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Abstract. We present a new answer set solver callednomore++, along with its
underlying theoretical foundations. A distinguishing feature is that it treats heads
and bodies equitably as computational objects. Apart from its operational foun-
dations, we show how it improves on previous work through its new lookahead
and its support-driven strategy and underpin our claims by selected experimental
results.

1 Introduction

A large part of the success of Answer Set Programming (ASP) is owed to the early
availability of efficient solvers, likesmodels[1] anddlv [2]. Since then, many other sys-
tems, sometimes following different approaches, have emerged, among themassat[3],
cmodels[4], andnoMoRe[5].

We present a new ASP solver, callednomore++, along with its underlying theo-
retical foundations.nomore++ pursues a hybrid approach in combining features from
literal-based approaches, likesmodelsanddlv, with the rule-based approach of its pre-
decessornoMoRe. To this end, it treats heads and bodies equitably as computational
objects. We argue that this approach allows for more effective (in terms of search space
pruning) choices than obtainable when dealing with either heads or bodies only. As a
particular consequence of this, we demonstrate that the resulting lookahead operation
allows for propagating more than previous approaches. Also, we detail a special strat-
egy, keeping the invariant property of being “unfounded-free” and empirically show
that it outperformssmodelson relevant benchmarks. In fact, due to space limitations,
we mainly compare our approach to that ofsmodels. Our choice is motivated by the fact
that both systems primarily address normal logic programs.1 dlv addresses the more ex-
pressive class of disjunctive logic programs. Thus, many of its distinguishing features
are oriented to this extension. Also,smodelsandnomore++share the same concept of
“choice points”, on which parts of our experiments rely upon.

The paper is organized as follows. After some preliminary definitions, we start with
a strictly operational specification ofnomore++. In fact, its configurable operator-based
design is a salient feature ofnomore++. Another major feature is its graph-based im-
plementation. For simplicity, however, we give its specification in logic programming
terminology and then describe how easily this is mapped into graph operations. We
then concentrate on two specific features: First, we introducenomore++’s lookahead
operation and prove that, in terms of propagation, it is more powerful than the ones
encountered insmodelsandnoMoRe. Second, we presentnomore++’s support-driven

1 Unlike smodels, nomore++cannot (yet) handle cardinality and weight constraints.
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strategy along with further implementation details. Finally, we provide selected experi-
mental results backing up our claims.

2 Background

A logic programis a finite set of rules of the form

p0 ← p1, . . . , pm,not pm+1, . . . ,not pn, (1)

wheren ≥ m ≥ 0, and eachpi (0 ≤ i ≤ n) is anatomin some alphabetA. A literal
is an atomp or its negationnot p. For r as in (1), lethead(r) = p0 be theheadof r
andbody(r) = {p1, . . . , pm,not pm+1, . . . ,not pn} thebodyof r. Given a setX of
literals, letX+ = {p ∈ A | p ∈ X} andX− = {p ∈ A | not p ∈ X}. Forr, we then
getbody(r)+ = {p1, . . . , pm} andbody(r)− = {pm+1, . . . , pn}.

A programΠ is calledbasicif body(r)− = ∅ for all r ∈ Π. Thereduct, ΠX , of Π
relative to a setX of atoms is defined by

ΠX = {head(r)← body(r)+ | r ∈ Π, body(r)− ∩X = ∅}.

A setX of atoms is closed under a basic programΠ if for any r ∈ Π, head(r) ∈ X if
body(r)+ ⊆ X. Cn(Π) denotes the smallest set of atoms closed under basic program
Π. A setX of atoms is ananswer setof a programΠ if Cn(ΠX) = X.

As an example, consider programΠ1 comprising rules:

r1 : a← not b r3 : c← not d
r2 : b← not a r4 : d← not c

(2)

We get four answer sets, viz.{a, c}, {a, d}, {b, c}, and{b, d}.
For a programΠ, we write head(Π) = {head(r) | r ∈ Π} and body(Π) =

{body(r) | r ∈ Π}. Given that heads and bodies are our primary objects of interest,
we further extend this notation: Forh ∈ head(Π), definebody(h) = {body(r) | r ∈
Π, head(r) = h}.

For being able to define assignments in terms of bodies and heads of rules (in con-
trast to arbitrary atoms), we restrict ourselves, without loss of generality, to programs
Π satisfying{p | r ∈ Π, p ∈ body(r)+ ∪ body(r)−} ⊆ head(Π). That is, every body
atom must occur as the head of some rule. Any program can be transformed into such a
format, starting from the observation that all atoms in(A \ head(Π)) are false.

3 Operational specification

To begin with, we give an operational specification ofnomore++ that is based on our
extended concept of assignments. The purpose of this is to provide a firm understand-
ing of the basic operations, which may serve as a basis for formal comparisons with
techniques used bysmodelsor dlv.

