Unfolding CSPT-nets

Bowen Li and Maciej Koutny

School of Computing Science, Newcastle University
Newcastle upon Tyne NE1 7RU, United Kingdom
{bowen.1li,maciej.koutny}@ncl.ac.uk

Abstract. Communication structured occurrence nets (CSONs) are the
basic variant of structured occurrence nets which have been introduced
to characterise the behaviours of complex evolving systems. A CSON has
the capability of portraying different types of interaction between sys-
tems by using special elements to link with multiple (component) occur-
rence nets. Communication structured place transition nets (CSPT-nets)
are the system-level counterpart of csoNs. In this paper, we investigate
cspT-nets unfoldings containing representations of all the single runs of
the original nets captured by csoNs. We develop several useful notions
related to cspT-net unfoldings, and then present an algorithm for con-
structing the new class of unfolding.

Keywords: structured occurrence nets, place transition nets, cspT-nets,
unfolding, synchronous and asynchronous communication

1 Introduction

A complex evolving system consists of a large number of sub-systems which may
proceed concurrently and interact with each other or with the external environ-
ment while its behaviour is subject to modification by other systems. The com-
munication between sub-systems may either be asynchronous or synchronous.
Structured occurrence nets (SONs) [8,13,14] are a Petri net based formalism
that can be used to model the behaviours of complex evolving system. The con-
cept extends that of occurrence nets [1] which are directed acyclic graphs that
represent causality and concurrency information concerning a single execution
of a system. In SON, multiple related occurrence nets are combined by means
of various formal relationships; in particular, in order to express dependencies
between interacting systems. Communication structure occurrence nets (CSONSs)
are the basic variant of SONs. The model has the capability of portraying dif-
ferent types of interaction between systems. A CSON involves occurrence nets
that are connected by channel places representing synchronous or asynchronous
communications. [7] introduced a system-level counterpart of CSONs called com-
munication structured place transition nets (CSPT-nets). The nets are built out
of the place/transition nets (PT-nets), which are connected by channel places
allowing both synchronous and asynchronous communication.

The standard Petri nets unfoldings, introduced in [2,12], are a technique
supporting effective verification of concurrent systems modeled by Petri nets

208 PNSE’15 — Petri Nets and Software Engineering

g " o

O/ agbo ab, anbo anbn
Fig. 1. Two cspT-nets (a) and (b); together with their respective standard unfoldings
semantics after applying the Petri net encodings (c) and (d).

(throughout this paper, Petri net related concepts, such as configuration, un-
folding, merged process, will be referred to as standard). The method relies on
the concept of net unfolding which can be seen as the partial order behaviour
of a concurrent system. The unfolding (or branching process) of a net is usually
infinite, but for bounded Petri nets one can construct a finite complete prefix of
the unfolding containing enough information to analyse important behavioural
properties. [9] investigated branching processes of CSPT-nets (CSpPT-net unfold-
ings). As in the standard net theory, CSPT branching processes act as a ‘bridge’
between CSPT-nets and their processes captured by CSONs (i.e., the branching
processes of a CSPT-net contains a representation of all the possible single runs
of the original net). In order to reduce the complexity of branching processes
of CcspPT-nets, we adapt the notion of occurrence depth which was originally
developed for merged processes [5].

In this paper, we introduce and discuss several key properties of branching
processes of CSPT-nets. We also present an algorithm for constructing CSPT-net
unfoldings, generalising the unfolding algorithm introduced in [9] which could
only handle channel places with a single input and a single output transition. In
particular, the new algorithm takes into account the occurrence depth of events,
and fuses nodes which have same behaviours during the unfolding. In this way,
the size of the resulting net can be significantly reduced when compared with
the standard unfolding approach.

Consider the csPT-nets shown in Figure 1(a) and (b). In (a), m transitions
asynchronously communicate with by via a single channel place. In (b), m tran-
sitions are synchronous with n transitions between two PT-nets via two channel
places. Their unfolding semantics are isomorphic to the original CSPT-nets (with
the sizes of m + 1 events in (a) and m + n events in (b)). If one was only inter-
ested in marking reachability, then one might attempt to encode a CSPT-net by
replacing every asynchronous channel place by a standard place and ‘glue’ tran-
sitions forming a synchronous event into a single one. One would then be able
to apply the standard unfolding to this Petri net based representation. However,

B. Li, M. Koutny: Unfolding CSPT-nets 209

the efficiency of such an approach would suffer from the introduction of expo-
nentially many new transitions, as well as the loss of the merging on channel
places which is due to the exploitation of occurrence depth. In this case, the
‘replace’ encoding for (a) yields n+ m events in the corresponding unfolding (c).
While the ‘glue’ encoding for (b) would yield m x n events as shown in (d).

The paper is organised as follows. Section 2 provides basic notions concern-
ing Petri nets and their unfoldings. Section 3 presents the main concepts of
communication structured net theory, including CSON-nets, CSPT-nets and CSPT
branching processes. In section 4, we discuss finite complete prefixes of CSPT
branching processes and related properties. The cSPT unfolding algorithm is
provided in Section 5. Section 6 discusses future works and concludes the paper.
The technical report [10] contains proofs of formal results and an example of the
algorithm run.

2 Basic Definitions

We assume that the reader is familiar with the basic notions concerning Petri
nets and their unfoldings, which can be found in, e.g., [1,2,12]. Throughout the
paper, a multiset over a set X is a function p : X — N, where N = {0,1,2,...}.
A multiset may be represented by explicitly listing its elements with repetitions.
For example {a,a,b} denotes the multiset such that u(a) = 2, u(b) = 1 and
u(z) =0 for x € X\{a,b}.

