
comes [32]. The interest group can be individually ob-
served in order to obtain more accurate results or to
identify variations in the characteristics of each indivi-
dual. This situation is called a longitudinal study [19].

Probabilistic approaches can be used to match records
without common keys from disparate databases. To
succeed, we must use a set of attributes for which a
probability of pairing can be set. This method requires
a careful choice of the keys involved in matching or inde-
terminancy decisions [10]. This is the case, for example,
of determining whether the records ”Maria dos Santos
Oliveira, Rua Caetano Moura, Salvador” and ”Maria
S. Oliveira, R. Caetano Moura, Salvador” refer to the
same person. The main disadvantages of probabilistic
approaches are their long execution times and the debug
complexity they impose.

One of the big challenges in probabilistic record lin-
kage is to link records with different schemas and get
a good accuracy [11]. There are many problems that
hinder pairing, such as abbreviations, different naming
conventions, omissions, transcription, and gathering er-
rors. Another big issue is scaling algorithms for large
data sets. Transformation and similarity calculation
are important challenges for the execution environment
when scaled for large databases.

S. SPARK-BASED DESIGN ISSUES

The pioneering programming model capable of han-
dling hundreds or thousands of machines in a cluster,
providing fault tolerance, petascale computing, and high
abstraction in building applications was MapReduce [8],
further popularized by its open-source implementation
provided by Hadoop [1]. Basically, this model proposed
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the division of the input data into splits that must be
processed by threads, cores or machines in a cluster
responsible for implementing map or reduce functions
written by the developer. Intermediate data generated
by the first phase are stored on the local disks of pro-
cessing machines and are accessed remotely by machines
performing reduce jobs.

Hadoop was responsible for driving a number of varia-
tions seeking to meet specific requirements. Hive [37],
Pig [28], GraphLab [20], and Twister [12] are exam-
ples of initiatives classified as "beyond Hadoop” [26],
which basically keep the MapReduce paradigm but in-
tend to generate new levels of abstractions. However,
some authors have indicated significant lacks in MapRe-
duce specially for applications that need to process large
volumes of data with strong requirements regarding ite-
rations, machine learning or even with different perfor-
mance requisites. New frameworks classified as "be-
yond MapReduce”, such as Dremel [21], Jumbo [15],
Shark [39], and Spark [41], were created to deal with
these new requirements.

Spark is a framework that allows the design of appli-
cations based on working sets, the use of some general-
purpose languages (such as Java, Scala, and Python),
in-memory data processing and a new data distribution
model called RDD (resilient distributed dataset) [40].
RDD is a collection of read-only objects partitioned
across a set of machines that can be rebuilt if a par-
tition is lost.

The main benefits of using Spark are related to the
creation of a RDD for a dataset that must be processed.
There are two basic ways to create a RDD, both use
the SparkContext class: parallelizing a vector of iterable
items created at runtime or referencing a dataset in an
external storage system (such as a shared filesystem),
HDFS [3], HBase [14], or any data source offering a



Hadoop-like InputFormat interface [41].

RDDs can be used through two classes of basic ope-
rations: transformations, which creates a new dataset
from an existing one; and actions, which returns a value
to the driver program after running a computation on
the dataset. The first class is implemented using lazy
evaluation and is intended to provide better perfor-
mance and management of large data sets. Transfor-
mations are only computed when an action requires a
value to be returned to the driver program [41]. Table 5
shows the main features of Spark framework we used to
implement our probabilistic record linkage algorithms.

Transformation Meaning
Returns a new RDD by
map(func) passing each element of
the source through func
Similar to map, but runs
mapPartitions(func) | separately on each partition
(block) of the RDD.
Action Meaning
Returns all the elements of
collect() the dataset as an array at
the driver program.
count() Returns the number of
elements in the dataset.

Table 5: RDD API used for record linkage.

Another advantage of Spark is its ability to perform
tasks in-memory. Views generated during execution are
kept in memory, avoiding the storage of intermediate
data on hard disks. Spark’s developers claim that it is
possible to reduce the execution time up to 100 times
thanks to the use of working sets, and up to 10 times
if hard disks are used. So, our choice to use Spark
is justified by its performance, scalability, RDD’s fault
tolerance, and a very comfortable learning curve due to
its compatibility with different programming languages.

The pre-processing stage follows Algorithm 1, which
shows how this flow is implemented by the processing of
input data transformations using map functions calling
other procedures. The intention is that the function
map(blocking) starts running as map(normalize) deli-
vers its results; so we use the collect() action to ensure
this. It is important to highlight the use of the cache()
function that fits the memory with the splits extracted
from the input files.

Algorithm 1 PreProcessing

: Input < OriginalDatabase.csv

Output < TreatedDatabaseAnom.bloom

InputSparkC « sc.textFile(Input)

NameSize <— 50

BirthSize < 40

CitySize + 20

ResultBeta < InputSparkC.cache().map(normalize)

Result + ResultBeta.cache().map(blocking).collect()

for line in Result:

write line in Output

11: procedure NORMALIZE(rawLine)

12: splitedLine < rawLine.split(;)

13: for fields in splitedLine:

14: field < field.normalized(UTF8) return splited-
Line.join(;)

15: procedure BLOCKING (treatedLine)

16: splLine + treatedLine.split(;)

17: splLine[0] + applyBloom(splLine[0], NameSize)

18: splLine[1] + applyBloom(splLine[1], BirthSize)

19: splLine[2] + applyBloom(splLine[2], CitySize)
return splitedLine.join()

20: procedure APPLYBLOOM(field, vectorSize)

=
=

21: instancelnitial Vector WithSize < vectorSize
22: for n-grams in field:
23: bits Vector <— Calculate positions of 1s in Vector

return bitsVector

Algorithm 2 Record linkage

InputMinor < TreatedDatabaseAnom1.bloom
InputLarger + TreatedDatabaseAnom2.bloom
InputSC1 + sc.textFile(InputMinor)

InputSC2 + sc.textFile(InputLarger)

var <— InputSCl.cache().collect()

varbe <+ sc.broadcast(var)

InterResult + InputSC2.cache().map(compare)
Result < InputSC2.cache().collect()

for line in recordLinkageResult:

write line in Output

: procedure COMPARE(line)

. for linebc in varbc.value:

get Dice index of (linebc) and (line) comparison
decide about the stmilarity

if Dice = 9000 then return line

else return None

= e e e e
A I

Algorithm 2 shows our record linkage flow. We use a
RDD object, since it is read-only, to map the smallest
database (SIH). We also use a shared variable, called
broadcast by Spark, to give every node a copy of the
largest database (CadUnico) in an efficient manner, pre-
venting communication costs, file loads, and split mana-
gement. A comparsion procedure calculates the Dice
index and decides about matching.



6. PERFORMANCE EVALUATION

In order to evaluate the proposed workflow, we ran
out our Spark implementation on a cluster with 8 pro-
cessors Intel Xeon E74820, 16 cores, 126 GB of RAM
and a storage machine with up to 10 TB disks connected
by the NFS protocol. We compared this implementa-
tion with our OpenMP version of the same workflow,
also considering other multicore machines: an i5 pro-
cessor with 4 GB of RAM and 300 GB of hard disk and
an i7 processor with 32 GB of RAM and 350 GB of hard
disk.

6.1 Spark

For Spark, we chose three samples from CadUnico
and STH databases, each representing all the cities from
the states of Amapd (Sample A), Sergipe (Sample B),
and Tocantins (Sample C). These samples represent the
smallest Brazilian states in terms of number of records
in CadUnico. Based on them, we can get an idea of the
number of comparisons and the rise in the execution
time in each case, as shown in Table 6.

Sample | Size (in lines) | Comparisons | Exec. Time
Name | CadUnico x SIH | (millions) (seconds)
A 367,892 x 147 54,0 96,26
B 1,6 mi x 171 289,5 479
C 1,02 mi x 389 397,63 656,79

Table 6: Spark results for record linkage.

These preliminary results are very promising if we
consider the possibility of scaling up the number of ma-
chines involved in data processing. Table 7 details the
time spent in each stage of the workflow. Standardiza-
tion, anonymization, and blocking stages are detailed by
Algorithm 1 and take only a few minutes in the larger
database, while the similarity test and the decision on
pairing require a longer running time. The last step
consists in recovering a pair of linked records for crea-
ting a data mart. Together, all steps do not take more
than 12 hours of execution.

CadUnico SIH
Size (lines) approx. 87 mi | approx. 61 k
Standardization
Anonymization 23104 s 36.5 s
Blocking
Record Linkage 9,03 hours
Paired Recovery 1,31 hours

Table 7: Execution time within the workflow.

6.2 OpenMP

The OpenMP interface [29] was chosen due to its syn-
tax simplicity. This kind of implementation divides a
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task between threads that execute simultaneously, dis-
tributed through processors or functional units. The
OpenMP API supports C, C++ and Fortran program
languages. The C language was chosen because of its
worldwide understanding.

The database sets used for this implementation were
files containing the results from the Bloom filter applied
during the pre-processing stage. These files have N bits
in each line (record). The goal is to make the record
linkage by calculating the Dice coefficient for each pair
of records and writing out the positive Dice results and
its respectives lines in an output file.

Access to the database sets in C language is made
through pointer types. When a parallel region of the
code is initialized, it is necessary to specify global and
local variables to the threads. If a pointer is global to
the threads, there is a race condition problem if they try
to access different positions from the same file. This
problem was solved by making these pointers private
to each thread. As it is not possible to pass pointer
types (only native types), they are created for every
line (record) from one of the files. As the files have
always the same N bits in each line, it is possible to
specify each thread to access uniquely some lines from
these files.

Tools i5 i7 Cluster
Spark 507.5s | 235.7s | 96.26 s
OpenMP | 104.9s | 65.5s | 13.36 s

Table 8: OpenMP x Spark metrics (Sample A).

Table 8 shows the execution time achieved by OpenMP
for our Sample A. The machines we used have the fol-
lowing configuration: i5 (4 cores, 8 execution threads),
i7 (8 cores, 16 execution threads). The cluster has been
described in section 6. The execution time over i7 pro-
cessor was 37% shorter than i5, showing that the exe-
cution time could be even shorter when using computers
with more threads per core. Despite its shorter exe-
cution time, this approach does not provide a number
of advantages offered by Spark, such as scalability and
fault tolerance.

The number of matching record was 245. The results
were very satisfactory, taking into account that the ap-
plication runs in only one computer. This shows that
the OpenMP implementation is indicated for small lin-
kages or bigger linkages blocked by smaller parts. We
are also considering the use of OpenMP for generating
the Bloom filter and grouping records to compose the
data marts.

7. CONCLUDING REMARKS

The development of a computational infrastructure
to support projects focusing on big data from health



systems, like the case study discussed here, was moti-
vated by two factors. First, the need to provide a tool
capable of link disparate databases with socioeconomic
and healthcare data, serving as a basis for decision-
making processes and assessment of the effectiveness
of governmental programs. Second, the availability of
recent tools for big data processing and analytics, such
as those mentioned in this work, with interesting capa-
bilities to deal with new requirements imposed by the
applications.

Among the available tools, we chose Spark due to
its in-memory facility, its scalability, and ease of pro-
gramming. Our preliminary tests present very promis-
ing results, reinforcing the need for some adjustments in
our implementation. New features recently included in
Spark could help us, such as the SparkR extension for
data quality assessment. We are also testing other tech-
niques throughout the workflow, like phonetic codes,
predicates (for blocking) and multi-bit trees.

We plan to continue our tests with OpenMP in or-
der to identify scenarios for which it can provide good
performance. The exploration of hybrid architectures
(multicore + multi-GPUs) is also in our roadmap.

The execution platform developed in this work repre-
sents a major advance in the face of existing solutions
for record linkage in Brazil. It will serve as a basis ar-
chitecture for the installation of a Referral Center for
Probabilistic Linkage, and should be supplemented with
new features regarding privacy, security, storage, among
others.
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ABSTRACT

Fix a full, conjunctive query, and consider the following
problem: what is the amount of communication required
to compute the query in parallel, on p servers, over a large
database instance? We define the Massively Parallel Com-
munication (MPC) model, where the computation proceeds
in rounds consisting of local computations followed by a
global reshuffling of the data. Servers have unlimited com-
putational power and are allowed to exchange any data, the
only cost parameters are the number of rounds and the max-
imum amount of communication per server. I will describe
tight bounds on the amount of communication for the case
of a single round and data without skew, then discuss ex-
tensions to skewed data and multiround.
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ABSTRACT

A MapReduce algorithm can be described by a mapping schema,
which assigns inputs to a set of reducers, such that for each
required output there exists a reducer that receives all the inputs
that participate in the computation of this output. Reducers have a
capacity, which limits the sets of inputs that they can be assigned.
However, individual inputs may vary in terms of size. We consider,
for the first time, mapping schemas where input sizes are part
of the considerations and restrictions. One of the significant
parameters to optimize in any MapReduce job is communication
cost between the map and reduce phases. The communication cost
can be optimized by minimizing the number of copies of inputs
sent to the reducers. The communication cost is closely related
to the number of reducers of constrained capacity that are used
to accommodate appropriately the inputs, so that the requirement
of how the inputs must meet in a reducer is satisfied. In this
work, we consider a family of problems where it is required that
each input meets with each other input in at least one reducer.
We also consider a slightly different family of problems in which,
each input of a set, X, is required to meet each input of another
set, Y, in at least one reducer. We prove that finding an optimal
mapping schema for these families of problem is NP-hard, and
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present several approximation algorithms for finding a near optimal
mapping schema.

1. INTRODUCTION

MapReduce (was introduced by Dean and Ghemawat [6]) is a
programming system used for parallel processing of large-scale
data. Input data is processed by the map phase that applies a
user-defined map function to produce intermediate data (of the
form (key,value)). Afterwards, intermediate data is processed
by the reduce phase that applies a user-defined reduce function to
keys and their associated values. The final output is provided by the
reduce phase. A detailed description of MapReduce can be found
in Chapter 2 of [11].

Reducers and Reducer Capacity. An important parameter to be
considered in MapReduce algorithms is the “reducer capacity.” A
reducer is an application of the reduce function to a single key
and its associated list of values. The reducer capacity is an upper
bound on the sum of the sizes of the values that are assigned to the
reducer. For example, we may choose the reducer capacity to be the
size of the main memory of the processors on which the reducers
run. We always assume in this paper that all the reducers have an
identical capacity, denoted by g.

The term reducer capacity is introduced, here, for the first time.
There are various works in the field of MapReduce algorithms
design (e.g., [10, 13, 2, 7, 12, 3]); none of them considers the
reducer capacity.

Motivation and Examples. We demonstrate a new aspect of the
reducer capacity in the scope of several special cases. One useful
special case is where an output depends on exactly two inputs. We
present two examples where each output depends on exactly two
inputs and define two problems that are based on these examples.
Similarity-join.  Similarity-join is used to find the similarity
between any two inputs, e.g., Web pages or documents. A set
of m inputs (e.g., Web pages) WP = {wp1,wpz,...,wpm},
a similarity function sim(z,y), and a similarity threshold ¢ are
given, and each pair of inputs (wpy,wp,) corresponds to one
output such that sim(wpz, wpy) > t.

It is necessary to compare all-pairs of inputs when the
similarity measure is sufficiently complex that shortcuts like
locality-sensitive hashing are not available. Therefore, it is
mandatory that every two inputs (Web pages) of the given input



N : key, Wi =k,

Mapper for 1%t Web page otation: key, Web page = k;, wp;
WPy wp, |. b Reducers of an identical capacity

Mapper for 204 Web page| \o Output
we, wp,

Output

Mapper for 3" Web page|

WP Whs Output

Mapper for (m-1)"" Web page
Mapper for mth Web page

me

ky» WPt

Figure 1: Similarity-join example.

set (WP) are compared. The similarity-join is useful in various
applications, mentioned in [4], e.g., near-duplicate document
detection and collaborative filtering.

In Figure 1, an example of similarity-join is given as it is
applied to Web pages. We are given a set of m Web pages, and a
mapper (a mapper is an application of the map function to a single
input) would take only a single Web page, and a reducer produces
pairs of every two Web pages and their similarity score.

Skew join of two relations X (A, B) and Y (B,C). The join of
relations X (A, B) and Y (B, C), where the joining attribute is
B, provides the output tuples (a, b, ¢), where (a,b) is in X and
(b,c) is in Y. One or both of the relations X and Y may have
a large number of tuples with the same B-value. A value of the
joining attribute B that occurs many times is known as a heavy
hitter. In skew join of X (A, B) and Y (B, C), all the tuples of both
the relations with the same heavy hitter should appear together to
provide the output tuples.

In Figure 2, b; is considered as a heavy hitter, hence, it is
required that all the tuples of X (A, B) and Y (B,C) with the
heavy hitter, by, should appear together to provide the desired
output tuples, (a,b1,c) (a € A,b1 € B,c € C), which depend
on exactly two inputs. It is worth noting that all the tuples of both
the relations that have a common value of the joining attribute B,
except by, are now also required to appear together to provide the
remaining output tuples.

Problem Statement. We define two problems where exactly two

inputs are required for computing an output, as follows:

All-to-All problem. In the all-to-all (A2A) problem, a set of inputs
is given, and each pair of inputs corresponds to one output.
Computing common friends on a social networking site,
similarity-join [4, 15, 14], the drug-interaction problem [13],
and the Hamming distance 1 problem [2] are examples of
tasks for which an output depends on exactly two inputs, and
the set of outputs requires us to consider each pair of inputs.

X-to-Y problem. In the X-to-Y (X2Y) problem, two disjoint sets
X and Y are given, and each pair of elements (z;, y;), where
z; € X,y; € Y,Ve,7, of the sets X and Y corresponds to
one output. Skew join and outer product or tensor product
are examples.

The communication cost, i.e., the total amount of data
transmitted from the map phase to the reduce phase, is a
significant factor in the performance of a MapReduce algorithm.
The communication cost comes with tradeoff in the degree of
parallelism, however.

A reducer of large enough capacity can be used to
accommodate all the given inputs, and provide the desired outputs.
This results in the minimum communication cost but also in
the minimum parallelism.  Higher parallelism requires more
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reducers (hence, of smaller reducer capacity), and hence a larger
communication cost (because the copies of the given inputs are
required to be assigned to more reducers).

A substantial level of parallelism can be achieved with fewer
reducers, and hence, yield a smaller communication cost. Thus,
we focus on minimizing the total number of reducers, for a given
reducer capacity g. A smaller number of reducers results in a
smaller communication cost. Thus, the reducer capacity, ¢, reflects
also the degree of parallelism we want, since if we want more
parallelism we can explore the problem in question for smaller q.

Related Work. Afrati et al. [2] presents a model for MapReduce
algorithms where an output depends on two inputs, and shows a
tradeoff between communication cost and parallelism. In [3], the
authors consider the case where each pair of inputs produces an
output and present an upper bound that meets the lower bound on
communication cost as a function of the total number of inputs sent
to a reducer. However, both in [2] and [3] the authors regard the
reducer capacity in terms of the total number of inputs (assuming
each input is of an identical size) sent to a reducer. Our setting
is closely related to the settings given by Afrati et al. [2] but we
allow the input sizes to be different. Thus, we consider a more
realistic setting for MapReduce algorithms that can be used in
various practical scenarios.

Our Contribution. In this paper, we provide:

e Mapping schemas for the A2A and the X2Y problems, which take
into account the fact that inputs have different sizes, while all the
reducers have an identical and fixed capacity (Section 2).

e A tradeoff between the reducer capacity and the total number
of reducers, which is demonstrated using similarity-join and skew
join (Section 2). A tradeoff between the reducer capacity and the
parallelism at the reduce phase, and a tradeoff between the reducer
capacity and the communication cost is detailed in Section 2 as
well.

e A proof that the A2A mapping schema problem for one and
two reducers has a polynomial solution, and the same problem
is NP-hard in the case of more than two reducers of an identical
capacity (Section 3). Also, we prove that the X2Y mapping schema
problem for one reducer has a polynomial solution, and the same
problem is NP-hard in the case of more than one reducer of an
identical capacity (Section 3).

e A set of heuristics, for the A2A mapping schema problem and the
X2Y mapping schema problem, that is based on First-Fit Decreasing
(FFD) or Best-Fit Decreasing (BFD) bin-packing algorithm, and a
pseudo polynomial bin-packing algorithm (Sections 4 and 5).

2. MAPPING SCHEMA AND TRADEOFFS

Our system setting is an extension of the standard system setting [2]
for MapReduce algorithms, where we consider, for the first time,
inputs of different sizes. The system setting is suitable for a variety
of problems where exactly two inputs are required for an output.
To demonstrate the influence of the extra considerations, we define
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Figure 3: An example to the A2A mapping schema problem.

mapping schema and consider the communication cost tradeoff, as
we elaborate next.
Mapping Schema. A mapping schema is an assignment of the
set of inputs to some given reducers under the following two
constraints:
e A reducer is assigned inputs whose sum of the sizes is less than
or equal to the reducer capacity q.
e For each output, we must assign the corresponding inputs to at
least one reducer in common.
Tradeoffs.  The following tradeoffs appear in MapReduce
algorithms and in particular in our setting:
e A tradeoff between the reducer capacity and the total number of
reducers. For example, large reducer capacity allows the use of a
smaller number of reducers.
o A tradeoff between the reducer capacity and the parallelism. For
example, large reducer capacity results in less parallelism.
e A tradeoff between the reducer capacity and the communication
cost.

In the subsequent subsections, we present two types of
mapping schema problems with fitting examples and explain the
three tradeoffs.

2.1 The A2A Mapping Schema Problem

The A2A mapping schema problem is defined in terms of a set of
inputs, a size for each input, a set of reducers, and a mapping from
outputs to sets of inputs. An instance of the A2A mapping schema
problem consists of a set of m inputs whose input size setis W =
{w1,wa, ..., wn} and a set of z reducers of capacity g. A solution
to the A2A mapping schema problem assigns every pair of inputs to
at least one reducer in common, without exceeding q at any reducer.

Example. We are given a set of seven

I = {i1,%2,...,i7} whose size set is W
{0.20q, 0.20¢, 0.20g, 0.19¢, 0.19¢, 0.18¢, 0.18¢} and reducers of
capacity q. In Figure 3, we show two different ways that we can
assign the inputs to reducers. The best we can do to minimize the
communication cost is to use three reducers. However, there is less
parallelism at the reduce phase as compared to when we use six
reducers. Observe that when we use six reducers, then all reducers
have a lighter load, since each reducer may have capacity less than
0.8q.

Explanation of tradeoffs. Similarity-join is an example of the A2A
mapping schema problem, and the tradeoffs can also be explained
with the help of similarity-join example. Consider that m Web
pages are of w1, wa, ..., wy sizes. A single reducer of capacity
q = w1 + w2 + ...+ wy, is able to find the similarity between
every pair of Web pages. The use of only one reducer results in no
parallelism at the reduce phase. But at the same time, the use of
a single reducer yields the minimum possible communication cost.
On the other hand, in case ¢ is small but is still greater than or equal
to w; + wj, for any ¢ and j, then more reducers are required, and
a higher level of parallelism is obtained. But, at the same time, the
communication cost is higher, since every input is communicated
to m — 1 reducers.

inputs
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Figure 4: An example to the X2Y mapping schema problem.
2.2 The X2Y Mapping Schema Problem

The X2Y mapping schema problem is defined in terms of two
disjoint sets X and Y of inputs, a size for each input, a set of
reducers, and a mapping from outputs to sets of inputs. An instance
of the X2Y mapping schema problem consists of two disjoint sets
X and Y and a set of reducers of capacity q. The inputs of the
set X are of sizes w1, wa, . .., wm, and the inputs of the set Y are
of sizes wi, w5, ..., w,. A solution to the X2Y mapping schema
problem assigns every two inputs, the first from one set, X, and the
second from the other set, Y, to at least one reducer in common,
without exceeding ¢ at any reducer.

Example. We are given two sets X of 12 inputs and Y of 4 inputs,
see Figure 4, and reducers of capacity q. We show that we can
assign each input of the set X with each input of the set Y in two
ways. In order to minimize the communication cost, the best way
is to use 12 reducers. Note that we cannot obtain a solution for the
given inputs using less than 12 reducers. However, the use of 12
reducers results in less parallelism at the reduce phase as compared
to when we use 16 reducers.

Explanation of tradeoffs. Skew join of two relations X (A, B)
and Y (B, C) for a heavy hitter is an example of the X2Y mapping
schema problem. We also explain the tradeoffs using the example
of skew join. We assume that both the relations X (A, B) and
Y (B, C) have only a single heavy hitter, say bi;. Note that we
do not consider tuples with no heavy hitter.

A reducer of capacity q that is sufficient to hold all the tuples
of X(A, B) and Y (B,C) with the heavy hitter results in the
minimum communication cost. However, due to a single reducer,
there is no parallelism at the reduce phase. In addition, a single
reducer takes a long time to produce all the desired output tuples of
the heavy hitter.

In order to decrease the time (or when ¢ is small but still
enough to hold only two tuples, the first from X (A, B) and the
second from Y (B, C'), which have the common B-value), we can
restrict reducers in a way that they can hold many tuples, but not
all the tuples with the heavy-hitter-value. In this case, we use more
reducers, which result in a higher level of parallelism at the reduce
phase. But, there is a higher communication cost, since each tuple
with the heavy hitter must be sent to more than one reducer.

3. INTRACTABILITY OF FINDING A

MAPPING SCHEMA

In this section, we will show that the A2A and the X2Y mapping
schema problems do not possess a polynomial solution. In other
words, we will show that the assignment of two required inputs
to the minimum number of reducers to find solutions to the A2A
and the X2Y mapping schema problems cannot be achieved in
polynomial time.

NP-hardness of the A2A Mapping Schema Problem. A set
of inputs {i1,%2,...,im} whose input size set is W
{w1,ws, ..., wn}and a set of reducers R = {r1,ra,...,7.}, are



an input instance to the A2A mapping schema problem. The A2A
mapping schema problem is a decision problem that asks whether
or not there exists a mapping schema for the given input instance
such that every input, i, is assigned with every other input, 7,, to
at least one reducer in common. An answer to the A2A mapping
schema problem will be “yes,” if for each pair of inputs ({iz, iy)),
there is at least one reducer that holds them.

Now we prove that the A2A mapping schema problem has a
polynomial solution to one and two reducers. If there is only one
reducer, then the answer is “yes” if and only if the sum of the input
sizes Y ;- wj is at most g. On the other hand, if ¢ < Y 7", wi,
then the answer is “no.” In case of two reducers, if a single reducer
is not able to accommodate all the given inputs, then there must be
at least one input that is assigned to only one of the reducers, and
hence, this input is not paired with all the other inputs. In that case,
the answer is “no.” Therefore, we achieve a polynomial solution to
the A2A mapping schema problem for one and two reducers. Next,
we will prove that the A2A mapping schema problem is an NP-hard
problem for z > 2 reducers.

Theorem 1 The problem of finding whether a mapping schema of
m inputs of different input sizes exists, where every two inputs are
assigned to at least one of z > 3 identical-capacity reducers, is
NP-hard.

Proof is omitted from here and given in [1].

NP-hardness of the X2Y Mapping Schema Problem. Two sets
of inputs, X = {i1,%2,...,%m} Whose input size set is W, =

{wi,ws,...,wm} and Y = {i,45,...,4,} whose input size
set is W, = {wi,w5,...,w;}, and a set of reducers R =
{ri,r2,...,7-} are an input instance to the X2Y mapping schema

problem. The X2Y mapping schema problem is a decision problem
that asks whether or not there exists a mapping schema for the given
input instance such that each input of the set X is assigned with
each input of the set Y to at least one reducer in common. An
answer to the X2Y mapping schema problem will be “yes,” if for
each pair of inputs, the first from X and the second from Y, there
is at least one reducer that has both those inputs.

The X2Y mapping schema problem has a polynomial solution
for the case of a single reducer. If there is only one reducer, then the
answer is “yes” if and only if the sum of the input sizes > .~ | w; +
> om , w; is at most g. On the other hand, if ¢ < Yi" w; +
> i, w;, then the answer is “no.” Next, we will prove that the
X2Y mapping schema problem is an NP-hard problem for z > 1
reducers.

Theorem 2 The problem of finding whether a mapping schema of
m and n inputs of different input sizes that belongs to set X and
set Y, respectively, exists, where every two inputs, the first from
X and the second from Y, are assigned to at least one of z > 2
identical-capacity reducers, is NP-hard.

Proof is omitted from here and given in [1].

4. HEURISTICS FOR THE A2A MAPPING

SCHEMA PROBLEM

Since the A2A Mapping Schema Problem is NP-hard, in polynomial
time we cannot assign each pair of inputs to the minimum number
of reducers, which results in the optimum communication between
the map phase and the reduce phase. In this section, we propose
several heuristics for the A2A mapping schema problem that are
based on bin-packing algorithms, selection of a prime number p,
and division of inputs into two sets based on their sizes. In addition,
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the proposed heuristics assume that a fixed reducer capacity g is
given. The heuristics have two cases depending on the sizes of the
inputs, as follows:

1. Input sizes are upper bounded by £,

2. One input is of size, say w;, greater than £, but less than ¢, and
all the other inputs have size less than or equal to ¢ — w;,

The idea of the heuristics is: if the two largest inputs are greater
than the given reducer capacity ¢, then there is no solution to the
A2A mapping schema problem because these two inputs cannot be
assigned to a single reducer in common.

Parameters for bounds analysis. We analyze our heuristics on
three parameters, as follows:

1. Minimum number of reducers, r(m,q). The minimum
number of reducers of capacity ¢ that can solve the A2A (and X2Y)
mapping schema problem(s) for the given inputs with certain size
restrictions.

2. Replication of individual inputs. Inputs of different sizes need
to be replicated at different numbers of reducers. We therefore
need to consider the minimum number of reducers to which each
individual input is sent.

3. The total communication cost, c. The total communication
cost is defined to be the sum of all the bits that are required to
transfer from the map phase to the reduce phase.

4.1 All the inputs sizes are upper bounded by

q

2
We first consider the case where all the input sizes are at most
size. We consider the following two cases in this section: (7) all the
inputs are potentially of different sizes but at most size £, and (if)
all the inputs sizes are almost equal or there are a lot of inputs of
very small size. Particularity, all the inputs are of size at most %,
where k > 1,

4.1.1 Different-sized inputs but at most size %

We first provide a heuristic for inputs of potentially different sizes,
where the largest input can have at most size . The heuristic uses
a bin-packing algorithm to place the given m inputs into bins of
size Z. Before going into details of the heuristic, we look at the
lower bound on the replication of an input 7 (of size w;), the total
number of reducers, and the total communication cost between the
map phase and the reduce phase. The bounds are given in Table 1.

Theorem 3 (Replication of individual inputs) For a set of m
inputs and a given reducer capacity q, an input i of size w; < q
is required to be sent to at least [ =%

—L —| reducers for a solution to
the A2A mapping schema problem, where s is the sum of all the
input sizes.

PROOF. Consider an input ¢ of size w;. The input ¢ can share a
reducer with inputs whose sum of the sizes is at most ¢ — w;. In
order to assign the input ¢ with all the remaining m — 1 inputs, it
is required to assign subsets of the m — 1 inputs, each subset with
sum of sizes at most size ¢ — w;. Such an assignment results in
at least [%] subsets of the m — 1 inputs. Thus, the input ¢ is
required to be sent to at least f
the remaining m — 1 inputs.

s—w;
—w;

W reducers to be paired with all

Theorem 4 (The total communication cost and number of
reducers) For a set of m inputs and a given reducer capacity q, the
total communication cost and the total number of reducers, for the
A2A mapping schema problem, are at least % and Z—z, respectively,
where s is the sum of all the input sizes.



PROOF. Since an input ¢ is replicated to at least [;:#]

reducers, the communication cost for the input 7 is w; X [ W
Hence, the total communication cost for all the 1nputs will be at
least 377 wiZ=t. Since s > g, we can conclude Z=%% > 2.

—w;
Thus, the total commumcat10n costis at least Y\~ | w; 2 i
Since the total communication cost the total number of b1t§ to
be assigned to reducers, is at least -, and a reducer can hold inputs
whose sum of the sizes is at most g, the total number of reducers

O

2
must be at least ;—2

Bin-packing-based Heuristic. First-Fit Decreasing (FFD) and
Best-Fit Decreasing (BFD) [5] are most notable bin-packing
algorithms. We use the FFD or BFD bin-packing algorithm to
place the given m inputs to bins of size 2. Assume that FFD or
BFD bin-packing algorithm needs x bins to place m inputs, and
now, each of such bins is considered as a single input of size Z.
Since the reducer capacity is g, any two bins can be assigned to a
single reducer. Hence, the heuristic uses at most (m, q) = @
reducers; see Figure 5. There also exists a pseudo polynomial
bin-packing algorithm, suggested by Karger and Scott [9], that can

place the m inputs in as few bins as possible of size 1.

Total required

reducers. FFD and :UU; z Z: i :)U?i;; 20 s = = 000,
BFD. bin—packi_ng ‘ w1, wQH w3, w4H ws, weH wr ‘
algorithms  provide Four bins, each of size 4

an % OPT ' 2
approximation H w1, “’ZH w3, “’4H H ws, w4H ws, wGH
o 8L te [oswsfws we]  [wsw] wr_]
if any optimum

bin-packing [wiwe] wr | [ws,we] wr |
algorithm needs Six reducers

OPT bins to place
(m) inputs in the
bins of a given size
(say, ), then FFD and BFD bin-packing algorithms always use

at most - - OPT bins of the same size (to place the given m
z(z—1)
2

Figure 5: Bin-packing-based heuristic.

inputs). Smce we require at most reducers for a solution to
the A2A mapping schema problem, the heuristic requires at most

r(m,q) = % reducers.

Note that, here in this case, OPT does not indicate the optimum
number of reducers to assign m inputs that satisfy the A2A mapping
schema problem; OPT indicates the optimum number of bins of size
4 that are required to place m inputs.

The following theorem gives the upper bounds that this

heuristic achieves on the replication of an inputs, the total
communication cost and the number of reducers.
Theorem 5 (Upper bounds from the heuristic) 7The above

heuristic using a bin size b = 1 where q is the reducer capacity
achieves the following three upper bounds: The total number
of reducers, the replication of individual inputs, and the total
communication cost, for the A2A mapping schema problem, are at
most %, at most 42, and at most 4%
sum of all the input sizes.

, respectively, where s is the

PROOF. A bin ¢ can hold inputs whose sum of the sizes is at
most b. Since the total sum of the sizes is s, it is required to divide
the inputs into at least § bins. Since the FFD or BFD bin-packing
algorithm ensures that all the bins (except only one bin) are at least
half-full, each bin of size g has at least inputs whose sum of the
sizes is at least 2. Thus, all the inputs can be placed in at most
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wy = 0.20q, w2 = 0.20q, ws = 0.20q, wy = 0.19q, ws = 0.19q,
weg = 0.18q, wy = 0.18¢q

‘WI7w2Hw3)w4Hw57w6H wr ‘

Four bins, each of size

e [

rwl,wzaw:s:wx,vw‘
i, wo, ws, we, w%
P:«;, wy, ws, We, ’W%

Another way to assign the inputs

[ wa] we,wof - [ws,waf wr |

[Lonwa] wr | [ws,we] wr |

Bin-packing-based solution

Figure 7: Comparison between the bin-packing-based heuristic and
the proposed algorithms for almost equal-sized inputs.

ﬁ bins of size Z. Since each bin is considered as a single input,
we can assign every two bins at a reducer, and hence, we require
at most T reducers. Since each bin is replicated to at most 4;
reducers, the replication of individual inputs is at most 45 and the

O

2
. . . ) s _ g8
total communication cost is at most E 1<i<m Wi X 4 q 471 .

4.1.2  Almost equal-sized inputs
In this section, we provide two algorithms for m almost equal-sized

£, where k > 1) inputs to assign each pair of inputs to reducers
of capacity ¢g. In other word, we are given a lot of inputs of very
small sizes as compared to g. We pack all these inputs to bins of
unit size, and then consider each bin as a single input of unit-size.
Equivalently, we can take the reducer capacity to be ¢ and the inputs
to be of unit size. In what follows, we will continue to use g as the
reducer capacity and assume all inputs are of unit size.

The two algorithms can be summarized as follows: 2-step
algorithms (Algorithm 1 and Algorithm 2) handle the case of m
unit-sized inputs and odd-even values of the reducer capacity q.
Algorithms 1 and 2 assume that g is an odd or an even number,
respectively.

Aside. Algorithms 1 and 2 have an advantage over the
bin-packing-based heuristic (Section 4.1.1). When inputs of almost
identical sizes are given, the bin-packing-based heuristic uses more
reducers as compared to Algorithms 1 and 2. For example, we
are given a set of seven inputs I = {i1,%2,...,i7} whose size
set is W = {0.20¢, 0.20¢, 0.20¢, 0.19¢, 0.19¢, 0.18¢,0.18¢}. In
this case, the bin-packing-based heuristic uses at least six reducers
while we can assign them to three reducers, see Figure 7.

Our goal to use Algorithms 1, 2, 3, and 4 is to minimize the
communication cost between the map and reduce phases for a given
number of unit-sized inputs and the reducer capacity q. Before
going into details of algorithms for ¢ > 2, we look at the lower
bound on the total communication cost between the map and reduce
phases. The case of m inputs of size one and reducers of capacity
two is trivial. In this case, we can assign every pair of inputs to a
single reducer, which results in 7(m, q) = % reducers, and
moreover, it is clearly impossible to use fewer reducers.

Theorem 6 (Replication of individual inputs) For a  given
reducer capacity q > 1 and a set of m inputs of size one, an input

i required to be sent to at least [%ﬂ reducers for a solution to
the A2A mapping schema problem.

PROOF. Consider an input ¢. The input ¢ can share a reducer
with only ¢ — 1 inputs. In order to assign the input ¢ with all the
remaining m — 1 inputs, it is required to create disjoint subsets of
the remaining m — 1 inputs such that each subset can hold at most

g — 1 inputs. In this manner, there are at least [m H subsets of



Cases Solutions | Sections | Theorems | Replication of individual inputs | Reducers | Communication cost |
The lower bounds for the A2A mapping schema problem
Different-sized inputs 4.1.1 3 and 4 = =2 2
q 2
Almost equal-sized inputs 412 6and 7 21:11 1 \_%J [ 7;:11 1 m (%W
The lower bounds for the X2Y mapping schema problem
Different-sized inputs | 5 | 13and 14 | *wme 0Ty | R | Ty iy |
The upper bounds for the A2A mapping schema problem
Different-sized inputs Bin-packing-based heuristic | 4.1.1 5 475 8;22 %
: 2m 7 _ 2m _1\2 2m 7 _
Almost equal-sized inputs Algorithm | 12 i [q_l] ! (((“71)]) /2 m([(‘klﬂ Y
Algorithm 2 4.12 11 [2m] -1 ([227)%/2 m([22] —1)
An input of size > £ Bin-packing-based heuristic | 4.2 12 m— 1 m—14+ Ei;—'; (m—1)-q+ %
The upper bounds for the X2Y mapping schema problem
Different-sized inputs, ¢ = 2b | Bin-packing-based heuristic | 5 | 15 | 25“%, 2sumy | 4'5“7”:2‘5“7”’9 | 4'5“mi'5“my |

Table 1: The bounds for heuristics for the A2A and the X2Y mapping schema problems.

Algorithm 1, with ¢ = 3, divides m unit-sized inputs into two disjoint sets A and B of y and z < y — 1 inputs respectively. (The
selection of the value of 3 will be described later. But, note that we prefer 3 to be a power of 2, and if y # 2° and y > 4,7 > 2, then we
add unit-sized dummy inputs so that y is a power of 2.) When g = 3, we organize (y — 1) X [%] reducers (each of capacity three) in
the form of y — 1 teams of [%] players (or reducers) in each team, and these reducers are used to assign each input of the set A with all
the remaining inputs of the sets A and B. Note that a team must have each of the inputs of the set A occurring exactly once among the
reducers of that team, and this fact will be clear soon.

There are (y — 1) X (%] pairs of inputs of the set A (each of size two) and there are the same number of reducers (each of capacity
three); hence, it is possible to assign one pair to each reducer, and these two inputs become two of the three inputs allowed to each

reducer. Once, we assign every pair of inputs of the set A to (y — 1) X [%W reducers, then we assign i*" input of the set B to all the [%W
reducers of i*" team. Further, we follow a similar procedure on inputs of the set B to assign each pair of the remaining z inputs.

[1,5,9
I={1,2,...,15} |[2,6,9
A=1{1,2,...,8} ‘37779

[1,6,10 |||[1,7,11 || |[1,8,12
[2,7,10 |||[2,8,11 || |[2,5,12

| [1,3,13 ]||[1,4,14 ]| |[1,2,15 |
|

[3,8,10 |||[3,5,11 || |[3,6,12
|

[2,4,13 ]||[2,3,14 || |[3,4,15 |
[5,7,13 ]||[5,8,14 || || 5,6,15 |

B=19.10..., 18} IG5y [4,5,10 ]| [4,6,11 ]||[4,7,12 ]| |[6,8,13 | |[6,7,14 ||| 7,8,15 |
Team 1 Team 2 Team 3 Team 4 Team 5 Team 6 Team 7
Iy ={9,10,...,15}(9,11,13 || |[9, 12,14 || |9, 10, 15 |

A1 = {9,10,11,12} [10, 12,13)| |[10, 11, 14] |[11,12,15]| An additional reducer
By = {13,14, 15}

Team 8 Team 9 Team 10

Example. We are given 15 inputs (I = {1,2,...,15}) of size one and ¢ = 3. We create two sets, namely A of y = 8 inputs and B
v

of x = 7 inputs, and arrange (y — 1) x [5] = 28 reducers in the form of 7 teams of 4 players (or reducers) in each team. These 7
teams assign each input of the set A with all the remaining inputs of the set A and the set B. We pair every two inputs of the set A and
assign them to exactly one of 28 reducers. (All these pairs of the inputs of the set A are created and assigned using lines 10, 12, and 13
of Algorithm 1.) Once every pair of 4 = 8 inputs of the set A is assigned to exactly one of 28 reducers, then we assign 7*" input of the
set B to all the four reducers of i*" team, see Team 1 to Team 7. Of course, the third input in i*" team is i*" input of the set B.

Now note that the first four teams pair inputs 1-4 with inputs 5-8. The first team (Team 1) has pairs {1, 5}, {2,6}, {3, 7}, and {4, 8}.
Team 2-4 has pairs by rotation of the 5-8 inputs. Teams 5 and 6 handle pairs of 1-2 with 3-4 and 5-6 with 7-8, respectively, in the same
way, and the last team has pairs {1, 2}, {3,4},...,{7,8}.

Next, we implement the same procedure on 7 inputs of the set B. We create two sets, say A1 = {9,10,11,12} of y1 = 4 inputs and
By = {13,14,15} of z1 = 3. Then, we arrange (y1 — 1) x [%] = 6 reducers in the form of 3 teams of 2 reducers in each team. We
assign each pair of inputs of the set A; to these 6 reducers, and then *" input of the set B to all the two reducers of a team, see Team 8
to Team 10. Further, we assign the remaining inputs of the set B, to a single reducer. The assignment of inputs to Teams 8-10 follows
the same procedure as we did for Teams 1-7.

We have three claims, as follows: (i) each input of the set A appears exactly once in each team, (ii) the set B holds x < y — 1 inputs
when ¢ = 3, and (iii) the given algorithm assigns each pair of inputs to at least one reducer. We will prove these claims in algorithm
correctness.

Figure 6: 2-step algorithm (Algorithm 1) for the reducer capacity ¢ = 3 and m = 15.
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m — 1 inputs. Hence, the input 7 is required to be sent to at least

{Z‘_‘H reducers. [J

Theorem 7 (The total communication cost and number of
reducers) For a given reducer capacity q > 1 and a set of m inputs
of size one, the total communication cost and the total number
of reducers, for the A2A mapping schema problem, are at least

m [’;‘__11 ] and at least L%J ( ZL__ll ] , respectively.

PROOF. Since an input ¢ is required to be sent to at least [’Zf’ﬂ
reducers, the sum of the number of copies of (m) inputs sent to
reducers is at least m[%‘ﬂ, which result in at least m[’z;__ll]
communication cost.

There are at least mml__ﬂ total number of copies of (m)
inputs to be sent to reducers and a reducer can hold at most g inputs;

hence, at least L%J [’;%H reducers are required. [

Algorithm 1: 2-step algorithm when the reducer capacity ¢ is
an odd number. For the sake of understanding and presentation,
we first present two examples, where ¢ = 3, i.e, a reducer can
hold at most three unit-sized inputs; see Figure 6 (and ¢ = 5, i.e.,
a reducer can hold at most five unit-sized inputs; see Figure 11
in [1]).

Following the example given for ¢ 3 (in Figure 6), we
present our algorithm (see Algorithm 1) that handles any odd value
of g. The algorithm consists of five steps as follows:

1. Divide m inputs into two sets A and B of sizey = | £ ] (| 5 |+
1) and © = m — y, respectively.
2. Group the y inputs into u = [%] disjoint groups, where

each group holds [%;1] inputs. (We consider each of the u (=

[ s=57a7 ) disjoint groups as a single input that we call the derived
input. By making u disjoint groups' (or derived inputs) of 3 inputs
of the set A, we turn the case of any odd value of ¢ to a case where
a reducer can hold only three inputs, the first two inputs are pairs
of the derived inputs and the third input is from the set B.)

3. Organize (u — 1) x (%] reducers, each of capacity g, in the
form of u — 1 teams of (%] reducers in each team. Assign every
two groups to one of (u — 1) X (%] reducers. To do so, we will
prove the following Lemma 1, and its proof is omitted from here

due to space and given in [1].

Lemma 1 Each pair of v = 2! 4 > 0, inputs can be assigned
to 2* — 1 teams of 20~ yeducers in each team, where the reducer

capacity is q and the size of each input is (‘ZT_I]

4. Once every pair of the derived inputs are assigned, then assign
it" input of the set B to all the reducers of 7** team.

5. Apply (the above mentioned) steps 1-4 on the set B until there
is a solution to the A2A mapping schema problem for the x inputs.

Algorithm description. Algorithm 1 provides a solution to the A2A
mapping schema problem for unit-sized inputs when ¢ is an odd
number. First, we divide m inputs into two sets A and B. Then,
we make u = [ﬁ] disjoint groups of y inputs of the set A
such that each group holds q%l inputs, lines 1, 2. (Now, each of
the groups is considered as a single input that we call the derived

"We suppose that u is a power of 2. In case u is not a power of
2 and u > ¢, we add dummy inputs each of size f%l] so that u
becomes a power of 2. Consider that we require d dummy inputs.
If groups of inputs of the set B each of size [q—gw are less than
equal to d dummy inputs, then we use inputs of the set B in place
of dummy inputs, and the set B will be empty.
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input.) We do not show the addition of dummy inputs and assume
that w is a power of 2. Function 2_step_odd_g(lower, upper)
recursively divides the derived inputs into two halves, line 4.
Function Assignment(lower, mid, upper) (line 8) pairs every
two derived inputs and assigns them to the respective reducers
(line 10). Each reducer of the last team is assigned using function
Last_Team(groupAl]), lines 14, 15.

Note  that  functions  2_step_odd_g(lower, upper),
Assignment (lower, mid, upper), and
value_b(lower, t, mid, upper) take two common parameters,
namely lower and wupper where lower is the first derived
input and upper is the last derived input (i.e., u'® group) at
the time of the first call to functions, line 3. Once all-pairs of
the derived inputs are assigned to reducers, line 10, function
Assign_input_from_B(Team]|]) assigns i*" input of the set
B to all the [%W reducers of i*" team, lines 16, 17. After that,
algorithm is invoked over inputs of the set B to assign each pair of
the remaining inputs of the set B to reducers until every pair to the
remaining inputs is assigned to reducers.

Algorithm correctness. The algorithm correctness proves that every
pair of inputs is assigned to reducers. Specifically, we prove that all
those pairs of inputs, {4, j) and (i’, j'), of the set A are assigned to
ateam whose i # i’ and j # j' (Claim 1). Then that all the inputs
of the set A appear exactly once in each team (Claim 2). We then
prove that the set B holds x < y — 1 inputs, when ¢ = 3 (Claim 3).
At last we conclude in Theorem 8§ that Algorithm 1 assigns each
pair of inputs to reducers.

Note that we are proving all the above mentioned claims for
q = 3; the cases for ¢ > 3 can be generalized trivially where we
make u = [ﬁ] derived inputs from y inputs of the set A
(and assign in a manner that all the inputs of the A are paired with
all the remaining m — 1 inputs).

Claim 1 Pairs of inputs (i, j) and (i’, '), where i # i’ or j # j',
of the set A are assigned to a team.

PROOF. First, consider i = i’ and j # j’, where (i,j) and
(¢, 7") must be assigned to two different teams. If j # j', then
both the j values may have an identical value of lower and mid
but they must have two different values of ¢ (see lines 12, 13 of
Algorithm 1), where j = lower + t + mid or j = lower + t.
Thus, for two different values of j , we use two different values of
t, say t1 and to, that results in an assignment of (7, 7) and (7', j')
to two different teams ¢, and ¢, (note that teams are also selected
based on the value of ¢, (y — 2 - mid + 1) + ¢, see line 10 of
Algorithm 1, where for ¢ = 3, we have u = y). Suppose now that
i # 4’ and j = j', where (i, j) and (i’, j') must be assigned to two
different teams. In this case, we also have two different values of
t, and hence, two different ¢ values assign (i, j) and (i’, j') to two
different teams ((y — 2 - mid + 1) + ¢, line 10 of Algorithm 1).

Hence, it is clear that pairs (7, 7) and (i’, '), where 7 # ¢’ and
j # 7', are assigned to a team. [

Claim 2 All the inputs of the set A appear exactly once in each
team.

PROOF. There are the same number of pairs of inputs of the set

A and the total number of reducers ((y — 1) (%]) that can provide

a solution to the A2A mapping schema problem for the y inputs of

the set A. Note that if there is a input pair (i, j) in team ¢, then the

team ¢ cannot hold any pair that has either ¢ or j in the remaining
Yy

(ﬂ — 1 reducers. For the given y inputs of the set A, there are at

most [ 4] disjoint pairs (i1, j1), (i2,j2), - - - (i[y/2],d[y/21) Such
that i1 # 2 # ... # i[y/2] # 1 F£ JoF . F Jry/21- Hence,
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Algorithm 1: 2-step algorithm for an odd value of q.

Inputs:

m: total number of unit-sized inputs
q: the reducer capacity.

Variables:

A: A set A, where the total inputs in the set Aisy = |4 |(| 2% | +1).

a+1
B: A set B, where the total inputs in the B isx = m —

([t = .

Team|i, j] : represents teams of reducers, where index ¢ indicates i*" team and index j indicates ;%" reducer in i** team. Consider

u

u= (ﬁ] There are u — 1 teams of v = [ % | reducers in each team.

2

groupAl] : represents disjoint groups of inputs of the set A, where groupA[i] indicates i*" group of [%] inputs of the A.

Function create_group(y) begin

Function 2_step_odd_q(lower, upper) begin
if Liuppwglowwj < 1 then return;
else

Function Assignment(lower, mid, upper) begin
while mid > 1 do

mid
Function value_b(a,t, mid, upper) begin
if a + t + mid < upper + 1 then return (a + ¢t + mid) ;
| elseif a + ¢ + mid > upper then return (a + 1) ;

Function Last_Team (lower, mid, upper) begin

foreach (a,t) € [lower, lower + mid — 1] x [0, mid — 1] do
Team[(u—2-mid+1) +t,a — | %= | - 4] + (groupAla), groupAlvalue_b(a, t, mid, upper)]) ;

for i < 1toudo groupAfi] < (i,i+1... i+ 95 —1),i« i+ 5,
| 2_step_odd_q(1,u), Last_Team(groupAl]), Assign_input_from_B(Team]])

L mid {%W], Assignment(lower, mid, upper), 2_step_odd_g(lower, mid), 2_step_odd_qg(mid + 1, upper)

| foreach i € [1,v] do Team[u — 1,1] < groupA[2 x i — 1], groupA[2 x i ;

Function Assign_input_from_B(Team||) begin
| foreach (i,j) € [1,u — 1] x [1,v] do Teaml[i, j] + Bli] ;

all y inputs of the set A are assigned to a team, where no input is
assigned twice in a team. [

Claim 3 When the reducer capacity q = 3, the set B holds at most
r <y — 1 inputs.

PROOE. Since a pair of inputs of the set A requires at most g — 1
capacity of a reducer and each team holds all the inputs of the set
A, an input from the set B can be assigned to all the reducers of
the team. In this manner, all the inputs of the set A are also paired
with an input of the set B. Since there are y — 1 teams and each
team is assigned an input of the set B, the set B can hold at most
z <y— linputs. []

Theorem 8 Algorithm 1 assigns each pair of the given m inputs to
reducers.

PROOF. We have (y — 1)[%] pairs of inputs of the set A of
size ¢ — 1, and there are the same number of reducers; hence, each
reducer can hold one input pair. Further, the remaining capacity
of all the reducers of each team can be used to assign an input of
B. Hence, all the inputs of A are paired with every other input and
every input of B (as we proved in Claims 2 and 3). Following the
fact that the inputs of the set A are paired with all the m inputs, the
inputs of the set B is also paired by following a similar procedure
on them. Thus, Algorithm 1 assigns each pair of the given m inputs
to reducers. [

2m

Theorem 9 Algorithm 1 requires at most (| (q,l)bQ /2 reducers

and results in at most m( (@277’”1)] — 1) communication cost.
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2m

PROOF. There are at most x = [ﬁ] groups (derived inputs)
of the given m inputs. In order to assign each pair of the
derived inputs, each derived input is required to assign to at most

x — 1 reducers. This fact results in at most m([(fl””] - 1)
2m

(qil)])Q/Q pairs of
1)?/2 reducers. O

communication cost, and there are at most ([

2m

(¢g—1)

the derived inputs that require at most ( [

Algorithm 2: 2-step algorithm when the reducer capacity ¢ is
an even number. We present our algorithm (see Algorithm 2) that
handles any even value of q. For the sake of understanding and
presentation, we first present an example where ¢ = 4, namely the
case in which a reducer can hold at most four unit-sized inputs, as
demonstrated in Figure 8 (Figure 8 is self-explainable; however,
interested readers may refer to Figure 12 in [1] for details). Note
that unlike the algorithm for odd values of g (Algorithm 1) the
algorithm for even values of ¢ (Algorithm 2) does not divide the
m inputs into two sets. The algorithm consists of two steps, as
follows:

1. Group the given m inputs into u = |—27m-| disjoint groups,

2. Organize (u— 1) x 4 reducers, each of capacity g, in the form of
u — 1 teams of & reducers in each team. Assign every two groups
to one of (u—1) x i reducers. We use Lemma 1 for the assignment
of every two groups.

Note that we consider each of the u (= [277”]) groups as a
single input that we call the derived input. By making u disjoint
groups of the m inputs, we turn the case of any even value of ¢
to a case when ¢ = 2 (i.e., a reducer can hold only two unit-sized
inputs) and assign every two derived inputs to reducers. In this
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Figure 8: 2-step algorithm (Algorithm 2) when the reducer capacity ¢ = 4.

Algorithm 2: 2-step algorithm for an even value of q.

Inputs: m: total number of unit-sized inputs.
q: the reducer capacity.
Variables: Team][i, j] : represents teams of reducers, where index
i indicates i*" team and index j indicates j*" reducer in i*" team.
Consider u = [22]. There are u — 1 teams of [ | reducers in
each team.
groupAl] : represents disjoint groups of inputs of the set A, where
groupAl[i] indicates i"" group of [£] inputs of the set A.
Function create_group(m) begin
for i < 1toudo
groupAli] < (i,i+1...i+ % —-1)i+i+%;
2_step_even_q(1,u), Last_Team(1, [%-‘ ,u)

Function 2_step_even_g(lower, upper) begin

if L%’“’WJ < 1 then return;

else
mid <
Assignment(lower, mid, upper),
2_step_even_q(lower, mid),
2_step_even_q(mid + 1, upper),

I' upper—lower
B

manner, each input of the set A is assigned with all the remaining
m — 1 inputs.

Algorithm description. Algorithm 2 provides a solution to the
A2A mapping schema problem for unit-sized inputs when ¢ is
an even number. Recall that Algorithm 1 and Algorithm 2 are
almost similar except Algorithm 2 does not create two sets A
and B. We first make u = PTm] disjoint groups of the given
m inputs such that each group holds £ inputs (lines 2), (and
consider each of the groups as a single input, the derived input).
Function 2_step_even_g(lower, upper) recursively divides the
derived inputs into two halves, lines 4 and 7. Function
Assignment(lower, mid, upper) (line 7) is a similar function as
given for Algorithm 1 (see line 8 of Algorithm 1) and makes
pairs of every two derived inputs. Function Last_Team(groupl])
(lines 3) assigns inputs to the last team, i.e., team v — 1. Note that
function Last_Team(group[]) is same as given for Algorithm 1
(see line 14 of Algorithm 1).

Algorithm correctness. We show that every pair of inputs is
assigned to reducers. Specifically, Algorithm 2 satisfies two claims,
as follows:

Claim 4 Pairs of derived inputs (i, j) and (i, j'), where i # i’ or
j # j', are assigned to a team.

Claim 5 All the given m inputs appear exactly once in each team.
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Theorem 10 Algorithm 2 assigns each pair of the given m inputs
to reducers.

Theorem 11 Algorithm 2 requires at most ([%Dz /2 reducers

and results in at most m ( [%’ﬂ — 1) communication cost.

Claim 4, Claim 5, Theorems 10, and 11 can be proved in
a similar manner as Claim 1, Claim 2, Theorems 8, and 9,
respectively. Detailed proofs are given in [1].

4.2 A big input of size greater than ¢

We now consider the case of an input of size w;, 2 < w; < ¢
we call such an input as a big input. Note that if there are two
big inputs, then they cannot be assigned to a single reducer, and
hence, there is no solution to the A2A mapping schema problem.
We assume m inputs of different sizes are given. There is a big
input and all the remaining m — 1 inputs, which we call the small
inputs, have at most size ¢ — w;.

We use FFD or BFD bin-packing algorithm to place the small
inputs to bins of size ¢ — w;. Now, we consider each of the bins as
a single input of size ¢ — w;. Let x bins are used. We assign each
of the = bins to one reducer with a copy of the big input. Further,
we assign the small inputs to bins of size 4, and consider each of
such bins as a single input of size . Now, we can assign each pair
of bins (each of size £) to reducers. In this manner, each pair of
inputs is assigned to reducers.

Theorem 12 (Upper bounds from the heuristic) For a set of m
inputs where a big input, i, of size & < w; < q and for a given
reducer capacity q, ¢ < s < s, an input is replicated to at most
m — 1 reducers for the A2A mapping schema problem, and the total
number of reducers and the total communication cost are at most

m—1+ Sqi; and (m—1)q+ %, respectively, where s’ is the sum
of all the input sizes except the size of the big input and s is the sum
of all the input sizes.

PROOF. The big input ¢ can share a reducer with inputs whose
sum of the sizes is at most ¢ — w;. In order to assign the input ¢
with all the remaining m — 1 small inputs, it is required to assign
a subset of m — 1 inputs whose sum of the sizes is at most ¢ — w;.
If all the small inputs are of size almost ¢ — w;, then a reducer can
hold the big input and one of the small inputs. Hence, the big input
is required to be sent to at most m — 1 reducers that results in at
most (m — 1)g communication cost.

Also, each pair of all the small inputs is assigned to reducers
(by first placing them to bins of size 4 using FFD or BFD
bin-packing algorithm). The assignment of all the small inputs

. 12 2 12 2
results in at most &5, < % reducers and at most %T < 4%
communication cost (Theorem 5). Thus, the total number of




852
q2

. 2
cost is at most (m — 1)g + 4%. 0

reducers are at most m — 1 + and the total communication

S. A HEURISTIC FOR THE X2Y MAPPING
SCHEMA PROBLEM

We propose a heuristic for the X2Y mapping schema problem that is
based on bin-packing algorithms. The proposed heuristic assumes
a fixed reducer capacity q. Two sets, X of m inputs and Y of n
inputs, are given. We assume that the sum of input sizes of the sets
X, denoted by sum,, and Y, denoted by sum,, is greater than q.
We analyze the heuristic on criteria given in Section 4. We look at
the lower bounds in Theorems 13 and 14, and Theorem 15 gives an
upper bound from a heuristic. The bounds are given in Table 1.

Theorem 13 (Replication of individual inputs) Fora set X of m
inputs, a set Y of n inputs, and a given reducer capacity q, an input
i of the set X is required to be sent to at least ¥ reducers and an
input j of the set Y is required to be sent to at least 2= reducers

for a solution to the X2Y mapping schema problem.

Theorem 14 (The total communication cost and number of
reducers) For a set X of m inputs, a set Y of n inputs, and a
given reducer capacity q, the total communication cost and the
total number of reducers, for the X2Y mapping schema problem,

2-sumgy-sum 2-sumy -sum, .
are at least L L and ;2 Y, respectively.

Bin-packing-based heuristic for the X2Y mapping schema
problem. A solution to the X2Y mapping schema problem
for different-sized inputs can be achieved using bin-packing
algorithms. Let a fixed reducer capacity ¢, two sets X of m inputs,
and Y of n inputs are given. The heuristic will not work when a
set holds an input of size w; and the another set holds an input of
size greater than ¢ — w;, because these inputs cannot be assigned
to a single reducer in common. Let the size of the largest input, ¢,
of the set X is w;; hence, all the inputs of the set Y have at most
size ¢ — w;. We place inputs of the set X to bins of size w;, and let
x bins are used to place m inputs. Also, we place inputs of the set
Y to bins of size ¢ — w;, and let y bins are used to place n inputs.
Now, we consider each of the bins as a single input, and a solution
to the X2Y mapping schema problem is obtained by assigning each
of the x bins with each of the y bins to reducers. In this manner,
we require z - y reducers.

Theorem 15 (Upper bounds from the heuristic) For a bin size b,
a given reducer capacity q = 2b, and with each input of sets X
and Y being of size at most b, the total number of reducers, the
replication of an individual input of the set X (resp. Y), and the
total communication cost, for the X2Y mapping schema problem,

4-sumyg-sum ssum 2.
are at most —————~, at most ——" (resp. at most =3 ),
4-sumg -

sum .
and at most B L respectively.

Proofs of Theorems 13, 14, and 15 are given in [1].

6. CONCLUSION

Two new important practical aspects in the context of MapReduce,
namely different-sized inputs and the reducer capacity, are
introduced for the first time. The capacity of a reducer is defined in
terms of the reducer’s memory size. We note that processing time
is typically proportional to the memory capacity. All reducers have
an identical capacity, and any reducer cannot hold inputs whose

37

input sizes are more than the reducer capacity. We demonstrated
the importance of the capacity aspect by considering two common
mapping schema problems of MapReduce, A2A mapping schema
problem — every two inputs are required to be assigned to at least
one common reducer — X2Y mapping schema problem — every two
inputs, the first input from a set X and the second input from a
set Y —is required to be assigned to at least one common reducer.
Unfortunately, it turned out that finding solutions to the A2A and
the X2Y mapping schema problems that use the minimum number
of reducers is not possible in polynomial time. On the positive
side, we present near optimal heuristics for the A2A and the X2Y
mapping schema problems.
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Lower Bounds on the Communication of XPath queries in
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ABSTRACT

We present two algorithms, each depending on a different
data fragmentation of the XML tree. They both compute
XPath queries in MapReduce, by first computing subqueries
and then combining their results. We compute the replica-
tion rate of each algorithm and show it is less than 2.

1. INTRODUCTION

In this paper, we study how to use MapReduce to compute
XPath queries on large XML files. We focus on optimizing
the communication cost. It is known that the sequential
complexity of evaluating XPath queries on XML trees falls
into lower complexity classes with high parallelizable prob-
lems [3]. The tree structure of both the data and the query
facilitate the low sequential complexity. However, when it
comes to using a distributed computational environment to
evaluate such queries, and especially when using the MapRe-
duce framework, rigorous work that optimizes the significant
performance measures is missing. In starting such an inves-
tigation, first we note that, unlike relational databases, XML
files have a hierarchical structure that makes distribution to
compute-nodes special, in that chunks of data in HDFS are
already structured. This structure can be used already in
the mappers to compute partial answers to the query [9, 10,
6, 7, 5]. Another approach (which is not discussed in this
work) would be to view the data as a collection of one binary
relation and a set of unary relations which are distributed to
the compute-nodes (mappers) randomly, thus the tree struc-
ture of the data cannot be used. This approach however does
not seem to have an obvious advantage — although it may
be worth being investigated rigoursly in order to figure out
its limits.

Communication cost is the size of data transferred among
the compute-nodes during a MapReduce job and it affects
performance. Communication cost per input is the replica-
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tion rate [4] (one node counts as one input).

In this paper, we give lower bounds on the replication rate
for XPath queries on XML trees, taking into account a limit
on the size of each compute-node. The size of a compute-
node is the number of XML tree nodes stored. The lower
bounds we derive for each round are smaller than 2. Actu-
ally we give proof of the validity of these lower bounds, by
providing an algorithm that achieves this replication rate.

The algorithms presented here use more than one rounds
of MapReduce. In the first round, the data are distributed
to the compute nodes and subqueries are computed. The
next round(s) combine the partial results of the subqueries
to compute the final result. For each of the algorithms
we assume a different fragmentation of the XML tree. We
do not discuss how to implement this fragmentation, which
would be necessary for these algorithms to derive also upper
bounds on the replication rate.

In particular we present two algorithms, one in Sec. 3, where
we do the assumption that a path from the root to any leaf
of the XML tree fits in one compute-node, so descendant
edges of the query are accommodated. The other algorithm
(Sec. 4) accommodates descendant edges in the next rounds
after partial descendant-free subqueries are evaluated.

2. PRELIMINARIES
2.1 XML trees and XPath Queries

Consider a directed, rooted, labeled tree ¢, where its labels
come from an infinite set 3. We denote N'(¢) and £(¢) the set
of nodes and edges, respectively, of ¢, and we write label(n)
to denote the label of a node n of t. The number d of
edges of the unique path through which n is reachable from
root of t is said to be the depth of n. We define children
and descendants of a node if there is an edge or a path,
respectively.

We consider two types of trees, those that represent XML
documents and those that represent XPath queries. An
XML document is represented by a tree (also called XML
tree) having labels from ¥ on its nodes. XPath queries are
different from XML trees in three aspects. First, the labels of
a query come from the set XU {x}, where * is the “wildcard”
symbol. Second, a query P has two types of edges: &,(P)
is the set of child edges (represented by a single line) and
&,/(P) is the set of descendant edges (represented by a dou-
ble line). Third, a non-Boolean query P has an output node,



denoted by out(P), and is represented by a circled node. A
Boolean XPath query does not have any output node. With-
out loss of generality, we will only consider Boolean queries
here. A subquery of @ is a single XPath query having a
subset of both the nodes and the edges of (). Furthermore,
given an XML tree ¢ and a node n of t, we say that the tree
rooted at n is a subtree of t. A subquery is Boolean or has
the same output as the query if the output node is in the
subquery.

The result of applying a query @ on an XML tree ¢ is based
on a set of mappings from the nodes of Q to the nodes
of t, called embeddings. An embedding from @ to t is a
mapping e : N(Q) — N(¢t) with the following properties:
(1) Root preserving: e(root(Q)) = root(t), (2) Label pre-
serving: For all nodes n € N(Q), either label(n) = * or
label(n) = label(e(n)), (3) Child preserving: For all edges
(n1,m2) € £,(Q), we have that (e(n1), e(n2)) € £(t), and
(4) Descendant preserving: For all edges (n1,n2) € £,/(Q),
the node e(n2) is a proper descendant of the node e(n1).

The result Q(t), now, of applying a non-Boolean query Q
on a tree t is formally defined as follows:

Q(t) = {e(out(Q))|e is an embedding from Q to t)}.

If @ is a Boolean query then the result Q(t) is “true”, only
if there is an embedding from @ to t. A partial embedding
of the query is an embedding of a subtree of the query on
the data tree.

According to Dewey encoding system [1], a unique identifier
of the form xo.x1.72..... x4 can be assigned to each node n
of an XML tree. These labels help to decide whether one
node is descendant of another (if and only if the Dewey label
of the latter is a prefix of the Dewey label of the former), or
what is the distance between nodes on the XML tree.

2.2 MapReduce

We will assume that the reader is familiar with MapReduce
(details can be found in [2]). However, we need to explain
our setting. Typically, each MapReduce job has a map phase
and a reduce phase. If we have a sequence of such jobs, then
the reducers of the first job send their data to the map-
pers of the second job, etc. However, the reducers of the
first job may act also as mappers of the second job (if it
is convenient for the problem at hand) and thus, distribute
the data themselves to the reducers of the second job. This
is the approach we take here. Hence, we will talk about
compute-nodes, instead of distinguishing between mappers
and reducers. There is another unconventionality we adopt.
Since we use the algorithms we present to argue for lower
bounds on the replication rate, we assume that the mappers
of the first job have the ability to send any subtree of the
XML to the first reducers. This is not totally unrealistic,
since many experiments on XML data do a similar fragmen-
tation as ours, because it is a natural way to obtain XML
data from HDFS.

3. XML TREE OF SHORT DEPTH

In this section, we consider XML trees where the root-to-
leafs paths fit into main memory of compute-nodes; i.e., the
size of each compute-node is larger than the depth of the
XML tree.
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3.1 Data Fragmentation

The fragmentation of the XML tree is done so that in each
compute-node we include one subtree of the data tree. Each
subtree is rooted in some data node w and all its leaves are
leaves of the data tree. We also include the path from the
root of the XML tree to u. As we will prove later, including
this path adds little extra cost to the replication rate — while,
apparently, prunes more nodes.

3.2 Computing and Combining Subqueries
We name the nodes of the query tree by n;,i = 1,2,....
E.g., in Figure 1, the tree on the left is an XPath query with
23 nodes.

DEFINITION 1. If there is a partial embedding from the
query to the XML tree that maps node n; of the query to
node u of the data tree such that all the descendants of n;
participate (are mapped on some data node) in the partial
embedding, then we say that node u is a n;-node.

Note that the same node can be both a n;-node and n;-
node, for distinct ¢ and j. Thus, by considering partial em-
beddings, we say that we create adorned nodes, where the
adornment is a nonempty set of nodes from the query tree.
Hence, if n; is in the adornment set of a data node m; then
mj is a m;-node.

After distributing the data, each compute-node calculates
partial embeddings of the query and finds mazimal n;-nodes,
for all 4, i.e., the parent of a maximal n;-node is not a n;-
node where n; is the parent of n; on the query tree.

We only distribute to the compute-nodes of second round a)
the adorned nodes which have at least one maximal adorn-
ment in their adornment set and b) all their ancestors (re-
member they are in the same compute-node). If we can
afford to send all such data nodes to one compute-node,
then we begin to adorn more nodes as follows: If a node u
with a non maximal adornment n; has children, each child
with adornment n;,, for all the n;;,j = 1,2,... children of
the query node n;, then we maximally adorn u with n;. We
terminate this procedure when we find no more nodes to
maximally adorn.

If we decide to apply multiple rounds to combine the partial
results from the first round, then use the following observa-
tion:

e We call a node candidate n;-node if some of its children
are adorned accordingly maximally.

e If a data node w is a candidate n;-node then all its
maximally adorned children must meet in the same
compute-node in the next round (otherwise “progress”
is not made).

The above multi-round distribution is feasible because we
do in each compute-node a special kind of deduplication, so
that it never emits two siblings with the same adornment.
Now, in the following subsection we calculate the replication
rate that results from the kind of data fragmentation we



do. This calculation applies to both the data fragmentation
method in this section and to each of the next necessary
rounds that combine the subqueries, since in all cases we
distribute similarly structured data (only less, when non-
adorned nodes are not distributed).

3.3 Analysis of replication rate

We examine the replication rate of the phase where we dis-
tribute the data to the compute-nodes. We analyze in detail
two special cases in this section.

3.3.1 Two level XML tree with high degree

Here, we assume that the XML tree has a root with mg
children and each child ¢; of the root has gm, children itself,
where ¢ is the size of a compute-node. These are all leaves
of the XML tree. Thus the XML tree T" has n = 1 + mo +
¢X7""m; nodes in total. For convenience in the calculations
below, we assume that each compute-node has size q + 2.

Each compute-node is identified by a number from 1 to M =
XT"%m;. We send each child of the root ¢; to m; compute-
nodes and each leaf to one compute-node. We send the root
to all the compute-nodes. The total number of compute-
nodes we use is X7"%m,.

In particular child ¢; is sent to a number of compute-nodes
with identifiers (here ¢ can be thought of as the second dot
in the Dewey label):

i—1
z+¥,omy, z=1,2,...,my

Each leaf [; is sent only to one compute-node. The commu-
nication cost is:

C=5""m; + X7"m; + ¢X7"m;

The first term corresponds to the root, the second term to
the children of the root and the final term to the leaves. The
replication rate is » = C'/n. Since mo < X7"m;, it is easy
to prove that r < 1+ %.

3.3.2 XML tree being a full binary tree

Here, we assume the XML tree is a full binary tree with n
nodes. Since we have assumed that the size ¢ of a compute-
node is larger than the length of the path from the root to
a leaf, we have here that ¢ > logn. Again for convenience
in the calculations, we assume that the compute-node size
is ¢ + logn — log ¢ with ¢ > logn.

In this case, each compute-node gets a whole subtree (with
its leaves being all leaves of the XML tree) of size q. Thus
the depth of this subtree is log g. The nodes in the XML tree
that are closer to the root than logn — log g are replicated
a number of times. In particular, the nodes at distance
logn —logg—1 (i=1,...,logn —logq — 1) from the root
are replicated 2° times. Thus communication for each level
(distance from root) is:

210g n—loggq _ ﬁ

q

210g n—logqg—1i % 21

Hence the total communication cost is:

(n— %) +% x (logn — logq)
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The first term counts for the nodes that are replicated once.
By dividing the above by n, replication rate is

1 1
1—-)+=x(logn—1o
( q) p (log g q)

This is approximately logn/g. Since the assumption is that
a path from the root to any leaf of the XML tree fits in one
compute-node, logn < q.

3.3.3 General Remarks

In order to calculate the replication rate in the general case
we combine the intuition from the two cases we analyzed
in detail. The calculation is based on the following remark
for the case where all roots (call them primary roots) in the
data tree that define compute-nodes are in the same level
(as in the cases we studied in detail, e.g., full binary tree).
We believe that this remark can be extended for the general
case too.

e The total communication cost for all nodes at any level
is the same.

In order to prove this remark, we consider a node in the data
tree that is a parent of some primary root. This node adds
as much to the communication cost as add all its children,
because it is sent to exactly all compute-nodes its children
are sent (and no two children are sent to the same compute-
node).

4. TALL XML TREES

Here we assume that a root-leaf path may not fit in one
compute-node but a neigborhood of radius dg in the XML
tree can fit, where dg is the maximum acceptable depth of
a descendant-free (to be defined shortly) subquery.

4.1 Data fragmentation

Consider an XML tree ¢ of depth d;. Since there are root-to-
leaf paths that cannot fit into main memory of the compute-
nodes, we aim to split the root-to-leaf paths. Considering a
positive number m (which will depend on compute-node size
q), we construct a set of fragments for each i = 1,...,[%]
which contains each tree node whose depth is included in
the range [(i — 1)% % + dg]. Furthermore, notice that
every two adjacent fragments overlap. In particular, the i*"
fragment contains the top dg nodes from the set i+ 1, where
i=1,..., [(‘fn—tﬂ This overlap ensures that each subquery
given by the decomposition described in next section can be

completely answered in some fragment.

4.2 Computing and Combining Subqueries

DEFINITION 2. Let Q be a query tree and £,,(Q) be the
set of descendant edges of Q). Then the descendant-free sub-
queries of Q) are the queries obtained by eliminating the de-
scendant edges from Q). We denote the set of the descendant-
free subqueries of a query Q as C(Q).

It is easy to see that for each descendant edge d = (n1,n2)
in £,,(Q), there is a pair of queries Q1,Q2 in Cq such that
ng is the root node of Q2 while n; is a leaf node of Q1.

Here we need some more definitions. A node n of a subquery
Q' in C(Q), such that there exists a descendant edge (n,m)
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Figure 1: A query @ and its descendant-free subqueries Q1, Q2, @3, Q4, Qs5, and Qs.

in Q, is called a border node of Q. The set of border nodes
of Q' is denoted by N/,(Q’). A descendant-free subquery Q’
that does not contain border nodes is a leaf subquery while a
subquery that contains a border node is said to be a non-leaf
subquery.

Ezxample 1. A query tree Q and the set of descendant-free
trees C(Q) = {Q1, Q2, @3, Q4, Qs5, Q}, obtained by its
decomposition appear in Figure 1. The set of border nodes
of Q is Ny ,(Q) = {nl,n2,n6,n9}. Qs, Qs4, Qs and Qg are

leaf subqueries while ()1 and Q2 are non-leaf subqueries.

DEFINITION 3. Let t be an XML tree, Q be a query and
C(Q) = {Q1, Q2}. Assume that N(Q1) = qo and ¢
root(Qz2). Let e1 be an embedding from Q1 to t such that
go maps on data node u and ez be an embedding from Q2
to t such that g1 maps on data node v. Suppose that v is a
descendant of uw. The composition of e1 and ez, denoted as
e1 0 ez, is a mapping e from N(Q) to t such that for each
n € N(Q1) then e(n) = e1(n), otherwise e(n) = ez2(n).

Evaluation Strategy 1. The query evaluation strategy con-
sists in the following three steps:

1. Decompose the query @ into a set of descendant-free
subqueries C(Q).

2. Evaluate separately each subquery in C(Q).

3. Combine appropriately (pairwise as per Definition 3)
the embeddings of the queries in C(Q) to find the em-
beddings of Q.

To combine appropriately the embeddings of the subqueries
in C(Q) we can follow either a multi-round approach or a
single-round approach. In the i** round of the multi-round
approach, we construct one compute-node for each image u
of the " border node (proceeding bottom-up in that we first
consider border nodes that have descendant edges to roots of
trees without border nodes). We send to this compute-node
all the descendants of u (Dewey label is used here). The
trade-off between the two approaches is that the amount of
pairs received by a compute-node may exceed the size of
the compute-node; while following multi-round approach we
perform iterative pruning of the intermediate pairs and we
reduce the amount of the pairs sent to each compute-node
in each round.
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4.3 Replication rate analysis

The replication rate is less than 2 during the data fragmenta-
tion, since some of the data are replicated only once and the
rest only twice. For the replication rate during the other
rounds, we assume again deduplication (in a similar sense
as in the first algorithm) in the first round. Thus, each
compute-node emits only one (of each n;-nodes set) descen-
dant of a specific data node. The Dewey labels are used to
recognize that. Hence we can assume again that all “rele-
vant” descendants of a specific data node fit in one compute-
node.
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1. INTRODUCTION

Nondeterministic Finite-state Automata (NFA) are
simple, yet powerful devices that model a plethora of
computationally oriented phenomena. One of the ad-
vantages of NFA’s is that they are closed under several
operations, such as concatenation, intersection, differ-
ence, and homomorphic images. This makes NFA’s ide-
ally suited for a modular approach, for instance in the
context of protocol design and web service composition.
A simple, but illustrative example of an e-commerce
application designed from components can be found in
Chapter 2 in [5]. The salient operation here is the in-
tersection of several finite state automata.

Problems relating to NFA’s have been widely stud-
ied in the literature. One of the main issues for the
NFA intersection problem is that the size of the out-
put NFA is the product of the size of all input NFA’s.
There is not much hope for improvement, since testing
for emptiness of the intersection of a set languages rep-
resented by NFA’s is known to be PSPACE-complete
[8]. The most commonly used algorithm for computing
the intersection NFA is to use the Cartesian construct
for product automata. If there are m input NFA’s each
having n states, the product NFA will have n™ states.
It therefore would be important to come up with good
distributed algorithms for the problem.

Google introduced map-reduce as a parallel program-
ming model [4] that can work over large clusters of com-
modity computers. Map-reduce provides a high-level
framework for designing and implementing such paral-
lelism. A growing number of papers deal with map-
reduce algorithms for various problems, for instance re-
lated to graphs [12, 9, 3, 11], and related to relational
joins [2, 6, 7).

In this paper we investigate the problem of imple-
menting the Cartesian construct in map-reduce. We
follow the optimization approach of Afrati et al. [1] and
analyze the replication rate required for computing the
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product NFA. The replication rate corresponds intu-
itively to the total amount of communication between
the processes in the cluster. We first derive a lower
bound for the replication rate in the product computa-
tion. We then propose three algorithms for the prod-
uct computation and analyze their behaviors, thereby
obtaining upper bounds for the replication rate. Our
study shows that in the case where the size of the alpha-
bet for the NFA’s is large and we have a large number
of reducers available, an algorithm that distributes the
transitions of the input NFA’s based on their alphabet
symbol achieves an optimal replication rate. For the
cases where the alphabet size is smaller than the num-
ber of available reducers, a distribution based on both
the alphabet symbol and states of the transitions works
best. These conclusions are also supported by our ex-
perimental results.

The rest of this paper is organized as follows: Sec-
tion 2 gives the necessary technical definitions, and in
Section 3 we derive the lower bound for the replication
rate. Section 4 presents and analyzes three concrete al-
gorithms for the problem, and Section 5 describes the
experimental results. Conclusions are drawn in the last
section.

2. PRELIMINARIES

In this section we introduce the basic technical pre-
liminaries and definitions. We assume familiarity with
the map-reduce model (see e.g. [10]).

A Nondeterministic Finite-state Automaton (NFA)is
a 5-tuple A = (Q,%,0,s, F), where @ is a finite set of
states, X is a finite set of alphabet symbols, § € @xXxQ
is the transition relation, s € ) is the start state, and
F c Q is a set of final states. By ¥* we denote the set of
all finite strings over X. Let w = cycs...c, wWhere ¢; € X
be a string in X*. An accepting computation path of
w in A is a sequence (s, ¢1,q1)(q1,¢2,92) - - - (qn-1,Cn, f)
of elements of d, where s is the start state and f € F.
The language accepted by A, denoted L(A), is the set
of all strings in X* for which there exists an accepting
computation path in A. A language L is regular if and
only if there exists an NFA A such that L(A) = L.