We consider assignments that map heads and bodies in a programΠ into {⊕,	},
indicating whether a head or body is true or false, respectively. Formally, a (partial)
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assignment is a partial mappingA : head(Π) ∪ body(Π) → {⊕,	}. For simplicity,
we often represent such assignments as pairs(A⊕, A	), whereA⊕ = {x | A(x) = ⊕}
andA	 = {x | A(x) = 	}. WheneverA⊕ ∩ A	 6= ∅, thenA is undefined as it is no
mapping. We represent an undefined assignment by(head(Π) ∪ body(Π), head(Π) ∪
body(Π)). For comparing assignmentsA andB, we defineA v B, if A⊕ ⊆ B⊕ and
A	 ⊆ B	. Also, we defineA tB as(A⊕ ∪B⊕, A	 ∪B	).

We distinguish two sorts of forward propagation innomore++. Head-oriented prop-
agation assigning⊕ to a head if one of its associated bodies belongs toA⊕ and assign-
ing	 whenever all of its bodies are inA	. This is captured byTΠ(A) andTΠ(A) in
Definition 1. Body-oriented propagation is based on the concepts ofsupportandblock-
age: A body is supported if all its positive literals belong toA⊕ and it is unsupported
if one of its positive literals is inA	. This is reflected in the definitions ofSΠ(A) and
SΠ(A) below. Analogously, but with roles partly interchanged,BΠ(A) andBΠ(A)
define whether a body isblockedor unblocked, respectively.2

Definition 1. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π).

We define

1. TΠ(A) = {h ∈ head(Π) | body(h) ∩A⊕ 6= ∅};
2. TΠ(A) = {h ∈ head(Π) | body(h) ⊆ A	};
3. SΠ(A) = {b ∈ body(Π) | b+ ⊆ A⊕};
4. SΠ(A) = {b ∈ body(Π) | b+ ∩A	 6= ∅};
5. BΠ(A) = {b ∈ body(Π) | b− ∩A⊕ 6= ∅};
6. BΠ(A) = {b ∈ body(Π) | b− ⊆ A	}.

We omit the subscriptΠ whenever it is clear from the context. In what follows, we also
adopt this convention for similar concepts without further notice.

With the above sets at hand, we can now specifynomore++’s forward propagation
operatorP.

Definition 2. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π).

We define

PΠ(A) = A t (T (A) ∪ (S(A) ∩B(A)), T (A) ∪ S(A) ∪B(A)) .

A head is assigned⊕ if it belongs toT (A), while a body must be supported as well as
unblocked, namely, belong to(S(A) ∩B(A)) in order to be assigned⊕. Conversely, a
body is marked	, whenever it is unsupported or blocked; a head is	, if it is not true,
that is, inT (A). As we detail in the full paper,P amounts to Fitting’s operator [6].

For example, let’s applyP to A0 = ({body(r1)}, ∅) onΠ1:

P(A0) = A1 = ({a, body(r1)}, ∅) by T (A0)
P(A1) = A2 = ({a, body(r1)}, {body(r2)}) by B(A1)
P(A2) = A3 = ({a, body(r1)}, {b, body(r2)}) by T (A2)

2 We systematically use over-lining for indicating sets with antonymous contents. For example,
S andS stand for the sets of supported andunsupported bodies.
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Note thatA3 is closed underP, that is,P(A3) = A3.
For describing the saturated result of the combined application of operators, we

need the following definition. LetO be an (often singleton) collection of operators and
let A be a partial assignment. Then, we denote byO∗ thev-smallest partial assignment
containingA and being closed under all operators inO. In the above example, we have
P∗(A0) = A3.

For defining backward propagation, we have to look for the inverse ofP. For ex-
ample, consider the definition ofT (A) and supposeh ∈ head(Π) ∩ A⊕ whereas
body(h) ∩ A⊕ = ∅. Hence,h was not “produced” inT (A). Yet there must be some
bodyb ∈ body(h) that is eventually assigned⊕, otherwiseh cannot be true. However,
this body can only be determined if all other bodies are already inA	. This leads us to
the definition ofT [

Π(A). Analogously, we can derive the following sets; see full paper
for details.3

Definition 3. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π).

We define

1. T [
Π(A) = {b | b ∈ body(h), h ∈ head(Π) ∩A⊕, body(h) \ {b} ⊆ A	};

2. T
[

Π(A) = {b | b ∈ body(h), h ∈ head(Π) ∩A	};
3. S[

Π(A) = {h | h ∈ b+, b ∈ body(Π) ∩A⊕};
4. S

[

Π(A) = {h | h ∈ b+, b ∈ body(Π) ∩A	 ∩B(A), b+ \ {h} ⊆ A⊕};
5. B[

Π(A) = {h | h ∈ b−, b ∈ body(Π) ∩A	 ∩ S(A), b− \ {h} ⊆ A	};
6. B

[

Π(A) = {h | h ∈ b−, b ∈ body(Π) ∩A⊕}.

Combining the previous sets yields the following backward propagation operatorB.

Definition 4. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π).

We define

BΠ(A) = A t (T [(A) ∪ S[(A) ∪B[(A), T [(A) ∪ S[(A) ∪B[(A)) .

Adding the ruleb ← c to programΠ1 still givesP(A3) = A3. However, due to the
fact that headb ∈ A	

3 and thus body{c} ∈ T [(A3), we additionally getB∗(A3) =
A3 t ({d, {not c}}, {{c}, c, {not d}}); hence,c must be false andd must be true.