PT-nets. A net is a triple N = (P,T, F) such that P and T are disjoint
sets of respectively places and transitions (collectively referred to as nodes),
and FF C (P xT)U (T x P) is the flow relation. The inputs and outputs of
a node z are defined as *z = {y | (y,x) € F} and z* = {y | (z,y) € F}.
Moreover, *z® = *zUx®. It is assumed that the inputs and outputs of a transition
are nonempty sets. Two nodes, x and z’, are in conflict if there are distinct
transitions, ¢ and ¢/, such that *t Nt # & and (¢t,2) € F* and (¢/,2') € F*. We
denote this by x # z’. A node x is in self-conflict if x # .

A place transition net (PT-net) is a tuple PT = (P, T, F, My), where (P, T, F)
is a finite net, and My : P — N is the initial marking (in general, a marking
is a multiset of places). A step U is a non-empty multiset of transitions of PT.
It is enabled at a marking M if M(p) > > ,c,. U(?), for every place p. In such
a case, the execution of U leads to a new marking M’ given, for every p € P,
by M'(p) = M(p) + > _1ce, U(t) — > icpe U(t). We denote this by M[U)M'. A
step sequence of PT is a sequence A = Uy...U, (n > 0) of steps such that
there exist markings M, ..., M, satisfying Mo[U1) M1, ..., My_1[U,)M,,. The
reachable markings of PT are defined as the smallest (w.r.t. C) set reach(PT)
containing My and such that if there is a marking M € reach(PT) and M[U)M’,
for a step U and a marking M’, then M’ € reach(PT). PT is k-bounded if, for
every reachable marking M and every place p € P, M < k, and safe if it is
1-bounded. The markings of a safe PT-net can be treated as sets of places.

Branching processes of PT-nets. A net ON = (P, T, F'), with places and
transitions called respectively conditions and events, is a branching occurrence

210 PNSE’15 — Petri Nets and Software Engineering

net if the following hold: (i) F is acyclic and no transition ¢ € T is in self-conflict;
(ii) |*p| < 1, for all p € P; and (iii)for every node x, there are finitely many y
such that (y,z) € F*. The set of all places p with no inputs (i.e., *p = @) is the
default initial state of ON, denoted by Moy. In general, a state is any set of
places. If |p*| < 1, for all p € P, then ON is a non-branching occurrence net.
Note that in a branching occurrence net, two paths outgoing from a place will
never meet again by coming to the same place (the inputs of places are at most
singleton sets) nor the same transition (transitions cannot be in self-conflict).

A branching process of a pT-net PT = (P, T, F, My) is a pair IT = (ON, h),
where ON = (P’,T', F') is a branching occurrence net and h: P’UT" — PUT
is a mapping, such that the following hold: (i) h(P’) C P and h(T") C T} (ii) for
every e € T”, the restriction of h to ®e is a bijection between ®e and *h(e), and
similarly for e® and h(e)®; (iii) the restriction of h to Moy is a bijection between
Mon and Mpy; and (iv) for all e, f € T, if *e = *f and h(e) = h(f) then e = f.
There exists a maximal branching process ITpr, called the unfolding of PT [2].

Configurations and cuts of a branching process. Let IT = (ON, h) be
a branching process of a pT-net PT, and ON = (P',T',F’). A configuration
of IT is a set of events C C T’ such that —(e # ¢'), for all e,/ € C, and
(e',e) € F'T = ¢’ € C, for every e € C. In particular, the local configuration of
an event e, denoted by [e], is the set of all the events e’ such that (¢/,e) € F'*. The
notion of a configuration captures the idea of a possible history of a concurrent
system, where all events must be conflict-free, and all the predecessors of a
given event must have occurred. A co-set of IT is a set of conditions B C P’
such that, for all distinct b,&’ € B, (b,¥') ¢ F'*. Moreover, a cut of IT is any
maximal (w.r.t. C) co-set B. Finite configurations and cuts of IT are closely
related (every marking represented in the unfolding IIpy is reachable in PT,
and every reachable marking of PT is represented in I1pr):

— if C is a finite configuration of IT, then Cut(C) = (Mony UC*®)\ *C is a cut
and Mark(C) = h(Cut(C)) is a reachable marking of PT; and

— if M is a reachable marking of PT, then there is a finite configuration C' of
I pr such that Mark(C) = M.

3 Structuring PT-nets

In this section we recall the formal definitions concerning communication struc-
tured nets theory, including cSON-nets and csPT-nets. We then introduce the
notion of branching processes of CsPT-nets and several related properties.

The new models are able to portray different kinds of communication between
separate systems. One can envisage that if a given PT-net attempts to represent
several interacting systems, it will be beneficial to split the model into a set
of component nets, and create specific devices to represent any communication
between the subsystems. In the model we are interested in communication can
be synchronous or asynchronous. Usually, the former implies that a sender waits
for an acknowledgment of a message before proceeding, while in the latter the
sender proceeds without waiting.

B. Li, M. Koutny: Unfolding CSPT-nets 211

A communication structured net is composed of a set of component nets rep-
resenting separate subsystems. When it is determined that there is a potential
for an interaction between subsystems, asynchronous or synchronous communi-
cation link can be made between transitions (or events) in the different nets via
a special element called a channel place. Two transitions (events) involved in a
synchronous communication link must be executed simultaneously. On the other
hand, transitions (events) involved in an asynchronous communication may be
executed simultaneously, or one after the other.

Similarly as in the case of PT-nets, non-branching processes CSON-nets will
represent single runs of CSPT-nets, while branching processes will capture full
execution information of the corresponding CSPT-nets.

CSPT-nets. By generalising the definition of [7], we first introduce an exten-
sion of PT-nets which combines several such nets into one model using channel
places.