Concordia University
Montreal, Canada, H3G 1M8
adrian_onet@yahoo.com



It is well known that regular languages are closed
under intersection. In particular, given NFA’s A; =
(Q1,%,61,51, F1) and Az = (Q2, %, 02, 52, F2), an NFA A,
such that L(A) = L(A;) n L(Az2) can be computed by
the Cartesian construct A= Ay ® Ay, where

A1 ® Ay = (Q1 xQ2,%,0,(s1,52), F1 x Fy),
and

d={((p1,12):¢,(q1,42)) : (p1,¢,q1) € 01, (P2, ¢,q2) € 02}

The ® operation clearly is associative, and can be gen-
eralized to a polyadic operator A; ® -+ ® A,,. The
Cartesian construct amends itself easily to the map-
reduce framework by having the mappers emit transi-
tions (p;,ci,q;) from each NFA A;, and the reducers
output a transition ((p1,...,0m),¢ (q1,.-.,¢m)) upon
receiving inputs (p;,ci,q;), where ¢ = ¢1 = -+ = ¢
The crucial question is how to distribute the transi-
tions (py,¢i,q;) over the reducers. This is discussed in
Section 4.

3. LOWER BOUND ON THE REPLICATION
RATE

Recall that each mapper emits key-value pairs (K, V),
where K determines the reducer that the pair is sent
to. Each reducer receives and aggregates key-value lists
of the form (K, Vi,...V;), where the (K,V;) pairs are
emitted by the mappers. The largest list associated
with one key is called the reducer size, and we will de-
note it by ¢q. A small g-value ensures that the reducer
can perform the aggregation in main memory, and also
enables more parallelism. On the other hand, more par-
allelism usually increases the replication rate, which is
the average number of key-value pairs that mappers cre-
ate from one input. The replication rate is intended to
model the communication cost, that is the total amount
of information sent from the mappers to the reducers.
The trade-off between reducer size ¢ and replication rate
r, is usually expressed through a function f, such that
r = f(q). The first task in designing a good map-reduce
algorithm for a problem is to determine the function f,
which gives us a lower bound of the replication rate r.

To start, we derive a tight upper bound, denoted
g(q), on the number of outputs that can be produced
by a reducer of size q. We suppose that NFA A; has
|6;]/k transitions for each of the k alphabet symbols. To
generate a transition for A, the reducer needs m tran-
sitions, one from each NFA A;. The intersection NFA
A has W transitions, for each alphabet symbol
c €Y. As there are k alphabet symbols, the total num-

‘61|><~"><‘5m,‘ - |§1|X'”X‘67n|
m

ber of transitions will be k x AT

It is known that the product of the elements in a par-
tition with a fixed summation is maximum when the
blocks of the partition have equal size. We therefore as-
sume that input data is evenly distributed, so each re-
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ducer receives g/m transitions from each NFA A;. The
proceeding gives us the following upper bound on the
output of one reducer.

LEMMA 1. In computing A= A1 ® - ® A, a reducer
of size q can cover no more than g(q) = (q/m)™ outputs.

Using Lemma 1, and the total number of transitions
in A, we can get a lower bound on the replication rate
as a function of ¢. As shown in [1] the lower bound is
given by the expression

a0l

g(q) < 1|’
where |I|] is the size of input, and |O] is the size of the
output. The input size will be the sum of the size of the
transition relation of all input NFA’s, that is |I] = 1|+
-++|0,m|. As we saw above, the size of the output in terms
of the number of transitions will be |O| = %
This gives us the lower bound on replication rate for
our problem as follows

PRrROPOSITION 1. The replication rate r for the Carte-
sian construct A=A ®---® A, is

[01]x--x|O |
km-1

ro2 7% .
(g/m)™ x (|61] + -+ + [l

4. ALGORITHMS FOR THE CARTESIAN
CONSTRUCT

In this section we propose and analyze three different
algorithms for computing A = A;® - ® A,,,. Our algo-
rithms compute A in one map-reduce round, as opposed
to an m — 1 round cascade (...(A; ® A2) ®...) ® A,,.
Since the Cartesian construct shares features with the
multiway join problem, and the latter has been shown
to work more efficiently when done in one round, as op-
posed to a cascade [2, 6], we only consider the one-round
version in this paper.

We note that the main difference between the NFA
intersection and the multiway join problem is that in
the latter the only possibility for distributing the tu-
ples is based on the value(s) of the join attribute(s)
(corresponding to the alphabet symbols in ), whereas
the NFA intersection problem we can also distribute the
tuples of the transition relation based on the states they
involve.

4.1 Mapping based on states

Suppose we have n'™ reducers, where n is the maxi-
mum number of transitions in any of the input NFA’s.
In our first algorithm the mappers produce keys of the
form (i1,49,...,%m). Let h be a hash-function with
range {1,...,n}. A transition (p;,c;,q;) from NFA A;
is mapped as key-value pairs (K, (p;,ci,q;)), where



K= (il, e ,ii_l, h(pi)7ii+1a e ,Zm)
for each ij € {1,...,n}. In other words, each transition
is sent to n™! reducers.

In this method, the input and output sizes remain
unchanged. However, the function g(q) will be affected
by presence of transitions with different alphabet sym-
bols inside a single reducer. This gives us a new upper
bound on the number of outputs each reducer can pro-
duce, namely g(q) = k (g/mk)™. We thus have

PROPOSITION 2. The replication rate r in the state-
based mapping scheme is
X Ix e ol
~ (g/m)™ x ([01] + -+ + (6]
If n is the maximum number of transitions in any of

the input NFA’s, the upper bound on the replication rate
becomes 1 < (%)mfl.

By comparing propositions 1 and 2, we observe that
the upper bound for the replication rate obtained by
mapping based on states exceeds the theoretical lower
bound by a factor of ™. We conclude that the state-
based mapping approach is best suited for situations
where the alphabet size is small, e.g., when the alphabet
is binary.

4.2 Mapping based on alphabet symbols

In our second algorithm, we have one reducer for each
of the alphabet symbols. Thus, the number of reduc-
ers is equal to the alphabet size k. The mappers will
send each transition (p, ¢, q) to the reducer correspond-
ing the alphabet symbol c¢. More precisely, from tran-
sition (p;,¢,q;) of NFA A; the mapper will generate
the key-value pair (h(c),(pi,c,¢;)). Here h is a hash

function with range {1,...,k}. Thus each reducer will
output transition ((p1,...,Pm):¢ (q1,...,qm)), having
received inputs (p;,¢,¢q;) fori=1,... m.

The total number of transitions sent to all reducers
is 327 |0;] which we approximate by mn, assuming that
each A; has at most n transitions. The replication rate
is 1, since every transition is mapped to exactly one
reducer. This algorithm works well when the alphabet
size k is large and the number of reducers is equal to
the number of alphabet symbols. In summary:

PROPOSITION 3. The replication rate in the alphabet-
symbol based mapping scheme is 1, assuming that the
number of reducers and alphabet symbols are the same.

Obviously a replication rate of 1 is optimal. This
matches the lower bound of Proposition 1, when ob-
serving that each reducer has to process (nm)/k inputs,
assuming that the alphabet symbols are uniformly dis-
tributed. Substituting ¢ = (nm)/k in the lower bound
(%)m_1 of Proposition 1, gives r > 1.

44

4.3 Mapping based on both states and alpha-
bet symbols

On one hand, if we map the transitions only based
on the alphabet symbols, the algorithm does not allow
for much parallelism if the alphabet ¥ is small. On the
other hand, as we have observed, if the transitions are
mapped based on states only, the replication rate, and
consequently the communication cost, will be sharply
increased k™! times. We therefore consider a hybrid
algorithm that maps transitions based on a combination
of alphabet symbols and states. In the hybrid method
we have a function hg that hashes states into b buckets,
and a function h, that hashes the alphabet symbols into
b, buckets. A transition (p;,c;,q;) from A; is mapped
to reducers (il, ey 7;1‘_1, hs(pi),iHl, PN ,Z'm, ha(ci)), for
each ij € {1,...,bs}, and the total number of reducers
will be b™ 1. b,.

To compute the replication rate in this method, we
note the input and output sizes |I| and |O| remain un-
changed. However, the function g(gq) will be affected
by presence of transitions with different alphabet sym-
bols inside a single reducer. We will now have g(q) =
£(q/mL)™, where ¢ is the average number of alphabet
symbols received by a reducer, or equivalently, ¢ = k/b,.
From this we can derive the replication rate.

PROPOSITION 4. The replication rate r in the hybrid
mapping scheme is

X
r< I X
(a/m)™ x ([61] + -+ + [0m])
Assuming that the mazimum number of transitions in

m—1
any of the input NFA’s is n, we get r < (HTTZ@) .

[0 [%-+x|dm |
km-1 mel

Note that if b, = 1 then ¢ = k and there is no hashing on
alphabet symbols, and as it can be seen, the replication
rate will be equal to the replication rate of the first
mapping schema. On the other hand, if b, = k, that is
if we hash fully on alphabet symbols, then ¢ =1 and as
it can be seen, the replication rate will be equal to the
replication rate of the second mapping schema.

S. EXPERIMENTS

We conducted some experiments to validate the anal-
ysis of the previous section. We computed A; ® A;® A3,
and varied the size of the NFA’s and number of alpha-
bet symbols. Our experiments were run on Hadoop on
a 2-node, personal computer, cluster (8 cores per node
running at 3.0 GHz and 24GB memory in total). The
number of reducers in the experiments was set to 128.
The desktops were running Scientific Linux operating
system with kernel version 6.0. The NFA’s were gener-
ated as labelled random graphs, along the lines of [13].
The total number of transitions were determined by the



transition density, that is, the ratio between the num-
ber of transitions and the number of states. In the data
shown we used a transition density of 2.0.

In the experiments we compared the execution time
obtained by hashing the input data based on states
(Method I) and on both states and alphabet symbols
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Figure 1: Processing times of two methods for
the alphabet size k=16
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Figure 2: Processing times of two methods for
the alphabet size k =64
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Figure 3: Processing times of two methods
where total number of transitions are 28,000

In Figure 1, we see the execution time for differ-
ent data sizes with the alphabet size k = 16. Figure
2 shows the comparison of Method I and Method II,
while the alphabet size k = 64. As expected, Method II
is clearly more efficient. Figure 3 represents execution
time of the two methods for various alphabet sizes when
|01] + 02| + |03 = 28,000, The figure shows that as the
size of alphabet increases, the execution time of both
algorithms get closer to each other. This is due to the
fact that once the the size of the alphabet exceeds the
number of reducers (128), in Method II each reducer
has to deal with several alphabet symbols, thus slowing
down the computation inside the reducers.
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6. CONCLUSIONS

In this paper we proposed and studied methods for
computing a product automaton using Map-reduce. Our
analysis and experimental results show that carefully
optimizing the amount of inter-processor communica-
tion indeed pays off in improved processing time.

In future work we will investigate reducing the num-
ber of states in the product automaton, either by elim-
inating all or part of the useless states or by and deter-
minizing and minimizing the automaton.
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ABSTRACT

The falling price of main memory has led to the develop-
ment and growth of in-memory databases. At the same
time, new advances in memory technology, like persistent
memory, make it possible to have a truly universal stor-
age model, accessed directly through the programming lan-
guage in the context of a fully managed runtime. This envi-
ronment is further enhanced by language-integrated query,
which has picked up significant traction and has emerged as
a generic, safe method of combining programming languages
with databases with considerable software engineering ben-
efits.
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ABSTRACT

In several parts of query optimization, like join enumeration
or physical operator selection, there is always the question of
how much optimization is needed and how large the perfor-
mance benefits are. In particular, a decision for either global
optimization (e.g., during query optimization) or local opti-
mization (during query execution) has to be taken. In this
way, heterogeneity in the hardware environment is adding
a further optimization aspect while it is yet unknown, how
much optimization is actually required for that aspect. Gen-
erally, several papers have shown that heterogeneous hard-
ware environments can be used efficiently by applying opera-
tor placement for OLAP queries. However, whether it is bet-
ter to apply this placement in a local or global optimization
strategy is still an open question. To tackle this challenge,
we examine both strategies for a column-store database sys-
tem in this paper. Aside from describing local and global
placement in detail, we conduct an exhaustive evaluation to
draw some conclusions. For the global placement strategy,
we also propose a novel approach to address the challenge
of an exploding search space together with discussing well-
known solutions for improving cardinality estimation.

1. INTRODUCTION

Column-store database systems have been established over
the last years and have demonstrated that they massively
benefit from high main memory capabilities and multi-core
CPUs. As shown in several papers [1, 7, 10, 13], using such
database principle, the speedup of query performance—in
particular for OLAP scenarios—compared to classical row-
based architectures is immense. Aside from high main mem-
ory capabilities and multi-core CPUs, hardware systems are
more and more changing towards heterogeneity. That means,
a multi-core CPU with large main memory is packed into
one single hardware box together with one or more addi-
tional non-traditional computing units, e.g., graphic cards,
Intel Xeon Phis, or FPGA cores. This heterogeneity trend is

(© 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0
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going to accelerate and database systems have to exploit this
heterogeneity to fulfill increasing performance requirements
from available and upcoming applications.

A significant number of research activities has already
ported traditional database operators to different comput-
ing units like GPU [5, 4], FPGA [11], or many core proces-
sors [12]. To tackle the heterogeneity aspect, these ported
operators are useful, whereas these operators were always
executed on the corresponding computing unit, hoping to
reduce the overall execution time. However, to efficiently
utilize heterogeneous hardware environments and to reduce
the overall query runtime in such environments, it is cru-
cial to assign database operators to the appropriate comput-
ing unit for each query separately. This placement assign-
ment has several influencing factors like execution behavior,
data characteristics, and properties of available computing
units [8].

In order to determine placement assignments, various de-
cision models have been proposed, e.g. HOP [8] and HyPE
[3]. These decision models use information about computing
units together with monitored values of previous executions
to calculate the estimated execution time in a cost func-
tion for each computing unit. A more static approach using
instruction counts and execution cycles is also possible to
estimate the runtime [5, 6]. Using one of these placement
models, the resulting estimation can be deployed to assign
an operator to the computing unit with the smallest esti-
mated costs. The mentioned work in this field has proven or
provide a high potential for heterogeneous execution. Never-
theless, it is yet unknown, how much optimization is actually
required for this placement assignment.

Placement Strategies

In our previous work [8], we identified two strategies for
column-store DBMS to support these operator-level place-
ment assignments based on runtime estimations. Both strate-
gies are shown in Figure 1 in the context of query optimiza-
tion and execution. Both strategies have in common that,
after an SQL query is translated into a query execution plan
(QEP), a placement decision is made for each operator. In
this paper, we assume the operators to be executed at a time
with fully materialized intermediate results.

The first placement strategy (local placement optimiza-
tion) conducts an estimation and placement step directly
before the execution of each operator and the placement is
done for each operator separately. Therefore, the estima-
tion can work on the most recent information about data



Local Placement Strategy

SQL

QEP —— Placement — Exec

Global Placement Strategy

Figure 1: Heterogeneous operator placement strate-
gies.

sizes, allowing an exact estimation of data transfers and ex-
ecution. Additionally, only one operator is placed at the
time, leaving a small search space of the amount of avail-
able compute units. However, this approach might be too
greedy since the rest of the QEP is not considered in this
local decision. In particular, data sharing between operators
is hardly considered.

On the contrary, the second strategy (global placement
optimization) decides the placement for all operators of a
QEP before execution. In this case, global placement is done
by considering all dependencies of the QEP. This approach
yields a high potential for better performance compared to
the local placement optimization, because data sharing be-
tween operators is explicitly encouraged to avoid costly data
transfers. However, there is a price for optimizing the whole
query for heterogeneous execution. The two main challenges
are the huge search space of possible placements and the
problem of uncertain or unknown intermediate result sizes.

Contribution

To tackle the issue of how much optimization is required
for the heterogeneity aspect, we examine both placement
strategies for a column-store database system in detail in
this paper. Our main contributions are as follows:

e First, we briefly describe the local placement optimiza-
tion strategy and present advantages and limitations
of this approach (Section 2).

e Second, we introduce the global placement strategy
with additional optimizations to tackle the mentioned
challenges (Section 3).

e Third, we conduct an exhaustive evaluation to com-
pare local and global placement optimization in an
OpenCL based database system (Section 4).

e Finally, we summarize our findings in a property table
illustrating the advantages and disadvantages of both
approaches.

To the best of our knowledge, no one evaluated differ-
ent query optimization strategies for heterogeneous envi-
ronments in the past. However, different optimization ap-
proaches were mentioned in previous work: local query op-
timization was used by Brefl et al. [2] and Karnagel et al [9]
within an OpenCL based column store database system. He
et al. [5] computed all possible solutions for separate sub-
plans below a given number of operators and combined the
result for the full plan dividing the search space into much
smaller problems. However, this is only applicable for tree
like query plans and might introduce a significant overhead
for large queries.
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2. LOCAL PLACEMENT STRATEGY

The strategy to integrate operator placement at the exe-
cution time of each operator, local optimization, is the most
intuitive approach. Placement is decided right before the op-
erator’s execution, after previously executed operators have
already finished. The input and output data is kept in the
computing unit’s memory until it will be needed on another
computing unit. For local optimization, there are three ques-
tions that have to be considered:

1. How big is the input data?
2. Where is the input data placed at the moment?

3. How does the operator perform on the different com-
puting units?

The approach is illustrated in Figure 2. The operators
O1 and O2 produce the results x and y. These are stored
on the computing units where the operators were executed,
here illustrated with different colors. Placement and data
size of each input for operator O3 is considered to calculate
the transfer costs, if transfer is needed, for the hypothetical
execution on each computing unit. The exact data input
size is known for base columns as well as intermediate re-
sults, since previous operators have already finished their
execution. For base columns, the data placement is either
in main memory, or already on a compute unit’s memory, if
an other operator needed the column before. For interme-
diate results, the data is most likely stored on a computing
unit’s memory, where the result producing operator was ex-
ecuted. There is the possibility, that data was evicted from
the computing unit’s memory, if other operators needed ad-
ditional memory space. However, this should be traceable
and the actual memory location should be considered. The
third question with respect to the estimated runtime should
be answered by one of the prediction models presented in
the introduction. Having the transfer time and the opera-
tor’s execution time estimates, a decision can be made by
picking the computing units with the minimal sum of all
input transfers costs and execution time. This is the best
decision from a local optimization point of view. The search
space for this decision is limited to the number of computing
units. The decision procedure is repeated for each operator
in the order of execution. The result transfer is not consid-
ered for the producing plan operator since the data might
be reused by the next operator on the same computing unit.
If the result transfer is needed, it is added to the costs of
the consuming operator instead of the producing one.

The strong advantage of the local placement strategy is
its simplicity and easy implementation. The search space
corresponds to the number of computing units per decision
with one decision per plan operator. Additionally, this ap-
proach works on runtime information about data sizes and
their placement. Furthermore, the decision is only local by



Op Runtime Placement Strategy
CuUl CuU2 local global
1 1.2s  0.1s CU2+tr =1.1s CUl = 1.2s
2 0.1s 1.2s CUl+tr=1.1s CU1l =0.1s
Total: 2.2s 1.3s

Table 1: Local vs. global placement strategy. Data
transfer (if needed) takes always 1s (tr). The initial
data is stored on CU1l. The operators are executed
according to their ordering.

trying to find the ideal execution unit for one single opera-
tor. This might not be optimal for the full plan, sacrificing
performance through unnecessary data transfers.

3. GLOBAL PLACEMENT STRATEGY

Applying placement at compile time means making the
placement decision globally during query optimization. This
leads to new possibilities as well as new challenges. An ex-
ample is shown in Table 1 to highlight the performance po-
tential. The example includes two operators with estimated
execution times for two computing units (CU1, CU2). The
initial data resides on computing unit CU1 and every data
transfer, if necessary, takes 1 second. The presented local
strategy would choose CU2 for the first operator, since the
run-time plus transfer-time is less than the execution time
on CU1. In the second step, it chooses CU1 for the same
reason. The total execution time is 2.2 seconds including
transfers. For the global strategy, however, the total exe-
cution time is only 1.3 seconds since the placement can be
globally optimized before execution. Besides the high po-
tential, there are also additional challenges to consider. The
two major challenges are (i) the exploding search space of
global optimization and (ii) the unknown or uncertain data
cardinalities of intermediate results.

3.1 Challenges

Data cardinalities are usually known for base relations
but intermediate results are unknown and can only be es-
timated in the optimization step. However, the exact data
cardinalities are crucial for calculating a good heterogeneous
placement including correct transfer costs. Since this is a
well-known problem in database research, we rely on other
research results to provide realistic estimations for the in-
termediate result sizes.

To the best of our knowledge, the exploding search space
for global placement optimization in heterogeneous hard-
ware environment was not in focus of prior research. For a
global optimization, every possible placement option has to
be considered in order to find the best placement for the full
plan. Being #cu the number of computing units and #op
the number of database operators, then #cu™°P describes
the search space for this query plan. For example, a highly
heterogeneous system with 10 computing units, executing a
query with 100 operators would lead to 10'%° possibilities,
which is more than all possible 2-way join combinations for
50 joins! To avoid a much larger search space, we assume
that, (i) the query execution plan is a DAG (directed acyclic
graph) as usual in column-store database system and (ii)
the DAG is fixed throughout our heterogeneous placement.
That means, the heterogeneous placement do not have any
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Figure 3: Global placement strategy.

influence on the structure of the DAG. There are approaches
to cope with such a large search space in join enumeration.
However, the general conditions are different for our hetero-
geneous placement approach. We identified three properties
that define the large search space in heterogeneous execu-
tion.

1. The search space does not correlate with the actual
runtime. This means, that a query with a large search
space can be based on small relations and therefore
can execute in a short time. In general, the runtime
is highly dependent on the underlying data character-
istics, whereas the effort to evaluate the search space
stays the same.

2. The search space and the execution time scales with
the number of operators.

3. With increasing number of computing units, the query
execution time (ideally) reduces, since new computing
units might be better suited for some tasks. However,
the search space grows exponentially.

The first and the second issue are similar to join enumer-
ation problem, while the third point is unique to hetero-
geneous execution. However, looking at the first point, a
database system that needs to do the join enumeration for,
e.g., 50 joins will reserve a fair amount of time for optimiz-
ing the order. In our case, dependent on the data sizes, the
queries could execute in sub-seconds, leaving only a fraction
of that time for efficient optimization.

3.2 Greedy-based Approach

To solve the presented challenges for global optimization,
we choose a greedy-based search algorithm together with two
approaches for further optimization. We rely on a greedy-
based algorithm for several reasons. As mentioned earlier,
the search space is too large for a complete search. Opti-
mizing smaller sub-trees is not possible, since we focus on
column stores having execution plans as DAGs instead of
trees. This means the results of an operator can be used by
multiple other operators, making it impossible to define iso-
lated sub-trees. Moreover, a greedy approach makes small
changes to improve the placement without considering every
possibility.

For our greedy implementation, we start with a pre-set
placement decision for every operator. This initial place-
ment could assign the operators randomly to the computing
units. Then, we iterate over each operator and evaluate
the possible placement decisions locally for this operator.
If the algorithm finds a better placement for this operator,
we change the decision in the initial placement. The main
difference to the local approach is that we already have a



Op | input Runtime Different Placements
transfer CU1 CU2 | I 11 Im 1v. v
1 1s 1s 5s 1 2 1 1 1
2 1s 1s 0.1s | 1 2 2 1 2
3 5s 5s 0.1s | 1 2 1 2 2
4 0.5s 1s 5s 1 2 1 1 1
Total(inc. transfers): 8 11.2 131 8.6 3.7

Table 2: Placement cost example. The initial data
is on CU1. If needed, the shown input transfer costs
apply. The operators execute in order.

placement decision for the following operators, leading to
a more informed decision concerning possible data sharing.
Figure 3 illustrates this difference. Additional to Operator 1
and 2, the cost function knows the placement of the opera-
tors 4 to 6 and the data sizes a, b, and c, therefore being able
to calculate inward and outward transfers. Including both
kinds of transfers as well as estimates of execution times
of each compute unit is leading to a more informed deci-
sion than in a runtime-based local optimization. After an
optimization iteration over all operators, the changes made
on one operator’s placement, could influence placement of
the previous ones as well. Therefore, the algorithm has to
iterate over the operators as long as improvements can be
found. When no single placement change of an operator im-
proves the global estimation time, then the algorithm found
a (local) optimum.

The above described greedy approach is fast and improves
a pre-set starting placement iteratively. However, it is still
a greedy approach, which finds a good but possibly not the
best placement for the full plan. One reason for not finding
the optimal placement is the occurrence of operator groups,
that should be placed together. It could be possible that
some operators are most beneficially placed together on one
computing unit, so that data transfers between them are
avoided. However, the best computing unit for the group
might not be the best for the single computing unit, so an
approach which can only change one placement at the time
might not find the best solution. The problem is illustrated
in Table 2. Dependent operators, transfer costs, and run-
times are shown. Varying input transfer times correspond
to intermediate data sizes, e.g., Operator 2 could be a join
with large result, so operator 3 has a high input transfer
time. Local optimization would choose the pure CU1 place-
ment (I). For global optimization, the result highly depends
on the starting placement. If the starting placement is (I),
then (IIT) and (IV) would be evaluated (besides others) but
(I) would be chosen as placement with the minimal costs.
With a starting placement of (IV) and assuming the algo-
rithm starts from the top, our global strategy would also
evaluate (V) and find it to be the best possible placement.

It is unknown how big these operator groups could be, so
it would be a lot of effort to test all groups of two opera-
tors, three operators and so on. A more practical idea would
be to change the pre-set starting placement and do multi-
ple greedy runs. For example when testing random starting
placements, there would be the possibility that some oper-
ators of a group are already assigned to the right comput-
ing unit, pulling the other operators as well. For that, the
overall result could be improved by testing many different
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starting placements and picking the best plan placement ac-
cording to our execution time estimation. Therefore, we im-
plemented the greedy approach in a hardware-independent
OpenCL version, that can test many different starting place-
ments in parallel. This also addresses issue 3 from the pre-
vious section. With more computing units, the search space
grows but there is also more computing power to evaluate
more starting placements for a possibly better solution.

Search Space Reduction

In the previous part, we described our greedy approach and
the problem of being dependent on the starting placement.
We need to evaluate many different (random) placements,
in order to find a good solution. This scales with the search
space, meaning that we should test more starting placements
with a higher search-space (e.g., for more plan operators).
Since we can only evaluate a defined number of placements,
we need to reduce the search space to improve the probabil-
ity of finding a good placement.

We propose to reduce the search space by assigning oper-
ators fixed to one computing unit, if the greedy algorithm
would pick this computing unit in every possible scenario.
For example, Operator 1 and 4 in Table 2 will always be
placed on CU1 even if all other operators are on CU2. We
call these strong placements, where one computing unit is su-
perior in the execution of one operator to an extent that the
worst case data transfers are negligible. Since every greedy
run for any starting placement would pick these placements,
we do not have to consider them in the greedy algorithm
as well as in selecting the starting placement. For Table 2,
this would mean fixing the placement for Operator 1 and 4,
reducing the search space for the other placement decisions
from 2% = 16 to 22 = 4. Depending on the computing units
and operators, this approach can reduce the search space
significantly, even to the point of fixing the placement for
the full plan.

The strong placements can be calculated by iterating over
the plan once for each computing unit and evaluate if a single
operator would be placed on another computing unit, even
if all other operators are on the initial one. For example,
a plan is initially set to CUl. Each operator is tested if
a placement on CU2, CU3, and so on, is beneficial for the
overall runtime while having all other operators on CUIL.
This has to be done for each computing unit. If, for example,
one operator is always placed on the same computing unit,
then this operator can be fixed to this computing unit as
a strong placement. Calculating these strong placements
introduces only a small overhead by having the potential to
reduce the search space significantly.

Majority Voting

After determining the strong placements, the remaining open
operator placements can be assigned randomly to the com-
puting units as starting placements for the greedy approach.
Here, we deploy the greedy algorithm for many starting
placements in parallel, ideally even in parallel on different
computing units. As a result, we get the improved place-
ment from the greedy approach and the estimated costs of
the full plan. According to the costs, we can choose the best
placement for execution.

As an additional step, we look at the output placements
and collect statistics on the operator placements. The statis-
tics can be used to find tendencies of the placements. For



| System I | System II
Vendor AMD AMD Intel Nvidia
Name A10-5800K HD7660D | i7-3960X K20C
Type CPU GPU CPU GPU
Cores 4 384 6 (12 HT) 2496
Freq.(MHz) 3800 800 3300 706

Table 3: Heterogeneous test systems: AMD APU
(CPU and integrated GPU) and a combination of
Intel CPU and Nvidia GPU. The systems comput-
ing units are arranged to be balanced in their com-
putational power.

example, if we run 1000 random greedy searches, 200 would
pick CU1 for operator 1 and 800 would pick CU2 for the
same operator, then we know that CU2 is probably more
suited. Using the statistics for all operators, we apply a
kind of majority voting by combining one common place-
ment from all random runs. This placement is itself eval-
uated concerning runtime estimation as well as used for a
starting placement for another single greedy evaluation.

With the majority voting approach, it is possible to com-
bine many good placements to an even better one, which
was not found by the greedy algorithm using the random
starting placements. However, if the result of the majority
voting is not as good as some other placements, the best
placement is taken from the random runs.

3.3 Summary

Our approach for global optimization includes an informed
greedy algorithm, search space reduction through strong
placements, and the majority voting of random starting place-
ments. Therefore, we are able to globally optimize a full
QEP. Besides the advantage of global optimization, our global
optimization has also limitations. The presented approach
is still a greedy strategy which might only find a good so-
lution but not the optimal one. Additionally a small over-
head is added to query execution for optimization and re-
optimization of the placements.

4. EVALUATION

To evaluate our local and global optimizing approaches,
we implemented both in an established database system.
For this, we chose Ocelot [7], an OpenCL based extension
to the in-memory column store MonetDB [1]. To add het-
erogeneous hardware support to MonetDB, Heimel et al.
implemented this hardware-oblivious extension that allows
operators to be executed on most accelerators using the
hardware abstraction language OpenCL. Most of the ma-
jor CPU, GPU, and accelerator manufactures offer OpenCL
support for their hardware. When we started, Ocelot did
not include dynamic placement of plan operators but rather
manual placement of whole queries. However, recent work
was also done in this field by Bre§ et al. [2].

To support our two approaches, we added our self-learning
decision model [8], which includes several benchmarks to
evaluate data transfer bandwidths. We also included two
placement decision units: (i) in the execution engine of the
database and (ii) in the plan optimizer.

For the evaluation, we use the slightly altered TPC-H
benchmark from Heimel et al. [7]. The benchmark queries
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Figure 4: Reducing the search space by assigning
strong placements fixed to one computing unit.

are altered to avoid string operations, which are not sup-
ported by the Ocelot operators, yet. This is also the reason
why some queries were not used for our evaluation. All in
all, we tested our approaches on a set of 14 queries from
TPC-H.

We evaluated our approaches with two different hardware
setups. The two systems are presented in detail in Table 3.
Both test systems run with Ubuntu Linux. The first test
system is based on an AMD APU with an on-die integrated
GPU, which, however, does not support zero copy in our
current Linux configuration. That means that data has to
be transferred in order to be used by the GPU. The second
test system includes an Intel CPU and a Nvidia discrete
GPU. Here, memory also has to be transferred to the GPU,
since it is attached by PCle 2.0 and employs a separate GPU
processor and GPU memory.

Please note, that heterogeneous placement is needed for
any heterogeneous environment in order to utilize all com-
puting units. Depending on the abilities of each comput-
ing unit and the computational balance between them, a
query can be spread over all computing units or alterna-
tively use only that computing unit, which fits best. So we
expect for the placement decision, to be at least as good as
the fastest computing unit for a query. Finding this fastest
computing unit is also a benefit of using a dynamic place-
ment approach. In most cases, it is also possible to improve
the fastest single-computing-unit result by applying place-
ment decisions on operator level. To show the effect of the
placement decisions, we execute one operator at one time
(operator-at-the-time execution model). We do not execute
operators in parallel if they are placed on different comput-
ing units. Perceived speedups are purely achieved through
the placement decisions.

4.1 Search Space Reduction

First, we want to show the effectiveness of our optimiza-
tions for the proposed global optimization approach. This
is done on System I with the TPC-H benchmark using scale
factor 5. First, we reduce the search space by finding strong
placements. For TPC-H Query 1 for example, our prototype
database system produces a plan with 43 operators, that can
be executed on different computing units. For the system
with 2 computing units, this results in a search space of:

2 = 8,796,003, 022, 208 possibilites
With our greedy approach, we do not need to search this
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Figure 5: Performance results for TPC-H queries on test system I with SF 5.
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Figure 6: Performance results for TPC-H queries on test system II with SF 10.

high number of possibilities. However, since the algorithm is
very dependent on the starting placement, the probability to
pick a good starting placement by chance is very low. When
we apply our search space reduction, we are able to assign 26
operators to computing units, that would always be placed
this way in any greedy search. Removing these operators
from the search, reduces the actual searching time as well
as the search space for picking random starting placements.
The search space for the 17 remaining operators is:

2'7 = 131,072 posibilities

This is still too high to evaluate all possibilities in a fraction
of the actual query execution, but it is much more likely
to pick a good starting placement for the greedy search.
The results for all our TPC-H queries is shown in Figure 4.
Please note, that these results could be different for other
data sizes (e.g., other scale factors) or in other hardware en-
vironments. For example, with a highly superior computing
unit, most operators will be assigned as strong placements,
while a perfectly balanced environment will have less strong
placements.

Please note, that all operators that can be successfully
fixed by our global optimization are also chosen in the lo-
cal optimization, meaning that queries with many strong
placements will not differ much between local and global
placement decisions.

4.2 Greedy Search Performance

After reducing the search space by fixing strong place-
ments, the goal is to evaluate as many starting placements
as possible. For that we use our greedy algorithm in dif-
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ferent implementations. The actual runtime of one greedy
search is highly dependent on the amount of operators in
the query plan. Not only one iteration over many opera-
tors takes longer, but one single change of an operator re-
sults in additional iterations over all operators, to evaluate
if this change influence other decisions. The unfixed portion
of operators in Figure 4 defines the variable search space.
For Test System I, we have seen the naive, single threaded,
search performance to be between 5 greedy runs per ms for
query 19 (32 variable operators) up to 200 greedy runs per
ms for query 6 (5 variable operators). Using OpenCL for the
greedy search, we gain a speedup of up to 6x when execution
on the CPU. This is to be expected for a 4 core system, since
OpenCL also applies vectorization and code optimizations.
For the GPU, a speedup of up to 3x can be seen, which indi-
cates in this case that the CPU is more suited for the task.
However, all computing units should be used in parallel to
evaluate starting placements.

For the final evaluation, we decided to run 100 greedy
searches, which takes in the worst case (Query 19) about 4
ms, when using the OpenCL implementation on the CPU.
After the first searches, we get the estimated query runtime
from the search results. Depending on this runtime, we can
decide to do more greedy searches, if the query runtime is
high, or to stop the search and start executing the plan,
if the query runtime is low. A reevaluation is done every
100 search runs, since the estimated query runtime could
improve during optimization. As a general rule, we propose
spending about 1% of the total query runtime on optimizing
the heterogeneous placement.
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Figure 7: Placement performance comparison with varying transfer costs. The transfer bandwidths are taken
from System I and multiplied with a transfer cost multiplier.

4.3 Evaluation Results

We compare our two optimization approaches on our set
of TPC-H queries by running the queries first on the single
computing units and afterwards, we use the gathered knowl-
edge of the operator runtimes to execute the query heteroge-
neously with local or global optimization. For every query,
the initial data is stored in the main memory, meaning that
initially no data is cached on the computing units’ memories.
The results for the first test system are shown in Figure 5.
As shown, for some queries the CPU is clearly better and for
other queries the GPU is more suited. Heterogeneity-aware
operator placement can improve the execution in most cases.
In detail, global optimization is always better or equal in per-
formance compared to local optimization. However, the dif-
ference is not significant. Further investigations have shown
that global optimization finds sometimes the same or only
a slightly different plan than local optimization. For the
shown results, we used only about 1% of the query execu-
tion time for the global optimization. Testing with a higher
percentage of optimization did not lead to better results.
This shows, that our current global approach is suitable to
find a good and possibly the best placement for the given
query plan, however, the difference to local decisions is not
as significant as having high impact on performance.

On the second test system, the results look similar. Here,
the GPU is mostly better for full query execution. Local
and global optimization show equally good or better results
than the GPU. In some cases however, the local approach is
slightly better than global optimization, which is caused by
the optimization overhead. On the other side, for Query 1,
local optimization is actually slower than the single GPU
version, which is caused by its rather uninformed decision
process. The local decision involves data transfers to a com-
puting unit and the operators’ execution. This makes sense
from the execution-time perspective, however, from a global
view, additional data transfers could be avoided by consid-
ering output transfers.

4.4 Evaluation with Changing Transfer Costs

To investigate effects caused by unnecessary data trans-
fers in more detail, we conduct further experiments with
theoretical data transfer properties. As a base line, we use
System I, with the measured transfer bandwidth for each
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computing unit. Then, we introduce a multiplier (M) for
the transfer costs, which allows us to adjust the theoret-
ical transfer costs from zero (M = 0) to any multiple of
the original transfer costs. The results are shown in Fig-
ure 7 for TPC-H Query 1 and 19. We can clearly see, that
the estimated CPU-only performance is independent of the
multiplier since no data needs to be transferred. For the
GPU-only version, the initial data transfers of base columns
and the final result transfers cause a linear scaling with the
transfer costs. For no transfer costs (M 0) local and
global optimization always produce the same result, since
both approaches solely decide the placement on the opera-
tor execution time and data sharing yields no benefit. With
increasing transfer costs, the results differ because local op-
timization only considers input transfers and execution for
an operator while global optimization considers execution,
input and output transfer.

In Q1 (Figure 7(a)) the gap between the two strategies
becomes large for 0.7 < M < 8. The reason is one operator
that is much faster on the GPU than on the CPU. As long
as the input transfer costs are smaller than the execution
speedup, the operator is placed on the GPU. However, out-
put transfers are much higher and reduce the overall perfor-
mance to be less than the CPU-only execution. For M > 8
the input transfers are too expensive and all operators are
placed on the CPU. The global optimization is always better
than or equal to the best single-computing-unit execution,
being more reliable than local optimization. The effects for
Q19 (Figure 7(b)) are similar, however, with a smaller gap
between local and global optimization. For the remaining
queries, the gaps were even smaller up to the point that, for
some queries, local and global optimization chose the same
placement for all values of M.

5. CONCLUSION

In this work, we have evaluated two operator placement
strategies for heterogeneous hardware environments. The
first, local placement optimization at execution time, is easy
to integrate but limited on its optimization potential. The
second, global placement optimization at compile time, in-
troduces a large implementation effort, with the ability to
find a more optimal plan. In this paper, we explained how
to implement both strategies, including optimizations to re-



Property

| Local Strategy

Global Strategy

. Plan structure - fixed

. Worst-case placement

1. Search space + small

2. Computational overhead | + little

3. Cardinalities

4. Implementation + simple
5. Decision

6

7

+ precisely known
- local (not fully informed)

- worse than single CU

- huge

- some (can be defined)

- need to be estimated

- high implementation effort
+ global (informed)

+ could be changed

+ best single CU

Table 4: Advantages and disadvantages of local and global placement strategy.

duce the search space and additional evaluations on the
outcome of random placements. By applying our imple-
mentations and optimizations in an OpenCL-based database
system within two test systems, we demonstrated that the
global approach achieves better or similar performance than
the local approach. However, the speedup is mostly not
significant. Additionally, in our evaluation with theoreti-
cal transfer costs, we illustrated the effects of these costs
and the worst-case performance we can expect from both
strategies. While global optimization will always find a plan
better than or similar to single-computing-unit execution,
local optimization might choose a plan worse than the single-
computing-unit execution.

Table 4 summarizes the advantages and disadvantages of
both placement strategies. In this paper we presented ways
to weaken the disadvantages of global optimization in Point
1 and 2. However, even with our approaches, global op-
timization achieves mostly a similar performance as local
optimization on our test systems. On the other side, in our
hypothetical tests, global optimization shows a reliably good
performance compared to local optimization. Additionally,
with global optimization, the placement decision could in-
fluence the physical and logical query plan structure. While
this is not the focus of our paper, we would like to mention
that changing the plan structure would only be possible with
a global approach, where the structure might not be fixed,
yet.

In the end, it depends on the use case which strategy is
more suitable. From an implementation point of view, local
optimization is easier and faster to implement. However,
global optimization is more reliable to find a good operator
placement as well as enabling plan changes. Especially the
last point will be part of our future work.
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ABSTRACT 1. INTRODUCTION

We conduct a study that investigates the performance char-
acteristics of a set of parallel implementations of the recur-
rence quantification analysis (RQA) using OpenCL. Being
an important tool in climate impact and medical research,
a central aspect of RQA is the construction of a binary ma-
trix that captures the similarities of multi-dimensional vec-
tors. Based on this matrix, quantitative measures are de-
rived. Starting with a baseline implementation, we diversify
its properties along four dimensions: the representation of
input data, the materialisation of the similarity matrix, the
representation of similarity values and the recycling of inter-
mediate results. We evaluate the performance of five imple-
mentations by varying the input parameter assignments, the
hardware platform employed for execution and the default
OpenCL compiler optimisations status. We come to the
conclusion that the performance of conducting RQA highly
depends on the selected implementation as well as the com-
bination of these variables under investigation. Differences
in runtime of up to one order of magnitude are observed,
emphasising the importance of performance studies as pre-
sented here.

Categories and Subject Descriptors

C.1.4 [Processor Architectures]: Parallel Architectures;
G.1.0 [Numerical Analysis|: General—Parallel Algorithms

Keywords

Similarity Matrix, Parallel Algorithm, Heterogeneous Hard-
ware, Recurrence Quantification Analysis
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Recurrence quantification analysis (RQA) is a statistical
method to quantify the recurrent behaviour of dynamic sys-
tems, captured in one or more time series [11]. It has proven
its potential in a variety of applications, such as the investi-
gation of the climate system [12] and the early detection of
epileptic states [3].

RQA is based on extracting multi-dimensional vectors from
time series; each vector corresponds to a reconstructed state
of the system at a point in time. To identify recurrences,
these vectors are compared regarding their mutual similar-
ities. The results of the comparisons are stored within a
binary similarity matrix.

Matrix elements referring to pairs of vectors considered
to be similar form vertically and diagonally connected se-
quences. Using frequency distributions of those lines, RQA
derives quantitative measures. They allow to draw conclu-
sions concerning the dynamics of the system under investi-
gation [11].

Focussing on very long time series, in [13] we introduced
coarse-grained parallelisation strategies to the problem of
RQA. We presented an approach that divides the similarity
matrix into multiple sub matrices, computing intermediate
results for each sub matrix. This allows to process several
sub matrices concurrently. Within a final step, the interme-
diate results are recombined into a global RQA result.

Even though our approach is independent of the concrete
implementation, in [13] we compare a non-parallel version
of RQA to a prototype of our approach based on OpenCL,
which performs parts of the computation in a massively par-
allel manner. Exploiting the parallel computing capabilities
of modern GPU processors, we achieved drastic performance
improvements.

However, executing the prototype on different hardware
platforms, we discovered that the relative performance im-
provements vary. Hence, in this publication we conduct a
study that exemplarily examines a selection of factors influ-
encing the overall performance characteristics of RQA.

We provide five implementations, which differ concern-
ing input data representation, similarity matrix materialisa-
tion, similarity value representation and intermediate results
recycling. Given a specific implementation, we investigate
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Figure 1: Vector Extraction. Given a time series
capturing the sine function at multiples of 7/4 start-
ing at 0, consisting of thirteen data points. Applying
the parameter values m = 2 and ¢t = 2, eleven vectors
are extracted.

the influence of the RQA input parameter assignments, the
hardware platform used for execution and whether default
OpenCL compiler optimisations are enabled.

The results of our experiments show, that the performance
of each implementation highly depends on the combination
of hardware platform, default OpenCL compiler optimisa-
tions status as well as RQA input parameter assignments.
Providing general guidelines, we support the selection of
an implementation given a specific RQA scenario as well
as computing environment (see Sect. 5.2). Recognising the
fact that the exploration space covered is limited, we see this
study as a first effort to address the performance comparison
of parallel RQA implementations.

We believe that our work, apart from providing highly
interest into the nature of RQA, is also relevant for other
application areas that face similar problems, including near-
est neighbour search.

2. OVERVIEW OF RECURRENCE QUAN-
TIFICATION ANALYSIS

Recurrence quantification analysis is a method in the con-
text of time series analysis [11]. It is based on:

1. extracting multi-dimensional vectors from a set of time
series,

2. creating a similarity matrix by calculating pairwise
vector similarities, and

3. quantifying small-scale structures within the similarity
matrix.

There are several approaches for conducting each of these
steps. For the sake of clarity, in this paper we consider per-
forming RQA with the following properties: We are given a
single time series consisting of floating point numbers; each
value refers to a measurement of an output variable, e.g.,
the air temperature, of a dynamic system, e.g., the Earth’s
climate, at a specific point in time. To extract the multi-
dimensional vectors, the so called time delay method is ap-
plied, building on the two parameters embedding dimension
(m) and time delay (t). Starting at the first element of the
time series, vectors of size m with the temporal offset ¢ are
extracted (see Fig. 1).
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Figure 2: Thresholded Recurrence Plot. Referring
to the example from the previous figure, the eleven
vectors extracted are compared regarding their mu-
tual similarities. Concerning the vector compar-
isons, the Euclidean norm is applied, using a sim-
ilarity threshold of 1.0. The column v contains two
lines; one of length 2 and one of length 3. The diag-
onal d comprises a line of length 4.

To compare those vectors concerning their mutual similar-
ity, a metric such as the Euclidean norm is applied. By in-
troducing a threshold condition regarding the vector similar-
ities, all matrix elements fulfilling the condition are assigned
the value 1 (recurrence point), whereas pairs of non-similar
vectors are assigned the value 0. A visual representation
of this matrix is referred to as thresholded recurrence plot
(see Fig. 2). Recurrence points, encoded using the colour
black, form vertical and diagonal lines, which are captured
in corresponding histograms of line lengths. Based on these
histograms, quantitive measures are calculated, including for
example the average vertical line length.

3. PARALLEL RQA ALGORITHM

To enable a systematic analysis, we divide the problem of
conducting RQA into three operators:

I The creation of the binary similarity matrix.
(create_matriz)

II The detection of vertical lines within the similarity ma-
trix. (detect_vertical_lines)

IIT The detection of diagonal lines within the similarity ma-
trix. (detect_diagonal_lines)

We refine these operators into atomic units of computa-
tion:

I The computation of the similarity of a single pair of
multi-dimensional vectors.

II The inspection of a single column of the similarity ma-
trix concerning vertical lines.



IIT The inspection of a single diagonal of the similarity ma-
trix concerning diagonal lines.

Having extracted N multi-dimensional vectors, the maxi-
mum degree of parallelism varies between N2 (I), N (II) and
2N — 1 (IID).

Performing similar operations on different data objects,
each atomic unit is fully independent of any other unit re-
garding the execution of a single operator. However, there
exist interdependencies between atomic units belonging to
different operators: Prior to the detection of lines within a
single column or diagonal, the corresponding vector similar-
ities have to be computed.

The structure presented above allows us to perform RQA
in a parallel manner. Although subdividing the problem
into multiple operators, we mainly focus on the cumulative
performance of all operators, regarding the evaluation.

4. EXPERIMENTAL SETUP

4.1 Implementation Strategies

Building on the OpenCL framework, we consider a com-
puting environment that consists of a host device and a sin-
gle computing device. The code executed on the host device
is written in Python 2.7, utilising the package PyOpenCL.
The atomic units of computation described in Sect. 3 are
mapped to OpenCL kernels, implemented in OpenCL C.

We provide five RQA implementations, which differ along
the following dimensions:

e Input Data Representation,

e Similarity Matrix Materialisation,

e Similarity Value Representation, and
e Intermediate Results Recycling.

In the following, we introduce each dimension and moti-
vate the corresponding values. Regarding the evaluation, we
include only a subset of possible value combinations. Nev-
ertheless, we ensure that each value is featured within at
least one implementation. Tab. 1 gives an overview of the
individual properties of each implementation considered (see
Impl. A-E).

Input Data Representation

Conducting RQA, multi-dimensional vectors are extracted
from a time series. Regarding their representation within
the memory of the computing device, the set of vectors may
either be stored row-wise or column-wise. Choosing a Row-
Store layout, all components of a single vector are stored
consecutively. This requires to reorganise the data given by
the input time series.

However, having to perform read-only operations on the
vector data, a Column-Store layout [16] may be advanta-
geous. Applying this approach, all values belonging to the
same vector component are stored contiguously. Since seg-
ments of the input time series represent those columns, it
can be transferred to the memory of the computing device
without having to perform reorganisations.
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Figure 3: Bitwise Similarity Value Representation.
The 32 bits of an integer value refer to a single col-
umn. Integer values stored contiguously refer to dif-
ferent columns. Each bit within an integer value
refers to a different row of the similarity matrix.

Similarity Matrix Materialisation

The vectors extracted from the time series are compared re-
garding to their mutual similarities. The resulting binary
similarity values are used as input for the detection of verti-
cal and diagonal lines. The corresponding similarity matrix
may be stored within the memory of the computing device
(Yes). This requires that the size of this memory is suffi-
ciently large enough.

Avoiding this restriction, the similarity values may be
computed on-the-fly by transferring the computations to the
operators for detecting vertical and diagonal lines (No). Pre-
vious work has shown that the computation of the pairwise
similarities requires extensive computing [4]. We are inter-
ested, if there are conditions where computing similarity val-
ues outperforms writing them to and reading them from the
memory.

Similarity Value Representation

Since device memory is a limited resource, the similarity
matrix shall be represented in the most efficient manner.
Using the bit-compression approach [14], a single bit is used
to encode the binary result of a similarity comparison (Bit).
A schematic illustration of the underlying memory layout is
depicted in Fig. 3.

Considering the detection of lines, this approach allows to
process up to 32 similarity values of a single column without
having to read additional data from the memory. In addi-
tion, it ensures that similarity values belonging to different
columns are read using a single read instruction.

Nevertheless, this compression approach may introduce a
computing overhead, having negative effects on the over-
all performance. Hence, we compare it to representing a
similarity value using the smallest data object addressable
(Byte).

Intermediate Results Recycling

To avoid matrix materialisation, similarity values may be
computed on-the-fly during the line detection process, as ex-
plained earlier. Assuming that the execution model adheres
to operator-at-a-time, similarity values computed within one
line detection operator may be reused later on. Applying
this concept of recycling [7], performance improvements may
be exposed.

Omitting the create_matriz operator, we integrate the ma-
terialisation of the similarity values in detect_vertical_lines
and reuse the results during the detection of diagonal lines



Table 1: Implementation Comparison.

| Dimension | Value | Impl. A [Impl. B [ Impl. C' | Impl. D | Impl. E |
. Row-Store v
Input Data Representation Column-Store 7 7 7 7
Similarity Matrix Materisalisation Yes v v v v
No v

e . Byte v v v
Similarity Value Representation B 7

. . Yes v
Intermediate Results Recycling No e e 7 7

(Yes). Here, the challenge is that the maximum degree of
parallelism for detecting vertical lines is significantly smaller
than creating the similarity matrix individually (No). Thus,
our goal is to reveal whether there are conditions under
which the positive impact of eliminating one operator is large
enough to overcome this limitation.

4.2 Hardware Platforms

We evaluate each implementation using three computing
devices. Each device is part of a system that runs on a 64-
bit version of openSUSE. This includes an Intel Core i7-3820
CPU running at up to 3.8 GHz, which is supplied with 16
GB of random access memory.

In addition, we employ an NVIDIA GeForce GTX 690
graphics card, equipped with two GPU processors running
at up to 1.019 GHz; each processor is supplied with 2 GB
of memory. In the context of our evaluation, only one of
those processors is used. The underlying system has version
331.49 of the NVIDIA graphics driver installed.

Adding diversity regarding the GPU architectures, we em-
ploy an AMD Radeon HD 7470 GPU, equipped with a single
processor running at up to 0.775 GHz. It is supplied with
0.5 GB of memory. The underlying system has version 14.9
of the AMD Catalyst driver installed.

4.3 Parameter Space

Given the three hardware platforms, we identified the fol-
lowing factors additionally influencing the performance char-
acteristics:

e the parameters steering the properties of the similarity
matrix, including:

the time series,

the embedding dimension,

the time delay,

the similarity measure, and

the similarity threshold, as well as
e the default OpenCL compiler optimisations.

To restrict the exploration space, we reduce the number of
degrees of freedom addressed within the evaluation to two.
This includes varying the embedding dimension between 1
and 32. Moreover, we observe the impact of disabling the de-
fault OpenCL compiler optimisations using the compiler flag
-cl-opt-disable. We consider evaluating the impact of those
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optimisations as highly relevant, since they are vendor spe-
cific and may affect the computing results, e.g., the default
activation of relaxed math operations on the NVIDIA GPU.

We employ a time series capturing the sine function, simi-
lar to Fig. 1, consisting of 10,000 data points. We choose this
rather short length since we have to ensure that the result-
ing similarity matrix fits into the memory of all computing
devices applied.

Regarding the similarity comparisons, we select the Eu-
clidean norm in combination with a threshold of 1.0. Initial
experiments have shown that the time delay parameter does
not have considerable influence on the performance. Hence,
we set this parameter to 2.

S. EVALUATION

5.1 Procedure

Concerning the evaluation, we consider an experiment to
be a combination of:

e hardware platform,
e implementation,
e embedding dimension, and

e default OpenCL compiler optimisations status.

To reduce the impact of outliers, we conduct each exper-
iment five times. For the purpose of measuring the runtime
behaviour of the implementations, we rely on profiling events
as part of the OpenCL API, collecting information about the
average runtime of the three operators. Furthermore, we use
the sprofile [1] command line tool to retrieve extended per-
formance information provided by the AMD GPU.

5.2 General Guidelines

The cumulative runtime results are depicted in Fig. 4,
having the default OpenCL compiler optimisations disabled,
and Fig. 5, having them enabled.

As expected, increasing the dimensionality of the vectors,
the runtime increases as well. Enabling the default com-
piler optimisations has a positive impact on the cumulative
runtime, independent of the implementation as well as the
hardware platform employed. Considering the GPU devices,
implementation A, using a row-wise layout for storing the
multi-dimensional vectors, benefits the least. Whereas the
relative difference in runtime between A and the other imple-
mentations is narrow considering the CPU, it widens more



drastically regarding the GPU devices. Hence, considering
GPU devices, a row-wise layout should be avoided.

Compared to the other implementations, B shows well-
balanced performance characteristics, relying on the column-
wise memory layout. Applying an embedding dimension of
32, it is among the two fastest implementations independent
of the hardware platform applied. Eliminating the similarity
matrix materialisation, implementation C delivers perfor-
mance improvements considering small embedding dimen-
sions, as expected.

The usage of the bit-representation in implementation D
proves to be reasonable for larger embedding dimensions.
The corresponding runtime curves start at a higher plateau,
but have the smallest slope, independent of hardware plat-
form and default compiler optimisations status. Diminishing
the compression overhead with increasing dimensionality,
the curves of D converge towards the corresponding curves
of B.

Recycling intermediate results, as employed in implemen-
tation E, does not present runtime benefits across all hard-
ware platforms. Considering the CPU, it is the fastest imple-
mentation, for nearly all embedding dimension values. Re-
garding the GPU devices, E delivers runtime improvements
for vectors having small dimensionality, but is eventually
outperformed by implementation B and D.

Considering a given hardware platform, time series as well
as RQA input parameter assignments, we propose employing
an implementation that comprises the following features:

e column-wise input data representation,

e materialisation of the similarity matrix,

e byte representation of the similarity values, and
e usage of a separate create_matriz operator.

Although this combination does not deliver the best per-
formance under all circumstances, it appears to be a reason-
able choice based on the evaluation results.

5.3 Detailed Performance Analysis

We present selected details on the impact of using differ-
ent implementation strategies. The runtime results as well
as the performance counter values listed below refer to an
embedding dimension of 32.

Input Data Representation

Comparing the hardware platforms applied, the row-store
layout for representing the vectors has the least worst im-
pact considering the CPU. Having the default compiler opti-
misations disabled, the create_matriz operator of implemen-
tation A (0.79s) is as nearly as fast as the same operator of B
(0.75s). Enabling the optimisations, creating the matrix in
A (0.44s) consumes twice as much runtime as in B (0.22s).

Additionally, the impact of changing the access pattern to
the device memory is illustrated by the cache hit rate pro-
duced on the AMD GPU. Disabling the compiler optimisa-
tions, the create_matriz operator of A has a rate of 23.39%,
whereas executing the same operator of B results in a rate
of 91.36%.

Similarity Matrix Materialisation

Not materialising the similarity matrix presents advantages
concerning the cumulative runtime using small embedding

60

dimensions. Regarding the NVIDIA GPU, the break-even
point of implementation B and C' is a dimensionality of 3.

Experiencing a drastic increase in fetch operations, the
ratio between the amount of arithmetical logical unit (ALU)
instructions performed by the AMD GPU in comparison to
the number of fetch unit instructions decreases; from 17.97
(B) to 2.25 (C) regarding the detection of vertical lines,
having the default optimisations enabled.

Similarity Value Representation

Encoding similarity values using a single bit leads to an in-
crease in ALU instructions for all three operators, reflecting
the corresponding computing overhead. However, the cus-
tom layout presented in Sect. 4 improves the memory access.
Considering the AMD GPU, this results in an increased
cache hit rate for detecting diagonal lines; from 3.26% (B)
to 21.52% (D), having the default compiler optimisations
enabled.

Intermediate Results Recycling

Focussing on the execution on the CPU, the reuse of sim-
ilarity values in F is advantageous compared to any other
implementation. Enabling the default OpenCL compiler op-
timisations, implementation E (0.31s) outperforms its direct
successor B (0.37s), regarding the cumulative runtime.

6. RELATED WORK

A number of RQA implementations are available, posing
restrictions concerning the size of the similarity matrices
that can be processed [10,17]. The Commandline Recur-
rence Plots (CRP) software allows to analyse time series of
arbitrary size [9]. However, it relies on computing the RQA
measures using a single CPU thread. For an overview of free
RQA software, we refer to [2].

In [15] prior efforts to bring RQA to the GPU are de-
scribed, comprising several limitations that hamper the anal-
ysis of long time series. This includes being restricted to
similarity matrices that fit into the memory of the GPU de-
vice. Relying on the concepts of Divide & Recombine [6],
our approach presented in [13] allows to process similarity
matrices of arbitrary size. We demonstrated the capabilities
of our approach for a specific RQA scenario from climate
impact research. Examining a time series consisting of over
one million data points, we were able to reduce the runtime
from over six hours, using the CRP software, to almost five
minutes, using an OpenCL implementation of our approach
running on two GPUs.

Considerable efforts have been made to accelerate database
operations. Exploiting the computing capabilities of general-
purpose graphics cards, in [5] several parallel implementa-
tions for database operations, such as semi-linear query, are
presented. The conclusion is that depending on the oper-
ation investigated, GPUs enable drastic performance im-
provements.

A prominent database operation similar to RQA is the
k-nearest neighbour search (kNN). Within both techniques,
comparing a set of objects regarding their mutual similarities
is a key aspect. Adapting kNN processing to many-core sys-
tems, a large amount of similarity comparisons is performed
concurrently. Experimental results illustrate that executing
a parallelised version of the algorithm on the GPU is two
orders of magnitudes faster than performing the search on
the CPU [4].
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Previous work focussed on employing a set of optimisa-
tions to gain runtime improvements on a specific device.
To the best of our knowledge, we provide the first struc-
tured approach to analyse the performance characteristics
of parallel RQA implementations. In this regard, we benefit
from using the OpenCL framework for heterogeneous com-
puting [8], which allows us to execute identical code on a
variety of hardware platforms.

7. CONCLUSION

We present a structured approach to evaluate the per-
formance of five parallel implementations analysing binary
similarity matrices in the context of RQA. Assessing the
performance of each implementation, we vary their charac-
teristics along four dimensions, including the representation
of input data, the materialisation of the similarity matrix,
the representation of the similarity values as well as the re-
cycling of intermediate results.

Building on the OpenCL framework, we investigate the
influence of the hardware platform used for execution, in-
put parameter assignments and default OpenCL compiler
optimisations enabled on the performance. We examine the
runtime behaviour as well as additional indicators, e.g., the
cache hit rate. We come to the conclusion, that an imple-
mentation using column-wise input data representation in
combination with similarity matrix materialisation provides
reasonable performance, regarding a given RQA scenario.
Subsuming, we see our study as a first effort towards a com-
prehensive analysis of parallel RQA implementations.
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ABSTRACT

Energy efficiency by means of reduction in wasteful energy
consumption is a growing policy priority for many coun-
tries. Innovative systems should be designed to continuously
monitor a smart city environment and provide all stake-
holders the tools to improve energy efficiency. This paper
presents the EDEN platform, designed to collect and ana-
lyze thermal energy consumption of residential and public
building heating systems. EDEN is being deployed in a ma-
jor Italian city and collects energy consumption measure-
ments through an extensive smart metering grid involving
thousands of buildings. EDEN also collects and analyzes
indoor climate conditions, and user feedbacks, such as their
thermal comfort perception, by means of an ad-hoc social
network. Collected data are further enriched with temporal
and spatial information at different abstraction levels and
meteorological data available as an open source data set.
Several technical Key Performance Indicators (KPIs) have
been defined to inform users on their building thermal en-
ergy consumption, while user-friendly KPIs present energy
savings or over-consumptions in an informative fashion.

1. INTRODUCTION

In the last few years, the interest in urban data computing
is continuously growing both in the industrial and research
domains, as well as in the Public Administration. Industries
are attracted by the business opportunities arising from the
design, implementation, and exploitation of novel technolo-
gies and applications to effectively support all the crucial
aspects of Smart Cities management. Researchers, instead,
are interested in the challenging issues coming from the ap-
plication of innovative data management and mining tech-
niques to new and more complex fields. Innovative systems
should be designed to continuously monitor a smart city
environment and suggest new ways to improve the quality
of life within an urban environment, for both citizens and
the Public Administration. A complete overview of the key

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.
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challenges of urban computing from the computer scientists
perspective is presented in [25]. Among the large variety
of applications available in the context of smart cities, this
paper focuses on energy consumption, and specifically on
thermal energy consumption in buildings during the win-
ter period. The goal is to improve energy infrastructures
and reduce energy consumption, and the associated costs,
by suggesting energy-saving strategies to users and by pro-
viding better information to the different people involved in
the energy management roles.

Energy efficiency is a growing policy priority for many
countries around the world, as governments seek to reduce
wasteful energy consumption and encourage the use of re-
newable sources. The International Energy Agency (IEA)
has estimated that in terms of primary energy consump-
tion, buildings represent roughly 40% of total final energy
consumption in most countries. The amount of this energy
used for heating and cooling systems is about 60% in the
residential sector and 45% in the service one [12].

Important research activities have been carried out to use
database management systems and exploratory data min-
ing techniques in the field of storage and analysis of en-
ergy data to evaluate the efficiency of buildings. The pro-
liferation of sensor networks for monitoring indoor and out-
door environmental parameters [16, 19] has brought to the
facility managers huge archives of measures with tempo-
ral and spatial references. Research contributions on these
large data volumes have been carried out for: (i) support-
ing data visualization and warning notification [17, 20, 24];
(ii) efficient storing and retrieval operations based on NoSQL
databases [19, 23]; (iii) discovering anomalous behaviors us-
ing clustering algorithms [6, 24], Support Vector Machines
(SVM) [9] and outlier detection [21]; (iv) characterizing con-
sumption profiles among different users [2, 9, 20]; identify-
ing the main factors that increase energy consumption (e.g.,
floors and room orientation [10], location [9, 14]).

In this paper we describe the Energy Data ENgagment
platform, EDEN, designed to monitor and analyze thermal
energy consumption of heating systems for enhancing user
energy awareness. EDEN collects data from smart meters
deployed in thousands of buildings in Turin, a major Ital-
ian city. EDEN also collects and analyzes indoor climate
conditions by means of temperature sensors installed in a
subset of the monitored buildings. Thermal comfort per-
ception and user feedbacks on indoor climate conditions are
also collected by means of an ad-hoc social network. Col-
lected data are further enriched with temporal and spatial



information at different abstraction levels, and meteorolog-
ical data available as an open source data set. Several tech-
nical and user-friendly Key Performance Indicators (KPIs)
are defined within EDEN targeting different users. A tech-
nical KPI informs users on their building thermal energy
consumptions, while a user-friendly KPI explains monetary
savings or overconsumption by converting its value into the
price of commonly purchased goods. EDEN is designed, de-
veloped and experimented within the context of a publicly-
funded research project, including both academic and in-
dustrial partners that contribute to make it a live platform,
with actual deployment and real data.

This paper is organized as follows. Section 2 discusses
our vision towards enhancing energy awareness through the
Energy Data ENgagment platform. Section 3 describes the
main building blocks of the proposed system. For some
blocks, we describe our first implementation to show both
the feasibility and high potential of the proposed approach.
Section 4 reports a preliminary analysis of thermal energy
consumption for 2 school buildings and 6 residential build-
ings located in Turin. Section 5 draws conclusions and
presents future developments of this work.

2. PLATFORM OVERVIEW

Figure 1 shows the overall architecture of the EDEN sys-
tem. In this study we focus on an instance of EDEN tai-
lored to an indoor heating monitoring system. However, the
EDEN architecture can be easily tailored to different in-
door monitoring contexts, such as electric cooling, and out-
door monitoring applications as well. It includes three main
components, named Data Platform, Publication Platform,
and Social Platform, briefly described below and detailed in
the following sections.

EDEN is designed for the collection, storage, modeling,
and analysis of a large amount of heterogeneous data to
provide different levels of relevant knowledge. The aim is
to make people aware of their energy and thermal consump-
tions, as well as encouraging them to pursue energy sav-
ing strategies. Collected data include energy consumption
logs provided by thermal smart meters and indoor climate
conditions monitored through indoor temperature sensors.
In addition, data on the user thermal comfort perception
of indoor climate conditions and user feedbacks are gath-
ered through an ad-hoc social network. Heterogeneity in
terms of formats, timings and sampling periods, and sources
presented a challenge to the designers, also considering the
changes over time of this factors, determined by contexts
(e.g., smart meters update) or design improvements. To
this aim, EDEN exploits a non-relational schema-free data
warehouse, which allows coping with frequent changes in
data formats without technological issues. This component
will be detailed in Section 3.3.

Energy consumption data are collected by means of a large
number of smart meters (4,000 as of December 2014) de-
ployed in Turin (Italy) by IREN [13] to monitor thermal
energy for district heating. IREN is a multi-utility com-
pany listed on the Italian Stock Exchange and operates in
the sectors of electricity, thermal energy for district heating,
gas, management of integrated water services as well as the
collection and disposal of waste.

Data on energy consumption and on monitored indoor
climate conditions, collected through sensors and smart me-
ters, are stored in the Data Platform component. These
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data are enriched with spatial and temporal information at
different granularity levels as well as with various meteo-
rological conditions. The enriched dataset is stored in a
datawarehouse and is managed by the Publication Platform
component. Specifically, an informative dashboard is gen-
erated based on a selection of Key Performance Indicators
(KPIs) to produce useful feedbacks to the different users
and suggests ready-to-implement energy efficient actions or
strategies. Mainly, the following two classes of KPIs have
been proposed. (i) Technical KPIs allow informing users on
the thermal energy consumption of their building, but also
comparing the consumption between buildings in the same
neighborhood, also in different time periods. Comparison
can be performed under similar meteorological conditions.
(ii) Informative and user-friendly KPIs present the results
of the analysis on energy savings and overconsumption in an
informative fashion, using simple and easily understandable
comparisons according to the user profile. For example, let
us consider the energy consumption of a secondary school,
and suppose that we would like to improve students’ energy
awareness. An informative and user-friendly KPI can pro-
vide the school energy savings in terms of energy needed for
heating the gym for a given number of days. Alternatively, it
can explain the possible monetary savings in terms of com-
monly purchased goods (e.g. average number of pizzas that
could have been purchased by saving on energy consump-
tion).

The Social Platform component is a digital and social
platform which will be developed as a social network where
users can share their feedbacks and their perceptions of in-
door thermal comfort (e.g. too hot, too cold, or comfort-
able). Furthermore, it provides visibility of both technical
and informative KPIs. The aim is ehnancing energy aware-
ness and stimulate sustainable behaviors to optimize energy
consumption.

The EDEN platform also includes the knowledge extrac-
tion block for discovering interesting associations among ther-
mal energy consumptions, indoor climate conditions, mete-
orological conditions, and user perception of indoor thermal
comfort in the form of association rules [1]. Association rules
represent a powerful exploratory data mining approach able
to discover interesting and hidden correlations in the data.

Finally, a subset of interesting and open data (e.g., KPI
values) will be published in the Smart Data Platform to im-
prove both individual and collective energy awareness. The
Smart Data Platform exploited in EDEN is the Yucca Smart
Data Net [18] developed by the Piedmont Region (Italy).

3. PLATFORM COMPONENTS

In this section we describe the main components of the
proposed EDEN platform, which are currently under devel-
opment.

3.1 Data platform

Remote measurements of energy consumption are collected
by IREN [13], an Italian energy-provider company, by means
of gateway boxes installed in monitored buildings. Each
gateway includes a GPRS modem with an embedded pro-
grammable ARM CPU. An ad-hoc software has been de-
veloped to execute the following activities: sensor manage-
ment, GPRS communication, remote software update, data
collection scheduling, and collected data sending to a remote
server.
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Figure 1: The EDEN system architecture.

Each gateway has in charge the management of all the
sensors deployed in its building. Thermal energy is mea-
sured under different aspects, such as instantaneous power,
cumulative energy consumption, water flow and correspond-
ing temperatures. Furthermore, gateways also collect indoor
temperature and the status of the heating system.

A cloud architecture is used for storing and processing all
the monitored data. As of December 2014, there are about 4
thousands monitored buildings, each generating about 2,000
data frames per day. Thus, EDEN needs to manage a grow-
ing base of at least 8 million data frames per day. The gate-
ways send the data frame to the cloud architecture, where a
firewall first authenticates the data sender and then assigns
each data frame to one of four dispatchers to guarantee the
system reliability. Each dispatcher delivers the frame to a
cluster of computers including different processing servers
where data are stored in an HDFS distributed file system.
The dispatcher is able to recognize if the process server has
stored the frame correctly and in that case it sends the ACK
to the gateway which can send the next data frame.

Each processing server elaborates the received data and
stores the result in an Oracle database. The logical model of
the database includes the following three tables: (i)The Build-
ing table contains the main features characterizing each build-
ing such as address and volume; (ii) the Sensor table stores
the list of sensors located in each building and the main char-
acteristics for each sensor (e.g., unit of measure, description,
sensor type and model, etc.); (ii) the History table stores the
collected measurements for all sensors. On average, every 5
minutes a data frame is received from each building. Then,
corresponding data are stored in many records, with one
record for each measurement value.

To efficiently perform the management of a large vol-
ume of collected data, different strategies have been adopted
(e.g., data sharding, distributed map-reduces, and data repli-
cation).

3.2 Data integration and enrichment

Data collected through the smart meters are aggregated
and enriched with additional contextual information acquired
from external open data sources. More specifically, to ana-
lyze the temporal distribution of thermal energy consump-
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tion, the following time granularities are considered: day,
month, 2-month, 3-month, 6-month time periods. Moreover,
each day is classified as holiday or not, and the measure-
ment time is aggregated into the corresponding daily time
slot (morning, afternoon, evening, or night).

In Italy, heating systems are operated only from October
15th to April 14th, hence times periods outside this range
were not considered. In addition, since the heating systems
under monitoring within EDEN are operated at fixed time
slots, each aggregation (morning, afternoon, evening) in-
cludes only the time slots when the system is actually on
(e.g., morning from 6:00a.m. to 11:59a.m, afternoon from
12:00p.m to 6:59p.m., evening from 7:00p.m to 10:00p.m.).

To analyze the spatial distribution of thermal energy con-
sumption, different space granularities are also considered
beyond the building addresses. In addition, each address
is mapped to the corresponding geographical coordinates
(longitude and latitude degrees), neighborhood and city dis-
trict including that neighborhood. While the address is an
information recorded for the monitored building, the geo-
graphical coordinates and both the neighborhood and dis-
trict names corresponding to the address are added as ad-
ditional contextual features to the repository. We exploited
the Google Maps APIs [11] for geocoding street addresses.
Furthermore, topological information about neighborhood
names and districts are integrated in the repository as well.
The latter have been retrieved from [22]. Topologies are used
to graphically analyze the most significant spatial trends in
thermal energy consumption data and were encoded in Geo-
JSON, which is a standard format for encoding a variety of
geographic data structures.

The above data were also enriched with meteorological in-
formation collected from the web. Specifically, historical me-
teorological data were taken from the Weather Underground
web service, which gathers data from Personal Weather Sta-
tions (PWS) registered by users. For the city of Turin more
than twenty PWS are distributed throughout the territory
and about 4 of them are directly located inside the area con-
sidered in this study. The decision to use data from PWS is
motivated by the fact that they reflect with high accuracy
the real conditions registered in their neighborhood, as op-
posed to other services that provide estimated values with
respect to a wider area. Although the measurement fre-
quency can be easily set by the user for each PWS (and can
vary over time), the average value for the ones we consid-
ered was about 5 minutes. Data were collected for the period
going from October 2012 to April 2013. More specifically,
each measurement includes the air temperature (expressed
in degree Celsius), the relative humidity (percentage), the
precipitation level (mm), the wind speed (km/h) and the
sea level atmospheric pressure (hPa). The date and time of
each measurement is also included.

3.3 Data warehouse

While the data collection from smart meters exploits an
Oracle database, due to the fixed and constant nature of
those measurements, enriched data is much more variable
and heterogeneous, and its analysis requires a different tech-
nological solution. To this aim, enriched data are modeled
into a document-oriented distributed data warehouse pro-
viding rich queries, full indexing, data replication, horizontal
scalability and a flexible aggregation framework, including
a distributed map-reduce engine. The current database em-
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Figure 2: The EDEN data warehouse design.

powering EDEN analytics inside the Publication Platform
is MongoDB [7], and to our purpose it is actually exploited
as a data warehouse: periodically, sensor-collected data and
social-platform data are enriched, integrated and loaded into
a MongoDB collection.

Following best practices in data warehouse design, data
are de-normalized and redundant information is added to
each record (document) to speedup read performance by
avoiding join operations (which are not sopported by Mon-
goDB), and resulting in fast querying and KPI computa-
tion. The model design aims at providing a human-readable
document format, hence the choice of long, self-descriptive
field names, with sub-documents for each separate aspect
of the record, from user feedbacks to geo-location, through
smart meter measurements and other contextual informa-
tions. Such structured choice helps in coping with hetero-
geneity, but presents a main drawback in disk space usage:
each field name is re-written within each document, together
with all the redundant information that enrich the measure-
ment. However, the low cost of disk space nowadays makes it
an acceptable issue, also considering that no image or video
data are currently included.

In Figure 2 the data warehouse conceptual model is pre-
sented: the fact table consists of a main measure, the energy
consumption in a 5-minute time period, and some additional
metadata coming from indoor sensors, outdoor PWSs, and
the social data platform collecting customer feedbacks. Two
hierarchies are defined: a time-related hierarchy and a place-
related one. The former provides many different blends of
time spans, from minutes to months and years. The lat-
ter starts from the physical sensors inside each monitored
building and builds up to the whole city, with the building
volume and the geolocation coordinates as related features
included in the document.

Some metadata, in particular weather data and customer
feedbacks, may require some additional pre-processing dur-
ing the data loading phase because of different time spans:
e.g., a customer feedback given at a certain point in time
may be considered valid for a longer period than the specific
5-minute of a single data warehouse document, and weather
data may be unavailable for a specific point in space. The
solution adopted in EDEN supposes that customer feedback
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in terms of indoor environment comfort has a temporal va-
lidity of 30 minutes, which is distributed from 15 minutes
before the feedback is provided and 15 minutes after. Hence,
a customer reporting a very cold indoor environment at mid-
night, is associated with 5-minute documents from 23:45 (in-
cluded) to 00:15 (excluded). Weather data associated with
a specific building and address are computed as a distance-
based weighted mean of the values provided by the three
nearest PWSs. The weight is inversely proportional to the
distance from the PWS to the building location, hence three
equally distant PWSs would have the same weight in deter-
mining the outdoor values of a given building.

In the following, a sample MongoDB document from the
designed data warehouse is provided. Subdocuments have
been extensively used to group similar fields together. Some
fields deem special attention:

e The customer feedback fields that identify too cold,
too hot and comfortable indoor environments are the
count of the collected feedbacks in the 30-minute time
span as previously described.

e The customer comments are a list of text strings pro-
vided as status description on the social data platform;
this allows us to exploit text mining techniques to as-
sociate keywords to measurement values, by building
upon the text search features of MongoDB. This is-
sues will be addressed as a future development of the
current implementation.

e The billing period spans over two different years: October-

November is the first 2-month (billing and operational)
period and so the December-January 2-month period
spans two calendar years, hence the choice to be ver-
bose and use values such as ‘2-2014-2015¢.

{
_id: ObjectId(...),
energy_consumption: 0.12,
indoor: {
temperature: 21.2
}’

outdoor: {
temperature: 15.6,
relative_humidity: 70.0,
wind_speed: 5.0

}’

feedback: {
cold: 2,
comfortable:
hot: 1,
comments:

12,

["nice sunny winter day",...]
}’
place: {
sensor: {id: 123456, model:"..."},
gateway: {id: 234567, model:"..."},
building: {
id: 345678,
volume: 1234,
type: "med"
})
address: {
full: "corso Castelfidardo 39,
street_name: "Castelfidardo",
street_number: "39",

10129,

B



coordinates: [7.6600778, 45.0632518],
}’
neighborhood: "Crocetta",
city_district: "Circoscrizione I",
city: "Torino"
},
time: {
UTC_timestamp: 1419266446.0,
day: {
time: "16:40:46",
minute: 40,
hour: 16,
slot: "afternoon"
}!
date: {
full: "2014-12-22",
day: 22,
day_of_year: 356,
holiday: "N"
}
month: "12-2014",
month_of_year: 12,
2month: "2-2014-2015",
3month: "1-2014-2015",
4month: "1-2014-2015",
billing_year: "2014-2015"

Finally, the data model design addresses horizontal scala-
bility and replication choices.

Horizontal scalability is obtained by exploiting data shard-
ing, i.e., storing documents across multiple distributed ma-
chines by dividing the collection and distributing its data
over multiple servers, or shards. As the size of the data in-
creases, EDEN only needs to add more machines to scale
and support the demand of a higher number of read and
write operations. Each shard processes fewer operations as
the cluster grows, and the amount of data that each server
needs to store is reduced.

MongoDB provides automatic sharding and the key design
choice is the attribute whose values partition the collection
documents, i.e., the shard key. In EDEN the sharding is
performed using a hash-based partitioning on the value of
the building ID field. The shard key choice is motivated
by KPIs that are typically computed by grouping measure-
ments per building, and the number of buildings grows with
the expansion of the EDEN framework, hence it is a natural
scaling indicator. Hash-based partitioning has been chosen
over the range-based partitioning approach to ensure that
data are evenly distributed across the machines in the clus-
ter, since no range queries are performed on the building
1D.

Replication is obtained by exploiting MongoDB replica
sets to provide redundancy and high availability. With mul-
tiple copies of data on different servers, replication avoids
data loss from a single server failure. Currently, in EDEN
each replica set consists of a primary server, a secondary
server and an arbiter. All writes go to the primary server,
while the secondary server can be exploited to increase the
read capacity at the cost of possible inconsistency. However,
this is not an issue in EDEN since KPIs for the dashboards
can wait to be updated after the secondary has caught up
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the updates from the primary, which usually happens within
seconds.

3.4 KPIs definition

The EDEN system performs the KPI analysis tailored to
different users to gain insights on the integrated data. In
Business Intelligence, the analysis of Key Performance Indi-
cators (KPIs) is an established methodology [15]. KPIs help
organizations define and measure progress towards organi-
zational goals by monitoring the most significant achieve-
ments. In our context, KPIs are quantitative indicators of
thermal energy consumptions. To apply KPI analyses to
data coming from a real scenario, we defined technical KPIs
and informative and user-friendly KPIs. The aim of KPI
generation is to produce useful feedbacks to enhance energy
awareness for different types of users. We identified four dif-
ferent operational roles representing users of the EDEN sys-
tem: (i) the Energy Manager is responsible for the energy
services provided. He/She needs to access summary and
high-level information in order to grasp the overall picture
of the energy situation of the city district under observation.
He/She requires dashboards showing KPIs at a higher level
of granularity (e.g., city district). (ii) The Energy Analyst
is an expert in energy consumption. He/She is interested
in analyzing the complete streams of collected data to ob-
serve and understand the observed phenomenon, analyze the
different components and identify possible causes. He/She
needs to inspect a significant volume of data to understand
the anomaly. (iii) The Consumer represents the building
condos administrators or the public administration (as in
the case of public schools), whose interest is to assess the
efficiency of the heating system, as well as to get a feeling
of virtuous behaviors that should/could lead to energy sav-
ings while maintaining the desired level of indoor confort.
He/She only needs to visualize a few indicators, possibly
presented in a clear and intuitive way. (iv) The Users living
in the building are interested in mantaining indoor wellness
and understand how their behaviors affect energy consump-
tion and they can achieve a significant reduction of their
energy expenditure. Presented data should be informative
and, at the same time, easy to understand.

For users living in the building we define two user-friendly
KPIs that measure virtuous behaviors (i.e. energy savings)
in terms of (i) energy needed for heating the given building
for a given number of days, or (ii) kilograms of bread or
number of pizzas that can be purchased with the savings.

The technical KPIs aims at evaluating the energy con-
sumption at different levels: from the single building to
the neighborhood, and from hours and days to months. In
EDEN four technical KPIs have been identified.

e Building KPI. Average energy consumption indicator
of the building per unit of volume, i.e., total energy
consumption of the building divided by the building
total volume. This KPI can be also normalized ac-
cording to the degree days and to the known indoor
temperature.

e Neighborhood KPI. Average energy consumption in-
dicator of the buildings in the same neighborhood per
unit of volume.

e Building-type KPI. Average energy consumption indi-
cator of the buildings of the same type and in the same
neighborhood per unit of volume.



e Climate KPI. Average energy consumption indicator of
the buildings of the same type and in the same neigh-
borhood per unit of volume, considering only energy
consumption during specific outdoor conditions (tem-
perature range).

These KPIs are computed on different time scales, in partic-
ular: hourly, for each daily time slots, daily, monthly, and
on N-month periods.

