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Abstract

This article presents and evaluates a model to automatically de-
rive word association networks from text corpora. Two aspects
were evaluated: To what degree can corpus-based word associ-
ation networks (CANs) approximate human word association
networks with respect to (1) their ability to quantitatively pre-
dict word associations and (2) their structural network charac-
teristics. Word association networks are the basis of the hu-
man mental lexicon. However, extracting such networks from
human subjects is laborious, time consuming and thus neces-
sarily limited in relation to the breadth of human vocabulary.
Automatic derivation of word associations from text corpora
would address these limitations. In both evaluations corpus-
based processing provided vector representations for words.
These representations were then employed to derive CANs us-
ing two measures: (1) the well known cosine metric, which
is a symmetric measure, and (2) a new asymmetric measure
computed from orthogonal vector projections. For both eval-
uations, the full set of 4068 free association networks (FANs)
from the University of South Florida word association norms
were used as baseline human data. Two corpus based mod-
els were benchmarked for comparison: a latent topic model
and latent semantic analysis (LSA). We observed that CANs
constructed using the asymmetric measure were slightly less
effective than the topic model in quantitatively predicting free
associates, and slightly better than LSA. The structural net-
works analysis revealed that CANs do approximate the FANs
to an encouraging degree.
Keywords: semantic networks; free association networks;
corpus-based semantic representation

Introduction
The mental lexicon is a mental dictionary of words, but its
structure is founded on the associative links that bind these
words together. Such links are acquired through experience
and the vast and semi-random nature of this experience en-
sures that words within the lexicon are highly interconnected,
both directly and indirectly through other words. For exam-
ple, during childhood development and the associated acqui-
sition of English, the word planet becomes associated with
earth, space, moon, and so on. Even within this set, moon
can itself become linked to earth and star etc. Words are so
associatively interconnected with each other that they meet
the qualifications of a ‘small world’ network wherein it takes
only a few steps to move from any one word to any other
in the lexicon (Steyvers & Tennenbaum, 2005). Because
of such connectivity individual words are not represented in
long-term memory as isolated entities but as part of a net-
work of related words. One approach to extract such net-
work is to employ a target as a cue and collect free associ-
ations from human subjects (Nelson, McEvoy, & Schreiber,
2004; Simon, Navarro, & Storms, 2013). For example, Fig-
ure 1 depicts such a network where t is the target word and

the ai’s denote associates. An arrow, e.g., t → a1 represents
that associate a1 was produced in a free association experi-
ment in respect to target t. Table 1 shows the corresponding
adjacency matrix for this example network. When collected
over a subject pool, the edges can be weighted, e.g., by the
probability that a given associate is produced in relation to a
cue. Such networks are referred to as free association net-
works (FANs). FANs have formed the basis of human mem-
ory models such as Spreading Activation (Collins & Loftus,
1975) and Processing Implicit and Explicit Representations
(PIER) (Nelson, Schreiber, & McEvoy, 1992; Nelson, Kitto,
Galea, McEvoy, & Bruza, 2013).

FANs have the following structural characteristics:

R1 The edges are directed, hence allowing for asymmetric as-
sociations between words.

R2 The target word has an edge with each associate in the net-
work.

R3 The edges are weighted.

FANs are derived manually which is time consuming and la-
bor intensive. They are therefore restricted in relation to the
breadth of vocabulary in human language and challenging to
keep up-to-date as language and associations evolve. The aim
of this paper is investigate to what degree corpus-based se-
mantic methods can be used to approximate FANs in relation
to both their structural network characteristics and their abil-
ity to quantitatively predict human word associations. We
shall refer to such networks as Corpus Based Association
Networks (CANS).

Figure 1: Example of a Free Association Network

Corpus Based Association Networks
A CAN comprises nodes, which correspond to words, and di-
rected weighted edges, which model the associations between
words. We begin by describing how the nodes of a CAN are
constructed.
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t a1 a2
t 0 0.2 0.1
a1 0 0 0.6
a2 0.7 0 0

Table 1: Example adjacency matrix of the FAN depicted in
Figure 1

Vector Representations of Words
Each word u, (i.e., a node) has a vector based representation
u, where the vector has been computed from an underlying
corpus. There are a variety of strategies to produce such vec-
tors (Bullinaria & Levy, 2007), which are sometimes referred
to as “semantic vectors” due to their ability to replicate hu-
man semantic association norm data (Dumais, 2004; Lund &
Burgess, 1996; Turney & Pantel, 2011).