Definition 1 (CSPT-net). A communication structured place transition net
(or cspPT-net) is a tuple CSPT = (PT1,...,PTk,Q,W, My) (k > 1) such that
each PT; = (P, T;, F;, M;) is a safe (component) PT-net; @ is a finite set of
channel places; My : Q — N is the initial marking of the channel places; and
W C(TxQU(QxT), where T =T, is the flow relation for the channel
places. It is assumed that the following are satisfied:

1. The PT;’s and Q are pairwise disjoint.
2. For every channel place q € Q,
— the sets of inputs and outputs of q, *q = {t € T | (t,q) € W} and
q* = {t € T | (q,t) € W} are both nonempty and, for some i # j,
q CT; and ¢° C Tj; and
— if *q* NT; # @ then there is no reachable marking of PT; which enables
a step comprising two distinct transitions in °q°. o

The initial marking Mogpr of CSPT is the multiset sum of the M,’s (i =
0,1,...,k), and a marking is in general a multiset of places, including the channel
places.

To simplify the presentation, in the rest of this paper we will assume that
the channel places in the initial states of CSPT-nets are empty.

The execution semantics of CSPT is defined as for a PT-net except that a
step of transitions U is enabled at a marking M if, for every non-channel place p,
M(p) > Etep. U(t) and, for every channel place ¢,

M(g)+ > U®) = > Ut). (+)

teeq teq®

The condition (x) for step enabledness caters for synchronous behaviour as step
U can use not only the tokens that are already available in channel places at
marking M, but also can use the tokens deposited there by transitions from U
during the execution of U. In this way, transitions from U can ‘help’ each other

212 PNSE’15 — Petri Nets and Software Engineering

$ / @m

v3

Fig. 2. A cspT-net with three component PT-nets.

individually and synchronously pass resources (tokens) among themselves. Thus,
in contrast to the step execution of a PT-net where a step consists of a number
of enabled transitions, the execution of a step in a cspT-net (i.e., M[U)YM') may
involve synchronous communications (or interactions), where transitions execute
simultaneously and behave as a transaction. Such a mode of execution is strictly
more expressive than that used in PT-nets.

Figure 2 shows a CSPT-net which consists of three component PT-nets con-
nected by a set of channel places (represented by circles with thick edges). To
improve readability, the thick dashed lines indicate the flow relation W. Tran-
sitions mo and wuo are connected by a pair of empty channel places, g3 and gqq,
forming a cycle. This indicates that these two transitions can only be executed
synchronously. They will be filled and emptied synchronously when both ny and
ug participate in an enabled step. On the other hand, the execution of transitions
ny and ug can be either asynchronous (n; occurs before wug), or synchronous
(both of them occur simultaneously). A possible step sequence of Figure 2 is
A = {to,n1}{uo}{na,uz}, where ny and g perform an asynchronous communi-
cation. Another step sequence X = {to}{n1,uo}{n2,us} shows that ny and wug
can be also executed synchronously.

Definition 1(2) means that the occurrences of transitions in ®q (as well as
those in ¢*) are totally ordered in any execution of the corresponding component
net PT;. In other words, we assume that both the output access and the input
access to the channel places is sequential. This will allow us to introduce the
notion of depth at which an event which accessed a channel place has occurred.

Given a branching process derived for a component PT-net of a CSPT-net,
consider an event e such that its corresponding transition is an input (or output)
of a channel place ¢ in the cspT-net. Then the occurrence depth of such event
w.r.t., the channel place ¢ is the number of events such that they all causally
precede e and their corresponding transitions are also inputs (or outputs) of the
channel place ¢. Since the tokens flowing through channel places are based on the

B. Li, M. Koutny: Unfolding CSPT-nets 213

t0 (depthqo=1) t1 (depthqo=2)

©® {10410 OHd -0+l O

. O O

® T OoUO0 O#HOHEO

nO (depthqe=1) n1(depthg,=2)

Fig. 3. (a) A cspT-net, and (b) its branching process (event labels are shown alongside
the nodes and the occurrence depths are shown in brackets).

FIFO policy. The occurrence depth intuitively represents the number of tokens
which have entered (or left) the channel place ¢ before the occurrence of e.

Definition 2 (occurrence depth). Let CSPT be as in Definition 1, and ¢ € Q
and PT; be such that *q®* NT; # &. Moreover, let I = (ON,h) be a branching
process of PT;, and e be an event of ON = (P',T',F') such that h(e) € *¢°.
The depth of e in I w.r.t. the channel place q is given by:

depthy! () = |{f € T' | h(f) € 4" A (f,¢) € F™}].

Moreover, if the process II is clear from the context, we will write depthq(e)
instead of depthf(e), o

Proposition 1. Let Il and ¢ € Q be as in Definition 2. Moreover, let e and
f be two distinct events of II satisfying —(e # f) and h(e),h(f) € *¢*. Then
depth,(e) # depth,(f).

The nets in the dashed line boxes in Figure 3(b) are two component branching
processes derived from the component PT-nets of the cspT-net in Figure 3(a).
The labels are shown alongside each node, and the occurrence depth of each
event connected to a (unique, in this case) channel place is shown in brackets.
Let us consider event e;. Its corresponding transition ¢; is the input of channel
place go. When searching the directed path starting at the initial state and
terminating at e, we can find another event (viz. eg) such that its corresponding
transition is also the input of ¢g. Therefore the occurrence depth of e;, w.r.t.
qo, is depthg,(e1) = 2. It intuitively represents transition ¢; passing the second
token to the channel.

Non-branching processes of CSPT-nets. Similarly to the way in which
CSPT-nets are extensions of PT-nets, non-branching processes of CSPT-nets are
extensions of non-branching occurrence nets.

Definition 3 (non-branching process of CSPT-net). Let CSPT be as in
Definition 1 with My being empty. A non-branching process of CSPT is a tu-
ple CSON = (II4,...,IIx,Q", W' h') such that each II; = (ON;, h;) is a non-
branching process of PT; with ON; = (P!, T/, F!); Q' is a set of channel places;

214 PNSE’15 — Petri Nets and Software Engineering

@ 1 -0 11 -0

6 B -6 -0

Fig. 4. A csoN-net which is a possible single run of the cspT-net of Figure 2.