Rich queries, indexing and map-reduces are the data ware-
house features exploited to compute KPIs. Specifically, fields
frequently used by KPI queries such as building IDs are in-
dexed, and map reduces are exploited to perform KPI com-
putation. Let consider a simple KPI such as the first of
the list, and for the sake of simplicity, suppose the tempo-
ral scope and normalizations are removed (their implications
will be discussed later). The equivalent SQL query to ex-
tract the Building KPI would be as follows.

select sum(energy_consumption)/building_volume
from fact_table, dimension_tablel,

where <join fact and dimension tables>

group by building_id, building_volume

In EDEN such KPI is computed by exploiting map, re-
duce and finalize functions of MongoDB, as follows. The
map function determines the key and value pairs emitted by
each processed document: the key is similar to the group by
SQL clause, and in this case it corresponds to the building
ID, whereas the value is a more complex object, since to
compute an average we need to carry over both operands,
the consumption sum and the building volume. Hence, we
put these two values into the value object returned (emitted)
by the map function.

function() {
key = this.place.building.id;
value = {
ec: this.energy_consumption,
vol: this.place.building.volume
};

emit (key, value);

The reduce function receives a list of values from the map
functions having the same key, hence we have a list of objects
containing the energy consumption (ec) and the building
volume (vol), and we need to sum all the ec values of the
list. The building volume is the same for all values, since
they refer to the same building (the building id is the map
reduce key).

function(key, values) {

reduced_value = {
ec: 0,
vol: values[0].vol,

};

for (var i=0; i<values.length; i++) {
reduced_value.ec += values[i].ec;

}

return reduced_value;

After the reduce phase we have a list of value objects,
one for each building id (key), containing the total energy
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consumption and the building volume. The finalize function
adds to each object in this list the average value, which is
the final result and corresponds to the desired KPI.

function (key, value) {
value.ec_vol = value.ec/value.vol;
return value;

};

The provided example is computed over the whole collec-
tion and return total cumulative results since the beginning
of the data collection. The temporal scope can be intro-
duced by exploiting two approaches: (i) a specific query
filtering undesired time periods can be passed to the map
reduce MongoDB command, thus limiting the computation
to a specific time span, or (ii) a more complex key can be
used involving compound building ID and time periods. The
latter is particularly useful to save pre-aggregated results in
a collection similarly to materialized views. For instance
a simple compound map-reduce key such as the concate-
nation of the building ID and the date (YYYY-MM-DD)
of the measurement would automatically provide day-level
aggregations and would require a small change in the map
function only. In EDEN then, monthly KPIs are computed
directly by querying the daily KPIs collections, hence build-
ing a tree of map-reduces that are fed by lower-level lesser-
aggregated results and feed higher-level map-reduces in the
tree.

Current advantages of the map-reduce KPI approach in-
clude a natively distributed computation, that allows hor-
izontal scaling and load balancing among the nodes of the
MongoDB cluster. We are currently analyzing further im-
provements on the EDEN KPI computation framework that
include incremental map-reduces, which are an obvious ap-
proach due to the nature of the data loading, and the ex-
ploitation of the MongoDB aggregation framework. Fur-
thermore, the ability to add new fields to the documents
allow us to easily implement new KPI computations as they
are required, even if the database does not natively support
join operations. Indeed, the actual join is performed as a
preprocessing step during the data enriching phase.

Finally, MongoDB also provides native support for geospa-
tial querying, that is exploited in EDEN to compute KPIs
involving the neighborhood besides the administrative bound-
aries. For instance, to query all the measurements associated
with buildings within a given distance from a specific point
in space, the following snippet of code can be added to an
existent query.

{
’address.coordinates’: {
$geoWithin: {
$center: [ [7.6600778, 45.0632518], 0.01]
}
}
}

This limits the results to the measurements in a radius of
approximately 0.01 degrees (roughly 1 km) from the point
at the given longitude and latitude coordinates.

3.5 Smart data platform
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Figure 3: Residential buildings: Daily energy con-
sumption per unit of volume (Wh/m?) .

The EDEN system will publish a subset of collected data
and results of the analysis in the Yucca Smart Data Platform
(SDP) [18]. Specifically, a portion of the data showed to
users through the informative dashboard, a subset of user’s
feedbacks and indoor thermal comfort perception data, and
interesting knowledge items extracted from the enriched data
collection. The Yucca SDP is a Big Data store developed and
maintained by CSI Piemonte [8]. Based on the Open Data
paradigm, it gives individuals and organizations the oppor-
tunity to publicly share their data under a license that allows
anyone to freely use them. It enables the interconnection
of geographically distributed applications, social networks,
objects and systems. The Yucca SDP supports different
protocols to receive and send data, such as HTTP, MQTT,
RTSP, WebSocket and OData REST APIs. It also provides
some basic functionalities of data enrichment, aggregation,
filtering, pattern matching and windowing.

4. EXPERIMENTAL RESULTS

We performed a preliminary analysis of energy consump-
tion on a real dataset using the EDEN platform. We con-
sidered 2 school buildings and 6 residential buildings, all lo-
cated in two neighboring districts in Turin, within a circular
area of 1 km of radius. Values were measured roughly every
5 minutes. The full time period depends on the availabil-
ity of measurements for each building. For the residential
buildings, measures are available from 2012 to 2014. To con-
sider a complete winter period we analyzed the period from
October 15", 2012 to April 14", 2013. For the first school
(named school A), instead, the time period is from Novem-
ber 28" 2013 to April 30*", 2014. For the second school
(named school B), it is from October 1%, 2012 to March
14" 2013.

Firstly, the daily energy consumption per unit of vol-
ume (Wh/m?) has been computed for each residential build-
ing, together with the daily average consumption among all
buildings. Figure 3 shows the average consumption profile,
and the profiles of an expensive building and an efficient one.

Since the time periods available for the two school build-
ings are different, also in duration, a further processing has
been performed to compare their energy efficiency: the con-
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sumption has been normalized with respect to the total de-
gree days measured for the same time length. This measure
represents the different external temperatures that influence
the daily energetic demand for heating. We computed the
total degree days as the sum of all the positive differences
between a reference indoor temperature (i.e., 20 °Celsius)
and the average daily temperature taken from the ARPA
weather archives [3]. Results are reported in Table 1. As
shown in Table 1, the daily energy consumption in school
B is much greater than in school A, with a difference of
about 254 kWh. However, a higher value of average degree
days can also be observed (12.37 °C of school B versus 10.97
°C of school A). The last row in Table 1 shows the energy
consumption per unit of volume divided by the total degree
days. The total consumption normalized with respect to
the degree days is still higher, but the difference is much
smaller. In fact, if we had 1690 degree days for school B
(like in school A), the total energy consumption per unit of
volume unit would have been only 31.04 Wh/(m*x°C) x
1690 °C= 52458 Wh/m?, rather than 63336 Wh/m?, which
is much closer to the 50373 Wh/m?® of school A.

5. CONCLUSIONS AND FUTURE WORKS

This paper presented a preliminary implementation of the
EDEN platform to enhance energy awareness. As of Decem-
ber 2014, IREN has installed thousands of thermal smart
meters in buildings in Turin, a major Italian city. EDEN
components and design choices that led to the Data Platform
and the Publication Platform have been discussed, with the
aim of efficiently collect and analyze data on energy con-
sumption. The Data Platform collects all the monitored
data, while the Publication Platform includes pre-processed
data enriched with spatial and temporal information at dif-
ferent abstraction levels, as well as meteorological data avail-
able in open source datasets. We also designed and imple-
mented different technical and user-friendly KPIs to provide
informative dashboards targeting different users.

We are currently implementing an ad-hoc social platform
where users are proactively engaged in the act of generating
data related to their perception of thermal comfort, as well
as useful feedbacks on thermal energy consumption of the
buildings where they live or work. The social platform will
also show to users both technical and user-friendly KPIs
on energy consumptions (savings or overconsumption) in an
informative fashion.

Since the collected data easily scale towards very large
datasets, the problem of discovering interesting and hidden
correlations for these huge data collections becomes chal-
lenging. We are currently designing an innovative scalable
algorithmtailored to enriched data managed by EDEN to
efficiently perform the association rule mining on a huge en-
ergy consumption dataset [5, 4].
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[15]

ScHOOL A ScHooL B

Volume [m® 4480 4480
Time period 11/28/2013 — 04/30/2014 | 10/01/2012 — 14/03/2013

Total energy consumption per unit of volume [Whm?] 50,373 63,336

Daily energy consumption [Wh] 1,465,390 1,719,658
Daily consumption per unit of volume [Wh/m?] 327.10 383.85
Average degree days [ °C]| 10.97 12.37
Total degree days (in the given time period) [°C] 1690 2040.4
Total normalized consumption [Wh/(m?>x°C)] 29.81 31.04

Table 1: School buildings: Energy consumption normalized per unit of volume and degree days
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ABSTRACT

An issue in operating a national electric system is how the corporate
image of an Independent System Operator (ISO) can be impacted
by disturbances in the system and their related news publications
from specialized press. To deal with it, a solution was developed in
the context of the Brazilian Electric System National Operator
(ONS): an analytical system for disturbances analysis integrating
both structured and unstructured data sources. It considers both the
daily news publications about the electric sector from ONS
clippings website and the details of operational disturbances from
the company data marts. We introduce here an adaptation of the
hybrid multidimensional (MD) design method, considering
heterogeneous data sources during business analysis and design
phases. Most important, we illustrate how ontological analysis can
enhance the semantic expressiveness of the MD modeling activity
through a semi-automatic derivation process. The analytical
potential is evidenced by a real scenario case study.

Keywords

Multidimensional design, unstructured, ontology, disturbances.

1. INTRODUCTION

Treating events of the electric sector through the support of
database (DB) systems is a critical activity in the operation of multi-
owned energy transmission, such as collecting and analyzing
disturbances occurrences. Usually, an ISO company is responsible
for this activity. In Brazil, ONS is in charge of monitoring the
national electric system. A Decision Support System (DSS) based
on Business Intelligence / Data Warehousing (BI/DW) architecture
[7], coined Disturbances BI, uses structured data for disturbances
analysis. Disturbances are most noticed by the population when
blackouts occur. Because of their negative consequences, Brazilian
press often publishes news on the subject, citing ONS, which may
influence its corporate image. News publications regarding the
electric sector are collected and made available daily at the
clippings website. However, there is still the need of an analytical
environment to support decision makers on analyzing the impact of
disturbances on ONS institutional image. To achieve this goal, a

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.
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solution to integrate structured data sources to unstructured data
from the clippings in a BI/DW architecture has been a main
requirement.

The problem addressed in this paper is the lack of a methodology
for B/DW solutions that considers both types of data sources.
Indeed, there are a number of systems and solutions that extract
information from text and integrate with existing DBs, but it is still
missing a well-defined process to determine how this type of
application can be used in a corporative context. We propose an
approach for adapting Moss’s BI/DW lifecycle methodology [11]
so to consider heterogeneous data, addressing semantic problems
during the MD design, such as ambiguity and low semantic
expressiveness. In this paper a systematic approach is described,
extending the hybrid MD design method by considering reverse
engineering from text corpora during the source-driven activity.
Furthermore, we guide how ontological analysis can be applied as
a base for a semi-automatic process for MD schemas derivation,
from a well-founded domain ontology that represents information
in the data sources.

We also include the application of our approach in the case study
of disturbances and news publications joint analysis for ONS
corporate image. In the analysis-driven design activity we
consulted ONS official glossary, domain engineers and the
Common Information Model (CIM). In parallel, during the source-
driven design activity, the transactional master DB of ONS and the
Disturbances BI solution played the role of structured data sources.
Corpora of news publications from clippings website were
collected and analyzed by the DW designer as an unstructured data
source. Afterwards, the disturbance domain ontology was built
considering the scope of the original schemas. It was developed
using ontological analysis based on a foundational ontology [4], a
high-level category system for a solid grounding of conceptual
modeling. The domain ontology had its semantic enriched during
the verification and validation activity, where conceptual assertions
were made to increase the model quality. Then, a semi-automatic
process for MD structures derivation supports the designer in
delivering the final MD schema for temporal analysis. The DB
design and data cube construction phases were performed so joint
analysis examples over the final data cube are presented through
reports in an OLAP tool. This paper presents the continuation of
the approach introduced in [ 10], covering the adaptation to consider
heterogeneous data in the MD design methodology, supported by
the architecture we introduced in [9]. Moreover, the study case is
detailed and the ontological approach is depicted.



2. EVENTS IN ELECTRIC SYSTEMS

Reliable and sustainable electric systems depend on the ability of
monitoring and responding, or even predicting, occurrences in the
electric sector. The treatment of events in the transmission grid is a
crucial activity, like responding to the shutdown of transmission
lines or other equipment, i.e. electrical disturbances. Such treatment
is made possible by solutions that handle large amount of data,
providing high quality information for decision makers in adequate
time. BI/DW architecture is a consolidated and usual way to deliver
information originated in structured data sources.

2.1 BI/DW Solution for Disturbances Analysis

ONS is a non-profit ISO, unique in Brazil, performing its duties
under the supervision and regulation of the national electric energy
agency. Its mission is to operate the Integrated National System
(SIN), a large hydrothermal system responsible for 97% of the
Brazilian electricity supply. It has a strong predominance of
hydroelectric plants with multiple owners and their facilities and
equipment, such as power plants, transmission lines and power
transformers. Equipment in SIN is subject to faults and failures of
various natures, causing forced shutdowns of one or more devices.
This can interrupt the power supply to consumers depending on the
resulting load cut level. These events are known as electric
disturbances and may be caused by atmospheric electric discharges,
floods, fires or even human failures. ONS official glossary defines
an electric disturbance as “an occurrence in SIN characterized by
forced shutdown of one or more of its components, which cause
any of the following consequences: loss of load, shutdown of the
system components, equipment damage or violation of operating
limits.”

The processes to fulfill the coordination and the control of SIN
operation are based on technical procedures, rules and criteria
defined in normative documents. Information systems were
developed by ONS, e.g. Disturbances Integrated System (SIPER),
to support the registration of disturbances as abnormalities,
undesirable events or unsatisfactory performance. They are
integrated through ONS master DB, which stores the core
transactional data from the electric system. Analytical processes of
disturbances are supported by a BI/DW solution, coined
Disturbances BI. It consolidates data from transactional systems
and a historical DB. The integration is made through a conventional
ETL process over structured data, being available in a disturbances
data cube. The users can navigate and generate reports over the data
cube through OLAP tools.

2.2 Impact of Disturbances on ONS Image

The corporate image is the way the organization is perceived by
society, tending to be classified as positive or negative, varying in
intensity and depending on variables such as opportunities, threats
and competences. ONS provides a daily summary of news related
to the electricity sector in its intranet home page, the clippings
website. Its main purpose is to provide to ONS collaborators news
publications from the specialized press, quoting the organization
when it is mentioned. The result of a disturbance in the system can
lead to power supply cuts, popularly known as blackouts. This
situation has a direct relation to the load cut level measure of
disturbances fact in Disturbances BI. The negative consequences of
a blackout to the population are numerous, generating large
financial losses in all sectors of the economy. The press gives great
focus to the subject, often citing ONS when such situation occurs,
which may influence its corporate image. Among ONS main
concerns in the electric security domain, the analyses of faults
caused by disturbances in the system and their impact on users’
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lives, reflected in the media, is much relevant for decisions related
to the corporate marketing. Current information systems present the
information of disturbances and news about SIN independently.
Hard manual work is necessary for a joint analysis over large
amounts of historic data, often making it impossible to reach the
desired results. Therefore, an analytical information system for
joint exploration of disturbances and their impact in news can
address this need. Existing DSS solutions were mapped:
Disturbance BI and clippings website. They represent operational
data sources captured in business case assessment.

3. APPROACH PROPOSAL

To address the methodological support needed for a disturbances
and clippings integration solution we propose adaptations of
Moss’s methodology [11] to consider heterogeneous data. This
BI/DW lifecycle resembles Kimball’s [7] and Malinowski’s [8]
approaches, but it adds a metadata repository. Even being called a
lifecycle, it lacks operations and decommissioning phases after
deployment. However, it presents a balanced approach, considering
complexity and practice. Each activity is part of a specific phase,
as depicted in Figure 1 (left). Business analysis and design phases
are considered the most important activities because they guide the
BI/DW solution development. The efficacy of MD modeling is
directly related to future costs in maintaining the BI/DW solution.
It can be increased by avoiding conceptual mistakes through the
application of a common understanding formalization [16]. Here
we focus in the MD design activity as illustrated in Figure 1 (right).
Our method is based on [8], but we consider an ontological
approach.

BI/DW lifecycle ™

Justification

Multidimensional design

Analysis-driven:
initial schema

Source-driven:
initial schema

Reverse engineering - sources

Unstructured
(rext)

Structured I

1

Match the two initial
schemas

Business analysis

Ontological analysis

'
Add semantics

Verify and validate ontology
1
Deliver final schema
and ETL mappings

Deployment

OntoWarehousing

Figure 1. Hybrid multidimensional design activity adapted.

3.1 Hybrid Design for Heterogeneous Data

In our approach we consider unstructured data sources as text and
ontological analysis to increase the semantic expressiveness of the
MD modeling activity. The semantic expressiveness (or semantic
power) is the quality of how precise a model is on representing the
reality [4]. It considers both supply-driven and analysis-driven
strategies running in parallel for deriving the initial schemas. In the
analysis-driven schema derivation, the designer can use the domain
knowledge from domain experts, existing procedures, glossaries,
taxonomies or other terminological standards. In the supply-driven
one, both structured and unstructured data sources can be analyzed.
Then, the matching of the schemas sketches, i.e. their merging, is
supported by ontological analysis [4], representing the business
concepts in a domain ontology, categorized by top-level categories.
Then, the domain ontology is verified and validated, increasing its
quality in a cyclical way. Afterwards, rules defined as in a prior
work, coined OntoWarehousing [10], can be applied to derive
possible MD structures, used by DW designers in the final



definitions of MD schemas. Adaptations of the activities to cope
with unstructured data and ontological engineering are described
below.

3.1.1 Analysis-Driven Design

Each domain concept should be correctly named, uniquely
identified and validated by business people who will access the
data. Therefore, ontological analysis can be applied to support
common understanding. A domain ontology can be sketched based
on interviews with the main stakeholders and business official
vocabularies, such as glossaries and standards. The ontology should
be independent of technologies, not being influenced by any type
of software or hardware. Current business processes should be
understood, so the behavior of the concepts is mapped to the
ontology, e.g. their creation or modification.

3.1.2 Source-Driven Design

In our approach we divided the reverse engineering in two main
activities: from transactional DBs (usual), as structured sources,
and, from textual sources. The result artifact from this activity is a
sketch of the domain ontology from the point of view of the data
sources. In both reengineering processes, making annotations about
the origins of the data is crucial for the ETL design. Reverse
engineering from structured data sources is widely addressed by
supply-driven related works, e.g. AMDO [15]. It checks functional
dependencies among tables by verifying relationships, cardinalities
and constraints. Then, MD structures can be derived automatically
based on a set of heuristics. It can capture important business rules
and policies that may not be gathered during interview sessions.
Some CASE tools implement this capability.

Reverse engineering from text generates representations of entities
and their relations from unstructured data sources. This can be
made manually or automatically. In both cases a set of text corpora
is selected with support of business experts. Then, its content is
analyzed. Automatic approaches consider Natural Language
Processing (NLP) and Information Retrieval (IR) techniques
applied to the corpora, resulting in suggestions of models. Entity
and relations recognition techniques play an important role on
ontology generation. Tools that implement these techniques are
based on lexical methods, such as orthographic correction, stop
word elimination, tokening, synonymous resolution, stemming,
morphological classification and some type of semantic
categorization from business terms. In our approach we do not
choose one specific technique or tool. Instead, we guide the
designer to first check the existing NLP and IR solutions.

3.1.3 Domain Ontology for Initial Schemas

The inputs for this phase are the model sketches from prior
activities. Common concepts found in these representations should
be matched or associated, by annotating their data structures
origins. This information will be necessary to build the linkages
between the structured and the unstructured universes for designing
the ETL process. After matching all entities, annotating their
origins, the consolidated domain ontology should be built. We
propose the use of the OntoWarehousing [10] ontological approach
to increase the semantic expressiveness of the MD design. It
presents a systematic and semi-automatic derivation process to
suggest MD structures from categories of a foundational ontology,
a high-level category system that represents concepts such as
endurants (things that are in time) and perdurants (events or things
that happen in time) [3] — refer to section 5 for a more detailed
explanation. The output of this activity is the consolidated well-
founded domain ontology.

74

3.1.4 Add Semantics: Verify and Validate

In this phase the designer analyzes the foundational constructs and
checks if the entities and relations from the model are semantically
consistent, also verifying business rules violations. Domain experts
can support the quality improvement of the domain ontology,
ensuring that the model is semantically correct, covering the main
entities involved in the business requirements, avoiding ambiguity.
This is a cyclical process: when the designer finds an inconsistency,
he fixes the model and validates it again. Verifying and validating
(V&V) ontologies with many concepts can be unfeasible for
humans because of their size and complexity. Thus, a common
practice is to choose ontology sub-domains, validate each
separately and merge them. The resulting artifact is the valid well-
founded domain ontology.

3.1.5 Deliver Final Schema: Derivation Process

The final MD schemas are designed based on the well-founded
domain ontology and other existing MD schemas. In common
methodologies [7,8] this task depends purely on informal
guidelines for MD designer decisions. It depends on tacit
knowledge, being error prone. In OntoWarehousing [10], we
defined a set of mapping rules to derive possible MD structures
from the well-founded domain ontology. The MD designer can use
this method to increase its assertiveness. The mechanism to derive
MD concepts begins by reading the domain ontology and looking
for the foundational ontology categories. Once they are found, it
executes the mapping rules and presents to the modeler the possible
MD structures inferred. Thereafter, the derived MD concepts are
conformed to other MD schemas, providing new analytical
possibilities. At last, the designer defines the final MD schemas
with data sources annotations as comments in natural language to
serve as specification for the ETL processes. Other ontological
approaches for MD design can be used in parallel, combining the
final MD concepts produced such as in [16].

4. APPLICATION CASE

To handle disturbances and clipping s integration we have applied
our approach in the construction of a BI/DW solution. Business
analysis, design and construction phases were performed and some
analysis examples over the final data cube could be made. To
support the BI/DW lifecycle, Enterprise Architect (EA:
http://www.sparxsystems.com.au/) CASE tool was chosen, which
provides a full-set of capabilities for requirements formalization,
conceptual models design and behavioral aspects representations.
In addition, OntoUML Lightweight Editor (OLED:
https://code.google.com/p/ontouml-lightweight-editor/) software
and its plug-in to EA supported the V&V process.

4.1 Business analysis

4.1.1 Analysis-Driven Design

The analysis driven design was supported by ONS domain experts,
the official glossary, and the CIM IEC 61970
(http://www.iec.ch/smartgrid/standards/). ONS official glossary
contains the definitions of the main terms used in the electric sector.
It serves as main business concepts source for common
understanding among ONS and other agents. It helped in asserting
the initial domain representations. When a specific term was not
encountered in the glossary or there was ambiguity, the domain
experts were consulted, mostly power systems engineers. They
asserted specific rules, such as the part-whole relation between a
disturbance and a forced shutdown, where a forced shutdown is part
of one unique disturbance and it is existentially dependent of the
disturbance. The CIM IEC 61970 is an international standard built
by the electric power industry and it was adopted to support




information systems interoperation and common concepts
agreement. Particularly, the main part of this standard was chosen,
the IEC-61970 for energy management. It brings the
representations of core concepts of electric power transmission and
distribution domain, such as equipment (e.g. power transformer)
and its sets (equipment containers) as power system resources. As
a practical advantage, this standard is available and extensible in
the EA tool as a UML class structural package.

4.1.2 Source-Driven Design

The involved data sources were listed as: the SIPER cut-off of ONS
master DB, an entities mapping between the master DB and CIM
models, Disturbances BI and clippings website (news
publications). The physical data model was used to check tables,
attributes, relationship integrities and constraints that implement
the domain behavior. This type of information was included when
representing the company concept. The entities mapping
specification between the master DB and CIM describes the
equivalence between the data structures from ONS master DB and
the classes and relations of CIM meta-model. This document was
previously built and used for the development of an ETL process,
which extracts data from ONS master DB, transforms and load it in
a CIM file representation. Thus, the domain could be designed in
English terms, reusing the existing knowledge. The available ETL
processes of the Disturbances BI were analyzed. We checked the
ETL process to load the fact disturbance, which has associations to
dimensions such as owner agent, source equipment, cause,
begin/end time, among others. The clippings website was checked
and the news publications sub-domain modeled, as textual
information source. At first, a web crawler was built to download
news publications from January 2011 to March 2013. A textual
ETL process from a prior work [9] was applied in these corpora
selected. It resulted on a data repository, named terminological DB,
which stores the terms and their lexical and semantic categories,
supported by IR.

4.1.3 Domain Ontology for Initial Schemas

The domain ontology was built in the EA tool supported by OLED
plug-in. As starting point, the SIN domain package was composed
by five sub-domains: companies, facilities, equipment and
geographical region (structural aspects); and disturbances and news
publications (dynamic aspects). The most important relation to link
disturbances and news publications was defined through the
temporal formal relation “before” at the conceptual level, meaning
that a disturbance that occurs before a news publication can be
somehow related to it. Disturbance and news publication are both
classified as complex events, inheriting a series of properties, such
as their beginning and ending time points, composition by other
events, etc. There is a practical implication in this representation
that was found during the construction phase regarding how long a
disturbance occurred before a publication about it. For instance, if
a disturbance occurred in 2010 and some news are published in
2013, if even this relation respects the “before” relation, it is most
unlikely that they are related. Therefore, we stated a threshold of
ten days based in prior experimentation [9]. Initial analysis
evidenced the increase in publications after a severe disturbance
and a decrease on subsequent days, reaching the publications
average in ten days.

4.1.4 Add Semantics: Verify and Validate

This activity was supported by OLED software. After the first time
designing the main concepts in the domain ontology (in EA tool),
we exported it as an XMI file and imported into the OLED tool.
During the import process, the tool provides a selection of classes
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and relations that the user would like to validate. Cut offs were
made for V&V each part of the domain ontology. We could validate
the domain ontology by examples and counterexamples, simulating
instances of classes and their relations through the visual capability
of Alloy analyzer provided in OLED. Moreover, OCL check
statements were written as business rules representations. The
result of this activity was the well-founded domain ontology
considering disturbances and news publications.

4.1.5 Deliver Final Schema: Derivation Process

The final MD schema was designed based on the well-founded
domain ontology. The OntoWarehousing approach was applied to
discover MD structures, implemented through a prototype, which
was executed in the domain ontology (refer to [9]). The MD schema
to analyze the “before” relation could be designed by the derived
MD structures from the proposed rules and conciliated with the
existing disturbances MD schema. Moreover, from the
axiomatization of the temporal operator “before”, the constraint for
the WHERE clause of the SQL to load the fact at the end of the
ETL process was derived. Each event is considered a data structure
(e.g. table, view, procedure) having the columns of start and end
time points as date/time fields, where “before” is represented when
the end of the first event is lower than the begin of the second event.
As a result, the domain ontology, the MD schema specification, the
requirements document and a high-level design of the ETL process
were produced.

4.2 Construction and Deployment

A DB was physically created reflecting the MD schema
specification. It supported the ETL process construction based on
the ETL design and the domain ontology. It considered an ETL
integration architecture coping with textual ETL, termed
JointOLAP [9]. It uses IR and NLP techniques for the extraction
process from text files and loads the terminological DB. The high-
level data flow design is illustrated in Figure 3, having each activity
supported by a set of tools. It begins with parallel activities: the
conventional ETL process execution of disturbances Operational
Data Store (ODS) and the textual ETL downloading news
publications through a web crawler. Then, JointOLAP is performed
in these documents, populating the terminological DB with all news
articles content. It checks patterns in headers (e.g. title, publication
date and press company), structuring this information in the DB.

Clippings intranet

Web crawler
- Jazzy
Download news Textual - TreeTagger
w;'. ti W Framework - WyTool
pul l:;l lo-ns IR techniques - PTStemmer
from Clippings - Postgres SQL
web site
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- SQLServer
- Integration Services

Disturbances
sources to ODS

ODSto DW
Linkage

- SQLServer
- Analysis Services
) | - Tableau

OLAP cube
construction and

deployment

The framework applies orthographic correction, case sensitive
elimination, tokenizing and morphological classification, stop word
and punctuation elimination, synonymous resolution and
stemming. It indexes the terms, their stems, morphological



classification (e.g. verb, adjective, preposition and adverb). A list
of business terms was created based on ONS official glossary and
the terms of news articles were marked. An ETL process was
created to execute the linkage activity, integrating data between
disturbances and terminological ODSs and loading the final MD
schema. It was used to build a data cube, making data accessible by
OLAP tools.

The impact of blackouts on ONS corporate image analysis was
supported through the OLAP tool connected to the data cube. The
navigation was made possible through the dimensions and their
hierarchies, enabling the exploration of the measures within the fact
and possible aggregations with drill-down and roll-up operations,
as well as graphics and reports generation. An analysis example is
the number of terms published in news by the load cut level
measure of the related disturbances. Average terms occurrences by
disturbances is 5,720. Analyzing this measure by the severity of the
disturbances makes it possible to verify a direct relation with the
number of news publications. The more severe are the disturbances,
more terms are published. In average the “blackout” term is,
considering synonymous, the 27th most common term, but when
load cut level is greater than 99MW it jumps to 1st. When it is lower
than 499MW it becomes the 52nd of the blackout terms. News
publications by disturbance month in 2011 revealed a significant
variance of terms published after the disturbances occurred in
February, which caused an enormous blackout in northeast. The
number of publications increases considerably in March and April,
then, it decreases back again to the standard baseline. These
analyses are evidences that the expressivity enrichment of the MD
design is a differential of our proposal, having the relation “before”
connecting disturbances and news publications. The counting of
mentions to certain words emphasized the press terminology when
severe disturbances happened, addressing the main requirement of
the solution.

5. RELATED WORK

Energy data management is a knowledge area that addresses the
techniques for collecting, storing and analyzing huge amounts of
data from the energy sector through IT solutions. Common
definitions of data and information concepts by ontological
approaches are still open topics [14]. Ontologies may be applied for
the representation of portions of reality to understand,
communicate and reason about the domain. In software engineering
it is commonly built as UML class diagrams. In artificial
intelligence it is commonly built as semantic networks and in DB
area as ER diagrams. All these models seek to represent entities,
relationships, properties, rules and restrictions of the involved
domain. It can be considered formal when it is machine-
processable, enabling automated reasoning by the semantics
described in formal logic [4]. An example of an ontological solution
for real-time data sources integration is the smart grid domain
ontology introduced in [2]. It presents representations of event
types, such as electrical appliances, weathers, storages and
generators.

To fulfill analysis requirements in a B/DW project, the MD and
ETL design activities are supported by ontological solutions
addressing the lack of semantic expressivity in MD models [1,12].
We introduced OntoWarehousing approach [10] where ontological
analysis is applied in MD design based on formal ontology
discipline. Analogous to formal logic, which contemplates logic
formal structures, such as truth, validity and consistence [4], formal
ontology is founded on mathematical disciplines of mereology
(part-wholes), theory of dependence and topology and principles of
identity and unity. In our approach we used the Unified
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Foundational Ontology (UFO) [3] to enrich the domain
representation. It is a high-level category system, a top-level
ontology, which presents these philosophical concepts interpreted,
describing the most general concepts, such as space, time, matter,
object, event and action, concepts independent of a domain or a
particular problem. In OntoWarehousing, the domain ontology is
semantically enriched by these top-level formalizations, e.g.
domain concepts classified as events, participations, temporal
relations, roles, among others. These high-level categories are used
during the derivation process, which is based on a set of mapping
rules from UFO categories to MD structures. The idea of such
interpretation mapping from a foundational ontology to MD
concepts was first discussed in [12].

A survey [1] summarized semantic web technologies (e.g. RDF and
OWL) applied in BI/DW, discussing advantages, disadvantages
and cases. Description logic can be used to assist data aggregation
processing by reasoning services over rules. To enforce the
semantics in MD design, Romero et al. [15] proposed the AMDO
approach for conceptual modeling in BI/DW solutions based on
end-user requirements elicitation and hybrid MD design. It uses a
supply-driven mechanism where a set of rules formalized in first
order logic derive MD structures (facts, measures, dimensions,
hierarchies and attributes). The GEM approach [16] operationalizes
the whole process, automating the identification of potential MD
concepts by analyzing the domain ontology and the semantic
annotations represented in OWL-DL. The ORE module [6] evolves
GEM considering the complexity of frequent changes in MD
design, integrating each new analytical requirement. These tools
are mature enough, but they still lack some common understanding,
which can be provided by a foundational ontology.

The need of considering unstructured data in BI/DW solutions is
fundamental for business analytics. Even so, most of BI/DW
methodologies are based on structured data. Analyzing and
exploring data from heterogeneous natures, jointly, can enhance the
potential of analytical applications offered to decision makers [5].
Several works are being proposed to consider the unstructured data
sources by applying IR and NLP techniques as listed in [13]. We
introduced the architecture JointOLAP [9] as a solution for joint
exploration. It takes advantage of semantic treatment mechanisms
for the unstructured content.

6. CONCLUSIONS AND FUTURE WORK

We introduced our approach as an adaptation of Moss’s BI/DW
methodology to consider heterogeneous data by making specific
changes in the hybrid MD design activity. It takes advantage of IR
and NLP techniques during the source-driven analysis phase to
derive complementary analytical elements and associate data from
structured and unstructured sources. In addition, we increased the
MD design semantics by applying ontological engineering
supported by a foundational ontology. A case study regarding ONS
joint analysis of distribution consumption energy affected by press
publications was described. The MD schema was derived
considering the “before” temporal formal relation between
disturbances and news publications. This case study is a work-in-
progress, being considered as an original research and an industrial-
strength solution for energy data management. Its main
contribution is the integrated OLAP specification for ONS
corporate image impact analyses built based on our approach.
Indeed, the correlation between disturbances and news publications
is not surprising. However, our case study could materialize this
relation and its exploration using real data.



Lessons learned from our approach application on hybrid MD
design activity include: (i) unstructured data sources proved to be
essential information for MD conceptual design; (ii) ontological
engineering seems to be an adequate method to improve knowledge
acquisition and its design through a well-founded domain ontology;
(iii) we believe this method may increase the productivity in
business analysis and design phases of BI/DW projects. Some
limitations are: (i) the derived ETL process did not considered
implementation issues such as surrogate keys treatment and
indexing management; (ii) to simplify, we considered a 1:1 relation
between terms and categories, restricting the terms classification;
(iii) the reverse engineering from text can be unfeasible depending
on the amount of data; and (iv) the choice of MD concepts for the
resulting MD schemas continues to be a tacit activity depending on
the designer’s decisions. Future work includes: (i) to enhance the
textual ETL for news publications with new text treatment
techniques, considering distributional models; (ii) to apply
sentiment analysis techniques to discover the polarity of the
sentiment around the events (e.g. positive, negative and neutral);
(iii) to predict how quickly after an event the sentiment for or
against ONS changes in the news and also to incorporate sentiment
from crowd sources; (iv) we believe that entity recognition and
relation extraction activities can consider categories of a
foundational ontology; (v) regarding the involved tools, we believe
that the prototype should be developed as an extension of OLED
integrated to GEM/ORE.
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ABSTRACT

Flexibility in energy supply and demand becomes more and
more important with increasing Renewable Energy Sources
(RES) production and the emergence of the Smart Grid. So-
called prosumers, i.e., entities that produce and/or consume
energy, can offer their inherent flexibilities through so-called
demand response and thus help stabilize the energy mar-
kets. Thus, prosumer flexibility becomes valuable and the
ongoing Danish project TotalFlex [1] explores the use of pro-
sumer flexibility in the energy market using the concept of
a flex-offer [2], which captures energy flexibilities in time
and/or amount explicitly. However, in order to manage and
price the flexibilities of flex-offers effectively, we must first
be able to measure these flexibilities and compare them to
each other. In this paper, we propose a number of possible
flexibility definitions for flex-offers. We consider flexibility
induced by time and amount individually, and by their com-
bination. To this end, we introduce several flexibility mea-
sures that take into account the combined effect of time and
energy on flex-offer flexibility and discuss their respective
pros and cons through a number of realistic examples.

Keywords
Energy Flexibility, Flex-offers, Flexibility Measures

1. INTRODUCTION

A common challenging goal is to increase the use of en-
ergy produced by renewable energy sources (RES), such as
wind and solar and at the same time reduce the CO»> emis-
sions. However, RES are characterized by fluctuating en-
ergy production and increased use of RES can lead to peaks
(and valleys) in energy production and thus create conges-
tion problems (or shortages) in the electric grid [5]. On the
other hand, new devices such as heat pumps, increase the
demand of energy and will lead to undesirable consumption
peaks and a need for load shedding.

In this new energy scenery, the forthcoming Smart Grid [4]
uses advanced information and communication infrastruc-
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tures to activate the concept of demand side management
(DSM) [6, 8]. According to DSM, the individual energy pro-
sumers (producers and consumers) have a prominent role in
the energy market due to their inherent flexibility. Flexibil-
ity can be used to mainly let the energy demand follow the
energy supply and adjust the energy requirement according
to energy production. The TotalFlex project explores the
effect of prosumer flexibility on the energy market by intro-
ducing a new commodity using the flez-offer [2] concept that
captures flexibilities in operating times and energy amounts
of devices, as presented in the following use case.

Flex-offer use-case example. An electrical vehicle (EV)
is plugged in and ready for charging at 23:00. Its battery is
totally empty and it needs 3 hours to be charged. Moreover,
its owner is satisfied with a minimum charging of 60% be-
cause this is sufficient enough for his needs tomorrow, e.g.,
going to work. Thus, we can see a flexibility regarding the
energy demand of the EV due to the energy range satisfac-
tion (60%—100%). Furthermore, the owner wants the car
to be charged by 6:00 the latest, where he/she leaves home.
As the battery requires 3 hours of charging, it should start
being charged at 3:00 the latest. Therefore, we can also see
a flexibility regarding the starting time range (23:00-3:00)
of recharging the EV. The energy supplier is notified about
the EV owner’s energy requirement as well as the associated
flexibilities in time and amount in the form of a flex-offer.
Utilizing the flex-offer, the charging of the battery is sched-
uled (the starting time and energy demand for operating are
assigned) at 1:00 because wind production will increase at
that time. Furthermore, in order to ensure the owner’s par-
ticipation and to take advantage of the EV flexibility, the
owner is offered lower energy tariff prices.

Flexibility, harnessed from many prosumers (using flex-
offers) and handled according to the use-case example above,
brings many advantages to society as well as to the actors
participating in the energy market. Specifically, the utiliza-
tion of RES is substantially increased and COz emissions
are reduced. Individual energy demands from prosumers
are met and lower energy tariffs are offered. Marginal costs
are reduced for Balanced Responsible Parties (BRPs) who
trade energy. Congestion problems of Distributed System
Operators (DSOs) can be handled without costly upgrades
of physical grid infrastructures.

However, in order to take flexibility into consideration, we
need to be able to measure how much flexibility is offered and



identify the kind of flexibility offered. Only with a proper
flexibility measure, different flexibility offerings can be com-
pared together. Focusing on the use-case of flex-offers and
flexibility represented by these, we now present two scenar-
ios where measuring flexibility is particularly useful.

Scenario Nr. 1 Flex-offers must be scheduled at some
point in time to be able to satisfy the prosumers’ energy
needs, as described in the use case example above. Flex-offer
scheduling problem [13], being similar to the unit commit-
ment problem [9], is highly complex [12], when considering
a large number of flex-offers, issued for a variety of appli-
ances such as EVs, heat-pumps, dish washers, and smart
refrigerators. To reduce the complexity of scheduling, flex-
offer aggregation [15] plays a crucial role by trying to reduce
the number of flex-offers while retaining as much as possible
of their flexibility. In addition, the TotalFlex project is fur-
ther utilizing the aggregation not only to reduce the number
of the flex-offers, but also to partially handle the balancing
task as well [14]. For all the aggregation techniques, it is
essential to quantify and then to minimize flexibility losses,
and therefore a flexibility measure is needed.

Scenario Nr. 2 Consider an energy market where flex-
offers are traded. It is infeasible to trade flex-offers from in-
dividual prosumers directly in the market due to their small
energy amounts. It is desirable for a BRP or for any other
participating actor (e.g., an Aggregator) to first aggregate
flex-offers from individual prosumers (e.g., household appli-
ances) into “larger” aggregated flez-offers (e.g., at the dis-
trict level) before entering the market. Consequently, only
large aggregated flex-offers are allowed to be traded in the
market, and, when traded, used, e.g., by a BRP to ensure
balance between the physically dispatched energy and en-
ergy traded in the energy spot-market, thus avoiding imbal-
ance penalties. In this scenario, it is preferable for aggre-
gated flex-offers to retain as much flexibility as possible in
order to obtain a better value in the energy market when
they are traded. Thus a flexibility measure to quantify flex-
ibility of various flex-offers traded as commodities is needed.

In this paper, we employ the existing flex-offer definition [15]
capturing flexibilities regarding time and energy amount.
We assume that a flex-offer is already generated and it cap-
tures the energy and associated flexibility of a single pro-
sumer unit (e.g., an EV). Our goal, is to express the flex-
ibility, in time, amount, and both time and amount, with
a single flexibility measure that can be applied on a single
flex-offer or on a set of flex-offers. Therefore, we introduce
8 possible flexibility measures that can be used to quan-
tify flexibilities of flex-offers and to compare flex-offers to-
gether in terms of their flexibilities. These include so-called
time, energy, product, vector, time-series, assignments, abso-
lute area-based, and relative area-based flexibility measures,
which treat time and energy amount either as independent
or dependent flex-offer dimensions. We discuss their advan-
tages and disadvantages using illustrative real-world based
examples. Our proposed flexibility definitions can be used
not only for the valuing of flex-offers, but also for evaluation
of flex-offer aggregation techniques and their algorithmic im-
plementation. In fact, depending on the application needs,
the flexibility of a flex-offer can be measured using one or
more of the proposed measures, each with their advantage.
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The remainder of the paper is structured as follows. In Sec-
tion 3, we introduce and propose different flexibility defi-
nitions. We discuss in Section 4 about the use-case of the
introduced definitions mentioning their pros and cons. We
refer to related work in Section 5, and we conclude and men-
tion our future work in Section 6.

2. PRELIMINARIES

In this paper, we consider the dimensions of time and energy,
where time has the domain of natural numbers including
zero (Np) and energy has the domain of integers (Z). These
assumptions are without loss of generality as we can achieve
any desired finer granularity /precision of time and energy by
simply multiplying their values with the desirable coefficient.
Based on [15], we define a flex-offer according to Definition 1.

Definition 1. A flex-offer f is a 2-tuple
F=([tes, tis], (s, ..., s(N). The first element of the
tuple denotes the start time flexibility interval where
tes € Nog and t;s € Ng are the earliest start time and latest
start time, respectively. The second element is a sequence of
s consecutive slices that represents the energy profile. Each
slice s 4s an energy range [amin, Gmaz), Where amin € Z
and Gmaez € Z. The duration of slices is 1 time unit.

A flex-offer also has a total minimum ¢, and a maximum
Cmaz energy constraint. The minimum constraint is smaller
than or equal to the maximum one and they are lower and
upper bounded by the sum of all the minimums and the sum
of all the maximums of energy of the slices, respectively.
If all the energy values of a flex-offer are positive then the
flex-offer represents energy consumption (positive flex-offer),
e.g., a dishwasher. If all the energy values of a flex-offer
are negative then the flex-offer represents energy production
(negative flex-offer), e.g. a solar panel. If the energy values
of a flex-offer are both positive and negative then the flex-
offer represents both energy consumption and production
(mixed flex-offer), e.g., a “vehicle-to-grid”.

A flex-offer f can be instantiated into a so-called assignment
of f, fa, is a time series defining the starting time and the
exact energy amounts satisfying all flex-offer constraints.

Definition 2. An assignment f, of a flex-offer f =

s ) . . totart+s
([tes, tis), (s, ... )Y is a time series {fa ftart e
(W, v(s)) such that:

[ ] tes S tstart S tls

o Vi=1.5:5 amin <v® < s amaes

S
® Crin < Zv(i) < Cmax
=1

A (valid) flex-offer assignment satisfies the constraints of a
flex-offer. Specifically, for each slice of the flex-offer, the
assignment has a corresponding energy value which must
be within the corresponding slice energy range of the flex-
offer. In addition, the sum of the energy values of a flex-offer
assignment must be within the total minimum and the total
maximum energy constraints of the flex-offer. Furthermore,
the first non-zero energy value of the assignment that defines



the actual starting time of the flex-offer must be within the
start time flexibility interval of the flex-offer. A single flex-
offer (typically) has several flex-offer assignments. We use
the set L(f) to define all (valid) flex-offer assignments. For
instance, Figure 1 illustrates a flex-offer with four slices f =
([1,6],([1,3],[2,4],[0,5],[0,3])). One valid assignment of f
is fa1 € L(f) such that {f.1}i—s = (2,3,1,2), shown as bold
lines in Figure 1.
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Figure 1: Illustration of a flex-offer f
3. FLEXIBILITY DEFINITIONS AND

MEASURES

We now introduce different flexibility definitions and mea-
sures associated with a flex-offer.

3.1 Time and energy flexibility

There are two different types of flexibilities associated with
a flex-offer, either derived by the starting time interval or
by the energy ranges of the slices.

Based on the flexibility definitions introduced in [15], we
consider the time flexibility tf (f) of a flex-offer f to be the
difference between the latest and the earliest start time of
f, measured in time units, i.e., tf(f) = f.tis — [-tes.

Example 1. The flex-offer f in Figure 1 has t;s=6 and
tes=1, thus time flexibility is: tf(f) =6 —1=15.

Moreover, since the total maximum and the total minimum
energy constraints impose the allowed energy range of a flex-
offer, we also define energy flexibility of a flex-offer f to be
the difference between the total maximum and the total min-
imum energy constraints, i.e., ef (f) = ccmax(f) — comin(f)

Example 2. The flex-offer f in Figure 1 has the
sum of maximum slice values equal to 15 and the
sum of minimum slice values equal to 3. Given that,
comax(f)=15, c.min(f)=3, and the energy flexibility of f
is ef (f)=15—3=12.
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3.2 Combined flexibility measures

As seen above, quantifying either time or energy flexibilities
on their own is rather straightforward. It is more tricky to
consider them in combination. Therefore, we now define and
discuss several alternative measures for this.

Product flexibility. The existing definition of total flex-
ibility [15] originally specified the total (joint) flexibility of
a flex-offer f as the product of the time flexibility and the
sum of the energy flexibilities of all the slices. However, as
we have additionally introduced the total energy constraints
of a flex-offer, we define the product flexibility of a flex-offer
as follows:

Definition 3. The product flexibility product_flezibility(f)
of a flex-offer f is the product of the time flexibility and the
energy flexibility of f, i.e., product_flexibility(f) = tf(f) -
ef(f):

Example 3. The flex-offer f in Figure 1 has product flex-
bility product_flexibility(f) = 5 - 12 = 60.

Vector flexibility. Since a flex-offer is characterized by
both time and energy we define the flexibility of a flex-offer
to be a vector where time and energy flexibilities are the
vector components.

Definition 4. The vector flexibility vector_flexibility(f) of
a flex-offer f is a vector v with 2 components. The first
component of the vector is the time flexibility of f, and
the second component is the energy flexibility, i.e., v =

tf(f),ef (1)

The total flexibility is then intuitively given by the “length”
of the vector, computed using a given norm. Possible
relevant norms in our two dimensions include Manhattan
(L*=™°™™) and Euclidean norm (L*7"°"™).

Example 4. The flex-offer f in Figure 1 has wvector
flexibility vector_flexibility(f) = (5,10), and we can com-
pute its length as either ||vector_flezibility(f)|1=5+10=15

or ||vector_flexibility(f)|2=+/(52 + 102)=11.180.

Time-series flexibility. A flex-offer allows multiple as-
signments, each expressing a possible instantiation of the
flex-offer. Since every assignment of a flex-offer is a time
series, the difference between two assignments is also a time
series. We consider the two most dissimilar time series (as-
signments), minimum and mazimum, defined as follows:

Definition 5. The minimum assignment f'"(f) of a
flez-offer f = ([tes,tls],(s<1),...,s(s))) is the assignment
with the first energy value positioned at the earliest start-
ing time of f and energy values equal to the minimum
slice values of f, i.e., fIl"(f) = t, where {t}lest® =

t=tes
<f-5(1)~amina ey f-S(S)-amin>-

Definition 6. The mazimum assignment f7°"(f) of a
flez-offer f = ([tes,tis), (sV,...,s®)) is the assignment
with the first energy value positioned at the latest start-
ing time of f and energy values equal to the mazximum
slice values of f, i.e., fI*°(f) = t, where {t}il:“;: =

<f.5<1).amaI7 e fls(s).amln).



Using minimum and maximum assignments, we define series
flexibility as follows:

Definition 7. The time series  flexibility,
series_flexibility(f), of a flex-offer f is the difference
the mazimum and the minimum assignments of f (time
series), i.c., series_flexibility(f)=fT"(f)-fr(f).

Since we use two dimensions, we again propose the Manhat-
tan and Euclidean norms to quantify the difference between
two assignments.
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Figure 2: Time series definition example with ef(f1) = 1
and tf(f1) =1

Example 5. Figure 2 illustrates a flex-offer fi with 1
slice, earliest start time = 0, and latest start time = 1, f1 =
([07 1]7 <[Oa 1])7 Cmin(fl) =0, and cmaz(fl) =1L

Flex-offer f1 has 4 assignments, and the following mini-
mum and mazimum assignments: {12 (f1)}—o = (0,0),
{12 (f1) =0 = (0,1). Let the difference between fin"*(f1)
and fi5'"(f1) be fa1 so that fa1=Ff12"(f1)-fia " (f1). In this
exzample {fa}i—o = (0,1), L', [{fur}izas = 1, and
L2—nerm, |{fd1}t1=1|2 = 1. According to both L'~"°"™ and
L27mo™™  series_flexibility (f1)=1.

Assignment flexibility. As mentioned in Section 2, a flex-
offer allows a number of possible assignments. The number
of possible assignments directly depends on time and energy
flexibility and is the number of the combinations between all
the allowed amount and time values of all its slices. There-
fore, we use the number of possible assignments as a com-
bined measure induced by both time and amount flexibility.

Definition 8. We define assignment flexibil-
ity, assignment_flexibility(f), of a flex-offer f =
([tess tis], (s, ..., 5))) to be the number of all possi-

ble assignments of f, i .e., assignment_flexibility(f)=

:(tls—tes—i—l)-H(s(i) Amaz—8D amint1).

1=1
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Figure 3: Number of assignments example with ef(f2) = 2
and tf(f2) =2

Example 6. Flex-offer fo = ([0,2],([0,2])) in Fig-
ure 38 has tis—tes+1=3 and since it has one slice
s(l).amaz—s“).amm—&—l:i’). Thus, fao has 9 assignments in
total.

Absolute area-based flexibility. Absolute area-based
flexibility is based on the area that all flex-offer assign-
ments jointly cover, considering all of their possible values
of start time and energy. As a basis for calculating this
area, we consider a two-dimensional (time and energy) grid
G = Nog X Z = {(t,e) : t € time,e € energy}, in which
the x axis corresponds to discretized time and the y axis to
discretized energy. Cells of the grid are identified by their
lower left coordinates. For instance, the cell with identi-
fier (0, 0) has the following corner coordinates: (0,0), (0, 1),

(1,0), (1,1).

First, we define the area of a single flex-offer assignment.

Definition 9. The area of an assignment fq of a flex-offer
f, denoted as area(fa), is the set of cells that falls between
the fo energy values and the X-axis of the grid.

Example 7. Given an assignment of flex-offer fs,
{fsa}iz1 = (2,1,3) the area is as follows: area({fza}ieq) =
{(1,0),(1,1),(2,0),(3,0),(3,1),(3,2)}, which is represented
by the hatched cells in Figure 4.

This area represents the total assigned amount of a sin-
gle flex-offer. However, multiple assignments with differ-
ent areas are possible for a flex-offer. The total coverage
of all these assignment areas gives us the area of the flex-
offer flexibility. This joint area expresses all the possible
amounts at all the possible time instances that a flex-offer
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Figure 4: Area of the assignment {f3,}i_; = (2,1,3)

could have. Furthermore, we are interested in the size (a
numerical value) of this area of flexibility. To specify this,
we additionally take into account the minimum total energy
constraint c_min, which is applicable to all assignments and
is thus considered inflexible.

Definition 10. The absolute area-based flexibil-
ity of a flex-offer f is the difference between the
size of the total area covered by all the assign-

ments of f and the total minimum constraint of f:
absolute_area_flexibility=| |J area(as_f)| — ccmin(f)
as_fEL(f)

Example 8. Figure 5 illustrates the flex-offer fi =
([074]7<[252]>7 CMiTL(f4):27 and Cmaz(f4):2- Flez—oﬁer
fa has 5 different assignments and each one covers an
area of two cells, see Figure 5. Flex-offer fa has
absolute_area_flexibility(f;)=10—2=8.

Example 9. Figure 6 illustrates the flex-offer fs =
([07 4]3 <[13 1]5 [25 2]>7 Cmin(f5)23, and Cmaz(fS):3- Fle-
offer fs has 5 different assignments and each one covers
an area of three cells, see Figure 6. Flex-offer fs has
absolute_area_flexibility (f5)=10—2=8.

Relative area-based flexibility. For most of the pre-
sented flexibility measures (incl., absolute area-based flex-
ibility), the value of the flexibility depends on the actual
amounts specified in the flex-offer. However, in cases when
we need to compare flex-offers of different sizes in terms
of amount, we need a size-independent measure. For these
cases, we propose a relative area-based flexibility.

Definition 11. The relative area-based flexibility of a flex-
offer f is equal to the absolute flexibility divided by the av-
erage of the energy total constraints of f:

2xabsolute_area_flexibility (f)
[c-min(f)[+]c-maz(f)]

relative_area_flexibility(f)
lemin(f)| + le-maz(f)] £ 0

Example 10. Flez-offer fa = ([0,4], ([2,2]),
Cmin(f1)=2, Cmaz(fa)=2, shown in Figure 5, has
relative_area_flexibility (f; )= % =4. Flez-offer
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Figure 5: Absolute and relative area-based flexibility of the
flex-offer f4

s = ([074]7<[1a1]a[2a2]>; Cmin(f5):3; Cmaa;(fS):S, shown

in Figure 6, has relative_area_flexibility(f5)= ‘3|21?3‘:16/6.

4. DISCUSSION

In this section, we discuss the pros and cons of the proposed
flexibility measures, and scenarios in which we can use each
of these measures.

Product flexibility. The product flexibility measure, de-
fined in Definition 3, is only applicable in cases when a
flex-offer f has positive time and energy flexibilities, i.e.,
tf(f) > 0 and ef(f) > 0. In cases, when either the time
or the amount flexibility is equal to zero, the value of the
product flexibility is also equal to zero. As the flex-offer is
still flexible in the other dimension (time or energy), this
measure is not particularly accurate.

Example 11. Flez-offer f.=([2,8],([5,5])) has tf(f)=6,
ef(fz)=0, and product_flexibility(f;) = 6 - 0 =
0. Moreover, two flez-offers fr=([1,3],([1,5])) and
fy=([1, 3], ([101,105])) have equal product flexibility values,
i.e., product_flexibility (f; )=product_flexibility(f,)=8, even if
the minimum energy requirement of f, is more than 100
times greater than the minimum energy requirement of fu.

Furthermore, product flexibility does not take into account
individual slice energy requirements. It relies only on total
energy requirements (¢min and Cmaz). Nevertheless, Defi-
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flex-offer f5

nition 3 can still be applicable in scenarios where the flex-
offer represents production, consumption, or both, as long
as there are no mixed flex-offers. Additionally, it can be
generalized for sets of flex-offers. To compare two or more
sets of flex-offers, we should sum the product flexibilities of
the flex-offers in each set.

Vector flexibility. Vector flexibility measure, as defined
in Definition 4, can be applicable to either individual flex-
offers or sets of flex-offers, like the product flexibility. How-
ever, unlike the product flexibility, it can capture the flex-
ibility in cases where either time or energy flexibility of a
flex-offer is equal to zero. Furthermore, it is independent of
the sign of the energy values of the slices of a flex-offer. In
particular, it can express flexibility of flex-offers that repre-
sent either energy production, consumption, or both. Like
the product flexibility, it does not take into account individ-
ual slice energy requirements, solely relying on total energy
requirements (Cmin and ¢maz). Lastly, vector flexibility does
not take into account the actual values of energy (“size of
the flex-offer”), but, instead, captures only the difference
between energy bounds.

Example 12. The two flez-offers f»=([1,3],([1,5])) and
fy=([1,3],([101,105])) from Ezample 11 have the same
vector flexibility irrespectively of the used norm, even if the
manimum energy requirement of fy is more than 100 times
greater than the minimum energy requirement of fy. Specif-
ically, ||vector_flexibility(f.)||1=||vector_flexibility(f,)|1=6
according to the Manhattan norm, and
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||vector_flezibility (f: ) ||=||vector_flexibility(f,)||2=4.472
according to the Fuclidean norm.

Time-series flexibility. Norms such as Manhattan and
Euclidean, applicable with time-series flexibility (see Defini-
tion 7), do not take into account the temporal structure of
the time series [7] and thus cannot capture the joint effect of
time and energy flexibilities. As a result even if time-series
captures both time and energy, the norms applied on a differ-
ence between time-series can capture only energy flexibility.
However, the time-series definition can be applied on pos-
itive, negative, and mixed flex-offers, as well as on sets of
flex-offers — by computing the sum of time-series flexibilities
of the flex-offers in the set.

Example 13. As mentioned in Ezxample 5, flex-offer fi =
([0,1],([0,1]), emin(f1) = 0, and cmaz(f1) = 1 results in
time series { fa1yio = (0,1, and its norms are as follows:
Lo GV = 1, and 13770 [{fabyle = 1.
However, another flez-offer fi = ([0,10], ([0,1]), cmin(f1) =
0, and Cmaz(fi) = 1 with 10 times greater time flewibil-
ity than fi results in a similar time series {fi1}i—o =
(0,0,0,0,0,0,0,0,0,0,1) with identical norms: L'~™"™,
{firYizilr = 1, and L7, [{fo }ica]2 = 1.

Assignment flexibility. Assignment flexibility, as defined
in Definition 8, considers only the number of flex-offer as-
signments, and this number is independent of the actual val-
ues of the time and energy bounds. The limitation of this
measure is that energy flexibility has an exponential impact
on the number of the assignments, i.e., the number of assign-
ments increases exponentially when energy flexibility is in-
creased. In comparison, the number of flex-offer assignments
increases linearly when time flexibility is increased. Thus,
this measure favors energy flexibility over time flexibility.
Moreover, assignment flexibility, as defined in Definition 8,
does not take into account the total energy requirements
(¢min and ¢mae), and gives the same values for flex-offers
with the same time and amount flexibilities, but differing
in energy amounts. Furthermore, it can express flexibility
of flex-offers that represent either production, consumption,
or both. It can be used to compare individual flex-offers
and to compare sets of flex-offers by counting the number of
possible assignments for the whole set.

Example 14. The flez-offer fo with tf(f2)=ef(f2)=2,
shown in Figure 3, has 9 possible assignments. If tf(f2)
were 0, flex-offer fo would have 3 possible assignments, but
if ef(f2) were 0, fo would have 2 possible assignments. The
flez-offer fo with tf(fe)=2 and ef(fs)=10, shown in Fig-
ure 7, has 240 assignments. If tf(fs) were 0, fo would have
80 assignments, but if ef(fs) were 0, fo would have 3 as-
signments.

Absolute and relative area-based flexibility. Both the
absolute and relative area-based flexibility measures (Defini-
tions 10-11) can be used to capture the joint effect of time
and energy flexibilities. However, the absolute area-based
flexibility measure should only be used for (pure) consump-
tion flex-offers only, as its value is adjusted using the total
minimum energy constraint (¢min ), which is meaningful only
for the consumption case where amounts are positive. For
the production flex-offer case, where amounts are negative,



Flexibility Measures

Characteristics Time | Energy | Product | Vector | Time-series | Assignments | Abs. Area | Rel. Area
Captures time Yes No No Yes No Yes Yes Yes
Captures energy No Yes No Yes Yes Yes Yes Yes
Captures time & energy No No Yes Yes No Yes Yes Yes
Captures size No No No No No No Yes Yes
Captures positive flex-offers Yes Yes Yes Yes Yes Yes Yes Yes
Captures negative flex-offers Yes Yes Yes Yes Yes Yes Yes Yes
Captures Mixed flex-offers Yes Yes Yes Yes Yes Yes No No
Single Value Yes Yes Yes Yes Yes Yes Yes Yes

Table 1: Flexibility definitions characteristics.

the total maximum energy constraint (¢maz) should be used
instead. However, for cases when the flex-offer represents
both production and consumption, this flexibility measure
is not feasible.

Example 15. For instance, flex-offer
f4:([072}7<[7152}7[71574]7[7371”) in Figure 7 has
Cmin(f6)=—8 and cmaz(f6)=2, but neither of them
erpresses the lower or upper bounds of the area,
jointly covered by the assignments of fe. In this

case, absolute_area_flexibility (fs)=24—(—8)=32 and
relative_area_flexibility (fs )= % =6.4.

On the other hand, both absolute and relative area-based
flexibility measures can be used to compare individual flex-
offers. Only absolute area-based flexibility can be used to
compare the total absolute flexibility of two or more sets
of flex-offers, e.g., by summing up the individual absolute
area-based flexibility values of the flex-offers in the sets. To
assess the relative flexibility for a set of flex-offers, the sum
of relative flexibilities is not meaningful, instead the average
relative flexibility could be used.

All the flexibility measures can be applied for both individ-
ual flex-offers and sets of flex-offers to compare their un-
derlying flexibility. However, as we see in Table 1, which
summarizes the characteristics of all the proposed flexibility
definitions, each flexibility measure has specific characteris-
tics and should be used under specific circumstances only.
For example, the product flexibility measure cannot properly
capture flexibility unless both time and amount flexibility is
exhibited. The time-series flexibility measure captures only
flexibility induced by energy flexibility. Only the absolute
and relative area-based flexibility measures take into account
the amount values (size) of the flex-offers. However, the
absolute and relative area-based flexibility measures have
problems expressing the flexibility of mixed flex-offers.

Application Scenarios. There are 2 major scenarios
(see Section 1) where the different measures can be ap-
plied. In Scenario 1, the goal of aggregation is to reduce
the input complexity of scheduling and retain as much flex-
ibility of flex-offers as possible. In this scenario, measures
that capture flexibility induced by both time and energy,
e.g., product flexibility and assignments flexibility, are qual-
ified. Measures that capture only time or energy flexibility,
such as time-series flexibility, are not appropriate for Sce-
nario 1. However, in cases where aggregation handles the
balancing task as well, measures that capture flexibility of
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Figure 7: Number of assignments example, flex-offer fs

mixed flex-offers are needed since the aggregated flex-offers
might be mixed ones. Thus, measures that are not suitable
for mixed flex-offers, i.e., absolute and relative area-based
flexibility, are inappropriate to express flexibility. Instead,
measures that capture flexibility of mixed flex-offers such
as vector and assignments flexibility, are qualified. In Sce-
nario 2, where an energy market actor (e.g., an Aggregator)
trades flex-offers as commodities, measures capturing only
time or energy can be used. The reason is because an Aggre-
gator might handle flex-offers from specific appliances that
are characterized only by time or energy flexibility. Thus,
the time-series measure, the time and energy flexibility mea-
sures, and the product flexibility measure are appropriate.
In cases where an Aggregator wants to explore and evalu-
ate the potentials of achieving a local balance and handle a
power capacity limitation, measures for mixed flex-offers are
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more appropriate. However, only absolute and relative area-
based flexibilities take into account the size of a flex-offer,
but they cannot be applied on mixed flex-offers. Therefore,
a combination of measures that includes the absolute or the
relative area-based flexibility can be used to handle these
more complex cases. Weighting is one way of combining dif-
ferent flexibility measures and balancing their influences to
fulfill specific characteristics mentioned in Table 1.

5. RELATED WORK

Flexibility in energy supply and demand has a prominent
role in the Smart Grid domain, and, among others within
this domain, can be associated with distributed generation,
load management and demand side management [6]. Many
definitions of flexibility have been proposed, but a formal
universal definition is still pending [10]. Some proposed mea-
sures of flexibility focus on operational aspects and take into
account transmission constraints [3], while others are based
on time shifting of loads [11]. Furthermore, there has been
proposed categorizations of power units based on their char-
acteristics, taking into consideration their qualities and ca-
pabilities to dispatch power and solve balancing issues [10].

In comparison, this paper proposes and discusses specific
measures to quantify flexibility in energy supply and de-
mand, namely in the units connected to the Smart Grid
such as electric vehicles, solar panels, wind turbines, and re-
frigerators. We use the existing definition of a flex-offer [15],
which is a generic model for representing flexibility and ad-
just it for the cases of energy consumption, production, and
both consumption and production. The proposed measures
can be applied on individual electrical units and on sets of
units as well, e.g., when solving the unit commitment prob-
lem [9] or tackling balancing or congestion problems occur-
ring in the grid [13].

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed and explored 8 measures for
quantifying flexibility in demand and supply based on the
generic flexibility model of a flex-offer, capturing the energy
behavior of units connected to the Smart Grid. We iden-
tified the independent flexibilities of time and energy and
proposed a number of combined measures — product, vector,
time-series, assignments, absolute area-based, and relative
area-based — which take both time and energy into account.
These measures can be used to compare the flexibility of in-
dividual flex-offers as well as sets of flex-offers. We demon-
strated and discussed the impact of the proposed measures
using elaborate graphical examples. We concluded through
a discussion that such single-value measures can be used to
express the flexibility of the units connected to the Smart
Grid. However, none of the measures have all the desirable
characteristics. Instead, each measure has specific character-
istics and can be used in specific circumstances, all discussed
in the paper.

In future work, we will examine the use of the suggested mea-
sures for flex-offer aggregation algorithms, including those
that partially address the energy balancing problem and
consider electric grid constraints. The proposed flexibility
measures will be added to the constraints and/or objective
functions of these aggregation algorithms, performing ag-
gregation jointly with flexibility optimization. We will also
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experimentally evaluate the flexibility measures and their ef-
fect on the scheduling process in different scenarios. More-
over, we will extend the current proposals to new types of
measures capturing more aspects of flexible electrical loads.
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ABSTRACT

Solar panels have been improving in efficiency and dropping
in price, and are therefore becoming more common and eco-
nomically viable. However, the performance of solar panels
depends not only on the weather, but also on other exter-
nal factors such as shadow, dirt, dust, etc. In this paper,
we describe a simple and practical data-driven method for
classifying anomalies in the power output of solar panels. In
particular, we propose and experimentally verify (using two
solar panel arrays in Ontario, Canada) a simple classifica-
tion rule based on physical properties of solar radiation that
can distinguish between shadows and direct covering of the
panel, e.g,. by dirt or snow.

1. INTRODUCTION

Photovoltaic (PV) technology, i.e., solar panels, has been
rapidly dropping in price and increasing in popularity world-
wide [7]. The monitoring and measuring capability of PV
installations has also improved. While it used to be possible
only to measure the total power output of an array of solar
panels, micro-inverters (which are devices that covert Direct
Current generated by an individual panel into Alternating
Current) now make it possible to measure the power out-
put of each individual panel at fine granularities (e.g., every
minute or every five minutes). Thus, solar panel data analyt-
ics is becoming an important area of research and practice.

The power output of a PV system depends on solar inten-
sity and the panels’ efficiency of converting light into power
(typically 15-20 percent). Additionally, even a perfectly-
functioning panel on a sunny day will produce little power if
it is shaded or covered by dust or dirt. For instance, many
large-scale PV installations are located on farmlands and/or
near country roads, which makes them vulnerable to dust,
mud, pollen and other types of soiling. Furthermore, even if
a farm site is chosen to be shadow-free, grass may eventually
grow tall enough to cast shadows on the panels. Numerous
studies have observed power drops of 40 or more percent due
to shaded, dirty and snow-covered panels [1, 2, 3, 4, 6, 8,

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0
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11, 15, 18, 23, 25].

A simple solution is to frequently clean the panels. How-
ever, this is not feasible in desert locations that suffer from
water shortages, or in remote large-scale installations where
an automated sprinkler system is prohibitively expensive.
Some PV installations include cameras that monitor the
panels, but it may be difficult to tell from videos or still
images whether the panels are dirty (see, e.g., Figure 4 in
Section 5). Thus, in practice, PV systems often operate in
less than ideal conditions.

The problem we address in this paper is how to determine,
in a data-driven fashion, what is wrong with a solar panel, on
a per-panel rather than per-array basis. Since most large-
scale PV systems are equipped with sensors that measure
solar intensity and power output at regular intervals, we
propose a simple classification approach to explain anoma-
lies (i.e., drops) in the produced power based on these time
series. This is a challenging problem because it is not obvi-
ous how to distinguish between different types of anomalies,
and therefore it is not obvious which features of the data to
use for classification.

We take a first step towards data-driven classification of
anomalies in PV power output based on fine-grained per-
panel data. Our solution exploits the physical properties of
solar radiation. We observe that obstructions which do not
touch the panels, such as shading, affect the power output
in a subtly different way than dirt or snow lying on the
panels. Based on this observation, we derive simple features
from the power output time series that distinguish between
shadows and soiling. We tested the proposed idea using data
obtained from two real PV installations in the province of
Ontario, Canada, and obtained 85 percent accuracy.

An obvious limitation of the proposed solution is that it
can only tell shadows apart from direct cover, but it can-
not distinguish between different types of direct cover (such
as dust, dirt, or leaves) or between direct cover and physi-
cal panel malfunctions. Nevertheless, this simple classifica-
tion can already be helpful to PV owners as it can suggest
when the panels are due for a cleaning and when unexpected
shadows arise. Our preliminary results are promising, and
we hope that this paper encourages further research in solar
panel data mining.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the necessary background in solar panel mon-
itoring and defines our problem; Section 3 discusses related
work; Section 4 presents our solution; Section 5 describes
our experimental results; and Section 6 concludes the paper
with directions for future work.



2. PRELIMINARIES
STATEMENT

We begin with a simple example of the factors affecting
the power output of a solar panel with the help of Figure 1.
The curve labeled “1” corresponds to the maximum solar
intensity times the surface area of the panel throughout a
hypothetical day, on which the sun rises at 6:00 and sets at
20:00. If the sun were shining all day, there were no clouds,
and the panel was able to convert 100 percent of the solar
radiation into power, curve 1 would be the maximum power
output throughout the day. Chapter 20 of [14] describes how
to estimate the maximum clear-sky solar intensity given the
time of day, day of year, latitude and tilt angle of the panel,
all of which determine the relative position of the panel with
respect to the sun.

PV systems usually include a pyranometer — a device that
measures the solar intensity reaching the panels. The pyra-
nometer is tilted at the same angle as the panels and is
designed to stay clean and snow-free. The curve labeled “2”
corresponds to the actual solar intensity times the surface
area of the panel through the day. Drops in curve 2 com-
pared to curve 1 indicate clouds, and in practice, curve 2
may be much more “noisy” than shown; see, e.g., Figure 2
and Figure 3.

Of course, a solar panel cannot convert all the radiation
into power, i.e., its efficiency is not 100 percent. PV manu-
facturers typically specify efficiency as a function of temper-
ature (solar panels tend to be more efficient at lower tem-
peratures) [20]. Curves 3 and 4 in Figure 1 are derived by
applying an efficiency formula to curves 1 and 2, respec-
tively. That is, curve 3 is the expected power output given
a perfectly sunny day, and curve 4 is the expected power
output after taking clouds into account. Note that the area
between curves 3 and 4 corresponds to power loss due to
clouds, which is unavoidable.

There are two common ways to compute curve 4. One is
to start with the solar intensity measured by a pyranometer,
as described above, and adjust it according to the efficiency
function. If there is no pyranometer onsite, another way is
to select one panel as a reference panel and use its actual
power output as the expected power output. Of course, this
panel, to which we refer as a reference panel, must be clean
and problem-free.

Finally, curve 5 shows the actual power output of the
panel, as measured by a sensor connected to the micro-
inverter. Ideally, curve 5 should be identical to curve 4.
In Figure 1, the actual power output drops below the ex-
pected power output around 11:00, which could be due to
external factors such as shadow or dirt. Note that the area
between curves 4 and 5 corresponds to power loss due to
such external factors, many of which are avoidable, e.g., by
cleaning the panels.

We are now ready to state the problem we want to solve.
We are monitoring a PV array consisting of multiple panels.
We are given 1) enough enough information to compute the
expected power output time series (curve 4), e.g., the cor-
responding solar intensity and temperature time series plus
the performance ratio function, and 2) for each panel, we are
given an actual power output time series (curve 5). Our goal
is to identify and classify time intervals during which curve
5 significantly drops below curve 4, as we will formalize in
Section 4. We assume that the input time series have a fine
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Figure 1: Example of solar panel output assuming
perfect efficiency and a sunny day (1), perfect effi-
ciency and clouds (2), actual efficiency without (3)
and with (4) clouds, and with other factors (5).

granularity (e.g., one measurement every 5 or 15 minutes).
The frequency of identifying and classifying anomalies in the
power output depends on the application; for concreteness,
we assume that at the end of each day, we need to analyze
the current day’s data.

3. RELATED WORK

There has been a great deal of research on understanding
and attributing the power loss of a whole PV array due
to weather and the external environment. Field trials and
simulations were done to model and characterize the effects
of cloud cover (see, e.g., [13]), air pollution (see, e.g., [11]),
shadows (see, e.g., [4, 17, 23]), dust and dirt (see, e.g., [3,
6, 8, 15, 25]), and snow (see, e.g., [1, 2, 18]). The goal of
this body of work was mainly to estimate the percentage
power loss over an extended period of time, perhaps as a
function of the type or thickness of snow or soiling. Rather
than studying a particular factor in a controlled environment
(e.g., using clean and dirty panels side-by-side), our work
aims to infer the underlying factors based on (per-panel)
power output and solar intensity data.

In terms of anomaly detection, there are at least three
related approaches, which we summarize below.

The first approach, mentioned in [16, 19, 24], is to period-
ically compute linear regressions of power output vs. solar
radiation and power output vs. panel temperature to de-
tect changes in the behaviour of panels. However, this ap-
proach is not meant to distinguish between different types
of changes, and therefore anomaly classification was not dis-
cussed.

In [5, 21], the solution is to collect statistics about anoma-
lies such as the magnitude of the power drop and the dura-
tion of the anomaly. The idea behind our solution is simi-
lar, but we show that a single feature is already sufficient to
distinguish between shadow and direct covering of a panel.
Furthermore, our solution does not rely on the magnitude



of the power drop since the same type of anomaly (e.g.,
dirt/snow) may cause a different amount of power drop in
different circumstances (e.g., different thickness and density
of snow or different types of dirt).

The third approach is based on machine learning. In [12],
a decision tree classifier was constructed to predict the sever-
ity of a physical problem with a solar panel based on features
such as discolouration or panel warping. While we also aim
to classify anomalies in power output, we focus on exter-
nal problems rather than hardware faults, and therefore our
framework and features are different. In [10], several classi-
fiers were tested on their ability to classify anomalies in PV
power output based on statistical properties of the output
time series. While our solution also classifies anomalies in
power output, it is different from [10] in several ways. First,
we assume that we are also given solar intensity data as in-
put, which allows us to separate power drop due to cloud
cover from other factors. Second, as we will show, we use
simple and interpretable features of the output time series
rather than complex statistical properties.

There is also a variety of commercial software tools for
estimating and tracking the power produced by solar pan-
els, and estimating power loss due to weather and other
factors; examples include Enphase Energy’s Enlighten', Lo-
cus Energy’s PVIQ?, PVSyst® and Tigo*. Some systems
use rough estimates for shading and soiling losses based on
historical data, while others include more sophisticated an-
alytics. For example, PVIQ estimates loss due to shading
by identifying seasonal patterns, e.g., a drop in power ev-
ery morning throughout the summer may correspond to a
morning shadow. Our solution does not require a year of
training data. In general, our solution is complementary to,
and may be incorporated in, the above systems to improve
the accuracy of power loss estimation and attribution.

4. OUR SOLUTION

Recall that we are given an expected power output time
series, computed using pyranometer measurements or using
the power output of a clean reference panel, and an actual
power output time series. Our goal is to explain anomalies
in the actual power output. Also, recall that the expected
power output already accounts for clouds, so any further
drop in produced power is likely due to other factors such as
dirt or shadow. The crux of our solution is the observation
that dirt or snow, which physically cover a panel, affect the
power output in a different way than shadows. We illustrate
this observation with an example and then we explain it in
terms of the physical properties of solar radiation.

4.1 Intuition and Physical Explanation

Figure 2 plots the expected (“theoretical”) and actual
(“real”) power outputs (in Watts) of the solar panel circled
in red in Figure 5; we will describe the PV array this panel
comes from in Section 5.1. The measurements were taken
on February 11, 2012, and, as can be seen, this panel is cov-
ered by snow. In general, this panel is producing roughly
one third of the expected power. Notice that the real power
output follows the fluctuations of the expected power out-

"ttp://enphase.com/enlighten/
®http://locusenergy.com/solutions/pviq-analytics/
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put; that is, if clouds come out, the power output drops
correspondingly.

Next, in Figure 3 we show another pair of theoretical and
real power time series for another panel covered by a morn-
ing shadow (from about 9:00 till 11:00) on July 10, 2013.
Notice that at that time the power output drops to roughly
20 Watts and generally does not follow the fluctuations of
the expected power output. That is, whether it is sunny or
cloudy, this shaded panel is producing (roughly) uniformly
low power.

In order to explain these observations, we need to under-
stand the physical properties of solar radiation [14]. It has
two main components: direct and diffuse. Direct radiation
reaches the surface of the Earth in a straight line from the
sun without any reflection or scatter by the atmosphere. Dif-
fuse radiation is scattered by the atmosphere and arrives at
the surface of the Earth from all directions. There is also
a third component, albedo radiation, which is the radiation
reflected from the ground, but its effect on solar panels is
negligible compared to the other two. On a clear sunny day,
most of the radiation is direct. On a cloudy winter day even
half the radiation may be diffuse depending on location.

Now, it is important to understand that shadow only
blocks direct radiation, which would normally reach a so-
lar panel in a straight line from the sun; diffuse radiation is
not affected since it arrives from all directions. This is why
the power output in Figure 3 drops and remains roughly
constant. The only radiation getting through is diffuse, and
this does not fluctuate when clouds come out. The peaks
in theoretical power output are due to more direct radiation
hitting the panel when the sky is clear. On the other hand,
covering the panel with dirt or snow blocks both direct and
diffuse radiation. This is why the power output in Figure 5
is roughly a constant fraction of the expected power output
at all times: depending on the thickness and density of the
snow, some fraction of all the radiation is blocked.

This simple property of solar radiation has been men-
tioned by prior work on PV performance analysis [5, 13,
17, 25]. Our contribution in this paper is to turn this obser-
vation into a classification feature, as we explain below, and
experimentally verify its accuracy on real data.

4.2 Anomaly Classification

We now translate the above observations into features that
may be used in classification. At any point in time, we define
the Performance Ratio (PR) of a solar panel as the ratio of
actual power produced to the expected (theoretical) power.
That is, PR is the ratio of curves 5 and 4 from Figure 1, or
the ratio of the two curves shown in each of Figures 2 and
3. For example, if the expected power is 100 Watts but the
produced power is 40 Watts, the PR at that point in time
is 0.4.

Let S be a set of data points. The Coefficient of Variation
(CV) of S is a standard statistical metric, defined as the
ratio of the standard deviation of the data points to their
mean. Now, note that the Coefficient of Variation of the
Performance Ratio (CVPR) is low in Figure 2 but higher in
Figure 3. This is the main idea of the proposed solution.

The input to our problem consists of the expected and
actual power output time series for a given solar panel, as
discussed earlier. In the first step, we identify time intervals
in which the PR is below some threshold 7pr. In the second
step, we compute the CVPR for each such time interval. If
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Figure 3: Expected and actual power output of a shaded panel.

the CVPR is below some threshold 7cvpr, we classify the
anomaly as direct cover. Otherwise, we classify the anomaly
as a shadow. We reiterate that per-panel data are required
for this method. Otherwise, if, say, only one panel is shaded,
then the whole array’s PR may still be very close to one and
no anomaly will be detected.

The threshold 7pr controls the aggressiveness of the above
classification rule. A high value may lead to false positives,
but a low value can miss some anomalies such as small shad-
ows or delay the identification of anomalies such as dirt. The
other threshold, 7cvpr, can be learned from labeled data.
We will discuss threshold selection further in Section 5.

We point out two simple optimizations of the above clas-
sification rule. First, after we find a time interval with low
PR, rather than computing CVPR from all the points within
this interval, we can remove outliers (highest and lowest PR
values in the interval) and compute the CVPR from the re-
maining points. This will help guard against data errors.
The second optimization is to only consider anomalies oc-
curring when the solar intensity is sufficiently high. During
periods of low intensity (e.g., dusk or dawn), there is little
power being generated and the PR can be noisy.

Note that our solution can easily be extended. For exam-
ple, in the context of a decision tree, we may test the value
of CVPR in the root node of the tree, and then add fur-
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ther tests on other attributes of the data to further specify
the cause of a power drop (e.g., dust vs. leaves on the panel
vs. bird droppings). That said, we believe that classifying
anomalies into shadow vs. direct-cover is already very useful
as it can determine when the panels are dirty, for whatever
reason, and need cleaning.

5. EXPERIMENTS

This section describes our experimental results regarding
the accuracy of the proposed classification rule and the ac-
curacy of other classification algorithms that may be applied
to our problem, starting with a description of our two data
sets, followed by our findings.

5.1 Data

In order to test an anomaly classifier, we need examples of
shading and soiling along with the corresponding (expected
and actual) power output time series. We obtained these
from the following two PV installations.

TRCA: an array of 15 panels, three each from five differ-
ent manufacturers, located in Toronto, Ontario. The panels
are facing due south with a 30 degree tilt and are man-
aged by the Toronto and Region Conservation Authority
(TRCA). This data set contains power output, solar inten-
sity (from an on-site pyranometer), temperature and wind-
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Figure 4: Example of an image in the TRCA data
set.
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Figure 5: Example of an image showing snow-
covered TRCA panels.

speed measurements every minute for one year, from De-
cember 2011 till December 2012. We calculated expected
power output (curve 4 in Figure 1) from the solar intensity
time series and the efficiency formulas provided by the PV
manufacturers. Additionally, we obtained an image data
feed containing 600x800 photos of the panels taken every 5
minutes. Due to low resolution, we could not identify dust
or dirt; see, e.g., Figure 4 taken at noon on August 3, 2012.
However, we found 24 days with snow; see, e.g., Figure 5
taken at noon on February 11, 2012.