The next definition elucidates the notion of anunfounded set[7] in our context.
Given an assignmentA, the greatest unfounded set of heads and bodies,UΠ(A), is
defined in terms of all still potentially derivable atoms inUΠ(A).

Definition 5. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π).

We define

UΠ(A) = {b ∈ body(Π) | b+ 6⊆ UΠ(A)} ∪ {h ∈ head(Π) | h 6∈ UΠ(A)}

whereUΠ(A) = Cn((Π \ {r ∈ Π | body(r) ∈ A	})∅).
3 We use the superscript[ to indicate sets used in backward propagation.
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The setU(A) of potentially derivable atoms is formed by removing all rules whose
body belongs toA	. The resulting subprogram is reduced with respect to the empty set
so that we can compute its (possible) consequences by means of theCn operator. The
counterpart ofU(A) in smodels, known asatmost, amounts to

Cn((Π \ {r | body(r)+ ∩A	 6= ∅})A⊕∩head(Π)) .

As bodies are not explicitly represented insmodels’ assignments, we have to refer to
atoms here.

Finally, we have the following operatorU for falsifying all elements belonging to
the greatest unfounded set (with respect to a given assignment).

Definition 6. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π).

We define
UΠ(A) = A t (∅, U(A)) .

Consider programΠ2, obtained fromΠ1 by adding rules

r5 : e← not a,not c, r6 : e← f,not b, r7 : f ← e, (3)

and assignmentA = (∅, {body(r5)}). This is a common situation innomore++, when-
ever bodies are taken to be choices. We then haveU(A) = Cn((Π2 \ {r5})∅) =
Cn({a ←, b ←, c ←, d ←, e ← f, f ← e}) = {a, b, c, d}, and thus we obtain
U(A) = (∅, {body(r5), e, body(r6), f, body(r7)}). As we detail in the full paper, the
assignment(PU)∗((∅, ∅)) amounts to the well-founded semantics ofΠ [7].

Let us compare the previous to propagation insmodels. Basically, it is based on
two functions, calledatleastandatmost. While atleastcomputes deterministic conse-
quences by forward and backward propagation,atmostdetects unfounded sets. Together
they allow for computing the well-founded semantics [7]. As done in [8], we represent
smodels’ assignments as sets of literals, wherenot a means thata is false. For brevity,
we have to refer the reader for further formal details to [8]. We mention however that
an inconsistent assignment is represented byatleastthrough the set of all literals and
by atmostthrough the empty set.

Theorem 1. Let Π be a logic program. LetA be a partial assignment ofhead(Π) ∪
body(Π) and let X be a partial assignment ofhead(Π) such that(X+, X−) =
(A⊕, A	). 4

Then, we have the following results.

1. If atleastΠ(X) ⊆ atmostΠ(X), then
(a) if Y = atleastΠ(X) andB = (PB)∗(A), then

(Y +, Y −) = (B⊕ ∩ head(Π), B	 ∩ head(Π)).

(b) if Y = atmostΠ(X) andB = U(P(A)), then

(Y +, Y −) = (B⊕ ∩ head(Π), B	 ∩ head(Π)).
4 Note that(A⊕ ∩ body(Π), A	 ∩ body(Π)) = (∅, ∅).
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2. If atmostΠ(X) ⊂ atleastΠ(X), then
(PBU)∗(A) is undefined and vice versa.

The last result shows thatnomore++’s basic propagation operationsP, B, andU are
as powerful as those ofsmodels. The reasonP is applied once beforeU in (1b) is that
initially A assigns no values to bodies in order to be comparable tosmodels.

The first differences are encountered when it comes to making choices. Whilesmod-
els’ choices are restricted to literals,nomore++ generally allows for assigning values
to literals as well as bodies. This leads us tonomore++’s choice operatorC.

Definition 7. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π).

We define

1. C⊕Π(A) = (A⊕ ∪ {x}, A	) for somex ∈ (head(Π) ∪ body(Π)) \ (A⊕ ∪A	);
2. C	Π(A) = (A⊕, A	 ∪ {x}) for somex ∈ (head(Π) ∪ body(Π)) \ (A⊕ ∪A	).

Note that the chosen objectx can be a head or a body.
The possibility of choosing among heads and bodies provides us with great flexibil-

ity. Notably, some choices have a higher information gain than others. On the one hand,
setting a head to	 yields more information than choosing some body to be	. Negat-
ing some headh by	 implies that all bodies inbody(h) are false (viaB). Conversely,
choosing a body to be	 has generally no direct effect on the body’s heads because there
may be alternative rules (i.e. other bodies) sharing the same heads. Also, we normally
gain no information on the constituent literals of the body. On the other hand, assigning
⊕ to bodies is superior to assigning⊕ to heads. When choosing⊕ for some head, we
are generally unable to determine a corresponding body that justifies this choice and
would then be assigned⊕, too. Unlike this, choosing a body to be⊕ allows us to infer
the corresponding heads (byP). Moreover, assigning⊕ to a bodyb implies that every
literal in b is true (byB). The observation that assigning	 to heads and⊕ to bodies,
respectively, subsumes the opposite assignments also fortifiesnomore++’s lookahead
strategy, detailed in Section 4.

Following [9], we characterize the process of answer set formation by a sequence
of assignments.