W C(T'xQ)J(Q xT') where T' = JT/; and I : Q' — Q. It is assumed
that the following hold, where h = h' UJh; and F' =] F}:

1. The ON;’s and Q' are pairwise disjoint.
2. For everyr € @Q’,
— |*r| =1 and |r*| < 1; and
— ife, f €%*, then depthy,(e) = depthy.(f).

3. For every e € T', the restriction of h to *eNQ’ is a bijection between *eNQ’
and *h(e) N Q, and similarly for e* N Q" and h(e)®* N Q.

4. The relation (C U <)*o < o(< U C)* over T' is irreflexive, where: e < f
if there is p € U P} with p € e* N°f; and e T [if there is r € Q' with
ree*N°®f.

5. h(Mgcson) = Mespr, where Mcson is the default initial state of CSON
defined as |JMon, - o

The above definition extends that in [7] by allowing an infinite number of
nodes, and therefore provides a general meaning of a single run of a CSPT-net.
To capture the behaviour systems with complex structure, we use the binary
relation C (weak causality) to represent a/synchronous communication between
two events (see [7]). Intuitively, the original causality relation < represents the
‘earlier than’ relationship on the events, and [represents the ‘not later than’
relationship. In order to ensure the resulting causal dependencies remain consis-
tent, we require the acylicity of not only each component non-branching process
but also any path involving both C and <. The condition involving the depth
of two events accessing the same channel place means that the tokens flowing
through channel places are based on the FIFO policy, so that the size of the
subsequent full representation of the behaviours of a CSPT-net is kept low.

B. Li, M. Koutny: Unfolding CSPT-nets 215

The ¢csoON in Figure 4 shows a non-branching processes with the labels (along-
side the nodes) coming from the CSPT-net shown in Figure 2. It corresponds, e.g.,
to the step sequence A = {to, n1 }{uo}{ne,us} in the original cspT-net.

Branching processes of CSPT-nets. We have described two classes of
structured nets, i.e., CSPT-nets and CSONs. The former is a system-level class of
nets providing representations of entire systems, whereas the latter is a behaviour-
level class of nets representing single runs of such systems. In this section, we
will introduce a new class of branching nets which can capture the complete
behaviours of CSPT-nets.

Definition 4 (branching process of CSPT-net). Let CSPT be as in Defini-
tion 1 with My being empty. A branching process of CSPT is a tuple BCSON =
(Iy,..., I, Q" W' L) such that each II; = (ON;, h;) is a branching process of
PT; with ON; = (P/,T!,F!); Q" is a set of channel places; W' C (T" x Q') U
(Q' xT') where T = UT/; and b' : Q" — Q. It is assumed that the following
hold, where h = k' U|Jh; and F' = J F):

1. The ON;’s and Q' are pairwise disjoint.
2. For all r,r" € Q" with h(r) = h(r'), as well as for all e € *r® and f € *r'®,

depthh(r)(e) = dEpthh(7.,)(f) =r=1.

3. BCSON s covered in the graph-theoretic sense by a set of mon-branching
processes CSON of CSPT satisfying Mcson = Mposon, where the default
initial state Mgoson of BOSON is defined as |J Mon, . o

Using arguments similar to those used in the case of the standard net unfoldings,
one can show that there is a unique maximal branching process BCSON ¢gspr,
called the unfolding of CSPT.

A branching process of a CSPT-net consists of branching processes obtained
from each component PT-net and a set of channel places. The default initial state
Mpeson consists of the initial states in the component branching processes. In
addition, Definition 4(1) means that the component branching processes are in-
dependent, and all the interactions between them must be via the channel places.
In particular, there is no direct flow of tokens between any pair of the compo-
nent branching processes. Definition 4(2) implies that the occurrence depths of
events inserting tokens to a channel place are the same, and are equal to the
occurrence depths of events removing the tokens. Moreover, channel places at
the same depth correspond to different channel places in the original CSPT-net.
Finally, Definition 4(3) specifies that the label of every input and output event
of a channel place in BCSON matches a corresponding transition in the original
CspT-net. In general, every node and arc in the branching process belongs to
at least one non-branching process of CSPT-net (CSON). This ensures that every
event in the BCSON is ezecutable from the default initial state Mpgcoson (i-e., it
belongs to a step enabled in some reachable marking), and every condition and
channel place is reachable (i.e., it belongs to the initial state or to the post-set
of some executable events).

216 PNSE’15 — Petri Nets and Software Engineering

4\

(b)

Fig. 5. (a) cspT-net, and (b) its branching process.

Proposition 2 (safeness). Let BCSON be as in Definition 4. Then BCSON
s safe when executed from the default initial state Mposon -

Note: This means that we treat BOCSON as a CSPT-net with the initial marking
obtained by inserting a single token in each condition belonging to Mpcson,
and safety means that no reachable marking contains more than one token in
any condition, including the channel places.

The nets in Figure 3(b) and Figure 5(b) are the branching processes of the
CSPT-nets showing in Figure 3(a) and Figure 5(a) respectively. We can observe
that every input and output event of a channel place has the same occurrence
depth which represents the token flow sequence during communication between
different PT-nets. For instance, in Figure 5(b) the occurrence depths of eq, eq
and eg are depthg, (eo) = depthg, (e2) = depthg,(es) = 1. This means of that the
transitions tg and ng were involved in a first asynchronous communication.

