Combining Answer Sets of
Nonmonotonic Logic Programs

Chiaki Sakamaand Katsumi Inoug

! Department of Computer and Communication Sciences
Wakayama University, Sakaedani, Wakayama 640-8510, Japan
sakama@sys.wakayama-u.ac.jp
2 National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
ki@nii.ac.jp

Abstract. This paper studies compositional semantics of honmonotonic logic
programs. We suppose the answer set semantics of extended disjunctive programs
and consider the following problem. Given two programsand P, which have

the sets of answer setdS(P;) and AS(P,), respectively; find a prograr®

which has answer sets as minimal s€ts) T for S from AS(P1) andT from
AS(P2). The program? combines answer sets ¢f, and P, and provides a
compositional semantics of two programs. Such program composition has appli-
cation to coordinating knowledge bases in multi-agent environments. We provide
methods for computing program composition and discuss their properties.

1 Introduction

Combining knowledge of different information sources is a central topic in multi-agent
systems. In those environments, different agents generally have different knowledge and
belief, then coordination among agents is necessary to form acceptable agreements. In
computational logic, knowledge and belief of an agent are represented by a set of for-
mulas. Combining multiple knowledge bases is then formulated as the problem of com-
posing different theories. In multi-agent environments, individual agents are supposed
to have incomplete information. Since theories including incomplete information are
nonmonotonigcit is important and meaningful to develop a framework of composing
nonmonotonic theories.

To see the problem, suppose the following scenario: there is a trouble in a sys-
tem which consists of three components co, andcs. After some diagnoses, an ex-
pert £y concludes that the trouble would be caused by eithasr co. On the other
hand, another expeff; concludes that the trouble would be caused by eitheor
c3. E1 (resp.FE>) has no knowledge on the componept(resp.c;). Two experts’ di-
agnoses are then encoded as the following logic progrdns= {c;; c2 < } and
E; = {c2; ¢35 < }, where; represents disjunction. By merging two programs, the
programE; U E, has twoanswer set§c.} and{c;, cs}. The first one is the common
solution between two experts, while the second one is obtained by cooperation. Thus,
two solutions have different grounds and would be acceptable to each expert. The story
goes on:E; considers that the possible cause is eitheur ¢, but he knows that; is
older and more likely to disorder. Similarly, resolves the possible cause into either

Combining Answer Sets of Nonmonotonic Logic Programs 43

¢ Or c3, but she empirically knows that is fragile and more likely to cause the trou-
ble. Two experts then modify their diagnosesfs= {c¢; <« notca, c¢o «— —cy}
andE, = {co <« notcs, c¢3 < —c2}, Wherenot representsiegation as failure

After the madification F{ is read asc; is considered a cause if there is no evidence of
a2, andey will not become a cause unlessis explicitly proved to be falseZ), is read

in a similar way. Merging two programs, howevér, U E) has the single answer set
{c2}, which reflects the result of diagnosis i} but does not refleck;. When two
experts are equally reliable, the result might be unsatisfactory. Infgqgputs weight

on ¢, relative tocy and E] puts weight onc relative toc,. After integrating these
diagnoses, there is no reason to conclagas the plausible conclusion. The problem

is explained as followsz; in Eq andcs in Ef are bothdefaultconsequences derived
from incomplete information in each program. However, simple merging has the effect
of preferring ¢, to ¢; as the former is included in relatively lower stratum than the lat-
ter. In logic programming consequences derived from lower stratum are preferred in a
single program, but the principle is not necessarily applied to the case of combining
different programs. As observed in the above example, the local prefereB¢emz),

does not necessarily imply the global preferenc&jru Ej.

Thus, composition of nonmonotonic theories is not achieved by simply merging
them. The problem is then how to build a compositional semantics of nonmonotonic
theories. In this paper, we consider compositioaxiénded disjunctive programsder
the answer set semanti¢s2]. An answer set is a set of literals which corresponds to
a belief set being built by a rational reasoner on the basis of a program [2]. A program
generally has multiple answer sets, and different agents have different collections of
answer sets in general. We then capture composition of two programs as the problem of
building a new program which combines answer sets of the original programs. Formally,
the problems considered in this paper are described as follows:

Given : two programsP; and P;

Find: a program@ satisfying AS(Q) = min(AS(P;) ¥ AS(P,)) where AS(P)
represents the set of answer sets of a progPaand AS (P)WAS(P;) = { SUT |
S e AS(Py) andT € AS(P,)},

wheremin(X) = {Y € X | -3Z € X s.t. Z C Y }. The programy satisfying

the above condition is called @mpositionof P, and P,. The result of composition
combines answer sets of two programs, which has the effect of amalgamating the orig-
inal belief of each agent. We develop methods for constructing a program having the
compositional semantics.