Theorem 2. Let Π be a logic program and letA be a total assignment ofhead(Π) ∪
body(Π).

Then,A⊕ ∩ head(Π) is an answer set ofΠ iff there exists a sequence(Ai)0≤i≤n

of assignments with the following properties:

1. A0 = (PBU)∗((∅, ∅));
2. Ai+1 = (PBU)∗(C◦(Ai)) for some◦ ∈ {⊕,	} and0 ≤ i < n;
3. An = A.

The purpose of the intersectionA⊕ ∩ head(Π) is to filter out the atoms forming an
answer set. Different strategies can be shown to be sound and complete. For instance,
the above result still holds after eliminatingB. For simplicity, we refer to these strategies
by (PBU)∗C or (PU)∗C, respectively.
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4 Lookahead

We have seen thatnomore++’s basic propagation is as powerful as that ofsmodels. An
effective way of strengthening propagation is to uselookahead. 5 Apart from specify-
ing nomore++’s lookahead, we demonstrate below that ahybrid lookahead strategy,
incorporating heads and bodies, allows for stronger propagation than auniformone us-
ing only either heads or bodies. Uniform lookahead is for instance used insmodelson
literals andnoMoReon rules (comparable to bodies). However, we do not want to put
more computational effort into hybrid lookahead than needed in the uniform case. The
solution is simple: Assigning	 to heads and⊕ to bodies within lookahead is, in combi-
nation with propagation, powerful enough to compensate for the omitted assignments.

First of all, we operationally define our lookahead operatorL as follows.

Definition 8. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π). Furthermore, letO be a collection of operators.

For x ∈ (head(Π) ∪ body(Π)) \ (A⊕ ∪A	), we define

`⊕,O
Π (A, x) =

{
(A⊕, A	 ∪ {x}) if O∗((A⊕ ∪ {x}, A	)) is undefined
A otherwise

`	,O
Π (A, x) =

{
(A⊕ ∪ {x}, A	) if O∗((A⊕, A	 ∪ {x})) is undefined
A otherwise

For X ⊆ head(Π) ∪ body(Π), we define

L⊕,O
Π (A,X) =

⊔
x∈X\(A⊕∪A	) `⊕,O

Π (A, x)

L	,O
Π (A,X) =

⊔
x∈X\(A⊕∪A	) `	,O

Π (A, x)

LOΠ(A,X) = L⊕,O
Π (A,X) t L	,O

Π (A,X)

Lookahead works in a conflict-driven way, assigning a value whenever the opposite
assignment leads to a conflict. The most powerful hybrid lookahead operator (relative
to some operatorsO) isLO(A, head(Π)∪body(Π)) as it includes all unassigned heads
and bodies. However, taking up the above idea of restrictingL to assigning	 to heads
and⊕ to bodies only, yields an equally expressive operation that relies on significantly
fewer applications of elementary lookahead by` (see3. in Theorem 3). We show that
explicitly assigning⊕ to heads and	 to bodies withiǹ is unnecessary as long as all
conflicts are produced and their sources properly eliminated. In fact, the two sorts of
assignments can be dealt with implicitly byO∗, provided thatP belongs toO and all
operators inO are monotonic (like, for instance,P, B, andU).

Theorem 3. Let Π be a logic program. LetA be a partial assignment ofhead(Π) ∪
body(Π) and let

B = P(L⊕,O(A, body(Π))) t L	,O(A, head(Π)) .

Then, for every collectionO ofv-monotonic operators such thatP ∈ O, we have

5 Often lookahead is additionally used for gathering heuristic values for choice operations. As
with dlv andsmodels, this information is exploited bynomore++as well.
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Πn
3 = Π1 ∪


r5 : x← not a,not b r6 : x← not c,not d
r7 : y ← not a,not b r8 : y ← not c,not d r9 : y ← not x,not y
r10 : x← i1, . . . , in r2m+9 : im ← not jm r2m+10 : jm ← not im



Πn
4 = Π1 ∪


r5 : e← not f r9 : y ← not c r12+1 : i1 ← x, y, z,not i1
r6 : f ← not e r10 : y ← not d r12+n : in ← x, y, z,not in
r7 : x← not a r11 : z ← not e r11+n+2m : im ← not jm

r8 : x← not b r12 : z ← not f r12+n+2m : jm ← not im


Fig. 1.Lookahead examplesΠn

3 andΠn
4 , wherem = 1, . . . , n andΠ1 = {r1, . . . , r4} from (2).