B. Li, M. Koutny: Unfolding CSPT-nets 217

Remark 1. A BCSON cannot, in general, be obtained by simply unfolding every
component PT-net independently and appending the necessary channel places
afterwards. Proceeding in such a way can lead to a net violating Definition 4(3).
This is so because an executable transition in a component PT-net does not have
to be executable within the context of the cspT-net. For example, Figure 6(b)
does not show a valid branching process of the cSPT-net of Figure 2. Transition
ng in the middle PT-net of Figure 2 can never be executed since ¢ty and ¢; are in
conflict, and the system is acyclic. As the result, there is no ng-labelled event in
a corresponding branching process. Note that Figure 6(a) shows a valid BCSON
since each event present there is executable. o

4 Completeness of branching processes

In this section, we introduce the concept of a complete prefix of the unfolding of
a cspT-net. The prefix is a truncated part of possibly infinite unfolding which
contains full reachability information about the original cSPT-net. The idea is to
consider global configurations of the unfolding taking into account single runs
across different component PT-nets. Then we show that the final states of all
the finite global configurations correspond to the reachable markings of original
cspT-net. Using this result, it is possible to consider a finite truncation which is
sufficient to represent all reachable markings.

Global configurations. A global configuration of a BCSON consists of a set
of (standard) configurations, each coming from a different component branching
process, joined together by channel places.

Definition 5 (global configuration). Let BCSON be as in Definition 4. A
global configuration of BCSON is a set of events C' = Cy U ---UCy such that
each C; is a configuration of the process II;, and the following hold:

1. °CnQ CC-°.

2. The relation (C U <)*o < o(< U C)* over C is irreflevive, where: e < f
if there is p € |UP} with p € e* N°f; and e T [if there is r € Q' with
ree*N°f.

Moreover, if the configuration C is finite, then Fin(C) = (Mgcson UC®)\ *C
is the final state of C. The set of all global configurations of BCSON will be
denoted by Conf goson - o

Definition 5(1) reflects the nature of a/synchronous communication between
component (standard) configurations. Intuitively, if we start with an event of
the global configuration which is an output event of a channel place, then there
exists an input event of the same channel place that also belongs to the global
configuration. Moreover, Definition 5(2) states that there are no asynchronous
cycles in a global configuration.

Proposition 3 (configuration is non-branching). Let C' be a configuration
as in Definition 5. Then, for all distinct e, f € C, *enN®f =¢e*N f* = 2.

218 PNSE’15 — Petri Nets and Software Engineering

Proposition 4 (configuration is causally closed). Let C be a configuration
as in Definition 5. Then, for everye € C,p € |J P, andp € e*N°®f imply f € C.
Moreover, if r € Q' N ®e then there is f € C such that r € f°.

Since in BCSON we use the merging technique in the case of channel places
(i.e., different events with same occurrence depth and label will link with same in-
stance of channel place), it is possible for a channel place to have multiple inputs
or outputs. Propositions 3 and 4 imply that global configuration are guaranteed
to be non-branching and causally closed w.r.t. the flow relations F’ and W”’. In-
deed, if a channel place has more than one input (or output) events, these events
are in conflict w.r.t. the flow relation F’. Hence the events belong to different
configurations, and each channel place in global configuration has exactly one
input and no more than one output. As a result, a global configuration retains
key properties of the standard configurations, and it represents a valid execution
of transitions of the original cSPT-net.

Consider the branching process in Figure 5. It has a configuration C =
{eo, €1, €2, €4, e7} which consists of two (component) configurations C; = {eg, €1}
and Cy = {eq, eq, €7}, whereas C' = {eg, €1, ea,e4} and O = {eg, €1, €2, €4, €6, €7}
are not valid configurations (C’ has non input event for the channel place rq,
while C” includes two standard configurations of a single component PT-net).

Each finite configuration C' has a well-defined final state determined by the
outputs of the events in C. Intuitively, such a state comprises the conditions
and channel places on the frontier between the events of C' and events out-
side C. Note that a final state may contain channel places which were involved
in asynchronous communications. No channel place involved in a synchronous
communications can appear in Fin(C'), as such channel place must provide in-
put for another event. For instance, the final state of the global configuration
example above is Fin(C) = {cz, 9}, whereas the final state of another global
configuration C"" = {ey,ey4,e5} is Fin(C") = {rg,r2,cs} which contains two
asynchronous channel places.

The next result shows that a global configuration together with their outputs
and the initial state form a CSON representing a non-branching process of the
original csPT-nets. And, similarly, the events of a non-branching process included
in a branching one form a global configuration.

Proposition 5. Let BOSON be as in Definition 4.

1. Let C be a global configuration as in Definition 5. Then Mpcson UC U C*®
are the nodes of a non-branching process of CSPT included in BCSON .

2. The events of any non-branching process CSON included in BCSON and
satisfying Moson = Mpeson form a global configuration.

Proposition 6. Let C be a global configuration as in Definition 5. Then h(Fin(C))
is a reachable marking in the original CSPT-net.

By combining Propositions 5 and 6, we obtain that finite global configurations
provide a faithful representation of all the reachable marking of the original
CSPT-net.

B. Li, M. Koutny: Unfolding CSPT-nets 219

Theorem 1. Let BCSON cgpr be the unfolding of CSPT. Then M is a reach-
able marking of CSPT if and only if M = h(Fin(C)), for some global configu-
ration C' of BCSON cspr.

Complete prefixes of CSPT-nets. A complete prefix of the unfolding of
a CSPT-net contains a full reachability information about the original CSPT-net.
Such a property is referred to as completeness.

Finite complete prefixes of Petri nets were first introduced in McMillan’s
seminal work in order to avoid the state explosion problem in the verification of
systems modelled with Petri nets. McMillan also provided an algorithm to gen-
erate a complete finite prefix of the unfolding which contains a full reachability
information. Later, 3| refined McMillan’s prefix construction algorithm to avoid
creating prefixes larger than necessary.

The semantical meaning of completeness has been further addressed in [6],
which extended it to more general properties. Basically, [6] associated complete-
ness with some additional information, provided by the cut-off events which were
only considered as an algorithm issue in the previous works. We can adapt the
resulting notion to the current context as follows.