The rest of this paper is organized as follows. Section 2 introduces basic notions
used in this paper. Section 3 presents compositional semantics and its technical prop-
erties. Section 4 provides methods for building programs which reflect compositional
semantics. Section 5 addresses permissible composition for multi-agent coordination.
Section 6 discusses related issues and Section 7 summarizes the paper.

2 Preliminaries

In this paper, we suppose an agent that has a knowledge base written in logic program-
ming.

44 Sakama and Inoue

A programconsidered in this paper is antended disjunctive progra(gEDP) which
is a set ofrules of the form:

Ly;--3 Ly « Liyq,..., Ly, notLyyg1,...,notL, (n>m>12>0)

where each; is a positive/negative literal, i.e4 or — A for an atomA, andnot is nega-
tion as failure(NAF). not L is called anNAF-literal. The symbol ¥’ represents dis-
junction. The left-hand side of the rule is thead and the right-hand side is thedy
For each rule- of the above formhead(r), body™ (r) andbody~(r) denote the sets
of literals {L1,...,L;}, {Li41,...,Lm}, and{L,41,...,L,}, respectively. Also,
not_body~ (r) denotes the set of NAF-literals.ot L, 1, ..., not L, }. A disjunction
of literals and a conjunction of (NAF-)literals in a rule are identified with its correspond-
ing sets of literals. A rule is often written asiead(r) « body™ (r), not_body~ (r) or
head(r) « body(r) wherebody(r) = body™(r) U not_body~(r). A rule r is dis-
junctiveif head(r) contains more than one literal. A ruteis anintegrity constraint
if head(r) = 0; andr is afactif body(r) = 0. A program is arextended logic pro-
gram(ELP) if it contains no disjunctive rule. A programhAF-freeif no rule contains
NAF-literals. A program with variables is semantically identified with its ground in-
stantiation, and we handle propositional and ground programs only.

The semantics of EDPs is given by thieswer set semanti¢$2]. Let Lit be the set
of all ground literals in the language of a program. A SéC Lit) satisfiesa ground
rule r if body™ (r) C S andbody~ (r) NS = @ imply head(r) NS # 0. In particular,
S satisfies a ground integrity constrainwith head(r) = 0 if either body™(r) € S
or body=(r) N S # 0. S satisfies a ground prograi if S satisfies every rule in
P. Let P be an NAF-free EDP. Then, a s6{C Lit) is ananswer seof P if S is
a minimal set such that (iy satisfies every rule from the ground instantiationftf
and (ii) if S contains a pair of complementary literdlsand—L, S = Lit. Next, let
P be any EDP and C Lit. For every ruler in the ground instantiation oP, the
rule head(r) NS « body™ (r) is included in thereduct P if body™*(r) C S and
body~(r) NS = (. Then,S is ananswer sebf P if S is an answer set otP.
Remark: The definition of a reduct presented above is different from the original one
in [12]. In [12], the rulehead(r) « body™(r) is included in the reducP® (called
Gelfond-Lifschitz reduction) ibody~(r) NS = (. A similar but different definition
of reduct is in [11], where the rulkead(r) « body™(r) is included in the reduct if
body™*(r) € S andbody~(r) N S = 0. Thus, disjunctive heads remain unchanged in
the definition of [11].

Our reduction imposes additional conditions, but two reductions produce the same
answer sets of EDPs.

Proposition 1 For any EDPP, S is an answer set ofP iff S is an answer set aP*.