UW: an array of 15 panels installed on the roof of one
of the University of Waterloo buildings, facing 26.11 degrees
southeast with a 15 degree tilt. We obtained access to the
array for one month, from June 20 till July 20, 2013. There
is no pyranometer onsite, so we selected one panel as a refer-
ence panel and ensured it is always clean and anomaly-free.
The power output of this panel was used as the expected
power output (i.e., curve 4 in Figure 1). Furthermore, there
is no camera on-site, so we manually inspected the panels
several times a day and recorded the times and locations of

90

Table 1: PR and CVPR values of all 18 shadow
anomalies
PR | CVPR
0.44 1.82
0.5 0.75
0.35 0.91
0.51 1.87
0.34 1.99
0.45 0.93
0.41 1.42
0.46 1.82
0.45 1.17
0.35 1.17
0.19 3.45
0.33 1.53
0.31 2.18
0.3 1.87
0.31 2.42
0.15 6.3
0.3 1.91
0.47 2.13

shadows. We also manually covered the panels with varying
amounts of dirt (consisting of fine sand mixed with dried
soil) and measured the corresponding power drop.

5.2 Results

Altogether we collected 60 examples of anomalies, 24 of
which are due to snow (TRCA), 18 due to shadow (UW)
and 18 due to dirt (UW). Tables 1, 2 and 3 list the PR
and CVPR values for all the shadow, snow and dirt anoma-
lies, respectively. Shadow appears to drop the power output
to one-half or less of the expected output. The PR val-
ues for snow anomalies range from 0.1 to 0.88 depending on
the thickness and density of the snow cover. Dirt appears to
have less of an effect on the power output than other anoma-
lies: the PR values for our dirt anomalies range from 0.85 to
0.97. However, this may be an artifact of our experimental
procedure: the dirt we manually placed on the panels did
not stick to the panels for very long and slid off them within
several minutes (recall that the UW panels are tilted 15 de-
grees). In prior work, the effect of dirt and dust has been
reported to be higher. Finally, we note that, as expected,
the CVPR of shadow anomalies appears significantly higher
than that of direct cover anomalies.

5.2.1 Our Classifier

We now test our simple classification rule: for each time
interval in which PR drops below 7pgr, if CVPR is below
Tcv PR, the power drop is due to direct cover; otherwise,
the power drop is due to shadow (then, separating direct
cover into snow vs. other cover can be done easily with the
help of weather data).

The first task is to determine a value for 7pr. In general,
we need to trade off between missed anomalies and false
alarms. Our shadow and snow anomalies all had a PR under
0.88, but there were seven dirt anomalies with a PR above
0.9. However, as we mentioned earlier, in practice we expect
dirt anomalies to have a lower PR than the PR we obtained
in our experiments. Thus, 7pr = 0.9 is a reasonable choice.
That is, we identify an anomaly if the actual power output
of a panel is 90 percent or less of the expected output.



Table 2: PR and CVPR values of all 24 snow anoma-
lies

PR | CVPR
0.48 | 0.17
0.5 0.18
0.45 | 0.74
0.56 | 0.37
0.58 0.6
0.1 1.44
0.55 | 0.31
0.77 1 0.11
0.42 | 048
0.11 1.8
0.88 | 0.02
0.47 | 0.44
0.62 | 0.18
0.62 | 0.34
0.35 | 0.46
0.76 | 0.15
0.74 | 0.08
0.84 | 0.05
0.85 | 0.05
0.78 | 0.19
0.81 0.09
0.81 0.17
0.23 | 0.67
0.37 | 0.63

Next, we need to choose a value for 7cvpr. Based on our
training data, the best thresholds are 0.75 and 1.17. With
Tovpr = 0.75, 50 out of 60 anomalies are classified correctly,
with two snow and 8 dirt anomalies misclassified as shadow.
With 7cvpr = 1.17, 51 out of 60 anomalies are classified
correctly for an accuracy of 0.85, with 3 shadow anomalies
misclassified as direct cover, and two snow and 4 dirt anoma-
lies misclassified as shadow. As we mentioned in Section 4.2,
there are simple optimizations that may improve accuracy,
such as removing PR outliers within the time interval of an
anomaly. Furthermore, having access to more labeled data
should help choose a better threshold. That said, based on
our results so far, we conclude that a 7cv pr value of around
one should work well.

We also point out that only three shadow anomalies had a
CVPR value below one, and they happened on cloudy days,
on which the solar radiation was not as noisy as that in Fig-
ures 2 and 3. As a result the CVPR was lower than it would
be had there been periods of sunshine and clouds through-
out the day. On the other hand, there are several snow and
dirt anomalies with a relatively high CVPR between 1.4 and
1.8. These correspond to thin layers of dirt or snow, which
may have allowed more diffuse radiation to reach the panel
than a thick and dense cover would.

5.2.2  Other Classifiers

For comparison, we also tested several classifiers using
the WEKA machine learning toolkit [9]. Each classifier was
given two feature variables: PR and CVPR, and the class
label, which could be shadow or direct cover. Table 4 shows
the accuracy of the tested classifiers using ten-fold cross vali-
dation. The algorithms are: the C4.5 decision tree, the Best
First (BF) decision tree, the Naive Bayes (NB) decision tree,
the Functional Tree (FT), the Simple Cart decision tree al-

Table 3: PR and CVPR values of all 18 dirt anoma-
lies

PR | CVPR
0.9 0.7
0.91 1.2
0.88 1.13
0.92 | 0.68
0.82 | 0.57
0.95| 0.55
0.97 | 041
0.94 | 043
0.9 0.13
0.93 1.41
0.9 0.98
0.86 1.45
0.88 | 0.97
0.85 1.56
0.93 1.04
0.9 0.66
0.89 | 0.53
0.9 0.89

Table 4: Accuracy of other classification algorithms

Classifier Accuracy
C4.5 0.93
BF Tree 0.92
NB Tree 0.93
FT 0.86
Simple Cart 0.93
SVM (Linear) 0.88
SVM (degree 4 polynomial) | 0.88
kNN (k = 1) 0.95
kNN (k = 3) 0.93
kNN (k = 5) 0.88

gorithm, Support Vector Machines (SVM) with linear and
degree-4 polynomial basis, and the k-Nearest-Neighbour al-
gorithm with three different values of k.

The accuracy of the other classifiers is higher than that of
our simple rule, at the cost of over-fitting. For instance, the
C4.5 algorithm gave the following tree, which overfits the
data by making multiple tests on PR; the numbers in brack-
ets correspond to the number of anomalies covered by each
leaf node in the decision tree. Interestingly, PR, not CVPR,
is tested at the root of the tree. However, as the tree shows,
some direct cover anomalies have low PR whereas others
have higher PR (depending on the thickness and density of
the dirt or snow).

PR <= 0.51
| CVPR <= 0.74: Direct Cover (8.0)
| CVPR > 0.74

| | PR <= 0.11: Direct Cover (2.0)
| | PR > 0.11: Shadow (18.0)
PR > 0.51: Direct Cover (32.0)

Similarly, the BF tree also overfit the data by making
multiple tests on PR and CVPR. The root node actually
tests on CVPR but the threshold is too high and a second
test on CVPR is required in the second layer of the tree.



CVPR < 1.81

| PR < 0.525

| | CVPR < 0.745: Direct Cover (8.0)
| | CVPR >= 0.745

| | | PR < 0.22: Direct Cover (2.0)
| | | PR >= 0.22: Shadow (7.0)

| PR >= 0.525: Direct Cover (32.0)
CVPR >= 1.81: Shadow (11.0)

Simple Cart also overfit the data with similar problems to
that of the BF tree:

CVPR < 1.81

| PR < 0.525

| | CVPR < 0.745: Direct Cover (8.0)
| | CVPR >= 0.745: Shadow (7.0)

| PR >= 0.525: Direct Cover( 32.0)
CVPR >= 1.81: Shadow (11.0)

6. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the problem of identifying and
explaining anomalies in the power output of solar panels.
We developed and tested a simple classification rule based
on the physical properties of solar radiation. The proposed
rule can distinguish between power drop due to shadow and
power drop due to direct cover such as dust or snow on the
panel.

Based on our experimental results, there is room for im-
provement of our anomaly classifier, both in terms of accu-
racy and ability to further pinpoint the nature of a direct
cover (dust, dirt, leaves, etc.). In general, given the rising
popularity of solar panels and the availability of per-panel
data, there is much more solar panel data mining that can
be done. Examples include clustering the power output time
series (and other measurements) to determine similar pan-
els (in terms of performance and/or anomalies), outlier de-
tection, and association rule mining among different panels
(e.g., if there is a shadow on panel x then there will be a
shadow on panel y within 15 minutes).
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What are the Most Important Research Challenges in
Energy Data Management? (panel)

Torben Bach Pedersen
Aalborg University

top@cs.aau.dk

ABSTRACT

This panel paper aims at initiating discussion at the
Fourth International Workshop on Energy Data Manage-
ment (EnDM 2015) about what the most important research
challenges within Energy Data Management are. The author
is the panel organizer, extra panelists will be recruited from
the workshop audience.

Keywords
Energy Data Management

1. RESEARCH CHALLENGES

The panel should try to answer (at least) the following ques-
tions:

e What are the research challenges within energy data
management?

e What are their nature (scientific, technical, interdisci-
plinary,..) ?

e Which ones are the most interesting from a scientific
point of view?

e Which ones are the most important from a societal
point of view?

Below, some of the panel organizer’s personal opinions on
these questions are listed.

Research challenges within energy data management are
abundant. Among the important scientific ones are a) the
modeling and management of energy flexibilities, including
more powerful flexibility models as well as scalable tech-
niques for aggregating, scheduling, and disaggregating flex-
ibilities; b) creating open and realistic benchmarks with as-
sociated open datasets; and c) development of robust and

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
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effective methods and techniques for predicting and fore-
casting energy consumption and production, as well as their
associated flexibilities, at a very fine-grained level.

Technical research challenges include d) creating commu-
nity-wide agreed-upon common definitions of data and in-
formation concepts, e.g., standardized ontologies specifying
common concepts and e) the standardization of communica-
tion protocols, e.g., for communicating available flexibilities.

Interdisciplinary challenges, which are perhaps the most im-
portant from a societal point of view, include f) the inter-
play between hardcore data management techniques/tools
and user-oriented human-computer interaction concepts to
determine how and at which level of detail to interact with
a smart grid system; and g) realizing the economic potential
in energy data management systems by inventing, imple-
menting, and taking to market new economics-based busi-
ness models and energy taxation schemes that can ensure
the (financial) interest, and thus the participaton, of all the
many involved parties in solving the challenge of using very
high rates of renewable energy in the grid. An example of
such interdisciplinary collaborations is found in the Danish
Totalflex project www.totalflex.dk.

2. PANEL ORGANIZER

Prof. Torben Bach Pedersen is full professor of com-
puter science at Aalborg University, Denmark. He received
his Ph.D. in 2000. His research interests span Big Data
and business intelligence topics such as data warehousing,
multidimensional databases, OLAP, and data mining, with
a focus on non-traditional and complex types of data. He
has published more than 140 peer-reviewed papers on these
topics. He has served as PC Chair for DaWaK 2009+10,
DOLAP 2010, and SSDBM 2014, General Chair for SSTD
2009, and on numerous program committees, including SIG-
MOD, (P)VLDB, ICDE, and EDBT. He has worked on
energy data management since 2007, was involved in the
MIRABEL EU FP7 project on energy data management,
as is now leading the research in the large interdisciplinary
Danish project, TotalFlex.
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Challenges from Industrial Data Analytics

Michael May
Siemens AG, Germany

ABSTRACT

Big data applications in industry pose a number of unique
challenges, setting them apart from domains such as con-
sumer analytics in the web. Central for many industrial
applications is time series data generated by often hundreds
or thousands of sensors at a high rate, e.g. by a turbine.
Another important data source are log files generated by
control units in complex technical equipment, e.g. PLCs
(programmable logic controller). This data can be used
for failure statistics, root cause analysis, predictive main-
tenance, or for optimizing the performance during product
design. Especially interesting are use cases that combine
in-situ streaming analytics inside the local devices with cen-
tralized information, e.g. time series data collected from a
whole fleet of wind turbines. In this talk I will describe a
number of SiemensaAZ machine learning applications, espe-
cially failure diagnostics at the CERN Large Hadron Col-
lider, self-optimizing wind turbines, and levee monitoring
for Waternet Amsterdam. I will also discuss architectural
challenges for such systems from a Big Data point of view.

Short Bio

Michael May is Head of the Technology Field Business An-
alytics & Monitoring at Siemens Research and Technology
Center, and responsible for ten research groups in Munich,
Vienna, Brasov, St. Petersburg, Princeton, and Berkeley.
He is driving research at Siemens in data analytics and big
data architectures and implements with his teams data an-
alytics solutions across Siemens. Before joining Siemens in
2013, he was Head of the Knowledge Discovery Department
at the Fraunhofer Institute for Intelligent Analysis and In-
formation Systems in Bonn, Germany. In cooperation with
industry he developed Big Data Analytics applications in
sectors ranging from telecommunication, automotive, retail,
logistics to finance and advertising. Michael was responsi-
ble for a number of National and European funded research
projects in the area of Data Mining, Machine Learning, and
Big Data. Between 2002 and 2009 he coordinated two Re-
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search Networks in Data Mining and Machine Learning at
the European level, and he was local chair of ICML 2005.
He did his PhD on machine discovery of causal relationships
at the Graduate Programme for Cognitive Science at the
University of Hamburg
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ABSTRACT

Complex Event Recognition (CER) applications exhibit var-
ious types of uncertainty, ranging from incomplete and er-
roneous data streams to imperfect complex event patterns.
We review CER techniques that handle, to some extent,
uncertainty. We examine both automata-based techniques,
which are the most often, and logic-based ones, which are
less frequently used. A number of limitations are identified
with respect to the employed languages, their probabilistic
models and their performance, as compared to the purely
deterministic cases.

1. INTRODUCTION

Systems for Complex Event Recognition (CER) accept
as input a stream of time-stamped simple, derived events
(SDE)s. A SDE (‘low-level event’) is the result of applying a
computational derivation process to some other event, such
as an event coming from a sensor. Using SDEs as input,
CER systems identify complex events (CE)s of interest—
collections of events that satisfy some pattern. The ‘def-
inition’ of a CE (‘high-level event’) imposes temporal and,
possibly, atemporal constraints on its subevents, i.e. SDEs or
other CEs. For example, consider the recognition of attacks
on computer network nodes, given the TCP/IP messages. A
CER system attempting to detect a DOS attack has to iden-
tify (as one possible scenario) both a forged IP address that
fails to respond and that the rate of requests is unusually
high.

Due to the complex nature of information sources, the in-
put events arriving at a CER system almost always carry a
certain degree of uncertainty and/or ambiguity. Sensor net-
works introduce uncertainty into the system due to reasons
that range from inaccurate measurements through network
local failures to unexpected interference of mediators. The
latter is a new phenomenon that stems from the distribution
of sensor sources. Sensor data may go through multiple me-
diators en route to the CER systems. Such mediators apply
filtering and aggregation mechanisms, most of which are un-
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known to the system that receives the data. For example, a
road sensor collecting traffic data may calculate the average
speed of cars passing over it within a time period, but this
calculation might not be accurate, it might be corrupted or
it might even fail to reach the CER system, due to some
network failure, unrelated to the sensor. Again, in the traf-
fic management domain, it might not be possible to define
all the possible situations which indicate the occurrence of
an accident. Hence, the uncertainty that is inherent to sen-
sor data is multiplied by the factor of unknown aggregation
and filtering treatments [5]. Even if we assume perfectly ac-
curate sensors, the domain under study might be difficult
or impossible to model precisely, thereby leading to another
type of uncertainty.

Until recently, most CER systems did not make any ef-
fort to handle uncertainty [9]. This need is gradually being
acknowledged and it seems that this might constitute a sig-
nificant line of research and development for CER. Almost
all of the papers presented have appeared after 2008. The
purpose of this paper is to present a short overview of ex-
isting approaches for performing CER under uncertainty.
It should be noted that handling uncertainty in activity
recognition (where SDEs come mainly from video streams
or RFID tracks) is an active research field that has strong
similarities with CER. However, in this short survey we have
chosen to present only those methods that come directly
from the field of CER.

The structure of the paper is as follows: In Section 2 we
discuss the dimensions along which a proposed solution for
handling uncertainty may be evaluated. Section 3 presents
the reviewed approaches, summarizes them in a tabular form
and comments on their limitations. Some open issues and
lines of potential future work are identified in Section 4.

2. EVALUATION DIMENSIONS

We restrict attention to the following types of uncertainty.
First, the rules defining a CE may be imperfect. Second,
the SDE stream may be incomplete and/or include erro-
neous events. Detailed discussions about types and sources
of uncertainty in CER may be found in [4,22].

We follow the customary division between representation,
inference and learning. In other words, we are interested
in what kind of knowledge a system can encode (represen-
tation), what kind of queries it can answer (inference) and
if/what parameters and models it can learn. However, al-
though learning in general is a very active research area, we
have decided not to include a detailed discussion about the
learning capabilities of the examined approaches in our sur-



vey. The reason is quite simple. Almost none of the systems
touches upon this subject. Instead, we draw some conclu-
sions as far as the performance of each system is concerned.

2.1 Representation

Following the terminology of [15], we define an event as
an object in the form of a tuple of data components, signi-
fying an activity and holding certain relationships to other
events by time, causality and aggregation. An event with NV
attributes can be represented as

E(Type, ID, Attributel, ..., AttributeN, Time)

where T'ime might be a point, in case of an instantaneous
event, or an interval during which the event happens, if it
is durative. In CER, we are interested in detecting patterns
of events among the streams of SDEs. Therefore, we need a
language for expressing such pattern detection rules.

Formalisms for reasoning about events and time have ap-
peared in the past, such as the Event Calculus [6,14] and
Allen’s Interval Algebra [2,3], and have already been used for
defining event algebras (e.g. in [18]). With the help of the
theory of descriptive complexity, recent work has also iden-
tified those constructs of an event algebra which strike a bal-
ance between expressive power and complexity [27]. Based
on the capabilities of existing CER systems and on related
theoretical work, the following list enumerates those opera-
tions that should be supported by a CER engine:

e Sequence: Two events following each other in time.

e Disjunction: Either of two events occurring, regard-
less of temporal relations. Conjunction (both events
occurring) may be expressed by combining Sequence
and Disjunction.

e [teration: An event occurring N times in sequence,
where N > 0.

e Negation: Event not occurring at all.

e Selection: Select those events whose attributes satisfy
a set of predicates/relations, temporal or otherwise.

e Projection: Return an event whose attribute values
are a possibly transformed subset of the attribute val-
ues of its sub-events.

e Windowing: Apply pattern for events within a speci-
fied time window.

In a probabilistic setting, uncertain events are assigned an
occurrence probability. More complex models also allow for
probabilities on the attributes of the events as well. Fur-
thermore, the rules for expressing CE definitions may also
be probabilistic. The semantics for the probability space are
usually those of possible worlds. A possible world is one of
the possible SDE streams, as defined by the SDE probabili-
ties. Thus, the probability space is understood as the set of
all the alternative event streams that may have occurred and
the distribution is defined over this set. Event attributes are
usually discrete and the continuous case is outside the scope
of most CER systems.
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2.2 Inference

In probabilistic CER, the most basic inference task is to
compute the probability of occurrence of a CE. In other
words, the task is to compute the marginal probabilities of
the CEs, given the SDEs. In some settings, we might also
be interested in performing maximum a posteriori (MAP)
inference, in which the task is to compute the most probable
states of some CEs, given the evidence SDEs stream. A
simple example from the domain of video recognition is the
query in which the user asks about the most probable time
interval during which a certain activity occurs.

Another dimension concerns the ability of a system to per-
form approximate inference. In the literature of statistical
relational learning, it is widely believed that for all but the
simplest cases, exact inference stumbles upon serious per-
formance issues, unless several simplifying assumptions are
made. For this reason, approximate inference is considered
essential. When this capability is present, certain systems
provide answers with confidence intervals and/or the option
of setting a confidence threshold above which an answer may
be accepted.

2.3 Performance

CER systems are usually evaluated for their performance
in terms of throughput, measured as number of events pro-
cessed per second. For some queries, the latency, as mea-
sured by the time required to process an event, is also im-
portant. Less often, the memory footprint is reported. Note
that no standard benchmarks exist, although some work
towards this direction has begun [12, 16, 17]. Reporting
throughput figures is not enough by itself, since there are
multiple factors which can affect performance, such as query
selectivity (see [16] for a list of such factors). When uncer-
tainty is introduced, the complexity of the problem grows
and other performance-affecting factors enter the picture,
such as the option of approximate inference. Moreover, sys-
tems need to be evaluated along another dimension, that of
accuracy.

The issue of accuracy is of critical importance and is not
orthogonal to that of performance. Precision and recall are
the usual measures of accuracy, but neither one of them
may be sufficient by itself. Therefore, a more appropriate
measure would be that of the F-measure, i.e. the harmonic
mean of precision and recall.

3. APPROACHES

Since many of the CER engines employ finite automata,
either deterministic (DFA) or non-deterministic (NFA), it
is not surprising that automata are one of the dominant
approaches for handling uncertainty. Less frequently, logic-
based approaches are preferred. In this section, we present
both of these areas.

We summarize our results in Tables 1 - 3. The columns of
Table 1 correspond to the list of operators presented in Sec-
tion 2.1 and refer to the expressive power of the language em-
ployed. An extra column has been added to indicate whether
a system supports event hierarchies, i.e. the ability to define
CEs at various levels and reuse those intermediate inferred
events in order to infer other higher-level events. In Table 2
we present the probabilistic properties of each method, with
respect to the independence assumptions they make and to
their capacity for assigning probabilities to the input data
(SDEs) and/or the rules for CE definitions. Some systems



Language Expressivity

Paper c © A V| = ; * W H Remarks
Kawashima et al [13] v Vv v v
Re et al [19] v v v
Chuanfei et al [7] v v v Not enough details in paper
about o, m, A, V, —.
Shen et al [20] v Vv v vV
Wang et al [21] v v Vv iV V v L
Zhang et al [26,27] v v v v iV v v Y
* implicit;
Cugola et al [10] v v Y v Vv v' ' ¥ Support for continuous
event attributes.
Wasserkrug et al [23,24,25] | v v |V v v Explicit time representation

Table 1: Expressive power of CER systems. Columns: o: selection, 7: projection, A: conjunction,
V: disjunction, —: negation, ;: sequence, *: iteration, W:windowing, H: hierarchies.

Probabilistic Expressivity

Data  (occur-

Paper rence and/or Rules AI:dependgnce Remarks
. ssumptions
attributes)
Kawashima et al [13] Occurrence All events independent
1st-order Markov for
Re et al [19] Both SDEs (different streams
independent)
Chuanfei et al [7] Occurrence lst-orc%er hEwey sl
extensions
Shen et al [20] Both SDEs independent
SDEs independent or
Wang et al [21] Occurrence Markovian (different
streams independent).
Zhang et al [26,27] Occurrence SDEs independent Prol?ability .distribution
on time attribute
Event attributes inde-
pendent. SDEs indepen-
Cugola et al [10] Both v dent. CEs dependent Bayesian Networks
only on events immedi-
ately below in hierarchy.
Wasserkrug et al [23,24, 25] Both v SDEs independent Bayesian Networks

Table 2: Expressive power of CER systems with respect to their probabilistic properties.
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Inference

Paper Marginal / MAP

Confidence
Thresholds

Approximate Performance Remarks

Kawashima et al [13] Marginal v

0.8-1.1 K events/s with
Kleene+

Re et al [19] Marginal

> 10 points increase in
accuracy.

100K tuples/s for Ex-
tended Regular Queries.

Chuanfei et al [7] Marginal

4-8K events/s for pat-
tern lengths 6-2

Shen et al [20] Marginal

1000K events/s, almost
constant for varying win-
dow size.

1000K-100K events/s for
10-1 alternatives.

Wang et al [21] Marginal

8K-13K events/s for 2-6

Distributed
nodes

Zhang et al [26,27] Marginal

Reduction from expo-
nential to close-linear
cost w.r.t to selectivity /
window size

Cugola et al [10] Marginal

50% overhead

Wasserkrug et al [23,24,25] Marginal

CEs within desired con-
fidence interval.
Sub-linear  decay  of
event rate w.r.t possible
worlds.

Table 3: Inference capabilities of probabilistic CER systems

may allow only uncertainty with respect to the occurrence
of an event, whereas others may allow uncertainty for the
event attributes as well. Finally, Table 3 presents some of
the systems’ properties when performing inference, such as
whether they perform marginal or MAP inference, whether
they give the user the option to set minimum confidence
thresholds and whether they can perform approximate in-
ference. Some comments about their performance are also
included.

3.1 Cayuga

The Lahar system of Re et al [19] constitutes one of the
earliest proposals. It is based on the Cayuga [11] CER en-
gine. The design goal behind the Lahar system is to develop
an efficient inference mechanism for answering queries over
probabilistic SDE streams, i.e. streams whose events are
tagged with a probability value. It is assumed that events
follow a first-order Markov process. The possible queries are
categorized in three different classes. Regular queries are
composed of subgoals which do not share any variables, can
readily be transformed into regular expressions with a cor-
responding automaton and can be evaluated in time linear
to the size of the event stream. Extended regular queries
allow for shared variables which must be present in all of
the subgoals. Therefore, the query can be broken into in-
dependent, regular “ground” queries (by substitution) and
its success probability can be computed by combining the
probabilities of its constituent “ground” queries. Finally,
in safe queries, variables might not be shared among all
subgoals. These queries are evaluated by using a version
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of the Probabilistic Relational Algebra with a complexity
that is quadratic to the number of timestamps in the SDE
stream. Lahar was tested on object tracking in which per-
sons and objects were equipped with RFID tags and the per-
sons’ paths and/or locations had to be assessed. Significant
improvements in precision and recall were observed against
deterministic approaches, with only a relatively slight over-
head on throughput, which reached hundreds of thousands
of events per second. A method which attempts to over-
come the strict markovian hypothesis and to apply certain
optimizations, such as early pruning, may be found in [7].

3.2 SASE

A simple solution for handling uncertainty with automata
was proposed by Kawashima et al [13], as an extension of the
SASE+ event processing engine [1]. The system builds a de-
terministic automaton for every user query (CE definition)
and detects patterns above a certain confidence threshold
by developing a matching tree as new SDEs arrive until the
time window of the query expires. Branches of the tree below
the given threshold are pruned early for optimization pur-
poses. The SDEs are assumed to be independent (therefore,
probability values are calculated by multiplication) and are
tagged with an occurrence probability. Neither probability
values for the event attributes are allowed nor for the queries
themselves. Throughput values can reach several hundreds
of events per second, but these numbers correspond to exper-
iments with a single query of low complexity — a sequence
operator with equality selection on the attributes and no
shared variables.



Another early, NFA-based approach to incorporate uncer-
tainty within an existing CER system is presented in [20]
by Shen et al. This work uses SASE+ as its starting point
and amends it in order to handle probabilistic SDEs. Each
SDE is defined as a set of alternatives, each with its occur-
rence probability, with all alternatives summing to a prob-
ability value of 1 or less than 1 if non-occurrence is con-
sidered. The probability space is therefore defined over the
possible worlds, as determined by the different (mutually
exclusive) alternatives of the SDEs. The CE definitions are
encoded as NFAs, but, in order to avoid enumerating all
possible worlds, a special data structure, called Active In-
stance Graph, is used. The Active Instance Graph is a Di-
rected Acyclic Graph connecting events with previous can-
didate events, i.e. whose possible occurrence may lead to
the recognition of the CE. By backward-traversing the AIG,
the sequence(s) that satisfy the CE definition may be re-
trieved and this structure also allows for dynamic filtering of
events when other constraints (besides temporal sequence)
are present. Finally, each event is associated with its lin-
eage, i.e. a function which captures “where the event came
from”; used for computing its probability.

Inspired yet again by SASE, the work recently proposed
by Wang et al [21] attempts to address two important is-
sues. The first, related to previous NFA-based methods,
concerns their inability to express CE hierarchies. The sec-
ond is a performance issue and, this work is the first one
which develops a CER system which is both probabilistic
and distributed. The CE recognition process depends on
a data structure, called Active Instance Stack, which is an
optimized version of the already mentioned Active Instance
Graph. Probabilities may be assigned only to events and
refer to occurrences (neither probabilities for CE definitions
nor for event attributes are allowed). Events are also as-
sumed to be either independent or to follow a first-order
Markov process. A data partitioning scheme is used in or-
der to distribute different parts of the streams to different
nodes and the local results are later combined to produce
a global result. Finally, CE hierarchies may be constructed
by having different event processing agents producing differ-
ent CE types and connecting them through channels (agents
are pattern matching components which can be connected
to form an event processing network).

In most of the automata-based methods (with the excep-
tion of [10], presented in Section 3.3), uncertainty concerns
the occurrence of the event itself as a whole, but the event
attributes, including timestamps, are certain. In Zhang
et al [26], the issue of imprecise timestamps is addressed,
while all the other attributes have crisp values. Due to
sensors’ sensitivity or time granularity differences between
event sources, timestamps are assumed to follow a proba-
bility distribution (usually uniform). Each event may thus
have several alternative occurrence timestamps and many
possible worlds, i.e. event histories, are available to the
system. The temporal relations between events may dif-
fer among the possible worlds and a CE recognized in one
of them may not be recognized in another. One solution is
to enforce an ordering of the events from all possible worlds
and then leverage an existing CER engine, such as SASE,
for the CE recognition task. However, the authors present
another, more efficient method, which avoids a complete
enumeration of all possible worlds by employing an incre-
mental, three-pass algorithm through the events in order to
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construct event matches and their intervals. This method
achieves high throughput but supports only sequence pat-
terns with simple equality/inequality predicates. Moreover,
it was extended in [27] by Zhang et al, which added negation
and Kleene plus and allowed for user-defined predicates.

3.3 CEP2U

A more recent effort extends the TESLA [8] event spec-
ification language with probabilistic modelling, in order to
handle the uncertainty both in input SDEs and in the defi-
nitions of CEs [10]. The semantics of the TESLA language
are formally specified by using a first order logical represen-
tation with temporal constraints that express the length of
time intervals. The CE recognition algorithm however em-
ploys automata. At the input level, the method supports
uncertainty regarding the occurrence of the SDEs, as well
as uncertainty regarding their content. In the former case,
SDEs are associated with probabilities that indicate a degree
of confidence. In the latter case, the attributes of an event
are modelled as random variables with some measurement
error. The probability distribution function of the measure-
ment error is assumed to be known (e.g. Gaussian distri-
bution). Since uncertainty also derives from incomplete or
erroneous assumptions about the environment in which the
system operates, the method also models the uncertainty of
the CE definitions. In particular, the method automatically
builds a Bayesian network for each rule. The probabilistic
parameters of the network are manually estimated by do-
main experts.

3.4 Logic-based methods

Wasserkrug et al [23,24,25] employ the technique of knowl-
edge based model construction (KBMC), whereby knowl-
edge representation is separated from the inference process.
Inference is preformed on a Bayesian network as needed
(when new SDEs arrive), without constructing the whole
network beforehand. Each event is assigned a probability,
denoting how probable it is that the event occurred with spe-
cific values for its attributes. Uncertainty about the value
of a single event attribute may be represented by multi-
ple event instances with different probabilities and with the
same values for all other attributes.

In turn, CE definitions are encoded in a two-fold way,
with a selection operation (mostly based on event type) per-
forming an initial filtering, followed by a pattern-detection
schema for more complex operations, based on temporal re-
lations and attribute equalities. The selection mechanism
imposes certain independence properties on the Bayesian
network. Inferred CEs are conditioned only on selectable
lower-level events, preventing the network from being clut-
tered with many dependency edges. This framework is not
limited to representing only propositional or first order knowl-
edge. It could potentially handle higher-order knowledge,
since this pattern-matching step could, in principle, be de-
fined in any kind of language. However, the system pre-
sented in the evaluation experiments allows only predicates
expressing temporal constraints on event timestamps or equal-
ity relations on event attributes.

Calculation of the probabilities for the inferred CEs is
done by dynamically constructing a Bayesian network upon
every new event arrival. The nodes of the network corre-
spond to SDEs and CEs. First, SDEs are added. Nodes for
CEs are inserted only when a rule defining the CE is sat-



isfied, having as parents the events that triggered the rule,
which might be SDEs or even other CEs, in case of hierar-
chical CE definitions. The probability and attribute values
of the inferred CEs are determined by mapping expressions
associated with the corresponding rule. In order to avoid
the cost of exact inference, a form of sampling is followed,
which allows for bypassing the construction of the network
by sampling directly according to the rules for CE defini-
tions.

3.5 Comments

In Table 1 we list the operators supported by each method.
Table 2 presents their probabilistic properties: their inde-
pendence assumptions and the support for data and/or rules
uncertainty. Their properties with respect to inference are
shown in Table 3 (marginal/MAP inference, support for con-
fidence thresholds, approximate inference).

As shown in Table 2, all of the presented approaches have
the ability to represent probabilistic SDEs, where uncer-
tainty may refer to their occurrence or/and the content of
their attributes. However, a feature which is lacking in most
of the methods is the capacity to assign probabilities to rules
expressing CE definitions. In this case, probabilistic graphi-
cal models, with their ability to represent all events as nodes
in a homogeneous manner and encode the direction of cau-
sation, can prove useful. The two methods which allow rule
probabilities, use such a model, namely Bayesian Networks.

The KBMC method of [23,24, 25] and the CEP2U sys-
tem of [10] allow for both hierarchies and probabilistic rules
(see Table 2). Both of them use Bayesian Networks for in-
ference, with the nodes of the network representing events,
SDEs and CEs. CEP2U was designed from the very begin-
ning with the goal of minimizing the performance overhead
incurred by the introduction of uncertainty. Indeed, the
maximum overhead mentioned in the experiments was al-
most always less than 50%, compared to the deterministic
case. On the other hand, the KBMC technique is still far
from achieving event rates comparable (say, within an or-
der of magnitude) to those of purely deterministic models.
This performance robustness of CEP2U against uncertainty
comes at a price though, since some simplifying assumptions
have to be made. CEP2U constructs only a single Bayesian
Network for each rule (not for each grounding) and a simple
solution is proposed for the problem of propagating proba-
bilities from lower to higher level CEs. Occurrence proba-
bilities of intermediate events are propagated to higher level
events with a value of 1, essentially decomposing the total
probability space into smaller and more manageable spaces.
This means that these Bayesian Networks function more like
look-up tables, hence the much lower cost of inference. The
effects of this simplification on accuracy, however, are un-
clear.

A related issue is that of the independence assumptions
made by each method. Automata-based methods tend to
make a substantial number of simplifying assumptions about
the independence of events or streams, resulting in simpler
probabilistic models The most complex dependency mod-
els employed make the assumption that events may follow
a first-order Markov process, as in [19,21] (a slightly more
complex model may be found in [7]). In domains charac-
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terized mostly by sequential patterns upon homogeneous
streams, this assumption may be sufficient. When multiple
streams with different event types are involved and hierar-
chies of CEs are required, which take into account lower-level
CEs across a time window, more complex dependencies need
to be encoded.

Bayesian Networks offer such a flexibility but they suf-
fer from problems of high inference complexity. In order to
keep the inference cost low, certain simplifications are intro-
duced again. For example, CEP2U assumes that an inferred
CE is the only cause for all of its sub-events (note that, in
CEP2U, the direction of causation is from the higher level to
the lower level events), i.e. one sub-event cannot be used to
define other CEs and it is not possible to have multiple def-
initions for a CE. Although this obviously helps in making
the Bayesian Networks (which can be manually edited by
the user) the assumption of such a strict separation of rule
conditions limits the expressive power of the system (and
would presumably require tedious tuning to correct it).

4. CONCLUSIONS

Our short review of probabilistic CER systems identified
the following limitations: In terms of language expressivity,
the basic drawback of most systems is the absence of support
for constructing hierarchies of CEs. Moreover, most systems
do not support uncertainty in the rules defining CEs. Those
that do support rule uncertainty either make too strong sim-
plifying assumptions, thus possibly limiting accuracy in do-
mains with complex dependencies, or face serious issues of
under-performance, even when approximate inference is em-
ployed. Distributed processing of probabilistic SDE streams
is still at its early stages, with only one method employing
it. Notice also that none of the systems supports MAP in-
ference, a feature which is useful in certain domains (e.g.
in video recognition, where it is sometimes desirable to re-
trieve those time intervals during which it is most likely for
an activity to have occurred). Those issues should act as
indicators for possible directions of future work.
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ABSTRACT

Proactive Event-Driven Computing is a new paradigm, in which a
decision is not made due to explicit users' requests nor is it made
as a response to past events. Rather, the decision is autonomously
triggered by forecasting future states. Proactive event-driven
computing requires a departure from current event-driven
architectures to ones capable of handling uncertainty and future
events, and real-time decision making. We present a proactive
event-driven architecture for Scalable Proactive Event-Driven
Decision-making (SPEEDD), which combines these capabilities.
The proposed architecture is composed of three main components:
complex event processing, real-time decision making, and
visualization. This architecture is instantiated by a real use case
from the traffic management domain. In the future, the results of
actual implementations of the use case will help us revise and
refine the proposed architecture.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: General System
architectures; D.4.8 [Operating Systems]: Performance
Modeling and prediction; G.3 [Mathematics of Computing]:
Probability and Statistics - Distribution functions, Time series
analysis; H.1.2 [Models and Principles]: User/Machine Systems
— Human factors; 1.2.3 [Artificial Intelligence]: Deduction and
Theorem Proving Uncertainty, fuzzy, and probabilistic
reasoning.

General Terms
Performance, Design, Human Factors

Keywords
Proactive computing, event-driven, real-time optimization,
forecasting, uncertain and future events, visualization.

1. INTRODUCTION

Proactive Event-Driven Computing is a new paradigm
([6]1.[71, [9]), where a decision is neither made due to explicit
users' requests nor as a response to past events, but is
autonomously triggered by forecasting future states, either desired
or undesired. The decisions and actions are often real-time in the
sense that they are done under time constraints and require the
exploitation of large amounts of historical and streaming data. The
underlying motivation of proactive computing stems from social
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and economic factors, and is based on the fact that prevention is
often more effective than cure.

Achieving this vision requires novel research in three different
directions:

Dealing with large quantities of data. Massive volumes of
historical data and massive streaming data have to be analyzed to
forecast events. Most systems are not capable of handling big
data in real-time because of scalability problems, the need to
cleanse noisy data offline, or the difficulty in fusing different
types of data coming from different sources online. The result is
that most analyses are done on offline data, while online data is
not leveraged for immediate operational decisions.

Extending the state-of-the-art in event processing to deal with
future events and uncertainty due to incomplete and noisy
streaming data [1]. The ability to process past events and forecast
future ones makes proactive systems a compelling application
area. But, the uncertain nature of future events requires a major
leap in event processing systems.

Devising methods for making near-optimal decision within time
constraints. The decision about which is the best action to take in
proactive computing has two properties that differ from most
contemporary decision support systems: (1) the decision should be
taken on-line and under real-time constraints, which may dictate
the use of approximation techniques and (2) The decision often
entails autonomic actions, rather than providing only
recommendations for human decision makers.

A proactive-driven architecture should satisfy the requirements
above and provide an integrated platform that combines advanced
event processing with dynamic forecasting capabilities leveraged
towards online optimisation and decision-making. The proposed
architecture presented in this paper, an outcome of the SPEEDD
(Scalable ProactivE Event-Driven Decision making) project’,
exactly addresses this.

This paper is organized as follows: Section 2 briefly introduces
the traffic management use case that will illustrate our proposed
architecture. Section 3 presents a general overview of a proactive
event-driven architecture, while Section 4 details the SPEEDD
proactive event-driven architecture. We survey some related work
in Section 5. We conclude the paper in Section 6.

2. ILLUSTRATIVE EXAMPLE

Proactive traffic management concerns the south ring of
Grenoble, which is the main West to East artery around the city in
France and a primary source for traffic congestion. The goal
within this use case is to forecast traffic congestion before it

! http://speedd-project.eu



happens and, as a result, automatically act in order to attenuate it.
This is done by forecasting traffic congestions a few minutes
before they happen, and making decisions within a few seconds of
the forecast about adjustment of traffic light settings and speed
limits.

There are two sources of data in this use case: real data from
sensors and synthetic data generated by a micro-simulator.

The input data (raw events) comes from 130 magnetic wireless
Sensys sensors? buried in the road along the highway which can
provide individual or aggregated data. Sensors are located in 19
collection points. Each collection point has a sensor per lane (slow
and fast lane) and, where applicable, also has sensors on the
on/off-ramps. Sensors provide data every 15 seconds. Such data
can be either individual (concerning every single vehicle), or
aggregated (over the 15-seconds time span). However, the
individual and aggregated data cannot be collected
simultaneously. Currently, aggregated data is being collected.

The simulator used for generating synthetic traffic data is the
commercial micro-simulator by Aimsun®. The simulator has been
calibrated using real traffic data from Grenoble South Ring.

3. PROACTIVE EVENT-DRIVEN
ARCHITECTURE

Conceptually, we distinguish between the design time and runtime
components.

At the build or design time, proactive applications are developed
using authoring tools either directly by experts or with the help of
learning systems. Visualization tools can be used to analyze the
stored historical data during design time. By using the authoring
and visualization tools, the experts may also annotate the
historical data, in order to provide training examples for the
machine learning algorithms. The products of the design time
activities are event processing definitions and decision making
configurations that will be deployed and executed at the runtime.

The runtime consists of four building blocks or components: event
processing, forecasting, real-time decision making, and
visualization tools. In general, raw events emitted by various
event sources (e.g., traffic sensors) are processed by the complex
event processing (CEP) engine and forecasted events serve for
real-time decision making. The CEP engine processes raw as well
as derived (detected and forecasted) events to detect and forecast
higher-level events, or situations. These serve as triggers for the
decision making component, which uses domain-specific
algorithms to suggest the next best action to resolve or prevent an
undesired situation.

Let’s examine in more details the principles of each building
block in the envisaged architecture:

The first building block required to facilitate proactive event
driven computing is a new kind of event processing component.
Event processing is an approach to software systems that is based
on reaction to events, often under time constraints. It includes
specific logic to filter, transform, or detect complex events and
patterns in events as they occur [8]. The CEP component needs to
be extended to cope with detecting and forecasting derived events
under uncertainty.

2 http://www.sensysnetworks.com
% http:/Avww.aimsun.com/wp
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The second building block facilitates event recognition and
forecasting, that is, identifying events that either have occurred or
are likely to occur in the near future. This is a key enabler of
proactive computing, allowing decision-making to commence
even before an event has been (completely) detected. This
building block continuously refines event recognition and
forecasting given the incoming, possibly noisy, data streams, in
order to improve the recognition accuracy and probability
estimations. Recognition and forecasting exploit models that can
be created by human experts or through goal-driven supervised
learning that exploits offline data available to the organization, or
a combination thereof. A particularly challenging aspect of event
forecasting is the temporal dimension. To facilitate precisely-
informed online decision-making, forecasting should indicate not
only which event will happen and with what probability, but also
when it is expected to happen; more generally, forecasting should
provide a probability distribution over the expected occurrence
time.

The third building block enables the event-based real-time
decision making under uncertainty. In order to realize proactivity
and support autonomous or semi-autonomous decision-making, a
body of tools is required that can exploit the forecast models and
state predictions as a basis for decision-making. These tools will
have to properly consider the nature and degree of uncertainty in
the models’ forecasts when generating decisions.

The forth building block, the visualization component (or
dashboard) supports the human interpretation of decisions made
in runtime. It facilitates decision making process for business
users by providing easily comprehensible visualization of detected
or forecasted situations along with output of the automatic
decision making component — a list of suggested actions to deal
with the situation. The proposed architecture can be run in open,
closed, or hybrid loop mode. In case of the open loop, the user can
approve, reject, or modify the action proposed by the automatic
decision maker. The closed loop operation does not require user’s
approval, the action is performed automatically. A hybrid mode
where some types of actions are taken automatically while other
types require human attention is also supported.

With the quantity of events, the volume of historical data, and the
complexity of applications all growing fast, it is vital that the
proposed architecture also exhibit scalable behavior. Scalability
has several dimensions, including scalability in streaming events,
scalability in volume of historical data, scalability in amount of
data sources and sinks, scalability in amount of processing
elements, and scalability in terms of physical infrastructure.

4. SPEEDD ARCHITECTURE

In the scope of the SPEEDD project a proactive event-driven
architecture has been proposed [10] that follows the conceptual
architecture presented in Section 3 and consists of all the building
blocks introduced. In the following sections we describe this
architecture using the traffic management scenario.

4.1 System Requirements

The requirements for the current prototype are derived from the
traffic management use case. The detailed requirements can be
found in [2].

The prototype should provide authoring tools that could be
applied to the historic data in order to derive event pattern
definitions and decision models to be deployed in runtime, as well
as a scalable runtime system capable of detecting and predicting



important situations (traffic conditions) and issuing automatic action events. The visualization component consumes events
actions aimed at preventing undesired situations (congestions). coming from two sources: the situations (detected as well as

For the traffic management scenario, the projected throughput is forecasta_ad) dan_d_ the correspondm% aﬁt_lons s:JIgges:]ed by the
2000 sensor readings per second (computed based on the amount 31_Jgfomat|c b Ecision hcomponen:}s. h re |tecturahy, r: edre hlé ng
of sensors and the report frequency, assuming aggregated readings Hierence between these two — both are events that the dashboar

sent every 15 seconds by each of the 130 Sensys sensors installed is ‘subscribed to’, although having different semantics and
along the Grenoble South Ring). presented and handled differently. The user can accept the

suggested action as is, modify the suggested action’s parameters,

In terms of integration with external systems the following is or reject it (and even decide upon a different action). In the case
required: where an action is to be performed, the resulting action will be
e  Replay historic events from text files or a database. sent as a new event to the event bus so that the corresponding

e Receive sensor reading messages generated by the actuators are notified.

micro-simulator. Specifically, Figure 2 shows the SPEEDD runtime architecture for
e  Provide a mechanism to log output events and actions to the traffic management use case, mcludmg the technolo_gy
alog for subsequent research platforms used to implement the architecture. In the following
g_ d ) : o subsections we describe the details of the runtime architecture
*  Provide a mechanism to connect to the traffic micro- including the design of each component and its technology
simulator for updating the simulator configuration — implementation.
action simulation.

4.2.1 Event Bus

4.2 SPEEDD Runtime Architecture The technology chosen for the event bus component is Apache
The architecture of the runtime part of SPEEDD follows the Kafka [16]. It provides a scalable, performant, and robust
Event-Driven Architecture paradigm [12]. This approach messaging platform that matches SPEEDD requirements. To
facilitates building loosely coupled highly composable systems, as implement routing of the events to event consumers we build
well as provides close alignment with the real world problems, upon the topic-based routing mechanism provided by Kafka.
including our representative use case. Every component functions To allow scalable processing of massive stream of messages at
as an event consumer, or an event producer, or a combination of high throughput, Kafka provides the partitioning mechanism.
both. The event bus plays a central role in facilitating inter- Every topic can be partitioned into multiple streams that can be
component communication which is done via events. Figure 1 processed in parallel, while every partition can be managed in a
shows the event-driven architecture for SPEEDD where the separate machine. There may be more than one replica for every
runtime part is represented as a group of loosely-coupled partition, thus providing resilience in case of failures.

components interacting through events. The event bus serves as

the communication and integration platform for SPEEDD In SPEEDD we exploit Kafka partitioning to build a scalable and

fault-tolerant event bus. The topic that receives the biggest

runtime. incoming traffic is speedd-in-events where all the input events are
Input from the operational systems (traffic sensor readings) are sent. The decision about the partitioning mechanism to use is use-
represented as events and injected into the system by posting a case specific as we want to achieve nearly uniform distribution of
new event message to the event bus. These events are consumed load over different partitions. Below, we describe the partitioning
by the CEP runtime. The derived events representing detected or approach for our use case, providing the rationale for the design
forecasted situations that CEP component outputs are posted to decisions. It is important to mention, though, that we may change
the event bus as well. The decision making module listens to these the final partitioning mechanism based on the performance
events so that the decision making procedure is triggered upon a experiments on real and simulated data. We will be able to do that
new event representing a situation that requires a decision. The at any stage of the project development, thanks to the highly
output of the decision making represents the action to be taken to extensible and customizable partitioning framework that Kafka
mitigate or resolve the situation. These actions are posted as provides.

< Event Bus >
" rawederived
nput events input events derived actions actions actions events l
events actions
Event .| CEP Runtime
umbt [ kPattem detection

! "

L it i & Monitoring (Ul not part of
o R L
P enricn irastuctee

DM Runtime
(automatic DM)

External Consumers
,etc.).

Visualization
(Manual Decisions)

clean,
format)

Historic

CEP rules

Data
vents, decisions

event
patterns.

| Machine Leaming
(Pattern Discovery) cER =
mport historic data
P
H ~"" puthoring ‘ N
annotations
CEP expertidev. Authoring ks done ‘offine

SPEEDD external
components components

not part of
SPEEDD
infrastructure

Legend

eventfow deployment data

Figure 1. SPEEDD Event-Driven Architecture

106



micro-sim
connector

Simulator
one type of input

active (e.g. either
file or sim)

sensor
connector

eventfile

file reader

each messageis
a csvline
representinga /|

kafka producericonsumer AP|

User Interface

Traffic Dashboard |
client F

values in

&g updats
simulator

Actuator I
Connectors

json

Dashboard Server

json

single sveny, [
\/ speedd-in- speedd-out-
events

"\ events

Event Bus
(Kafka)

speedd-actions-

speedd-
actions

confirmed

N[

input & ave

SPEEDD Topology

ted
(STORM) g

derived)
even

state, aggregates

Decision Making

storm-kafka-plus |

defivediforcasted

nts

DM Controller

suggested
actions

Final actions
(feedback)

DM State
Estimation

Operational

State

Kafka Topic

SPEEDD
companent
External
component

Figure 2. SPEEDD Runtime Event-Driven Architecture (Traffic Use Case)

4.2.1.1 Partitioning for the Traffic Use Case

Assuming that we get relatively equal amount of events produced
by every sensor, we could partition sensor reading events based
on the sensor id. This should result in uniform distribution of the
messages to partitions, which provides horizontal scalability of
the topic.

4.2.1.2 Ordering of events

Kafka guarantees that the order of events submitted to a topic’s
partition is preserved within same partition — the consumers will
receive them in the same order. However, the order is not
guaranteed across partitions. In our case, this should not be an
issue because the CEP component takes care of the out-of-order
events as long as the delay between the event and its preceding
event that arrives after that event is not too long — this assumption
should be valid with Kafka.

4.2.1.3 Storm-Kafka Integration

SPEEDD event processing and decision making components run
on top of Apache Storm [25], a distributed scalable stream
processing infrastructure.

Integration between Storm streaming platform and our Kafka-
based event bus is done based on the Storm-Kafka-Plus project®.
Storm-Kafka-Plus provides two building blocks. KafkaSpout
listens on a Kafka topic and creates a stream of the tuples.
KafkaBolt posts incoming tuples to a configured topic. There is an
extensible mechanism for serialization and deserialization of
tuples to messages and vice versa.

4.2.2 Event/Data Providers
Event providers provide the input interface of SPEEDD runtime
with the external world. Every event that occurs in the external

* https://github.com/wurstmeister/storm-kafka-0.8-plus
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world that should be taken into account by SPEEDD to detect or
predict an important business situation should be sent to the
speedd-in-events topic on the event bus as a message representing
the event.

As it is illustrated in Figure 2, events for the traffic use case may
come from traffic sensors (magnetic wireless Sensys sensors
buried in the road), micro-simulator (synthetically generated
data), as well as historic data (collected data from sensors).

To enable processing of events generated by any of the above
sources, a connector should be developed. The connector uses
source-specific integration mechanism to read the data from the
event sources and send them to SPEEDD event bus using Kafka
producer API.

We define three connector types corresponding to the types of the
event sources, that is, file-reader (replay past events from a file)
sensor, and micro-simulator connectors.

4.2.3 Action Consumption — Actuators/Connectors
The outcomes of SPEEDD are actions that should be applied in
the operational environment to resolve a problem or prevent a
potential problem. According to the event-driven architecture
principles, actions are represented as outbound events and are
available to every interested party to receive and process them.
The actuators connectors are interface points in SPEEDD
architecture responsible for listening to the speedd-actions-
confirmed topic for new actions and connect to operational
systems to execute respective operations.

As it is not planned to connect SPEEDD prototype to the traffic
operational systems running in production mode, the
detect>decide>act loop will be implemented and tested using
the AIMSUN micro-simulator [2]. The traffic actuator connector
will listen to the outbound action events (speedd-actions-
confirmed topic on the event bus) and execute operations
supported by the micro-simulator, e.g., update speed limits, set
ramp metering rates, etc. The integration with the event bus for
actuators is based on the Kafka consumer API.



4.2.4 Complex event processing component

The main role of the CEP component is to detect events and
derive situations to feed the decision module, so proactive actions
can be taken. To this end, the CEP component needs to deal with
uncertainty in the input, as well as the output events.

We use the IBM Proactive Technology Online (Proton) research
asset as the CEP engine in SPEEDD. This engine has been
released as open source as an outcome of the FI-WARE project®
and it is extended to cope with predictive capabilities in the scope
of the SPEEDD project.

Proton receives raw events, and by applying patterns defined
within a context on those events (we follow the terminology
in [8]), computes and emits situations (derived events emitted to
consumers). Proton is platform-independent, as it is implemented
in Java. The architecture is modular and consists of the following
components:

Adapters — communication of Proton with external systems

Parallelizing agent-context queues — for parallelization of
processing of single event instance, participating in multiple
patterns/contexts, and parallelization of processing among
multiple event instances.

Context service — for managing of context’s lifecycle — initiation
of new context partitions, termination of partitions based on
events/timers, segmenting incoming events into context groups
which should be processed together.

EPA manager — for managing Event Processing Agent (EPA)
instances per context partition, managing its state, pattern
matching, and event derivation based on that state.

SPEEDD will take advantage of the adaptation of the standalone
architecture of Proton to a distributed architecture done in the
scope of the FERARI FP7 EU project®, and will apply the Proton
on Storm version of the engine. It is important to note that, while
Storm offers an open programming model so developers can add
the logic to address complex event driven applications, the
resulting implementation is custom to a single application and not
a generic re-usable solution. Furthermore, the inclusion of
uncertainty requires additional specific coding to deal with. In the
architecture proposed, we make use of a generic event processing
system that provides the necessary building blocks to build
generic event driven applications with the presence of uncertainty.

The Proton architecture on top of Storm preserves the same
logical components as are present in the standalone architecture:
the queues, the context service and the EPA manager, which
constitutes the heart of the event processing system. However the
orchestration of the flow between the components is a bit
different, and utilizes existing Storm primitives for streaming the
events to/from external systems, and for segmenting the event
stream.

4.2.5 Decision making component

As aforementioned, the aim of the real-time decision making
building block is to provide a body of proactive event-driven
decision-making tools, which exploit the detected or forecasted
events of the CEP. The Decision Making (DM) module receives
as inputs the detected, derived, and forecasted events and emits
control actions or appropriate suggestions. Therefore, it functions

® https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/
index.php/FI-WARE_Architecture

® http://www.ferari-project.eu
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both as an event consumer and as an event producer at the same
time.

In this sense, decision making is the task of finding the optimal
response to a specific situation, which is described by the detected
or forecasted events. It is naturally represented as a parametric
optimization problem. The main task of decision making is to
solve this optimization problem, which can be accomplished in
two conceptually different ways:

The parametric optimization problem is solved offline such that
an explicit solution is obtained. Note that this is a “difficult” task,
since an optimal answer to any situation that might arise during
operation needs to be computed. If such an explicit solution can
be obtained, it takes the form of a feedback rule, e.g. a linear
controller K(s) or state feedback - K*x. Therefore, it can be
efficiently implemented in a unified architecture using the existing
SPEEDD components (e.g., as a Storm Bolt).

The construction of an explicit solution may be computationally
intractable for certain problems. In such a case, the solution to
multiple distinct instances of the optimization problem needs to be
computed at runtime. In contrast to the first case, in which only
the evaluation of a feedback rule is required, the algorithmic
solution of an optimization problem is not trivial and it is not
tractable to solve such a problem within the stream processing
environment adopted in SPEEDD (Storm). We, therefore, assume
the existence of a use-case specific “optimization black-box”
outside the actual SPEEDD framework, which can be queried
whenever such a decision is required.

In our illustrative example of freeway ramp-metering (regulating
the traffic inflow on a freeway in order to maximize throughput),
a low-level ramp metering controller receives measurements of
the local traffic density and the local traffic flows, as well as
notifications about detected or predicted congestion queues. It
then emits a recommendation to change the ramp metering rates
accordingly. For a network of interaction freeways, a network-
wide planning algorithm can be used for coordination purposes,
implemented as an external oracle that can be queried.

Since a road network is naturally a spatially distributed system,
the architecture of the decision-making module reflects this
structure. Specifically, the module is directly and efficiently
implemented as Storm bolts in a distributed manner. Preliminary
theoretical results suggest that such local controllers may perform
asymptotically optimal with regard to flow maximization for a
single freeway; however, coordination is required to achieve
optimal operation of more complex road networks. Network-wide
planning can be superimposed by querying an external black-box.

4.2.6 Dashboard component

As aforementioned, the proposed event-driven architecture can be
run in an open, closed, or hybrid loop mode. In the traffic
management use case we only deal with open or hybrid modes,
i.e., we don’t have fully automatic actuators for the decisions. The
closed mode implies connecting the SPEEDD prototype to the
actual production systems and, therefore, out of the scope of the
project.

In our current scenario, operators interact with the outputs of the
SPEEDD modules through a User Interface (Ul). The Dashboard
Client communicates, via the Dashboard Server, with the
composite systems in the SPEEDD architecture. Operators can
accept, respond to, or make suggestions and control actions.
Actions taken by operators via the Ul are fed back into the
SPEEDD runtime as events, thus allowing for the seamless



integration of expert knowledge and the outputs of complex
algorithms.

The Dashboard Server component is based on Node.js [24]
asynchronous programming framework. The server functions as a
Kafka consumer and producer. The consumer listens for
broadcasted messages in the Event Bus under the following
topics: speedd-out-events and speedd-actions. The producer
broadcasts messages under the topic speedd-actions-confirmed
(see section 4.2.1)

The Dashboard Client is designed to provide the user with a clear
picture of the current state of the world. It achieves the picture of
the current state by aggregating sensor readings in human
readable form, current states of the control equipment available
(e.g., speed limit signs, message signs, lanes), current events
identified by the CEP module, and displays of the automated
control events produced by the DM unit (e.g., ramp metering
rates). Furthermore, it aims to support the decision-maker by
highlighting events which might require attention along with
corresponding suggested mitigating strategies.

4.3 SPEEDD Design Time Architecture

In general, there exist two methods to define the rule patterns for a
CEP application: machine learning and experts. In the first, the
patterns are learnt automatically by a computer program, while in
the second, they are given by an external entity; usually a subject
expert matter specialized in the domain. It is also possible to
combine between these two methods.

Historic data used at design time contains raw events reported
during the observed period along with annotations provided by
domain experts. These annotations mark important situations that
have been observed in the past and should be detected
automatically in the future. Domain experts can apply tools and
methodologies provided by SPEEDD authoring toolkit to extract
derived event definitions from the annotated event history. This is
a semi-automatic process involving applying machine learning
tools to extract initial set of patterns, then further enhanced and
translated with help of the domain experts into deployable CEP
artefacts.

Due to the dynamic nature of the proactive traffic management
application, the knowledge base of event pattern definitions may
require to be refined or enhanced with new ones. Manual creation
of event definitions is often a tedious and cumbersome process,
thus we employ machine learning techniques to semi-
automatically create event pattern definitions by analyzing
historical data.

We employ the Probabilistic Event Calculus [23] that combines
temporal logic-based formalization with probabilistic modelling.
The logic-based representation allows to compactly define
relations between events and incorporate existing domain
knowledge, while probabilistic modelling allows to naturally
handle uncertainty. For the implementation of the machine
learning algorithms, we extend the open-source framework
LoMRF’ with state-of-the-art scalable probabilistic inference and
incremental learning methods [14]. LoMRF is developed in
Scala®, which compiles to Java bytecode and thus works
seamlessly with any other Java-based framework.

" https://github.com/anskarl/LoMRF
8 http://mww.scala-lang.org
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Additionally, for scalability LoMRF employs the high-
performance parallel processing framework of Akka Actors®.

The resulting output of the machine learning algorithms is
composed of a set of text-formatted files that contain the event
pattern definitions. Thereafter, the resulting rules are parsed by
the "rtec2proton” translator and converted semi-automatically to
JSON formatted Proton EPN definitions. All EPN definitions are
then reviewed and manually refined by domain experts using
Proton's authoring tool. The output of this process is a JSON file
containing the EPN definition.

5. RELATED WORK

Proactive applications have been developed in an ad-hoc manner
for several years; some examples include proactive security
systems [5], proactive routing in mobile ad-hoc wireless [17],
proactive network management with failure handling [11],
proactive service level agreement negotiation in service oriented
systems [18], proactive caching [15], and proactive management
in logistic processes [19] and [9]. However, the lack of a generic
paradigm to develop proactive event-driven applications makes it
difficult for this capability to spread.

One of the main ingredients for proactive event driven computing
is the ability to deal with uncertainty in the events. Despite
uncertainty handling has been recognized as one of the most
critical and relevant aspects in the area of CEP, it still remains an
open issue [1]. Only a few solutions have been proposed, and
most of them are tailored to a specific application domain [4].
Examples of previous works can be found
in [4], [20], [22], [26], [27] and [28]. Existing CEP approaches
examine three major types of uncertainty that may be present in
the events that are fed in a CEP system: uncertainty in event
content, in the event occurrence, and in the rules. Our CEP
component must support these three types. Furthermore, learning
event rules in the presence of uncertainty is also an open research
area [1].

In terms of real-time optimization techniques, the state-of-the-art
is that optimization techniques are being activated mostly off-line
and use a variety of optimization methods that fit different
assumptions:  robust  (worst-case) optimization, stochastic
optimization, and optimization methods based on black-box
models (e.g., [3], [13] and [21]). Our main challenge is to develop
real-time proactive planning tools for proactive applications using
these optimization methods within an event-based planning
framework.

6. SUMMARY AND FUTURE WORK
Event-driven architecture is a software architecture pattern
promoting the production, detection, consumption of, and reaction
to events. We describe how we extended this architecture from
being reactive to proactive, by incorporating capabilities for
forecasting and real-time decision making.

The proposed architecture is instantiated by a real use case from
the traffic management domain. Although driven by the use case
requirements in the SPEEDD project, the proposed architecture is
generic and can be applied to any domain that requires proactive
event-driven computing.

We are currently working on a first implementation of the use
case based on the proposed architecture. Future work includes
integration of offline historic data and online streaming data as

® http://akka.io



well as refinements to the proposed architecture as result of the
implementation.
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ABSTRACT

The FERARI project aims to develop a highly scalable dis-
tributed streaming architecture supporting complex event
processing in a communication-efficient manner. Two key
requirements for our system are that its architecture is not
tied to the underlying streaming platform used in its imple-
mentation and that it allows the easy definition of commu-
nication-efficient methods for monitoring a global condition
over a distributed set of states. In this paper we present
the architecture of our system and explain how these key re-
quirements are met. Concerning the actual implementation
of our system in a scalable distributed streaming platform,
it is reasonable not to re-invent the wheel but to use one
of the actual Big Data Streaming platforms as a starting
point. For this reason, we evaluate some popular platforms
and discuss whether they meet our requirements.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering|: Metrics—complezity mea-
sures, performance measures

1. INTRODUCTION

In recent years, an area with great future potential for Big
Data is machine-to-machine interaction (M2M), and the In-
ternet of Things. Examples of relevant applications include
smart energy grids, car-to-car communication, mobile net-
work quality monitoring, optimizing operation of large and
complex systems, fault detection in clouds, automated nego-
tiation systems — all these have been identified as important
hot use cases for Big Data.

*(c) 2015, Copyright is with the authors. Published in
the Workshop Proceedings of the EDBT/ICDT 2015 Joint
Conference (March 27, 2015, Brussels, Belgium) on CEUR-
WS.org (ISSN 1613-0073). Distribution of this paper is per-
mitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0
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Current Big Data technologies, developed for systems that
process and analyze human generated data such streams,
managing social networks at Facebook, or indexing web pages
at Google, seem inadequate for processing of such M2M ap-
plications. In order to understand this, note that the data
volumes generated from M2M interaction surpass by far the
amount of data generated by humans. M2M data is typi-
cally required to be processed in real-time as it is produced,
it is predominantly transient (does not need to be and is too
large to be stored for future reference), and is typically much
more structured in nature than human-generated data.

Due to the sheer size of M2M data, approaches that seek
to centralize this data are not an option, as they (i) would
require enormous infrastructures both for storage, as well as
for the required bandwidth for transmitting this data, (ii)
would impose unnecessary latency due to the data shuffling
possible, and (iii) do not consider the characteristics and
limitations of the data sources of M2M data - sensors are
often the sources of M2M data and constant communication
of sensor readings would quickly drain the energy of sen-
sor nodes. It is thus important to be able to process M2M
data and to detect important events without centralizing
the collected data, but rather doing as much processing and
filtering of the data at the nodes that produce it.

The project Flexible Event pRocessing for big dAta aRchl-
tectures (FERARI) aims at developing a highly scalable dis-
tributed streaming architecture supporting complex event
processing (CEP) in a communication-efficient manner. While
most CEP systems are built on the premise that primitive
events are obtained and transmitted by the remote data
sources based on their own data, a key element of the FER-
ARI architecture will include the development of communi-
cation efficient distributed methods for also detecting events,
expressed over the data of multiple nodes, in a distributed
manner. We consider the important case of complex events
that can be expressed as a monitoring task that alerts when-
ever a complex function, expressed over the data of multi-
ple nodes, has exceeded a threshold. In order to make the
complex event processing feasible, a key component is to
perform in-situ processing at the nodes generating the data,
thus avoiding continuously pushing related data or events
to our CEP engine. A key component that we will utilize
for such distributed monitoring tasks is the recently devel-
oped [10, 11, 12, 13, 8, 7, 9] geometric approach. The details
of this geometric approach are presented in Section 2.



We present the general architecture of FERARI and argue
that a flexible CEP system for M2M data should not be
tied to a specific implementation using existing stream pro-
cessing systems as its infrastructure. To develop a generic
architecture, in Section 3 we specify the essential building
blocks that it must contain and then consider which of some
existing big data streaming platforms seems more appropri-
ate for our actual implementation. Given our architecture,
in Section 4 we explain how an important part of this archi-
tecture, namely the distributed detection of events using the
geometric approach, can be developed in an existing open
source platform, such as Apache Storm, and explain how
some distributed monitoring tasks (that may use the geo-
metric approach, or not) fit within our architecture.

2. BASICS - THE GEOMETRIC APPROACH

We now describe in more detail the geometric approach for
function monitoring over a distributed system of n sites.
Figure 1 demonstrates the basic ideas of the geometric ap-
proach that we discuss in this section.

Each site S; maintains a local d-dimensional vector, termed
as the local statistics vector, with the j-th (j = 1...d) ele-
ment of the local statistics vector of S; denoted as ;. All
sites contain a vector of the same dimensionality (i.e., num-
ber of elements). The global statistics vector ¥ is computed
as the average! amongst all local statistics vectors. Thus,
the j-th component of the global statistics vector, denoted
as ¥ is computed as: ¥; = £ 3" | ;.

For the framework to be applicable, any supported monitor-
ing function f : R? — R must be expressed over the global
statistics vector ¥ (thus, over the average of all local statis-
tics vectors). An important feature is the wide applicability
of the geometric approach, as the threshold function can in
general be non-linear. Given a threshold T, the framework
in [10, 11, 12, 13, 8, 7, 9] can safely determine whether
f(@)>T.

The geometric approach decomposes the monitoring task
into a set of constraints (one per site) that each site can
monitor locally. To achieve this, during the operation of the
algorithm, each site S; maintains (i) the estimate vector €,
which is equal to the global statistics vector ¥ computed by
the local statistics vectors transmitted by sites at certain
times, and (ii) a delta vector A¥;, denoting the difference of
the current local statistics vector from the last local statistic
vector that S; has transmitted. Based on these two quanti-
ties, S; calculates its drift vector @; = €+ A7;. Additional
optimization have been developed in the framework, such as
the ability to balance only a portion of the network in case
of violations. In that case, an additional slack vector needs
to be maintained and added in the calculation of the drift
vector.

The domain space R? represents the potential locations of
the global statistics vector at any time. Let all points in R?
where f(¥) <= T be colored by the same color (i.e., white
in Figure 1), while the remaining points be colored by a dif-
ferent color (i.e., green in Figure 1). Because the sites do

!The same framework also applies when the global statis-
tics vector is calculated as a weighted average of the local
statistics vectors.
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® Estimate Vector e
® Drift Vector u
® Global Vector v

Figure 1: Local constraints using the Geometric Ap-
proach. Each node constructs a sphere with diame-
ter the drift vector 4 of the node and the estimate
vector €. The global statistics vector ¥ is guaranteed
to lie in the convex hull of &, w1, 2, i3, @s. The union
of the local spheres covers the convex hull.

not perform transmissions at each time period, the current
global statistics vector ¥ is not known to the sites. How-
ever, what is guaranteed is that ¢ will always lie within the
convex hull Conv(ds,...,dy,) of the drift vectors and, thus,
within the convex hull Conv(€, @1, ..., u,) of the drift vec-
tors and the estimate vector. Thus, if Conv(€, ta,...,Us)
is monochromatic (i.e., either entirely below/equal to the
threshold, or entirely above to the threshold), then all sites
are certain about the color of the function f(), since this
will coincide with the color of f(€). Of course, each node
cannot compute Conv(€,us,...,Uns), since it is not aware
of the current drift vectors of other sites. However, an im-
portant observation [11] is that if each site monitors the
sphere B(€,4;) constructed with diameter the estimate vec-
tor and its own drift vector, then the union of these spheres
covers the convex hull. Thus, it suffices for each node to
simply monitor whether its sphere is monochromatic. If all
the spheres are monochromatic, then the convex hull is also
monochromatic and, thus, f(¥) has the same color as f(€).
Otherwise, nodes transmit their local statistics vectors, and
a new estimate vector is computed and made known to all
nodes.

Using Safe-Zones. The more recent work of [8, 7, 9] sim-
plifies the local tests performed by nodes by having each
node test whether its drift vector [8, 9] or its local statistics
vector [7] lies within a convex region. This test is very effi-
cient and only depends on the complexity of the bounding
convex region. For example, the work in [9] demonstrates
how this convex region can be determined by the intersec-
tion of hyperplanes. In that case, the local test of each node
simply checks that a tested vector lies on the “correct” side
of these hyperplanes.

3. PROPOSED ARCHITECTURE

To build a flexible event processing application, we assemble
an appropriate algorithmic approach and a stream process-
ing platform. The approach we use to create this assembly is
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Figure 2: FERARI architecture overview.

described in Section 3.1. We show how the application can
be organized such that the application core can be made
independent from the execution environment. Additionally,
several open source projects are working on scalable dis-
tributed streaming platforms. It is therefore reasonable not
to start from the beginning. To identify a good starting
point, we compare the current systems in Section 3.2.

3.1 Architecture Components

We design the FERARI architecture to allow the fast devel-
opment of distributed flexible event processing applications.
To achieve this, it is required that we can create new func-
tionality on the basis of existing ones, and that we can ex-
change parts of the system without affecting other parts. A
common approach in software development for this require-
ment is to decompose the complex system into smaller units,
called components or modules. Each of the components has
clearly defined bounds and a dedicated functionality. Addi-
tionally, the interaction between the components is defined
in terms of interfaces. We use this approach and derive ap-
propriate components and interfaces. An overview of the
proposed FERARI architecture is depicted in Figure 2.

We now describe the components and the decisions, that
lead to our choices. It is important to keep the architecture
as generic as possible, as we need to execute applications in
different runtime environments. As a runtime we consider a
distributed system, that provides the actual execution con-
text for the application. This may be a simulator, a dis-
tributed stream processing framework or even a distributed
physical sensor network. Especially for in-situ processing
there needs to be an adaptation optimized for the applica-
tion’s concrete environment. For that reason, we start the
decomposition of the application by isolating its algorithm
from the application’s part that depends on a specific ex-
ecution environment. The first part we call application al-
gorithm and the latter application runtime adaptation. The
division now makes the application algorithm independent
from the selected runtime platform and can, therefore, be re-
used in different execution environments. This decoupling
from the runtime now raises the demand to define abstract
versions of mechanisms used by our distributed algorithms.
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The distributed algorithms in our current set of example
applications need access to communication primitives and
a distributed state. The concrete mechanisms for both de-
pend on the selected runtime adaptation, which is not ac-
cessible by the application algorithm. To enable this access,
we introduce a set of FERARI interfaces. We develop the
FERARI system using an agile process, therefore we cre-
ated the interfaces that we need for the geometric approach.
We want to monitor a global condition over a function, us-
ing the derived local conditions (c.f. Section 2). The local
and global condition are based on a local and a global state
respectively. These two parts of the state are represented
by the interface for distributed state. Additionally, the co-
ordinator needs to send information to the local node and
vice versa. Primitives for sending messages in each of theses
directions are provided by the other interface. The appli-
cation algorithm can now be created using this interfaces.
On side of the application runtime adaptation, we need to
provide the concrete implementation for the mechanism ex-
posed by the interfaces. All of the execution environments
use different types of abstractions, interfaces and nomencla-
ture. Additionally, it is a very demanding task to create
a efficient runtime adaptation for an arbitrary set of possi-
ble applications. Following an agile development principle,
we instead solve the more viable task of creating templates
for common application types. These FERARI templates
allow the re-use of runtime adaptations for different appli-
cations. They can provide a mapping of common patterns
onto the runtime implementation. Beyond this, some appli-
cations may require access to special features of a runtime
system. This may for instance be optimized network oper-
ations. Especially in the case of in situ processing, access
to these features is important to create an efficient runtime
adaptation. Therefore we provide access to these features
by exposing the native API of the execution engine.

It is possible to create applications using just the FERARI
interfaces and a runtime adaptation, and we give an example
for this in Section 4.1. Nevertheless, writing the application
code using these interfaces requires skills in distributed pro-
gramming and especially knowledge about communication
efficient algorithms. Therefore, we plan to provide a set of
ready to use blocks that can be called from the application
code directly, the FERARI Building Blocks. As a first ex-
ample of these blocks, we describe the current status of the
distributed stream monitoring block in Section 4. An out-
look for the other planned blocks is given in our concluding
remarks (Section 5).

3.2 Candidate Streaming Platforms

As we identified in Section 3.1, it is important to decou-
ple the application algorithm and the execution runtime.
We will now focus on candidate platforms within the exist-
ing open source streaming platform implementations. The
FERARI architecture itself will be available under a liberate
open source license, the Apache license. For that reason, we
consider only platform candidates that are compatible with
this license. Since there are a lot of streaming platform can-
didates, we focus on some popular ones, Storm, Trident,
Spark Streaming and Akka. We require a system that can
be scaled to handle the streams of data for huge volume
and high velocity. In current stream processing platforms,
this is achieved by horizontally scaling out, which means



additional processing nodes are added to increase the ca-
pacity. An effect of horizontal scaling is that the increased
amount of nodes also increases the probability of nodes fail-
ures. Therefore, the platform needs to provide mechanisms
to deal with system components failing. In Section 2 we ex-
plained how the geometric approach divides the monitoring
task to a local (checking for local violations) and a global
part (synchronization and determining if there is a global
violation/event). These two parts interact with each other
in adaptation cycles. The ability to support such cycles is
a key requirement for the platform that we choose. Addi-
tionally, our application scenarios include monitoring tasks.
In this application area it is important to create immedi-
ate reaction, for instance raise an alarm as soon as possible.
The requirement for the platform is, therefore, that it allows
processing with low latency. Another important aspect of
this application scenario is that potential alarms must not
be omitted. The processing of an input event may either
be guaranteed by the underlying platform (i.e., by ensuring
that messages are not lost), or it may be a concern of the
application. We now evaluate our candidates with respect
to the properties, possibility of adaptation cycles, latency
of processing and guarantees for processing provided by the
platform.

Apache Storm [3] initially was developed at Twitter, got
open-sourced in 2011 and is now an Apache top level project.
Processing in Storm is organized by a graph, the Storm
topology. Input stream data items enter the topology by
spouts and are called tuples in Storm terminology. Each of
these tuples is processed by Storm bolt, one at a time. The
approach of processing a single tuple at a time allows for
low latency processing. A storm bolt can execute arbitrary
Java code, and it emits new tuples as processing results.
These result tuples are then processed by the next bolts
in the topology. A storm topology can contain cycles, and
therefore allows for the adaptation cycles that we need. The
Storm system recovers from node failures, by restarting the
broken processing task at a different place. In case of fail-
ures, all state associated with a crashed tasks is lost. Storm
provides two types of processing guarantees, best effort and
at least once processing semantics. More on Storm’s imple-
mentation can be found in [14].

Trident is not an independent system - it is an abstraction
layer on top of Storm. It extends Storm by introducing
exactly-once execution semantics and a model for consistent
states. To achieve this, it switches from processing each
tuple individually to processing small amounts of tuples, the
mini batches, together. In general, mini batching increases
the time that elapses between the entering of a new tuple
in the system and the result being available. Further, the
processing topology in Trident is required to be a cycle-free
graph, which conflicts with the adaptation loop requirement
that we have.

Another development independent from Storm is the dis-
tributed processing framework Akka [1]. The organization
of the processing units follows the actor model. The actors
interact with each other by message passing and especially
cyclic connections can be constructed. There are no guaran-
tees on delivery or processing of messages - they are handled
at best effort. Each single message is processed individually,
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Storm Trident Akka Spark
Cycles yes no yes no
Processing best effort | exactly best ef- | exactly
Guarantees | and at least | once fort once
once
Processing single tuple | mini single mini
Granularity batch message | batch

Figure 3: Properties of candidate distributed stream
porcessing platforms

therefore achieving low latency.

Apache Spark Streaming [2] is an extension of the recently
developed Spark processing system. Spark is a batch pro-
cessing system designed for caching intermediate results.
The streaming variant organizes the processing of the stream
in mini batches. Each operation on these batches is guaran-
teed to be performed exactly once. There is no way known
to the authors for constructing loops in the processing op-
erations.

A summary of the supported features of the evaluated plat-
forms is provided in Table 3. Our analysis reveals that Storm
provides most of the features we need for our system. Akka
remains to be an interesting candidate, if the targeted appli-
cation does not require at least once processing guarantees.

4. DISTRIBUTED STREAM MONITORING

We now focus on the important Distributed Stream Mon-
itoring building block and explain how distributed moni-
toring functions can be incorporated in our framework. As
we have mentioned, we are interested in detecting events,
which are emitted when a function, computed over the data
of different distributed nodes, has crossed a specific global
threshold. We give a basic example, counting the number of
distinct items in streams, to show the usage of the FERARI
interfaces in Section 4.1. This basic example does not yet
make use of the geometric approach. Since it is desirable to
allow code reusability for different monitoring functions, we
then present how declared distributed monitored functions
can be implemented using a hierarchy that we define. Our
function hierarchy alleviates the development of many im-
portant details of the geometric method, requiring minimal
new code for each new monitoring function, while at the
same time providing support for both the original geomet-
ric approach, as presented in [10, 11, 12, 13|, as well as the
more recent Safe-Zone [8, 7, 9] approach, which improves
upon the original approach. In Section 4.2 we present our
function hierarchy that allows for easily defining and incor-
porating new functions for distributed monitoring. Please
note that both methods presented in Sections 4.1.1. and
4.2.1 do not depend on the underlying execution environ-
ment (i.e., Storm, SPARK etc). We show in Sections 4.1.2
and 4.1.3 respectively, how they can be be mapped to the
FERARI architecture.

4.1 Monitoring Global Threshold with Count
Distinct
4.1.1 Application Algorithm

Counting the number of distinct elements in streams of data
is a common pattern in various types of applications. For
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Figure 4: Function Class Hierarchy.

instance, in a mobile fraud detection scenario, it is impor-
tant to keep track of the number of different locations a
mobile device is used within a certain period of time. If
a device changes too many times, this could be an indica-
tion of fraudulent usage. Another example for the same
counting pattern, originating from a different scenario is to
determine the popularity of an artist. For instance a ser-
vice like last.fm? may monitor streams of events, in which
each of the events in a stream corresponds to a user listening
to a song. The popularity of an artist is measured by the
number of distinct users listening to songs of the artist. To
discover artists getting popular, it is relevant to know when
an artists exceeded a certain global threshold, the count of
distinct listeners.

An data sample of such events was collected by the author
of [4] and is now publicly available at the webpage®. We
will use these data and describe, how the pattern of count-
ing distinct elements in streams of data can be instantiated
using the proposed FERARI architecture. There are two
application dependent blocks we need to fill, the application
algorithm and the runtime adaption. Concerning the ap-
plication algorithm, it is common practice in the streaming
scenario to approximate the count of distinct items by ap-
plying sketching techniques. One type of such sketches are
linear sketches, which fit our needs in this example. The
details of the sketching algorithm can be found for instance
in [5]. The sketch is a compact synopsis of our data that can
be communicated more efficiently between the local nodes
and the coordinator. For each artist we maintain a sketch
to count the distinct at each of the distributed processing
units. Such a sketch is communicated with the global co-
ordinator only if it is required, i.e. if the count of distinct
users has increased by some percentage or by a fixed amount.
The coordinator, than also updates it’s global sketch for this

’http://www.last.fm/

Shttp://www.dtic.upf.edu/ ocelma/
MusicRecommendationDataset/lastfm-1K.html
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Figure 5: Interface for application algorithm.

artist appropriately. Additionally, the coordinator detects
whether the global threshold has been crossed. In the case
of a global threshold violation, the coordinator takes appro-
priate actions, for instance raises the information about the
new popular artist and interacts with the local processing
units to make them reset the counters.