Definition 6 (completeness). Let BCSON be as in Definition 4, and E, be
a set of events of BCSON. Then BCSON s complete w.r.t. Ey: if the following
hold:

— for every reachable marking M of CSPT, there is a finite global configuration
C such that CN Eyy = @ and Fin(C) = M ; and

— for each global configuration C of BCSON cgpr such that C N E.y = O
and, for each event e ¢ C of BCSON cspr such that C U {e} is a global
configuration of BCSON cspr, it is the case that e belongs in BCSON .

Moreover, BCSON is marking complete if it satisfies the first condition. o

5 Unfolding algorithm for CSPT-net

We will now describe an algorithm for the construction of the unfolding of a cSPT-
net. A key notion used by the algorithm is that of an executable event (i.e., an
event which is able to fire during some execution from the default initial state)
as well as that of a reachable condition or channel place (i.e., one produced by an
executable event). Note that whether an event is executable in a CSPT-net is not
only determined by the corresponding PT-net, but also by the behaviours of other
pT-nets. This means that a component branching process in CSPT unfolding may
not preserve its own unfolding structure (see Remark 1 and Figure 6(a)). In other
words, there may exist events which are valid extensions in the unfolding process
of a component PT-net, but become invalid when considering communication.
In particular, due to synchronous communication, it may be difficult to make
sure that every extension is executable before appending it to the unfolding.
Unlike the standard unfolding methods, an algorithm for cSPT-net cannot sim-
ply unfold the component branching processes adding one event at a time, and

220 PNSE’15 — Petri Nets and Software Engineering

Fig. 6. (a) A valid cspPT branching process of Figure 2 (top), and (b) an invalid one
(bottom).

connecting it to already existing channel places. This is because a synchronous
communication in ¢SPT unfolding forms a cycle. It is therefore impossible to add
only one of the synchronised events and guarantee its executability at the same
time. Similarly, adding a synchronous event set together with all related channel
places in one step may also be difficult to achieve since the use of merging may
produce infinitely many events which are connected to the same channel place.

Instead, our idea is to design an algorithm which will sometimes generate non-
executable events requiring tokens from channel places which have not yet been
generated, in the anticipation that later on a suitable (possibly synchronous)
events will provide such tokens. Roughly, the algorithm appends possible ex-
tensions together with their output conditions one by one. A new event is first
marked as non-executable. The algorithm then performs an executability check
for the event after constructing its a/synchronous communications. In this way,
in general we obtain an ‘over-approximating unfolding’. The final stage of the
algorithm can then be used to remove all the non-executable nodes.

Before providing the details of the algorithm, we introduce some auxiliary
notions. In what follows, we assume that CSPT is as in Definition 1.

B. Li, M. Koutny: Unfolding CSPT-nets 221

Definition 7 (local CSPT configuration). Let e € C, where C is a global
configuration of BCSON as in Definition 5. Then the local CSPT configuration
of e in C, denoted by Cle], is defined as Cle] = {f € C | (f,e) € (x U D)*},
where the relations < and T are as in Definition 5. Moreover, Conf(e) = {C|e] |
C € Conf gogon N e € C} is the set of all CSPT local configurations of e. ¢

The cspPT local configuration of an event e in C' is the set of events that are
executed before (or together with) e. In general, it consists of a configuration
comprising the standard local configuration of e together with a set of standard
configurations coming from other branching processes. Note that an event may
have different local CSPT configurations, e.g., if one of its inputs is a channel
place which has multiple input events. Each such local configuration belongs
to a different non-branching process. For instance, consider a global configura-
tion C' = {eg, e1,€q,eq,e7} in Figure 5. The csPT local configuration of event
eo in C is Cleg] = {eo, €2, e4, e7} which involves two standard local CSPT con-
figurations, [eg] and [e7]. Moreover, we can observe that the C[eg] is not the
unique local configuration of eq, as another one is C’[eg] = {eo, €3, €5, es}, where
C" = {eo, e1,e3,¢5,€8}.

An event may even have infinitely many local configurations. Consider again
the net in Figure 5. If we continue to unfold the net, we will construct infinitely
many ng and n; labelled events with occurrence depth equal to 1. All of them
are input events for gy and ¢; labelled channel places and belong to different
non-branching processes.

A /sync graphs. In order to improve the efficiency of unfolding procedure,
checking for the existence of a local CSPT configuration of an event can be reduced
to the problem of exploring the causal dependencies between channel places.

Below we assume that if C; is a configuration of the unfolding of the i-th
component PT-net, and e € C; and ¢ € @ are such that (h(e),q) € W (or
(q,h(e)) € W), then r = (g, depth,(e)) belongs to the set of implicit channel
places Q¢, connected to C;. Moreover, the label of r is ¢, and (e, r) € W, (resp.
(r,e) € W¢,) is the corresponding implicit arc.

Definition 8 (a/sync graph). Let C; be a configuration of the unfolding of
the i-th component pT-net. Then the a/sync graph of C; is defined as G(C;) =
(Qc,, =c,,Cc,), where 2¢,,Cc, are two binary relations over Qc, such that,
for every r,r' € Q¢ :

— 1 R0, 7 if there are two distinct e, f € C; such that (r,e), (f,r") € We,, and
e precedes f within C; and
— 1 Cg, 7 if there is e € C; with (r,e), (e,r) € W, . o

G(C;) captures relationships between the input and output channel places of
a configuration of the unfolding of an individual component system. Its nodes
are the channel places involved in C;. Moreover, r <¢, r’ if there is a path from
7 to r’ involving more than one event of C;, and r C¢, 7 if 7 is an input and 7’
an output of some event in C;.