We used a Positive Pointwise Mutual Information (PPMI)
vector representation because of its robust performance
across a variety of linguistic and semantic tasks (Bullinaria
& Levy, 2007). PPMI vectors are derived from discrete prob-
ability distributions built from word co-occurrence statistics.
In our case, these discrete probability distributions are built
from a modified version of a standard word co-occurrence
matrix where the rows correspond to a set of pre-defined tar-
get words. The co-occurrence frequencies of a given target
word with other words are computed using a sliding win-
dow of fixed size (denoted w) across the corpus where sen-
tence and paragraph boundaries are ignored. Context words
are those words surrounding the target word when it is cen-
tered in the window. The frequency of each context word is
accumulated as the window slides across the corpus. In this
process, stop words are ignored. The frequencies are subse-
quently normalized to produce a probability distribution for
the given target word. As a consequence all vector elements
are positive real values, and thus exist in the first orthant of
Euclidean Space. This property has important consequences
for the bounds for the word association measures to be dis-
cussed in the next section.For this analysis, both target and
context words were treated as single tokens. Furthermore the
window size was not explored as part of this analysis.

Measures of Association S(u,v)
The preceding section described how the nodes of a CAN
are represented via corpus-based vectors. These vectors are
used to compute weighted associations between words thus
providing the means to derive edges for CANs. For this paper,
we have utilized one well known metric: the cosine metric as
well as introducing a new measure of association called the
GP measure.

The cosine metric was chosen as a baseline as it is of-
ten used to compute vector based associations, e.g., in the
Latent Semantic Analysis model where it has shown consis-
tently good performance in computing associations between
words across a number of studies and text corpora (Landauer,
Foltz, & Laham, 1998).

cos(u,v) =
〈u,v〉
||u||||v||

(1)

As pointed out previously, PPMI vector representations exist
in the first orthant. Consequently the standard boundaries for
the cosine metric being [−1,1] are transformed to [0,1] and
can be interpreted as a normalized measure of strength, where
0 represents no relationship between words u and v and 1 rep-
resents a perfect synonymous relationship. In having a nor-
malized measure, requirement R3 is satisfied. Unfortunately,
as cosine is a metric, its associations are necessarily symmet-
ric meaning cos(u,v) = cos(v,u). This violates characteristic
R1 specified above. In order to satisfy R1, a measure is re-
quired that permits asymmetric associations between words.
The topic model (Griffiths, Steyvers, & Tenenbaum, 2007)
used conditional probabilities to achieve this. For example
the strength of association from word u to v is computed
as Pr(u|v) and the strength of reverse relation is computed
Pr(v|u). Note that these probabilities need not be the same
which thus allows for asymmetry in the associations between
these two words. In this paper, however, we will build on a
word association measure based on projection (Pothos, Buse-
meyer, & Trueblood, 2013). Initially, a simple orthogonal
vector projection was considered:

P(u,v) =
〈u,v〉
||v||

(2)

Exploration of this measure shows that it is bound between
[0, ||u||], where 0 represents no relationship and ||u|| repre-
sents a perfect synonymous relationship. Although not nor-
malized this does preserve rank when comparing multiple
v’s to u. Unfortunately, when comparing multiple v’s to
different u’s, say u1 , u2 we arrive at two sets of bounds,[
0, ||u1||

]
&
[
0, ||u2||

]
, which destroys rank equivalence (un-

less ||u1|| = ||u2||). To overcome this undesirable property,
the GP measure was developed in which the relative differ-
ence between v and the length of the projection of u onto v is
taken into account:

GP(u,v) =

{ P(u,v)
||v|| : P(u,v)< ||v||

1+ ||v||
||u|| − cos(u,v) : P(u,v)≥ ||v||

From a technical point of view, GP is not a metric, but a
pre-metric. As was the case with cosine, GP is also bound
from [0,1] and can be interpreted as a normalised measure of
strength (thus satisfying R3). Furthermore, it permits asym-
metric associations between words meaning GP(u,v) is not
necessarily equal to GP(v,u), thus satisfying R1.