Proof. If S is an answer set oP, it is a minimal set satisfying every rule iR®.
For any ruler in 5P\ P®, it holds body™ (r) C S, (head(r) « body*(r)) € P
and (ead(r) N S « body™*(r)) € °P. As S satisfiesP®, body™(r) C S implies
head(r) N S # 0. So, S satisfies’P. Assume that there is a minimal st c S
satisfying every rule ifP. Any ruler in PS5\ P satisfies either (&ody ™ () Z S or (b)
body™ (r) C S, (head(r) « body™*(r)) € P¥ and qead(r) N S « body™(r)) € °P.

Combining Answer Sets of Nonmonotonic Logic Programs 45

In case of (@)pody™(r) € S impliesbody™(r) € T. Then,T satisfiesr. In case

of (b), asT satisfies®P, body™(r) C T impliesT N (head(r) N S) # 0, thereby

T N head(r) # 0. Thus, in each casg satisfies every rule it?*. This contradicts the

fact thatS is a minimal set satisfying?®. Then,S is also a minimal set satisfying every

rule in °P. Hence,S is an answer set dP. The converse is shown in a similar manner.
O

Example 1.Let P be the program:
P;q<, q<p, T notp.
ForS = {q,r}, P° becomes
p;q<—, qg<<=p, T
while °P becomes
q <, T .
Each reduct produces the same answerSsetlote that{p, ¢} does not become an
answer set of°.

The new reducfP has the effect of (i) reducing any rule i that is irrelevant
to constructingS, and (ii) eliminating any disjunct in the head of a rule that is not a
consequence i¥. For technical reasons, we use the rediietfor computing answer
sets ofP.

A program has none, one, or multiple answer sets in general. The set of all answer
sets ofP is written asAS(P). Every element indS(P) is minimal i.e.,S C T implies
T C S foranyS andT in AS(P). A program having a single answer set is called
categorical[2]. Categorical programs include important classes of programs such as
definite programsstratified programsandcall-consistent programs£very NAF-free
ELP has a single answer set. An answer sebissistentf it is not Lit. A programP is
consistentf it has a consistent answer set; otherwiBds inconsistentAn inconsistent
program has either no answer set or the single answéeriset

A literal L is a consequence afedulous reasoningn a programpP (written as
L € crd(P)) if Lisincluded in some answer set Bf A literal L is a consequence of
skeptical reasoningn P (written asL € skp(P)) if L is included in every answer set
of P. Clearly,skp(P) C crd(P) for any consistent programf.

3 Combining Answer Sets

In this section, we introduce a compositional semantics of programs. Throughout the
paper, different programs are assumed to have the same underlying language with a
fixed interpretation.

Let.S andT be two sets of literals. Then, define

SuT, if SUT is consistent

ST = {Lit, otherwise.

For two collectionsS and7 of sets, define

ST ={SwT|SeSandT €T }.

46 Sakama and Inoue

Definition 1. Let P, and P, be two consistent programs. A prograghis called a
compositiorof P, and P, if it satisfies the condition

AS(Q) = min(AS(P) W AS(P,))
wheremin(X)={Y e X | -3Z e Xst.ZCY}.

The setAS(Q) is called thecompositional semantiasf P, and P,. By the defi-
nition, the compositional semantics is defined as the collection of minimal sets which
are obtained by combining answer sets of the original programs. Note that the opera-
tion min(-) has the effect of making every elementdd (@) incomparable (under set
inclusion).

Example 2.Let AS(Py) = {{p},{¢}} and AS(P>) = {{p}, {r}}. Then, the compo-
sitional semantics becomesS(Q) = { {p},{q, 7} }.

Note that we do not consider composition of inconsistent programs, because such
composition appears meaningless and trivial. So in program composition consistent
programs are handled hereafter.

Proposition 2 Let P; and P, be two consistent programs, aigla result of composi-
tion. Then, for anys € AS(Q), there isT € AS(F;) fori = 1,2 such thatl' C S.

Proof. If @ is consistent, for anyy € AS(Q) there existsI' € AS(P;) andT” €
AS(P;) such thatS = T UT’ andT U T is consistent. Theri’ C S and7’ C S
hold. Else ifQ is inconsistentAS(Q) = {Lit}. Then,T' C Lit andT” C Lit for any
T € AS(Py) and anyT” € AS(P). O

Proposition 2 presents that every answer set in the compositional semantics extends
some answer sets of the original programs. On the other hand, the original programs
may have an answer set which does not have its extension in their compositional se-
mantics.