4.1.2 Mapping to the FERARI Architecture

This algorithm can now be created using the FERARI in-
terfaces. The local part implements the LocalState inter-
face, with two methods update and handleFromCoordina-
tor. The update method is called on incoming data and
provides new the listen events. HandleFromCoordinatorl
is used to reset the local counters as indicated by the co-
ordinator. Further, increased counts are reported to the
coordinator, via the sendToCoordinator method. For the
global part, the coordinator, the equally named interface
CoordinatorState is implemented. Here, we use the up-
date method to receive the notifications of increased counts.
As already mentioned, the coordinator resets counters in
regular intervals and notifies the local units by the send-

Application Runtime Adaptation



ToLocal method. Note that the application algorithm now
is formulated using FERARI interfaces and does not depen-
dend on the runtime. The application algorithm can now be
executed using an appropriate runtime system as proposed
in Section 3. We choose the Storm runtime for our example
and setup the topology as follows:

e A spout inserts the listen events as Storm tuples to the
topology.

At random choice the tuples reach one of the Local-
Bolts.

The LocalBolts are connected with the Coordinator-
Bolt by a named channel, a Storm stream. This con-
nection is achieved using a Storm global grouping.
Vice versa, the Coordinator uses another stream to
the LocalBolts, which is translated to a Storm all
grouping in the topology.

The Storm runtime adaption for this example, now maps
sendToLocal and sendToGlobal to emitting tuples on the
dedicated channels for each of the operations. The process-
ing in the LocalBolt decides on basis of the channel name,
if the update method or the handleFromCoordinator is in-
voked. In this example the coordinator only receives tu-
ples containing the updated sketches from the LocalBolts,
therefore the mapping to the processing hook is unique. The
complete view on the FERARI interfaces and the link to the
runtime adaption is given in Figure 5.

We now describe our more general solution to define moni-
toring tasks exploiting the geometric approach.

4.2 Monitoring Global Function Thresholds
4.2.1 Application Algorithm

In Figure 4 we present the function hierarchy that we have
developed in order to facilitate writing of applications that
make use of the geometric approach. The abstract class
Function represents the core elements that the geometric
approach contains. In this class, the abstract method F
must be provided for all developed functions and simply
returns the value of the function, computed over a multi-
dimensional point in the input domain. When an instance
of a function is created, this is done by also specifying two
important parameters: a threshold value and a parameter
inequality, which may obtain one of four possible values
U7 e de =" “>=" A distributed event is then detected
when the condition f(v) inequality threshold becomes true.
For example, when inequality = * >”, an event is detected
when f(v) > threshold. Once an event is detected, it re-
mains valid for the entire time until another global violation
occurs, meaning that the monitored condition has stopped
being true.

In order to minimize the implementation overhead when
adding new monitoring functions, a significant part of the
functionality of the geometric approach has been implemented
in our architecture, either at the most general Function
class, or at the two abstract classes BallFunction and Safe-
ZoneFunction. Starting from most general Function class,
we notice that it contains contains two types of variables.
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The monitoringVariables parameter contains information
related to the function input parameters (threshold, in-
equality) and the estimate vector estimate. The nodeData
parameter contains information for one or more nodes. This
is general enough to accommodate implementations over dis-
tributed systems such as Storm, where each processing node
(i.e., bolts in Storm) may receive and process data for mul-
tiple nodes. For each node, we maintain:

e The most recently received data (lastValues variable
in the NodeState class). The addition of this data
is done through the update method. All stored tuples
are accompanied by the corresponding timestamp that
specifies when they were produced.

The current local statistics vector (1sv) of the node.
This is calculated, if recent data arrives by the FER-
ARI interface update method of the node, through the
abstract method updateLLSV. For each new declared
function, this method must be defined in a subclass
of NodeState. The parameter lsvSize specifies the
dimension of the 1sv vector.

Parameters relevant to the geometric approach, such
as the drift vector drift, the delta vector dv from the
last transmission of this node, a vector lastSent con-
taining the last transmitted 1sv vector, and the cor-
responding methods that update the values of these
parameters. The transmission is achieved by using the
FERARI interface sendToCoordinator.

Besides the abstract F method that has already been men-
tioned, the class Function also contains some additional
methods. The abstract hasLocalViolation method answers
whether a local violation has occurred using the geometric
approach. In case a violation has occurred, it communicates
using the FERARI interface method sendToCoordinator.
The hasLocalViolation method is defined in a different way
for the two subclasses of Function.

The BallFunction and SafeZoneFunction classes contain
important functionality regarding the detection of events.
The hasLocalViolation method is implemented in both the
BallFunction, as well in the SafeZoneFunction subclasses.
In BallFunction, the way to check for a local violation in a
generic way is performed using a grid of points within the
sphere that each node constructs in order to check for a local
violation. Any function that wants to use the original tech-
nique with the spheres (c.f. Section 2) simply needs to: (i)
Create a subclass of BallFunction that provides the code
for the F method, (ii) Create a subclass of NodeState that
provides the code for the updateLSV method, and (iii) op-
tionally provide a better method for hasLocalViolation if
for the specific function it is simple to compute its maxi-
mum and minimum values within a sphere. If the third step
is omitted, the development of a new function literally re-
quires just a few lines of code and very limited knowledge
on the internals of the geometric approach.

The SafeZoneFunction class inherits the BallFunction class
because we may want to define a function that uses a safe
zone only when the estimate vector lies on one side of the
threshold, while checking for a local violation using the spheres



in the other case. In case we want to use a safe zone, this
is determined by the intersection of one or more convex re-
gions (class ConvexRegion). Given the value of 1svSize, and
two vectors factors and powers (having a dimensionality
of 1svSize+1 and lsvSize, respectively) each convex region
is defined as the set of points P that satisfy a multivariate
polynomial of the form: 3'*°5*¢ factors[i] » P[i]fector=lil =
factors[lsvSize]. When developing the code for a function
that uses safe zones, one simply needs to: (i) Create a sub-
class of SafeZoneFunction and provide the code for the F
method, (ii) Create a subclass of NodeState that provides
the code for the updateLSV method, and (iii) Provide the
method computeSafeZones that computes the safe zone to
use whenever the estimate vector is updated. With this hier-
archy, it is now possible to implement monitored conditions
over functions with little implementation effort.

4.2.2 Mapping to the FERARI Architecture

The Storm topology we derived in our basic example in Sec-
tion 4.1, can also be used to instantiate the more powerful
approach of our function hierarchy. As the FERARI inter-
faces are used to express the algorithm, we can map the re-
quired runtime adaption to our Storm topology. New input
data from the monitored streams reach the local nodes by
the update method and are directed to the function we moni-
tor accordingly. Local violations are communicated with the
coordinator by the sendToCoordinator method, which is be-
ing mapped to a global grouping between the LocalBolt
and CoordinatorBolt. In the other direction, the coordi-
nator provides the local nodes with an updated estimate
vector by the method sendToLocal. This is translated on
the Storm topology to an all grouping between the Coor-
dinatorBolt and the LocalBolts. The appropriate calcula-
tions required by the geometric approach, update of 1sv, dv
and estimate. are invoked by the handleFromCoordinator
and handleFromLocal respectively. The same Storm, topol-
ogy with LocalBolt, CoordinatorBolt and the connecting
streams can be used, as runitme for the geometric monitor-
ing hierarchy. Therefore, this topology can act as FERARI
runtime adaption template.

S. CONCUSIONS AND FUTURE
DIRECTIONS

In this paper we proposed an architecture for distributed de-
tection and processing of events that allows the separation
of application specific code from runtime dependent code.
This is achieved by the introduction of the FERARI inter-
faces, which allow us to create applications for different exe-
cution environments. We evaluated established open source
distributed streaming platforms, Akka, Spark, Storm and
Trident and found that Storm best suits our requirements
for the distributed monitoring scenario. We demonstrated
how the proposed architecture can be used to implement
an interesting example, monitoring when artists get popu-
lar by analyzing a stream of listen events. Additionally, we
described how the powerful geometric monitoring approach
can be implemented using our architecture while requiring
tiny programming development efforts. Our code, in ad-
vance is public and available on-line *.

Our future direction is to provide additional FERARI build-

‘https://bitbucket.org/sbothe-iais/ferari
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ing blocks. Especially, we are interested in including the
distributed online learning framework recently published in
[6]. Another important block we are working on within the
consortium is in providing the capabilities of the PROTON
engine, that is open sourced by our partner IBM °. Finally,
we work on creating a query planer, that will allow to for-
mulate and dynamically optimize the monitoring task in a
very convenient way.
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ABSTRACT

Big data means big datacenters, comprised of hundreds or
thousands of machines. With so many machines, failures
are commonplace. Failure detection is crucial: undetected
failures may lead to data loss and outages.

Recent health monitoring approaches use anomaly detec-
tion to forecast failures — anomalous machines are considered
to be at risk of future failures. Our previous work focused on
detecting latent faults in large web services, which are often
characterized by scale-out architecture where load is dynam-
ically balanced. We proposed a robust and unsupervised
latent fault detector for such systems, with statistical bounds
on the rate of false positives. That detector, however, is
unsuitable for applications without dynamic load balancing,
such as statically-balanced key-value stores, Hadoop jobs,
and supercomputer applications.

We describe an improved latent fault detection method
for unbalanced workloads. It retains the advantages of our
previous methods: it is unsupervised, robust to changes, and
statistically sound. Moreover, the statistical bounds for the
new method scale better with the number of machines, and
so dramatically reduce the number of measurements needed.
Preliminary evaluation on supercomputer logs shows that
the new method is able to correctly predict some failures,
while our previous methods completely fail in this setting.
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1. INTRODUCTION

Recent years have seen an increasing demand for comput-
ing power and storage. Large scale applications — whether
offline batch computations or modern web services and clouds
— are implemented on top of large datacenters, comprised of
thousands of machines or more. For large cloud services,
it is unreasonable to assume that all machines are working
properly and are well configured [29, 28]. Unnoticed failures
may cause data loss and service outages. Similarly, modern
supercomputers and high-performance clusters are increas-
ingly comprised of more and more individual components
(multiple CPUs, drives, and recently multiple GPUs [32]),
resulting in higher failure rates [31, 1]. In such systems,
failures may delay long computation, even to the point where
little useful computation is being done [30, 31, 27].

Many current failure detectors model normal behavior from
historical data. Modeling can be manual, by setting static
thresholds [14], or automatic, using supervised machine learn-
ing [2]. Modeling from historical behavior is suboptimal, how-
ever [9]. Workload changes, data-dependent computations,
and software updates render learned models inaccurate [12,
9]: static thresholds must be adjusted by domain experts,
and machine learning models must be retrained from recent
data. This retraining requires relabeling data as exhibiting
normal and abnormal behavior — an expensive process. Fur-
thermore, supervised techniques often only detect problems
that have been foreseen or encountered before.

More recent approaches [17, 18, 19] focus on unsupervised
methods (mainly anomaly detection) which require no la-
beling and less domain expertise. Within this context we
focus on latent fault detection [9]. Latent faults are subtle
behavior deviations that may indicate problems or miscon-
figurations. The aim is to catch unforeseen faults that “fly
under the radar” of monitoring systems, before they manifest
as machine or software failures. In our previous work [9] we
proposed a statistical latent fault detection framework for
web services. It is robust to software changes and workload
fluctuations, and provides statistical bounds on the rate of
false positives. Our evaluation showed that latent faults are
common and can precede failures by days. We have also
extended that work for distributed settings [8], where the
goal is to reduce communication and computational load.

Despite its advantages, our existing latent fault detection
framework, like many other anomaly detection techniques,



assumed that workload is dynamically distributed over iden-
tical machines. Though this setup is common in scale-out,
replicated services, it is not always the case in every setting.
First, some large-scale web services are statically balanced or
simply poorly balanced. Consider, for example, a key-value
store where keys are statically assigned to machines by a hash
function. If commonly used keys fall on a small number of
machines, these machines are much more heavily loaded than
the rest. Similarly, parallel computation frameworks such as
Hadoop generally use key values to partition loads, resulting
in unbalanced workloads [22]. Finally, large scale compu-
tations in compute clusters may distribute work to nodes
unequally, due to data locality or because there is no easy
way to predict how data distribution affects computation.

Our previous work also required a large number of mea-
surements for a single run of the detection algorithm. The
statistical bound grew linearly weaker with the number of
machines: the more machines, the larger the required time
window.

This work proposes a statistical latent fault detection
test for unbalanced workloads, making it more practical in
settings such as supercomputers, and in other large scale
systems whose computational workload is not necessarily
balanced. It also reduces the window size from a full day
(roughly 300 measurements) to minutes (4 measurements).
Since the new bound scales much better as the number of
monitored machines grows, the new detector is much more
responsive to immediate changes. It can therefore be used
to monitor large systems when rapid response is important.

A preliminary evaluation on historical metric and failure
logs from the TSUBAME2 supercomputer! shows that the
new detector is superior: while our previous latent fault
detectors fail completely in this setting, the new detector
can predict some failures several days in advance.

2. IMPROVED ANOMALY DETECTION

Our previous latent fault detection framework [9, 8] relied
on several assumptions, which we now revisit. First, ma-
chines in the system are homogenous in terms of hardware,
software infrastructure and running code. Second, the ma-
jority of machines are not faulty; in a large system, most
machines perform well most of the time. Finally, the mon-
itored system uses dynamic load balancing — on average,
workload is distributed evenly across machines. Thus when
measuring aggregated performance counters, we could expect
healthy machines to exhibit the same behavior, on average.
We wish to keep the first two assumptions, but avoid the
third.

As with web services, machines in compute clusters are
often homogenous for logistical reasons. Where they are not,
it is often possible to cluster to a few distinct configurations,
using hardware and job data. Indeed supercomputers have
strict, almost uniform hardware. For example, TSUBAME2
has 6 types of nodes® with well-documented hardware con-
figurations.

The second assumption is also quite reasonable; it is hard
to imagine an expensive datacenter running for lengths of
time with a majority of faulty machines.

We can no longer assume dynamic load balancing though.

"Mttp://wuw.gsic.titech.ac. jp/en/tsubame? .

2http://tsubame.gsic.titech.ac.jp/docs/guides/
tsubame2/html_en/overview.html#computing-nodes .
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Table 1: Hypothetical machine measurements.
Node D has anomalous memory and CPU usage.
Node | Reqs | Memory | DB | CPU
A 3 630 9 6
B 5 650 15 10
C 4 640 12 8
D 3 740 9 15
E 8 680 24 16
F 7 670 21 14
G 5 645 15 11
20
7
5] %\\ " ”{""normal
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Figure 1: Scatterplot of the hypothetical requests vs
CPU usage, with normal and abnormal subspaces.
Machine D is visibly an outlier.

Instead, given our original assumption of homogenous ma-
chines running the same code, we assume there are common,
inherent interdependencies, or correlations, between different
counters, stemming from the fact that all machines do the
same job, and run the same code. These correlations (not
necessarily linear) between sets of counters are the result
of what the machines are doing, and are not affected by
workload. For instance, suppose task A requires k of some
resource X and n of some resource Y for each unit of work.
Increasing the workload to 5 units of work will require 5k of
X and 5n of Y, but the correlation between k and n remains;
it will remain even if we don’t measure the actual workload.
Generalizing to dependencies that may involve more than
two counters, we can instead discuss correlations or rela-
tionships between or within sets of counters; for example,
2k +3n+12 =m.

Given the first two basic assumptions and the above, we
can assume that similar machines doing the same task will
result in the same correlations (relationships) between sets of
counter values. The counters of machines with latent faults
will not exhibit the same relationships.

For example, consider a hypothetical web service where
for each client request we need 10MB of memory, 3 database
transactions, and 2% CPU time. Machines with latent faults
might have too few DB transactions, or too much memory
use, or CPU usage that doesn’t match the workload. Table 1
shows 5 such hypothetical machines. Machines A, B, C
and E all exhibit the expected relationship between their
counter values. Machine D, however, is anomalous, because
its memory and CPU usage are far too high for its workload
of 3 requests, for example due to a memory leak.

Our strategy is therefore to establish the linear correla-
tions® within the aggregated counters at every time point,

3Not limited to the Pearson correlation, which is pairwise.



and find machines whose counters consistently (across several
time points) exhibit different correlations.

2.1 PCA Subspace Decomposition

We will use Principal Component Analysis subspace de-
composition [6, 23] to decompose the space of counters into
a normal subspace and an abnormal subspace.

PCA is a statistical technique commonly used to auto-
matically choose a smaller set of dimensions — the principal
components — which captures most of the data variance.
Since this subspace captures the variance in normal data, we
can refer to it as the normal subspace. This normal subspace
represents normal (healthy) linear correlations between the
counters.

The residual components, on the other hand, define the
complementary subspace that captures very little variance.
In other words, when projecting a normal data point to the
residual subspace, we can expect the projected vector to be
very small, close to zero. The residual subspace is therefore
the abnormal subspace, which represents violations of healthy
relationships between counters.

Subsections 2.2 and 2.3 describe two variations using this
basic idea. In the first variant, data vectors are projected
into the abnormal subspace, and those vectors whose projec-
tion is above some threshold are declared to be abnormal.
Jackson and Mudholkar [15] developed a way to infer the
threshold from the data to guarantee a desired false positive
rate. While their guarantee is only for multivariate Gaussian
distributions, in practice the threshold is known to be robust
even when the data is not Gaussian [16, 35]. Alternatively,
we can apply the latent fault statistical framework [7] as is,
using the projection to the abnormal subspace (normalized
by the vector length) as the score function S (m, z(t)).

Figure 1 illustrates the technique. It shows requests vs.
CPU usage of hypothetical machines from Table 1, including
some additional healthy machines. The normal subspace is
represented by the line Y = 2X, where X is requests and Y
is CPU usage. The abnormal subspace is the perpendicular
line. The outlier machine D clearly has a large presence in
the abnormal subspace — projecting D’s data to this space
results in a large vector.

Ordinarily, historical data that is guaranteed to be “normal”
is used to learn the normal and abnormal subspaces [23, 35].
In our case, we wish to detect small problems, and to support
complex systems where we do not have a guaranteed error-
free history. Instead we will make use of the large number of
machines in the system. Since we assume most machines are
fine at any given point in time, we can use this to extract
the normal and abnormal subspaces.

One wrinkle in our plan is the presence of outliers in our
data. Since we assume a small number of faulty machines
(outliers), the resulting subspaces will include their faulty
data. We therefore use a robust approach to PCA called
HR-PCA, described by Xu et al. [34]. It is robust to outliers
and arbitrarily corrupted data, and can recover the princi-
pal subspace even when the number of counters approaches
the number of machines (C' ~ M). HR-PCA is also quite
efficient.

2.2 Formalizing the Algorithm

There are M machines, performing identical tasks, each
periodically reporting C' aggregated performance counters in
a time window of length 7. We standardize counter values

120

in the time window across all machines to zero mean and
unit variance in the time window. We denote by x(m,t) the
vector of standardized counter values for machine m at time
t, and by x(t) = J,, (m, t) their union. Denote by X the
M x C data matrix z(t) after pre-processing and scaling at
time ¢. Denote by x,, the row in X that came from machine
m, meaning T, = x(m,t).

Using PCA we extract the normal subspace of X, com-
prised as the first k principal components v1,...vr that
capture the most variance (say 95%). Denote by H.,, the
C x K normal subspace projection matrix built from the first
k principal components, Hno = [v1,v2,...,v;]. Let the ab-
normal subspace projection matrix be the residual subspace
Hoy=1— HyoHE,.

Given the projection H,p, we can then map each machine
vector x(m,t) to its residual: T, = HapZm. Using the test
statistic and threshold given in [15], define: Qu = ||Zm > =
||Habgcm||2. A machine is declared abnormal at time ¢ if
Qm > Qa, where Qo denotes the threshold for the 1 — «
confidence level:
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A; is the variance captured by the j-th principal component,
and ¢, is the upper 1 — «a percentile of the standard normal
distribution. For a normal machine, Pr [Qm > Qo] < a. In
other words, « is the false alarm probability when testing a
single machine.

Detecting one abnormal machine at time ¢ is not sufficient,
however. We are testing multiple machines, and must there-
fore guard against false positives. Hence we will only flag a
machine if it is abnormal for 7’ consecutive times.

How big must T” be to guarantee a false alarm probability

p when testing M machines? The probability of a false alarm
T/

C .
7¢lzz)\;7

j=k+1

ho

for a specific machine m in T” consecutive time points is o
The false alarm probability in at least one machine after 7"

A M
time points is therefore 1 — (1 —aT ) , and so we require:
A M
1—(1-a7T < p.
Thus for a desired false alarm probability p with M ma-
chines, we need a window size of:

T = [bga (1— y 1—p)—‘. (1)

Note that the probability of false alarms drops roughly expo-
nentially with 7”. We discuss this below in Subsection 2.5.
The final algorithm for target false probabilities p and a:

1. Preprocess: select counters and scale to unit variance.
2. For each time t across T” consecutive times:
2.1 Compute robust PCA (HR-PCA) from data xz(t).
2.2 Choose k that captures most variance (say 95%).
2.3 Build Hyo, Hap, Qa-
2.4 For each machine m, check if Q. > Qa.
3. Report m if Q. > Q4 for T” consecutive times.

2.3 Alternative to Thresholding

The threshold @, is determined from the actual data, and
so may be too conservative. It is possible that, due to noisy



data, the resulting threshold is too high. The test is binary:
Qm > Qo is either true or false; there is no middle ground.
Hence, it is possible that even if @, is consistently high,
much higher than the @ of other machines, it is still below
the threshold. Our conservative design to limit false positives
will result in too many false negatives, as few faulty machines
are flagged.

Instead, we can use the statistical framework from [9, 7].
Let S (m,z(t)) be a test, a ranking function that assigns an
outlier score (either a scalar or a vector) to machine m at
time ¢. Given a test S, and desired false alarm probability
0 < a < 1, we can present the framework as follows:

1. Preprocess: select counters and scale to unit variance.
2. Compute for every machine m the vector:

Um = % 3., S(m,z(t)) (integration phase).

Compute the p-values (defined below) p(m) from v,,.
Report every machine with p(m) < « as suspicious.

3.
4.

We use the normalized ), as the score function:

_ Qm _ Eml® _ [ Hapzm|?

el e

We derive probabilistic bounds using the machinery from [7].
Note that 0 < S (m,z(t)) < 1, thus even if we change all of
z(t) S cannot change by more than 1. Moreover, HR-PCA is
robust, so changing just one vector x(m,t) should not overtly
affect Hg,p, thus Q,, for any other machine m’ should not
change. Therefore S is 1,0-bounded [7, Definition 2.3.1], and
we can apply [7, Lemma 2.3.3] to get a p-value:

2T M~?
(Vi)

where v = max (0, [|[vm|| — 9), and © = 55 >, |lvm||. This
p-value is the probability that ||vp, || is larger than the mean ©
by v when m is healthy, given that we are testing m machines;
testing for p(m) < « guarantees false alarm probability «
across all machines, equivalent to p in Subsection 2.2.

p(m) is more flexible than Q. — it is computed from data
of T times (step 2, above), rather than tested each time
separately. Consistently small deviations from the norm
accumulate if T is large enough. The advantage of this “soft
threshold” approach is that it is much more sensitive to
smaller anomalies (Q < Q) than the original “all or nothing”
approach. The downside is that the improved window size
described in Subsection 2.5 no longer applies.

2.4 Unbalanced Workloads and Robustness

Our previous framework required that workload be dy-
namically balanced, on average, across all machines. This
was because we directly compared counter values between
machines. Aggregating across a large time window helped
us overcome, and take advantage of, temporal noise. Indeed,
temporary workload imbalance is very likely, since it is dif-
ficult to guarantee that all machines are equally loaded for
any short time interval. Averaged across a larger interval,
these small random imbalances cancel each other out.

Conversely, the algorithm described above does not depend
on the absolute counter values, but instead on the correlations
between them at each point in time. We expect that these
correlations will remain similar regardless of the load.

p(m) = (M +1)exp | — 2)
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Table 2: Hypothetical machine measurements ex-
hibiting unbalanced load.

Load || Regs | Memory | DB | CPU
low 8 680 24 16
low 5 650 15 10
low 6 660 18 12
high 33 930 99 66
high 40 1000 120 | 80
high 37 970 111 | 74
100
80 P
2 TN
© 401 \ ~hormal high
20 4 Vg subspace load
0 L“ T T T T
0 10 20 30 40 50
Requests

Figure 2: Scatterplot of the unbalanced hypothetical
requests vs CPU usage. All machines lie on normal
subspace.

For example, consider our hypothetical web service from
above. For each client request, we need 10MB of memory, 3
database transactions, and 2% CPU time. Table 2 shows 6
such hypothetical machines. The first 3 machines are lightly
loaded (few requests), while the last three are heavily loaded.
Still, all exhibit the expected relationship between their
counter values, and so lie on the normal subspace (Figure 2).
A machine exhibiting anomalous CPU usage for the number
of requests would lie outside this normal subspace.

Moreover, as with our previous methods, the subspace
decomposition approach is robust to changes in the monitored
system. The normal and abnormal subspaces are recomputed
using counter values measured at the same time, and we never
compare such values across different times. If the software is
updated, for example, the new behavior is never compared
to the old one.

2.5 Improved Window Size

The bounds for our previous methods [9] required increas-
ing window sizes as the number of machines grew. As illus-
trated by Equation (2), the framework bound grows linearly
weaker with the number of machines M, meaning that we
have to increase the window size T' to compensate.

This can be intuitively be explained by the need to aggre-
gate different measurements across many times to overcome
temporal noise in counter values, such as short-term workload
imbalance. The experiments described in [9] were performed
with window size of T' = 288, which translated to a full
24-hour day since counters were sampled every 5 minutes.

The PCA method has an improved window size. T" from
Equation (1) is logarithmic in the number of machines M.
The intuitive explanation is that we no longer need to track
counter behavior across time to overcome minute random
imbalances or random noise. For example, given M = 10000
machines, & = 0.01, and overall false alarm probability
p = 0.01, Equation (1) tells us we need a window size of only
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Figure 3: Performance of original latent fault detector on TSUBAME2 data with 7 day horizon.

3 time points, i.e., 15 minutes:
T' = [logyo; (1 — V1 —-0.01)] = [2.9989] = 3

Even for a million machines, M = 10°, a window size of 4
time points, meaning 20 minutes, is sufficient to guarantee a
false positive rate of 0.01:

T’ = logg o1 (1 V- 0.01)1 = [3.9989] = 4
3. PRELIMINARY EVALUATION

We used historical machine metric logs and failure records
from the TSUBAME2 supercomputer to compare the new
subspace decomposition approach to our existing latent fault
detectors [9].

3.1 Supercomputer Workloads

Supercomputer workloads are very different from cloud
workloads in many ways: long jobs rather than short requests;
parallelization and load balancing are done within single jobs,
not over all requests; and jobs are heterogeneous, so different
nodes do not run the same code at the same time. Thus,
the job uniformity assumption we make in Section 2 and our
previous work [9] may no longer hold.

Computational jobs often perform many iterations of the
same basic loop [30, 31]. For computations whose perfor-
mance is not data-dependant (such as many common matrix
operations), a single computation iteration will usually re-
quire the same amount of resources (CPU time, GPU load,
etc.) as any other iteration. Moreover, required resources for
one iteration will be the same for all nodes in the system with
the same hardware configuration. This essentially brings us
back to the PCA approach suggested in Section 2 — metrics
of healthy nodes will lie in the same subspace.

Latent fault detection tests should be run on groups of
machines partitioned by job. Scheduling logs that contain
start and end times (along with the list of assigned machines)
can be used to subdivide machines in this way.

3.2 The TSUBAME?2 Dataset

We used 45 common machine metrics (e.g., cpu idle time,
GPU utilization, user time, swap free, various temperatures),
sampled every 1 to 10 minutes (depending on the metric),
from one month of runs (roughly jobs, see below). We divided
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Table 3: Statistics of inferred jobs (runs).

Statistic Median | Max
Number of machines (M) 99 236
Length (minutes) 1016 | 5699

each run of 240 minutes or more, with at least 10 machines,
to windows of length 240 minutes each. This resulted in 60
runs with a total of 252 windows, summarized in Table 3.
We performed latent fault detection on each such window.
The results of the detector were compared with the historical
failure log within a 7 day horizon — a node is considered to
have failed if it failed within 7 days from the time windows;
otherwise it is considered to have not failed.

Since our TSUBAME2 logs did not include any job schedul-
ing information, our preliminary experiments relied on CPU
and GPU usage metrics to infer which machines were being
used and how they were grouped. A group of machines that
together became busy and then idle were considered to be a
single job, or a “run”. This method is ad-hoc and inherently
inaccurate. For example, a failing machine might stop at
the beginning of the computation and so would never be
considered part of the run, as it did not finish with the rest.
Section 5 discusses a potentially more robust alternative.

3.3 Results

We first evaluated the performance of our existing latent
fault detectors: the sign, LOF and Tukey tests [9], with
T = 240 and o = 0.01. Figure 3 shows the receiver operating
characteristic (ROC) curves for our existing latent fault
detection tests. Ignoring computed p-values, we swept the
threshold for anomaly scores ||v|| (as in Eq. (2)) across a
range of values and drew the resulting false positive and false
negative rates. The performance of all three previous tests
is no better than a random guess, where the false positive
and false negative rates are equal.

We repeated the tests with the PCA approach suggested
in Section 2, using the “soft threshold” variation described
in Subsection 2.3. We used 7' = 240 and a = 0.01. k was
selected to capture 95% of variance. Finally, HR-PCA [34]
was used as the robust PCA building block, with the max-
imum number of corrupted points set to 10% of machines
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Figure 4: Performance of PCA latent fault detector
on TSUBAME?2 data with 7 day horizon.

(t = 0.9M). As can be seen in Figure 4, the subspace decom-
position approach performs better than our original latent
fault detectors. Though still no better than random guess at
lower false positive rates, it is still able to predict some node
failures several days ahead.

4. RELATED WORK

PCA residuals have been used in the past for monitoring
tasks [6]. Lakhina et al. [23] famously used this approach
to detect network traffic anomalies. Like many similar ap-
proaches, they monitor the network as a whole, and do not
attempt to localize it to a specific node. Furthermore, they
rely on historical data that is guaranteed to be normal, and
assume that the system is unchanged, again a common theme.
Xu et al. [35] analyze program source code to parse console
log messages and use principal component analysis to identify
unusual message patterns based on their frequency. As with
Lakhina’s work, this technique relies on error-free history and
relatively stable systems. Console logs also tend to contain
different sorts of data, and are likely to catch different sorts
of anomalies. Similarly, Chen et al. [3] localize failures in
software components of a Java application; they propose an
online algorithm to update normal and abnormal behavior
models. Chen et al. [4] also analyze the correlation between
sets of measurements and track them over time. Their ap-
proach requires domain knowledge for choosing counters,
and requires training on “healthy” periods to model baseline
correlations.

Ling et al. [13] use Stochastic Matrix Perturbation theory
to adapt Lakhina’s work to distributed monitoring with PCA.
Liu et al. [26], in turn, apply the distributed PCA monitoring
approach on linear sketches of the network data to reduce
running time and space costs.

5. CONCLUSIONS AND FUTURE WORK

Failure detection and prediction techniques are increasingly
important in the era of clouds and compute clusters. Several
recent approaches rely on anomaly detection techniques to
detect failures ahead of time, while avoiding costly relabeling
and retraining of models.

In this work we have presented a new latent fault detector
suitable for settings where the workload is unbalanced. As
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with our previous methods, the new approach is robust to
changes in the monitored system, it requires neither domain
expertise nor labeled data, and it comes with statistical
guarantees on the rate of false positives. Our preliminary
evaluation showed that the new approach is clearly superior
to the previous latent fault detectors in the supercomputer
setting. Though the results obtained may not yet be prac-
tical in the supercomputer setting (possibly due to lack of
scheduling logs), they show that the new detector does cope
with unbalanced loads.

There are several avenues to pursue: more complete eval-
uation, communication-efficient and computation-efficient
algorithms, and subspace clustering for job detection.

First, we wish to evaluate the new approach in additional
settings where the workload is unbalanced. In the cloud set-
ting, key-value stores are good candidates for our monitoring
approach. In the compute cluster setting, Hadoop jobs have
many machines running the same code in the reduce phase,
but their computational load may be different.

Second, we can further combine PCA with distributed
online detection as in [8], since collecting metrics from all
nodes and computing PCA may be prohibitive for some
large systems. We previously described [8] a communication-
efficient approach using safe zones [21, 20] to standardize
counter values across machines. Ling et al. [13] adapt PCA
anomaly detection for distributed stream monitoring. We can
combine their technique with recent distributed monitoring
approaches [24, 11]. Beyond that, we can follow Liu et al.
[26], who apply the distributed PCA technique on a linear
sketch. Recent work by Liberty [25] introduces a better
matrix sketching technique called Frequent Directions with
improved bounds that is well-suited for PCA computation
in a streaming setting. Indeed, streaming constructions of
PCA using this approach are proposed by Ghashami and
Phillips [10] and Cohen et al. [5].

Finally, more complete job and scheduling information in
the supercomputer setting may help us improve results even
further. A more robust approach to job detection might be
subspace clustering [33]. Given a collection of vectors drawn
from a union of (potentially disjoint) subspaces, subspace
clustering algorithms cluster these data points according
to the subspace they originate from. For similar reasons
described in Section 2, and since hardware is uniform, we
could assume that metrics of machines running the same job
will lie in the same subspace. Thus, we might be able to
use subspace clustering to identify machines that run similar
code. Given such a group of machines, our anomaly detection
techniques can be more effective. Moreover, the ability to
cluster running code can be useful in monitoring settings
such as virtual machine clouds, where operators have less
information on what code runs inside virtual machines.
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ABSTRACT

In the SPEEDD project, we are developing approaches to the
design and evaluation of Visual Analytics which are informed by
Human Factors theories and methods. As part of this process, we
are using the concept of Allocation of Function to inform the
design of User Interfaces for Visual Analytics. The paper presents
a case study of the development of a Road Traffic Management
User Interface.

ACM Classification Keywords

H.1.2 User/machine systems; H.5.2 User interfaces

Keywords
Cognitive Work Analysis; Ecological Interface Design; Visual
Analytics; Human Factors.

1. INTRODUCTION

Visual Analytics combines the power of data analytics with the
insight and imagination of the human operator in response to the
visualization of the output of these data analytics. In terms of
output, visualization can be applied before the analysis on raw
data (data visualization), or on output results (information
visualization), or during the analysis phase (visual data mining),
or on any combination of these [1]. This division of labor between
an automated system, which mines massive data sets, and a human
decision maker, who interprets the recommendations of the
analytics, can be considered as Allocation of Function. One could
allocate the analysis functions to the automation, leaving the
human as the passive consumer of the system’s outputs, and
merely accepting the system’s recommendations; anyone who has
watched ‘The Simpsons’ will recall Homer pressing the ‘any key’
to confirm system status. Not only does the relegation of the
human to an acceptor of system recommendations miss the point
of the Visual Analytics concept, but it also removes the human
operator from the analysis loop. A consequence of removing the
person is that this can impair the person’s ability to understand the

(c) 2015, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2015 Joint Conference (March 27,
2015, Brussels, Belgium) on CEUR-WS.org (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the Creative
Commons license CC-by-nc-nd 4.0.
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meaning of the data, to interpret the system’s recommendation or
to intervene appropriately when required [2]. Furthermore, users
tend to have more trust in their findings when involved in the
discovery process than when the findings come from an
automated system [1]. Thus, it would make sense to design the
Allocation of Function between human and automation in such a
way as to ensure both partners worked to their best potential. In
general, the storage, transformation and processing of data is more
suited to automatic systems, whereas hypotheses generation and
interpretation of findings are considered more human led tasks

[3].
2. ALLOCATION OF FUNCTION

Determining whether a particular function (in terms of system
operation) should be performed by automation or human operator
is known as Allocation of Function. While some functions (such
as dealing with massive data sets) are clearly suite to automation
and others (such as gaining insight from a collection of data)
might be more suited to human operators, the challenge of
Allocation of Function stems from the fact that some of the
functions could be performed equally well by automation or
human operator. Further, the way a function is performed is likely
to change as a result of the task context.  Thus, adaptive
automation (in which Allocation of Function varies according to
context) can improve operator ability in intervening in response to
errors [4, 5, 6]. Moreover, by dynamically allocating tasks to
either the user or the automated system user skills can be
maintained [7.].

In this paper, we are interested in the question of whether it is
possible to manage Allocation of Function through the
visualization. In other words, the User Interface could indicate to
the operator when and how they could intervene at particular
stages in the process.

As the application of this work is linked to the traffic
management use case, we start by presenting the requirements of
the system as highlighted by traffic operators in our discussions
with them. These requirements, in combination with the Cognitive
Work Analysis (presented in the following section), informed the
initial design of the User Interface (Figure 1). Following this, in
order to appreciate how Allocation of Function might be applied
to this use case, we turn our attention to the question of Situation
Awareness and the design of Ecological Interfaces.



2.1 Requirements for Traffic Management
Use Case
e Allow Operator to clarify and query notification
e Allow Operator to draw on experience of previous
incidents
e Allow Operator to select Incident Type option
e Allow Operator to draw on several sources of
information to confirm location
e Support Operator Situation Awareness
o Of current incident
o  Of future conditions
e Allow Operator selection of response
e Allow Operator to challenge or negotiate response
e Support Operators in gaining Global and Local
Situation Awareness of road user behaviour
e Supporting Operators in determining that the
incident has no unexpected consequences.

Compliant Drivers

)
)

-
o mn
Cun
100
a0t set

o
Control Panel

i i i i [

Sensor Data

Figure 1: SPEEDD Initial User Interface for Road Traffic
Management Use Case v1.0
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3. COGNITIVE WORK ANALYSIS OF
ROAD TRAFFIC MANAGEMENT

OPERATIONS

CWA, Cognitive Work Analysis [10, 11, 12], involves a
number of phases, each of which contributes to an
understanding of how stakeholders could work with a given
system. In this way, the problem space represented by the
system can be explored in order to determine ways of
supporting activity in that space. Figure 2 shows the
Abstraction Hierarchy from CWA of Road Traffic
Management; we have used the phrase ‘manage road
network’ as the Functional Purpose of the system.

Having defined a Functional Purpose, the next step is to
define the Value and Priority Measures of the system (the
second row of Figure 2). These represent those aspects of
performance that the system could use to indicate how well
it is performing. Through observation and interviews, we
defined the following aspects:

To ensure minimal congestion in the road network
To ensure minimal risk to road users

To enable minimal journey times for road users
To ensure informed road users

To support maintained infrastructure

To encourage compliant road users

To support immediate response to incidents

e To produce an auditable record of activity

These aspects map on to the generally accepted set of
objectives for traffic management [13.]:

e Maximize the available capacity of the roadway
system

Minimize the impact of incidents

Contribute to demand regulation

Assist in the provision of emergency services
Maintain public confidence in operations and
information provision

The main difference between the two sets concerns the issues of
providing support to the emergency services (although we have
‘immediate response to incident” which we suggest would include
this), and maintaining public confidence in control center
provision (which we do not include but which could relate to the
priority for ensuring ‘compliant road use”’).

In the control room environment (in the scope of the
SPEEDD project), because of the introduction of the
automated system, the goals (derived from CWA) are
shared between the two entities — the operator and the
automation. Each entity contributes to achieving the system
goals through different means (see Figure 3). Besides the
operators’ role to deal with uncertainty and spot errors in
the data and analysis outputs, the system should allow them



to inform (train) automation. The latter can be achieved
through the action of overriding the automation outputs.
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Goal

Minimal
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Automated System
Actions

Operator
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Minimal Risk
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automation actions
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trends
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data and analysis

control actuators
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in sensor data inform automation
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Immediate
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Auditable
Record of
Activity

Figure 3: Contribution of System Components to System
Goals

As in any Socio-Technical System, there will be a range of actors
who will perform functions in order for the system to achieve its
Functional Purpose. For instance, apart from automation and
operators, there will be the individual road users who are driving
vehicles through the road network and whose behavior the
operators in a control room are seeking to influence. In addition,
there might be specialized roles, dedicated to maintaining the
infrastructure of the road network or to dealing with accidents and
incidents, which are called upon at specific times. Figure 4 takes
the Object-related Functions (from Figure 2) and shows how these
can be performed by different actors (shown by color coding) and
in different circumstances. In this Figure, the circumstances are
presented as examples of different ‘modes’ in which the system
could be assumed to operate, i.e., normal conditions (managed
roads), disrupted conditions (response to incidents), or scheduled
disruptions (planned works). Figure 4 shows how the different
circumstances can lead to different distribution of these object-
related functions across the range of actors.

T Situation
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Functions

Managed Roads Response to Incidents Planned Works
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Evaluate Traffic Flow

.

Evaluate Road Conditions

o

Detect Incident
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Respond to Incident

Classify Incident

Drivers Patrols Control Sensors / Road Works
(road users) Room CCTV Crews

Figure 4: CWA SOCA



The Object-Related Functions in Figure 2 represent a form of task
analysis. The ‘decision ladder’ in Figure 5 should be read from
the bottom left (beginning with an input to the operator) up to the
top (Functional Purpose, or overall goal of the operator / system).
From the Functional Purpose, the right-hand leg of the ladder
descends to the action that the operator will make. There are
various ‘short-cuts’ that the experienced operator might apply
(indicated by dotted lines), perhaps in light of particular patterns
of data or reports from previous responses.
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Figure 5: CWA ‘Decision ladder’

4. DESIGN CONCEPTS AND

IMPLEMENTATION

At the top level, the Abstraction Hierarchy (Figure 2) presents the
Functional Purpose of the system. For example, if the system is
intended to respond to incidents quickly, then this display could
show the time spent responding to incidents, perhaps against
targets or against historical data. The usefulness of such a display
would depend on the nature of the work.

At the next level of the Abstraction Hierarchy, the Abstract
Function (values and priorities) would be reflected by the
parameters that the ‘system’ is seeking to balance. It can also be
beneficial to present subgoals (Purpose-related functions), tasks
(Object-related functions) or information sources (Physical
objects). These can either provide cues for the operators to
interact with the system at a lower level or can provide alternative
means of alerting operators to change in system state. Thus, for
example, the output of a CCTV (Physical Object) could be
manipulated by the operator (Object-related function) in order to
determine the location of an incident (Purpose-related function).
In this situation, it might be useful for the operator to directly
mark and record this information, say by marking this frame (and

its associated metadata defining location, direction of view, time
etc.) and capturing this directly into the report.

Table 1: Relating Information Requirements for different
Stakeholders to the levels of Abstraction Hierarchy
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Domain
purpose
Values Congestion Congestion Congestion
Priorities Incident Infrastructure Risk
Record activity Journey time
Information
Knowledge Support to Conditions Driver
semantics response {repair / works, behaviour
insight Update log weather, traffic Compliance
flow / density,
environmental}
Facts Availability Auvailability Movement
ideas {signage, {lane, road, exit / Accident
opinions CCTV} entry}
Source Location Map Vehicles
objects {signage, Motion
CCTV} Compliance
Content
{signage,
CCTV}

In Table 1, relations are mapped and examples of the type of
information which might be used in the system to support these
relations are indicated. This provides a simple means of eliciting
the information which might be useful for this system. Finally,
taking the relationships defined in Table 1, we sketch the concept
layout (Figure 6) for the User Interface.

4.1 Graphic Options

Figure 6 contains 8 regions. The following list outlines some of
the options that are being considered in the design. Items in the
list marked * correspond to existing information displays in the
control room.

1. Road status (traffic conditions), e.g., displayed as a
fundamental diagram. This could also compare current
traffic conditions with the same time last week, or
predicted traffic conditions and likely trends;

2. Values / trends / forecasts: this display could provide
operators with views of the predicted traffic, or driver
behavior, to allow comparison between alternative
courses of action;

3. Road user goals: this display could indicate information
which might be relevant to road user activity, for
instance, alternative routes which drivers might take if
there is congestion;



4. Driver behavior and compliance: this display could
indicate how road users are behaving. This could
include average speed in each lane or average distance
between vehicles;

5. CCTV content / control™*: this display would present the
images from the selected CCTV camera to the operator,
and allow the CCTV camera to be controlled;

6. Control activity, signage content*: this would show the
actions that the operator is able to perform and the
content which could be presented on variable message
signs;

7. Log, open tasks, scheduled events*: this would show the
log of the current incident that the operator is working
on, together with open tasks or any scheduled events
that need to be dealt with;

8. Map of road network*: displayed as a map of the ring
road (either a schematic as in the current design or a
more detailed map of Grenoble and the road network),
with key Objects indicated, e.g., CCTV and sign
locations, junction (ramps) etc. This could also be used
to display the location of incidents, such as congestion.

5. SITUATION AWARENESS AND
ECOLOGICAL INTERFACE DESIGN

For the operator, Situation Awareness involves selecting the most
appropriate information source (or combination of sources) and
then analyzing the information in order to make sense of the
system being controlled. This raises questions such as what is the
‘system’ that is being worked with, and what constraints might
affect interaction with this system. In other words, the focus of
operator activity can be described in terms of the problem space in
which humans make decisions, the sort of tasks and decisions that
humans make, and the constraints which affect performance of
these activities. Ecological Interface Design addresses these
concerns [8.].

Road User Goals:
estimated journey
time, predicted
delays, alternative
Driver Behaviour and
Compliance:
Lane holding, speed,
tailgating, risky
CCTV content /

confidence envelopes...
Map of road network
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Figure 6: Schematic User Interface for Road Traffic Case
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The concept of Ecological Interface Design (EID), developed
from Cognitive Work Analysis (see next section), draws on
Gibson’s [9.] concept of direct perception (later encompassed by
the ‘ecological psychology’ movement). For User Interface
design, this leads to the assumption that people are able to
perceive meaning of objects directly (i.e., with no need for
cognitive intervention) when the situation in which they encounter
those objects provide a suitable context for interpretation. A
further assumption of EID is that the task constrains the ways in
which information is interpreted and defined to be salient or
meaningful. Within this ‘task ecology’, it is plausible to assume
that different people will interpret the information in different
ways (according to their current tasks, goals, experience and
training). Thus, the ‘task ecology’ of a system is defined by the
range of states in which it can develop and the constraints that
these states place on people interacting with the system.

Relating Situation Awareness to EID, we might expect operators
to be able to spot patterns in the data and then respond to these by
selecting a course action. It is interesting to contrast guidance for
the design of User Interfaces from the perspective of Situation
Awareness with that presented for EID. As Table 2 shows, there
are strong similarities between the approaches (even if the
underlying theory and the terminology used differ). Both
emphasize the benefit of ‘direct’ display of information and both
imply the need to represent the system in terms of user goals and
in terms of different levels of system operation and performance.

Table 2: Comparing EID and SA

Represent function and
meaning in the task
ecology

Relate to operator’s major
goals

Present information directly Design to support direct
perception of visual

information
Assist system projection

Display global status Reveal underlying system

process and constraints
Support global-local trade-offs

Support perception-action
schemata

Take advantage of human
parallel processing capability

Integrated capabilities
permit more work with less
cognitive effort

Filter information judiciously

5.1 User Interface for First Prototype Trials

While Figure 1 presents the User Interface derived from our
analysis of operator activity and information requirements, the
first prototype for the SPEEDD demonstration focuses on a
specific subset of this use case. In the demonstration, the operator
needs to monitor ramp metering and to accept (or challenge) the



automated systems control of ramps around the city. The User
Interface for this task is presented in Figure 7. In addition to the
User Interface supporting the demonstrator task, it also provides
an opportunity for controlled experiments which will allow testing
of the decision models and the eye-tracking metrics. For these
experiments, participants will be presented with a series of ramp
metering scenarios and will need to respond as quickly as possible
to the automated system’s recommendations. Using reaction time,
it is possible to distinguish between different levels of
performance, e.g., when all windows in the display contain
corresponding information versus situations when information in
one window conflicts with the others. In addition to reaction
time, the experiments will also employ eye-tracking to ascertain
which information sources participants tend to focus on under the
different conditions.
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Figure 7: User Interface for first SPEEDD
demonstration
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6. DISCUSSION

Key to the development of Visual Analytics is an appreciation of
how Visual Analytics operates in a working environment in which
other actors will share information with each other, or will interact
with systems outside the core Visual Analytics system. This
means that it important to appreciate the Socio-Technical
Infrastructure in which the technology will be used (Figure 8).
Consequently, the challenges this paper aims at addressing are the
relating to information need, rather the information visualization.
The latter is concerned by how the available information is
presented, whereas the former shows what information shall be
presented.

In this paper we demonstrate the application of Cognitive Work
Analysis to the derivation of an Ecological Interface Design of the
User Interface for the SPEEDD project’s Road Traffic
Management Use Case. Understanding operator tasks and
information requirements (in terms of a Socio-Technical Systems)
allows us to develop concepts for User Interface designs which
reflect the job of the operator. This helps define the ‘task
ecology’ in which operators perform their work, and helps define
one aspect of the ‘ecological’ interface. The User Interface also
reflects a desire to present information in formats which operators
can spot patterns, trends and combinations of data using a form of
‘direct perception’. The intention is to develop such designs so
that operators can monitor system status by glancing at the
displays during normal operations, rather than needing to engage
in lengthy search and retrieval processes to discover information.
The benefit of providing intuitive system overview is that it
support operator Situation Awareness of steady-state, normal
operations.

Visual analytics system

Data sources

~

Visual interfaces

Interaction techniques

Figure 8: Visual Analytics in a Socio-Technical System

When operations deviate from normal, e.g., due to an actual or
predicted incident, then the role of the operator changes from
system monitor seeking to maintain Situation Awareness, to active
responder seeking to ensure that system status returns to normal as
quickly and efficiently as possible. In the SPEEDD project, this
role is also performed by automated systems which detect system
activity and perform responses to the activity. This means
‘control’ is now allocated between operator and automated
system. We are developing the User Interface to not only inform
the operator of system status, and automated system behavior but
also to cue operators as to when (and how) they might need to
intervene.

The User Interface shown in Figure 7, for instance, allows the
operator to request that the system <explain> current settings and



decisions, at any time during the operation. However, if the
operator feels that a setting or decision is not appropriate or
correct, then the ramp being controlled can be selected and the
decision can be queried, using the <challenge> button. This then
allows the operator to either reset parameters or engage in some
other form of intervention. While this is a simple example, it
highlights how User Interface can be used to indicate the
constraints under which the operator can act (where ‘constraint’ is
seen as a positive means of shaping operator activity and
indicating which function the operator is expected to perform).
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ABSTRACT

In this paper, we present a topological neighborhood ex-
pression which allows us to express arbitrary neighborhood
around cells in unstructured meshes. We show that the ex-
pression can be evaluated by traversing the connectivity in-
formation of the meshes. We implemented two algebraic
operators which use the expression to compute neighbors of
cells and approximate data fields of cells by aggregating their
neighbors’ information. We evaluate one of the operators on
a real dataset using four queries and report the results.

Keywords

Graph Data Model, Halo, Hull, Regrid, Topological Neigh-
borhood, Unstructured Meshes

1. INTRODUCTION

Many scientific domains such as oceanography and clima-
tology have data stored on unstructured meshes. Weighted
contribution from nearest-neighbor cells is known to im-
prove accuracy of interpolation operations on unstructured
meshes. Examples of such operations are smoothing a skewed
data field, and computing partial derivative in a point of in-
terest.

The common method to specify a neighborhood for a cell
of interest is stencil string which is originally defined only for
structured meshes. Stencil allows us to define the value of
a cell as a function of its topological nearest-neighbor cells.
In [3], the concept of stencil is generalized for unstructured
meshes. A stencil string w.r.t. an unstructured mesh con-
sists of a sequence of digits representing the dimensions of
cells in the neighborhood of a cell of interest which needs to
be accessed by an algorithm. The stencil string uses hard
coded dimensions and thus contains no topological abstrac-
tion. Furthermore, it is not obvious from the string what is
the result, i.e., union of elements visited in each intermedi-
ate layer (hull) or the elements only in the last layer (halo).
Finally, it is not possible to filter intermediate cells using
predicates.

(©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0.
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In this paper, we present a neighborhood expression which
uses topological functions instead of dimensions and allows
filtering of intermediate results. We design two algebraic
operators which use the expression to extract neighborhood
and approximate information of a cell by interpolating in-
formation of its neighbors.

The paper is organized as follows: Section 2 introduces
some mathematical concepts, Section 3 discusses the related
work, Section 4 presents the new neighborhood expression,
Section 5 shows the algebraic operators which use the ex-
pression to explore the neighborhood and interpolate data,
Section 6 reports the experiments, and Section 7 concludes
the paper.

2. MATHEMATICAL CONCEPTS

We define a mesh as a 4-tuple M = (C, <¢,T', F) where
C, <¢, I', and F are the set of cells, incidences, geometric
embedding, and data fields of the mesh M.

C contains a set of k-cells (0 < k < d) which is closed
under intersection, i.e., the intersection of two cells is either
empty or another lower dimension cell of the mesh. Each cell
in turn is formed by the union of lower dimensional cells (aka
the cell boundary). Cells of dimension i are called i-cells.
Cells of dimensions zero, one, two, and three are also called
vertices, edges, faces, and bodies. Dimension of a mesh is
defined as the maximal dimension of its cells (d).

The incidence set <¢ specifies the topological structure of
a mesh using the binary incidence relationship. The inci-
dence relationship is a partial order between cells in C, i.e.,
cells ¢ and e are incident (i.e., ¢ <¢ e) if one is located on the
boundary of the other, i.e., ¢ € d(e) (dim(c) < dim(e)) or
e € 9(c) (dim(e) < dim(c)) where 9() represents the bound-
ary of the cell c. When k-cell ¢ is on the boundary of m-cell
e, then c is called a k-face of e and e is a m-coface of ¢ or
just co-boundary of c. When k = m — 1 then c is an imme-
diate boundary face of e and e is an immediate co-boundary
(coface) of c¢. Cells ¢ and e (k = m # 0) are p-adjacent if
they share a p-face. Two vertices v1 and v2 (k = m = 0)
are adjacent if they share an edge. The adjacent relation
can be expressed as nested application of the co-boundary
and boundary relations, i.e., to find k-adjacent cells to the
m-cell ¢, first we need to find all its boundary k-faces and
then for each k-face find its m-cofaces.

The geometric embedding I" maps each cell in C to its
corresponding geometric realization such that (c1 <c ¢2) <
(T'(e1) € T(c2) = Ueep(e,) '(€)). For instance, the geomet-
ric realization of vertices are their coordinates.

F contains a set of (partial) functions which assign data
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Figure 1: A 2D triangular unstructured mesh (left)
and its incidence graph (right).

values to each cell. For instance, the function f; assigns a
value of type 7 to each i-cells: f; : C° — 7 where C° refers
to i-cells.

We can represent mesh topology using Incidence Graph
(IG) such that the nodes of the graph represents the cells
of the mesh and the links between two nodes encode the in-
cidence relationship. Figure 1 shows a simple 2D simplicial
mesh (left) and it topological structure (right) as a incidence
graph [13]. The incidence graph in Figure 1 shows that the
boundary and co-boundary a cell can be extracted by follow-
ing the links in the graph starting from the cell downward
and upward, respectively. The immediate boundary and co-
boundary cells of a cell are its children and parents. For
instance, the immediate boundary and co-boundary of the
edge d are {U, W} and {f3}, respectively and the boundary
and immediate co-boundary of face f3 are {d,c,g,W,U, Z}
and {}, respectively.

For detailed definitions, we refer the interested reader to
[13], Chapter 3 of [3], and the references therein.

3. RELATED WORK

Stencil string specifies a subset of neighboring vertices
of a given vertex on a structured mesh. The information
of the neighbors are later used by numerical approximation
algorithms to compute a weighted solution for the vertex.
In other words, the stencils determine the region of influ-
ence of numerical algorithms. For example, commonly used
neighborhood sizes by algorithms are three, five, and twenty
five neighbors for 1D, 2D, and 3D structured meshes, re-
spectively. The neighbors in a structured mesh can be eas-
ily specified by index arithmetic, e.g., the four neighbors of
the point (¢,7) in a 2D structured grid. In systems such as
Pochoir, the neighboring vertices are explicitly listed [15].
Figure 2 (left) shows four neighboring vertices of the red
vertex on a 3D structured mesh (5-point stencil).

In his thesis, Berti generalized the idea of stencils for un-
structured meshes by abstracting topological structures of
mesh algorithms as an incidence sequence. For instance, if
the incidence sequence of a mesh algorithm is 010 (or al-
ternatively shown as vertez-edge-vertex) w.r.t. an unstruc-
tured mesh, then it means any calculation for a vertex v
needs to have access to all adjacent vertices of v (i.e., ver-
tices sharing an edge with v) [3]. The snippet below shows
how the stencil string 010 can be used to computes the data
for each vertex v; as the sum of the data of its adjacent
vertices (v2).

forall vertices wv;
forall edges e incident to wv;
forall vertices w2 incident to e
result [vy]+=data[v2]
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Figure 2 (right) depicts 010 stencil for the red vertex in a
2D unstructured mesh. As it can be seen, the stencil string
is implemented as nested for loops. Furthermore, Berti for-
mally defined the concept of incidence hull as the union of
all cells expressed by a stencil string. Gridfields uses stencil
string in the same manner [7].

The proposed neighborhood expression in this paper ex-
tends the stencil string in [3]. The new neighborhood expres-
sion offers several advantages to the stencil string notation:
it uses topological abstraction rather than dimensions, it can
return two types of neighborhoods (i.e., hull or halo), and it
is able to filter the intermediate results.

Figure 2: 5-point stencil for a vertex in 3D structured
mesh (left) and adjacent vertices of the red vertex repre-
sented by 010 stencil in a 2D unstructured mesh (right).

The other related area to this research is graph databases.
We use graph database Neo4j to implement the proposed
neighborhood expression. Neo4j is a popular open source
graph database implemented in Java which is operational
since 2003. Neo4j is schema-free, supports full ACID trans-
actions, and provides implementations for several graph al-
gorithms out of the box. Neodj uses property graph data
model, i.e., data is stored in nodes and relationships of a
multi-graph with pairs of key-value properties. Neo4j graphs
can be queried using either its declarative query language
(known as Cypher) or its Core Java API. We refer the reader
to Neo4j documentation for further details on Neo4j and
Cypher [1, 14].

The reason to choose graph databases is that they allow
implementing the general purpose mesh data model (see
Section 5.1). The reasons for choosing Neodj rather than
other graph databases such as DEX (implemented in C++)
are two folds, namely, high performance on graph traversal
queries and supporting spatial data. Recent research show
that the performance of Neo4j drastically improved since its
early version. The argument is supported by performance
evaluation of several graph databases (e.g., such as Neod4j,
DEX, orientDB, etc.) using data ingestion, traversal, non-
traversal, and manipulation queries. Neo4j outperforms the
other systems in traversal queries (the main focus of this
paper) [8, 9, 11, 10]. Moreover, Neo4j is shown to have
close performance to graph-processing frameworks such as
GraphLab and Giraph [5]. The spatial layer is crucial for
several mesh operations. This is beyond the scope of this
paper and will not be covered here.

4. TOPOLOGICAL NEIGHBORHOOD EX-
PRESSION

The basic idea of the neighborhood expression is to use
topological abstraction for expressing neighborhood traver-
sal, i.e., to express a neighborhood as nested application of
boundary, co-boundary, and adjacency functions. We define



these functions as follows:

Boundary Function. it is represented as b(c, k) for a given
cell ¢ and it returns the boundary elements of dimension k
(k < dim(c)) of the cell ¢:

b(e, k) = {e] (e €D(c)) A (dim(e) = k)}

For a cell set C, it is defined as the union of k-cells on the
boundary of each member of the set.

Immediate Boundary Function. it is represented as ib(c)
for a cell ¢ and it returns the immediate boundary of c:

ib(c) = {e|(e € A(c)) A (dim(e) = dim(c) — 1)}

Co-Boundary Function. it is represented as cob(c, k) for a
given cell ¢ and it returns the co-boundary of dimension &
(k > dim(c)) of cell ¢

cob(c, k) = {e| c € d(e) A (dim(e) =k)}

For a cell set C, it is defined as the union of k-cells on the
co-boundary of each member of the set.

Immediate Co-Boundary Function. it is represented as
tcob(c) for a given cell ¢ and it returns the immediate co-
boundary of c:

icob(c) = {e| c € d(e) A (dim(e) = dim(c) + 1)}

Adjacency Function. it is represented as adj(c, k) for a given
cell ¢ and it returns the k-adjacent cells to the cell ¢, i.e.,
cells which share a k-face with c¢. Formally,

adj(c, k) = {e| (3s:s € (9(c) NI(e))) Adim(s) =

Note that dim(c) = dim(e).
The definition of the adjacency relation for vertices is defined
as follows:

adj(v) = {c| Je: (dim(e) =

k}

DA(w=<e)A(c=<e)}

where v and ¢ are vertices. Note that in this case the func-
tion has only one argument.

4.1 Basic Neighborhood Expression

The basic neighborhood expression is semantically equiv-
alent to the stencil string. The difference is that instead
of using dimensions it uses the topological functions de-
fined in the previous section. This means that arbitrary
cell neighborhoods can be expressed as nested applications
of the functions. Assuming the set C' containing all initial
elements which we would like to traverse their neighborhood
(a.k.a. seed), the basic expression is defined as:

61( 60(07 ko)vkl) e vknfl)vk’ﬂ)

where nex is the neighborhood expression, e; is a (immediate)
boundary, (immediate) co-boundary, or adjacency relation-
ships, 0 < k < d (d is the mesh dimension), k; shows an op-
tional dimension argument for the functions, and 0 < i < n.
The expression repeatedly applies the functions to explore
the neighborhood of the cells in the set C. Functions such as
b needs a dimension parameter which specifies the dimension
of the target boundary element. For the adjacency function,
adj means p-cells which share a (p — 1)-face with a given
p-cell in the seed set.

The nex is a functional expression, i.e., its functions are
applied from innermost to outermost, i.e., eg is applied to the
seed set C and produces layer zero result Lo, e1 is applied
on L; and stored as layer one result L; and so on.

nex = en(en—1(:--
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For instance, the stencil 010 (adjacent vertices of the seed
vertices) can be expressed as icob(ib(V')) or simply adj(V),
where V' is the seed set. As another example, a common
stencil on 2D triangular mesh is 202, i.e., neighboring 2-
cells which share at least one vertex with the seed 2-cell. In
Figure 2 (right), the stencil for the triangle number 1 as seed
contains triangles number 2 to 11. The stencil can be ex-
pressed as cob(b(F,0),2) (or icob(icob(ib(ib(F))))) where F'
is the seed set. The stencil 0102 can be succinctly expressed
as cob(adj(V'),2) with V' as the seed set.

The final result of the expression can be either the ele-
ments in the last layer or union of elements in all intermedi-
ate layers. In the latter case, the result forms a stencil mesh
[7]. We define these two types of outputs as follows:

Halo Neighborhood. A halo neighborhood w.r.t. a given
neighborhood expression nex contains the cells of the last
layer only, i.e., before computing elements of the current
layer it removes cells from the previous layer:

halo(C,nex) = L™

Hull Neighborhood. A hull neighborhood w.r.t. a given
neighborhood expression nex contains the union of elements
in all intermediate layers of the nex evaluation:

UL’

4.2 Advanced Neighborhood Expression

The neighborhood expression from Section 4.1 has enough
abstraction w.r.t. mesh topology. However, in comparison
to stencil string, it does not offer anything new. Often appli-
cations need to filter the intermediate results of the traversal
while searching the neighborhood. This is not possible with
stencil string. Thus, we further extend the basic neighbor-
hood expression to allow filtering of cells in intermediate
layers using predicates on mesh components (e.g., field val-
ues, geometry, etc.). To this end, we extend the definition
of the functions as follows:

Extended Boundary Function. It is represented as b(C, k, p).
It computes the k-cells in the boundary of each element in
C and then it checks if the boundary elements satisfies the
predicate p. It returns elements in the boundary which sat-
isfy p. It is formally defined as follows:

b(C,k,p) = | {el(e € 9(c) A (dim(e) =

ceC

hull(C, nex)

k) Ap(e)}

where p(e) means that the cell e satisfies p.

Ezxtended Immediate Boundary Function. It is represented
as ib(C,p). For each cell ¢ in C, it computes its immediate
boundary and applies the predicate p on each cell in the
immediate boundary of ¢. It returns cells in the immediate
boundary which satisfy the predicate. It is formally defined
as follows:

Cp) = |J {el(e € () A

ceC

(dim(e) = dim(c) — 1) Ap(e)}

Ezxtended Co-Boundary Function. It is shown as cob(C, k, p).
For each cell ¢ in C, it computes its co-boundary elements
of dimension k and checks if they satisfies the predicate p.
It returns co-boundary cells which satisfy the predicate. It
is formally defined as follows:

cob(C, k,p) = U{e |(c € (e)) A (dim(e) =

ceC

k) Ap(e)}



Extended Immediate Co-Boundary Function. It is repre-
sented as icob(C, p). For each cell ¢ in C, it computes its im-
mediate co-boundary and applies the predicate p on each cell
in the immediate co-boundary of c. It returns cells in the im-
mediate co-boundary which satisfy the predicate. icob(C,p)
is formally defined as follows:

U {el(c € a(e)) A (dim(e) = dim(c) + 1) Ap(e)}

ceC

Extended Adjacency Function. 1t is represented as adj(C, p).
For each p-cell ¢ in C, it computes its (p — 1)-adjacent cells
and checks the predicate p. It returns (p — 1)-adjacent cells
which satisfy the predicate. adj(C,p) is formally defined as
follows:

U {e|(3s: s € (0(c) N A(e))) A (dim(s) = k) Ap(e)}

ceC

With the definitions above, the new functional neighborhood
expression is as follows:

nexr = en(enfl(' ' '61( 60(0 7k07p0)7k17p1)
: ,kn—l,pn—l),knapn)

where k; and p; are the (optional) dimension and the pred-
icate arguments, respectively. The predicate p; is defined
on properties of cells returned by e;, e.g., predicates on data
fields or geometric features such as length, area, volume, etc.

For instance, the expression icob(ib(T, f < 24.0)) (or equiv-
alently adj(T,2, f < 24.0)) finds 2-adjacent 3-cells using 3-
cells in T as seed set. The predicate selects only 2-cells where
the value of the field f is less than 24.0.

Such a functional notation with many nested parentheses
can become very tedious to read/write. Thus, we propose
a notation inspired by XPath [2]. We use slash to separate
the topological functions and brackets to express predicates.
Assuming C as the seed set, the previous nex can be written
as follows:

nex = eo(ko)[po]/e1(k1)[p1]/ - /en—2(kn—2)[pn—2]/
en—1(kn—1)[pn-1]/en(kn)[pn]

Note that k; and p; are optional and the seed set is not
present in the expression. In the next Section, we show how
to specify the seed.

For instance, the expression from the previous example can
be written as b[f < 24.0]/icob using T as seed.

In comparison to the functional form, the evaluation of
XPath-like neighborhood expression is done left-to-right, i.e.,
first applying eo to the seed set C and filtering the result us-
ing po, then applying e; to the result from layer zero and so
on. More formally, the elements in each intermediate layer
is computed as follows:

L° =, cc {ele € eo(c) Apole)}
L' =U.cro{ele € ex(c) Api(e)}

1" =U,epoon {ele € eale) Apa(e)} i=n

1=0
i=1
nexr =

where L* represents elements in the layer 4 and p;(e) means
that the predicate p; holds for cell e.
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S. IMPLEMENTATION

We implemented a set of algebraic mesh operators which
we call AMQL (Algebraic Mesh Query Language). The op-
erators are declarative meaning that we only need to de-
scribe the information need and the AMQL engine will figure
out how to find it. Two of AMQL’s operators use the neigh-
borhood expression, namely, the neighbors and self-regrid
operators. Other operators are described in [13]. In the rest
of this section, first we discuss the data model which we use
to store unstructured meshes as graphs and then we explain
the neighbors and self-regrid operators.

5.1 Graph Data Model for Meshes

In Section 2, we discussed that incidence graph can store
connectivity information of unstructured meshes. The graph
model allows us to find boundary, co-boundary, and adja-
cency relationships of cell using graph traversal.

The IG does not encode information about the data fields
and geometric embedding of cells. Many mesh application
domains have operations which needs to manipulate fields
and geometry data. Furthermore, the IG stores only inci-
dence relationship and the adjacency relationship needs to
be computed on demand. Neighborhood queries use adja-
cency information extensively. Adjacency based data struc-
ture are proved to be more efficient [4].

Based on the above observations, we extend the IG model
to a general purpose mesh model such that nodes in the
graph contains data fields and geometries and each node
stores information about its adjacent nodes. Figure 3 shows
the graph data model for a linear 3D unstructured mesh.
The nodes in the graphs represent the cells, e.g, vertex, edge,
face, and body. V Field;, EField;, FField;, and BField;
represent properties of vertices, edges, faces, and bodies, re-
spectively. Geom is the geometric object of each node, i.e.,
point for vertex, line-segment, polygon for face, and volume
for body. This allows us to compute geometric predicates
such as length, area, volume, centroid, distance, etc. Fur-
thermore, there are two types of topological relationships
between nodes, namely, boundary (between cells of differ-
ent dimensions) and adjacency (represented as self-loop in
the Figure 3). These relationships allow us to navigate the
topology using graph traversal algorithms.

5.2 Self-Regrid Operator

In domains such as climatology and oceanography, the
regrid operator is used to transform data from source meshes
to a target mesh [6]. The operator works in two steps: first,
it assigns a set of target cells to each source cell (mapping
step), then, it combines the data of the mapped cells to
estimate data of the target cell (interpolation step) [7].

The self-regrid operator is a special case of the regrid op-
erator (i.e., the source and the target meshes are the same)
where the goal is to estimate the data of a cell using its
neighbors information. The mapping step uses topological
or geometric neighborhood functions. The geometric map-
ping function, which assigns neighbors to a cell based on
their geometric distance to the cell (e.g., k-nearest neigh-
bors), is beyond the scope of this paper. The neighborhood
expression introduced in this paper can be used as a topo-
logical mapping function in the self-regrid operator to assign
neighboring cells to each given cell, e.g., assigns all adjacent
vertices to each vertex.
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Figure 3: The graph data model for 3D linear meshes.

The notation for self-regrid operator is:
regrid(M, i, nex, agg_f = aggFunc(f))

The operator assigns cells defined by nex to each i-cell of
M using the i-cell as the seed. Then, it applies the ag-
gregation function aggFunc on the field f of the mapped
cells and store the result as a new field agg_f for the i-cell.
The algorithm 1 shows how the self-regrid algorithm works.
The algorithm loops over i-cells of the mesh M (line 7) and
by using each i-cell as seed evaluate the topological func-
tions from left-to-right. Th topological functions is stored
in L and L[i] refers to the ith function in the expression
nex. For instance, if the topological function is b and has a
corresponding predicate, it first computes the result of the
topological function and then for each cell in the result check
the predicate. If there is no corresponding predicate, it just
returns the result of the function (line 12-17). The value of
field f of the mapped cells is combined to estimate value for
the target cell (line 23-26).

For instance, the following self-regrid operator can be used
to smooth temperature field on each vertex of the mesh M
using information from its adjacent vertices. To find adja-
cent vertices we need to compute the neighborhood expres-
sion adj (or icob/ib). This is equivalent to the stencil string
010.

regrid(M, 0, adj, agg_temp=avg(temperature)) ‘

In more structured and readable form, we can write it as
follows:

FOR VERTEX v IN M
MAP v TO neighbors(M, v , halo,
RETURN v, avg(m.temperature)

icob/ib ) AS m

The FOR loop iterates over all vertices of the mesh M. For
each vertex, the operator maps the vertex to the output set
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© 0N h WN KO

137

B H R KHEKRRBRRRBKR
© W N A WN RO

Algorithm 1: Evaluation of the Regrid Operator
regrid(M, i, nex, agg-f = aggFunc(f))

input : Mesh M, dimension i, field f, aggregation function
aggFunc, output field name agg_f, and neighborhood
expression nex

output: Mesh M with new field agg_f

1 L < List of (co-)boundary functions extracted from nex;
2 P <+ List of predicates extracted from nex;

3 MappedCells < 0;

a4 Seed + 0;

5 S« 0;

6 fvals < 0;

7 while (there are i-cells in C') do

8 Seed < next unused i-cell c;

9 k < 1

for (j from O to length(L))) do
for (e in Seed) do
if (P[i] # null) then
I+ L[j](e);
add cell ¢ from I to S where P[i](c) holds;
else
| add ib(e) to S;
end
end
Seed + S;
S« 0;

end

MappedCells < Seed;

for (k-cell e in MappedCells) do
| adde.f to fvals;

end

c.”agg-f" = aggFunc(fvals) ;

MappedCells + 0;

fvals < 0;

end

m from the neighbors operator (using the MAP ... TO ...
AS clause) and return the average of the temperature of the
mapped cells. The dot notation is used to refer to the field
temperature of a vertex, i.e., e.temperature.

5.3 Topological Neighbors Operator

The neighbors operator can create sub-meshes (a.k.a. sten-
cil meshes). It is represented as N'(M, E, ROI,nex) where
its arguments are a mesh, seed set, the Region Of Influence
(ROI), and a neighborhood expression, respectively. The
Region Of Influence (ROI) is either halo or hall. The oper-
ator returns a set of cells by evaluating the expression nex
on the seed set F w.r.t. to the ROI argument.

For instance, the hull mesh around a vertex v containing
the vertex itself and all edges and faces can be expressed as
N (M, {v}, hull,icob/icob/ib/ib).

Algorithm 2 shows how to construct result of the neigh-
bors operator N (M, E, halo,nex). A similar algorithm can
be written for the hull with small modification of the algo-
rithm 2.

6. EXPERIMENTAL RESULTS
6.1 Experimental Setup

Experimental Design. We conducted experiments to
evaluate the performance of the declarative self-regrid op-
erator. The operator is implemented within AMQL which
contains a collection of declarative operators for unstruc-
tured meshes implemented in Java. As explained in Section
3, the main reason to use Java is that Neo4j provides spa-
tial data management (crucial for some of the operators)
and either performs better or has close to existing graph



Algorithm 2: Algorithm Evaluation of Neighbors Op-
erator N'(M, E, halo, nex)

: Mesh M, seed cells E, ROI = halo, and neighborhood
expression nex

output: Sequence N containing all cells which are in the defined

neighbourhood by nex

input

N + 0;
L « List of (co-)boundary functions extracted from nex;
P < List of predicates extracted from nex;
Seed + E;
S« 0;
I+ 0
k < dimension of element in E;
for (i from O to length(L)) do
for (e in Seed) do
if (P[i] # null) then
I Lli)(e);
add cell ¢ from I to S where P[i](c) holds;
else
| add ib(e) to S;
end
end
Seed + S;
S < 0;
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end
N « Seed;

N =
o ©

databases and frameworks such as DEX or GraphLab. We
compare the performance of our implementation with GrAL
(a C4++ mesh library) [3] by measuring the execution time
(this does not include time of building internal data struc-
tures or indexes for each system). The reason to use GrAL
is that it uses a generic approach to meshes which enables
it to express virtually any combinatoric query using domain
specific language of iterators [3].

We use four smoothing field queries in the experiments.
The queries differ in the length of the neighborhood expres-
sions and use of predicates. This allows us to observe the ef-
fect of expression length and predicates on the performance.

Implementation Details. We run the experiments on
a system with four cores (2.4 GHz processor) with 8GB of
RAM and XUbuntu 12.10 operating system.

We use ANTLR to parse AMQL operators including the
self-regrid [12]. The operators are implemented in Java and
use Neodj database facilities, e.g., storage, indexes, traver-
sal framework, etc. However, the AMQL implementation is
storage neutral, i.e., the implementation is abstracted and
can be used with any other system which provides imple-
mentations for the abstract methods.

We implemented the self-regrid operator using both Cypher

and Neo4j core Java API. We refer to these two implemen-
tations as AMQL_Cypher and AMQL_Java, respectively. In
particular, the implementation of AMQL_Cypher translates
each regrid query to a Cypher query. We report performance
of each implementation .
We use GrAL as of 1.11.2014 and Neo4j 2.1.6. GrAL is
compiled using gcc 4.6.3 with setting -03 which controls
depth of template instantiation. GrAL implements each
query separately in C++4. We run each query ten times
and average the response times over ten trials for each pair
of (query,dataset).

Dataset. We use a real dataset from oceanographic do-
main [7]. The dataset contains a 2D triangular mesh where
each vertex has two data fields, namely, temperature and
bathymetry. The number of vertices, edges, and faces in the
dataset are 20736, 39133, and 59884, respectively. To see

how the systems perform with the data set size, we applied
the subsetting operator from AMQL to divide the dataset
to three smaller datasets with different size of vertices, i.e.,
4862 (D1), 10270 (D2), and 20736 (D3). As it can be seen,
the second dataset has (almost) twice the number of ver-
tices as in the dataset two and the dataset three has twice
the number of vertices as in the dataset two. The reason
behind the subsetting is that all the queries needs to iter-
ate over all the vertices in the datasets. This means the
workload for each dataset is twice the previous dataset.

Queries. We use four field smoothing queries for the
experiment. The smoothing operation is commonly used to
smooth a noisy data field or a data field with missing values.
The queries are as follows:

Q1. Compute temperature of each vertexr as average of
the temperature of its adjacent vertices.

In the Section 5.2, we showed the regrid operator for this
query and its Cypher translation is as follows:

MATCH (pO:M)

WHERE p0.dim=0

WITH pO

MATCH (pO:M)<-[:ADJACENCY]-(p1:M)
RETURN pO.cid, avg(pl.temperature)

The MATCH clause is used for graph pattern matching.
The first MATCH clause defines an iterator variable p0 on
all nodes of mesh M. The WHERE clause filters p0 to ver-
tices where dim property is zero. The WITH clause chains
several smaller queries. In the query, the WITH only passes
the vertices to the next part of the query. The second
MATCH clause does a path matching in the graph by se-
lecting all pl nodes which has ADJACENCY relationship
with p0. Finally, the RETURN clause returns the identifier
of each vertex in p0 and average value of temperature over
all correspondent pl. We refer the interested reader to Neo4j
documentation for elaborate details on Cypher [1].

The GrAL C++ code implementing the same query con-
sists of 10 lines of codes which uses underlying GrAL ab-
straction such as Cell-On-Cell iterators and mesh functions.

Q2. Compute temperature of each vertexr as average of
the temperature of its adjacent vertices with the bathymetry
field greater than 5.0.

The query can not be expressed by a stencil. The query
is equivalent to the neighborhood expression adj/bathymetry
> 5.0] or icob/ib[bathymetry > 5.0]. The implementation of
the query in the AMQL is as follows:

regrid(M, 0, adjl[bathymetry > 5.0],
agg_temp=avg(temperature))

The regrid operator above is translated to the the following
Cypher query:

MATCH (pO:M)

WHERE p0.dim=0

WITH pO

MATCH (pO:M)<-[:ADJACENCY]-(p1:M)
WHERE pl.bathymetry>5.0

RETURN pO.cid, avg(pl.temperature)
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The GrAL C++ code implementing the same query consists
of 10 lines of codes.

Q3. Compute temperature of each vertex as average of the
temperature of vertices which are ezactly two edges (2-hops)
away from the verter.

This is equivalent to the stencil string 01010 and the neigh-
borhood expression adj/adj (or icob/ib/icob/ib). The self-
regrid operator pertaining to the query is:




regrid(M, 0, adj/adj,
agg_temp=avg(temperature))

The regrid operator is translated to the following Cypher
query.

MATCH (pO:M)

WHERE pO.dim=0

WITH pO MATCH (pO:M)<-[:ADJACENCY]-(pil:M)
<-[:ADJACENCY]-(p2:M)

RETURN pO.cid, avg(p2.temperature)

The GrAL C+4++ code implementing the same query consists
of 15 lines of codes. The code uses several abstraction con-
cepts from GrAL [3] and contains three nested FOR loops.

Q4. Compute temperature of each verter as average of
the temperature of vertices which are exactly two edges away
from it. Consider immediate adjacent vertices only if their
bathymetry field is greater than 5.0.

There is no stencil equivalent to this query. The query is
equivalent to the neighborhood expression adj/bathymetry >
5.0]/adj (or icob/ib[bathymetry > 5.0]/icob/ib). The imple-
mentation of the query in AMQL is as follows:

regrid(M, O, adjl[bathymetry > 5.0]/adj,
agg_temp=avg(temperature))

The above regrid operator is translated to the following
Cypher query.

MATCH
WHERE
MATCH

(p0:M)

p0.dim=0 WITH pO

(p0:M)<-[:ADJACENCY]-(p1:M)
<-[:ADJACENCY]-(p2)

WHERE p2.bathymetry>5.0

WITH pO, p2

MATCH (p2:M)

RETURN pO.cid, avg(p2.temperature)

Note that the complexity of the Cypher query grows with
the length of the expression and the number of predicates.
Moreover, some predicates such as geometric predicates can
not be translated to Cypher.

The corresponding GrAL code for the query consists of 18
lines with three nested FOR loops.

6.2 Performance Evaluation

Figure 4, 5, 6, and 7 show the results of the Q1, Q2, Q3,
and Q4 queries. Clearly, the GrAL implementation outper-
forms AMQL in all the queries except Q3. A closer look
on the performance data of the Q1, Q2, and Q4 queries
shows that GrAL on average is 150 (570), 140 (565), 500
(60) percent faster than AMQL_Java and AMQL_Cypher,
respectively. However, in Q3, GrAL is on average 15 per-
cent slower than AMQL_Java and 140 percent faster than
AMQL_Cypher.

The performance of AMQL_Java increases by increasing
the length of the neighborhood expression (see Figures 4
and 6). Its performance on Q3 even outperforms GrAL.
This means that the traversal framework of Neod4j is very
efficient on long expression. However, increasing the length
and adding predicates cause a drastic increase in the per-
formance of AMQL_Java (see Figures 6 and 7). This means
that the traversal framework of Neo4j Java API does not
perform well on a complex neighborhood expression with
long length and predicates.

In comparison to AMQL_Java, the performance of AMQL_
Cypher is better on longer expressions with predicates (see
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Figures 7). The reason is that we need to apply the traver-
sal framework several times while evaluating an expression
with predicates. Furthermore, the evaluation of predicates
is done using Java code. However, AMQL_Cypher breaks
down the query to shorter path and applies the predicates
directly on Neo4j (which is faster than running on Java).

We conclude that both Cypher and Neo4j Java API should
be used in implementing of the the expression depending on
length of the expression and usage of predicates.

We observe that by increasing the length of the neighbor-
hood expression and adding predicates the performances of
AMQL and GrAL get closer (see Figure 6 and 7).

A common pattern in the performance of the both systems
is that the response times increase linearly with the number
of vertices. More precisely, for each pair of (system, query)
the execution time on D2 is (almost) twice the execution
on D1 and the execution time on D3 is (almost) twice the
execution on D2.
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Figure 5: Performance of Q2 on AMQL and GrAL.