Figure 7(a) shows the unfolding of each component PT-net of Figure 2 to-
gether with their input and output channel places. By exploring the relations

222 PNSE’15 — Petri Nets and Software Engineering

cr=tet (@ o)

@ L@ (D~ @ Cs=(eb e
w | o ©

,,,,,,,, a1 2 |

Cr=fel) g O
C2'={e3, e5} . q3 |

Fig.7. (a) unfoldings of three component PT-nets of Figure 2 (together with their
implicit channel places), and (b) a/sync graphs of configurations derived from these
unfoldings.

between those channel places, we are able to generate a/sync graph for any con-
figuration. For example, Figure 7(b) shows five a/sync graphs of the configura-
tions derived from Figure 7(a), where the relations <, and C¢, are represented
by solid arcs and thick dashed arcs, respectively. For the left-hand side PT-net 17,
we have: G(C1) = ({ro}, 9, @) and G(C}) = ({r1}, 9,). The a/sync graphs of
the configurations in I, are: G(C2) = ({72, 73,74, 75}, {(r2,74), (13, 74) }, {(r5,74)})
and G(C%) = ({re, 7,78}, 9, {(rs,r7)} and for the right-hand side PT-net 115, we
have G(C3) = ({r9, 710,711}, {(9,711)}, {(710,711) })-

Given a set of a/sync graphs G(C1), ..., G(Cy) extracted for the k component
systems, we call these graphs compatible if all inputs are produced and there is
no cycle involving =<.

Definition 9 (compatibility of a/sync graphs). Let C; (i = 1,...,k) be
a configuration of the unfolding of the i-th component PT-net, and G(C;) =
(Qc,;,=¢c,,Cc,). Then Cy,...,Cy are compatible configurations if the following
hold:

1. if (r,e) € W, then that there is j # i such that r € Qc;; and

B. Li, M. Koutny: Unfolding CSPT-nets 223

~

2. the relation (€ U X)* o R0 (R UL)* is irreflexive, where <X = |J=¢, and
c= U Ceo;- <o

In Figure 7, configurations Cy,C%, C3 are compatible since the gs-labelled
input channel place rg in G(C%) is present in G(C3) (i.e., r11), and the input
channel places 19, 719 (labelled by ¢ and ¢4 respectively) in G(C3) are all present
in G(C%). On the other hand, we can observe that there are no compatible config-
urations which involve Cy, i.e., neither configurations Cy, Cs, C5 nor C1, Ca, Cs
are compatible. This is because the producers of ro and r3 are in conflict in I7;.

Theorem 2. Let C4,...,Cy be configurations of the unfoldings of the compo-
nent PT-nets, and C = Cy U --- U Cy. Then C is a global configuration if and
only if Cy,...,Cy are compatible.

Therefore, one can obtain the CSPT local configurations of an event e by
checking whether there are compatible configurations C1,...,Cy such that e
belongs to one of them. Such a task can be made efficient by working with the
graphs G(C1),...,G(C%). In fact, one can just check those configurations which
have dependencies on e.

Unfolding algorithm. The unfolding algorithm we are going to present sig-
nificantly differs from the existing net unfolding algorithms. The key difference
is that during the unfolding procedure we will be constructing nodes and con-
nections which will not necessarily be the part of the final unfolding. This is due
to the presence of synchronous communication within our model. More precisely,
in the net being constructed there will be executable and non-executable events
and conditions. The former will definitely be included in the resulting unfold-
ing, whereas the latter cannot be yet included due to the absence of event(s)
which are needed for communication. If, at some later stage, the missing events
are generated, then the previously non-executable event and the conditions (and
channel places) it produced become executable.

Although the net Unf generated by the algorithm may not strictly speaking
be a branching process during its creation, we will as far as it is possible treat
it as such. In particular, we will call an event e executable if e has at least one
local configuration, i.e., Conf(e) # @. This happens if we have generated enough
events to find at least one local CSPT configuration of e in Unf.

Intuitively, an executable event is the event belonging to at least one single
run of a BCSON. For the example net in Figure 6(b), eg is an executable event
since there exists a local CSPT configuration of eg: Cleg] = {eq, €3, e}, where
C = {egp,e3,e5}. On the other hand, event es is non-executable because it does
not have any local configuration (we have seen the example of Figure 7 that
there are no compatible configurations which involve es). Therefore, Figure 7(b)
is not a valid csSPT branching process since according to Definition 4(3) every
event in BOSON is executable. If we remove e together with its successors, then
all events in the new net become executable indicating the net is a valid BCSON
(Figure 6 (a)).

224 PNSE’15 — Petri Nets and Software Engineering

Proposition 7. Let e be an executable event in BCSON. Then each event ap-
pearing in Conf(e) is executable.

Algorithm 1 (unfolding of CSPT-net)

input: CSPT — cSPT-net
output: Unf — unfolding of BCSON

nonexe <— &

Unf < the empty branching process

add instances of the places in the initial marking of CSPT to Unf
add all possible extensions of Unf to pe

while pe # @ do
remove e from pe
addConnections(e)
if Conf(e) # @ then
for all event f in configurations of Conf(e) do
remove f and all its output conditions from noneze (if present there)
add all possible extensions of Unf to pe

delete the nodes in nonere together with adjacent arcs from Unf

The procedure for constructing the unfolding of a CSPT-net is presented as
Algorithm 1.

The first part of the algorithm adds conditions representing the initial mark-
ing of the csPT-net being unfolded. Notice that the set noneze of non-executable
events and conditions is set to empty. It also adds possible extensions to the
working set pe. The concept of a non-executable condition greatly improves the
efficiency of the above algorithm since a possible extension of Unf is a pair
e = (t,B) with h(e) = ¢t where ¢ is a transition of CSPT, and B is a set of
conditions of Unf such that:

— B is a co-set in one of the subnets of Unf and B N nonexe = &;

— h(B) are all the input non-channel places of ¢; and

— (t,B) ¢ pe and Unf contains no t-labelled event with the non-channel place
inputs B.