1. LO(A, head(Π)) v B;
2. LO(A, body(Π)) v P(B);
3. LO(A, head(Π) ∪ body(Π)) v P(B).

ConditionP ∈ O stipulates that propagation (within lookahead) must be at least as
powerful as Fitting’s operator. Unlike this, the occurrences ofP in B, 2., and3.are only
of formal nature and needed for synchronizing heads and bodies. In practice, lookahead
is interleaved withP anyway, since it is integrated into propagation, viz.(PBUL)∗.
More importantly,nomore++’s restricted hybrid lookahead strategy, assigning	 to
heads and⊕ to bodies only, faces approximately the same computational efforts as
encountered in the uniform case since2∗min{|head(Π)|, |body(Π)|} ≤ |head(Π)|+
|body(Π)| ≤ 2 ∗max{|head(Π)|, |body(Π)|}.6

Finally, let us demonstrate thatnomore++’s hybrid lookahead strategy is in fact
strictly more powerful than uniform ones. Consider ProgramsΠn

3 andΠn
4 , given in

Figure 1. In both programs, atomsim andjm introduce choices, whereim is true when-
everjm is false and vice versa. However, in the answer sets ofΠn

3 andΠn
4 , everyim

is true and everyjm false, and residual choices produce multiple answer sets. As we
demonstrate in the following, a body-based lookahead decides everyim in Πn

3 and a
head-based one does the same inΠn

4 , whereas the opposite variants do not. Hence,
only a hybrid lookahead effectively solves both programs, whereas an approach with
uniform lookahead relies on “lucky” choices in case of eitherΠn

3 or Πn
4 , respectively.

When choices are “unlucky”, uniform approaches may even face exponentially more
choices than a hybrid lookahead, as our experiments in Section 6 demonstrate.

For readability, let us fixO to (PBU) and drop the superscript. Our initial assign-
ment isA = (∅, ∅). In ProgramΠn

3 , the bodies of rulesr5, . . . , r9 cannot become true.
However, head-based lookahead cannot recognize this. Hence no atom can be decided
and we obtain(LΠn

3
)∗(A, head(Πn

3 )) = (∅, ∅) = A. Body-based lookahead is supe-
rior here. It recognizes that the bodies ofr5, . . . , r9 have to be assigned	. In particular,
body(r9) = {not x,not y} must be assigned	. Having this information, assigning⊕
to any of the bodiesbody(r2m+10) = {not im} leads to a conflict. Thus, we get that
body(r10) = {i1, . . . , in} must be true. Otherwise, operatorP infers literalsnot x and

6 Note that|body(Π)| ≤ |Π| as several rules can share one body; in uniform cases, factor 2
accounts for assigningbothtruth values,⊕ and	, one after the other.



The nomore++ Approach to Answer Set Solving 171

not y, thus contradicting thatbody(r9) = {not x,not y} is assigned	. Consequently,
we infer that all bodiesbody(r2m+10) = {not im}must be assigned	. By application
of P∗, we can now decide all atomsim to be true and all atomsjm to be false.

Next, considerΠn
4 , and letB = (LΠn

4
)∗(A, body(Πn

4 )). Although all bodies
body(r12+m) = {x, y, z,not im} belong toB	, body-based lookahead does not rec-
ognize that atomsx, y, andz must be true due to rulesr1, . . . , r12. Here, head-based
lookahead is superior. ForC = (L	Πn

4
)∗(A, head(Πn

4 )), we havex ∈ C⊕, y ∈ C⊕,

andz ∈ C⊕. Furthermore, eachim is in C⊕ because, when trying to assign	,P infers
thatbody(r12+m) = {x, y, z,not im} is true, thus contradictingim being false. All in
all, head-based lookahead decides all atomsim, whereas a body-based approach only
recognizes that certain bodies must not be true but is unable to determine a falsifying
literal.

5 Design and implementation

The primary data structure innomore++consists of a graph representing dependencies
among heads and bodies.

Definition 9. LetΠ be a logic program.
The body-head dependency graphΓΠ of Π is a directed graph(body(Π) ∪

head(Π), E0 ∪ E1 ∪ E2) with labeled arcs

1. E0 = {(h, b) | h ∈ head(Π), b ∈ body(Π), h ∈ b+};
2. E1 = {(h, b) | h ∈ head(Π), b ∈ body(Π), h ∈ b−};
3. E2 = {(b, h) | h ∈ head(Π), b ∈ body(Π), h← b ∈ Π}.

With this, the concepts given in Definitions 1 and 3 can be directly mapped into graph
concepts. To see this, observe that{h | (h, b) ∈ E0} = b+, {h | (h, b) ∈ E1} = b−,
and{b | (b, h) ∈ E2} = body(h). For example, the graph-based counterpart ofTΠ(A)
becomesTΓ (A) = {h | pred2

Γ (h) ∩ A⊕ 6= ∅} wherepred2
Γ (v) = {v′ | (v′, v) ∈ E2}.

Hence, all operator specifications, except for that ofU , can be used unchanged for
defining graph-based propagation. The same applies to the characterization of answer
sets in Theorem 2.

The graph-based approach gives rise to further operators exploiting the graph struc-
ture. Among them,nomore++uses a preprocessing operatorI assigning	 to all bodies
of Π involved in a “self-blocking” situation.

Definition 10. Let Γ be the body-head dependency graph of logic programΠ and let
A be a partial assignment ofhead(Π) ∪ body(Π).

We define

IΓ (A) = A t (∅, {b ∈ body(Π) | (h, b) ∈ E1, (b, h) ∈ E2 for someh ∈ head(Π)}) .

This takes care of integrity constraints as well as rulesr wherehead(r) ∈ body(r)−.
More graph-specific issues are discussed in [10, 9].