Example 3.Let AS(P1) = {{p, ¢} } and AS(P2) = {{p}, {q,r}}. The compositional
semantics o, and P, becomesAS(Q) = {{p, q¢}} which extendgp, ¢} of P, and
{p} of P, but does not extenfl;, r} of Ps.

In the above examplep, ¢} absorbs{p} and remains as a result of composition.
Consequently, the s€p, q, r}, which combineqp, ¢} of P, and{q, r} of P,, becomes
non-minimal and is excluded from the result of composition.

Such cases are formally stated as follows.

Definition 2. Let P, and P, be two consistent programs, a€da result of composition.
WhenAS(Q) = AS(Py), P, absorbspP;.

In Example 3,P; absorbsP;,. If one program absorbs another program, the com-
positional semantics coincides with one of the original programs. The next proposition
characterizes situations in which absorption happens.

Combining Answer Sets of Nonmonotonic Logic Programs 47

Proposition 3 Let P, and P, be two consistent programs, argl a result of compo-
sition. Then,P; absorbsP; iff for any S € AS(P,), there isT € AS(P») such that
TCS.

Proof. For anyS € AS(P;), suppose that there B € AS(P,) such thatl" C S.
AsSUT =S, AS(P1) C AS(Q). Suppose an§” € AS(Pz) such thatl” ¢ S for
anyS € AS(Py). Then,S € SUT’. SinceS € AS(Q), SUT' ¢ AS(Q). Thus,
AS(Q)\ AS(Py) = 0. Hence AS(Q) = AS(P;). Conversely, ifAS(Q) = AS(P),
forany S € AS(P,) there isT € AS(P,) suchthatS = SUT. ThenT C S. O

Skeptical/credulous inference in compositional semantics has the following proper-
ties.

Proposition 4 Let P; and P, be two consistent programs, aKigla result of composi-
tion. WhenQ is consistent, the following relations hold.

1. crd(Q) C crd(Py) U crd(Ps).
2. skp(Q) = skp(P1) U skp(P2).

Proof. (1) Any literal included in a consistent answer $ete AS(Q) is either in-
cluded in an answer sét € AS(P;) or included in an answer s& € AS(P). (2) If
any literal L is included in every answer sgtin AS(P;) or included in every answer
setT in AS(P,), itis included in everyS U T' in AS(Q). Conversely, if any literalL
is included in every consistent answer &ein AS(Q), L is included in every mini-
mal setS U T for someS € AS(P;) andT € AS(P»). Supposel. € S and there
is S’ € AS(Py) such thatL ¢ S'. If there isT' € AS(P,) such thatl. ¢ T’, then
L ¢ S"UT sothereid” € AS(Q) suchthatl ¢ V C S"UT’. Contradiction. Hence,
L € T foreveryT € AS(P). O

Thus, if the compositional semantics is consistent, it combines skeptical conse-
guences of; and P, and any information included in an answer sef)dfias its origin
in an answer set aP; or P,. The above relations do not hold whénis inconsistent.

Example 4.Let AS(P,) = {{p,a}, {p,b}} and AS(P2) = {{-p,a}, {-p,b}} where
crd(Pr) = {p,a,b}, skp(P) = {p}, crd(Py) = {-p,a,b}, andskp(P) = {-p}.
The compositional semantics Bf and P, becomesAS(Q) = { Lit } wherecrd(Q) =
skp(Q) = Lit.

As observed in the above example, the result of composition may become incon-
sistent even if the original programs are consistent. WH&H(Q) has no consistent
answer set, we consider that program composition fails. A necessary and sufficient con-
dition to have a successful program composition is as follows.

Proposition 5 Let P; and P, be consistent programs, ar@ a result of composition.
Then,Q is consistent iff there ar& € AS(P;) andT € AS(P-) such thatS U T is
consistent.

3 This example is provided by an anonymous reviewer.

48 Sakama and Inoue

Proof. @ is consistent iff there is a consistent setU T in AS(Py) W AS(P,) for
S € AS(Py) andT € AS(P2). Hence, the result follows. O

In program composition, the problem of interest is the case where one program does
not absorb the other and the result of composition is consistent. In the next section, we
present methods for computing program composition.