Constructing Corpus Based Association Networks
This section describes an abstract algorithm to compute a
CAN using the notation shown in Table 3. A CAN is based
around a target word t.

The first step is to compute the list of associates tA based
on t. In order to compute this list, the vector representation
t is compared to the vector representation of all other words,
v (v ∈V ) using a measure of association S(u,v), which can
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be either cosine, or GP. For an associate to be added to the
list, the strength of association must be greater or equal to a
threshold value: S (u,v) ≥ Sτ. This ensures the target has an
association with all associates in tA thus satisfying require-
ment R2. The threshold is a parameter which is empirically
set per measure (cosine or GP).

A word t’s tN is constructed by taking t’s tA and comput-
ing the strengths between each directed pair (u,v) u 6= v and
including those strengths in which S (u,v) ≥ Sτ. The results
are stored in tM so that tM (u,v) = S (u,v). This process is
formalized by Algorithm 0.1

Algorithm 0.1: CAN(t, tA)

tA = tA∪ t
for each u ∈ tA

do

for each v ∈ tA , v 6= u

do
{

if S (u,v)≥ Sτ

then tM (u,v) = S (u,v)

Consider the following example, where a target word t
and the associate list tA = {a1,a2} and assume the follow-
ing two associations are above the threshold: S

(
a2,a1

)
=

S1,2 ≥ Sτ and S
(
a2, t

)
= S2,t ≥ Sτ and that all other associ-

ations S (a,b) = 0. Applying Algorithm 0.1, the first step is
to add the target t as a default element to its associate list, i.e.,
tA = {t,a1,a2}. The next step is to consider the associations
that each member of tA has with one another and keep those
for which S (a,b)≥ Sτ

u = t , v = a1 : S
(
t,a1

)
= St,1 ≥ Sτ→ tM (t,a1) = St,1

v = a2 : S
(
w,a2

)
= St,2 ≥ Sτ→ wM (t,a2) = St,2

u = a1 , v = t : S
(
a1, t

)
= 0→ tM (a1, t) = 0

v = a2 : S
(
a1,a2

)
= 0→ tM (a1,a2) = 0

u = a2 , v = u : S
(
a2, t

)
= S2,w ≥ Sτ→ tM (a1, t) = S2,t

v = a1 : S
(
a2,a1

)
= S2,1 ≥ Sτ→ tM (a1,a2) = S2,1

The matrix returned by the algorithm tM is,

Table 2: Adjacency Matrix (tM) for t

t a1 a2
t 0 St,1 St,2
a1 0 0 0
a2 S2,t S2,1 0

Empirical Evaluation
The evaluation aims to address two questions: To what degree
CANs approximate FANs with respect to (1) their ability to
quantitatively predict human word associations and (2) their
structural network characteristics.

Table 3: Notation

u A word u
u The vector representation for u
uA The set of associates for u.
mna The maximum number of associates permitted in uA
S(u,v) Method to measure the strength between u,v
Sτ Minimum threshold value for for S(u,v).
uN Word Association Network for u
uM Adjacency Matrix used to represent uN
t A target word
T Set of Target Words, T ⊂V
V Vocabulary of Words

Quantitative Prediction of Word Associations

In order to evaluate the quality of associations in CANs we
analyzed the degree to which free associates from the USF
norms were appearing in the associate list tA for a all targets t.
To this end we adopt the approach and corpus used to evaluate
the Topic Model (Griffiths et al., 2007).

