CEUR-WS.org/Vol-1346/edusymp2014_paper_8.pdf

Symbolic Representation of Models Improves
Model Understanding and Tendency to Use
Models — A Position Paper

Mira Balaban

Computer Science Department, Ben-Gurion University of the Negev, ISRAEL
mira@cs.bgu.ac.il

I have been teaching Object-Oriented (OO) Modeling [I] for a few years, then
I taught an advanced course on Foundations of Software Engineering (SE) [2]
for several years, and recently, I lead a workshop on developing a software engi-
neering application [3]. In the Object-Oriented Modeling course we teach UML
using a pragmatic view-point, i.e., emphasize how and when to use various fea-
tures, based on their semantics and properties. In addition we teach a pro-
cess of project development, using the taught models. In the Foundations of SE
course we teach selected chapters including testing, project development meth-
ods, design patterns, refactoring, design by contract, and more. The workshop
on project development consists of 5-student groups that collectively develop an
application construction, guided by a staff member.

Following such an extensive education, my expectations were that students
will recognize the value of early modeling, and will get used to analyze and design
software with models, as a standard practice. I was rather surprised to find out
that once out of the OO Modeling course, most students do not use models
unless enforced. Moreover, somehow, most students live under the impression
that models are kind of “annoying documents” that accompany software, and can
be written as an afterthought, when software is submitted. This is, for example,
the way that most students use models in their final, year long project. In extreme
cases students use automatic model creation procedures, available in advanced
integrated development environments.

This poor situation of actually using models as documentation rather than
for analysis, design and development of software, can be explained by multiple
factors, some essential to model nature, and others more pragmatic, based on
available tools. On the pragmatic reasons we suggest four reasons:

1. Lack of model-level tool support, at the level of modern compilers.

2. Lack of support for model-code coordination all along the software life cy-
cle. Development environments do not keep models consistent with code.
Therefore, models become irrelevant very quickly, and programmers find it
difficult to preserve model-code agreement.

3. Software development environments do not support advanced modeling fea-
tures.

4. There are no commercial model processing tools that enable model testing.
USE [45] is an academic tool for UML/OCL class diagram validation, using
instance creation and verification.



On the more essential reasons, we point on two reasons:

1. There is a technical difficulty in creation of visual models, while writing
symbolic specifications poses no technical problems. The heavy-use of visual
tools does not help either.

2. The third essential reason involves the declarative nature of analytic knowl-
edge and the difficulty of abstraction specification: Declarative expression
of (what is) knowledge is harder and requires deeper understanding and
analytic capabilities, in comparison to procedural (how to) knowledge [6].
Model abstraction and constraint specification is way more demanding than
straightforward code writing. Indeed, it is not surprising that software test-
ing is more popular than contract specification, as in [7§].

Model properties: Formal definition and visualization

Traditionally models have been developed as visual notations, since they
were intended as intuitive sketches of business level abstractions. Models were
understood as a means for intuitive explanations, either to non-professionals, or
as a means for initial analysis or design of software. In most cases, there was
no intention of being coordinated with applications along their life cycle, and
smooth model evolution was not a goal.

Some exceptions are the Statecharts model, and Description logics. The first,
was developed as a visual Domain Specific Language for automated realtime
systems. It was formally designed, implemented, and used in actual industrial
applications [QTOITIIT2]. Description logics [I3] emerged from the traditional se-
mantic networks [I4] and the Frame-based system KL-ONE [I5], in AL They
are intended for conceptual automated reasoning and do not have a visual rep-
resentation. They serve as the basis for the OWL family of semantic web lan-
guages [16].

The need for symbolic definition of models

The emergence of the Model Driven Engineering (MDE) approach has changed
the picture with respect to models for software analysis and design. Automatic
translation, processing and code coordination require well-defined specification
of semantics, processing, evolution and management techniques. Models are not
anymore just pictures drawn on a wipe board. Indeed, the OMG and other in-
dustries supported a wide development of modeling languages, standards, and
tools. Nevertheless, while usage of models is growing in modeling Domain Specific
Languages, they are still scarcely used in the process of application development.