4 Composing Programs

In this section, every program is supposed to have a finite number of answer sets. We
first introduce an additional notation used in this section. Given progfams., Py,
define

Pl ; ... ; Pk p—
{head(r1); - ; head(ry) < body(r1),...,body(ry) | r; € P, (1 <i<k)}.

Definition 3. Let P, andP, be two consistent programs such t#(P;) = { S1,...,Sn }
andAS(Pz) ={Ti,...,T, }. Then, define

PLOP,=R(5,T1); - ; R(Sm,Tn)

whereR(S,T) = °P, UTP, andR(S;,Th), - .., R(Sm, T,) is any enumeration of the
R(S;,T;j)sfor S; € AS(Py) (i=1,...,m)andT; € AS(P;) (j=1,...,n).

R(S,T) merges every NAF-free rule which contributes to the construction of an
answer sef5 of P, andT of P,. Those rules are then disjunctively combined for any
S; € AS(Py) and for anyT; € AS(P») in every possible way. By the definitiof; ©
P, is computed in tim& (| Py | x |P| x [AS(P1)| x |AS(P2)|), where| P| represents
the number of rules it® and|.AS(P)| represents the number of answer set$ofn
particular, if P, and P, respectively have the single answer g&§(P;) = {S} and
AS(Py) = {T}, it becomesP, © P, = °P; UTP,.

The programP; © P, generally contains useless or redundant literals/rules, and
the following program transformations are useful to simplify the program: (i) Delete a
rule r from a program ifiead(r) N body™ (r) # O (elimination of tautologiesTAUT);

(i) Delete a ruler from a program if there is another rutéin the program such that
head(r") C head(r) andbody(r’') C body(r) (elimination of non-minimal ruleNON-
MIN); (iii) A disjunction (L; L) appearing irhead(r) is merged intd., and a conjunc-
tion (L, L) appearing irbody(r) is merged intd. (merging duplicated literatDUPL).
These program transformations all preserve the answer sets of an EDP [4].

Example 5.Consider two programs:

Pr: pe«motq, q< notp, s<p,

P,: p«notr, r« notp,

Combining Answer Sets of Nonmonotonic Logic Programs 49

where AS(Py) = {{p, s}, {q}} and AS(P) = {{p},{r}}. There are fouRR(S,T)’s
such that

R({p,s},{p}): p, s<np,

R({p,st,{r}): p—, s<p, 1,
R({g},{p}): g, p<+,
R({g},{r}): g, 1.

Then,P; ® P, contains the following seven rules (after applying DUPL):

Wpsqg—, Qp;r—, @)p;q:ir—, (4)q;s—np,
(b)gir;s—p, (6)p;q:is—p, (T)p;r;s—p.

Further, rules (3), (5), (6), and (7) are eliminated by NONMIN. Consequently, the sim-
plified program becomes

P;q< P;T< (;85< D

In the resulting program, the first rute ¢ < corresponds to the rulgs«< not q
andq < notp in P;. The second rule; » «— corresponds to the rules «— notr
andr < notpin P,. On the other hand, one might wonder the effec of the head
of the third ruleq; s — p. Without g, however, the sefp, ¢}, which is obtained by
combining{q} € AS(P1) and{p} € AS(P,), does not become an answer set of the
resulting program.

The operator> has the following properties.

Proposition 6 The operatior® is commutative and associative.

Proof. The commutative lawP; ©® P, = P, @ P; is straightforward. To see the
associative law, bothP; ® P,) ® P; andP; @ (P, ® Ps) consist of rules of the form:

head(r1); -+ - ; head(ry) < body(ri),...,body(ry) forr; € R(S,T,U) (1 <i <
k) whereR(S,T,U) = °P, UTP, UUP; for any S € AS(P,), T € AS(P,), and
UEAS(Pg).HenCE,(Pl(DPQ)@Pg:P1®(P2®P3). O

Now we show that the operatar computes a composition @f, and P.

Lemma 7 Let P, and P, be two consistent programs, arfl € AS(P;) andT €
AS(P). Then,S U T is an answer set ofP; U TP, if P, U TP, is consistent.