We believe that the poor performance of AMQL in com-
parison to GrAL has the following reasons. First, AMQL
provides a generic solution which can accept any neighbor-
hood expression as input while the GrAL implementations
are query specific, i.e., any changes in the query requires
changes in the implementation. The generic solution offers
a declarative way of expressing the self-regrid but it has a
cost which is the query parser overhead. Moreover, we use
Neo4j’s transactions in the implementation which introduce
significant overhead. Also, in comparison to GrAL which
uses a light and pure topological data structure, AMQL uses
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a general purpose mesh data model which contains the com-
plete mesh information. This introduces further query pro-
cessing overhead. Finally, it is known that Java language
has inherent performance inefficiencies compare to C++.

To sum up, AMQL implementation works better on long
neighborhood expression without predicates. In terms of
expressiveness, the expression described in this paper is more
expressive than the stencil string. Furthermore, it offers
declarative querying (i.e., shorter and more readable than
C++) and allows persisting of the computed data (i.e., the
result of the regrid can be stored as a new field in the input
mesh).

7. CONCLUSIONS AND FUTURE WORK

We presented a topological neighborhood expression which
is more expressive than the stencil string. The implementa-
tion of the expression is declarative and generic. However,
compare to a query-specific implementation in C++ it per-
forms poorly (except on very long expressions).

In the future, we would like to measure the cost of the
operator w.r.t. to the total cost of the queries and improve
the operator implementation. Also, we would like to imple-
ment the operators on top of a graph database (framework)
written in C++ such as DEX or GraphLab and repeat the
experiments. We also want to use the expression in a struc-
tured query language for unstructured meshes similar to the
example in the Section 5.2.
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ABSTRACT

Large amounts of data are modeled and stored as graphs in or-
der to express complex data relationships. Consequently, query
processing on graph structures is becoming an important compo-
nent in real-world applications. The most commonly used query
format is that of tree pattern queries. We present a new paral-
lel SIMD algorithm, GGQ (GPU Graph data base Query), for an-
swering tree pattern queries on graph databases, using a GPU. We
present the results of extensive experimentation of GGQ on large
graph databases using known benchmarks that show that GGQ is
an effective and competitive algorithm.

1. INTRODUCTION

Graph databases are widespread in many areas, including the se-
mantic web and social/biological networks, as a graph is a more
flexible and expressive structure than a tree. One of the most im-
portant and practically most interesting query formats for graph
databases is a tree pattern query (TPQs - Tree Pattern Queries). In
most known query languages for XML and RDF (such as XQUERY
and SPARQL [19]), many queries can be regarded as TPQs on
graphs. An example of a TPQ query is presented in Figure 2 (right
end side). Finding all occurrences of matching a TPQ query to
an isomorphic sub-graph of a given data graph is a fundamental
operation in graph query processing. Related basic problems are
(a) determining if a matching exists, and (b) providing part of the
matched data nodes, corresponding to query target nodes, as the
result.

Lately, there has been much research on using GPUs to speedup
database operations. The standard use of GPUs is to render graph-
ical information. GPUs are a cheap and ubiquitous source of pro-
cessing power, as at least one GPU can be found in almost any com-
puter. GPUs follow a SIMD (Single Instruction, Multiple Data)
architecture, while multi-core systems follow a MIMD (Multiple
Instructions, Multiple Data) architecture. In SIMD, multiple pro-
cessing elements perform the same operation on multiple data ele-
ments, simultaneously.

We focus on processing TPQ queries and not on general graph
structured queries as, in practice, TPQ queries seem to be the most

(©2015, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brussels,
Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0
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frequently used type. Few research projects have addressed paral-
lelizing query processing over graph databases. The main idea has
been to use the data partitioning strategy, i.e., methods to partition
the data between many computing elements, for example see [9].
To the best of our knowledge, there have been no attempts to paral-
lelize the query processing of a single TPQ, or to design a parallel
algorithm that exploits GPUs (or any other SIMD-based device) to
accelerate the processing of a single TPQ.

In this paper we present the GGQ algorithm (GPU-Graph data
base Query). The problem we address is how to use GPUs to ac-
celerate the processing of a single TPQ query. The main idea un-
derlying GGQ is to copy the relevant parts of the graph document,
according to the input query, to the GPU global memory, to process
the query using all the threads of the GPU in parallel, and to copy
the query results back to the CPU memory. The key to paralleliz-
ing the query processing is in the ability to efficiently coordinate
the query processing tasks between thousands of working units. In
GGQ, each thread checks a different potential matching between
the TPQ pattern and the data graph. In case that the checked po-
tential matching actually exists, the thread reports this matching as
one of the answers to the query.

GGAQ is novel in that thread identifiers (IDs) are used to deter-
mine the choices made in attempting to match the tree pattern to
actual database graph nodes and edges. As the space of possibilities
that can be represented by an ID is limited, methods are presented
to practically increase this space.

To minimize the amount of data that has to be copied to the GPU
for a particular query execution, we designed a new graph lists stor-
age scheme, GLS, that is based on a XML stream representation
scheme [11]. A section describing GLS is not included in the pa-
per due to lack of space.

For documents that can fully reside in the global memory, we
gain speedup of up to 1000 times in comparison to Gremlin [17]'
(counting the time of copying the results from the GPU to the CPU
but not counting copying from the CPU to the GPU). If a whole
document is loaded to the GPU, many queries on this document
can be processed one after the other, thus eliminating the need to
copy the document, for each query, from the CPU to the GPU. For
documents that can not fully reside in the GPU global memory,
according to our experiments, we still gain a significant improve-
ment of up to 100 times in comparison to Gremlin (counting the
time of copying the data from the CPU to the GPU and the time
of copying the results from the GPU to the CPU). In experiments
with an extra-large query, we obtained speedup of up to 50 times in
comparison to Gremlin (while counting just the copying time of the
results from the GPU to CPU), and up to 35 times in comparison

'There may by now be tools for public use that are more efficient
than Gremlin.



to Gremlin (while counting the time of copying the data from the
CPU to the GPU and the time of copying the results from the GPU
to the CPU).

2. BACKGROUND

In this section, we briefly introduce GPUs and CUDA (the un-
derlying platform upon which the GGQ algorithm is implemented),
and TPQ pattern matching.

2.1 Graphics Processors (GPUs)

GPUs were originally designed for dealing with graphics render-
ing. In recent years GPUs are also used as multi-threaded multi-
core co-processors for CPUs. GPUs have a SIMD (Single Instruc-
tion, Multiple Data) architecture. In the SIMD architecture, there
are multiple processing elements that perform the same operation
on multiple data, simultaneously. Any algorithm for GPUs has to
fit the SIMD scheme; hence an original CPU (or multi-core) algo-
rithm should not be run as is on a GPU. If run as is, it will most
probably be extremely inefficient. Programmers write their algo-
rithms so that the part of the algorithm that does not have to be
massively parallelized runs on the CPU and the other part, which
can be massively parallelized, runs on the GPU.
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Figure 1: GPU architecture model

GPU Hardware Architecture. The GPU architecture is shown
in Figure 1. This architecture is common to both NVIDIA [16]
and AMD [13]. The NVIDIA GTX processor is a collection of
multiprocessors (in GTX480 there are 15 multiprocessors), each
with a group of processors (32 in GTX480). Each multiprocessor
has its own shared memory which is common to all the proces-
sors within it. It also has a set of registers, texture, and constant
memory caches. At any given cycle, each processor in the multi-
processor executes the same instruction on different data. A warp
is a collection of threads that run simultaneously on a multipro-
cessor. The warp size is fixed for a specific GPU. Communication
between multiprocessors (i.e., processors from different multipro-
cessors) is through the device memory (also called global memory),
which is available to all the processors of the multiprocessors. The
size of the global memory is limited. The GTX480, for example,
has 1.5GB memory. The global memory has both a high bandwidth
and high access latency. GPU threads have both low context-switch
and low creation time as compared to CPU threads. The global
memory is available to all the threads, so any thread can access any
memory location.

CUDA Programming Model. Programmers use two types of
code, the kernel code and the host code. The kernel code is exe-
cuted on the GPU. The host code runs on the CPU. The host part is
in charge of transferring data between the GPU and main memory,
and starting kernel-code instances (kernels) on the GPU. A compu-
tation task on the GPU is divided into three separate steps. First,
the host code allocates GPU memory for input and output data,
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and copies input data from the main memory to the GPU mem-
ory. Second, the host code starts threads each executing the kernel
code, kernels, on the GPU. The kernels perform the required task
on the GPU. Third, when the kernels finish their work, the host
code copies results from the GPU memory to main memory. For
the programmer the CUDA model is a collection of threads run-
ning in parallel. A collection of threads (called a block) runs on a
multiprocessor at a given time. One can assign multiple blocks to
a single multiprocessor and then the blocks execution on the multi-
processor is time-shared.

Execution. All threads of all blocks executing on a single mul-
tiprocessor share its resources. Each thread and block has a unique
ID. In addition, each thread has a program counter, registers, per-
thread private memory, and inputs that can be used by the thread
during its execution. Each thread in a set of parallel threads exe-
cutes an instance of the kernel code, in parallel. Blocks are further
organized into grids of thread blocks by the programmer. Each grid
is a 2 or 3-dimensional arrangement of blocks. When a block is ex-
ecuted, it is further divided into warps. Using the thread and block
IDs each thread can perform the kernel code on different set of data.
In some cases, during some operations, for example an if else state-
ment, some of the threads in a multiprocessor are idle (during the if
block or the else block), as according to the if else statement, they
do not have to process the body of the if block or the else block of
the statement.

2.2 TPQ (Tree Pattern Query) pattern match-
ing

Tree Pattern Queries (TPQs) are represented as directed trees,
where (1) the nodes and edges of a TPQ @ are labelled by labels
from an alphabet > . The label of a node u is denoted by 7(u), and
the root node of @ is denoted by root(Q). The size of @, denoted
by |Q|, refers to the number of nodes in Q. (2) The nodes in @ are
connected by parent-child edges (pc-edges) labeled by a label from
>. Consider an edge e = (u, v) with parent node u and child node
v, we say that v is a child of » and w is the parent of v.

Given a TPQ @ with nodes (q1,..., gn) and a directed graph doc-
ument D, a match of () in D is a mapping from the nodes of @ to
nodes (d1,..., dn) in D s.t.: (1) d; is matched with ¢;, 1 < i < n,
(2) d; and g; have the same label except that nodes labeled with the
special label **’ may be matched with data nodes that can have any
label from alphabet ). (3) the edges, i.e., structural (parent-child)
relationships between query nodes are satisfied by the correspond-
ing D nodes and the label of both of the edges (in () and D) have to
be exactly the same (again, with the **’ exception). The ordering of
sibling nodes in a TPQ query imposes no constraints on the match-
ing. Also, pattern nodes need not be mapped to distinct D nodes
(the algorithm can be extended to enforce such distinct mappings).

The TPQ pattern matching problem is defined as finding all the
possible matches of a given TPQ @ in a given graph document
D.

3. THE GGQ (GPU GRraAPH DATA BASE QUERY)
ALGORITHM

The GGQ algorithm is a SIMD algorithm. The main advantage
of the GGQ algorithm is the ability to divide the matching work to
hundreds or even thousands of threads that run in parallel, and that
the work of each thread is exactly of the same length. The idea of
the basic version of the algorithm is to use the ID of a thread to de-
termine the portion of the data to which a pattern matching attempt
will be executed by the particular thread. Then, as the number of
bits in a thread ID is bounded, we designed an extension that al-



lows the algorithm to be efficient also in cases when the query tree
or the data graph are more complex. GGQ processes mainly the
document parts that are relevant to the input query by processing
only edge streams that are relevant for the input query.

The inputs of the algorithm are a labeled directed graph G =
(V, E),aTPQ @, and a set of nodes V, subset of V, containing all
data graph nodes which are part of legal possible matches for the
root node of ). The algorithm finds all possible matches between
Q and G subject to the V constraint.

Next, we explain the main idea of the algorithm. For ease of ex-
planation, assume that set V; has just one node, v;. Each GPU
thread has a unique /D. For example, the I D of thread th is
thNum, and in binary thNumb =< by, bpm—1,...,b0 >. Each
node v; in V has at most outg Num(lbl) outgoing edges with label
1l for each (bl label where outg Num/(Ibl) is the maximum num-
ber of edges labeled /bl connected to a node in the database. L.e., we
need logz (outgNum(Ibl)) bits to represent outgNum(1bl). For
ease of exposition, we assume that outgNum(Ibl) for any label is
a power of 2. The bits of thNumb define which edge has to be
chosen at each step of checking for a match against the data graph.

For example, assume that we have just two types of labels, bl A
and [bl B, in the graph. outg Num(IblA) = 4, outg Num(IblB) =
16. Assume that we have a query pattern ) with 3 edges, the first
and third edges are with label [bl A, and the second edge is with la-
bel [bl B. Assume that the maximal thread ID is 255, thus we have
8 bits < b7, bg, ..., bo > to represent any possible thread I D. Bits
bo and b; represent the index of all possible data edges with label
Ibl A, for the first edge in the query pattern. Bits bo, bs, bs, and bs
represent the index of all possible data edges with label (bl B, for
the second edge in the query pattern. And finally, bits bg and b7
represent the index of all possible data edges with label bl A, for
the third edge in the query pattern.

We have also tried to reverse the ordering of enumerating the
thread 1D bits (i.e., to extract the bits from left to right - from
MSB to LSB), so that the MSB bit will correspond to the top of
the tree. However, the effectiveness of this will fully depend on the
nature of the data tree. For the data we used which induces a flat
structure on the data tree, this scheme turned out to have inferior
performance.

To gain intuition about the algorithm, we start off with an exam-
ple.

3.1 An Intuitive Example

Data Graph Name: Jonathan
dGraph Language: computer computer )
Name: Ateret | Quer;’Tree
AG? 2 R”OL s createc, o Wame: Ateret
created
\
knows knows Name Hme| B
Enows \Age:d2
(Nome: Lila ’nio P R——
Age:32 Age: 32 w
Nome: Hallel created created created
Age:d
& [f.angucrge: Compurerl @\fame: Babﬂ

Name: Baby ‘
Languoge: babyish |

Figure 2: Example of a query tree g7ree and a data graph
dGraph

Consider® gTree and dGraph presented in Figure 2. Based on

?In the experiments we used simpler documents in which a single
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dGraph, we see that each node v; € V' has no more than
outgNum/(created) = 2 outgoing edges labelled created and
no more than outgNum(knows) = 3 outgoing edges labelled
knows, thus we need 1 bit to represent outg Num/(created) and 2
bits to represent outg Num(knows), here bit=0 means edge num-
ber 1 and bit=1 means edge number 2.

In total, we need 4 bits to represent all the possible potential
matchings with graph g Data (shown in Figure 2). During the run,
we have 16 different running threads. For I D with bits
< bz, b2, b1,bo >, bits by and by apply to the first edge (between
query nodes 0 and 1), bit by applies to the second edge (between
query nodes 1 and 2) and bit b3 applies to the last edge (between
query nodes 1 and 3). V; contains the data node with /D = 0.
Now, we go over all the threads and explain what happens at run
time with each of them.

The thread with 7.D 0000, finds that the data node with 1D 0
has 3 outgoing edges labelled knows, according to the first 2 bits
"00" of the thread’s I D, we choose the first edge which leads us to
the data node with I D 1. While checking the data of this node, we
find that it does not have label and data "Age: 32". So, this partial
matching is not part of an answer, thus the thread terminates with
no match. The same behavior happens for threads with ID: 0100,
1000, and 1100.

The thread with I.D 0010, chooses the 3-rd outgoing edge (cor-
responding to the "10" bits) of the data node with /D 0. Thus, it
matches the query node with /D 1 to the data node with ID 2.
While checking the data of this node, we find that it does not have
label and data "Age: 32". Thus, the thread 0010 terminates with no
match. The same behavior happens for the threads with ID: 0110,
1010, and 1110.

The thread with 7D 0011, chooses the 4-th outgoing edge (cor-
responding to the "11" bits) of data node with I D 0, but such an
edge does not exist. Thus, the thread terminates with no match.
The same behavior happens for the threads with ID: 0111, 1011,
and 1111.

The thread with 7D 0001, chooses the 2-nd outgoing edge of
the data node with /D 0. Thus, it matches the query node with
ID 1 to the data node with /D 3. The data node with I.D 3 has
label and data "Age: 32"1. Next, the thread chooses the 1-st outgo-
ing edge, with label "created", of the data node with ID 3. Thus,
it matches the query node with I D2 with the data node with I D
4. The data node with I D 4 has no label and data "Language:
computer"l. Thus the thread terminates with no match. The same
behavior happens for the thread with ID 1001.

The thread with I D 0101, chooses the 2-nd outgoing edge of
the data node with /D 0. Thus, it matches the query node with
ID 1 to the data node with I D 3. The data node with I D 3 has
label and data "Age: 32"[. So, the thread now chooses the 2-nd
outgoing edge of the data node with /D 3. Thus, it matches the
query node with /D 2 with the data node with /D 2. The data
node with 7D 2 has label and data "Language: computer"l. Now,
the thread chooses the 1-st outgoing edge of the data node with
1D 3 (corresponding to the leftmost "bit" with value 0). Thus, it
matches the query node with 7D 4 with the data node with I D 4.
The data node with ID 4 has label and data "Name: Baby"l. At
this point the tread has finished to match all the nodes and edges.
Thus the thread reports that the currently identified assignment of
query nodes to data nodes is an answer to ¢7'ree in dGraph, and
terminates with a match. The last thread does not find a match.

3.2 Base algorithm
We specify how the algorithm operates for query (), graph G, set

label may be associated with a graph node.



V4, and a thread with I D th/Num. For ease of explanation, assume
that set 1/, has just one node, v;.

Let maxth Num be the maximal possible thread I D. Let p be
log2(maxThNum), without loss of generality, assume that
mazThNum is power of 2. Sort the edges of Q: eq, ..., €, S0 that
if edge e, is on the path from ()’s root to the left vertex of edge e,,
then e, precedes e, in the order (i.e., "higher" in the tree).

Input: 1) Data graph G. 2) TPQ query Q. 3) Vj set.
Output: ansSet, the set of all thread I Ds that encode patterns that are an
answer to query () in data graph G.
Method (runs on the CPU):
1. ansSet = {}
2. Invoke CUDA kernel call for function:
GpuGraphQuery(G, Q, Vy, ansSet)
3. RETURN ansSet

Il GpuGraphQuery kernel function (runs on the GPU):
Input: 1) Data graph G. 2) TPQ query Q.
3) V4 set of nodes in G that match to the root of Q.
4) ansSet set of all answers (thread I Ds).
5) idConst. Has default value of 0. Used for algorithm extensions
Goal: In case that current thread’s I D encodes an answer to query () in
data graph G, add it into ansSet.
Method:
. Set thID to a system assigned index of the current thread.
. Set maxID to a system value of the maximal thread index.
. thNum = (idConst * (maxID + 1) 4+ thID)
. Set cqldx to 0. /* current query edge index */
. Express thINum in binary notation as < by, bp_1,...,b0 >.
. Set bitIdz to 0. /*represents the currently processed bit in the binary
notation of thNum*/
. Create dataNodeArray of size | Q| and initialize all its entries
to nil. /* the element with index a; will be data graph node dp,,
that corresponds to query node with index a; */
. dataNodeArray([l] = v, /* wl.o.g. the root index of @ is 1 and
vy 1s some matching data node
(according to Vg).*/
9. FOREACH edge €cq7dz = (qa,qp) in Q’s edges in order

NN BN =

20: END FOREACH
21. ansSet.add(thNum) /*current thread encodes an answer*/

10. Ibl = ecqraq-getLabel()
11. k= Q.getNumBits(lbl) /* According to the graph definition,
there are no more than 2% outgoing edges
labeled (bl from any node in G*/
12. Set num to the integer represented by bits
< bpitrdot+k—1>VbitIdet+k—2, - Obit1de > of thNum.
/* These bits corresponds to edge number cqldx in Q */
13.  currV = dataNodeArray|qq.idzx]. /*the data graph node to
which g, is mapped*/
14.  currE = currV.get Edge(lbl, num) /*gets edge number num
out of outgoing edges labeled [bl of node currV*/
15.  IF (currE == nil) THEN RETURN
16.  currV = currE.getTargetNode() /*find gp*/
17. IF (NOT isMatching(currV, q,)) THEN RETURN
18.  dataNodeArray|qp.idz] = currV [*update the mapping array*/
19 bitldx = bitldx + k /*prepare bitIdx to read next edge data*/

Figure 3: The base GGQ algorithm

Figure 3 presents the base version of the GGQ algorithm. The
input to the algorithm are the data graph G, the TPQ @ and the
set V; that contains the matching data node of the TPQ query root
node. Line 2 contains the invocation of the CUDA kernel function
gpuGraphQuery which is processed on the GPU. Le., the query
processing algorithm itself is executed on the GPU.

The gpuGraphQuery kernel call finds all the matchings be-

tween the TPQ @ and the data graph G. The code of gpuGraphQuery

is run in all the threads. They process exactly the same code (i.e.,
the code of the gpuGraphQuery function itself) at the same time
("Single Instruction") over different data ("Multiple Data") in G.
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As the possible number of pattern matchings between ) and G is
very large, there is a potential for an enormous number of parallel
threads. According to the GPU GTX 480 architecture, the maxi-
mum number of resident threads per MP (multiprocessor) is 1536
(i.e., 1536*15 for all the MPs), while the number of threads that
are processed at any moment of time in the MP is 32 (other threads
may be waiting for data from the global memory, or just waiting for
their turn to be run). The threads in the GPU are arranged in blocks
where each block can have a maximum of 1536 threads. If the
requested (by the algorithm) number of threads exceeds 1536*15,
then the GPU first handles the 15 first blocks, and then continues
to process the next 15 blocks, and so on until all the blocks are pro-
cessed. Note that maximum number of threads that can actually run
in parallel at any point of time is 480 (32 on each of the 15 MPs).
The potential number of pattern matchings between @ and G is
very large, and is usually much larger than the number of compute
units in the GPU. Thus the utilization of the GPU is usually very
high, i.e., the throughput of processing the work is high in compar-
ison to multi-threaded CPU systems. By running a profiling tool
on GGQ, we found that the execution uses the coalesced memory
access feature of the GPU®. This is due to an apparent matching
between the structure of the storage and the way the algorithm tra-
verses the data.

Next, we explain the gpuGraphQuery kernel function. Line 1
computes the thread’s I D, namely thNum, according to CUDA’s
semantics. In line 3 we compute the index for which the current
thread is responsible. In the base algorithm, idConst is always 0.
Thus, thNum == thID. cqldz that is defined in line 4, indi-
cates the index of the currently processed edge. Line 6 defines the
bitIdx variable. bitIdx points to the bit that is currently processed
in the binary presentation of thiNum. The data N ode Array array
which is defined in line 7 holds the data nodes that are matched
against query ) by the current thread. ILe., the element with in-
dex a; of the dataNodeArray is the data graph node d; that is

matched to the query node with index a;. The size of data N ode Array

is the number of nodes in Q, i.e., |Q|. Inline 8, dataN ode Array[1]
is initialized. This is the data node that is matched to the root node
of (). This data node named v, is taken from set V;; which is one
of the parameters of the gpuGraphQuery function.

In line 9 the algorithm starts a FOREACH, that tries to perform
a matching between the pattern that is encoded by thNum (the
index of the current thread) and G according to TPQ (). Note that
before starting the algorithm, the edges of ) are sorted in a way
that if edge e, is on the path from @’s root to the source vertex of
edge ey, then e, precedes e, in the order. And this is the order in
which they are processed during the FOREACH. In lines 10-12, the
algorithm finds the edge number num that has to be chosen out of
the outgoing edges labeled (bl of node currV (a value is assigned
to currV in line 13). currV is the node that is matched to the
ga node, which is the source node of the ecqr4. edge. currV is
taken out of the data N ode Array according to the index of the g,
node. The ordering of () edges (described above) guarantees that
currV exists. To find num, the algorithm first extracts the bits of
the binary representation of th Num that correspond to the ecqrdx
edge. The decimal value that is encoded by these bits is inserted
to num. In line 14 the algorithm gets the outgoing bl labeled
edge number num of node currV and assigns it to edge currkE.
If the value of currFE is nil, it means that such an edge does not
exist, thus according to line 15 the algorithm terminates the run, as
this thread does not encode a matching pattern in graph G. In line

3This means that when many threads in a warp access consecutive
global memory addresses, these memory accesses are grouped into
one access.



16-17, using edge currE, the algorithm finds the data node that
matches to the query node g (the target node of edge ecqr4.) and
inserts it to currV, then it checks the matching between the data of
the new currV and the data of ¢,. In case it finds that there is no
matching between the data of currV and gy, it terminates the run,
as this thread encodes a pattern that does not exist in graph G. In
lines 18-19 the data of data N ode Array and bitIdx is updated, as
preparation to the next iteration of the FOREACH. If the algorithm
finishes successfully the FOREACH loop for all the edges, without
returning in lines 15 or 17, it means that the current thread encodes
a pattern that exists in the graph and that fully matches Q). That is
why in line 21, the algorithm inserts thNum to ansSet.

There are possible optimizations of the basic scheme. As pointed
out by a reader, one can base thread addressing on a simple algo-
rithm that takes into account the maximum number of edges with a
particular label emanating from a node and, based on the query and
the thread ID, deduce the thread’s search pattern. This will often
result in fewer threads.

3.3 First algorithm extension (Brute Force Loop-

ing)

Input: 1) Data graph G. 2) TPQ query Q. 3) Vj set.
Output: ansSet, the set of all thread I Ds that encode patterns that are an
answer to query () in data graph G.
Method (runs on the CPU):
1. ansSet = {}
2. mazIDbitNum = getBinBitsNum(getMazID())
I*get MazI Dbits is a system function*®/
. mazxQBinNum = getBinBitsNum/(Q)

Bin+4mazIDbits)

FOR (i = 0; i < 2( mazlDbits  1)ii 4 4)

Invoke CUDA kernel call for function:
GpuGraphQuery(G, Q, Vy, ansSet, i)

END FOR

. RETURN ansSet

| (maz

3
4
5
6.
7
8

Figure 4: The first extension of the GGQ algorithm

There can be situations in which the maximal number of bits
that may be required to represent query patterns is larger than the
number of bits of maximal thread I D. Thus, we extend the algo-
rithm as presented in Figure 4. Assume that the maximal thread
ID is maxID and that we need maxl Dbits to represent it, that
max Bin bits are required to represent the query pattern, and that
maxBin > maxIDbits. In line 4 we start a FOR loop. The

Bin+maazlIDbits)
mazIDbits

number of iterations is: 2(! ez 1 At each loop it-
eration (line 5), we run the base algorithm, where each thread in the
current iteration will take care of the pattern represented by the fol-
lowing number: (i * (maxzID + 1) + threadl D), where maxID
is the 1D of the maximal thread I D, and treadl D is the system
ID of the current thread. This computation can be seen in line 3
of the base algorithm (Figure 3). Note that this way, conceptually,
we extend the thread’s I D bit representation to the left by placing
there the bits corresponding to ¢ in the current loop iteration.

Often, when a query is posed, the desired answer is whether there
exist any matching between the query tree and the data graph. In
such cases, it is sufficient to find one matching in order to provide
a positive answer. In a slightly modified version of the algorithm,
the run is stopped the moment a first match is found. This feature
decreases the running time of the algorithm in such cases. Some-
times, the desired answer to a query corresponds to only one spe-
cific query node and not to all nodes corresponding to the whole
set of query nodes. This does not affect the GGQ algorithm as an
answer provided by GGQ to a query is an ID of the thread.
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3.4 Second algorithm extension (Multi Phase)

A substantial possible improvement, in case that the number of
possible patterns is larger than the maximal thread 1D, is a two
phase exploration (and, in general, a multi phase exploration using
the same principle). Here, we first limit the pattern by removing
subtrees (actually edges leading to the roots of subtrees) so as to be
left with the original rooted pattern with portions removed so that
the remaining new pattern Q’ is a "prefix" of the original pattern
Q. The idea is that we have sufficiently many bits in maxI Dbits
to explore the smaller Q" (with no need to use the first extension).
A Q' node is called a contact node if it is a node in @ from which
an edge leading to a subtree was removed along with the whole
subtree. When evaluating Q" we record for each solution the im-
ages in the data graph of the contact nodes of Q" which we call a
recorded solution vector. Then, we run the second phase in which,
for each recorded solution vector, we explore the rest of ) using
all the threads we can utilize. In case two phases are not sufficient,
we grow Q' to Q in more than 2 phases. Each such phase will pro-
duce a collection of recorded solution vectors in which additional
@ nodes are assigned values. The advantage of this two phase (and
in general multi phase) scheme is that (a) We employ many threads
in the first phase working on a smaller query derived from the orig-
inal query and obtain all the relevant prefixes, encoded in recorded
solution vectors, out of the data graph. (b) In the second phase, for
each recorded solution vector, we employ all threads on a relevant
portion of the data graph that can potentially lead to a solution to

Q.

Limited Query Q’

Original Query Q

.5 o

©
o

“Contact node|-

Figure 5: Example of limited Query

For example, consider the query () as presented on the left side
of Figure 5. Suppose that an edge representation requires 4 bits for
any label, namely the whole pattern requires 32 bits. Suppose that
maxID requires 16 bits. So, we are "missing"l 16 bits. We can
transform @ to the limited query Q' with 4 less edges, as presented
on the right side of Figure 5. This way we can handle Q' with
all threads (whose maxz I D requires 16 bits). Once we evaluate Q'
we obtain recorded solution vectors. Each recorded solution vector
encodes a partial matching of the full matching, and determines the
data contact nodes v, and v, that are matching to the query con-
tact nodes v2 and v7. When phase 2 is carried out for each recorded
solution vector, each thread will operate on the subtrees rooted at
v2 and v7 where the dataNode Array will be initialized with v,
in the location corresponding to v2 and v, in the location corre-
sponding to v7. As the subtrees rooted at the contact nodes have a
total of 4 edges, 16 bits will suffice to represent all possible navi-
gations. This means that in phase 2, when considering a particular
recorded solution vector, all threads will be employed in checking
possible continuations for this recorded solution vector. Thus, the
computing power is fully utilized in (the short) phase 1 and later
on throughout phase 2. Note that there is an advantage here over
the loop scheme (that is presented in the first extension) in that for
a loop index that corresponds to a non-prefix of the data graph, all



GPU threads are activated in vain. Here, the first phase guarantees
that the sequence of GPU activations is done for recorded solution
vectors that correspond to potentially extendable matchings. The
disadvantage is that the recorded solution vectors need be stored so
that they are available for the second phase.

Input: 1) Data graph G. 2) TPQ query Q. 3) Vj set.

answer to query () in data graph G.

Method (runs on the CPU):

1. prelimAnsSet = {}

2. prefizx@ = getPrefizQ(Q) /*get PrefixQ returns the "prefix"
of the query Q*/

3. Invoke CUDA kernel call for function:

4. GpuGraphQuery(G, prefizQ, Vg, prelimAnsSet, 0)

5. ansSet = {}

6. remain@ = getRemainQ(Q, prefizQ) I*get Remain(@ returns
Q\ prefizQ*/

7. FOREACH ans in prelimAnsSet

8. currAnsSet = {}

9. Invoke CUDA kernel call for function:

10. GpuGraphQueryEzt(G, remain@, curr AnsSet, ans)

11. ansSet = ansSet U curr AnsSet
12. END FOREACH
13. RETURN ansSet

Il GpuGraphQueryExt kernel function (runs on the GPU,
just the differences from GpuGraphQuery presented):
Input: 1) Data graph G. 2) forest remain@Q.
3) ansSet set of all answers (thread I Ds).
4) baseAns is the I D that encodes the matching between
prefix@ and G
Goal: In case that current thread’s I D encodes an answer to query
remain(@) based on the matching presented by baseAns in
data graph G, add it into ansSet.
Method:

3. thNum = thID

8. init Nodes Array(dataNode Array, baseAns)
/* init N odes Array extracts base Ans, and fill all the nodes
that already matched in dataNodeArray by answering prefizQ
in the first phase */

Output: ansSet, the set of all thread I Ds that encode patterns that are an

Figure 6: The second extension of the GGQ algorithm

Figure 6 presents the second extension to the algorithm. The
function get Pre fiz@ (line 2), decides which part of @ is going to
be the "prefix" query. It makes the decision based on the number
of bits bLimit required to present the maximal thread I D, and on
the structure of Q. Basically, it chooses the "upper" part of the tree
(the part with the smallest depth), up to the limit of bLimsit. L.e, it
sums the number of bits that are required to present all the edges
of the chosen part, and enlarges the chosen part up to the limit
of bLimit. Lines 3,4 run the base algorithm on prefiz(@), and
insert the answer into prelimAnsSet. Line 5 initialize ansSet,
the set of the final answers. remain() that is computed in line
6, is the remainder part of @ after removing prefix(@ out of it.
Line 7 starts a FOREACH that computes the final answers for @
based on the preliminary answers from prelimAnsSet. The set
of answers of the current iteration, carr AnsSet is defined in line
8. Lines 9-10, contain the invocation of the CUDA kernel func-
tion gpuGraphQueryFExt which is processed on the GPU, and
is slightly different from gpuGraphQuery (as defined in Figure
3). In line 11 we add the answers that were found in the current
iteration to the final answers set, namely ansSet.

Next we describe gpuGraphQuery FExt. This function has slight

differences from the base algorithm GPU function, gpuGraphQuery.

Thus, we describe just these differences. The first difference is in
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line 8, in which the thNum is defined. thNum is equal to the
system value of the I D of the current thread. The second differ-
ence is in line 8, in which the init NodesArray function initial-
izes dataNodeArray. The function extracts from baseAns the
matchings between nodes in () and nodes in G that were found
during the first phase, and assigns the found data nodes into the ap-
propriate places in dataN ode Array. Except for the described two
changes, the function operates exactly as the base gpuGraphQuery
function.

The number of edges that can be represented by one phase is n
such that szge:1 outhum(lbl(e)) < gbitsNum(mazThreadl D)
where bits Num(maxzThreadl D) is the number of bits that are
used by the GPU to represent the maximal thread ID. For example,
assume that a GPU thread ID is represented with 32 bits. Assume

that for each edge e, on average, there are 16 potential outgNum (lbl(e))

from each node. Thus, on average, we need 4 bits to represent each
edge of the query. Based on the above, each phase allows us to
represent 32/4 = 8 edges on average. Having 2 phases in the
multi-phase extension described above allows us to represent fairly
large TPQs with about 16 edges. The multi-phase extension can be
easily extended to more than 2 phases. Based on this analysis, if
we extend the multi-phase extension to 3 phases, we can represent
a TPQ with 24 edges, which is a very large query. It is important
to note that without the multi phase extension, experiments involv-
ing very large queries give very poor results that are worse than
Gremlin’s performance on these queries.

Input: 1) query edges (¢Edges). 2) maxQdepth, the max depth of Q

3) max Bits Num, the number of bits required to represent
maximal thread I D

Goal: to set the field phase Num of each query edge

Method (runs on the CPU):

1. currPhase =1

2. currBitsSum = 0

3. FOR depth FROM 1 TO maxzQdepth

4. FOREACH edge IN qFEdges

5 IF edge.depth == depth

6. IF curr BitsSum + edge.bitsNum > maxBitsNum
7. currPhase + +

8. currBitsSum = 0

9. END IF

10. curr BitsSum+ = edge.bitsNum

11. edge.phaseNum = currPhase

12. END IF

13. END FOREACH

14. END FOR

Figure 7: Query phase ordering algorithm
Figure 7 presents the algorithm for breaking the query into phases.

4. EXPERIMENTAL EVALUATION

We compared GGQ to Gremlin [17] in terms of run time (to
completion). Gremlin is the only query processor that we found
that uses the native graph approach and that supports XPath-style
queries over graph documents. Using Gremlin’s query language,
one can easily express TPQs. We are not aware of any parallel
graph query processor to which we can currently compare our re-
sults. We used the GLS storage scheme to store the data. We imple-
mented the GGQ algorithm from scratch on CUDA [7]. We exper-
imented with GRR [10], a benchmark tool for generating random
RDF documents. We also experimented with the Geospecies data
document [2], and a representative data document example of the
Census database [8]. We checked different TPQ query patterns. *

“Queries and data are available upon request.



Path Q1 | Path Q2 || SPesdup Path Q1 | Tree Q2 Sl;eedugz
Q1 | Q2 :
Gremlin 114 84 Gremlin 76 72
GPU — full 0.8 7.4 148 11 GPU — full 32 3.17 24 23
GPU —ans | 0.09 0.08 1267 | 1050 GPU —ans | 0.08 0.09 950 | 800
GPU —alg | 0085 0.075 || 1425 | 1200 GPU —alg | 0.075 0.095 ][ 1085 | 900

Figure 9: Results of GGQ on a document with size 600MB, for a
path query with 5 nodes and a tree query with 6 nodes. The right
two columns contain the speedup of GGQ run in comparison to a

Figure 8: Results of GGQ on a document with size 125MB, for
path queries with 5 nodes. The right two columns contain the

speedup of GGQ run in comparison to a Gremlin run.

Speedu
Fath Q1 | Tree @2 QI; 52 Tree Q1 | Tree Q2 Speedup
Gremlin 81 75 Q1| Q2
GPU — full 0.86 0.67 94 112 Gremlin 187 165
GPU — ans 0.09 0.12 900 | 625 GPU — full 49 54 3.8 | 30.6
GPU — alg 0.08 0.11 1012 | 682 GPU — ans 48 2.6 39 | 63.5

Figure 10: Results of GGQ on a document with size 180MB, for a
path query with 4 nodes and a tree query with 6 nodes. The right
two columns contain the speedup of GGQ run in comparison to a

Gremlin run.

All experiments were run on an 3 GHz Intel S5520SC ShadyCove
5520 12DDR3 6SATA/R 2LAN1000 EATX workstation having an
NVIDIA GTX 480 GPU (with 1.5GB global memory), and having
two Intel Xeon 6C X5650 processors (with 24GB of RAM in total).
Each Xeon processor has 6 cores so altogether the workstation has
12 cores. We used the actual run time in various scenarios as the
main metric of performance.

4.1 Experiments Description

Setting Up. An experiment run has two input files: an RDF doc-
ument, and a text file with query (TPQ) patterns to run against the
given document. An experiment begins with loading the input doc-
ument into the GLS storage system by the parser. Then, we parse
the queries, and process them against the input document. We used
different TPQ patterns. The patterns we used have different length
and of different tree structures.

Experiment Description. The document is first loaded to the
GLS storage system (the time of loading is not measured, as it is a
one time procedure). Every experiment has the following runs:

1. Gremlin Run - We process the queries in the queries text file
using Gremlin [17]. Information regarding the run time of the
query is collected in the result log file.

2. GPU Run - This run is performed using the GPU. We process
the queries in the queries text file. The queries are processed by the
GGQ algorithm as described in Section 3. Information regarding
start and end times of processing the queries is collected in the
result log file.

‘We compare the performance of GGQ to Gremlin by comparing
the run time of these algorithms in three different ways. In the first
way we start the time measurement for the GGQ algorithm before
copying the data from the CPU to the global memory of the GPU,
and stop after copying the result data from the GPU to the CPU
(namely, GPU-full). In the second way we start the time measure-
ment for the GGQ algorithm right after copying the data from the
CPU to the global memory of the GPU, and before the query exe-
cution begins, and stop the time measurement right after finishing
the query processing, but before copying the results data from the
global memory of the GPU to the CPU (namely, GPU-alg). In the
third way we start the time measurement for the GGQ algorithm
right after copying the data from the CPU to the global memory
of the GPU, and before the query execution begins, and stop the
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Gremlin run.

Figure 11: Results of GGQ on a document with size 180MB, for
two different tree queries with 11 nodes. The right two columns
contain the speedup of GGQ run in comparison to a Gremlin run.

time measurement after copying the result data from the GPU to the
CPU (namely, GPU-ans). GPU-full reflects the potential time im-
provement of the GPU for large documents that cannot fully reside
in the global memory of the GPU. GPU-ans reflects the potential
time improvement for documents that can fully reside in the global
memory of the GPU. This is an important measurement as in a case
that the document can fully reside in the GPU, we have to copy it
to the GPU only once and then we can run many queries over this
document in a row, by this eliminating the need for copying the
document to the GPU per each query. GPU-alg is appropriate for
GPUs in which the global memory and RAM are merged, i.e., in
more recent processors such as NVIDIA’s planned PASCAL GPU
family. Time is measured is milliseconds. Each experiment is char-
acterized by the size of the input RDF document. We experimented
with documents sized as follows: 40MB, 125MB,180MB, 600MB.
We did not use larger files, as the GRR benchmark tool was not able
to create larger files. Also, the main factor that influences the com-
plexity of GGQ is the size of the query and not the size of the RDF
database document. Note that only the relevant edge streams have
to be copied to the global GPU memory, so ordinarily the amount
of data that is copied to the global GPU memory is usually much
smaller than the document size.

4.2 Experiments

Figures 8 and 9 show the results of GGQ on GRR documents
with sizes 125MB and 600MB respectively for different TPQ queries.
The GGQ run with full memory transferring time (both directions)
has speedup with respect to Gremlin of about 147 and 11 for a
document with size 125MB and of 24 and 23 for a document with
size 600MB, for Q1 and Q2 respectively. The GGQ run with result
transferring time (from the global memory to the CPU) has speedup
with respect to Gremlin of 1267 and 1050 for a document with size
125MB and of 950 and 800 for a document with size 600MB, for
Q1 and Q2 respectively. The GGQ pure run (without transferring
times) has speedup with respect to Gremlin of 1425 and 1200 for
a document with size 125MB and of 1086 and 900 for a document
with size 600MB, for Q1 and Q2 respectively. Due to lack of space,
we shall not elaborate on all the experimentation Figures.



5. RELATED WORK

There are a growing number of initiatives to implement and com-
mercialize Graph databases, such as Neo4j [6], HyperGraphDB
[4] and DEX [3] and many RDF solutions such as Jena [5] and
AllegroGraph [1]. There are other initiatives to create graph query-
ing languages that enable a simplified user view of querying such
as SPARQL [19] and Gremlin [17]. Another initiative for a graph
query language is GraphQL that is presented in [12] in which the
base node is a graph, so it deals with a graph of graphs. Thus, the
answer to this query is a set of graphs; further, this work is not deal-
ing with parallel query processing. Works in the area of paralleliza-
tion of graph databases have started to appear. For example, par-
allelGDB [9] and papers that address parallelization that is based
on graph partitioning. GPU-based work is [14] which proposes an
efficient subgraph matching algorithm. It presents an implementa-
tion of the STwig algorithm [18] in which the third (join) step of
the algorithm is performed in parallel on a GPU.

Lately, there are efforts to use GPUs to improve the performance

of DBMSs. There are also new framework proposals, such as Medusa,

a programming framework for parallel graph processing on GPUs.
Medusa enables developers to leverage the massive parallelism and
other hardware features of GPUs by writing sequential C/C++ code
for a small set of APIs. Recent works, [15], propose efficient XML
path processing algorithms using GPUs, which deal with path pat-
terns. The current paper, on the other hand, deals with TPQs, which
are more complex query patterns, looked for on more complex
database structures.

6. CONCLUSIONS

We present the GGQ algorithm, a novel efficient algorithm for
processing TPQ queries on graph documents. We use a new stor-
age scheme, GLS, in a parallel multi-threaded computing platform,
using a GPU as a CPU co-processor. GGQ employs techniques that
allow it to run hundreds of threads in parallel.

We conducted extensive experimentation with GGQ. We com-
pared, in terms of run time, GGQ to Gremlin [17], currently the
only available tool for comparison, that supports XPath-style queries
over graph documents. We checked performance for varying doc-
ument sizes and for different queries. Experimental results indi-
cate that using GGQ significantly reduces the run time of queries
in comparison to Gremlin.

As part of future work, we plan to adapt the multi-phase scheme
to oddly shaped graphs, e.g., ones with a few nodes, each having a
multitude of edges. We also plan to extend GGQ to handle queries
that are in the form of a directed graph. The idea is to first build
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a spanning forest out of the query graph. Then, to run the above
algorithm on each tree in the forest. As the last step, to check all
the answers for compatibility (namely, that the same query node is
not mapped to different data graph nodes) and retain the answers
that conform to the graph query structure.

7.
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ABSTRACT

Given the heterogeneity of complex graph data on the web,
such as RDF linked data, a user wishing to query such data
may lack full knowledge of its structure and irregularities.
Hence, providing users with flexible querying capabilities
can be beneficial. The query language we adopt comprises
conjunctions of regular path queries, thus including exten-
sions proposed for SPARQL 1.1 to allow for querying paths
using regular expressions. To this language we add two op-
erators: APPROX, supporting standard notions of approx-
imation based on edit distance, and RELAX, which per-
forms query relaxation based on RDFS inference rules. We
describe our techniques for implementing the extended lan-
guage and present a performance study undertaken on two
real-world data sets. Our baseline implementation performs
competitively with other automaton-based approaches, and
we demonstrate empirically how various optimisations can
decrease execution times of queries containing APPROX and
RELAX, sometimes by orders of magnitude.

1. INTRODUCTION

The volume of graph-structured data on the web continues
to grow, most recently in the form of RDF Linked Data. At
the time of writing, there are 570 large datasets, spanning a
variety of domains, such as the life sciences, geographical and
government domains [2]. The prevalence of graph databases,
such as Sparksee [21], Neo4]j [14] and OrientDB [16], has also
greatly increased over the past few years; they have been
used in areas as diverse as social network analysis, recom-
mendation services [20] and bioinformatics [1].

Graph-structured data in these domains may be complex,
heterogeneous and evolving in terms of its structure, mak-
ing it difficult for users to formulate queries that precisely
match their information retrieval requirements. In this pa-
per, we discuss the development of efficient algorithms for
approximate matching and relaxation of conjunctive regular
path (CRP) queries over such data, with the aim of assist-
ing users in formulating queries and interactively retrieving
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Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper
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results that are of relevance to them. Query results are
returned incrementally to the user in order of their increas-
ing edit or relaxation distance from the original query, with
users being able to specify a limit on the number of results
returned in each phase.

This paper extends earlier work in [9, 18], where the AP-
PROX and RELAX operators were introduced, and in [17],
where an initial prototype implementation was described,
by describing our system implementation, called Omega, in
detail. We also undertake here a performance study on real-
world data sourced from adult further education [17] and
from YAGO [10]. This study demonstrates that the perfor-
mance of exact query evaluation is competitive with other
automaton-based approaches, while a number of novel op-
timisations improve the performance of queries containing
APPROX and RELAX, sometimes by orders of magnitude.

In Section 2 we give the necessary background and moti-
vation, introducing our graph-based data model and query
language. In Section 3 we discuss the implementation of
Omega. We present our performance study in Section 4. In
Section 5 we review related work in CRP query evaluation
for graph-structured data. Section 6 summarises the con-
tributions of the paper, gives our concluding remarks and
directions for further work.

2. BACKGROUND AND PRELIMINARIES

Omega uses a general graph-structured data model com-
prising a directed graph G = (Vg, Eq,Y) and a separate
ontology K = (Vk,Ek). The set Vi contains nodes each
representing an entity instance or an entity class, while the
set Eq C Vo x (2 U type) X Vi represents relationships be-
tween members of V. For an edge e = (z,l,y) € Eg, [ is
called the label of e, x the source of e, and y the target. We
assume that the alphabet X is finite. The label type is used
to connect an entity instance to its class, and can represent
the corresponding notion in RDF/S (see below).

The set Vi contains nodes each of which represents an
entity class or a property. We call a node in Vi or Vi that
represents an entity class a class node and a node in Vi that
represents a property a property node. So Vg N Vi consists
of all the class nodes of V.

The edges in Ex capture subclass relationships between
class nodes, subproperty relationships between property nodes,
and domain and range relationships between property and
class nodes. Hence, Ex C Vi x {sc, sp,dom, range} x Vik.
We assume that ¥ N {type, sc, sp, dom, range} = ). We also
assume that the set of labels of property nodes in Vi does
not contain the label type.



This general graph model encompasses RDF data, ex-
cept that it does not allow for the representation of RDF’s
‘blank’ nodes; however, blank nodes are discouraged for
linked data [7]. Our graph model also encompasses a frag-
ment of the RDF'S vocabulary: rdf:type, rdfs:subClass0f,
rdfs:subProperty0f, rdfs:domain, and rdfs:range, which
we abbreviate by the symbols type, sc, sp, dom, and range.

The query language underlying Omega is that of conjunc-
tive regular path queries [3]. A conjunctive regular path
(CRP) query @, consisting of n conjuncts, is of the form

(Zl,. . .7Zm) — (Xl,Rl,Yl), ceey (Xn,R»,“Yn)

where m,n > 1, each X; and Y; is a variable or a constant,
each Z; is a variable appearing in the right-hand-side of @),
and each R; is a regular expression over the alphabet from
which edge labels in the graph are drawn. In our context, a
regular expression R is defined as follows:

R:=¢|a|la— |_|(R1-R2)| (RI|R2) | R* | R*

where € is the empty string, a is any label in XU {type}, a—
represents traversal of an edge in the reverse direction, “_”
denotes the disjunction of all constants in 3 U {type}, and
the operators have their usual meaning.

The (exact) answer to a CRP query @ on a graph G can be
obtained in a standard way by finding all pairs of nodes in G
satisfying each conjunct, joining the results, and projecting
over the variables in the head of Q.

ExXaMPLE 1. Suppose a user wishes to find people who
graduated from an institution located in the UK and poses
the following query, Q, over the YAGO graph [10]:

(7X) <- (UK,isLocatedIn-.gradFrom, ?X)

(Variables in a query have an initial question mark.) This
query returns no results since it requires that there is some
entity y, located in the UK, which has graduated from some
institution. However, no such y exists, since only people can
graduate from an institution and only events and places can
be located in a country.

The work in [9] investigated approzimate matching of CRP
queries, allowing edit operations such as insertions, deletions
and substitutions of edge labels to be applied to the regular
expressions R; of a CRP query, each with some edit cost
configurable by the user.

EXAMPLE 2. In Omega, the user can submit a variant of
Q in which the conjunct can be approrimated:

(7X) <- APPROX (UK,isLocatedIn-.gradFrom,?7X)

isLocatedIn—.gradFrom is approrimated by isLocatedIn—.
gradFrom—, at some edit distance a, by substituting gradFrom
with gradFrom—. This query now returns results, matching
the user’s original intention by correcting the error in Q.

The work in [18] also considered applying ontology-based
relazation to the regular expressions R;. This allows query
relaxations entailed using information from the ontology K,
in particular: (i) replacing a class/property label by that of
an immediate superclass/superproperty, at some cost ; (ii)
replacing a property label by a type edge with target the
property’s domain or range class, at some cost ~y.
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EXAMPLE 3. In Omega, the user can submit a variant of
Q in which the conjunct can be relazed:

(?X) <- RELAX (UK,isLocatedIn-.gradFrom,?X)

This query allows gradFrom to be relazed to its parent prop-
erty relationLocatedByObject at cost B, which now allows
properties such as happenedIn and participatedIn to be
matched, and answers to be returned at ‘distance’ 3.

3. IMPLEMENTATION OF oMmEGA

Figure 1 illustrates the architecture of the Omega sys-
tem. Sparksee [21] (formerly DEX) is used as the data store.
The development was undertaken using the Microsoft .NET
framework. The system comprises four components: (i) the
console layer, in which queries are submitted, and which dis-
plays the results; (ii) the system layer in which query plans
are constructed and executed; (iii) the Sparksee API; and
(iv) the data store itself.

7—-| Result manager | | Query submitter H Query initialiser | SIEIE
. layer
|
; System
<—>| Query Tree builder | Conjunct builder Cl?l]s-trl.llﬂlﬂl'l ELCe
utilities
Data
_ Query Tree initialiser NEA utilities utilities
EX NFA builder {
2 Ontology
L] 2 manager
= Conjunct initialiser  [*—* [ y=a manager
T
E
o Initialisation utilities
Sparksee
Query Tree evaluator mgmager

Join manager

Evaluation utilities

<——4’| Sparksee APl (C#) |

Data store - Sparksee

Data graph

Figure 1: System architecture

The architecture of the system layer broadly follows that
described in [17], with the major change being that the data
store used in Omega is Sparksee [21] rather than XML. This
layer is responsible for the construction of the automaton
(NFA) corresponding to each query conjunct. Given a query
conjunct (X, R,Y), a weighted NFA Mg is constructed to
recognise the language denoted by the regular expression R.
If the conjunct is prefixed by APPROX or RELAX, then
Mg, is augmented to produce an automaton Ap or ME,
respectively; we discuss this in Section 3.3. Further respon-
sibilities of the system layer include the construction of the
query tree, the incremental construction of a weighted prod-
uct automaton Hp from each conjunct’s automaton and the
data graph G, and the evaluation of the overall query, in-
cluding performing a ranked join for multi-conjunct queries.
We make extensive use of data structures provided by the
C5 Generic Collection library [15].

3.1 The Sparksee Data Model and API

The two main Sparksee structures used in our implemen-
tation are nodes and edges (which may be directed or undi-
rected), each of which has a pre-created type (this is a label,



of string data type), and a unique object identifier (oid) of
long data type. Associated with each node and edge are zero
or more attributes, which are key-value pairs; values may be
of any primitive data type. Further details regarding Spark-
see may be found in [12, 13] and the User Manual®. The
main Sparksee API functions used in Omega are as follows:

Neighbors takes as arguments a node n and edge type t,
and returns the set of nodes connected to n via an edge of
type t; the directionality of edges may also be specified.

Heads takes a set of edges F/, and returns the set of nodes
which are the target of an edge in E. Tails is analogous
to Heads, except that nodes which are sources are returned.
TailsAndHeads returns the union of Heads and Tails.

To store the data, Sparksee uses a combination of maps
(inverted indexes) and associated bitmap vectors [13]. To
improve the performance of the Neighbors function, an op-
tion may be set to index the neighbouring nodes when creat-
ing an edge type t. This means that an index entry is created
when an edge of type t is created between any two nodes.
Node- and edge-related attributes may also be configured to
be indexed when they are created (the index stores all oids
associated with each value of the attribute).

3.2 Omega data graphs

As it is mandatory in Sparksee for each node to have a
type, and as our data model does not assume that nodes are
typed, we create all of our nodes to be of the same type,
‘node’. All of our nodes have one attribute, of string data
type, representing the node label (which is unique in the
data graph G). This attribute has indexing enabled.

We create multiple edge types, all of which are defined
to be directed edge types with indexing enabled. Specifi-
cally, for each edge in G having label | € X, two Sparksee
edges are created: (i) one having type [, and (ii) one hav-
ing type ‘edge’ with an associated indexed string-valued at-
tribute corresponding to [. We introduce the generic ‘edge’
type to counter a limitation of the Neighbors function which
requires the type of the edge to be provided as an argument,
in order to allow us easily to retrieve multiple types of edges
simultaneously. For each edge in G labelled type, only one
edge is created, whose type is type. In cases which require
the retrieval of all types of edges of a node, we retrieve all
‘edge’ edges, followed by all type edges.

3.3 Query conjunct initialisation

The initialisation of a query conjunct (X, R,Y’) comprises
the construction of the associated automaton (one of Mg,
Apr or ME), and the initialisation of its data structures prior
to the evaluation of the conjunct. We discuss each here.

In all cases, an automaton (NFA) My is first constructed
from regular expression R using standard techniques. Then,
if the conjunct is prefixed by APPROX or RELAX in the
query, additional transitions and states are added (see [18]),
along with the removal of e-transitions, to form Ar or M5
respectively. As the automaton is weighted, the removal of
e-transitions may result in final states having an additional,
positive weight [5]. For state s, we denote this weight by
weight(s). The NFA is represented as a set of transitions
(s,a,c,t), where s is the ‘from’ state, ¢ is the ‘to’ state, a is
the label, and c is the cost.

If the conjunct is APPROXed, the insertion edit opera-
tion would result in many additional transitions in the NFA,

one for each label in ¥ U {type} and their reversals. To make
our automaton more compact, we represent these as a single
transition labelled by the wildcard label .

In all cases, if X (respectively, Y) is a constant ¢, we
annotate the initial (resp. final) state with ¢; otherwise we
annotate the initial (resp. final) state with the wildcard
symbol matching any constant.

The pseudocode for the initialisation of a conjunct is given
in the Open procedure below. After constructing the ap-
propriate automaton, the procedure evaluates the conjunct
by traversing the automaton and the data graph simulta-
neously. This traversal is represented by tuples of the form
(v,n,s,d, f), where d is the distance associated with visiting
node n in state s having started from node v, and f denotes
whether the tuple is ‘final’ or ‘non-final’ (see below).

The tuples are added to and removed from a dictionary
Dpr whose key is an integer-boolean variable (where the in-
teger portion represents a distance and the boolean portion
represents the final or non-final tuples at that distance). The
value associated with each key is a linked list of tuples. Tu-
ples are always added to, and removed from, the head of a
linked list (at cost O(1)). We introduced the notion of fi-
nal and non-final tuples in order to prioritise the removal of
‘final’ tuples (rather than ‘non-final’ ones) at the minimum
distance (if any), so that answers may be returned earlier.
Including this refinement improved the performance of most
of our queries, and also ensured that some queries, which
had previously failed by running out of memory, completed.

Procedure Open

Input: query conjunct (X, R,Y)

(1) construct NFA Mpg for R; initial state is so
(2) transform Mg into Ar (APPROX) or Mj (RELAX) if
necessary
(3) visitedr < 0
@) d<« 0
(5) if congunct is of the form (C, R,7X) then
(6) //Let n be the node in G corresponding to C'
1) if RELAX is being applied then
(8) foreach node m € GetAncestors(n) do
9) L L add(Dg, (m,m, so,d, false))
(10) else
(11) L add(Dg, (n,n, so,d, false))
(12) else
(13) //the conjunct is of the form (?X, R,?Y)
(14) if so is final then
(15) if weight(so) = 0 then
(16) foreach node n in G do
@an) L L add(Dg, (n,n, so, d, true))
(18) else
19) foreach n € GetAllNodesByLabel(so) do
(20) L L add(Dg, (n,n, so,d, false))
(21) else
(22) foreach n € GetAllStartNodesByLabel(so) do
(23) L add(Dg, (n,n, so,d, false))

L. sparsity-technologies.com/downloads/UserManual.pdf
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We distinguish between 3 cases in the Open procedure:
(Case 1) If the conjunct is of the form (C, R, ?Y’) where C



is a constant, we begin the traversal at the node in G having
the attribute value C.

(Case 2) A conjunct of the form (?X, R, C) is transformed
to (C,R™,7X), where R~ is the reversal of R. This reversal
can be accomplished in linear time starting from the NFA
for R [23]. Thus, Case 2 reverts to Case 1.

Procedure GetNext(X, R,Y)

Input: query conjunct (X, R,Y)
Output: triple (v, n,d), where v and n are
instantiations of X and Y

(1) while nonempty(Dr) do

If the conjunct has the RELAX operator and C is a class @ f”’ ™S d, final) + remove(Dr)
node, we also add to Dr every node returned by Get Ancestors ®) if f 'mal tjhen ,
(line 8). This function returns all superclasses of C' in order ) if Ad’.(v,n,d) € answersp, then
of increasing specificity so that they are added to the list in () L append (v, n, d) to answersp
Dpg in that order. We want to process more specific classes ©® B return (v,n, d)
first, given that nodes representing more general classes will 7 else
have larger degree (owing to transitive closure) and will lead (8) if (v,n,s) € visitedr then
to answers of greater cost. (9) add (v,n, s) to visitedr

(Case 3) For a conjunct of the form (?X, R, 7Y), lines 14 4
to 23 are invoked. The function GetAllNodesByLabel (line  (10) foreaclll = (s',m) € Succ(s,n) s.t.
19) takes as input a list of all labels on transitions whose (v,m, ") & ViSited/R do ,
“from’ state is the initial state so. Each label in the list is (1) L add(Dg, (v,m,s',d+d', false))
then processed as follows: (i) the directionality of the labelis  (12) if s is a final state and its annotation
determined — i.e. whether it is an incoming or an outgoing matches n and Ad'.(v,n,d’) € answersp
edge, or whether both incoming and outgoing edges are re- then
quired (as for the *-labelled transitions, introduced above);  (13) L add(Dg, (v,n, s,d + weight(s), true))
(ii) the set of object identifiers (oids) for the nodes having L =
the relevant edge and directionality are retrieved using the (14) //Incrementally add the next batch of initial nodes
Sparksee methods Heads, Tails and TailsAndHeads; (iii) (15) if no distance 0 tuples in Dr and more initial nodes
Sparksee set operations are used to maintain a distinct set available then
of nodes, so that the same node is not re-added to Dr at  (16) foreach initial node n' do
a higher cost (this can occur with the ‘*’ label); and (iv) (17) L L add(Dr, (n’,n’, 50,0, false));
the remaining nodes in the graph G are returned. When L
adding to Dgr, we iterate through the set of nodes in order  (18) return null

of decreasing cost. The function Get AllStartN odesByLabel
(line 22) is identical to GetAllNodesByLabel, except that
it does not include step (iv).

We have implemented the above two functions and that
retrieving all nodes in G (line 16) as coroutines in conjunc-
tion with the Get Next procedure (discussed in Section 3.4),
incrementally obtaining nodes in batches (the default is 100
nodes at a time). We found that, as a result, the execution
time of some queries was reduced by half, since nodes not
required to answer the user’s query are not added to Dg.

3.4 Query conjunct evaluation

The two algorithms concerned with the evaluation of a
single query conjunct are GetNext and Succ, which have
previously been presented in [9, 18]. We now describe our
physical implementation of these algorithms.

GetNext returns the next query answer, in order of non-
decreasing distance from the original query @, by repeatedly
removing the first tuple (v, n, s, d, f) from the distance d list
of Dr until Dg is empty. If the removed tuple is final (f
is true) and the answer (v,n,d’) has not been been gener-
ated before for some d’, the triple (v,n,d) is returned after
being added to answersg. If the tuple is not final, we add
(v,m, s) to visitedr, and add (v, m,s’,d+d’, false) to Dg

for each transition %> (s’,m) returned by Swucc(s,n) such
that (v,m,s’) ¢ visitedg. If s is a final state, its annota-
tion matches n, and the answer (v,n,d’) has not been been
generated before for some d’, then we add the weight of s to
d, mark the tuple as final, and add the tuple to Dg.

For visitedr, we use a hashed set which has O(1) lookup
time. Lines 8 and 9 in practice are executed as a single
step, and the logic in lines 10 to 13 is only executed if the
item was added. This means that we never re-process a
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previously-processed (v, n, s) triple; this situation may arise
when (v,n,s) triples of monotonically-increasing distances
are created and added at lines 11 and 13 (we therefore never
process ‘duplicate’ tuples at a higher distance).

In lines 15 to 17, we utilise a coroutine for (?7X, R,?Y)
conjuncts. If Dr no longer contains any tuples at distance
0, we retrieve and add the next batch of initial nodes from
the functions initially invoked in the Open procedure.

The Succ function takes as input a node (s,n) of the
weighted product automaton Hpr and returns a set of of

transitions % (p, m), such that there is an edge in Hg from
(s,m) to (p,m) with cost d. The function NextStates(s)
returns the set of states reachable from state s on reading
some label, along with the associated costs. We only re-
trieve those edges for node n in G whose label corresponds
to one of those returned by NextStates(s), thereby using
the transitions in the automaton to guide the selection of
neighbouring nodes in G.

NeighboursByFEdge takes as input the oid of a node n
from G and a label, and returns a list of neighbouring node
otds. If the label is not ‘*’, we invoke the Sparksee method
Neighbors in order to retrieve all neighbouring nodes for n
connected by an edge labelled with label, taking direction-
ality into account. If the label is “*’) we invoke Neighbors
once for edges labelled ‘edge’ and once for edges labelled
type. We do this for both directions in both cases.

In each case, we iterate over the neighbouring nodes, adding
their oid to W (lines 7 and 8). As it is possible for NextStates
to return identical labels consecutively (at the same cost), we
store the results of NeighboursByEdge for new labels in a



Procedure Succ(s,n)

Input: state s of NFA and node n of G

Output: set of transitions from (s,n) in Hg
W0, U<« 0

currlabel < null; previabel < null

foreach (label, successor, cost) € NextStates(s) do
currlabel < label

(1)
(2)
(3)
(4)

(5)
(6)

(7)
(8)
(9)
(10)

if currlabel # prevlabel then
L U <+ NeighboursByEdge(n, label)

foreach node m € U do

L add the transition %’ (successor, m) to W

| prevlabel < currlabel

return W

Class hierarchy Depth | Average fan-out
Episode 2 2.67

Subject 2 8
Occupation 4 4.08
Education Qualification Level 2 3.89
Industry Sector 1 21

Figure 2: Characteristics of the class hierarchies.

set U (line 6), avoiding identical calls to NeighboursByFEdge.

4. PERFORMANCE STUDY

In this section, we present performance results from two
case studies. We also discuss two optimisations, showing
how each results in improved performance for some of the
APPROX/RELAX queries. All experiments were run on an
Intel Core i7-950 (3.07-3.65GHz) with 6GB memory, running
Windows 7 (64 bit).

4.1 L4All Case Study

Our first case study uses data from the L4All project [17].
Briefly, the L4All system aimed to support lifelong learn-
ers in exploring learning opportunities and in planning and
reflecting on their learning. The system allows users to cre-
ate and maintain a chronological record — a timeline — of
their learning and work episodes. Each episode is (i) linked
to an Episode category by an edge labelled type, (ii) linked
to other episodes edges labelled ‘next’ or ‘prereq’ (indicating
whether the earlier episode simply preceded, or was neces-
sary in order to be able to proceed to, the later episode),
and (iii) linked to either an occupational or an educational
event, by means of an edge labelled ‘job’ or ‘qualif’, which in
turn is classified in terms of Education Qualification Level
or Industry Sector, respectively.

Figure 2 shows the class hierarchies used in the ontol-
ogy accompanying the data; the depth is the length of the
longest path from the root to the leaf nodes, and the av-
erage fan-out is the average number of children of each
non-leaf class. There is only one property hierarchy: the
super-property ‘isEpisodeLink’ has ‘next’ and ‘prereq’ as
subproperties. These properties also have defined domains
and ranges, but as these are not used in the our performance
study, we do not discuss them further.

Our initial data comprised five detailed timelines from real
users, to which we added 16 additional realistic timelines.
Each of these timelines consisted of a mixture of educa-
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L1 L2 L3 L4
Nodes 2,691 15,188 68,544 240,519
Edges 19,856 | 118,088 | 558,972 | 1,861,959

Figure 3: Characteristics of the L4All data graphs.

Q1 (Work Episode, type , 7X)

Q2 (Information Systems, type .qualif , ?X)

Q3 (Software Professionals, type .job™ , 7X)

Q4 (7X, job.type, 7Y)

Q5 (?X, next+, ?7Y)

Q6 (?X, prereq+, ?Y)

Q7 (?X ,next+| (prereq+.next), ?7Y)

Q8 (Mathematical and Computer Sciences, type.prereq+, 7X)
Q9 (Alumni 4 Episode 1_1, prereqg*.next+.prereq, 7X)

Q10 | (Librarians, type , ?7X)

Q11 | (Librarians, type .job™ .next, ?X)

Q12 | (BTEC Introductory Diploma, level .qualif  .prereq, 7X)

Figure 4: The L4All query set.

tional and occupational episodes, and varied in terms of the
number of episodes contained within them, as well as the
classification of each episode.

We then scaled this data graph up by creating synthetic
versions of the real timelines in order to obtain four data
graphs of increasing size, called L1 (143), L2 (1,201), L3
(5,221) and L4 (11,416), where the number in brackets refers
to the number of timelines. Figure 3 shows the characteris-
tics of each data graph. The synthetic timelines were gener-
ated by duplicating a real timeline and using the ontology to
alter the classification of each episode to be a ‘sibling’ class
of its original class, for as many sibling classes as are present.
Each duplicated timeline remained identical to the original
in terms of the number of episodes, whether the type of the
episode was educational or occupational, and the manner in
which episodes were linked to each other. Thus, as the data
graph increases in size, the degree of the class nodes (i.e.
the nodes with incoming type edges) increases linearly. As
the data graph size increases, the total number of edges also
increases linearly with the number of nodes.

We execute a series of single-conjunct queries on this data
in order to evaluate the performance of our APPROX and
RELAX operators, shown in Figure 4. These 12 queries in-
clude actual queries used in the original L4All case study,
as well as others designed to stress test our implementation.
Each query is first run in ‘exact’ mode — i.e. neither AP-
PROX nor RELAX is used — followed by versions of the
same query containing either the APPROX or the RELAX
operator. We therefore run 36 queries in total.

We used a cost of 1 for each approximation operation (in-
sertion, substitution and deletion). For RELAX, we applied
rules of type (i) (see Section 2), also at a cost of 1. We ran
each query five times, discarding the first run as the cache-
warm-up. After initialisation, each exact query was run to
completion, in which all results are obtained. On the other
hand, each APPROX and RELAX run comprises the follow-
ing sequence: initialisation; obtain results 1-10 (‘batch 1°);
obtain results 11-20 (‘batch 2’); ...; obtain results 91-100
(batch 10). For exact queries, the average time to return all
answers was taken across runs 2 to 5. For APPROX and RE-
LAX queries, we took the average of each of the 10 batches
across runs 2 to 5 to obtain an average for each batch. We




Q3 Q8 Q9 Q10 Q11 Q12
L1l: Exact 58 0 1 1 2 0
L1: APPROX 100 100 100 100 100 100
1 (42) | 2 (100) 1 (32) 1(7) | 1(12) | 1 (100)

2 (67) 2 (92) 2 (86)
L1l: RELAX 100 0 12 100 100 59
1 (42) 1 (11) 1 (20) 1 (40) 1 (59)

2 (20) | 2 (40)

3 (59) 3 (18)
L2: Exact 1,090 0 1 1 2 0
L2: APPROX 100 100 100 100 100 100
2 (100) | 1 (32) 1(7) | 1(12) | 1 (100)

2 (67) | 2 (92) | 2 (86)
L2: RELAX 100 0 12 100 100 59
1 (11) 1 (20) 1 (40) 1 (59)

2 (20) 2 (40)

3 (59) 3 (18)
L3: Exact 3,104 0 1 1,024 2,048 0
L3: APPROX 100 100 100 100 100 100
2 (100) | 1 (32) 1 (100)

2 (67)
L3: RELAX 100 0 12 100 100 59
1 (11) 1 (59)
T4: Exact 3,104 0 T 1,024 2,048 0
L4: APPROX 100 100 100 100 100 100
2 (100) | 1 (32) 1 (100)
2 (67)

L4: RELAX 100 0 12 100 100 100
1 (11) 1 (100)

Figure 5: Results for each query and data graph.

then computed the average over all batches. Some of these
queries yielded fewer than 100 results.

We show the number of results obtained for queries 3, 8,
9, 10, 11 and 12 per data graph in Figure 5. Queries 1 and 2
showed similar performance to Query 3, while queries 4-7 all
returned well over 100 exact results on all the data graphs,
thus negating the need to apply APPROX and RELAX to
them for the purposes of this performance study. For AP-
PROX and RELAX queries yielding non-exact answers, we
also show in Figure 5 the distances of the non-exact answers,
as well as the number of the answers at each non-zero dis-
tance in brackets (with the number of exact answers com-
prising the difference). For example, query Q9/APPROX
on data graph L2 returns 1 exact answer (100-(32467)), 32
answers at distance 1 and 67 answers at distance 2.

Figures 6, 7 and 8 show the average execution times for
the exact, APPROX and RELAX versions, respectively, of
queries 3, 8, 9, 10, 11 and 12 over the data graphs L1-L4.
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/4 e

01 7(, —e—Q12-€

Figure 6: Execution time (ms) — exact queries.

For the exact queries, we see that queries 8 and 9 take
constant time for all the data graphs since at most a single
answer is returned. The jump in execution time from L2
to L3 for queries 10 and 11 is caused by the large increase
in the number of answers; similarly for query 3. Query 12
shows a steep increase owing to the manner in which the syn-
thetic timelines were generated, giving rise to the processing
of nodes of ever-increasing degree. We note that the perfor-
mance of all the queries is competitive with the expected
behaviour of native NFA-based approaches to regular path
query evaluation [11].
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Figure 7: Execution time (ms) — APPROX queries.
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Figure 8: Execution time (ms) — RELAX queries.

For the APPROX queries, queries 10 and 11 show a de-
crease in the time taken for L3 and L4 compared with L2
which is caused by the fast processing of sufficient exact re-
sults for the larger two data graphs; similarly for query 3.
However, the APPROX versions of queries 8, 9 and 12 ex-
hibit an exponential increase in time taken to retrieve the
top 100 results. This is caused by a large number of inter-
mediate results being generated (due to the Succ function
returning a large number of transitions which are then con-
verted into tuples in GetNext and added to Dr). We discuss
optimisation of query 9 in Section 4.3. Regarding queries 8
and 12, the time for query 8 decreased from 332ms to 272ms
by applying the first optimisation of Section 4.3. Query 12
was not aided by the optimisations of Section 4.3.

The RELAX queries 3, 8, 9, 10 and 11 all exhibit a fairly
constant execution time across the data graphs. Query 12
shows an increase from L3 to L4 for a reason similar to that
for its APPROX version.

4.2 YAGO Case Study

For our second case study, we used data from YAGO [10].
The connectivity patterns in YAGO differ from the rather
‘linear’ timelines comprising the L4All data, so provide a
contrasting basis on which to evaluate query performance.
Additionally, the YAGO ontology differs from the L4All one
in terms of its breadth and depth.

We downloaded the simpler taxonomy and core data facts
from the YAGO website (the SIMPLETAX and CORE por-



Q1 (Halle_Saxony-Anhalt, bornIn™ .marriedTo.hasChild, 7X)
Q2 (Li_Peng, hasChild.gradFrom.gradFrom™ .hasWonPrize, 7X)
Q3 | (wordnet_ziggurat, type .locatedIn™ , ?X)

Q4 | (7X, directed.married.married+.playsFor, ?7Y)

Q5 | (?X, isConnectedTo.wasBornIn, ?7Y)

Q6 | (?X, imports.exports , 7Y)

Q7 | (wordnet_city, type .happenedIn” .participatedIn™ , 7X)
Q8 | (Annie Haslam, type.type .actedIn, ?X)

Q9 (UK, (livesIn™ .hasCurrency) | (locatedIn™ .gradFrom), 7X)

Figure 9: The YAGO query set.

[ [ Q2] Q3 | Q4 | Q5 | Q9 |
Exact 2 0 0 0 0
APPROX 100 100 7 7 100

1 (98) 1(5) 1 (100)

2 (95)
RELAX 2 100 0 100 100
1 (100) 1 (100) | 1 (100)

Figure 10: Query results for the YAGO data graph.

tions) and imported these into our system?. The resulting
data graph consists of 3,110,056 nodes and 17,043,938 edges.
There is only one classification hierarchy in YAGO; its depth
is 2 and average fan-out is 933.43.

Including the type property, YAGO uses 38 properties.
There are two property hierarchies, containing 2 and 6 sub-
properties respectively. The properties also have domains
and ranges defined, not used in our performance study.

The queries we ran on the YAGO data are listed in Fig-
ure 9. The exact, APPROX and RELAX versions therefore
give rise to 27 queries, for which we calculated the timings as
described in Section 4.1, with the edit and relaxation costs
the same as those used for the L4All case study.

The number of results obtained for queries 2, 3,4, 5 and 9
for the YAGO data graph are shown in Figure 10. For each
query, the exact version was run to completion, and the
APPROX and RELAX versions were run until the top 100
answers were retrieved. The ‘7’ indicates instances where
the system ran out of memory and hence failed without re-
turning any answers. Query 1 showed a similar performance
to query 2; query 6 is similar to queries 4 and 5 in terms of
query structure, but it terminated, unlike these; and queries
7 and 8 returned well over 100 exact results, therefore negat-
ing the need for APPROX and RELAX.

Figure 11 shows the average execution times for queries 2,
3,4, 5 and 9. For the exact queries, queries 2 and 3 execute
quickly. Queries 4 and 5 take longer to execute because their
conjuncts are of the form (?7X, R,?Y). Hence processing is
initiated from a large number of nodes (41,811 and 33,834
respectively), and further traversal leads to large numbers
of intermediate results; query 9 behaves similarly.

APPROX queries 2 and 3 exhibit poor performance due to
a large number of intermediate results, while query 9 takes
the same time as the exact version; we discuss these further
in Section 4.3. Queries 4 and 5 failed to terminate as the
system ran out of memory; this, too, is due to a large number
of intermediate results.

RELAX queries 2, 3 and 9 performed competitively, re-
turning more results for the latter two than their exact coun-
terparts. Query 4’s time was the same as for the exact ver-

http://www.mpi-inf.mpg.de/departments /databases-and-
information-systems/research /yago-naga,/yago/downloads/
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Figure 11: Execution times (ms), YAGO data graph.

sion (with no extra results). Query 5 returned results and
executed faster than the exact version; this is due to 100
results being found (by the application of rules of type i)
and execution terminating sooner.

4.3 Query execution optimisations

In this section we outline two optimisations which may
improve the performance of APPROX and RELAX queries.

Retrieving answers by distance: We have implemented
a distance-aware mode of query execution for APPROX and
RELAX queries in order to prevent the unnecessary process-
ing of data which yields answers at a cost higher than that
required by the user. For example, if the user requests the
top 100 answers in cases where there are over 100 answers
at cost 0, using transitions of greater cost to traverse G and
add tuples to Dg results in a slower query execution time
overall, owing to the processing of redundant data.

We set a current maximum cost, 1, to be 0 initially. No
tuple having a cost greater than zero is processed (i.e. added
or removed from Dg), and all answers of cost 0 are returned.
Should more answers be required, we then increment ¥ by
the smallest cost, ¢, of the edit or relaxation operations be-
ing applied. For each successive value of i, query evaluation
commences from the beginning, as all tuples having a cost
¢ < 4 need to be considered (so this method is not suitable
in cases where answers at high cost are required) but no
tuple having a cost greater than 1 is processed.

Using distance-aware retrieval substantially improves the
performance of some APPROX queries. For example, L4All
queries 3 and 9 run three to four times faster with this opti-
misation. YAGO query 3 executes twice as fast, while query
2 takes 0.6ms instead of 2560ms, a dramatic improvement.

Replacing alternation by disjunction: Another op-
timisation for APPROX queries we have implemented is to
decompose the NFA for a regular expression R = Ri|Rz]|...
into sub-automata NFA; for each R;, providing the NFA
has a single start state. These are processed in default or-
der (NFA;, NFA,, ...) for the distance 0 answers, and we
store the number of answers returned in each case, ng ;. To
compute the answers at distance ¢, we evaluate the sub-
automata by increasing no,; value. In general, to compute
the answers at distance k¢, we evaluate the sub-automata
by increasing n(x—1)¢,; value.

For example, applying this to YAGO query 9, results in
the sub-automata NFA; for (UK, livesIn™ .hasCurrency,
7X) and NFA; for (UK, locatedIn™ .gradFrom, 7X).NFA;
the returns the least answers at distance 0, so this is pro-
cessed first for the distance 1 answers. This reduces the
query execution time to 12.65ms compared with 101.23ms.



5. RELATED WORK

In this section we briefly review previous work on the im-
plementation of regular path queries.

[11] presents a technique for the evaluation of exact queries
which takes advantage of rare labels in a graph. A query
containing one or more rare labels is broken down into a set
of sub-queries such that each sub-query begins or ends with
a rare label. Their method, using a bi-directional search
utilising graph indexes, is shown to be faster than other
automaton-based implementations. Our exact queries per-
form favourably compared with the results in [11].

[22] presents RPL, a regular path language for RDF data,
whose implementation, like ours, uses an automaton-based
approach. However, RPL is only able to process very small
graphs efficiently [11].

[4] describes a framework allowing weighted RDF data to
be queried in a cost-aware manner, and returning results
ranked according to cost. This is accomplished by an ex-
tension to SPARQL, SPARankQL, encompassing the provi-
sion of novel predicates for expressing flexible paths between
nodes and the capacity to define ranked queries (in which the
weights are used). Our work allows the path to be expressed
by a regular expression which may be mutated by edit op-
erations, whereas SPARankQL can only be used to express
either no restrictions on paths from a node or restrictions on
specified labels of the path. The data graphs used in their
performance study have, respectively, 9K nodes (24K edges)
and 10K nodes (25K edges), and are both smaller and more
sparse than our L2 graph.

[6] discusses a SPARQL query graph model using trans-
formation rules to rewrite queries. Experiments are run on
RDF graphs of increasing size, with the largest comprising
1,272K triples. The rewritten queries run approximately
twice as fast as the original ones. We do not yet make use
of query rewriting, which is an area of future work.

6. CONCLUSIONS

Building on previous work on combining approximation
and relaxation for regular path queries [18, 17], we have pro-
vided a detailed description of our implementation, Omega,
focussing on low-level data structures and physical optimisa-
tions, both in terms of the interaction with the graph store,
Sparksee, and our query processing layer within Omega.

We have presented a comprehensive performance study,
using large graphs consisting of real-world data, in which
we show that our baseline implementation performs compet-
itively in terms of exact regular path queries. The benefits
of our APPROX and RELAX operators have been shown
in terms of additional answers being returned for queries re-
turning few or no answers for the exact version. Many of the
APPROX and RELAX queries executed quickly, but some
either failed to terminate or did not complete within a rea-
sonable amount of time. We discussed the reasons for this in
each case, and showed how further optimisations, such as re-
trieval by distance and replacing alternation by disjunction,
enabled several queries to execute faster.

For future work, we will consider the use of disk-based
data structures to guarantee the termination of APPROX
queries with large intermediate results (such as YAGO queries
4 and 5). We will also investigate using characteristics of
the data graph and heuristics to reduce the amount of un-
necessary processing. Other promising directions are query

rewriting, and leveraging rare labels as in [11]. Distributed
approaches [8, 19] are also relevant for flexible querying
of larger-scale graphs than we have considered in our cen-
tralised approach so far.
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ABSTRACT

Graph analysis is an essential tool to understand natural
and man-made networks, such as social networks, food webs,
transportation infrastructures, etc. Although graph analysis
has fomented the development of algorithms, visual tools,
and distributed processing frameworks, there is still little
support for analysis at the query language level. Current
graph query languages are mostly concerned with flexible
matching of subgraphs, while graph processing frameworks
are mostly concerned with fast parallel execution of instruc-
tions.

Our goal is to provide analysis capabilities at the language
level, allowing more interactive and explorative query-based
analysis. In this paper, we present our ongoing efforts to-
wards a relational algebra extension that offers an operator
for graph-based data aggregation. The beta () operator is
composed of four suboperators, which are used to control
the path-based aggregations. The [-algebra allows seamless
composition of queries that mix relational and graph-based
aspects.