Materials In generating the vector representations, the
Touchstone Applied Science Associates (TASA) corpus. was
used with a standard stop word list. This corpus comprises
916060 documents. The set of target words T comprised
the full 4068 target words present in the University of South
Florida (USF) word association norms (Nelson et al., 2004).
The baseline models for comparison are the Topic Model
(Griffiths et al., 2007) and Latent Semantic Analysis (LSA)
(Dumais, 2004). The Topic Model is a corpus based ap-
proach to semantic representation which ascribes probabili-
ties to words with respect to latent contexts called “topics”.
The model allows asymmetric words associations to be com-
puted and has been evaluated on the USF word association
norms. The LSA Model was chosen as it a common corpus
based benchmark that uses the cosine metric.

Procedure The procedure involves taking each of the 4068
target words and computing the PPMI vector representation
using the method described in section “Vector Representa-
tions of Words”. The size of the resulting vocabulary V was
47059 words, which is the dimensionality of the vector rep-
resentations. The vocabulary was constructed by taking all
words in the TASA corpus (not including stop words) and
only considering those with a term frequency greater than
10 (as used with the Topic Model). Thereafter, the associate
strength between the target and all words of the vocabulary
is computed. This list is then sorted (in descending order)
by associate strength and then the rank/position of the target
word’s first associate is found. The first associate is the as-
sociate of the target word (from the USF data) that has the
strongest forward relationship. For example, in Fig. 1, a1 has
the strongest forward relationship to t being S (t,a1) = 0.2
and thus would be the first associate for t. The probability of
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finding the first associate within the top m associates is com-
puted using: Pr(m) = nm

nT
, where nm is the number of first

associates produced whose rank ≤m and nT is the number of
words in the corpus.

The cosine and the GP pre-metric were eval-
uated in this way for 6 different values of m
(m ∈M = {1,5,10,25,50,100}) and the results com-
pared with published results of LSA and the Topic Model
documented in (Griffiths et al., 2007). In order to determine
the best performance a simple method was introduced which
sums the probabilties across the different values of m:
P = ∑m∈M Pr (m). Best performing results for CAN (cosine)
are reported with window size w = 3. For CAN (GP) the best
performing results were achieved with w = 6.

Figure 2: Probabilities for producing the first USF associate
modulo the size of the associate list m

Results The results are presented in the Fig 2, the P val-
ues for each of the four methods are: PCAN−COS = 2.7155,
PLSA−COS = 2.4568, PTopic−Model = 2.7818, PCAN−GP =
2.5932.

Of the four, the Topic Model produces the best results fol-
lowed closely by the CAN (cosine). In comparing both of the
baseline methods, CAN (cosine) outperforms LSA. In com-
paring the asymmetric measures, the Topic Model is slightly
more effective than CAN (GP). Given that we are primarily
interested in the asymmetric measures of association, we ob-
serve that the performance of the Topic Model for first as-
sociates for lower m values is considerably better than CAN
(GP), however this behavior is not continued for larger m val-
ues in which the CAN (GP) approaches and then slightly su-
persedes the effectiveness of the Topic Model.

Comparison of CANs vs FANs using structural
network characteristics
Materials The corpus used for testing was Wikipedia 2008
which comprises 61998051 documents. Wikipedia was cho-
sen and it allows the CAN algorithm to be tested on a very
large corpus of text. The set of target words T used was the
4068 target words present in the University of South Florida
(USF) word association norms (Nelson et al., 2004). Each
word has a corresponding PPMI vector representation using
the method described in section . The baseline for compari-
son are the 4068 FANs in the USF norms.

Procedure A PPMI vector representation for each target
word was computed using the method described in section
“Vector Representations of Words”. The size of the resulting
vocabulary V was 255460 words, which is the dimensionality
of the vector representations. The procedure involved gener-
ating a CAN for each target word using Algorithm 0.1 with
GP as the measure used to compute the associations. (CANs
were not constructed with cosine as this measure is symmet-
ric) The CANs were generated with mna ≤ 50, where mna
refers to the maximum number of associates a target can have
in it’s CAN. This value was chosen because it is the maxi-
mum number associates encountered across all target words
in the USF word association norms.

The structural network characteristics (see Table 4) used
for evaluation are derived from the CAN’s adjacency matrix
(tM). These characteristics are well known in network analy-
sis and have been used to analyze the USF word association
norms (Steyvers & Tennenbaum, 2005) The mean, median
and standard deviation (sample size=4068) are calculated for
each of these network characteristics. The standard deviation
is used to assess the stability of the mean and median.