Proof. S is a minimal set satisfyingP, andT is a minimal set satisfyingP;. Since
body(r) C S andhead(r) C S for anyr € “P; andbody(r') C T andhead(r') C T
for anyr’ € TP,, S U T satisfiesP, U TP,. Suppose that there & C T such that
SUT' satisfies’P, UTP,. ForanyL € T\T',if L ¢ S, T’ satisfies’ P,. But this cannot
happen, sinc& is a minimal set satisfyingP,. Then,L € S, therebySUT = SUT".
Thus, S U T is a minimal set satisfyingP; U 7P,. As °P, U TP, is NAF-free and
consistentS U T becomes an answer set of it. a

Lemma 8 If U is a minimal set satisfyingR(S1, 71) ; R(S2,T2)), U is a minimal set
satisfyingR(S1,T1) or R(S2,T5).

50 Sakama and Inoue

Proof. If U does not satisfy neithe® (S, T1) nor R(S2, T»), there isr in R(Sy,T})
such thatody(r) C U andhead(r) N U = (); and there is’ in R(S2,T») such that
body(r’") C U andhead(r')NU = 0. Then,U does not satisfy the rufecad(r); head(r’)
body(r), body(r') in (R(S1,T1) ; R(S2,T2)). Contradiction. Therl/ satisfiesR(S1, T1)
or R(S2,T»). Suppose thdf satisfiesR(S1,T1). IfthereisV C U satisfyingR(S1, T1),
for any ruler € R(S1,Ty) it holdsbody(r) € V or head(r) NV # (. Then,V sat-
isfies every rulehead(r); head(r’) «— body(r),body(r') in (R(S1,T1); R(S2,Ts))

for anyr’ € R(Ss,T»). This contradicts the fact thdf is a minimal set satisfying
(R(S1,T1) 5 R(S2,T2)). 0

Lemma9 (R(S1,T1); R(S2,T>)) is consistent iff eitheR(S1,T1) or R(S2,T?) is
consistent.

Proof. Suppose thaf?(S;,T1) has a consistent answer dét Then, for anyr €

R(S1,T1), head(r)NU # D orbody(r) € U. Thus,U satisfies every rulgead(r); head(r’) «—
body(r), body(r’')in (R(S1,T1); R(S2,T»))foranyr’ € R(Sq,T>). Hence(R(S1,T1); R(S2,Ts))
is consistent. Conversely, ¥ is a consistent answer set@(S1,71) ; R(S2,132)), V

is a minimal set satisfying?(S1,71) or R(S2,T») by Lemma 8. Then, the result fol-

lows. O

Theorem 10. Let P, and P, be two consistent programs. ThedS(P, ©® P,) =

Proof. LetU € min(AS(P) W AS(FP2)). (i) If U = Lit, S U T is inconsistent
for any S € AS(P;) and for anyT' € AS(FP.) (Proposition 5). ThenR(S,T) is
inconsistent for any € AS(P;) and for anyT’ € AS(P,), SOAS(P, © Py) = {Lit}
by Lemma 9. (i) Else ifU # Lit, there isS € AS(P;) andT € AS(Ps) such that
U = SUT is consistent. By Lemma 7] is an answer set a®(S, 7). Then,U satisfies
P; ® P,. Suppose that there is a minimal $étC U which satisfiesP?; ® Ps. In this
caseV is a minimal set satisfying sonf@(S’,7") in P, ® P, (Lemma 8). It then holds
thatV = S’ U T’ for someS’ € AS(Py) andT’ € AS(P.) (by Lemma 7). Since
Ve AS(P) W AS(P2) andV C U, U ¢ min(AS(P1) ¥ AS(P,)). Contradiction.
Thus,U is a minimal set satisfyin@, © P, soU € AS(P, © P,).

Conversely, leU € AS(P; © Ps). (i) If U = Lit, R(S,T) is inconsistent for any
S € AS(Py) and for anyT' € AS(Pz) (by Lemma 9). Then$ U T' is inconsistent for
anyS € AS(P;) and foranyl’ € AS(P), therebymin(AS(P)WAS(Ps)) = {Lit}.
(i) Else if U # Lit, U is a consistent minimal set satisfying solR€S, T) in P, ©® P,
(Lemma 8). It then hold$/ = S UT for someS € AS(P;) andT € AS(P.)
(by Lemma 7). Thus{/ € AS(P;) W AS(P,). Suppose that there is a minimal set
V C U such thatV = S" U T’ for someS’ € AS(Py) andT’ € AS(P,). In this
caseV € min(AS(Py) W AS(P,)), andV becomes an answer setBf © P, by the
proof presented above. This contradicts the assumptiéh ©f AS(P; ® P;). Hence,

Example 6.In Example 5, AS(P, ® P») = {{p,q}, {p, s}, {¢,r}}, which coincides
with the result of composition.