Here we introduce our current algebra and provide examples
of its use. We also show how we are using the analysis
strategy in query scenarios. Since the algebra-based query
scenario allows for execution plan rewritings, we also discuss
our first efforts on equivalence rules for query optimization.

Keywords
Graph algebra, relational algebra, Complex Networks, graph
data models, graph query languages

1. INTRODUCTION

Graph analysis has become an important tool in diverse
fields. Social, transportation, communication, and biolog-
ical networks are examples of information often organized
as graphs, which require specific tools and algorithms for
proper data analysis.
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The area of Complex Network Analysis [6] has advanced
in the last decades and has produced several models, algo-
rithms and techniques to study natural and human-made
networks. In terms of database support, there has been
a strong acceleration in the usage of graph databases and
query languages, as well as in the development of the under-
lying algorithms and mechanisms. There is, however, still
a big gap between graph query languages and the analysis
techniques. Current graph query languages offer little sup-
port for the type of analysis required for complex networks.
Such a gap is not present, for example, in traditional rela-
tional databases, which support query languages that offer
aggregation operations that are the basis of more sophisti-
cated multidimensional analysis.

Our goal is contributing towards bridging this gap. We aim
at developing data management and querying mechanisms
that offer a better support for network analysis. In this pa-
per, we present our first steps towards creating an algebra
that offers a graph-based aggregation operation. We expect
this algebra to be the basis of more expressive queries, sup-
porting declarative and interactive graph data exploration.

Our proposed algebra is based on Codd’s relational algebra
[4]. This has several advantages: (i) it provides a well estab-
lished theoretical basis; (ii) it allows the combination of tra-
ditional relational operations alongside our proposed graph
operation; (iii) it is a de facto standard in database research.
Having an underlying algebra allows a better understanding
of the semantics of the query language and, most impor-
tantly, allows the definition of rewriting rules for execution
plan optimization. As an extra benefit, relational algebra
compatibility also simplifies implementation in current rela-
tional database systems.

In simple terms, our goal with the algebra is to provide
graph-based aggregation of values. The core of our pro-
posal is the beta (3) operator, which encapsulates the graph
traversal procedure and allows parametric control over the
aggregation of values. We see graph-based aggregation as
a generalization of relational aggregation over sets. Consid-
ering that most useful relational aggregations perform joins
before applying an aggregation operation, we adopt this pat-
tern of first deriving relationships between the data (joins or
graph traversals) and then aggregating the values as the ba-
sis for our new constructor.

Combining the advantages of relational query languages and



graph analysis, the proposed algebra allows the construc-
tion of queries involving subgoals such as: obtain a sub-
graph based on given nodes properties and edge labels; cal-
culate the reputation of the nodes in the subgraph; combine
the reputation and the average distance to a given refer-
ence node in the general graph; order the resulting nodes
based on the final score. In our envisioned scenario, such
queries would be starting points for deeper explorative anal-
ysis, with goals such as: analyze the average node degree for
the top-k nodes returned in the query; obtain the average
value for a certain attribute for the bottom-k scoring nodes,
etc.

This paper is organized as follows: Section 2 describes re-
lated work and fundamental concepts. Section 3 presents the
definition of our algebra alongside with query and execution
examples. Section 4 briefly describes our current approach
for querying and initial query rewriting rules for execution
plan optimization. Finally, Section 5 concludes the paper.

2. RELATED WORK

There is great diversity of graph query languages, which have
pushed the boundaries for more expressive constructors [16].
Graph query languages are often based on conjunctive regu-
lar path queries (CRPQs). CRPQs are the basis for several
graph languages, such as GraphLog [5] and SPARQL'. Re-
cent developments have extended CRPQs in order to allow
constraints over path properties. These types of queries have
been described as extended conjunctive regular path queries
(ECRPQs) [2]. ECRPQs also allow paths to be returned as
query results. These queries are all focused on data selection
and support only the simplest cases of analysis.

Query languages such as in GID [15] allow ranking based on
pre-calculated metrics of importance which capture the dy-
namics of a snapshot of the network. Our goal is to enable a
higher level of on-demand analysis in graph query languages.
To that extent, we are working towards an algebra that can
handle graphs and aggregations over paths. The goal is to
use this algebra to build more flexible query languages.

Several algebras that support graphs have been proposed.
To our knowledge, the algebra that is closer to our goals
is the alpha-algebra [1], which also serves as inspiration for
the name of our operator. The alpha operator derives the
transitive closure for tables that express self-relationships —
e.g. CONNECTS(from, to, distance). The algebra supports
aggregation and filtering over paths through the delta (A)
attribute, which is an internal relation containing each path
history in the result set. Conceptually, the alpha operator
has two main characteristics that make it unsuited for our
needs: the operator always processes until reaching fix point,
and there is a single point for value aggregation. In our alge-
bra, we add more flexible stop conditions and split aggrega-
tion in four suboperations (Section 3). We also change the
underlying model and add several elements for querying con-
venience. The changes allow more analysis algorithms to be
represented in the algebra as well as providing more oppor-
tunities for optimization based on query rewritings (Section
4).

"http:/ /www.w3.org/TR/sparqll1-query
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Frasincar et al. [8] propose an algebra for RDF, with some
operators inspired by relational algebra. The algebra en-
ables both querying and construction of RDF models. Al-
though the algebra shares many of the goals in this paper,
the focus is on the complete RDF-S model, which incurs con-
siderable complexity when compared to our simpler graph
model. Most importantly, the proposed algebra does not
support graph-based aggregation, our main focus.

In a more recent and simpler proposal, Cyganiak [7] defines a
relational algebra for the SPARQL language over the RDF
model. The authors rely on a global reference table con-
taining RDF triples (subject, property, object) as basis for
the operations. We use a similar strategy for our underlying
model as we employ global tables for nodes and relationships
to represent the graph in the database. Their proposal, how-
ever, does not deal with aggregation or analysis issues.

The demand for graph analysis in large scale has motivated
the development of several frameworks for distributed com-
putation: Google’s Pregel, the first NoSQL implementation
in that scale, was followed by diverse proposals including
GraphLab [13] and GraphX?. These models focus on paral-
lelization of the API operations and do not provide declar-
ative languages as means for data querying. GraphX shares
some of our motivation since it aims at simplifying mixed
analysis that include graphs and relations. The focus is,
however, on general parallel computation and not on query-
ing. Our goal is to provide a higher level, declarative lan-
guage for graph querying and analysis, allowing a more in-
teractive and explorative interface with the user. Although
we are not concerned with distributed computation at the
moment, we believe that would be a natural evolution for
our framework.

The Complex Networks [6] field is a prominent area that
would benefit from query-base graph analysis. Complex net-
work formation is based on localized phenomena, which in
a global scale determines emergent behavior that cannot be
assessed based merely on the analysis of parts of the system.
The researchers employ a variety of models and algorithms
to derive knowledge from the structures. Among the fre-
quently used algorithms are the well known PageRank [3]
and HITS. Most of the analysis in the field is done using ad
hoc applications with no database support.

The algebra that we propose in this paper has been de-
veloped in the context of our Complex Data Management
System (CDMS) [11], which aims at providing a database-
like framework for complex network analysis and manage-
ment. Appropriate query languages (and underlying alge-
bras) would allow a more fine-grained, exploratory and in-
teractive interaction with the networks.

3. THE BETA-ALGEBRA

In this section we describe the requirements for our algebra
and present the beta operator alongside example queries.

3.1 Requirements
The basic requirements for the proposed algebra are:

*https:/ /spark.apache.org/graphx/



Allow traditional relational aggregation: given the widespread
use and familiarity with relational database queries, it is im-
portant to build on and leverage this foundation. Moreover,
a graph analysis workflow often contains routines that are
typically relational (counting, ranking, statistics, etc).

Enable aggregation over path traversals: Most graph analysis
tasks involve aggregating values along graph traversals. It
is important to allow flexible and case-specific aggregation
functions that are applied as the graph is traversed.

Preserve the closure of relational algebra: It is important
that the aggregation operates over and produces relations.
This allows compatibility with relational algebra properties
studied for decades, as well as making the language more
flexible and composable.

Support flexible selection of nodes of interest: To enable ex-
plorative analysis over graph data it is important to have
efficient means to filter nodes and relationships that are to
be part of the analysis. A declarative language would natu-
rally allow this type of flexibility.

Offer means to express subgraphs to constrain the analy-
sis: Currently, most complex networks analysis is done over
graphs as a whole. We believe this is highly associated with
a lack of convenient means to select a subgraph of interest
and apply the analysis over the selection. An appropriate
algebra needs to enable graph-based constraints over the ex-
ecution of the algorithms.

Rewriting rules for cost-based optimization: One of the main
advantages of building query languages over an underlying
algebra is the possibility of rewriting the queries for faster
execution. Including graph-specific operations allows the
specification of semantically sound rewriting rules for the
graph setting.

Other requirements, not covered in this paper but that we
want to address soon are:

Include convergence criteria for operation termination: This
would allow the implementation of complete versions of pop-
ular graph analysis algorithms (e.g. PageRank).

Provenance/Path information for query results: Like in the
alpha algebra with its delta attribute, adding information
about paths traversed by the operations allows more flexi-
bility for query composition and allows optimizations such
as avoiding loops in graphs.

3.2 Data model

In this paper we use a simple interpretation of graphs in the
relational model. In this model, a labeled property multi-
graph® [14] G is represented in two relational tables, V (ver-
tices or nodes) and E (edges or links). The tables contain
attributes representing the properties for all nodes and edges
(typically highly sparse tables). The V table is in the form
(node, a1, asz...an), where node represents the node id in the
database, and a1, az...a, are node properties.

3a graph with labeled links and properties for nodes and
links
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actor

(5)
Good Will Hunting
year: 1997

Deconstructing Harl
year: 1997g v

Woody Allen
Dead Poets Society
year: 1989

Husbands and Wives
year: 1992

Francis Ford Coppola

Mia Farrow

Figure 1: Subgraph from a movies dataset

The E table is in the form (source,dest,label, a1, as...an).
source and dest are ids representing the connected nodes for
a given edge (the order implies the direction), label is the
label according to the labeled property graph model, and
the properties are as in the V' table.

This data model is the reference for the proposed algebra.
However, as with any other model, it does not impose im-
plementation constrains (e.g. it can be implemented over a
pure graph database and use efficient structures to represent
the sparse tables). Our own implementation stack does not
include any traditional relational component.

In the following paragraphs, the beta operator will be pre-
sented informally, in increasingly complexity as parameters
and suboperations are introduced. Since the operator can
be seen from either a graph or relational perspective, we will
use equivalent terms interchangeably (e.g. join and traversal
step). The semantics, however, is always relational.

3.3 The beta operator

Much like the alpha operator, the beta operator assesses
recursive relations in the database. However, the main goal
is not to derive transitive closure. Instead, the focus is on
data aggregation along the traversal of the relations. In
its simplest form, the beta operator performs a single join
between a single column source table and the table E. An
union operation is then applied to aggregate the original and
new nodes. For the sake of readability, we omit extra join,
projection, and renaming operations required to maintain
the original schema after the execution of the operator. In a
graph interpretation, the beta operator augments an initial
set of nodes with all of their neighbors. For example, based
on the graph in Figure 1, the beta operator applied to a
source table containing one column with node ids {9, 10}
would produce {9, 10, 3,1,4}. This operation is represented

as ﬁ(aide{9,1o}(v))~

In general, we represent the beta operator as nf,(R), with
p = (s, dir, set, map, reduce, update, C'). Several parameters
are used to control the behavior of the beta operator. s is
the join condition, which accepts Boolean expressions just
like its relational counterpart. n determines the number
of recursive calls to the operator (i.e. consecutive joins).
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Figure 2: Simplified execution tree template

dir € {inbound, outbound, both} determines the order of the
relations in the joins (or the direction of the graph traversal
operations). The optional parameter source determines, for
tables with more than one node column, the column over
which the beta operator operates (the default is the fist col-
umn).

The operator keeps the algebra closed since (i) it always pro-
duces a table with at least the same columns as the input
table, and (ii) it can be defined using standard relational
algebra with aggregation. The design choices (such as en-
capsulating the table E inside the beta operator) are for
convenience and to focus on what we think are the most im-
portant aspects of an aggregation operation. This aspect is
inspired by the introduction of the relation join that despite
being a redundant operation has directed the focus of the re-
search on properties and optimizations of a central element
of the model.

The most important elements of the beta operator are the
aggregation suboperations. To allow full control of the com-
putation as the graph is traversed, we define four operations:
set, map, reduce, and update. set is a function that at-
tributes a value to a new column before the join (traversal)
operation is performed. map calculates a new value based
on each node in the source relation. The new values are as-
sociated with the neighbors after the join operation. reduce
is a function that aggregates over values for the same source
node (equivalent to a group by). Finally, update redefines
the aggregation values for the source nodes before the union.
Figure 2 shows a simplified execution tree for the beta op-
erator. As an example, the query:

Otype=movie (Sﬂ(aid:1 (V) ) )7

with {set: dist=0, map: dist=dist+1,dir=both}, obtains
distances to movie nodes that can be reached from the initial
node 1 (director Woody Allen) in up to 5 steps. Figure 3
shows the partial tables after the suboperations for the first
iteration of the query. The query:
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Figure 3: Snapshots of the resulting tables inside the
beta operator for the first iteration of the example

query.

Otype=movie (5/3(0_&1:1 (V)))7

with {set: dist=0, map: dist=dist+1, reduce: dist=MIN(dist)}

obtains the minimum distances in the same setting.

Another parameter is the optional graph constructor C. Its
purpose is to specify the effective subgraph for the beta op-
erator, constraining the search space for the traversals. The
reference points for the constructor are the input nodes. C
has its own parameters: radius is the maximum distance
from the reference points; s is the edge selection expression
(similar to the join condition in the beta operator). Nodes
and links beyond the radius or that do not match the se-
lection are ignored by the beta operator. The addition of
the graph constructor in the algebra is also for convenience
sake. The same effect could be obtained by a series of joins
and selections over the E table. The query:

56(Jtype:movie(v))7

with {set: rank=1, map: rank=rank/|e.out()|,

reduce: SUM(rank), reset: rank = 0, C: {radius:3}}, is a
simplified PageRank algorithm executed for five iterations
(not until convergence) over a graph of radius 3 around the
source nodes in R. |e.out()| represents the number outbound
nodes (that can be obtained with traditional algebra aggre-
gation). If the number of source nodes is known and its
inverse is used in set function, the query obtains, for each
node in the constructed graph from C, the probability that
a random walker would stop at the node after five steps.

Other parameters and functionalities that we want to inves-
tigate are (i) specifying stop conditions for the beta oper-
ator, including simple test and convergence properties, (ii)
recording path traversal information in a delta attribute,
with functions that operate over it (similar to the alpha-
algebra), and (iii) a modifier equivalent to the SQL distinct,
that uses the delta attribute to avoid the computation of
cycles.

4. QUERYING AND OPTIMIZATION

In this section we present our initial attempts with query
language design and rule-based optimization.

4.1 Querying

We are developing the algebra presented here to support the
query language that we have been developing as part of our
CDMS system. The language that we are currently using is
an extension of popular graph queries as shown in Figure 4.
The language shows the type of queries we are envisioning,
although it is less expressive than the algebra that we are



SELECT DISTINCT ?actor WHERE {
?film movie:director director:1 .
?film movie:actor ?actor .
?film movie:initial release date ?date .
FILTER ( fn:starts-with(?date, "199") ) }
RANK BY RELEVANCE OF ?actor TO director:1

@

START diag=node(*)
WHERE has(diag.Type) and diag.Type = "Diagnose"
RETURN diag

RANK BY
%r RELEVANCE OF diag TO node( %p ) WEIGHTED,
%c CONNECTIVITY OF diag TO node( %p ) WEIGHTED

Figure 4: Query examples. a) extends SPARQL and
b) extends Cypher

proposing. We plan to design a more expressive language
following the definition of our algebra.

In the initial language, the graph-based aggregation is ex-
pressed in a RANK BY clause. The clause accepts met-
rics that aggregate values over graph traversals as in the
algebra presented. For example, Relevance is a generaliza-
tion of the notion of relevance in Information Retrieval, at-
tributing higher scores to elements that have multiple and
more specific connections (paths). This metric can be rep-
resented in our algebra by a beta operator with aggrega-
tion functions {set : score = 1,map : score (score *
0.9)/e.out(), reduce := SUM/(score)}. Details about the
metrics and queries can be found in [10].

Figure 4a shows a query that retrieves actors whose careers
are strongly correlated (relevant) with the director Woody
Allen (id 1). Based on the subgraph in Figure 1, Mia Farrow
would have a much higher score than Robin Williams. An-
other interesting query, that includes traditional relational
aggregation, would be to find the pair (actor, director) with
the maximum mutual relevance. This type of query would
be hard to express using current graph or relational queries.

Figure 4b shows a query that we used for a nursing diagnosis
task. Possible diagnosis are ranked based on their connec-
tions with the symptoms identified in the patients. This
query contains a combination of two different metrics (Rel-
evance and Connectivity).

4.2 Rewriting rules

An important motivation for introducing a new algebra is
to better understand the computation complexity and de-
fine rewriting rules for query optimization. This work is
still ongoing and we will only show some first examples for
illustration.

The first rule is about the bidirectionality of the analysis. A
beta operation that starts on a group of nodes and selects
another group of target nodes can be reversed (changing the
directions of the allowed edges). Reversing the direction can,
in certain cases, reduce the search space by avoiding dense
regions of the graph. For example, a three step undirected
traversal from node 1 to node 6 in Figure 1 visits 9 nodes,
while the traversal from 6 to 1 activates only 4 nodes. This
rule can be represented as:
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aa(B(0b(R))) = 0p(B(0a(R))), where B represents the 3 op-
erator with inverted directions (parameter dir). We are
omitting, for sake of simplicity, extra joins and renamings
that would make the outmost selections equivalent. We have
tested this strategy for the query in Figure 4a against a com-
prehensive movie database [12]. The execution was reduced
to half the time of the baseline query. The initial results,
using a different formalization, were published as a technical
report [9]. We still have to assess the subset of aggregation
functions that allow the use of this rule. In practice, this
rule requires cost-based planning, which we have not imple-
mented yet.

Another rule, regarding compositionability of operators, com-
bines aggregation functions that are applied over the same
data by different beta operators. It can be represented as:

0a(Bo(08(R))) ¥ 0a(By (04(R))) = 0a(Byay (0 (R))), where
p represents the tuple of aggregation functions for the op-
erator and p e p’ combines the respective functions. The
functions in p and p’ must not make conflicting operations
over the same attributes. We expect this type of rewriting
to be very common, as multiple metrics can be used for the
same target nodes (as in the query b in Figure 4). We have
not yet implemented this rule in the system.

We have also explored options for speeding up queries be-
yond rule-based rewritings. We have tested, with positive
results, caching paths between nodes for metrics that need to
traverse the paths in both directions. We also explored a few
query approximation strategies for specific metrics. These
experiments are also reported in [9]. Another possibility is
to materialize graphs constructed from the parameter C for
use in multiple beta operators in the same query (rewrit-
ing the execution tree to take advantage of the materialized

graph).

5. CONCLUSION

Graph analysis has become an important requirement in
a wide range of modern applications and research fields.
This type of analysis is currently highly specialized, employ-
ing ad-hoc applications or complex distributed frameworks.
Graph databases offer little support for graph-based aggre-
gations that would allow for query-based analysis.

Here we presented our ongoing work on the beta-algebra,
which is intended to allow graph-based aggregations for declar-
ative query languages. The algebra extends the relational
model to support graph traversals and allows the control of
several aspects of the aggregations.

We have shown examples of the use of the algebra and how
it fits in our broader goal of developing data management
and querying mechanisms specific for graph/complex net-
work analysis. Also, we presented initial tests and directions
for query optimization based on execution plan rewriting,
along with our preliminary experimental results.

Our algebra allows more expressive querying when compar-
ing to pure relation aggregation and CRPQs. The increased
expressiveness enables explorative analysis and more inter-
active data manipulation. It also enables seamless integra-
tion of relational and graph-based analysis, which is a com-



mon application scenario. We believe the algebra is a good
basis to build expressive query languages as well as useful
optimization strategies.

Ongoing and future work include the expansion of the alge-
bra to allow more flexible stop conditions (e.g. convergence),
accumulation of traversal history (such as with the delta at-
tribute in alpha-algebra), definition and tests of rewriting
rules, specification of a query language that can take full ad-
vantage of the algebra, and implementation of a distributed
query processor.
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ABSTRACT

Software models formalize the requirements, structure and
behavior of a system or application. They represent essential
artifacts that simplify the process of software development.
Software repositories have been developed to store models
in order to facilitate the reuse of know-how from software
projects; however, methods for searching these model repos-
itories are not very efficient. Specifically, while being more
scalable, general-purpose keyword search is not suitable for
model search because it does not consider the structure that
is inherent in software models: a good search algorithm
should consider the model structure as well as the knowl-
edge concentrated in the metamodel. On the other hand,
existing approaches that consider the structure while query-
ing software models are limited to only specific domains such
as Business Process Models (BPMs).

In this paper, we introduce MultiModGraph, an efficient
approach for indexing and searching model repositories. Mul-
tiModGraph preserves the model structure and metamodel
information by representing models as graphs. To enable ef-
ficient search, the approach employs multidimensional scal-
ing to approximately map vertices of the model graph to
points in space. We evaluate MultiModGraph both with
respect to speed and quality of results using a real-word
repository of web application models.

1. INTRODUCTION

Models facilitate software development in multiple ways:
They raise the level of abstraction to help deal with the in-
creasing complexity in software development; they help or-
ganizations improve source code quality and adapt faster to
changes in the requirements of a project; and they improve
communications within an organization. Models have a spe-
cific structure, which is expressed using a well-defined syntax
of a modeling language. Each modeling language conforms
to a metamodel, which defines the structure, semantics and
constraints for building a model [10].

Model repositories are used for storing collections of soft-

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0
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ware models. Most (model) repositories offer elementary
tools to search these collections of models, which is partic-
ularly important for model re-usability [12]. For example,
instead of designing a model from scratch, developers can re-
trieve an already existing modeling pattern (from the repos-
itory) and tailor it according to their needs to build new
software models. This can significantly improve the model
development process by decreasing its time and cost, while
at the same time improving its quality.

Broadly speaking, model repositories employ two tech-
niques for search: general-purpose keyword search [13], or
content-based search that incorporates the model structure
in the query [16, 19]. However, each technique has its short-
comings. While being more scalable, general-purpose key-
word search is not suitable for model search because it does
not consider the structure that is inherent in software mod-
els [2]. Furthermore, most keyword-based approaches allow
only exact matching of keywords, where a set of keywords is
matched against the models’ description (e.g. model element
labels). On the other hand, those approaches that consider
the structure while querying software models are limited
to only specific domains such as Business Process Models
(BPMs). In contrast, methods are needed that are (i) more
general, (ii) sensitive to the knowledge about the model
structure and (iii) are at the same time scalable. Specifi-
cally, these solutions should allow users to pose queries (to
the model repository) in the form of a model sketch, which
captures the intended requirements in a native modeling lan-
guage supported by the model repository. Then, the repos-
itory should rank and return a sub-collection of the “most
relevant” modeling patterns from these models.

In this paper, we propose an algorithm for efficient search
of Web Modeling Language (WebML') models, namely, Mul-
tiModGraph. The algorithm uses a representation of mod-
els as attributed graphs, which allows mapping of the model
structure and hierarchies among the model elements to a
graph. Queries, which represent model fragments, can also
be transformed into graphs, and they can be used for search-
ing similar models in a model repository. Our algorithm uses
multidimensional scaling to represent the graph vertices as
points in a multidimensional space. These points are used to
build an index that allows for efficient pruning during search.
This way, given a query vertex, those vertices in the graph
that are relevant to the query can be located efficiently (i.e.,
they correspond to points within a specified distance in the

1'WebML is a modeling language for Web application front-
ends, recently generalized into the OMG IFML standard
(www.ifml.org)



multidimensional space). Furthermore, the algorithm con-
siders neighborhood information for each graph vertex in or-
der to locally expand already matched vertices. Metamodel
information is incorporated in the search and indexing, as
well as in the ranking function which sorts retrieved models
with respect to their similarity.

The paper is organized as follows: Section 2 presents re-
lated work; Section 3 describes the WebML modeling lan-
guage and the process of model to graph transformation;
Section 4 gives the system architecture; Section 5 describes
the proposed approach; Section 6 illustrates our results, and
finally, Section 7 concludes and proposes directions for fu-
ture work.

2. RELATED WORK

Existing works can be classified into 3 areas: (i) keyword-
based model search, (ii) content-based model search, which
present specific techniques for search of models, and (iii)
graph databases whose indexing and querying approaches
can be employed for model search.

2.1 Keyword-Based Model Search

Keyword-based approaches for model search use a set of
keywords for querying models. Their main limitation is that
they do not consider the model structure in the query or the
hierarchies and relationships among model elements. Fur-
thermore, they return exact but not approximate matches
to the query, which may be relavant to the user.

Moogle [13] is a keyword-based model search engine that
uses metamodels to create indexes for the evaluation of key-
word queries. In comparison to our approach, Moogle sup-
ports only textual queries with just a simple filter on the
type of the model element to be returned. Another keyword
based search solution for WebML models is presented in [2].
It incorporates metamodel information in the search pro-
cess, used only in deciding how weights are assigned to dif-
ferent index terms. In contrast, MultiModGraph supports
relationships among model elements through graph model
representation, as well as some additional metamodel infor-
mation such as references to the Data Model.

2.2 Graph-Based Model Search

Existing approaches that rely on a graph-based repre-
sentation of models predominantly target Business Process
Models (BPM) and their corresponding notations. However,
BPMs are not as rich as WebML models in terms of syntax
and semantics. Moreover, they are not suitable for searching
large collections of models, since they only rely on a scan of
the set of models without any indexes. One example of such
technique is [6], which proposes discovering and ranking of
BPEL process models. This is achieved by using behavioral
similarity measure and a graph matching algorithm.

The approach in [16] retrieves process models by combin-
ing related pairs’ clustering and a set of metrics for compar-
ison of vertex labels. The main limitation of this approach
is that the similarity between two process models is mainly
based on the similarity of vertex labels rather than the struc-
tural similarity of the model graphs.

Some recent approaches [19, 8] exploit indexing for more
efficient retrieval of business process models. These indexes
are mostly feature-based, containing subgraphs that are most
representative features of the model graphs in the repository.
However, this type of indexing cannot be applied to models
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with complex metamodels, such as WebML.

In [2], we compare keyword-based approach with a graph-
based approach for searching web application(WebML) mod-
els, but we do not apply any indexing in the graph-based
approach.

2.3 Graph Databases

The approaches for indexing and querying that allow ef-
ficient search of large graph databases can be employed for
efficient search of models. NeMa (Network Match) [9] is
a neighborhood-based top-k subgraph matching technique
that uses a minimal cost function to evaluate a goodness of
a match. It considers structure and label similarities and
it uses a neighborhood-based vector index to improve effi-
ciency. Unlike NeMa, MultiModGraph uses different kind
of indexing based on multidimensional scaling. TALE (Tool
for Approximate Subgraph Matching of Large Queries Ef-
ficiently) [18] is a general tool for approximate subgraph
matching. It employs neighborhood-based indexing. TALE
allows for vertex mismatches and vertex and edge gaps. The
basic differences are that in MultiModGraph the queries are
small model fragments, and the graphs are attributed.

There also exist some approaches for search of attributed
graph databases [11, 20] whose graphs contain multiple la-
bels for both vertices and edges. Attributed graphs are used
to represent WebML models, because they exploit the rich-
ness of the WebML metamodel. These techniques for match-
ing attributed graphs use indexing methods that contain
neighborhood information for each vertex. MultiModGraph
also uses neighborhood information, but for a different pur-
pose, i.e., to expand the matching candidates. The main
limitation of these approaches is that they do not consider
approximate, but only exact graph matching.

3. BACKGROUND AND PRELIMINARIES

In this section, we give a brief introduction to WebML,
and describe the transformation from WebML models to at-
tributed graphs.

3.1 Web Modeling Language (WebML)

WebML is a Domain Specific Language (DSL) for design-
ing complex web sites [4], recently generalized into OMG
IFML standard. It consists of two parts (i) data model
and (ii) web model. The data model describes the data
requirements of an application, using entity-relationship no-
tation. The web model describes the organization of the
front-end interfaces of a web application. It contains three
main building blocks, namely pages, units and links which
are organized hierarchically into larger container elements
such as areas and site views. A site view represents a model
element that includes a well-defined set of requirements for
a specific category of users. Site views can contain areas,
container elements that cluster pages with a homogeneous
subject and can be nested recursively [3]. Pages are the ac-
tual interface elements delivered to the user and they contain
content units which represent atomic elements for specify-
ing the content of a web page. Another type of units is an
operation unit, contained in the areas and site views. Oper-
ation units denote operations on data or arbitrary business
actions; they can be activated as a result of a link naviga-
tion, performing manipulation with data, or execution of an
external service. Content and operation units are connected
by links. Links allow sequencing of units, passing parame-
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ters, navigating the hypertext front-end, changing the page
content or accessing a page.

Each WebML model has a structure determined by the
WebML metamodel, and an inherent hierarchy determined
by the container WebML model elements. Figure 1 shows an
example of a part of a WebML model. The area Publication
contains a FEnter New Publication page, which allows the
user to insert a new publication through the New Publication
entry unit. The selection of a publication type is enabled
by the selector unit Publication Type. After the insertion
of the data for a publication, a new publication instance is
created, which is performed by the Create New Publication
create unit.

3.2 Model to Graph Transformation

We represent WebML models as attributed graphs such
that every model element is represented as a vertex in the
graph, while containment relationships and links among the
model elements are represented as graph edges. This type
of (graph) representation preserves as much as possible the
model structure and the hierarchies present among the model
elements. Specifically in this case, each graph vertex is an-
notated with three attributes: (i) name, (ii) type and (iii)
data, (Figure 2), where:

e Name represents the textual label of the model ele-

ment;

e Type represents the corresponding model element type,
derived fro mthe metamodel;

e Data represents the entity or relationship to which the
model element refers, in case such reference exists.

Likewise, each edge is annotated with the attribute type
which refers to the type of the corresponding relationship/link
in the model, as represented in Figure 2.

Thus, after the transformation, each WebML model from
the repository yields an attributed graph, and the model
search becomes the problem of searching over a collection
of attributed graphs. Since queries also represent model
fragments, they can be transformed in the same way into
graphs.

4. SYSTEM ARCHITECTURE

Figure 3 presents the architecture of our graph-based model
search system. The Content Processing component takes
every model from the repository and transforms it into a
format suitable for indexing. First, the Project Analysis
sub-component extracts general informaton from the model
such as the model name and id. Then, the Model to Graph
Transformation sub-component transforms each model into
a graph considering its metamodel features, as explained
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Figure 2: Graph representation of the WebML model in
Figure 1

in Section 3 for the case of WebML models. These model
graphs are used to build the index in the Indexing compo-
nent, which is elaborated in more detail in Section 5.1.2.
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Figure 3: Architecture of a graph-based model-driven infor-
mation retrieval system.

Query to Graph
Transformation

On the user side, a query is expressed as a model frag-
ment, which can be formulated in the same modeling lan-
guage in which models in the repository are encoded. The
Query Processing component transforms the query model
fragment into a format that is more suitable for search, the
same way models are transformed into graphs by the Con-
tent Processing component. When the query is transformed
into a graph, the system is ready for search.

The Search component has two tasks, which are discussed
in more detail in Section 5.1.3. The Matching sub-component
uses a specific algorithm and the help of the index to find
model fragments (subgraphs) from the repository that match
the query graph under certain criteria. Finally, the Ranking
sub-component performs sorting on the retrieved model sub-
graphs with respect to their relevance to the query. These
ranked subgraphs (along with their computed ranking scores)
are returned to the user.

S. DETAILS OF MULTIMODGRAPH

Our main objective is, for a given query, to find a ranked
list of modeling patterns in the repository such that the
returned patterns are as similar as possible to the model-
ing pattern that represents the query. In our approach, the
problem can be rephrased as discovering a ranked list of
subgraphs in the set of project graphs similar to the query
graph. We define the notion of similarity as follows: A query
graph is similar to a retrieved project subgraph based on
the similarity of the textual content represented by the la-
bels of the vertices and edges in the attributed graphs, as
well as the similarity in their corresponding graph topolo-



gies. Moreover, the size of these similar subgraphs should
be comparable to the size of the query graph, so that upon
retrieval, these subgraphs (or the modeling patterns they
represent) can be reused to build new software models with
as few modifications as possible. One may note that in one
large project graph there might be multiple subgraphs sim-
ilar to a query graph, since a given task can be presented
with different modeling patterns, and we would like to cap-
ture also those kind of modeling patterns.

Our approach consists of an indexing phase, in which ver-
tices of the model graphs are indexed for efficient search, and
a search phase, in which (i) an index lookup is performed
on the vertices to find potentially matching candidates, (ii)
the matched vertices are expanded to form subgraph pat-
terns that are similar to the query graph, and (iii) the sub-
graphs are ranked with respect to their similarity to the
query graph.

In the indexing phase, illustrated in Figure 4, we build
three types of indexes. The first index is a grid index, that
uses multidimensional scaling to cluster similar graph ver-
tices from all of the project graphs for each attribute that
represents a different model feature: name, type and data
(cf., Section 3.2).

Grid Index

Multidimensional

Points
Scaling >

Project graph

Name Grid

Neighborhood Index

Index
Neighborhood
Vertices

Vertices
—

Project Index

Index Vertices by |
Project Name

Vertices
—

Figure 4: Indexing in MultiModGraph.

We use multidimensional scaling because our preliminary
evaluations (detailed results are available in [1]) showed that
it allows efficient pruning of most of those vertices that
are beyond a distance threshold from a given query ver-
tex. For expansion of the vertices matched using the grid
index, two more auxiliary indexes are built: (i) a neigh-
borhood index that considers the vertex neighborhood, and
(ii) a project index that considers the vertices belonging to
a graph (project), specified by their name. The indexing
phase is discussed in more detail in Section 5.1.2.

In the search phase, shown in Figure 5, query vertices are
also transformed into points in space through the same mul-
tidimensional scaling algorithm [5]. These points are used to
search the grid index, retrieving only those vertices similar
to the corresponding query vertices with respect to a specific
attribute. Then, the project and the neighborhood index are
searched to expand the matching candidates and form local
subgraph matches, which are subsequently ranked consid-
ering a graph-edit distance metric as a similarity measure.
Further details of search and match expansion can be found
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in Sections 5.1.3 and 5.1.4, respectively.

5.1 Graph search using multidimensional scal-
ing

In this section, we present MultiModGraph in more detail.
We illustrate the concept of graph similarity, i.e. how a
query graph is defined to be similar to a subgraph of the
project graph (Section 5.1.1); we describe the process of
indexing the project graphs (Section 5.1.2), the search of
similar query vertices to find matching candidate vertices
(Section 5.1.3), the expansion of the matching candidate
vertices to produce local subgraph matching patterns, and
the ranking of the matching patterns with respect to the
query (Section 5.1.4).

5.1.1 Graph Similarity

The similarity between the query graph and each of the
project subgraphs is computed through graph-edit distance,
a measure that specifies the number of graph-edit operations
that transform one graph into the other. The considered
operations are:

o Verter substitution: a vertex in the project subgraph
is substituted with a vertex in the query graph if they
are similar. Two vertices are similar if the project
graph vertex is retrieved as a result of searching the
grid index for a specific query vertex considering at
least one attribute.

e Fdge substitution: an edge in the project subgraph is
substituted with an edge in the query graph if their
type labels belong to a similar type, and if their in-
cident vertices are substituted. Two edge labels are
similar if they are identical, or if they both belong to
the set of WebML links, excluding the containment
relationships.

o Vertex deletion: a vertex from the query graph that
does not have corresponding similar vertices in the
project subgraph is deleted from the query graph.

e Vertex insertion: a vertex from the project subgraph
that does not have corresponding similar vertices in
the query graph is inserted in the query graph.

e [dge insertion: an edge from the project subgraph
that does not have corresponding similar edges in the
query graph is inserted in the query graph.

e [dge deletion: an edge from the query graph that does
not have corresponding similar edges in the project
subgraph is deleted from the query graph.

5.1.2 Indexing

A. Grid Index
Given a set of data objects and the distance values between
each pair of objects, multidimensional scaling assigns coor-
dinates to each data object, such that distances computed
from the assigned coordinates are as representative as pos-
sible to the actual distances. While this technique is used
mainly in data visualization [15], we exploit this idea for
clustering and then efficiently indexing the vertices of the
model graphs.

We perform clustering of graph vertices with respect to
the vertex attributes that correspond to the metamodel at-
tributes in a model element. For our specific context, we
consider the name, type and data attributes. Clustering



Query Graph

Y

Candidate

er] icesa

Neighborhood

Project Index
Index

Vertices

rtices&

Multidimensional |Points

Scaling

Querying Grid
Index

L

Index

Querying Project

Small Localized

Querying Matches

Neighborhood
Index

Graph Distance
Computation

Match Expansion

Figure 5: Search and Match Expansion in MultiModGraph.

is achieved by transforming vertex attributes’ values rep-
resenting a specific attribute class (name, type and data)
as points in multidimensional space. The distance between
points, preserved by the multidimensional scaling, is com-
puted by the Euclidian distance. These computed distances
help to find for a graph vertex, its “nearby” graph vertices
with respect to a single attribute. The transformed points
are placed into multidimensional grids, as shown in Figure
6. Each grid corresponds to a metamodel attribute, i.e.,
name, type and data. Therefore, the total number of grids
is the same as the number of attributes (in our case three).
The number of dimensions of each grid is equal to the num-
ber of dimensions of the points representing a specific at-
tribute. These grids are used to build the grid index which
allows for efficient pruning of all vertices that are not within
a specified distance from a query vertex. In this work we
chose the Chalmers algorithm [5] for performing multidimen-
sional scaling, because it has lower computational overhead
(quadratic) than other multidimensional scaling approaches
without introducing too much noise. It is a heuristic-based
approach, hence it does not provide tight error bounds. The
quality evaluation of the algorithm is presented in [1].
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Figure 6: Grid Index in MultiModGraph.

B. Auziliary Indezes
Besides the grid index, two other index structures are con-
structed and used in the search algorithm.

e The neighborhood index is an inverted index that keeps
track of the neighborhood of each vertex, where for
each vertex, all the vertices wthin its 2-hop neighbor-
hood considering both ancestors and descendants are
stored. This index considers the local structure around
a graph vertex for expansion of already matched ver-
tices. The 2-hop neighborhood has been selected for
two reasons: (i) to better respond to the diversity of
modeling patterns expressing a given task; (ii) to allow
vertex mismatches between a query graph and a local
subgraph match, since we perform approximate, and
not exact matching. For scalability reasons, we do not
exceed 2-hop neighborhood.

e The project index is an inverted index that for each
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vertex stores the corresponding project name. It is
used to form subgraphs of vertices that belong to the
same project.

5.1.3 Search

The search algorithm is described in Algorithm 1 and pre-
sented in Figure 5. Vi represents the set of vertices of the
query graph, while attribute is the set of attribute types,
namely, name, type and data attribute. The search process,
takes each vertex v, of the query graph and transforms it
into a set of points in space queryPoint, using the Chalmers
algorithm, where each point represents a specific attribute
a. These points are used to query the grid index. Kach
query point is positioned in the corresponding grid in a sim-
ilar way as the points that represent vertex label attributes
from the project graphs are positioned by multidimensional
scaling (using a single iteration of the Chalmers algorithm).
In this way, the query point is “querying” the grid to find
points points that are within an acceptable distance value
distance (a user-specified parameter) with respect to a spe-
cific attribute a. Since the grids are independent, differ-
ent acceptable distances can be assigned for each attribute
(grid). This step performs pruning of points that are distant
(dissimilar) from the query point, keeping only those points
points that are within the specifed distance values?.

When all the points for each attribute are retrieved, a
union is performed across the different attribute classes, thus
merging the results obtained from all the three grids into a
set of candidates candidates. To further reduce the num-
ber of vertices, the candidate points are pruned by check-
ing whether the real distance of the vertex labels they rep-
resent is within the acceptable distance values. As a real
distance for name and data attribute we consider the string-
edit distance, while for the type attribute we consider the
distance between two types in the metamodel tree, normal-
ized with respect to the longest distance in the tree. Finally,
for each query vertex we obtain a set of real candidate ver-
tices realCandidates which represent the potential matches.

5.1.4 Match Expansion and Ranking

Each matching candidate is expanded in order to form
small localized subgraph structures, denoted as matching
patterns, achieved with the help of the project and the
neighborhood indexes, as illustrated in Figure 5. The pro-
cess of match expansion is described in Algorithm 2. At
the beginning, for each query vertex vy, a set of patterns is
created, such that each pattern consists of one real candi-
date of vg. Then, if query vertex vq is not the first exam-

2Note that we will use the terms vertex and its representing
point interchangeably.



Algorithm 1 Search Algorithm

Algorithm 2 Match Expansion Algorithm

Require: Vg, attribute, distance
for all v, € Vo do
candidates <
for all a € attribute do
queryPoint <— ChalmersQuery(vg, a)
points[a] < findCandidates(queryPoint,
grid|a], distance[a])
candidates < candidates U points|a)
end for
realCandidates[vy] < prune(vy, candidates)
end for

ined vertex, the algorithm checks whether its set of can-
didates realCandidates can extend already existing pat-
terns. Namely, a project vertex from the candidates set
realCandidates is added to an already created pattern in
the set of existing patterns patternSet, if all of the follow-
ing conditions are met:

e The project vertex represents a matching candidate
for different query vertices with respect to the already
matched query vertices.

The project vertex belongs to the same project graph
as the current matching pattern. This information is
retrieved from the project index.

The project vertex is within the 2-hop neighborhood
of any of the project vertices present in the matching
pattern. This information is retrieved from the neigh-
borhood index.

As aresult, a new set of patterns is created (new PatternSet),
used to update the set of patterns patternSet.

The matching is complete when, for a matching subgraph
pattern, all the query vertices have been examined for poten-
tial matches. Additional vertices from the project graph are
added to the matching pattern if they are in the intersection
intersection of the neighborhoods of the pattern’s vertices
(retrieved from the neighborhood index). In this way, all
the vertices of a pattern are found. They are used to build a
subgraph subgraph by finding the edges that connect these
vertices from the project graph. Thus, subgraph represents
a subgraph of the project graph. Once a matching subgraph
is built, it is compared to the query graph with respect to the
similarity, as explained in Section 5.1.1. Graph-edit distance
is used as a similarity metric to rank the modeling patterns
with respect to their similarity to the query. In the graph-
edit distance computation, the subsituted vertices from a
subgraph pattern are those that represent the real candi-
dates, while the inserted vertices are the vertices that were
added additionally to the pattern as a result of the intersec-
tion with the neighborhood index.

6. RESULTS

We evaluated our approach on a repository of WebML
models® which consists of 12 real-word WebML projects
from different application domains. The projects were di-
vided into segments such that each segment represents a
different WebML area in the project (i.e., areas group pages
with similar purpose). This way, we obtained 341 segments
in total.

The test queries were generated as follows. First, a set
of exemplary models were selected by considering different

3Provided by the WebRatio company www.webratio.com
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Require: Vg, realCandidates
patternSet <
for all v, € Vo do
patternSet < patternSet U createPatterns(0,
realCandidates[vy)])
if notFirstVertex(v,) then
for all pattern € patternSet do
if realCandidates[vg] within two-hop neighborhood of
pattern and realCandidates[vg] in the same project as
pattern then
newPatternSet <
addToExisting Pattern(pattern,
realCandidates[vg])
patternSet «—
update PatternSet(patternSet, newPatternSet)
end if
end for
end if
end for
for all pattern € patternSet do
for all v, € pattern do
intersection < neighborhood(v,)N
neighborhood(pattern — Zf;ll v;)
if intersection # () then
pattern < addAdditionalVertices(pattern,
intersection)
end if
end for
subgraph < buildGraph(pattern)
end for

WebML modeling patterns, a variety of metamodel concepts
and a vocabulary of labels present in the repository. Then,
three experienced model developers selected 10 models from
the initial set of exemplary models that they believed better
represented the typical user needs of a model developer [2].
Subsequently, these models were transformed into graphs (as
explained in Section 3.2), which constitute the test queries
in our evaluations.

To obtain the ground truth (used in our evaluations), we
asked the same model developers to manually evaluate the
relevance of each query against each project segment, where
a relevance score of (i) 0 implies no relevance, (ii) 1 implies
either textual or structural similarity, and (iii) 3 implies both
textual and structural similarity. The final scores were com-
puted by averaging the scores reported by the three domain
experts, which was then rounded to the nearest integer [2].
Note that we did not use 2 as a score value to achieve greater
diversity in the aggregate scores.

Given a query, MultiModGraph returns a set of modeling
patterns (that it believes are relevant to the query). Hence,
to assess the quality of the algorithm, we evaluate the rele-
vance of each returned modeling pattern to the given query
(based on the ground truth). However, note that a modeling
pattern might span multiple project segments. Therefore, to
assess a modeling pattern’s relevance to a query, we consider
all of the project segments that the modeling pattern spans.
The final relevance of a modeling pattern is computed as an
average of the relevance of the project segments.

In our evaluations, parameters of the Chalmers algorithm
such as (i) number of iterations, (ii) max number of points in
the random set and (iii) number of dimensions that are used
for representing points in space, have been manually tuned
to their optimal values [2]. As for the distance thresholds,
we performed a preliminary evaluation to discard certain
combinations of distance values across the three attribute
classes: name, type and data. In Table 1, we show the
acceptable distance values we use for each attribute class.



We have observed that using smaller distance values for the
name and the type attribute classes does not retrieve suffi-
cient number of candidate points. On the other hand, using
greater distance values loosens the distance constraints, i.e.,
precision drops.

Table 1: Distance values configurations.

l Name distance [ Type distance [ Data distance ‘

0.4 0.4 0.2
0.4 0.4 0.4
0.6 0.4 0.2
0.6 0.4 0.4

As the baseline in our evaluations, we use the A-star al-
gorithm [17] that we adapted for searching WebML mod-
els (details are in [2]). First, we compare MultiModGraph
against the A-star algorithm with respect to their 11-point
interpolated average precision, a metric that combines preci-
sion and recall by measuring the highest precision obtained
at 11 standard levels of recall (ranging from 0.0 to 1.0) [14].
Namely, for each recall level 4, the precision is computed as
the maximum precision value for recall levels j > i, which is
averaged across all of the test queries. In the computation
of precision and recall values, we consider every modeling
pattern with relevance > 0 relevant, while every modeling
pattern with relevance = 0 irrelevant.

—8— nameDist=0.4 typeDist=0.4 dataDist=0.2
—6— nameDist=0.4 typeDist=0.4 dataDist=0.4
—+— nameDist=0.6 typeDist=0.4 dataDist=0.2
—#— nameDist=0.6 typeDist=0.4 dataDist=0.4
—*— A-star algorithm

A
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Figure 7: 11-point Interpolated Average Precision for differ-
ent distance value configurations and the A-star algorithm.

Figure 7 shows the 11-point interpolated average precision
for the four different configurations of MultiModGraph and
the baseline algorithm. Each algorithm was configured to re-
turn the top 150 results. The values denoted as nameDist,
typeDist and dataDist represent the acceptable distance
values for the name, type and data attribute classes, re-
spectively.

MultiModGraph achieves the best configuration with val-
ues of nameDist = 0.4 and typeDist = 0.4, while increas-
ing dataDist from 0.2 to 0.4 does not affect precision/recall.
Increasing the nameDist value further to 0.6, however, sig-
nificantly worsens performance. Compared to the A-star
(baseline) algorithm, MultiModGraph performs better for
recall values greater than 0.5. This is important because it
means that the algorithm still continues to retrieve relevant
models at high levels of recall.

Figure 8 presents the best-case behaviour of MultiMod-
Graph for configuration values nameDist = 0.4, typeDist =
0.4 and dataDist = 0.4, where queries with the best two
11-point interpolated curves are reported. The algorithm
achieves a maximum precision of 1 even at lower levels of
recall: up to 0.3 for Query 6, and up to 0.8 for Query 2.
For other queries, the algorithm performs worse, which in-
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Figure 8: 11-point interpolated average precision for the best
performing queries for nameDist = 0.4, typeDist = 0.4
dataDist = 0.4 configuration: Query 2 and Query 6.

fluences the overall algorithm performance when averaged
across all of the queries.

MultiModGraph’s lower performance in precision in some
queries can be attributed to the way the algorithm selects
candidate vertices. For a query vertex, a vertex in the
project graph is considered a match candidate if at least
one of the distances for a specific attribute class are within
the specified distance thresholds. This generates patterns
similar to the query, where each model element (in the re-
sult) is similar to a query model element with respect to a
different attribute class. Some of these alternative matching
patterns are still “reusable” (indeed, a closer manual inspec-
tion of the results further confirms this fact), but not all of
them have been considered relevant by the ground truth.

Office areas and roles management ‘

Manage Appointments

Manage Appointments

Office List
Office List

Appointments List

S

Appointment

5
Office

(a)

Figure 9: Example of a query and its corresponding “irrele-
vant” result as deemed by the ground truth.

For Query 7, its highly ranked result by MultiModGraph
is depicted in Figure 9, where each matched element in the
result is highlighted by a red rectangle. Note the similarity
between the query (on top) and its result (at the bottom).
The query is about management of appointments and the
result is about management of office areas and roles, but
otherwise, they are structurally equivalent.

This highlights two possible future directions. First, ground
truth generation can be improved to include relevance as-
sessments at more fine-grained segments (i.e., currently, a
project segment corresponds to a WebML area in the project).
Second, improvements to the ranking function can be made
to capture users’ varying notions of relevance across different
attribute classes (i.e., name, type and data attributes).

Lastly, we examine the runtime performance of MultiMod-
Graph and compare it against the runtime performance of
the baseline. We consider the average execution times over
the entire query set. For this experiment, we varied the num-
ber of indexed vertices. The experiments were performed on
a machine with Intel dual Core Processor 2.4 GHz, 6 GB
RAM and Windows 7 (64-bit) operating system.
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Figure 10: Runtime performance of MultiModGraph and
A-star algorithm.

The runtime performance of the MultiModGraph is much
better than the runtime performance of the A-star algorithm
(on average, MultiModGraph is 12 times faster than the A-
star algorithm), as demonstrated in Figure 10. The improve-
ment in runtime performance is due to the use of indexing,
however, it comes at a cost of some loss in the quality of the
retrieved results, which is due to the approximate nature of
the multidimensional scaling process. However, further op-
timizations are possible to improve both the quality and the
runtime performance of MultiModGraph.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a graph-based approach
for searching WebML repositories that uses multidimensional
scaling. We have evaluated our approach on a real-world
WebML repository using 10 test queries. Our preliminary
results show that MultiModGraph has a better runtime per-
formance than the baseline algorithm, but this comes at the
cost of accuracy. We have argued that some of this inac-
curacy could be attributed to the way the ground truth is
generated. However, it may also be possible to improve per-
formance by considering alternative objective functions for
ranking, which is an integral part of our future work. Some
other future work directions include: (i) applying MultiMod-
Graph to different types of models by modifying the graph
representation and the grid index according to the meta-
model of the modeling language; (ii) testing the scalability
of the approach on larger model collections; (iii) automatic
tuning of the Chalmers algorithm parameters; (iv) perform-
ing efficiency comparison with existing indexing techniques
for graph-edit distance (e.g. Closure tree [7]); and (v) tun-
ing the search order in the search algorithm, by matching
vertices with less candidates first.
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ABSTRACT

Data exchange is the problem of translating data structured
under a source schema according to a target schema and a set
of source-to-target constraints known as schema mappings.
In this paper, we investigate the problem of data exchange
in a heterogeneous setting, where the source is a relational
database, the target is a graph database, and the schema
mappings are defined across them. We study the classical
problems considered in data exchange, namely the existence
of solutions and query answering. We show that both prob-
lems are intractable in the presence of target constraints,
already under significant restrictions.

1. INTRODUCTION

Data exchange is the problem of translating data struc-
tured under a source schema according to a target schema
and a set of source-to-target constraints [11]. Such a problem
has been studied in settings where both the source and target
schemas belong to the same data model, in particular rela-
tional and nested relational [15, 11], XML [3], or graph [5].
Settings in which the source and the target schema are of
heterogeneous data models have not been considered so far,
apart from combinations of relational and nested relational
schemas in schema mapping tools [15, 13].

In this paper, we focus on the problem of exchanging
data between relational sources and graph-shaped target
databases, which might occur in several interoperability sce-
narios in the Semantic Web, such as ontology-based data
access [14] and direct mappings [16]. Motivations to map
relational data to graphs abound, due to the far majority of
data residing in relational databases and the need of inte-
grating large amounts of linked data.

We express the relationships between the source and the
target via schema mappings [15, 11, 7] i.e., logical asser-
tions between two conjunctive queries, one on the source and
the other on the target. Schema mappings between graph
databases have already been introduced in [5] and we adopt
their syntax for expressing the consequents of relational-to-

(© 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0
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graph schema mapping assertions. We point out that the
setting without target constraints directly follows from the
results in [5] on graph-to-graph data exchange. Further-
more, motivated by the fact that target constraints have
been largely investigated within relational data exchange
but so far disregarded for graph data exchange [5], we add
them to our setting.

In particular, we focus on two fundamental problems of in-
terest: existence of solutions (i.e., given a source schema and
an instance of it, a target schema, a set of source-to-target
constraints, and a set of target constraints, decide whether
there exists an instance of the target schema satisfying all
given constraints) and query answering (i.e., computing the
answers that hold for all solutions).

Our main contributions are the following:

e We show that in the presence of target equality-genera-
ting dependencies [6], both existence of solutions and
query answering are intractable (NP-hard and coNP-
hard, respectively). This holds even under significant
restrictions.

e We relax the notion of target constraints by introduc-
ing sameAs' target constraints, inspired by RDF2. We
show that the existence of solutions becomes tractable
while query answering is intractable (coNP-hard) for
the same restrictions as for the previous case.

e We show that the notion of graph patterns [4], em-
ployed for graph data exchange [5] as universal repre-
sentatives of all solutions, cannot be used as such when
adding target constraints.

We point out that our hardness results stand in terms of
query complexity since in the proofs we have used a fixed
source schema and instance, while the target schema and
the mappings are part of the input.

We also point out that none of our results is specific to the
relational-to-graph setting, and hold in any setting where
the target is a graph and the source is an arbitrary data
model projecting on relational tuples. The source data can
then be either XML, graph-shaped, or any other complex
format as long as the left-hand sides of mappings extract
relational tuples from it. Indeed, we shall pinpoint that the
constraints on the target graph are solely responsible for
the intractability results. Nevertheless, in the remainder of
the paper, we focus on a relational data source for ease of
presentation.

"http://www.w3.org/wiki/WebSchemas/sameAs
*http://www.w3.org/RDF/



Organization. In Section 2, we define our problem setting.
In Section 3, we illustrate particular cases that can be solved
using techniques from relational and graph data exchange.
In Section 4, we characterize the complexity of the problems
of interest. In Section 5, we present the challenges of defining
and querying universal solutions. We discuss conclusions
and future work in Section 6.

2. PROBLEM SETTING

Let us assume a countably infinite set of constants V that
we use both as domain of relational databases and as node
identifiers (or simply node ids) of graph databases.

Source schemas and queries. A source schema R is a fi-
nite collection of relational symbols. Each relational symbol
has an arity that is a positive integer. An instance I of R is
a function associating to each relational symbol R from R a
set of tuples over V having the same arity as R. We abuse
notation and use R to denote both relational symbol and its
instance. A source query is a conjunction of atoms over R
that uses only variables.

Target schemas and queries. A target schema X is a finite
alphabet. An instance over X is a directed, edge-labeled graph
G = (V,E), where V € V is a finite set of node ids and
E c V x ¥ xV is a finite set of edges. A nested regular
expression (NRE) is an expression of the following grammar:

ri=cla(@eX)|a” (aeX)|r4r|r-r|r*|[r],

Wy
*

where “+” stands for disjunction, “” for concatenation,
for Kleene star, “~” for traversing edges backwards, and “[]”
for nesting. An NRE r defines a binary relation over graph
nodes: [r]¢ is the set of pairs of nodes in G s.t. there exists
a path defined by r between the two nodes. We consider the
semantics of NREs as in [5]. A target query is a conjunction
of nested regular expressions (CNRE) using variables only.
We illustrate CNREs in Example 2.2.

Schema mappings. A schema mapping is a set of source-
to-target tuple-generating dependencies [6] (or simply s-t tgds)
i.e., a set of formulas of the form

VZ. (o= (T) — 7. ¥=(Z, 7)),

where ¢z (Z) is query over R and ¥=(T,7) is a query over
Y. By T and y we denote vectors of variables. Moreover,
all variables in T appear free in ¢ (T), all variables in §
appear free in ¥x(T,7), and the variables in T that appear
in ¥x(T,7y) are free.

Target constraints. We consider two well-known types of
target constraints:

e target equality-generating dependencies [6] (or simply
egds) i.e., VT. (Y=(T) — (z1 = x2)),

o target tuple-generating dependencies [6] (or simply tar-
get tgds) Le., V. (¢s(T) — 3. Ux(T. 7).

In the aforementioned definitions, ¢s (%) and s (%) are CN-
REs over ¥, and z; and x2 are among the variables in 7.
Moreover, we introduce sameAs target constraints that are
a special case of target tgds i.e.,

VZ. (Y=(T) — (z1, sameAs, x2)).
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In the sequel, we omit w.l.o.g. the universal quantifiers in
front of a formula.

Definition 2.1 A (relational-to-graph) data exchange set-
ting Q@ = (R, X, Mg, My) consists of a relational source
schema R, a graph target schema X, a set Mg of s-t tgds,
and a set My of target constraints.

Solutions. Given a setting Q = (R, %, Mg, M;), an in-
stance I of R and a graph database G over X, we say that
G is a solution for I under Q if (I, G) satisfies My and G
satisfies M;. We denote the set of all solutions by Solo(I).
Usually, in relational data exchange, one aims at finding
the universal solutions, from which there exist homomor-
phisms to all solutions [11]. This notion has been redefined
for graph data exchange as universal representatives cap-
tured with graph patterns [5] that we discuss in detail in
Section 3.2.

Example 2.2 Take a source schema R consisting of two
relations: Flight storing information about flights that may
have intermediate stops between the source and destination
cities, and Hotel storing information about the hotels in
which the passengers of such flights have stopped. More-
over, take the following instance I:

Flight Hotel
flight_id src dest flight_id  hotel_id
01 C1 C2 01 hX
02 C3 C2 01 hy

02 hx

Take a target schema consisting of the alphabet 3 = {f, h}.
The edges labeled by f indicate a direct flight between two
cities while the edges labeled by h indicate that a city has a
hotel. Moreover, consider the following s-t tgd that basically
requires that for each hotel where the passengers of a flight
have stopped, there exists a city where the respective hotel
is situated, and there exist flights from src to such city and
from such city to dest:

M o Flight(z1, z2,23) A Hotel(z1,x4) —

Jy. (:CQa(f : f*)7y) A (y,h,ZC4) A (yv (f : f*)7$3)'

Notice that M uses a CNRE on its right hand side. Then,
a natural constraint is that a hotel is situated in exactly one
city, which can be captured either by the egd M: or by the
sameAs constraint Mj:

M
M,
The two ways of expressing the aforementioned target con-
straint yield two different settings Q = (R, 3, Mg, M;)
and Q' = (R, X, My, M}), respectively. We illustrate in
Figure 1 solutions for I under these two settings: the graphs

G1 and G2 are solutions under €2, while G35 is a solution un-
der .

(x1,h,23) A (22,h,23) = (21 = T2),

(z1,h,x3) A (T2, h,23) = (21, sameAs, x2).

[m]

Problems of interest. We are interested in studying the
following two problems:

1. Ezistence of solutions. Given a setting Q = (R, X,
Me, M) and an instance I of R, decide whether
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Figure 1: Solutions from Example 2.2. The dotted edges are labeled by sameAs.

there exists a solution for I under 2. Additionally,
we are interested in finding in our heterogeneous set-
ting a mechanism similar to universal solutions [11] or
universal representatives [5].

2. Query answering. Given a setting Q@ = (R, X, M,
M), an instance I of R, and a query @Q over X, we are
interested in the certain answers of Q w.r.t. I under €,
denoted certq(Q,I), which are the answers that hold
for all solutions i.e., the set ({[Q]c | G € Sola(I)}
(where by [Q]e we denote the set of tuples of nodes
of G selected by the query @). The query answering
problem consists of deciding whether a given tuple of
constants belongs to certo(Q, I) or not.

Example 2.2 (continued). Take the above instance I
of the relations Flight and Hotel, and the above setting (2.
Then, take the query

Q= (z1,f-f¥[A]-f - (f7)" a2).
Intuitively, this query selects the pairs of nodes (z1, z2) from
which the same hotel can be reached, or in other words,
one can fly (possibly with connections) from the city z1 to
another city that has a hotel and an ingoing flight (possibly
with connections) whose origin x> we want to select. Recall

that the graphs G; and G2 are both solutions for I under
2. On these two graphs, the query @ selects as follows:

[[Q]]Gl = {(61761)7(61763)7(03701)7(03703)}7
[Qles = {(c1,c1), (c1,¢3), (cs,c1), (c3, ¢3),
(017N1)7(037Nl):(N1701)7(N1703)7(N17N1)}'

Notice that only four pairs of nodes are common to these
answer sets for the two considered graphs. Also notice that
these four pairs of nodes are in fact the certain answers of
Q w.r.t. I under :

certa(@,I) = {(c1,c1),(c1,¢3),(c3,c1), (c3,¢3)}-

On the other hand, notice that if we want to pose the same
query @ under the other aforementioned example of set-
ting (i.e., ), we obtain a different set of certain answers:
certo (Q,I) = {(c1,¢1), (c3,c3)}. Intuitively, this happens
because the egds from the setting €2 ensure that in all of its
possible solutions the nodes having the same hotel have been
merged. In the second setting, this natural requirement has
been encoded using a sameAs constraint, which is not ex-
ploited by the query @, hence some of the certain answers
of Q under Q are no longer certain under Q'. o
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3. BACKGROUND

In this section, we show that in two particular cases of
our problem setting existing techniques from relational and
graph data exchange can be applied (Section 3.1 and Sec-
tion 3.2, respectively). This does not happen in the general
case, as we show in the next section.

3.1 Relational data exchange

If we consider s-t tgds having on the right hand side con-
junctions of NREs of the form a (with a € X), our prob-
lem setting reduces to a particular case of relational data
exchange and the techniques from relational data exchange
can be naturally applied. In particular, we can see the target
schema as a set of binary relational symbols (one for each
symbol of the target alphabet) and the chase [11] returns
a universal solution that can be essentially seen as a graph
since it consists of a set of binary relations.

Example 3.1 Take the schemas R and ¥, the instance I,
and the egds M; from Example 2.2. Since we consider only
NREs of the form a (with a € X), we cannot express the
same M, as in Example 2.2. However, we can express the
following;:

MY, Flight(x1, 2, x3) A Hotel(z1,24) —

Jy. (x2, f,y) A (Y, hyza) A (y, fr23).

We illustrate in Figure 2 the chased solution for I under
(R, %, My, My). Notice that there is no solution that has
N7 and N2 on the same path from ¢; to c2. Such a condition
is desirable for a flight from ¢; to ce whose passengers have
stopped in both hotels hy and hx, situated in the cities Ny
and Na, respectively. We finally point out that we cannot
capture solutions satisfying this kind of constraints for flights
with an arbitrary number of stops without using the Kleene
star (as in Example 2.2). o

' n{(w)
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Figure 2: Solution from Example 3.1.



3.2 Graph data exchange

If we consider s-t tgds only, the existence of solutions and
query answering can be solved using techniques from graph-
to-graph data exchange [5]. In particular, solutions always
exist and all solutions are captured by universal representa-
tives defined as graph patterns.

Graph patterns. Let N be a countably infinite set of la-
beled null values. A graph pattern m over a finite alpha-
bet ¥ is a pair (N, D), where N € V U N is a finite set
of node ids or null values, and D € N x NRE(X) x N,
where NRE(X) denotes the set of all NREs over . The
semantics of graph patterns are defined in terms of homo-
morphisms [4]. Given a graph pattern = = (N, D) and a
graph database G = (V, E), a homomorphism from 7 into
G is a total function h: N — V s.t.:

1. h is the identity over N n'V (i.e
from N),

., over the node ids

2. for all edges (u,r,v) € D (u,v € N,r € NRE(Y)), it
holds that (h(u), h(v)) € [r]a.

We write m — G if there exists a homomorphism from 7 to
G. The set of all graphs represented by m over 3, denoted
Reps.(m) is the set of all graphs G over X such that 7 — G.

Universal representatives. Given a setting Q = (R, X,
M, ) and an instance I of R, a graph pattern 7 is a uni-
versal representative of I under 2 if Sola(I) = Reps () [5].
In graph data exchange, universal representatives are com-
puted using an adaptation of the standard chase procedure
from relational data exchange [11]. Moreover, the variant
of chase that is tailored for graph data exchange [5] can be
easily adapted to construct a universal representative in our
relational-to-graph heterogeneous setting. We illustrate a
result of this procedure in Example 3.2. Then, query an-
swering reduces to querying the graph pattern [4] chased as
universal representative.

Example 3.2 Take the schemas R and ¥, the instance I,
and the s-t tgds M from Example 2.2. The graph pattern
7 in Figure 3 is a universal representative of all solutions for
I under (R, X, My, &) i.e., all graphs to which there exists
a homomorphism from 7 are solutions. o

forr

Figure 3: Graph pattern from Example 3.2.

However, notice that the sole s-t tgds might not capture
interesting mapping scenarios involving graphs. As an ex-
ample, the target constraint “a hotel is situated in exactly
one city” cannot be expressed in settings such as the one
presented in Example 3.2.

4. COMPLEXITY RESULTS

In this section, we present our main contributions. More
precisely, we study the complexity of the two problems of
interest, namely existence of solutions and query answering,
for settings that exhibit target egds (Section 4.1) or target
tgds (Section 4.2), respectively.

4.1 Complexity of target egds

First, let us show the intractability of the existence of
solutions when we allow egds to our setting.

Theorem 4.1 Given a setting Q = (R, X, Mst, My) where
M consists of egds, and an instance I of R, deciding whether
there exists a solution for I under Q is NP-hard.

ProOOF. We prove by reduction from 3SAT, known as
an NP-complete problem. The reduction works as follows.
Given a formula p = C; A ... A Ck in 3CNF over the set of
variables {z1,...,Zn}, we construct

— The setting Q, = (R,, X, Mp,,, M, ) s.t

e R, = {R1, R2}, both unary relations,
L Ep = {a,t1,f1,---7tn7fn}~

e M, contains a unique s-t tgd Ri(x) A Ra(y) —
(z,t1 + f1,2) A A (@, tn 4 [, ).

e M,, contains two types of egds:

(*) (1‘, (tj 'fj : a)ay) - ('T = y) for 1 < <n,

(**) (z, (bll “biy - by 'a)7y) - (x = y)7 fOI‘ 1<i<k,
for 1 < 41,i2,43 < n, T;,, Tiy, Tiy are the variables
used in clause Cj, and for 1 < I < 3, by, is ¢y,
if x;, appears in a negative literal in Cj, and f;,,
otherwise.

(z,a,y)A

— The instance I, = {Ri(c1), R2(c2)}.

Intuitively, the egds are defined such that a graph col-
lapses if each variable has more than one valuation (*) or
the valuation of the variables makes the formula false (**).

We illustrate the construction on the formula pg = (z1 v
=22 v z3) A (—x1 v 23 v —z4). We have the s-t tgd Ri(z) A
Ry (y) — (z,a,y) A (z, (t1+f1)7 L) Ao (, (ta fa), 2), the
egds of type (*) (=, (t:- fi-a),y) — (w—y) (with 1 <4 < 4),
and the ogds of type (**) (@, (fi - ta- fo-a)y) — (@ = 1)
and (z,(t1 - fs - ta - a),y) — (x = y). Then, the graph
in Figure 4 is a solution that encodes the valuation v s.t.
v(z1) = v(x2)=true and v(z3) = v(z4)=false that makes po
true.

We claim that there exists a solution for I, under Q, iff
p €3SAT.

For the if part, we show that the existence of a valu-
ation making p true implies the existence of a solution.
Take a valuation v : {z1,...,zn} — {true, false} making
p true. Then, construct the graph G = ({c1,c2}, E) s.t.
E = {(c1,a,c2)} v {(c1,ti,c1) | 1 < 4 < mand v(z;) =
true} u {(c1, fi,c1) | 1 < i < n and v(x;) = false}. Note that
G and I, satisfy the s-t tgd. Since there is exactly one edge
labeled b; € {t;, f;} from c1 to c2, the egds of type (*) are
satisfied. Moreover, since the b;’s correspond to a valuation
making p true, there is at least one satisfied literal in every
clause of p, hence the egds of type (**) are also satisfied.
Thus, G is a solution.

For the only if part, take a solution G. Since G satisfies
the s-t tgd, we infer that G encodes at least one valuation



of every variable. Since G satisfies the egds of type (*), we
infer that G encodes at most one valuation of every variable.
Thus, G encodes exactly one valuation of every variable.
Since G satisfies the egds of type (**), we conclude that G

encodes a valuation making p true. o

t1,t2, f3, fa
L‘ (o)

Figure 4: Solution for po.

We point out that Theorem 4.1 holds even under signif-
icantly restricted assumptions that have been used in the
proof: (i) fized source schema consisting of two unary rela-
tions only, (ii) fized source instance, (iii) s-t tgds using only
conjunctions of NREs of the form a or a + b (with a,b € X)
that is a slight relaxation of the restriction from Section 3.1,
and (iv) egds that use only NREs of the form a; - ... - an,
with pairwise distinct a1,...,a, € ¥ (NREs referred to as
“SORE(-)” [2]). Next, we prove that query answering is in-
tractable under the same assumptions and for queries con-
sisting of NREs that use disjunction and concatenation only.

Corollary 4.2 Given a setting Q = (R, X, Mg, My) where
M consists of egds, an instance I of R, a NRE r, and a tu-
ple of constants (c1, c2), deciding whether (c1, c2) € certq(r,I)
is coNP-hard.

PrOOF. We take the proof of Theorem 4.1, and we ad-
ditionally consider the NRE r, = a -a. We claim that
(c1,¢2) € certa,(rp, I,) iff p ¢3SAT. For the if part, notice
that p ¢3SAT implies that there is no solution hence (c1, c2)
is a certain answer. For the only if part, since (c1,c2) is a
certain answer, we infer that either (i) there is no solution
or (ii) there is at least a solution and (c1,c2) is an answer
for all solutions. But (ii) is false since there exist solutions
for which (e1, ¢2) is not an answer for 7, (e.g., in Figure 4).
Both parts follow directly from the proof of Theorem 4.1. o

Finally, we point out that in our reduction the source schema
and instance are fixed while the target schema and the map-
pings are part of the input. Hence, our hardness results
stand in terms of query complexity. Similar intractability
results in the presence of target constraints (particularly in
combined complexity) have been shown for relational and
XML data exchange [12, 3, 1, 10]. However, our contribu-
tion is novel since to the best of our knowledge target con-
straints on a graph target schema have not been previously
considered in the literature, and moreover, we use a fixed
source schema and instance in the proof. We also point out
that our results are not specific to the relational-to-graph
setting and hold in any setting where the target is a graph.

4.2 Complexity of target tgds

In this section, we use sameAs constraints instead of egds.
First, let us show that the existence of solutions becomes
trivial. More precisely, a solution can be computed as fol-
lows: (i) chase a graph pattern m using the s-t tgds only, (ii)
take a graph G s.t. m — G, and (iii) add in G the necessary
sameAs edges to satisfy the sameAs constraints. Recall that
the difficulty of deciding the existence of solutions in the case
of egds was that we cannot merge two constants. Notice that
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this difficulty is overcome since we can add sameAs edges
between any two nodes, even between two constants.

Next, we prove that in the presence of sameAs constraints
the problem of certain answers is intractable under the same
assumptions as in Section 4.1.

Proposition 4.3 Given a setting Q = (R, X, Mg, My) where
M, consists of sameAs constraints, an instance I of R, a
NRE r, and a tuple of constants (c1,cz2), deciding whether
(c1,¢2) € certa(r,I) is coNP-hard.

ProOOF. We take from the proof of Theorem 4.1 the same
Rp, 1p, Xp, M,,,, and we replace each (z = y) from M,,
by (z, sameAs,y) to obtain the set of sameAs constraints
M, and Q, = (R,,%, u {sameds}, M,,,, M,,). Then,
take 7, = sameAs. We claim that (c1,c2) € certoy, (1, Ip)
iff p ¢3SAT, which follows similarly to Theorem 4.1. o
Moreover, we observe that sameAs constraints are a partic-
ular case of target tgds, and therefore, query answering is
intractable in the presence of target tgds.

Corollary 4.4 Given a setting Q = (R, 3, Mg, My) where
M consists of target tgds, an instance I of R, a NRE r,
and a tuple of constants (c1,cz2), deciding whether (c1,c2) €
certq(r,I) is coNP-hard.

S.  TOWARDS UNIVERSAL SOLUTIONS

Next, we study a natural adaptation of the standard chase
procedure [11] to take into account egds. The result of our
adapted chase is a graph pattern wm. To this purpose, we
consider two types of chase steps: (1) for s-t tgds we do
similarly to [5] when computing universal representatives in
graph data exchange without target constraints, and (2) for
egds, for each Y5 (T) — (z1 = z2), (i) if the images in 7w of
both 1 and z2 are constants, then the chase fails, (ii) if one
has as image in 7 a constant and the other a labeled null,
then the chase replaces in 7 the labeled null by the constant,
and (iii) if both have labeled nulls as images in 7, the chase
chooses one of them and replaces it in m with the other.

Example 5.1 For the setting (R, 3, M, My) and the in-
stance I from Example 2.2, by applying the aforementioned
adapted chase we obtain the graph pattern in Figure 5.

m]

Figure 5: Graph pattern from Example 5.1.

As for relational data exchange, if the chase fails, then there
is no solution. As opposed to relational data exchange, we
observe that a successful chase does not guarantee the exis-
tence of a solution. Intuitively, the difficulty comes from the
fact that the chase result is a graph pattern with NREs on
the edges (unlike a graph with symbols on the edges). Con-
sequently, there might not exist any graph G s.t. 7 — G and



G satisfies the target constraints because it may be the case
that there is no path satisfying the NREs and the egds at the
same time. The following example shows such a situation.

Example 5.2 Take the source schema {R, P}, an instance
R(c1) and P(c2), the target schema {a,b,c}, the s-t tgd
R(z) A P(y) — (z,a- (b* + c*) - a,y), and the egd (z,a +
b+c,y) — (z = y). The aforementioned adapted chase suc-
ceeds and returns the graph pattern 7 in Figure 6(a). Al-
though the chase has not failed, no solution exists because
there is no graph G s.t. # — G and G satisfies the egds. In
particular, the graph G (s.t. # — G) from Figure 6(b) sat-
isfies the s-t tgd but if we try to transform it in a solution
we fail because we attempt to merge two constants. o

(a) Graph pattern . (b) Graph G.

Figure 6: Result of a successful chase.

We next show that, even when solutions exist, graph pat-
terns as such cannot be used as universal representatives in
the presence of egds.

Proposition 5.3 Given a setting Q = (R, X, Mg, My) where

M, consists of a non-empty set of egds, and an instance I
of R, there does not exist a graph pattern m s.t. Sola(I)

Repy, (7).

Intuitively, let us assume that there exists a graph pattern 7
s.t. Sola(I) = Repy(w). Then, if we take a graph G € Solg
and a homomorphism h : 7 — G, we can construct the
graph G’ by adding nodes and edges to G s.t. some egd is
no longer satisfied, thus G’ is not a solution for I under €,
but h: ™ — G’ is still a homomorphism. The next example
clarifies when such a situation can occur.

Example 5.4 The graph in Figure 7 is not a solution for
the mappings and instance from Example 2.2 although there
exists a homomorphism from the chased graph pattern from
Figure 5. o

Figure 7: Graph from Example 5.4.

To address the problem of universal representatives in set-
tings involving egds, a natural approach is to define the uni-
versal representative as a pair (graph pattern, set of egds).
In this case, the solutions are the graphs satisfying the egds
and s.t. there exists a homomorphism from the pattern.
For example, the universal representatives for Example 2.2
would be the pattern in Figure 5 together with the egd in
M, from Example 2.2. We also point out that the above
discussion can be easily generalized for sameAs constraints
or arbitrary target tgds.
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6. CONCLUSIONS AND FUTURE WORK

We have presented our work on relational-to-graph data
exchange. Our main results are the proofs of intractability
of the existence of solutions and query answering that hold
even under considerable restrictions of the problem setting.
As future work, we would like to investigate the complexity
upper bounds of these problems and look for tractable frag-
ments to have a complete picture of the difficulty of our set-
ting. A natural question that remains open is how to query
universal representatives consisting of a pair (graph pattern,
set of target constraints). We would also like to investigate
practical scenarios of relational-to-RDF data exchange and
other classes of heterogeneous schema mappings. Addition-
ally, it would be interesting to combine existing learning
techniques for relational [9] and graph [8] queries in order
to propose algorithms that automatically infer relational-to-
graph mappings from examples provided by the user.

7. REFERENCES

[1] S. Amano, C. David, L. Libkin, and F. Murlak. XML
schema mappings: Data exchange and metadata
management. J. ACM, 61(2):12, 2014.
T. Antonopoulos, F. Neven, and F. Servais.
Definability problems for graph query languages. In
ICDT, pages 141-152, 2013.
M. Arenas and L. Libkin. XML data exchange:
Consistency and query answering. J. ACM, 55(2),
2008.
P. Barceld, L. Libkin, and J. L. Reutter. Querying
graph patterns. In PODS, pages 199-210, 2011.
P. Barceld, J. Pérez, and J. L. Reutter. Schema
mappings and data exchange for graph databases. In
ICDT, pages 189-200, 2013.
C. Beeri and M. Y. Vardi. A proof procedure for
data dependencies. J. ACM, 31(4):718-741, 1984.
Z. Bellahsene, A. Bonifati, and E. Rahm, editors.
Schema Matching and Mapping. Springer, 2011.
A. Bonifati, R. Ciucanu, and A. Lemay. Learning
path queries on graph databases. In EDBT, 2015.
A. Bonifati, R. Ciucanu, and S. Staworko. Interactive
inference of join queries. In EDBT, pages 451-462,
2014.
A. Cali, G. Gottlob, and M. Kifer. Taming the
infinite chase: Query answering under expressive
relational constraints. J. Artif. Intell. Res. (JAIR),
48:115-174, 2013.
R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: semantics and query answering.
Theor. Comput. Sci., 336(1):89-124, 2005.
P. G. Kolaitis, J. Panttaja, and W. C. Tan. The
complexity of data exchange. In PODS, pages 30-39,
2006.
P. G. Kolaitis, R. Pichler, E. Sallinger, and
V. Savenkov. Nested dependencies: structure and
reasoning. In PODS, pages 176-187, 2014.
A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,
M. Lenzerini, and R. Rosati. Linking data to
ontologies. J. Data Semantics, 10:133-173, 2008.
L. Popa, Y. Velegrakis, R. J. Miller, M. A.
Hernandez, and R. Fagin. Translating web data. In
VLDB, pages 598609, 2002.
J. Sequeda, M. Arenas, and D. P. Miranker. On
directly mapping relational databases to RDF and
OWL. In WWW, pages 649-658, 2012.

[2]



Topic Detection Using a Critical Term Graph on
News-Related Tweets

Paraskevas Tsantarliotis

Evaggelia Pitoura

Department of Computer Science & Engineering Department of Computer Science & Engineering

University of loannina
loannina, Greece
ptsantar@cs.uoi.gr

ABSTRACT

Social media and online social networks are playing an in-
creasingly important role in our lives, as they attract mil-
lions of users around the world. Twitter, one of the most
popular micro-blogging services, holds a special position
among them, since information shared through this service
spreads faster than it would have been possible with tra-
ditional sources. There are many interesting works analyz-
ing the information that flows through Twitter. Most of
such research focuses on trending topic detection, i.e. what
are the people talking about right now. We propose a new
method to detect topics using a graph, where nodes corre-
spond to terms and edges correspond to co-occurrence of
the two terms in the tweet stream. Dense subgraphs, of this
graph, pose special interest, as the nodes that are highly
connected share a special relation. Thus, the corresponding
terms potentially share a relation too. To explore this fact,
we apply a community detection algorithm on the graph.
The resulting communities correspond to topics related to
various real world events. Experimental evaluation of the
results of this technique is also provided on both synthetic
and real data.

Categories and Subject Descriptors

H.3.3 Information Search and Retrieval]: Clustering;
H.4.m [Information Systems Applications]: Miscella-
neous

General Terms
Algorithms

Keywords

topic detection, community detection, term mining

1. INTRODUCTION

In recent years, usage of social media has overcome any
expectation. Millions of users from all over the world post

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
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sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0
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content on online social networks, forums or their blogs or
subscribe to micro-blogging services. As a result, social me-
dia, especially online social networks, have been transformed
to a powerful mean of disseminating news (e.g. describing
real-world events).

In particular, Twitter [15] is both an online social network
and a micro-blogging service, which enables users to send
and read short 140-character text messages, called "tweets”.
The context of tweets varies from chit-chat to political sen-
timent, creating a very interesting stream of information.
Thus, Twitter can be described as an information/data net-
work. Such a network contains important data and poses
exploration opportunities and challenges, such as discover-
ing and browsing valuable information.

Most of the efforts focus on trending topic detection.
There are many reasons why researchers focus on this par-
ticular problem. First of all, it describes what the people
are talking about right now. Furthermore, this can be a
powerful tool for marketing specialists and opinion track-
ing companies, since trending topics can describe the opin-
ion and intentions of a large group of people. There are a
lot of services and sites dedicated to finding trending top-
ics, such as Trends24', TrendsMap? and WhatTheTrend?®.
Usually, these services use - one or two - frequent terms or
frequent hashtags ("#”) to describe a topic. However, us-
ing more than a couple of terms to describe a topic would
be more informative, e.g. instead of "Edward, Snowden”,
we would prefer something like: "Edward, Snowden, NSA,
surveillance, illegal”, which is much more expressive.