The primary strategy ofnomore++ is to compute answer sets in a “support-driven”
way. To this end, we rely on the graph structure for maintaining this as an invariant
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property. To be precise, in logic programming terminology,7 we call a set of rulesR
unfounded-free, if

{p | p ∈ body(r)+, r ∈ R} ⊆ Cn(R∅) . (4)

Intuitively, unfounded-freeness guarantees that no rule inR is justified by an unfounded
set.8 As a matter of fact, this allows us to ameliorate the implementation of operatorU .
To see this, note thatU leaves unfounded-free parts of assignments unchanged; because
given a setR satisfying (4) along with an assignmentA such thatbody(R)∩A	 = ∅, we
haveUR(A) = ∅ (cf. Definition 5). Hence, such parts of an assignment may be ignored
when applyingU . In our setting, we are therefore interested in operators guaranteeing
that

RΠ(A) = {r ∈ Π | body(r) ∈ A⊕} (5)

remains unfounded-free. The next result makes this precise for operatorP.

Theorem 4. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π) such thathead(Π) ∩A⊕ ⊆ T (A).

If R(A) is unfounded-free andP(A) is defined, thenR(P(A)) is unfounded-free.

The requirement ofhead(Π) ∩ A⊕ ⊆ T (A) stipulates that every assignment of⊕ to a
head is justified by a body inA⊕. This is needed sinceR(A) is defined in (5) in terms
of bodies.

As an example, considerΠ2 in (3) and assignmentA = ({body(r5), e}, ∅). The
rules inR(A) = {r5} are unfounded-free, that is,body(r5)

+ = ∅ ⊆ Cn({e ←}) =
{e}, ande ∈ T (A). We obtainP∗(A) = ({body(r5), e, body(r7), f}, ∅), inducing
again an unfounded-free setR(P∗(A)) = {r5, r7} sincebody(r5)

+ ∪ body(r7)
+ =

{e} ⊆ Cn({e←, f ← e}) = {e, f}.
Choice operatorC⊕ cannot guarantee unfounded-freeness as it assigns⊕ to arbi-

trary heads and bodies. Hence, as an alternative,nomore++provides the following one.

Definition 11. Let Π be a logic program and letA be a partial assignment of
head(Π) ∪ body(Π).

We define

1. D⊕Π(A) = (A⊕ ∪ {x}, A	) for somex ∈ (body(Π) ∩ S(A)) \ (A⊕ ∪A	);
2. D	Π(A) = (A⊕, A	 ∪ {x}) for somex ∈ (body(Π) ∩ S(A)) \ (A⊕ ∪A	).

This operator differs fromC in restricting its choices tosupported bodies, as this guar-
antees unfounded-freeness.

Theorem 5. LetΠ be a logic program and letA be a partial assignment ofhead(Π)∪
body(Π) such thathead(Π) ∩A⊕ ⊆ T (A).

If R(A) is unfounded-free, thenR(D◦(A)) is unfounded-free for◦ ∈ {⊕,	}.
7 See full paper for a graph-based characterization.
8 In [11], a related notion ofunfounded-free interpretationsis used for characterizing answer

sets of disjunctive programs. In our context, unfounded-freeness is used for describing partial
assignments guaranteeing that none of their⊕-assigned atoms becomes unfounded, no matter
how such an assignment is extended.
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Note that for heads there is no operator similar toDmaintaining unfounded-freeness. A
head having a true body, i.e.body(h) ∩ A⊕ 6= ∅, is already decided throughP. There-
fore, it cannot be assigned	 and thus is not a reasonable choice. On the other hand, if
we concentrate on heads having a body that is supported but not already unblocked, i.e.
there is a bodyb ∈ (body(h) ∩ S(A)) \ (B(A) ∪ B(A)), generally, we cannot ensure
that b is still not blocked at some later step. That is, a head chosen to be true could
become unfounded later on.

Unlike P andD, backward propagation (B) cannot maintain unfounded-freeness.
To see this, suppose a bodyb is assigned	 byD and all but one,h, of its negative body
literals have already been assigned	, that is,b− \A	 = {h}. Similarly, all but one,b′,
of the bodies “deriving”h are inA	, that is,body(h) \ A	 = {b′}. Then,h ∈ B[(A),
b′ ∈ T [(B(A)), and backward propagation byB∗ assigns⊕ to b′, althoughb′ may
not be unfounded-free. That is why we introduce at the implementation level aweak
counterpart of⊕, denoted by⊗, indicating that some head or body must eventually be
assigned⊕ but its unfounded-freeness has not yet been established. In the implemen-
tation, onlyP andD assign⊕, while operators likeB andC can only assign⊗ (or
	).9 Any head or body inA⊗ can be turned into⊕ byP without causing an undefined
situation. So, by distinguishing two types of “true”, we guarantee unfounded-freeness
for objects assigned⊕.

As mentioned above, this invariance allows us to greatly improve the implemen-
tation of operatorU . Rather than repeatedly re-establishing unfounded-freeness from
scratch, the scope ofU(A) (in Definition 5) can be restricted to(head(Π)∪body(Π))\
(A⊕ ∪A	), while taking the support ofA⊕ for granted. In other words,U(A) (and so
U(A)) can be restricted to heads and bodies being either unassigned or assigned⊗. For
brevity, we refrain from giving a formal definition and refer to this enhancement ofU
for further reference byV. Also, our graph-based representation allows us to imple-
ment this in a “lazy fashion”: The nodes in the graph are initially marked as supported,
if (roughly) they belong toU((∅, ∅)). Whenever such a node is assigned	, this infor-
mation is propagated to the connecting nodes in order to find unfounded ones.