Table 4: Structural Characteristics

n The number of nodes in the network.
d The network density.
L The average minimum distance between nodes.
< k > The average number of connections for each node.
C The clustering coefficient for the network.

Table 5: Network Dimension (n)

USF GP
Mean 14 16.23
Median 14 14
St Dev 4.7 10.89

Results Table 5 shows that the GP measure has strengths
and weakness in replicating the Network Dimension n of the
FANs. Whilst CANs over-fit the mean, they produce a per-
fect median value. There is a quite large standard deviation,
which may be due to the fact that it is much easier to estab-
lish associations in corpus based processing than humans are
able to in free association experiments. We can conclude that
whilst the CANs ability to replicate FANs is quite good, there
is a larger spread in the numbers of nodes.

Table 6 shows that the mean and median Network Density
d of FANs is closely matched by the CANs. Not only it is a
great predictor of the mean and median, it’s standard devia-
tion is relatively small indicating stability.

Table 7 reveals that the mean and median average minu-
mum distance between nodes in FANs is under-fitted by the
CANs, but produces a stable result. This is to be expected
given the structure of the USF FANs. These FANs are gener-
ally quite sparse except in two areas, firstly all associates have
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Table 6: Network Density (d)

USF GP
Mean 0.23 0.2
Median 0.21 0.15
St Dev 0.11 0.14

Table 7: Average Minimum Distance Between Nodes (L)

USF GP
Mean 1.79 1.19
Median 1.76 1.05
St Dev 0.36 0.32

a forward association to the target (as per R2) and secondly
it is a common theme that the backward relationships (to the
target) also exist (though these can be of very low weight).
Consequently, the majority of associates in a USF FAN are
connected to the target in both a forward and backward con-
nection and thus allow for an easier traverse between any two
nodes in the FANs resulting in a low L value. The pattern
of forward connections is replicated by the CANs (R2) and
is strongly desired when replicating FANs (small world be-
havior). The lower L value for the GP generated CANs indi-
cates that traversal between nodes in a CAN is easier than in a
FAN. Given that the densities for FANs and CANs are almost
identical (as illustrated in Table 6), and that both have forced
forward connections to the target, the difference in structure
probably lies in the non-target nodes being, on average, more
interconnected in the CANs, than in the FANs. This higher
degree of interconnectedness provides more opportunities for
traversal through the network and thus a lower L value. Table

Table 8: Average Number of Connections (< k >)

USF GP
Mean 1.12 2.34
Median 1.14 1.81
St Dev 0.15 1.94

8 shows that the mean and median average number of connec-
tions of FANs is over-fitted by the CANs and is quite unsta-
ble. On average, the number of associate to associate relation-
ships is greater for CANs than for FANs, which is consistent
with our preceding conjecture that the non-target nodes of
CANs are more interconnected than in FANs. Again, a pos-
sible explanation is that in corpus-based techniques it is gen-
erally much easier to establish associations between words.
Whether this is a result of the PPMI representation, the large
size of the corpus and/or a consequence of the GP pre-metric
is currently under investigation.

Table 9 shows that the mean and median Clustering Coeffi-
cient C of FANs are under-fitted by the CANs. The Clustering
Coefficient measures the average density for localized sub-

Table 9: Clustering Coefficient (C)

USF GP
Mean 0.44 0.31
Median 0.43 0.32
St Dev 0.10 0.16

networks for each node in the network. Although we have ob-
served that words appear to be more connected in CANs over
FANs (as observed in Table 7 and 8), there is therefore likely
to be, on average, more sub-networks in CANs. However, the
density of these sub-networks around a node is smaller than
in FANs. The direct cause of this is unknown at this stage.

Discussion
The first component of analysis evaluated the degree to which
CANs can quantitatively predict human word associations.
Two models were used as baselines for comparison - the
Topic Model and LSA. The results revealed the following
findings.