In this paper, we propose a new intuitive way to detect
topics on data streams where a topic is described by a num-
ber of terms. We construct a graph whose nodes correspond
to terms appearing in tweets. Two nodes are connected if
only they co-occur in the same tweet and the weight of the
edge corresponds to the co-occurrence frequency. We call
this graph critical term graph. Constructing such a graph
can be very expensive for large documents, but is suitable
for short document, such as tweets. We will discuss how this
graph is constructed and its properties in detail later in this
paper. Based on this graph, we extract topics from its dense
subgraphs. We use a community detection algorithm, which
partitions the graph into sets of nodes that are tightly con-
nected with each other and sparsely connected with nodes
that belong to different communities. Thus, in this case the
communities represent the topics. The output of the algo-

"http://trends24.in
2http://trendsmap.com
*http://whatthetrend.com



rithm is displayed using the visualization tool Gephi[l]. We
also provide an evaluation of our system and its variants
both on real and synthetic datasets.

In this paper we focus on detecting topics in general and
not trending topics. Nevertheless, the technique we propose
could possibly work for real time trending topic detection.
The main contribution of the paper is the study of the crit-
ical term graph and the feasibility of applying community
detection algorithms on this graph to identify topics. To
this end, we design a new model for generating synthetic
tweets by controlling the number of topics and the overlap
between them. We also test our algorithms on real news-
related tweets, empirically evaluating our model.

In Section 2 we describe works related to ours and in Sec-
tion 3 we describe in detail the problem and the proposed
solution. Evaluation of our results are presented in Section
4. Finally, in Sections 5, we discuss future work and sum-
marize our conclusions.

2. RELATED WORK

Work related to ours includes research both in the broad
areas of mining data streams and graph mining, specifically
in the areas of topic detection in micro-blogging services and
community detection.

There are many papers that focus on identifying trend-
ing topics on Twitter like [5, 7, 17, 19]. The authors of
[5] describe some interesting methodologies of detecting and
identifying trending topics, but they limit their results to
unigrams and bigrams. The authors of [17] present Twitter-
Monitor, which detects bursty keywords and groups them to
form clusters. In that short paper, it is made clear that a sin-
gle pass over the data stream is not enough to detect bursty
keywords, but no algorithmic nor experimental details are
given. Another interesting approach is described in [7], they
focus on detecting trending topics based on metrics that in-
volve both the frequency of the terms and the authority of
the users, who wrote the tweets. However, their method re-
quires high computational load. Furthermore, information
about the users may not be available in large datasets, be-
cause of the restrictions of the Twitter API.

In [19], the authors propose a complete system for de-
tecting trending topics from Twitter posts in near-real time.
Their algorithm is similar to the Apriori approach [4] and re-
lies on finding frequent multi-word clusters, that represent
a topic, and then calculating the burstiness of each topic.
Their approach is based on a hypothesis, similar to ours,
that if AB, BC and AC are frequent terms pairs then ABC
is frequent. This is not necessarily true, but as we see in
our results, it is very likely. Consequently, this hypothesis
introduces false positive results. Furthermore, the algorithm
used in [19] for topic detection is also interesting, because
their work could possibly be extended to be used on the
graph-based model we propose.

Graph mining is also related to our work, since we use
such techniques to extract useful information. Currently,
we focus on community detection algorithms, but other algo-
rithms may be considered in the future. Community detec-
tion in graphs is thoroughly investigated in [10]. In general,
community detection is used to uncover relation between
nodes in complex networks in biology, computer science, so-
ciology, etc. For example, in [9], they use similar technique
in the Web to discover communities of Web pages dealing
with the same topic. The authors of [8] propose an algo-
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rithm for dense subgraph extraction and they test it on a
graph that represents the relationships between terms, ob-
tained by a news agency. Their technique manages to group
in the same subgraphs, terms that tend to be used together.
However, no further analysis is provided. In [13] authors
use a similar approach to ours, in order to detect topics re-
lated to a particular event, but their main focus is on the
evolution of these topics through time. Instead, we use the
model to detect topics under real conditions and provide
more information about the model.

3. MODEL

In this section, we describe the basic concepts of our ap-
proach and the algorithm which we use to detect topics. For
the description of the model, we assume one segment of the
tweet stream. We discuss later how the method is extended
to be applied to to a sequence of segments.

Topic. Similar to other works [17, 19] we define a topic
to be a set of terms. Usually, a topic consists of three or
more terms, in order to capture its essence. Terms in each
set must be frequent, i.e. surpass some threshold, and co-
occur with some other words in the topic. Thus, we are
interested in looking for frequent term pairs and our goal is
to merge these pair to form lager sets, which represent the
topics.

Critical Pairs. Similar to [19], in order to detect fre-
quent pairs of terms, we use a support measure:

| Di |
sup(ThT]) - |D| )

where 7;, 7; are terms, D;; is the set of tweets that the two
terms co-occur and D is the total set of tweets. A term pair
is frequent if its support is equal or larger than a support
threshold. In [19], the authors define a static value for the
support. There are some drawbacks when a fixed support is
used. As the input size varies, the output of the algorithms
may elide some topics, or include too many topics. Instead
of a static support threshold, we use a method defining a
dynamic support threshold, i.e. the threshold adapts to the
size and the content of the input. To achieve this, we sort
the co-occurrence frequency of all possible two-word pairs in
descending order. The N first pairs are called critical pairs
and we use the support of the N-th pair as threshold.
Critical Term Graph. Here, we describe the basic con-
cept of our work. Using the critical pairs, we create a graph,
where nodes represent terms that are used in the tweets and
edges indicate co-occurrence of the two terms in them. We
assign a value to each node, which equals to the term fre-
quency in the tweet corpus. Similarly, we assign to each edge
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Figure 1: Number of unique terms in tweets.
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Figure 2: Results from November 12 2014.

a weight that corresponds to the co-occurrence frequency of
its incident terms in the tweets. A normalization of these
values, may also be considered.

An important property of this graph is that as the num-
ber of tweets increases, the number of newly seen terms de-
creases and at some point we expect to have more tweets
than unique terms, i.e. the tweet corpus obeys to the Heap’s
Law. In Figure 1, we compare the number of unique terms
to the number of tweets in a random stream of all public
tweets, acquired by Twitter API*. At first, the number of
unique terms is larger than the number of tweets, but in the
end there are more tweets than unique terms. We expect
this diagram to flat out much faster when tweets focus on
specific topics, because the vocabulary should be limited.
Thus, as the number of tweets increases, it is more likely
new edges to be created or the existing edges to become
stronger.

Generally, we expect the critical graph to be sparse, not
well connected and have community structure (Figure 2).
The communities are formed from terms that co-occur in the
tweets, thus creating topics. The graph contains a lot of non-
connected components. Usually, the small non-connected
components (of size < 10) correspond to standalone topics
that have no common terms with the other topics. The
number of larger non-connected components, on the other
hand, is much smaller and these components contain more
topics.

3.1 Community Detection Algorithm

Preprocessing. When a new tweet arrives at the system,
it gets preprocessed and then stored. Preprocessing involves
splitting the tweet in a term list, removing stopwords, stem-
ming the terms and generating all possible term pairs from
the term list. We keep a record for the co-occurrence fre-
quency of each term pair, in every time segment.

To detect communities we use a modularity based algo-
rithm [6]. Several algorithms have been proposed to de-
tect communities efficiently. Newman and Girvan [18] in-
troduced modularity as a measure for the quality of the re-
sulting communities. Modularity measures the density of
edges inside a community compared to the expected density
if the edges were distributed at random. Modularity ranges
between -1 and 1. If the modularity of a subgraph tends
to 1, it means that the sub-graph is tightly connected and
may be a community and vice versa. In weighted networks

“https://dev.twitter.com/streaming/
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modularity is defined in [6] as:

1

2m —
2,]

A, — Mk
Y 2m

J6(ci,c5),

where A;; represents the weight of the edge between i and j,
ki = ¥;A;j is the sum of the weights of the edges attached
to vertex 14, ¢; is the community to which node i is assigned,
the d-function d (u,v) is 1 if v = v and 0 otherwise and m =
% Zi]' A”

It is easy to see that the community detection problem
is equivalent to modularity optimization in a graph. In [6],
the authors propose an algorithm consisting of two phases
that are repeated iteratively.

Initially, every node is a community. Let ¢ be a node
of the graph and j its neighbors. The algorithm evaluates
the gain of modularity that would be achieved if node i was
removed from its community and placed in the community
of j. If the maximum gain is positive, then node i is placed
in the community for which the gain is maximum, otherwise
the node 4 stays in its community. This step is repeated for
every node in the graph until there is no improvement of
modularity. Note that each node can be considered several
times, during this phase.

In the second phase, a new graph is built with nodes
the communities found in the first phase and edges that
have weights equal to the sum of weight of the edges be-
tween nodes in the corresponding two communities (edges
between nodes of the same community are marked as self-
loops). Phase one is applied to the new graph. The two
phases are repeated until there are no changes and modular-
ity is maximized.We chose this algorithm because it is fast;
its complexity is linear on typical and sparse data [6]. In ad-
dition, the algorithm follows an unsupervised approach, so
we need no previous knowledge about the number of topics
we are looking for.

It is known that modularity optimization algorithms suf-
fer a resolution limit [11], i.e. they fail to resolve com-
munities smaller than a certain scale, even if they are well
defined. However, because this algorithm, in intermediate
steps, merges communities in order to create new communi-
ties, there is a sense of hierarchy. Thus, we are able to use
this hierarchical structure to detect smaller communities.

3.2 Snapshots

So far, we have considered topics in a single sequence of
tweets. To handle streams of tweets, we divide the stream in
small segments of fixed time length. Each segment is marked



with a time id, based on its start and end timestamps. For
each segment we store all the possible term pairs and their
frequencies, that we have extracted from tweets.Given a time
range, to detect topics within this time range, we first iden-
tify the appropriate segments that correspond to this specific
segment. Then, we group all the term pairs from the appro-
priate segments, get the critical pairs and finally create the
critical term graph. This graph is a snapshot of the graph
for the specific time range. Snapshots are useful for track-
ing topics over time, which is considered as future work (see
Section 5).

4. EXPERIMENTAL RESULTS

In this section, we demonstrate the initial results of our
approach both on synthetic and real data.

4.1 Synthetic Data

One of the difficulties we faced is the lack of datasets
with known ground truth. In order to test our approach un-
der various conditions, we created a model to generate syn-
thetic datasets similar to the one described in [14]. Since real
tweets obey to the Heaps’ law, the synthetic tweets should
be generated by randomly sampling terms based on a Zipf
distribution. We present a short description and preliminary
results of the model we used to generate synthetic tweets.

We assume that we have k topics. Our goal is to generate
tweets for each of the k topics. Initially, we generate the
terms, which will be used in the tweets. Similar to [14],
we consider k+1 topic vocabulary bags, i.e. bag B;=1,....k
contains the terms for the i-th topic and bag By41 contains
general terms. General terms can be used in all topics, they
are like stopwords but contain more valuable information for
the topic.

Then, we create a k x (k+1) matrix P. Each cell Py
of the matrix corresponds to the probability to pick a term
from vocabulary bag B; while generating tweets for the i-
th topic. We call overlap between topics, the case in which
when we generate a tweet for a topic i, we include a term
from a bag Bj; that is different from the bag corresponding
to the topic, i.e., B; # B, Note that vocabulary bag Bj41
should have similar probability in every topic. We describe
the process that generates tweets for each topic below.

Let ¢t and M be the topic that the tweets refer to and
the number of tweets we want to generate for this topic,
respectively. At first, we assign occurrence frequency to all
terms based on Pareto distribution. We must point out that
general terms should have the same frequency in all topics,
in order to avoid special relation with any topic. Then,
we generate M tweets for the topic. Note that we do not
want duplicate tweets. Tweets are considered as a set of
terms that make up the tweet. We noticed in our dataset
that the number of terms used in the tweets (not including
stopwords) follows the Poisson distribution. Thus, we first
decide the size of the tweet S and then pick S terms. Term
picking can be summarized in two steps:

1. Select a vocabulary bag B; based on the probability of
matrix Pj.

2. Select term from B; based on occurrence frequency, i.e.
terms with high occurrence frequency are more likely
to be picked. Note that we don’t want duplicate terms
to avoid spam.
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We also need to check if the tweet is unique. If so, we de-
crease the frequency of each term used in the tweet by 1.
Otherwise, we create a new tweet. This process is repeated
until we create tweets for all k topics. Therefore, the output
the of the model is kM synthetic tweets.

In order to evaluate the results of our model, we consider
community detection as a problem of assigning all similar
nodes to the same communities [3]. Thus, based on pair
counting, we can predict the following cases:

e True Positive (TP): Term pairs that belong to the same
topic are assigned to the same communities.

e True Negative (TN): Term pairs that belong to differ-
ent topics are assigned to different communities.

e False Negative (FN): Term pairs that belong to the
same topic are assigned to different communities.

e False Positive (FP): Term pairs that belong to different
topics are assigned to the same community.

Using the above, we can calculate the following evaluation
measures, which are defined in [3, 12]:

TP
e Precision: P = TPt FP
TP
e Recall: R = TP+ FN
) TP
e Jaccard Coefficient: J = TP+ FP+FN
TP+TN

e Rand Statistic: RS = TP+ TN+ FPLFN

Figures 3 and 4 show the results of our approach. In
Figure 3, we present three different plots comparing the
number of topics that our model estimated to the real num-
ber of topics. We test our model using different amounts
of critical pairs, in three different percentages of overlap be-
tween topics, 5%, 15% and 25%. The overlap between topics
is distributed randomly. The synthetic datasets are gener-
ated using 3% general terms in each topic and they contain 3
to 10 frequent topics and 2 to 10 less frequent topics, for each
experiment. Note that the experiments have been repeated
multiple times and we present average values.

We notice that our model in most cases predicts the cor-
rect number of topics. The maximum discord, between the
estimated and the real number of topics occurs when using
1000 critical pairs to detect topics in larger datasets. In
these cases, the model predicts less topics than the actual.
But as we can see in Figure 4 the detected topics are the
frequent ones, because all the evaluation metrics are close
to 1. We must also point out that using more than 1000
critical pairs in the datasets with 5 to 10 topics does not
perform well. Even though the model predicts almost the
correct number of topics, the critical pairs contain noise and
this leads to estimating false topics. As we can see in Fig-
ure 4 as the noise increases the corresponding metrics are
decreasing.

The number N of critical pairs affects the number of top-
ics detected. A default value of 2000 seems to work in most
cases. By reducing N, we may end up loosing some topics,
however, the ones detected are the most important (i.e., the
most frequent) ones. By increasing N, we may get false re-
sults when the number of actual topics is small. This is one
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of the issues we plan to address in future work. An initial
idea is to dynamically adjust N, by looking at the actual
frequency of the N-th pair in adjacent segments.

4.2 Real Data

We provide a set of experimental results based on real
data and discuss their quality. The datasets used in these
experiments are closely related to news, sports and lifestyle.
This can help us to get an empirical evaluation of the re-
sults. We have implemented a crawler, which follows pub-
lic accounts of popular news agencies, magazines, politi-
cians, celebrities, etc and people that are related to them.
For example, some of the accounts are Barak Obama, The
Guardian, various journalists, N.A.S.A. and F.I.LF.A.com.
Most of these accounts are verified by Twitter, to avoid
spam, and their tweets are written in English.

Thus, the context of the dataset varies from political to
sport related events. We have to point out that the tweets
are related to real world events, the popularity of these
events directly affects our results. An example it is shown
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in Figure 2. We got 10 topics that happened at November
12 of 2014. The most obvious of the them refers to first ever
successful land of a spacecraft (Philae) on a comet (Comet
67P). We can also see information about the U.S.-China
emissions deal, the Forex scandal, the Ebola outbreak and
a rather bizarre news about a loose tiger near Paris.

Similarly, Figure 5 displays topic from (Monday) De-
cember 1 2014. We see topics that refer to World AIDS
Day, new Star Wars movie trailer, cyber Monday and black
Friday sales. Another interesting example in the same fig-
ure is that the algorithm manages to detect different topics
for two different protests in two different places, Hong Kong
and Ferguson U.S. respectively, even though they have some
common words. Still, there are some terms that could be-
long to both topics, but since the algorithm produces non-
overlapping communities, this is not possible.

S. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a model to detect topics in
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Figure 5: Results from December 1 2014.

short text documents, such as tweets, using a graph-based
model, the critical term graph. This graph consists of nodes,
which represent the terms found in tweets, and edges, which
represent the co-occurrence frequency of the corresponding
terms. Detecting communities in such graph can be an ef-
ficient tool for topic detection. We empirically proved the
effectiveness of our model with experiments on real news-
related tweets. In addition, we proposed a method to create
synthetic tweets, and tested our model under various condi-
tions.

There are many possible improvements and extensions.
At first, we can improve the critical term graph, using Nat-
ural Language Processing techniques on the tweets. Syn-
onyms could be considered duplicate information in the crit-
ical term graph, thus these terms could be grouped. Fur-
thermore, verbs could also be eliminated, because in most
cases they do not add much valuable information. These
improvements would reduce the graph size and potentially
improve the performance of the model. Both synonyms and
verbs can be detected using simple dictionary based meth-
ods, such as WordNet[2]. Alternatively, synonyms can be
detected using more advanced methods like [16].

Furthermore, an evaluation process of the results based
on real data can be considered by using information from
external sources, such as Google Trends or news agencies.

We are currently focusing on different ways on assign-
ing weights on the edges and how the algorithm responds
to these changes. The quality of results when using other
overlapping and non-overlapping community detection (or
graph partitioning) algorithms is, also, another interesting
topic.

Another extension could be the use of this model in trend-
ing topic detection. This can be achieved by using the con-
cept of burstiness. In [19], the authors define the trending
topics as topics that exhibit high frequency in a specific time
segment compared to its previous segments. In our model,
this could be achieved by using additional constraints on se-
lecting the critical pairs, e.g. the occurrence frequency of
the corresponding terms should exhibit bursty behavior.

Our ultimate goal is to use the critical term graph for
tracking the evolution of the topics through time. We are
considering two approaches on this problem. The first ap-
proach involves building different critical term graphs for
each snapshot and then trying to map communities, and
thus the corresponding topics, between these snapshots. Al-
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ternatively, we can maintain a single critical term graph and
incrementally update the graph by adding, modifying or re-
moving edges and nodes.
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ABSTRACT

In this work-in-progress paper we describe requirements,
scenarios and mandatory functionalities of graph databases within
the application field of railway operations research (ROR).

The underlying railway infrastructure data of all ROR tasks can
naturally be described by graph structures and can therefore be
managed by graph databases; railway operations research
functionalities might consequently be described as database
functions on its graphs.

While the infrastructure data should remain persistent, a graph
database might be a good choice to match the persistence needs
quite close or even identical to the data structures to be managed.
Moreover, the functionalities might be transformed into database
functionality.

In current, productive systems, relational databases respectively
models are still the most widely-used models, on which current
infrastructure persistence is realized.

The work-in-progress focuses on the question, if graph databases
with database supported functionalities might be a good
alternative compared to current solutions on top of relational
models.

This paper tries to outline a generic graph model as it can be used
in ROR, to define requirements and framework conditions. It tries
to summarize generic demands and to describe the query and
functionality requirements that have to be satisfied by such
databases. This paper presents basic ideas and the origin point of
intended and starting database research projects and cooperation
with universities in the next month and years.

Keywords
Railway infrastructure data, persistence of graph topology,
railways operations research functionality, infrastructure database.

(c) 2015, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2015 Joint Conference (March 27,
2015, Brussels, Belgium) on CEUR-WS.org (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the Creative
Commons license CC-by-nc-nd 4.0

183

1. INTRODUCTION

The application field of railway operations research is a quite
special field which is usually associated to other topics than graph
databases or graph structured data and their management.

Usually railway operations research deals with topics like delay
propagation, robustness of timetables, capacity of infrastructure,
capacity allocation or evaluation of infrastructure modification
effects. Such topics can be analyzed and answered on behalf of
analytical, constructive or simulative approaches [5].

While the main focus of ROR activities usually lies on sufficient
algorithms, formulas or modelling approaches the mostly
unmentioned basic of all functionality is an infrastructure graph,
which acts as the basis for running time computations, blocking or
minimum headway time determination and the ability to select
alternative routes, additional stops or to perform rescheduling
operation.

Therefore, an essential but usually unconsidered component of all
railway operations research activities is an infrastructure network
graph, on which all functionalities are based.

The railway infrastructure network consists of rails, switches,
crossings, buffer stops etc. and can mathematically be described
as a (directed) graph, which is the most static part of a railway
operations research project.

Based on this graph — the infrastructure graph — functionalities are
defined and tasks are performed. The most elementary
functionality is the determination of running times and the
determination of infrastructure occupation but also the search for
matching routes, alternative stop policies or the evaluation of
infrastructure capacities based on timetables or queueing theory.

The following chapters try to introduce approaches to
infrastructure graph modelling, existing exchange formats and
perspectives onto such graphs.

A generic graph definition as a consensus of different views and
approaches is derived and typical functionalities performed on
such graphs are outlined.

The last chapter finally describes our work in progress and
summarizes currently ongoing database research activities,
primarily targeting a performant prototype and accompanying
prove of concept of the approach described in this paper and their
suitability with respect to manageability on behalf of graph
databases.

! Usually several timetables and their robustness of delay behavior
are evaluated for a given network infrastructure, therefore the
infrastructure is considered as “most static” within a project.



2. DATA MODEL AND FUNCTIONALITY
To describe the requirements and functionalities a graph database
that is tightly fitting the application field of railway operations
research should satisfy, it is worth to take short looks into existing
models, data exchange formats and systems, focusing on
infrastructure models.

To introduce more aspects from railway operations research — not
only the basic infrastructure network and graph-

like topology — some typical tasks and questions  microscopic

manipulated data back into the database in contrast to the directly
performed functionalities within graph databases.

2.2 Graph models and UIC RailTopoModel
Even if the graph model is currently considered to be a sufficient
and suitable approach to model network infrastructure, the content
of these models differs, especially when considering different
levels of granularity as Figure 1 illustrates.

are shortly described to allow a better
understanding of required functionalities.

From that starting point it hopefully becomes
clearer, what is expected from graph databases
for this quite specific task, in functionality, data

model and performance requirements.

2.1 Proprietary models |
Proprietary data models for railway operations 7
research were introduced decades ago. While
old systems for timetabling support in the 80s

used quite specific track and infrastructure

models like sequences of elements for single or
double track lines, specific configuration records
to describe the characteristic (and track
existences) of stations etc. the graph topology
approach became popular in the 90s with the
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increased availability of personal computers and
their performance.

It became clear, that graph models are the most
flexible  structures  and best  fitting
representations of the real network, but
computation power and the acceptance of
computer based systems still had to grow.

macroscopic

Typical systems of this time use either tool specific, binary and
size dense data and file formats or standard database models like
the relational one to store and manage the network data
persistently. While relational databases were considered to be
performant, widely available and standardized such databases
only support railway operations functionality in a quite limited
manner. Databases are primarily used as persistence stores to
guarantee ACID characteristics when working with network
infrastructure data.

The functionality is usually implemented on top of the standard
database system. The computation of e.g. possible routes cannot
be implemented directly within the relational database domain?.
So currently ROR functionality is performed on behalf of data
loaded into main memory with corresponding performance and
accessibility benefits but with the drawback, that database
functionalities like transactional control is not available. Finally
the evaluation of graph database based approaches for data
persistency has to be compared against this “traditional” scenario:
load from database and restore the network graph, perform
functionalities within main memory, and probably store

2 The relational model and SQL was extended by specific
functionality, e.g. closure operators, but nevertheless these
functionalities are not really used within current systems for
different reasons like performance, portability or even
availability within a specific RDBMS.

—0

Figure 1: Microscopic, mesoscopic and macroscopic
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network infrastructure graphs and node aggregation into
operational control points, stations, junctions and lines.

There are several more or less widely used approaches,
philosophies and granularities used by different systems. Mostly,
these models were implied by legacy systems, research prototypes
or available data sources.

There are node weighted or edge weighted and attributed
approaches, which both have advantages and disadvantages with
respect to redundancies, performance or expressional strength.

There are microscopic and macroscopic models considering the
network topology and network elements in varying detail depth.
Microscopic models consider not only the track related topology
but also signals, liberation equipment, curve radius, track
gradients, tunnels, switches or stopping positions, balises, speed
profiles etc., usually in precise of meters. Beside this, specific
tools used for infrastructure planning might moreover contain
much more elements and positioning precise.

Moreover, the application field a tool is designed for as well as
the local technical requirements and circumstances determine the
content of the infrastructure network graph®.

% In Germany there is e.g. a train protection system called LZB
(lineare Zugbeeinflussung) which requires to model LZB areas,
marker boards for area characteristics and which is not available
in most other countries. The same is true for several other
systems, which usually are country centered developments.



A——¢c—— B

Figure 2: Micro-/macroscopic infrastructure modelling
(UIC RailTopoModel).

Several country specific, national models and modelling
approaches exists, e.g. in Germany, the DB Netz AG uses a node
weighted graph model — the Spurplan — within their timetabling
systems RUT-K [8] that defines a wide range of allowed elements
and element instances to set up a network. The same is true for a
Belgium specific approach to an infrastructure graph model, the
INT graph [6].

To generalize and abstract the overall problem of infrastructure
network graph modelling and its management within database
systems, a scientific, generic model has to be used or to be
derived.

One quite interesting project targeting such a generic
infrastructure model is the RailTopoModel initiated by the UIC
[1]. One of the ideas behind is to model network topologies for
macroscopic as well as for microscopic approaches and to define
mapping and transformation functionalities between different
levels of granularity (Figure 2).

Consequently the UIC RailTopoModell is a (at least currently)

promising approach to set up a generic network
graph model that might cover a bright range of
generic requirements. It therefore is one source
of the overall graph model which should be
implemented and supported by a graph database

The RailML project [2] is another example, where an
international partnership tries to define an exchange format (not
only for infrastructure) in a more or less generic and universally
valid manner. Unfortunately, this approach again focusses on a
quite specific model — a track oriented view — which contradicts
the initially expressed universality. Moreover in practice, missing
semantic specifications reduces the universal validity of exchange
formats like RailML to a pairwise agreement and convention,
which again strongly contradicts any standardization intention of
this project.

3. GRAPH DATABASES

This paper wants to gain insight into ongoing work. This work
focuses on graph databases and how such (new®) database
approaches might be used in a beneficial manner to support,
replace or extend the nowadays systems, their functionalities and
performances.

The ongoing work focuses on research and evaluation activities
and join-projects with universities and the determination of
solutions which matches the application field requirements in a
quite optimal manner.

In the following subsections requirements and demands are
outlined, that have to be considered when designing and
evaluating graph databases and their functionalities to be enabled
to compare such rather new and alternative approaches to existing
ones.

targeted by our ongoing work.

One crucial aspect which constantly causes

problems with respect to generalization and
universal usability and acceptance of such
models are nationally affected (non-functional)
requirements, e.g. a regulatory for clustering the =

network into operation control points (OCP),

the aggregation of tracks within lines,
separation of grids and intergrids and much
more. Such classification criterion and

requirements are often the background for a
specific modelling and might be generally be
described as graph clustering, coverage and
overlapping problems (chapter 3.2).

2.3 Exchange Formats

Similar to graph models the exchange formats

evolved. Besides “owning” a graph model it

makes sense to define a sufficient exchange format for data fitting
to this model.

While for the proprietary formats mentioned within section 2.1
usually binary file formats were used, nowadays data exchange
formats are XML based, e.g. defined by XSD schemata.

The German Spurplan used by DB Netz AG implied the (company
internal) XML-ISS standard for railway research operation tools.
For more operation and planning centered systems other standards
exists and are currently under development, e.g. within the
PlanPro project [7].
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Figure 3: Rail network and network graphs.

3.1 Base Topology and requirements

As mentioned before, a generic graph model fits the network
graph modelling requirements in a best way, similar to the
mentioned UIC RailTopoModel (Figure 3). Additionally to this
simple model, an infrastructure graph database must consider
several more aspects outlined in the following subsections.

From our point of view, the core and elementary rail network
topology should be modelled by a directed graph similar to the
one proposed by the UIC RailTopoModel:

4 At least within the application field considered.



e A network graph is a graph G=(N, E) where N is a set of
nodes and E is a set of (directed) edges with ECNxN.

e The directed cardinality |n|=(s,, s) of a node nc N is

defined by the number s, of edges entering n and the
number s, of edges leaving n.

e A node ncN is called an inner node if |n|=(1,1) and

edge node otherwise.

e The graph is considered to be a node weighted graph,
where characteristic values, e.g. speeds allowed,
changing gradients or signaling functionality is assigned
to nodes.

e  Track sections are paths throughout the graph starting
and terminating at edge nodes with only inner nodes
within the path. For a path P=(ny, .., ny,) of nodes, n; is

an inner node for i=2...m-1 and (n; ny)<E for

i=1...m-1. A track section contains at least two nodes
(m>1).

e All inner nodes are attributed by direction validity, e.g.
a node is valid for train running within the direction of
the associated edge of in opposite direction (or both).
This validity has to be considered by all functionalities
like running or occupation time computation as well as
routing and route evaluation.

e For all nodes of a track section P=(n,,...,ny) a layout
position within a defined (from many possible)
positioning system is given. This might be a GIS
coordinate in case of GIS systems or the layout
coordinates of a linearized or user friendly display of
the network graph.

e  For all nodes of a track section P=(n,,...,ny,) a (relative)
positioning information pos(n) is assigned with
pos(ny)=0, pos(n,)=1 and pos(n;)<pos(n;.;) for i=1...m-
1.

e The mileage of nodes respectively section elements is
derived from location information (GIS/meters/etc.)
assigned to the section start and end due to the
positioning information.

Nodes might additionally be distinguished due to their semantic,
for which area or length they are valid. Most nodes respectively
corresponding infrastructure element are usually point elements,
whose semantic is related to a specific point, e.g. a speed change,
a stopping position (the “H”-board) or the location of a signal.

But nevertheless semantic might be extended to area and length
validity, e.g. speed restriction zones, level crossings etc. The
validity semantic is expressed by node attributes.

3.2 Topology Coverage and Clustering

Some of the most problematic issues towards a unified topology
model are national rules and regulations as mentioned before. E.g.
in Germany infrastructure elements are logically organized with
operation control points as the top-most classification criteria. In
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other countries grids or inter-grids are the primary structuring
criteria; sometimes a track line is the major criteria.

The topology graph model we consider for the intended graph
database implementation tries to generalize all these approaches
on behalf of graph coverages and graph node clustering:

e The cluster C of a network graph G=(N, E) is a graph

Gc=(Nc, Ec)<G such that NccN and for all ny,n, < N¢

with (ny,n,) € E, also (ny,n,) < Ec holds.

e A coverage CV={C,, ...C,,} of a network graph G=(N,
E) is a set of clusters of G.

e A total coverage TC={Cy, ...C\,} of a network graph
G=(N, E) is a set of clusters of G such that C;=(N;, E;)

for i=1,...,m and N;, N; (i,j=1,...,m, i+]) are disjunctive

node sets whose union is N.

With this clustering, it is possible to define the varying logical
orderings and classifications as mentioned before:

e The logical separation of a network graph G into
operation control points is a coverage of G.

e A network graph G can be separated into grids and
inter-grids. A grid-inter-grid-approach is a total
coverage TC={C,, ...C,,} (m>0) of G such that a cluster

Ciis a grid, whenever there is a node n< C; with [n|=(X;n,

Xout) @Nd Xin>1 or Xq>1 (switch or crossing), and an
inter-grid otherwise. All edges from G not contained in
TC always connect nodes from grids to nodes from
inter-girds or wise versa.

e Lines L={C,, ...C,} (m>0) of a network graph G are a
(not total) coverage of G where all nodes of each cluster
Ci (i=1...m) are part of at least one path within C;.

e  Power supply areas of a network graph G are areas
within the corresponding network, where (electrical)
power is supplied by one or more transformer
substations. Therefore the power supply areas of G can
be modelled as a (not total) coverage of G.

All examples stated before are examples of different logical
clustering of the overall network graph and should illustrate
the functionality which has mandatorily to be supported by
database, especially the support of clustering and additional
cluster constraints.

3.3 Interlocking Routes

Several existing infrastructure data models for railway networks
concentrate on a quite limited view on the rail (and graph)
topology as a primary (and only) modeling aspect, as e.g. RailML
does until nowadays.

For railway operations research tools this view is not sufficient.
Track related systems like railways basically rely on interlocking
techniques and therefore this aspect has to be supported by
models and consequently by databases as well.

A route of an infrastructure graph G is a path within G
corresponding to the technical circumstances given by the



concrete settings of an interlocking station and its ability to
control signals, switches and track accessibility.

So one additional requirement a graph database for infrastructure
graph management has to fulfill is to support coverages
representing routes and paths within the graph.

In contrast to “usual” routing and path finding functionality
(which nevertheless is required but considered later on within the
paper) specific route data has to be stored, because such routing
information has to be enriched by application field specific
attributes. Therefore it could be said that the graph database has to
be able to manage attributed routing information. Such attributes
might be information about the usability (electrification, axle
weights, stopping positions offered etc.) that are available in
addition to the pure infrastructure information, the classification
of certain routes or the relevance for different train types
respectively train classes®. With such route information several
railway operations research functionalities are supported like
computer based routing or rescheduling.

Routes typically start at one graph node and describe a path to
another graph node. Such nodes can be signals, track
ends/boundaries or even specific reference nodes®.

3.4 Temporal Validity

One aspect typically not considered by infrastructure models is
the spatio-temporal validity of the infrastructure network. Railway
operations research functionality typically concentrates on a
specific network graph, but this consideration is not necessarily
true in any case.

Within timetabling periods there are more or less important
changes somewhere in the network. Switches are added or
removed, interlocking stations are extended or modified, tracks or
even complete areas are closed for maintenance work etc.

Therefore it must be ensured, that a universally usable graph
network considers temporal validities and retrieves network
graphs and topologies depending on requested times respectively
time periods.

So one essential question for this work in progress is how graph
databases can be used to access different topologies changing over
time and with which performance.

3.5 Routing and path finding

Last but not least another elementary functionality for the
considered application field is the routing functionality as known
from several similar application fields like route guidance and
navigation systems.

The graph database has to offer this functionality on behalf of
interlocking routes as described in section 3.3. In practice, queries
for routes between two graph nodes have to consider the train
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Often there are tracks and lines dedicated e.g. to freight or
passenger trains, even if both types are physically comparable
(same gauge, same locomotive etc.) but routes are more relevant
for on type than for the other. Therefore a route might have a
high priority for freight trains and a very low one for passenger
trains.

=3

This corresponds to the interlocking paradigms, where exactly
one origin and one target have to be defined before the
interlocking process — e.g. setting up switches and signals — is
accepted and started.
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characteristic and priority of the routes as well as the attributed
routing information.

While this “plain” routing functionality is used e.g. for
timetabling, the routing for railway operation simulation or
analytical evaluation has to perform this search slightly different.
Usually along the train run overtaking sections for the specific
train have to be determined. Overtaking sections are areas of a
network graph, where in practice no change of train order can be
performed. The two ends of an overtaking section are
characterized by the ability to change this train order, concretely
to allow one train to overtake or to be overtaken by another train.

This is again determined by alternative routing selecting sufficient
routes at the section ends which e.g. offer a sufficient stopping
position and electrification.

3.6 Summary

In this chapter, requirements against a graph database to handle
network graphs for railway operations research purpose were
mentioned and introduced. Roughly speaking, the most important
are:

e Support of (node weighted) graphs with different
positioning and layout systems.

e Temporal validities and the ability to retrieve time
specific graph topologies.

e Clustering and coverage of network graphs to ensure
generality.

e Management of interlocking routes and
functionality on top of these routes.

routing

With this functional “specification” the evaluation of graph
databases as a sufficient persistent storage system can be started.

4. WORK IN PROGRESS/NEXT STEPS

The handling of infrastructure network data and ensuring its
persistency is an elementary component of nowadays railway
operations research tools.

The current legacy system landscape usually uses “traditional,
relational” approaches to store and manage such data. There is an
obvious mismatch between the relation and set oriented paradigms
of these databases and the topology, semantic and structure of
graphs which are a “natural” model for railway network
infrastructure.

If functionalities like simulation, timetabling, capacity evaluation
or other tasks from the application field of railway operations
research should be performed, they are currently performed on in-
memory data structures which had been created from the
relational data sets while loading them.

The existence of graph databases obviously closes the gap
between the database model and the one of the specific
application domain. A central question for commercial tools is if
it is worth to shift to new, less evaluated approaches like graph
databases.

For this reason we work on an evaluation of the performance and
functional capabilities of graph databases in comparison to
“traditional, relational” approaches.

At the Workshop on Querying Graph Structured Data 2015

(GraphQ 2015) we expect to be able to present and show first
results, provide an insight into current settings of this ongoing



evaluation or at least discuss aspects of this problem field at the
workshop itself.

The evaluation is intended to start soon as a joint-project between
VIA Consulting & Development GmbH as initiator of this work,
different students and universities specialized on graph database
techniques and the railway infrastructure manager DB Netz AG in
Germany.

It is expected to provide graph and route data from existing
systems with expected graph sizes up to several hundred-thousand
nodes and thousands of interlocking routes for the whole German
railway network. In this way it will be ensured, that the research
and evaluation work is related to practical conditions and
requirements.

The next steps from the current stage of the ongoing work are the
definition and selection of different evaluation and comparison
scenarios and modelling approaches with respect to specific
databases. As a basis of comparison, a relational database as it is
currently used in practice is considered.

5. REFERENCES/LITERATURE

[1] UIC - International Union of Railways, UIC
RailTopoModel: Railway Network Description — A
conceptual model to describe a railway network,
http://documents.railml.org/science/280714 uic_railtopomod
el_rc2.pdf

[2] railML.org Initiative, http://www.railml.org

[3] Hansen, I. A.; Pachl, J. (eds.): Railway Timetabling &
Operations. Analysis - Modelling - Optimisation -
Simulation - Performance Evaluation. Eurailpress 2014,
ISBN 978-3777104621

[4] Kuckelberg, A.; Seybold, B.: “Adaptive Rule-Based
Infrastructure Modelling” — In: Proc. of the 5th International
Seminar on Railway Operations Modelling and Analysis,
Copenhagen, 13.-15.05.2013.

[5] Janecek, D.; Kuckelberg, A.; Nielen, N.:
“Kapazitdtsermittlung von Eisenbahnknoten und Strecken” —
In: Eisenbahntechnische Rundschau (ETR) 61 (2012) 10, pp.
30-36.

[6] INT — Graph Model Design, Infrabel internal working paper,
INT RFT.04

[7] PlanPro, Durchgéngige Datenhaltung der Leit- und
Sicherungstechnik (LST) von der Planung bis zum Bestand
(in German), DB Netze,
http://fahrweg.dbnetze.com/fahrweg-
de/start/technik/innovationen/planpro

[8] K. Wodlfle, RUT-K — Computer-Aided Train-Path
Management, Paris, 13.10.05, Talk at UIC

188



Linked Web Data Management (LWDM)

Devis Bianchini (Universita di Brescia),
Valeria De Antonellis (Universita di Brescia),
Roberto De Virgilio (Universita Roma Tre)

189



An Extensible Framework for Query Optimization on
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ABSTRACT

The RDF data model is a key technology in the Linked Data
vision. Given its graph structure, even relatively simple
RDF queries often involve a large number of joins. Join
evaluation poses a significant performance challenge on all
state-of-the-art RDF engines. TripleT is a novel RDF in-
dex data structure, demonstrated to be competitive with
the current state-of-the-art for join processing. Query opti-
mization on TripleT, however, has not been systematically
studied up to this point. In this paper we investigate how the
use of (7) heuristics and (i) data statistics can contribute to-
wards a more intelligent way of generating query plans over
TripleT-based RDF stores. We propose a generic framework
for query optimization, and show through an extensive em-
pirical study that our framework consistently produces effi-
cient query evaluation plans.

Categories and Subject Descriptors
H.2.4 [Database Management]: Query processing

General Terms

Algorithms, Design, Experimentation, Performance

Keywords
RDF, SPARQL, TripleT, indexing, query processing

1. INTRODUCTION

Motivation. The goal of the Linked Data vision is to cre-
ate a global “web of data”: an infrastructure for machine-
readable semantics for data on the web [9]. This vision aims
to make data from a wide variety of sources available under
the standardized RDF data model, allowing for this data to
be shared across different domains using web standards.
As adoption of the linked data vision grows, data stores
have to be able to deal with increasingly large datasets.
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ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
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by-nc-nd 4.0
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This poses a scalability problem, both for storage and in-
dexing, as well as for query evaluation. By its triple-centric
graph-like nature, even the most basic RDF queries involve a
large number of (self-)joins, which pose a significant perfor-
mance challenge on state-of-the-art RDF database engines.
At present, real-world RDF datasets can involve hundreds
of millions or even billions of triples, making it challenging
to offer interactive query response time.

When compared to relational database technology, RDF
stores are a relatively new concept. A number of RDF stores
exist, one of them being the Three-way Triple Tree data
structure (TripleT) [6], which features a value-based, role-
free indexing scheme, unique among the current state-of-
the-art. Research has shown this approach to be competi-
tive with, and often at an advantage to, alternative indexing
schemes, in terms of both storage and query evaluation costs
[6]. However, query optimization on TripleT-based RDF
stores has not been systematically studied up to this point.

Our contributions. In this paper, we present our experi-
ences and results of a comprehensive investigation of query
optimization on TripleT [18]. In particular, we study how
the use of (i) heuristics and (i) dataset statistics can con-
tribute towards a more effective generation of query plans,
minimizing query execution time over the TripleT RDF store.
Our aim here is to understand the effectiveness of various
parts of the heuristics that influence query plan generation.
These query plans are tailored to (and evaluated on) our
implementation of the TripleT store, which we also describe
in this paper.

The novelties of our work include an extensible generic
rule-based framework for query optimization over TripleT,
and an extensive empirical study into the effectiveness of
proposed rules in generating optimized query plans. Fur-
thermore, the complete experimental framework, including
both disk-based storage and the query processing pipeline,
is available as open-source code for further study.!

Our proposed optimization framework, together with a
few key heuristics rules, is able to consistently produce ef-
ficient query plans for a wide variety of query types and
datasets. In comparing heuristics-based and statistics-based
rules, our aim was to understand the benefit offered by the
use of statistics. Our study shows that not only do rules
using statistics in general offer little performance improve-
ments compared to heuristics-only rules, but also that a
purely heuristics-based approach may exhibit an order of
magnitude reduction in evaluation costs in certain situa-

https://github. com/b-w/TripleT



tions. These observations support those of Tsialiamanis et
al. in their study of heuristics-based optimization of RDF
queries [17].

2. BACKGROUND

Definitions. We present the basics of data and queries.
Further details can be found in [1, 18]. Let U be a set of URIs
and L be a set of literals, such that UNLL = (. Then we define
an RDF triple as an element (s,p,0) € Ux U x (UUL). We
define an RDF dataset (or, alternatively, an RDF graph), de-
noted T, as a set of n > 0 RDF triples: T = {t1,t2, - ,tn}.

At the core of many RDF query languages such as SPARQL
lies the concept of Basic Graph Patterns (BGPs) [1]. A BGP
is a conjunction of Simple Access Patterns (SAPs), where
each SAP is a triple consisting of some combination of fixed
values (atoms) and unfixed values (variables). Formally, let
A =TUUL be a set of atoms, and let V be a set of variables,
such that ANV = (. Then we define an SAP as a triple
S =(s,p,0) € (UUV)x (UUV) x (AUV). We then define
a BGP as a conjunction of SAPs: P = S1 ASa A--- A Sy,
for some n > 0. Equivalently, P may be regarded as the set
{S1,52,...,5.}.

A binding for BGP P is a function B from the variables
occurring in P to the set of atoms A. We define the applica-
tion of binding B to P, denoted B(P), as the set of triples
resulting from replacing every occurrence of every variable
v in P with B(v). Finally, the result of querying graph T
with P, denoted P(T), is the set of all bindings B such that
for each B € B it holds that B(P) C T.

We indicate variables with the prefix ‘?.” As a small exam-
ple, the BGP P = (jan, knows, ?p) A (?p, fanO f, mozart)
on graph

T = {(jan, knows, sue), (jan, knows, tim),
(sue, fanO f,mozart)}

evaluates to P(T) = {(?p : sue)}.

Related work. Numerous RDF stores and indexes have been
developed in recent years. Notable examples include Virtu-
0so [5], RDF-3X [15], and Sesame.? We refer the reader to
Luo et al. [12] for a thorough survey of storage and indexing
solutions for massive RDF datasets.

The study of query optimization is as old as the study
of database systems. On the topic of RDF, Neumann and
Weikum [14, 15] address some of the scalability problems
that arise when processing join queries on very large RDF
graphs. Optimizations for BGPs using statistics for selec-
tivity estimation are discussed by Stocker et al. [16], while
Tsialiamanis et al. present a number of heuristics for BGP
static analysis and optimization [17]. Various studies have
been made on techniques for selectivity and cardinality esti-
mation using precomputed information over RDF datasets
[7, 10, 13, 15].

TripleT was originally proposed by Fletcher and Beck [6].
Value-based indexing for join processing was also shown to
be effective in the context of relational and complex-object
databases (e.g., [2, 3, 4]). Some prior work exists featuring
TripleT. The performance of different join algorithms on the
TripleT index was investigated by Li [11]. An extension of

’http://www.openrdf .org
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TripleT was used by Haffmans and Fletcher [8] as physical
representation of data used for a proposed RDFS entailment
algorithm, where it was shown to be good candidate for
RDFS data storage.

3. A THREE-WAY TRIPLE TREE

The primary novelty of the TripleT index is that it is
built over the individual atoms in a dataset, rather than
over complete triple patterns. TripleT uses a number of
buckets that store the actual triples in the dataset. Each
bucket stores all the (s, p,o0) triples in the dataset, ordered
on some permutation of {s,p,o}. For instance, an SOP-
bucket would (conceptually) store the triples sorted first on
subject, then on object, and lastly on predicate. The possible
bucket orderings are thus SPO, SOP, PSO, POS, OSP, and
OPS, though in our implementation we limit ourselves to
using SOP-; PSO-, and OSP-buckets only. The remaining
permutations, SPO, POS, and OPS, are symmetrical and
are not considered in our investigation. Of important note
is that each bucket does not contain the triple part (s, p, or o)
that corresponds to its primary sort order. This information
is implied by the index and does not need to be repeated.

There is one entry in the index for each unique atom in
the dataset. This entry contains a number of pointers to
triple ranges in each of the bucket files. For instance, the
index entry for an atom a might contain a pointer to range
[x---y] in the SOP-bucket, meaning that in this bucket,
which is sorted on subject, triples from position x to position
y contain the value a in their subject position. Similarly,
the same entry might contain pointers to triple ranges in
the PSO- and OSP-buckets that contain a in the predicate-
and object positions, respectively.

The index supports retrieval of bindings matching a single
SAP. The sort ordering of a bucket determines how suitable
it is for retrieving triples matching a particular SAP. An
SOP-bucket, for example, would be well suited for retriev-
ing triples matching (a, 7z, ?y), but would be inefficient at
retrieving triples matching (?z, a, 7y). For the latter case the
bucket ordering implies the entire bucket needs to be read
in order to find all possible matches, while for the former
case the index entry for a directly points to the range in the
bucket where any matches must be contained.

Implementation details. Our work is based on our own
open-source implementation of the TripleT RDF store [18];
we briefly highlight salient features here and refer the reader
to the full report for further details and design rationale. A
single TripleT database is stored on disk across eight dif-
ferent physical files. We use a dictionary to translate be-
tween “friendly” representations and internal representations
of atoms. This dictionary is stored in two BerkeleyDB® hash
databases. The TripleT index is stored in a single Berke-
leyDB hash database. There is one entry for each unique
atom in the dataset. Each bucket belonging to a TripleT
database is stored in its own separate file. There are three
buckets for each database. The bucket files themselves are
flat binary files containing sequences of triples. Each bucket
contains all triples belonging to the dataset, although the
files themselves contain only the parts of each triple that are
not already present in the index. The statistics of a TripleT
database are stored in a BerkeleyDB hash database. The

3
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(b) A join graph Jp,

Figure 1: Example graphs for the BGP P;
(aa b, ?:l?)1 A (?:l), C, ?y)2 A (?y’ d, 8)3

statistical database contains information for estimating out-
put sizes for single SAPs or joins between two SAPs, as well
as some summarizing statistics [18].

4. QUERY OPTIMIZATION

Our framework for generating optimized query plans for
BGPs over the TripleT index consists of a generic algorithm
in which a number of decision points can be manipulated
by a given set of rules. In this section, P is defined as a
BGP, consisting of k SAPs (s1,p1,01),-+ , (Sk, Pk, 0%), de-
noted Si,---, Sk, resp.

4.1 Atom collapses

We define the atom collapse Cp of P as the undirected
edge-labeled graph with the atoms and variables of P as
nodes, and edges to indicate there is a shared variable be-
tween the SAPs associated with nodes.

Formally, the set of nodes consists of atom-nodes and vari-
able-nodes. For each SAP S; € P we have an atom-node
(a,{Si}) for each unique atom a € S;. We have a variable-
node (v, P,) for each unique variable v € P with P, C P
being the set of SAPs which contain v. For the special case
of SAPs that do not contain any atoms, we have a special
atom node (ao, {Si}), where ag is a nil-atom.

Let (z,X) and (y,Y) be nodes in the collapse graph. In
the set of edges we have an undirected edge (z, X) — (y,Y)
with label L if and only if there exists some variable v such
that v € Sx,Sx € X and v € Sy,Sy € Y and Sx # Sy.
Label L consists of a set of (Si,S;j,v,p:,p;) tuples, where
there are tuples for every variable v such that v € S;,5; € X
andv € S;,S; € Y with S; # S; and with p; and p; denoting
the positions (s, p, or o) that variable v has in S; and S;
respectively. Note that one variable can occur in multiple
tuples in one label, as long as each tuple as a whole is unique
within L.

As an example, Figure 1(a) shows the atom collapse for
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the BGP Py = (a,b,7x)1 A (Tz, ¢, 7y)2 A (?y,d, e)s. For ease
of reference, we have numbered the SAPs. Here we have an
edge between (e, {S3}) and (?z, {S1, S2}), due to the shared
variable 7y of S3 and Sz, but no edge between (e, {Ss}) and

(a,{S1}), since Ss and S1 do not share a variable.

4.2 Join graphs

We define a join graph Jp of P as a subgraph of atom
collapse C'p, with the nodes from Jp being a subset of the
atom-nodes from Cp such that for each SAP S; € P there
is exactly one node (a,{S;}) in Jp, and the edges from Jp
being the same as those from Cp. The nodes from the join
graph are known as seed nodes as they represent the physical
access path for each of the SAPs, which is the TripleT bucket
used for retrieving them.

Formally, the set of nodes in Jp is defined as

NODES(Jp) C{(z,X) € NODES(Cp) | z is an atom}

such that VS; € P.(3l(z, X) € NODES(Jp).(X = {S:})).
The set of edges is defined as

EDGES(Jp) = {((z,X) - (y,Y) : L) € EDGES(Cp)
| (x,X),(y,Y) € NODES(Jp)}.

Note that P can have multiple distinct, valid join graphs.
Figure 1(b) shows a possible join graph for P;.

4.3 Decision points

The goal of the optimizer is to generate a query plan over
the TripleT engine, where a query plan is a tree consisting of
physical operators as internal nodes and index bucket scans
as leaves, for evaluating P. Our optimization framework
takes the BGP P as input, first computes its atom collapse
Cp, then a join graph Jp, and lastly produces a query plan
QP fOI‘ Jp.

The computation features four distinct decision points,
and we follow a rule-based approach for dealing with them.
For computing the join graph there is one such point: (1)
deciding which seed node to select from the collapse graph
Cp of P. The computation of Jp proceeds by selecting seeds
until all SAPs of P are accounted for. For computing the
query plan Qp from Jp there are three: (2) deciding which
join edge to select from Jp; (3) deciding which join type
to apply for the selected join edge; and, (4) deciding what
scan to select for a given SAP. All four decision points are
resolved by a number of configurable rules that are separate
from the rest of the algorithm.

The rules. Decision points 1 and 4 are identical (both in-
volve selecting a seed for an SAP) and can be resolved by
two possible rules. Rule seed-1 (S1) selects one preferred
seed for each distinct SAP in the input set based on the
positions of the atoms in the SAP, following the ordering
s > o > p. The intuition here is that subjects are more
selective than objects, which in turn are more selective than
predicates. Rule seed-2 (S2) does the same but prioritizes
the atoms in the SAP according to their selectivity as indi-
cated by dataset statistics.

Decision point 2 has the greatest influence on query re-
sponse time, as it determines the order of joins in the query
plan. It is resolved by five rules. Rule join-1 (J1) aims
to prioritize those joins for which it is possible to do a
merge join, which is intuitively cheaper to perform given



the TripleT index organization. Rule join-2 (J2) prioritizes
joins involving the most selective SAPs, where selectivity
is determined through the ordering (s,p,0) = (s,7,0) =
(,2,7) = (7,0,0) = (5,2,7) = (2,2,0) = (1,p,?) = (2,7,7).
Here, s,p,o0 denote arbitrary atoms and ? denotes an ar-
bitrary variable; and, S > T indicates pattern S is more
selective than pattern 7. Rule join-3 (J3) aims to prior-
itize joins between two SAPs that have the most selective
positioning of join variables, following the ordering s <1 p >
OXIP>sDIo>sDIs>o0bdo>pixp. Rule join-4 (J4)
prioritizes joins between SAPs which feature a literal value
(e.g. “Sue”) in one of its positions, over those featuring only
URIs (e.g. “http://example.org/Sue”). The intuition behind
rules J2-J4 generalizes our intuition behind S1. Rule join-5
(J5) prioritizes joins between SAPs which, according to the
statistics database over the dataset, produce the smallest
intermediate result sets.

Decision point 3 is resolved by a fixed heuristic: whenever
it is possible to do a merge join (i.e. the left- and right input
sets involved in the join are both sorted on their shared join
variables), we do so; if not, we perform a hash join instead.

The rules for resolving decision points 1, 2, and 4 can
be used in any configuration (i.e. which rules are and are
not used, and in which order are they applied). Hence at
each decision point there is a variable, ordered list of rules R
which act as filters and which are applied in sequence on the
set of options in order to arrive at a final choice. Each rule
r € R reduces the set of options I to a set of options I’ C I
through filter step I - I’. Any items in I’ are then said to
be equivalent under r. Similarly, an ordered list of rules R

performs filtering step I EiN I’, with any items remaining in
I’ being called equivalent under R.

5. EXPERIMENTAL STUDY

The goal of our experiments is to gather evidence relevant
to answering the following questions:

1. How effective is each individual rule for generating op-
timized query plans?

2. How effective are combinations of rules for generating
optimized query plans?

3. Does the order in which rules are applied matter?
4. What is the impact of using statistics?

5. How do our optimization techniques perform under dif-
ferent types of queries?

6. How do our optimization techniques perform under dif-
ferent kinds of datasets?

These questions can be divided into four sections: (a) the
value of rules, (b) the value of statistics, (¢) the difference
between queries, and (d) the difference between datasets.

The value of rules. As discussed in Section 4.3, our opti-
mization techniques make use of a number of different rules,
which are applied in a certain sequence when we arrive at
a decision point where a choice needs to be made. Most of
them work based on some heuristic. One would not expect
each rule to be just as effective as the next; in fact, such
would be a highly surprising outcome. Instead, one would
expect there to be noticeable differences in the effectiveness
of individual rules. One would also expect that certain com-
binations of rules will prove to be highly effective, more so

193

than what the sum of the parts might suggest. The order
in which rules are applied at a decision point would be ex-
pected to matter to a certain degree but be less important
than which rules are and are not used.

The value of statistics. Although we have described only
two rules in Section 4.3 which make use of statistics, their
purpose is the same as that of all of our heuristics-based
rules: to minimize intermediate result sizes produced during
query plan execution. Of course, the use of these statistics-
based rules comes at a cost: a full statistics database needs
to be computed and maintained over the dataset.

The difference between query types. There are several
different types of queries we use in our experiments. As our
datasets are essentially graphs and our queries are graph
patterns, it’s easy to visualize them as such. In Figure 2
the four common query shapes that our queries are based
around are shown, where a query’s SAPs are represented by
nodes which are connected if they share a variable.

2 .

(a) (b) (¢)  Star-chain (d) Loop
Chain Star query query
query query

Figure 2: Different query shapes we study

Aside from their shape, other variables we study are
query size (in number of SAPs), and query selectivity.
The influence of query size on execution time is difficult to
predict. On one hand, more SAPs means more joins; on the
other, more SAPs can also mean higher selectivity which
can be exploited by the plan generator. As for query selec-
tivity, a query which features more atoms in more selective
positions in its SAPs generally produces a smaller result set.
Again, selective SAPs in a query can be favorably exploited
by the plan generator.

The collection of concrete queries used in our experiments
— covering the full range of combinations of shape, size, and
selectivity — is detailed in Wolff [18].

The difference between datasets. The test data we have
used comes from three different sources, covering both real
and synthetic data: DBpedia,® SP?Bench,® and UniProt.°
From each source we have obtained three different datasets:
one 100.000 (100K) triples dataset, one 1.000.000 (1M) triples
dataset, and one 10.000.000 (10M) triples dataset. For all
datasets, the 100K set is a strict subset of the 1M set, which
in turn is a strict subset of the 10M set.

Plan of study. In our experiments we primarily compare
different rule sets to each other. Hence, the composition of
the rule set is the main variable in each experimental run.
We define a run in our experiment as testing one particular
rule set on every dataset using every available query. Here,
testing some rule set x on dataset y using query z is com-

“http://dbpedia.org/
5htt:p ://dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/
6111:1:1:: ://www.uniprot.org/



Table 1: Results overview on 1M datasets:

execution time (ms)

SP?Bench 1M UniProt 1M
Chain Star Star-chain | Selective | Non-selective | Chain Star Star-chain | Selective | Non-selective
Run A-3 || 9975,5 | 6806,2 5070,5 2376,5 12191,6 1151,0 | 24328,1 | 25884,0 17512,9 16729,7
Run A-4 || 18121,6 | 6293,4 | 198520,0 | 55936,2 92687,1 1194,7 | 39200,0 2173,3 1472,3 26906,4
Run D-2 12173,2 | 6876,5 5195,6 3018,5 13145,0 1158,0 | 28490,1 3620,1 4010,5 18168,2
. . . . 1E+06
prised of: opening the TripleT database for dataset y; telling . @RunD-2 BRunA3 mRunA-4
. ()
the query plan generator to use rule set z; feeding query z to gIEos
the database; enumerating and immediately discarding the & 1E+04
query results; closing the database. Each run is tested five H 1Ev03
. . . . . o
times, each time “cold”, i.e. without preserving any caches £
between tests, with average costs reported. -§1E*°2
The runs we have performed are detailed in Table 2, where L% 1E+01
a number indicates that a particular rule was used in that 1E400
run, the number itself indicating the order (a lower number 100K ™ 10M
denoting a higher priority). Each of the runs has a particular (Da'asé‘;)'ée]g‘“mbei;’f"""es)
purpose: the A-runs are designed to test the heuristics rules a) ene
against the statistics rules; the B-runs aim to get a sense 08 D2 BRUNAS BRuNAZ
of the value of the individual heuristics rules; the C-runs T 4E+05
. o
focus on the ordering of rules; the D-runs are used to test % evos
different subset combinations of rules. g
‘o 1E+03
E
. 5 1E+02
Table 2: Runs and their rule sets H
< 1E+01
Rules 4
S1|S2|J1|J2|J3|J4 | J5 1E+00
100K ™ 10M
i'; 1 1 1 2 3 4 1 Dataset size (number of triples)
- * Excluding 15 / 60 data points with values > 1E+06
A3l 1 | 2|1 ]2]|3]|4]Ss .
Ada 2|1 |2 ]|3|4a]l5 |1 (b) UniProt
B-1 1 1 2 3
B-2 || 1 1 2 | 3 . .
Runs B-3 1 1 e 3 Figure 3: Results overview of runs A-3, A-4, and
B4 | 1 1123 D-2
C-1 1 4 3 2 1
c2 | 1 3| 2] 1] 4
c-3 | 1 2 | 1| 4] 3 S . . . . .
b1 T . 3 5 Here, a combination of primarily heuristics rules with statis-
D2 |l 1 2 1 tics as back-up worked best, as seen with A-3.
D-3 1 1| 2 3 On closer inspection, the general cause for A-4’s perfor-

5.1 Empirical results

In the interest of space, we highlight only a few of our
main observations here and refer the reader to Wolff [18] for
a detailed presentation and analysis of all results.

The A-runs. These runs were designed to test the per-
formance of the heuristics-based rules (runs A-1 and A-3)
against the statistics-based rules (runs A-2 and A-4).

We focus our discussion on A-3 and A-4 as illustrations of
these two groups. Table 1 presents results for the SP?Bench
and UniProt 1M datasets. We visualize results over all
dataset sizes in Figure 3, where we plot the average query
execution time over all queries, along with the average stan-
dard deviation. These results confirm that the heuristics-
based A-3 rule set offers better performance overall.

For the SP?Bench datasets, the heuristics-based A-3 is
most effective, with execution time of A-4 reaching up to an
order of magnitude higher. The DBPedia datasets showed
performance similar to that of SP?Bench. On UniProt the
differences are less pronounced, though we note that A-4
failed to scale up to the 10M set for the star-chain query.
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mance is that its plans feature more hash joins than those
produced by A-3. Performing a hash join can result in a
significant amount of intermediate result materialization,
whereas this is not the case with the merge join because
it can take advantage of the fact that the input streams are
guaranteed to be sorted. This is illustrated by the actual
plans generated by A-3 and A-4 as presented in Figure 4,
for the following small selective star-chain SP?Bench query:

(71, http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type,
http://localhost/vocabulary/bench/Article),

(71, http://purl.org/dc/elements/1.1/creator,

http://localhost /persons/Paul_Erdoes),

(71, http://swrc.ontoware.org/ontology#journal, 73)

(71, http://purl.org/dc/terms/references, 74),

(75, http://www.w3.org/1999/02/22-rdf-syntax-ns#type,
http://localhost/vocabulary /bench/Article),

(75, http://purl.org/dc/elements/1.1/creator, Dell_Kosel),

(75, http:/ /swrc.ontoware.org/ontology#journal, 73),

(75, http://purl.org/dc/terms/references, 77)

The B- and C-runs. These runs were designed to get
a sense of the value for each individual heuristics rule and
to measure the importance of rule ordering, respectively. In
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Figure 4: Plans generated for a small selective star-
chain query on the SP?Bench 1M dataset

short, we observed in these experiments that the J1 rule
is the single most important heuristics rule: configurations
that gave it a lower priority often failed to scale up to the
10M datasets. Aside from that there appeared to be no clear
winner in individual rules or ordering of the rules.

The D-runs. In these runs we look at configurations
which use a limited subset of rules. These experiments
showed that minimal rule sets are quite stable and effective
in performance. As a point of comparison with A-3 and A-4,
we present the results for D-2 in Table 1 and Figure 3. Here
we see that even this very limited rule set is always competi-
tive with both A-3 and A-4. The D-2 run appears to provide
the best, consistent performance over all three datasets, and
preferring the J2 rule (selectivity) over the J1 rule (merge-
joins) is one of the few configurations to perform well on
the UniProt star- and star-chain queries, which proved to
be some of the most difficult queries we have tested. This
performance by the D-2 run is somewhat surprising, as this
configuration consists of only three heuristics rules (one seed
rule, two join rules), and does not use statistics at all.

5.2 Discussion

We have seen through an extensive empirical evaluation
how the value of individual rules used by the plan generator
can vary greatly. Especially the merge join prioritization
rule, which is given preference in A-3, appears to be in-
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valuable for the generation of efficient query plans. As a
heuristic, there are of course practical scenarios which vio-
late this good behavior of merge join prioritization. In our
experiments, we experienced this only in the case of UniProt
star-chain queries. Indeed, here the performance generally
improved when this rule was given a lower priority, as in D-
2, where the selectivity prioritization rule proved to have the
largest positive impact. The benefits of the three remaining
heuristics rules are similar. In particular, in their absence,
the impact on query response time is roughly the same.

In general, we have observed that the impact of statistics
and the statistical prioritization join rule is measurable but
limited. When used alone or as the primary join rule, the
statistics rule produces query plans significantly worse than
those produced by the heuristics rules, as evidenced by run
A-4. This suggests that the value of statistics rules is found
mostly in a supporting role.

In summary, we recommend the D-2 rule configuration for
general use, as it is a purely heuristic and minimal approach
which delivers excellent results across the board. Overall,
our findings corroborate results obtained by Tsialiamanis
et al. [17], where a heuristics-based planner for SPARQL
queries is shown to be competitive with the cost-based ap-
proach taken in the state of the art RDF-3X store [15].

6. CONCLUDING REMARKS

In this paper we have presented results of a study of query
optimization on TripleT-based RDF stores. We have pro-
posed a query optimization framework that takes the shape
of a generic, rule-based algorithm. We also proposed a num-
ber of heuristic and statistical rules for use by this algorithm.

We have evaluated this framework in an extensive series
of experiments. These experiments have shown that a small
number of relatively simple heuristics can consistently pro-
duce efficient evaluation plans for a wide variety of queries
and datasets. We have also seen that while statistics do
add value, the value is minimal, and not within reasonable
proportion to the costs involved in constructing and main-
taining statistical data structures over massive graphs.

A number of interesting avenues for future work remain
open. A study of runtime optimization strategies in our
framework, such as sideways information passing [14], and
further sophisticated join-ordering [7] strategies are both
naturally rich areas for exploration. We have also encoun-
tered various challenges with using statistics for query opti-
mization. Additional work in this area would be interesting,
and may yet help our optimization framework produce even
more efficient query plans.

Acknowledgments. We thank Antonio Badia, Paul De Bra,
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ABSTRACT

There is a growing interest in the validation of RDF based solutions
where one can express the topology of an RDF graph using some
schema language that can check if RDF documents comply with it.

Shape Expressions have been proposed as a simple, intuitive lan-
guage that can be used to describe expected graph patterns and to
validate RDF graphs against those patterns. The syntax and seman-
tics of Shape Expressions are designed to be familiar to users of
regular expressions.

In this paper, we propose an implementation of Shape Expres-
sions inspired by the regular expression derivatives but adapted to
RDF graphs.

1. INTRODUCTION

The industry need to describe and validate conformance of RDF
instance data with some schema has motivated a W3C Workshop [24]
and the chartering of W3C RDF Data Shapes Working Group.'
Here, a schema defines an RDF graph structure where a node has
expected properties with defined cardinalities, connecting to literal
values or other described nodes.

As currently defined, RDF Schema [2] and OWL [22] are widely
recognized as being insufficient to fulfil this task, leading to pro-
posals like the RDF vocabulary Resource Shapes® and the Shape
Expressions® language.

The operational semantics of Shape Expressions has been pre-
sented at [23] and the complexity and expressiveness of the lan-
guage has been studied at [1]. A Shape Expression is a labelled
pattern that describes RDF nodes using a syntax inspired by regu-

*Corresponding author
"http://www.w3.0rg/2014/data-shapes/
http://www.w3.org/Submission/shapes/
*http://www.w3.org/Submission/shex-defn/

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

lar expressions.

Example 1. The following shape expression describes Person
shapes as nodes that have one property foaf : age with values of
type xsd: int, one or more properties foaf : name with values
of type xsd: string and zero or more properties foaf : knows
with values of shape Person.

<Person> {

foaf:age xsd:integer
foaf:name xsd:string+
foaf:knows @<Person>x

I4

4

}

It is possible to automatically check which nodes comply with
the declared shapes in an RDF Graph.

Example 2. The nodes : john and : bob in the following graph
have shape Person while the node :mary does not have that
shape.

:john foaf:age 23;
foaf:name "John";
foaf:knows :bob
:bob foaf:age 34;
foaf:name "Bob", "Robert"
:mary foaf:age 50, 65
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Shape expressions can be used to describe and validate the con-
tents of linked data portals [16] and there are several implementa-
tions and online validation tools like ShEx Workbench* and RDF-
Shape®.

Regular expressions are a well-known formalism to describe the
shape of sequences of characters. They have also been employed to
describe the shape of XML trees and form the theoretical basis of
RelaxNG. In 1964, Janusz Brzozowski proposed a method for di-
rectly implementing a regular expression recognizer based on reg-
ular expression derivatives [3]. In this paper, we adapt the deriva-
tives approach to RDF Graph based recognizers. We define regular

‘http://www.w3.0rg/2013/ShEx/FancyShExDemo
Shttp://rdfshape.weso.es




shape expressions, which form the basis of the Shape Expressions
language, and present the algorithm that can be used to check if
an RDF node has a given Shape. The algorithm has been imple-
mented and the performance results are better than a backtracking
implementation.

2. PRELIMINARIES

Given a set S, we denote S™ as the powerset of S, {} denotes the
empty setand {a1, ..., a,} denotes a set with elements a1, . . . , an.
The singleton set {a} will be simplified as a.

Let Vi = vocabulary of subjects, V, = vocabulary of predicates
and V,, = vocabulary of objects. In RDF, if we define 7 as the set
of IRIs, B as the set of blank nodes and L as the set of literals, we
have Vo =ZUB, Vy =Zand V, =ZUBUL.

A graph X is defined as a set of triples (s, p, o) such that s € V5,
p € Vpand o € V,,. X* denotes all possible graphs. The expression
t X t, represents the addition of triple ¢ to a graph ts. Given two
graphs g1 and g2, g1 @ g2 denotes the union of g; and g2. Notice
that we are using union of RDF graphs instead of merging. Union
of two RDF graphs preserves the identity of blank nodes shared
between graphs while merging does not [11].

The decomposition of a graph g is defined as the set { (g1, g2)|g1®
g2 = g}. The decomposition of a graph with n triples is an expo-
nential operation that generates a graph with 2" pairs of graphs that
can be obtained by calculating the powerset of g and pairing each
element with its complement.

Example 3. Let g = {(n,a,1),(n,b,1),(n,b,2)}, the decom-
position of g is:

{ ({},{(n,a,l),(n,b, 1>’<n7b7 2>})7
({(n,a,1)},{(n, b, 1).(n, b,2)}),
({(n,0,1)}.{(n, a,1),(n, b,2) ),
({ <Tl7 ba 2> }’{ <Tl7 a, 1>’<n7 b7 1> })’
({ (n, a, 1>,<TL, b7 1> }’{ <TL, b7 2> })a
({ <n7 a, 1>a<n7 b7 2> }9{ <n7 b: 1> })s
({(n,b,1),(n, b,2)}.{{n, a, ) ),
({(n,a,1),(n,b,1).(n,b,2)}1,{}),

}

We define the shape of a node n in a graph g, 39 as the set of
triples related to n in graph g. It is formed by all the triples of the
form (n, p, 0) € g. We define X" as all possible shapes that a node
n can have.

3. WHY NOT SPARQL?

Shape Expressions have been proposed as a high level, intuitive
language to validate RDF. This problem can also be partially solved
using SPARQL queries [14] which leverage on the whole expres-
siveness of the SPARQL query language.

The main issue of SPARQL queries is that they can become un-
wieldy and difficult to generate, manage and debug by hand.

Example 4. A SPARQL query that can express part of exam-
ple 1is:

ASK {
{ SELECT ?Person {
?Person foaf:age 7o
} GROUP BY ?Person HAVING
{ SELECT ?Person {
?Person foaf:age 7o
FILTER ( isLiteral (?0)
datatype (?0)

(COUNT (%) =1)}

&&
xsd:integer )

} GROUP BY ?Person HAVING

{ SELECT ?Person (COUNT (%)
?Person foaf:name 20

} GROUP BY ?Person HAVING

{ SELECT ?Person (COUNT (%)
?Person foaf:name 2o
FILTER (isLiteral (?0) &&
datatype (?0) xsd:string)

} GROUP BY ?Person HAVING (COUNT (x)>=1)}
FILTER (?Person_cO ?Person_cl)

{ {

{ SELECT ?Person (COUNT (x)
?Person foaf:knows 2o

} GROUP BY ?Person}

{ SELECT ?Person (COUNT (%)
?Person foaf:knows 2o
FILTER ((isIRI(?0) ||
}

GROUP BY ?Person HAVING
FILTER (?Person_c?2

(COUNT (%) =1) }
AS ?Person_c0) {

(COUNT (%) >=1)}
AS ?Person_cl) {

AS ?Person_c?2) {

AS ?Person_c3) {

isBlank (?0)))

(COUNT (*)
?Person_c3)

>=

1)}

} UNION { SELECT ?Person {
OPTIONAL { ?Person foaf:knows 20 }
FILTER (!bound(?0))

IS
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Representing RDF validation constraints as SPARQL queries is
not practical for large data portals and there is a need for a higher
level, declarative language with a more intuitive semantics.

Apart from that, the previous example is not completely right as
it has omitted the recursive definition where it should validate that
the values of foaf:knows all have the shape of Person. Try-
ing to represent recursive definitions in SPARQL is not possible in
general.® From our point of view SPARQL can be used as a lower
level language for constraint validation in the sense that Shape Ex-
pressions can be mapped to SPARQL queries. In fact, one of our
implementation of Shape Expressions is already able to generate
those SPARQL queries from Shape Expressions.

INTRODUCING REGULAR SHAPE EX-
PRESSIONS

In this section we define Regular Shape Expressions as a sim-
plified language based on the whole Shape Expressions language.
This language will be used as the basis for our implementations. A
regular shape expression F defines the triples related with a given
node in a graph. Although the concept presented in this paper is
focused on RDF graphs, we consider that these definitions can be
applied to describe the topology of other graph structures.

Given three non-empty sets Vi, V,, V, and vs C Vi, v, C 'V,
and v, C V,, the abstract syntax of regular shape expressions (E)
over Vi, Vp, V, is:

4.

E F =0 empty, no shape
| € empty set of triples
| L2 Vo arc with predicate
P € vp, and object 0 € v,
| Ex Kleene closure (0 or more F)
| E | F And (unordered concatenation)
I E|F Alternative

We do not provide the concatenation operator from string based
regular expressions because the arcs in a graph are not ordered. The

®This particular query could be represented using zero-length paths
as proposed by Joshua Taylor in StackOverflow http://goo.
gl/uMoXBQ



And operator (||) for unordered concatenation appears in [1] and is
similar to interleave or shuffle [6, 10] although in the case of graphs
and regular shape expressions there is no ordered concatenation
operator.

The operators £+ (one or more) and E? (optional) can be de-
fined as:

E+
E?

E|e
The Shape Expressions language also contains a range operator

E{m,n} which represents between m and n repetitions of E. It
can be defined as:

E{m,n —1}|E ifm<n
E{m,n} = ({E{m-1,n—1}||E ifm=n>0
€ ifm=n=0

Example 5. The regular shape expression
N I AN I

declares a shape that contains one arc with predicate a and value 1,
and one or more arcs with predicate b and values 1 or 2.

Example 6. We can consider xsd:int and xsd:string as
subsets of £ (the set of Literals) in RDF, so we can define the shape:

foaf:age

e 4

foaf:name

xsd:integer || (. ——— xsd:string)+

that declares nodes that must have an arc with predicate foaf:
age and value in xsd:int and one or more arcs with predicate
foaf :name and value in xsd: string. In ShEX notation it can
be represented as:

<Example> {
foaf:age =xsd:integer
, foaf:name xsd:string+

}

Given a node n, the shape of a regular shape expression e with
respect to n, denoted as Sy, [e] is the set of graphs S,[e] C X*
generated by the following rules:

Sa0] =0
Snle] = {}
Snlle ~% vo] = {(n,p,0)|p € vy and 0 € v, }
Snllex] = {} U Snfe || ex]
Snler || e2] = {t1 Uta| t1 € Suler] and t2 € Spfe2]}
Snller | e2] = Snlei] U Snlez]

Example 7. Lete = . 51 | - LN {1, 2}, then

Sule] = {{{n,a,1)},
{(n,a,1),(n,b, 1)},
{(n,a,1),(n,b,2)},
{{n,a,1),{n,b,1),(n,b,2)}}

For any expression z, the operators ||, |, € and () obey the follow-
ing simplification rules:

D|lz==z
z|l==
Ol z=0
z || 0=0
el z==
z || e=z

5. MATCHING REGULAR SHAPE EXPRES-
SIONS

Given a regular shape expression e and a node n in a graph g, we
want to determine if 39, (the subgraph formed by the triples related
with n) matches the regular shape expression S, [e], i.e. we want
to determine if 3¢, € S, [e].

The semantics of Regular Shape Expressions is defined by a rela-
tion e ~ ¢ (e matches ¥¢) which can be expressed using axioms
and inference rules [23]. Figure 1 presents the operational seman-
tics of Regular Shape Expressions. Those rules can be directly im-
plemented using backtracking.

Example 8. Lete = . % 1 || - LN {1,2}* and a graph g
where 9 = {(n,a, 1), (n,b,1),(n,b,2)}, a trace of the match-
ing algorithm is represented in figure 2. Notice that we have to
decompose the matching graph g in all the pairs of graphs g: and
g2 whose union give g. In this case, the decomposition returns all
the pairs depicted in example 3.

As can be seen, a naive implementation of Regular Shape ex-
pression matching using backtracking leads to exponential growth
and has poor performance.

6. REGULAR SHAPE EXPRESSION DERIVA-
TIVES

The derivative of a shape S,,(F) C X" with respect to a triple
t € 3 is a shape that includes only the remaining triples that when
appended to ¢ will become S, (E).

Definition 1. The derivative of a Shape S,(E) C X* with re-
spect to a triple t € X is defined as 9;(Sn(E)) = {ts]t x ts €
Sn(E)}

We need a helper function v : E — Bool (also called nul-
lable) that checks if a regular shape expression can match the empty
graph.

(E) true  if E matches the empty graph
v =
false otherwise
v(0) = false
v(e) = true
v(. BN Vo) = false
v(ex) = true
vier || e2) =v(e1) Av(ez)

v(ei | e2) =v(er) Vr(e2)

The following rules, inspired from Brzozowski [3], compute the
derivative of a regular shape expression with respect to a triple ¢.
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T =g To =g

O’I“l 07'2
rijro ~g rijro~g
ry ro o~
And_"1 g1 2 ™ g2
ri||re~g1 @ g2
Empty ————
e~{}
o rx
Stary ——  Stars 91 g2
rx~ {} r* >~ g1 D go
cv 0 € Vo
Arc P P

=25 vy ~ (s,p,0)

Figure 1: Inference rules for Shape expression rules

AT H3{1,2}*:{(n,?,1>,(n,b,1),<n,b,2)}

g1 ={}
g2 = {(n,a,1),{n,b,1),(n,b,2)}

91 = {<n9a7 1)} N
g2 = {<n1 bv 1)7 <7’L, b7 2>} ~ R
M . 51~ {(n,a,1)} R
s L2k~ {(nya, 1), (b, 1), (n,5,2)) = > {12 = {5, 1), (n,5,2)}

g ={}
92 = {<TL, b, 1)7 (n1 b, 2)}

<7b71>} N
(n,b,2)} N
. <93~ {} ui>{12}~{(nb1>}\
o2 1,20 ~ {(n,b,1), (n,b,2)} -5 {1,2) ~ {(n,b,2)}
91*{} g1—{nb2}
gg—{’an 92*
u u~>{12}~nb2

5, 2}*~{<nb2)} {120 ~ {}

Figure 2: Regular Shape Expression matching using backtracking
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0:(0)
8t(5)

I
PPN~ Y

v ifpcewvpando v
a S o - Hp o E 1 P °
to.po) vo) 0 otherwise

Or(ex) = Oi(e) || ex
de(er || e2) = Oi(er) || e2|Oe(e2) || ex

61(61 | 62) = 8t(61) | 8t(€2)

Example 9. Lete = . % 1| . LN {1, 2} %, the derivative of e

with respect to (n, a, 1) is . EN {1, 2}*. A trace of the derivatives
calculation can be:

Onay(« 2 1| o2 {1,2}%)
= Onany(c 1) |2 {1,2)

| ey (= 2 {1,21) || 2B 1

= | -5 {12}«

| ey (2 {12 [ oS {12} || o 51
= 51,2 «

IR ) S S |

= .5 (1,2}«

=S

= .5 {1,2}% |0

= ui>{1,2}>k

Notice that the derivative of a Regular Shape Expression can
grow in its size.

Example 10. The regular shape expression e = (. = {1, 2}|- LN
{1,2})*,checks that there are the number of arcs with predicate
a and values in {1,2} and arcs with predicate b and values in
{1,2} is the same. The derivative of e with respect to (n,a, 1)
is . {1,2} || (& {1,2}]- LN {1, 2})*. Notice that it grows
because once it finds an arc with predicate a, it needs to find another
arc with predicate b and continue with the rest of the graph.

The rules can be extended to graphs (sets of triples) as follows:

ople) = e
Otxt,(e) = 04,(0c(e))

7. MATCHING USING DERIVATIVES

For any graph g, we have that 9 € S, [e] if, and only if, £ €
Sn[[0sg (e)] which is true when v(0gg (e)) = true. We can
express the algorithm in terms of the relation e ~ X¢ defined as
the smallest relation satisfying:

e~{} < v(e

ex~txts & 0Oe) >t

It is straightforward to show that e ~ X¢ if, and only if, ¢ €
Snle].

Notice that when a regular shape expression matches a set of
triples, we compute the derivative for each of the triples in the set.
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Example 11. Lete = . % 1 || . % {1,2}x and B¢ =
{{n,a, 1), {n,b, 1), (n, b, 2)}, the matching algorithm proceeds as:
51 oD {120 ~ {(n,a,1), (n,b,1), (n,b,2)}
Oimay (= 2 1| =2 {1,21) = {(n,b, 1), (n,b,2)}
oS {1, 2} ~ {(n,b,1), (n,b,2)}

Doy (= = {1,2}%) 2 {(n, b,2)}
o5 (1,2 ~ {(n,b,2)}
Oz (= = {1,2}%) = {}
{12~ {)

v(o B {1,2}%)

true

te ¢ 00O

As can be seen the derivatives algorithm takes a linear approach
where it is consuming a triple in each step and calculating the corre-
sponding derivative of the regular shape expression. The algorithm
does not need to decompose the graph or to do backtracking. The
main complexity of the algorithm comes from the process of calcu-
lating and representing derivatives of shape expressions.

Example 12. Lete = . = 1 || - LN {1,2}* and Y, =
{{n,a, 1), (n,a,2), (n,b,1)}, the matching algorithm proceeds as:

S5 e D {12k ~ {(n,a, 1), (n,a,2), (n,b, 1)}
Omany(c S 1| o {1,2}%) ~ {(n,a,2), (n,b,1)}
o5 (1,2 ~ {(n,a,2), (n,b, 1)}

i) (= = {1,21%) = {(n,b,1)}

0~ {(n,b,1)}

false

teo 00

8. SHAPE EXPRESSION SCHEMAS

In this section