Combining Answer Sets of Nonmonotonic Logic Programs 51

Two programsP; and P, aremergedby taking their unionP; U P,. Program com-
position and merging bring syntactically and semantically different results in general,
but there are some relations for special cases.

Proposition 11 For two consistent NAF-free progran#y and P, if P, U P; is consis-
tent, P, ® P, is consistent.

Proof. If P,UP, is consistent, there &P, for S € AS(P;) and”P; for T € AS(P»)
such that’P; U TP, is consistent. Then$ U T is consistent. By Proposition 5 and
Theorem 10P; ® P, is consistent. O

The converse of Proposition 11 does not hold in general.

Example7.Let P, = {p <} andP, = {«< p}. Then,P, ® P, = {p <}, but
P; U P, has no answer set.

In the general case, there is no relation for the “easiness” of inconsistency arising
between composition and merging.

Example 8.Let P, = {p «— not—p} andP, = {—-p < notp}. Then,P, U P; is
consistent, buP, ® P, = {p <« , —-p <} isinconsistent. On the other hand, let
Py ={p«—notq, q— notr}andPy = {r < notp}. ThenP;UP,isinconsistent,
butP; © P, = {q; r < } is consistent.

For extended logic programs, the following syntactical and semantical relations
hold.

Proposition 12 For two consistent NAF-free ELR3 and P, P, © P, C Py U Ps.

Proof. An NAF-free ELP has the single answer set. (P,) = {S} and AS(P,) =
{T}. Then,P, \ °P, = {r | r € P, andbody(r) € S}, and®P; \ P, = {). This is
also the case faP,. SinceP; ® P, = °P; U TR,, the result follows. O

Proposition 13 Let P, and P, be two consistent NAF-free ELPs. ThéhC V' holds
for the answer set/ of P, ® P, and the answer sét of P, U P,.

Proof. Let AS(P) = {S} andAS(P;) = {T}. Then, AS(P, © P,) = {SUT}.If
P, U Py isinconsistentAS (P, U Py) = {Lit}. So,SUT C Lit. Else if P, U P, has
the consistent answer sgt S U T is consistent by Proposition 11. Thehu T C V
by Proposition 12. ad

Example 9.Let P, = {p «— ¢} andP, = {q < }. Then,P, © P, = {¢ <« } and
PLuUP, = {p<—q, q<—} SoP OB gPlngand{q} GAS(P1®P2) is a
subset of{p, ¢} € AS(P; U P).

52 Sakama and Inoue
5 Permissible Composition

In Section 3, we introduced the compositional semantics of two programs and Section 4
provided a method of composing programs. In this section, we argue permissible con-
ditions for the compositional semantics in multi-agent coordination. First, we introduce
a criterion for selecting answer sets in the compositional semantics.

Definition 4. Let P, and P, be two consistent programs, agda result of composition.
Then, any answer sét € AS(Q) is conservativef it satisfies every rule irP; U Ps.

Example 10.Recall two program#; and P, in Example 5:

P: p—mnotq, q<«< notp, s+ p,

Py: p—mnotr, r <« notp,

whereAS(Py) = {{p, s}, {q}} and AS(P,) = {{p}, {r}}. The compositional seman-
tics of P, and P, is AS(Q) = {{p, ¢}, {p, s}, {¢,r}}. Among them{p, s} and{q,r}
satisfy every rule inP; U P», so they are conservative. Note tHat ¢} does not satisfy
the third rule ofP;.