CANs extracted using both the cosine metric and the GP
pre-metric outperform LSA though the differences are small.
The Topic Model outperforms CAN (GP pre-metric) and
CAN (cosine) at higher levels of precision. At lower levels of
precision CAN (cosine) outperforms the Topic Model. That
being said, all models are poor at generating FANs’ first as-
sociate at maximal precision (i.e., when m = 1). The cosine
metric in conjunction with corpus-based vectors like PPMI
has shown in many studies to have a predisposition to com-
pute semantic associations (e.g., (Lund & Burgess, 1996; Du-
mais, 2004)). As there are many cases where the first asso-
ciate is not semantically associated with the target, it is there-
fore challenging for such associates to be ranked first based
on a PPMI representation. Clearly the asymmetry of GP pre-
metric could not mitigate the predisposition of the PPMI vec-
tor representations to compute associations of a semantic na-
ture. Conversely, the Topic Model is better at predicting first
associates perhaps because the conditional probabilities pick
up associations which are broader in nature than semantic as-
sociations.

Currently the CAN method creates vector representations
for words in Euclidean space. In doing so, established met-
rics of Euclidean Space (i.e., the cosine metric) can be used
to compute word associations. These metrics must satisfy
four axioms being (1) d (a,b) = d (b,a), (2) d (a,a) = 0 , (3)
d(a,b)≥ 0 and (4) d (a,b)≤ d (a,c)+d (c,b), where d(a,b)
denotes the distance between points a and b in the space.
Tversky challenged this assumption and found empirical ev-
idence that symmetry (1) and the triangle inequality (4) are
violated. Tversky argued that these violations implied that
words do not act like points in Euclidean space (Tversky &
Gati, 1982). Although the vectors for the CANs are in Eu-
clidean space, the GP pre-metric does not base the degree of
association on the distance between points in the space, but
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rather on the degree of projection between the respective vec-
tors.

The second component of analysis was to assess the struc-
tural similarities of the FANs with the CANs. A set of well
known network characteristics were employed to measure the
performance. It was found that the CANs built using the
GP pre-metric performed encouragingly well at replicating
the structural features of the FANs, however issues of sta-
bility and under/over fitting the network characteristic need
to be investigated in more detail. Structural analysis of the
USF norms has been performed previously (Griffiths et al.,
2007), however instead of analyzing the individual networks
(as done in this analysis), the networks were aggregated into
a single global network which was then subjected to network
analysis. The focus of this study was different; we were in-
terested in how well FANs based on individual target words
can be structurally replicated. For this reason, the small world
network characteristic γ (used in P(k) = k−γ) was not inves-
tigated because this characteristic is more meaningfully ap-
plied to a global network rather than small individual net-
works.

The brute force style strategy employed to isolate the opti-
mal parameters for the structural analysis could be improved.
Whilst it does converge to the optimal set of solutions, it is
computationally inefficient and does not explore the stability
of each set of solutions, nor does it assign weightings to in-
dividual parameters. Lastly, the USF norms collected over
three decades and were primarily sourced from students who
attended the University of South Florida. As a consequence,
the corpus suffers from temporal and geographical bias. To
overcome the temporal and geographical bias, a new collec-
tion of FANs built by the University Of Leuven could be used
as a more comprehensive and contemporary baseline of hu-
man word association data (Simon et al., 2013).

Conclusion
The aim of this paper is to investigate to what degree cor-
pus based semantic methods can be used to derive weighted
networks of words which approximate human free associa-
tion networks (FANs) in relation to both structural network
characteristics and the ability to quantitatively predict human
word associations. We conclude that corpus-based methods
can approximate the structural characteristics of FANs to an
encouraging degree when a thresholded asymmetric measure
based on vector projection is used to construct the network.

The degree to which the corpus-based procedures can repli-
cate human word associations is still questionable. When
benchmarked against two corpus-based models, CANs pro-
duced similar effectiveness. At this stage we conclude that
when term co-occurrence statistics are used to provide vec-
tor representations, the performance of the symmetric cosine
metric can’t be differentiated from an asymmetric measure
based on vector projection. The difference in performance be-
tween CANs and the benchmark models is small from which
we can conclude that CAN (cosine and GP) do show promise

for further development.
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