All in all, enforcing unfounded-freeness as an invariant onA⊕ allows for an incre-
mental implementation of operatorU . In fact, these restrictions do not sacrifice com-
pleteness. As detailed in the full version, Theorem 2 is still valid after replacing oper-
atorsC andU byD andV, respectively, subject to the extension of assignments by⊗.
Furthermore, any assignmentA produced by strategy(PBV)∗D satisfies the precondi-
tion, head(Π) ∩A⊕ ⊆ T (A), of Theorems 4 and 5.

Finally, let us mention thatnomore++ is implemented in C++ and useslparseas
parser.nomore++ facilitates the easy use of different sets of operators. For instance, if
called with command line option-op ’D:(PBV)*’ , it uses operatorD for choices
and(PBV)∗ for propagation. One can also determine which setO of operators to use
for the lookahead operatorL via command line option-laop . The system is freely
available at [12].

9 Please note thatP retains⊗ when propagating from⊗. Also, a bodyb cannot be chosen byD
if someh ∈ b+ is in A⊗.



174 Christian Anger, Martin Gebser, Thomas Linke, André Neumann, and Torsten Schaub

HCn
smodels nomore++ nomore++ smodels nomore++ nomore++

(PBVLb)∗D (PBVLbh)∗D (PBVLb)∗D (PBVLbh)∗D

3 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00)
4 2 (0.01) 2 (0.01) 2 (0.00) 5 (0.00) 5 (0.00) 5 (0.00)
5 3 (0.00) 3 (0.00) 3 (0.01) 26 (0.00) 23 (0.02) 23 (0.02)
6 4 (0.01) 4 (0.01) 4 (0.01) 305 (0.02) 119 (0.11) 119 (0.11)
7 30 (0.01) 5 (0.02) 5 (0.02) 4814 (0.38) 719 (0.83) 719 (0.85)
8 8 (0.00) 6 (0.03) 6 (0.03) 86364 (7.29) 5039 (7.40) 5039 (7.60)
9 48 (0.01) 7 (0.05) 7 (0.05) 1864470 (177.91) 40319 (73.94) 40319 (76.09)
10 1107 (0.18) 8 (0.08) 8 (0.08) n/a 362879 (818.73)362879 (842.57)
11 18118 (2.88) 9 (0.13) 9 (0.12) n/a n/a n/a
12 398306 (65.29) 10 (0.19) 10 (0.20) n/a n/a n/a
13 n/a 11 (0.29) 11 (0.30) n/a n/a n/a

Table 1.Experiments forHCn computing (a) one answer set; (b) all answer sets

6 Selected experimental results

Because of space limitations, we confine our listed experiments to selected benchmarks
illustrating the major features ofnomore++. A complete evaluation, including further
ASP solvers, likedlv, assat, and cmodels, can be found at the ASP benchmarking
site [13]. All tests were run on an AMD Athlon 1.4GHz PC with 512MB RAM. As
in the context of [13], a memory limit of 256MB, as well as a time limit of 900s was en-
forced. All results are given in terms of number of choices and seconds (in parentheses),
reflecting the average of 10 runs.

Let us note that, due to the fairly early development state ofnomore++, its base
speed is still inferior to more mature ASP solvers, likesmodelsor dlv. This can for
instance be seen in the results of the “Same Generation” benchmark, wheresmodels
outperformsnomore++roughly by a factor of two (cf. [13]).10 Despite this, the selected
experiments demonstrate the computational value of crucial features ofnomore++and
provide an indication of the prospect of the overall approach.

In all test series, we ransmodels with its (head-based) lookahead. For
a complement, we also give tests fornomore++ with body-based lookahead
L(PBV)(A, body(Π)), abridgedLb. The tests withnomore++’s hybrid lookahead rely
onL⊕,(PBV)(A, body(Π))tL	,(PBV)(A, head(Π)), abbreviated byLhb. For illustrat-
ing nomore++’s support-driven strategy, we give in Table 1 results obtained on classi-
cal Hamiltonian cycle problems on complete graphs (HCn), both for the first and for
all answer sets. Whilenomore++ does not make any wrong choices leading to a lin-
ear performance in Table 1(a),smodelsmakes an exponential number of choices, even
for finding the first answer set.nomore++’s support-driven strategy enforces that rules
are chained in the appropriate way. This is nicely reflected inHCn examples, where
solutions are characterized by unfounded-free sets of rules. We note that, onHCn ex-