The thesis I try to raise in this position paper is that if models need to
live and evolve with the software, they should be appealing not only to naive
users, but also to the community of developers. The pragmatic reasons listed
above suggest four points for improving the performance of model processing
tools, but this is not within our reach. The two essential reasons involve the
technical difficulties posed by visual specifications and the essential difficulty
of abstract and declarative specification. While the latter reason requires long
range education, the problem of visual specification can be solved relatively



easily. Developers, and even students, with some program writing experience,
prefer symbolic code writing over drawing visual models. One class in the Object-
Oriented Modeling course that I taught, has used the USE system for validation
of UML/OCL class diagrams. I noticed that after mastering the USE symbolic
specification of class diagrams, students preferred the symbolic writing, over
visual model drawing.

The obvious conclusion is that while visualization is certainly advantageous
as a presentation layer, it is not appealing to programmers. That is:

Every MDE modeling language must have symbolic syntax, in addition
to its concrete visual syntax. Teaching of modeling languages must con-
centrate on the dual existence of the visual and the symbolic syntax.

The expectation is that the design of modeling languages using symbolic
syntax will improve their theoretical status. More concretely, the expectations
are as follows:

1. The distinction and inter-relationship between concrete and abstract syntax
will be defined.

2. It will be clarified that models are not visual presentation layers on top of
textual code, but rather abstraction layers on top of more concrete specifi-
cations.

3. The use of symbolic syntax will enable employment of standard language
techniques for defining semantics and implementing application tools. The
Description Logics experience shows that symbolic theoretical language de-
velopment can yield deep and advanced theoretical and practical results.

4. The use of symbolic syntax will enable the development of testing tools.

Finally, T hope that making models symbolic will clarify that models are
formal representation languages, at a higher abstraction level, rather than just
visual, intuitive, not executable pictures of problem aspects. I suggest that mod-
eling courses will follow the USE example, and teach a modeling language using
symbolic and visual representation.

References

1. Analysis and Design of Software Systems: (2014)

2. Foundations of Software Engineering. http://www.cs.bgu.ac.il/~fsen141/Main
(2014)

3. Workshop on a Software Engineering Project. |http://www.cs.bgu.ac.il/
~wsep142/Main (2014)

4. Bremen Database Systems Group: A UML-based Specification Environment- Ver-
sion 3.0. http://www.db.informatik.uni-bremen.de/projects/USE/| (2012)

5. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL Models in USE
by Automatic Snapshot Generation. Journal on Software and System Modeling 4
(2005) 386—398

6. Winograd, T., Flores, F.: Understanding computers and cognition - a new foun-
dation for design. Addison-Wesley (1987)


http://www.cs.bgu.ac.il/~fsen141/Main
http://www.cs.bgu.ac.il/~wsep142/Main
http://www.cs.bgu.ac.il/~wsep142/Main
http://www.db.informatik.uni-bremen.de/projects/USE/

10.

11.

12.

13.

14.

15.

16.

Meyer, B.: Applying’design by contract’. Computer 25 (1992) 40-51

Mitchell, R., McKim, J., Meyer, B.: Design by contract, by example. Addison
Wesley Longman Publishing Co., Inc. (2001)

Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Trans-
actions on Software Engineering and Methodology (TOSEM) 5 (1996) 293-333
Harel, D., Politi, M.: Modeling reactive systems with statecharts: the STATEM-
ATE approach. McGraw-Hill, Inc. (1998)

Gery, E., Harel, D., Palachi, E.: Rhapsody: A complete life-cycle model-based
development system. In: Integrated Formal Methods, Springer (2002) 1-10
Harel, D., Kugler, H.: The rhapsody semantics of statecharts (or, on the exe-
cutable core of the UML). In: Integration of Software Specification Techniques for
Applications in Engineering. Springer (2004) 325-354

Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation and Applications. (2010)
Wood, J.: What’s in a link. Readings in Knowledge Representation. Morgan
Kaufmann (1985)

Brachman, R.J., Schmolze, J.G.: An Overview of the KL-ONE Knowledge Repre-
sentation System*. Cognitive science 9 (1985) 171-216

McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology language overview.
W3C recommendation 10 (2004) 2004



	Symbolic Representation of Models Improves Model Understanding and Tendency to Use Models – A Position Paper
	Mira Balaban