The pair (¢, B) is an event used to extend BCSON without considering channel
places. We use the standard condition of a possible extension to choose events
that can be added to a component branching process (i.e., h(B) = *t N P’),
while constructing the related a/synchronous communications in a separate step.
In such a way, the complexity of appending groups of synchronous events is
significantly reduced. Note that a possible extension e has precisely determined
channel place connections since the depth values are fully determined.
Algorithm 2 provides the details of appending a possible extension e to BCSON
as well as constructing related channel place structure after removing e from pe.

B. Li, M. Koutny: Unfolding CSPT-nets 225

Algorithm 2 (adding new event and a/sync connections)

procedure addConnections (input: e = (¢, B))
add e to Unf and nonezxe
create and add all the standard post-conditions of e to Unf and noneze
for all channel place g € ** do

let r = (g, k) where k = depth(e)

if there is no r = (¢, k) in Unf then

add g-labelled channel place r to Unf and noneze
add a corresponding arc between r and e

Each new extension and its output conditions are immediately marked as non-
executable. The conditions in nonexe set also indicate that they are unable to
be used for deciding any further possible extension. In this way we can avoid
any unnecessary extension and make sure the predecessors of every new event is
executable.

The procedure then creates the a/synchronous communications of the input
event if it is required. Given an event e, for every input or output channel place
q of its corresponding transition h(e) in the original CSPT-net, we search in Unf
for the matching channel place (i.e., its label is ¢ and its depth value equals to
the occurrence depth of e). Then we create a direct connection if such a channel
place exists. Otherwise, we add a new instance of the channel place together
with the corresponding arc.

After adding the implicit channel places connected to e (or creating the con-
nection for those which already existed) together with the corresponding arcs,
we are able to obtain the local configuration of e by looking for compatible con-
figurations C1, . .., Cy of the component nets (which may contain non-executable
events) such that e belongs to one of the C;’s. If e is executable (Conf(e) # @),
we make all non-executable events in Conf(e) together with their post-conditions
executable (see Proposition 7). We also generate new potential extensions (each
such extension must use at least one of conditions which have just been made
executable). Then another waiting potential extension (if any) is processed.

The algorithm generally does not terminate when the original CSPT-net is not
acyclic, and the non-executable nodes are removed at the end of the algorithm.
An example run of the algorithm is presented in the appendix.

6 Conclusions and Future Work

The unfolding algorithm presented in this paper is based on standard unfold-
ing method, which essentially works by appending possible extension one by
one. A potentially very efficient approach for the construction of the unfolding
could be to use the parallel unfolding technique [4]. One can, for example, un-
fold each component branching process in parallel, by temporarily ignoring any
a/synchronous issues. The procedures of appending channel places as well as
executability checking (removing unnecessary events) would proceed in parallel.

226 PNSE’15 — Petri Nets and Software Engineering

In future we intend to explore the generation of finite complete prefixes of
CspT-nets. In the case of PT-nets, this relies on the notion of cut-off events, which
are roughly events in the unfolding that produce a marking already produced by
other events with smaller histories. In general, it is impossible to generate a finite
complete prefix of the unfolding of a CSPT-net even if the component PT-nets are
safe. The reason is that the channel places linking the component PT-nets can be
unbounded due to asynchronous communication. However, if all communications
are synchronous, this is no longer a problem. Finally, the implementation of the
¢sPT model and its unfolding to the SON-based [11] tool are left for the future
works.

References

1. Best, E., Fernandez, C.: Nonsequential Processes: A Petri Net View, vol. 13 of
EATCS Monographs in Theoretical Computer Science. Springer-Verlag (1988)

2. Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28(6), 575-591
(1991)

3. Esparza, J., Romer, S., Vogler, W.: An improvement of McMillan’s unfolding algo-
rithm. In: Formal Methods in System Design. pp. 87-106. Springer-Verlag (1996)

4. Heljanko, K., Khomenko, V., Koutny, M.: Parallelisation of the Petri net unfold-
ing algorithm. In: Proceedings of the 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 371-385. TACAS
’02, Springer-Verlag, London, UK, UK (2002)

5. Khomenko, V., Kondratyev, A., Koutny, M., Vogler, W.: Merged processes: A new
condensed representation of Petri net behaviour. Acta Informatica 43(5), 307-330
(2006)

6. Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of Petri net unfoldings.
Acta Inf. 40(2), 95-118 (2003)

7. Kleijn, J., Koutny, M.: Causality in structured occurrence nets. In: Dependable and
Historic Computing. vol. 6875, pp. 283—297. Springer Berlin Heidelberg (2011)

8. Koutny, M., Randell, B.: Structured occurrence nets: A formalism for aiding system
failure prevention and analysis techniques. Fundamenta Informaticae 97(1), 41-91
(Jan 2009)

9. Li, B.: Branching processes of communication structured PT-nets. In: Proceed-
ing. vol. 13th International Conference On Application of ConCurrency to System
Design (ACSD), pp. 243—246 (2013)

10. Li, B., Koutny, M.: Unfolding cspt-nets. Tech. Rep. CS-TR~1463, School of Com-
puting Science, Newcastle University (2015)

11. Li, B., Randell, B.: Soncraft user manual. Tech. Rep. CS-TR-1448, School of Com-
puting Science, Newcastle University (Feb 2015)

12. McMillan, K.L., Probst, D.: A technique of state space search based on unfolding.
Formal Methods in System Design 6(1), 4565 (Jan 1995)

13. Randell, B.: Occurrence nets then and now: the path to structured occurrence nets.
In: Applications and Theory of Petri Nets. pp. 1-16. Springer Berlin Heidelberg
(Jun 2011)

14. Randell, B., Koutny, M.: Failure: their definition, modelling and analysis. In: The-
oretical Aspects of Computing-ICTAC 2007. pp. 260-274. Springer (Sep 2007)