10 Other apt benchmarks are “Factoring” and “Schur Numbers” (cf. [13]); in both casessmodels
still outperformsnomore++by an order of magnitude.
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Πn
3

smodels nomore++ nomore++
Πn

4

smodels nomore++ nomore++
(PBVLb)∗D (PBVLbh)∗D (PBVLb)∗D (PBVLbh)∗D

1 5 (0.00) 3 (0.00) 3 (0.00) 1 3 (0.00) 5 (0.00) 3 (0.01)
2 15 (0.00) 4 (0.00) 4 (0.00) 2 6 (0.00) 11 (0.01) 6 (0.01)
3 38 (0.00) 5 (0.01) 5 (0.01) 3 9 (0.00) 43 (0.01) 9 (0.01)
4 137 (0.00) 6 (0.00) 6 (0.00) 4 12 (0.00) 120 (0.03) 12 (0.01)
5 460 (0.01) 7 (0.01) 7 (0.01) 5 15 (0.00) 269 (0.07) 15 (0.01)
6 1447 (0.02) 8 (0.01) 8 (0.01) 6 18 (0.00) 1158 (0.27) 18 (0.01)
7 4738 (0.06) 9 (0.00) 9 (0.01) 7 21 (0.00) 5285 (1.15) 21 (0.02)
8 14725 (0.19) 10 (0.00) 10 (0.01) 8 24 (0.01) 15222 (3.27) 24 (0.02)
9 46230 (0.58) 11 (0.01) 11 (0.01) 9 27 (0.00) 51377 (10.88) 27 (0.02)
10 143283 (1.82) 12 (0.01) 12 (0.01) 10 30 (0.00) 602312 (118.75) 30 (0.03)
11 440234 (5.70) 13 (0.01) 13 (0.01) 11 33 (0.00)3284697 (645.62)33 (0.03)
12 1354823 (17.85) 14 (0.01) 14 (0.01) 12 36 (0.01) n/a 36 (0.03)
13 4147650 (55.63) 15 (0.01) 15 (0.01) 13 39 (0.01) n/a 39 (0.04)
14 12667755 (173.21)16 (0.01) 16 (0.01) 14 42 (0.01) n/a 42 (0.04)
15 38647666 (538.24)17 (0.01) 17 (0.02) 15 45 (0.01) n/a 45 (0.04)
16 n/a 18 (0.01) 18 (0.01) 16 48 (0.01) n/a 48 (0.04)

Table 2.Experiments computing one answer set for (a)Πn
3 ; (b) Πn

4

amples,dlv performs much better regarding time (cf. [13]); the different concept of
“choice points” makes them incomparable in this respect.

The results in Table 2(a) and (b) aim at supportingnomore++’s hybrid lookahead;
they are obtained on (extensions of the) lookahead examplesΠn

3 andΠn
4 from Figure 1.

The exact programs as well as additional measurements, like those for computing all
answer sets, can be found at [12]. We see that a hybrid approach is superior to both
kinds of uniform lookahead.smodelsemploys a head-based lookahead, leading to a
good performance on examplesΠn

4 , yet a bad one onΠn
3 . The converse is true when

restrictingnomore++ to lookahead on bodies only.nomore++ with hybrid lookahead
performs choice-point-optimal on both types of examples. Also, a comparison of the
two nomore++ variants shows that a hybrid lookahead does not lead to any computa-
tional overhead. Note that these examples are designed to show the effect of lookahead.
Depending on heuristics, a better performance may be obtainable without lookahead.
Note thatdlv performs worse than eithersmodelsor nomore++on some of theΠn

4 and
Πn

3 benchmarks.11

7 Discussion

We have presented a new ASP solver, along with its underlying theory, design and
some experimental results. Its distinguishing features are (i) the extended concept of an

11 dlv handles examples of formΠn
4 only up ton = 8 (computing one answer set) andΠn

3

examples up ton = 11 (computing all answer sets; see [12] for details). Also,nomore++
outperformsdlv on some other relevant benchmarks, such as “Schur Numbers”, by one order
of magnitude (see [13]).
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assignment, including atoms as well as bodies, (ii) the more powerful lookahead oper-
ation, and (iii) its support-driven strategy. We draw from previous work on thenoMoRe
system [5], whose methodology for answer set computation is based on “coloring” the
rule dependency graph (RDG) of a program. It therefore pursues a rule-based approach,
which amounts to restricting the domain of assignments tobody(Π). The functionality
of noMoRewas described in [9] by graph-theoretical operators similar toP, U , andC.
nomore++’s operators for backward propagation (B) and lookahead (L) have been pre-
sented here for the first time. In general, operator-based specifications facilitate formal
comparisons between techniques used by different ASP solvers. Operators capturing
propagation indlv are given in [14]. Pruning operators based on Fitting’s [6] and
well-founded semantics [7] are investigated in [15]. The full paper contains a detailed
comparison of these operators.

dlv andsmodelspursue a purely literal-based approach, which boils down to re-
stricting the domain of assignments tohead(Π). Interestingly,smodels’ implementa-
tion relies on a rule-head dependency graph, in which rules and atoms are connected via
pointers. This data structure is more redundant than the body-head dependency graph,
since the number of unique bodies in a program is always less or equal to the num-
ber of rules.12 Moreover,smodelsdoes not take the concept of support into account.
Contrastingly,dlv uses a partly support-driven strategy for selecting choices (so-called
possibly-true literals). Also, dlv uses a truth value “must be true”, which is similar to
⊗. Interestingly, its choice operator assigns either⊕ or ⊗, depending on the support
status of the chosen literal. Our empirical studies show definite prospect ofnomore++
but also reveal an unfledged state of development. A major concern in future work will
be to close the engineering gap to the mature ASP solverssmodelsanddlv.
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