Conservative answer sets are acceptable to each agent because they satisfy the orig-
inal program of each agent. Unfortunately, conservative answer sets do not always exist
in the compositional semantics. For instance, in Example 19 ifontains constraints
+— s and+« ¢, no conservative answer set exists. Existence of no conservative an-
swer set is not a serious flaw in the compositional semantics, however. In fact, different
agents have different beliefs in the multi-agent environment, and it may happen that one
agent must give up some original belief to reach a reasonable compromise. On the other
hand, an agent may possess s@aesistenteliefs that cannot be abandoned. Those
persistent beliefs are retained by each agent in coordination. Formally, those beliefs in
a programpP are distinguished aBB C P whereP B is the set of rules that should be
satisfied by the compositional semantics. In this setting, a variant of the compositional
semantics is defined as follows.

Definition 5. Let P, and P, be two consistent programs, aitd3; and P B, their per-
sistent beliefs, respectively. A prograthis called gpermissible compositioof P; and
P, if it satisfies the condition

AS(2) ={S | S € min(AS(P1) W AS(P.)) andS satisfiesPB; U PBs}.

The setdS(1?) is called thepermissible compositional semantafsP; andP,. Any
answer set indS(£2) is called apermissible answer seBy the definition, permissible
composition adds an extra condition to the compositional semantics of Definition 1.
The permissible compositional semantics reduces to the compositional semantics when
PB; U PBy, = (. In particular, conservative answer sets are permissible answer sets
with PB; U PBy = P; U P,. Every permissible answer set satisfies persistent beliefs
of each agent, and extends some answer sets of an agent by additional information of
another agent.

Combining Answer Sets of Nonmonotonic Logic Programs 53

Program composition that reflects the permissible compositional semantics is achieved
by introducing every rule ilPB; U PB, as a constraint té>, © P,. Given a program
P, let IC(P) = {« body(r), not_head(r) | r € P} wherenot_head(r) is the
conjunction of NAF-literals not L1, . ..,not L; } for head(r) = { L1,...,L; }.

Theorem 14. Let P, and P, be consistent programs, and a result of permissible
composition. ThendS(f2) = AS((P, © P,) UIC(PBy) U IC(PBzy)).

Proof. By the definition ofAS(£2) and the result of Theorem 18, AS(£2) iff S'is
an answer set aP; ® P, and satisfie?B; U PB,

iff Sis an answer set d? © P, and satisfie§C(PB;) U IC(PBs)

iff S e AS((P,® P,)UIC(PB,)UIC(PBy)). O

Example 11.Consider two program#, and P, in Example 10 wheré’B; = {s «
p}andPBy = 0. Then,(P, ® P;) UIC(PB;)UIC(PBy) becomes

Piq<, pP;T, ;S P, <« D, Nnots,

which has two permissible answer séts s} and{q, r}.

6 Discussion

A lot of studies exist for compositional semantics of logic programs (see [6, 9] for ex-
cellent surveys). A semantics @mpositionalif the meaning of a program can be
obtained from the meaning of its components. The union of programs is the simplest
composition between programs. However, semantics of logic programs is not compo-
sitional with respect to the union of programs even for definite logic programs. For
instance, two definite logic progranty = {p < ¢ } andP, = { ¢ < } have the least
Herbrand model and{q}, respectively. But the least Herbrand model of the program
union P; U P, is not obtained by the composition @fand{q}. To solve the problem,

a number of different compositional semantics have been proposed in the literature [6].
In composing nonmonotonic logic programs, difficulty of the problem is understood as:
“non-monotonic reasoning and compositionality are intuitively orthogonal issues that
do not seem easy to be reconciled. Indeed the semantics for extended logic programs
are typically non-compositional w.r.t. program unid6]. With this reason, studies for
compositional semantics of nonmonotonic logic programs mainly concern with the is-
sue of devising a compositional semantics that can accommodate (restricted) nonmono-
tonicity, or imposing syntactic conditions on programs to be compositional [5, 7, 8, 10,
17].

In this respect, our approach is different from those previous studies. Our primary
interest is not simply merging two programs but building a new program that combines
answer sets of the original programs. One may wonder the practical value of such com-
bination of answer sets aside from original programs. For instance, given two programs
P, ={-p<«—notp}andP, = {p < }, one would consider the meaning of program
composition as the answer det} of P, U P». By contrast, our compositional seman-
tics P, ® P, becomes inconsistent, i.e., combination{efp} and{p} producesLit.

To justify our position, suppose the following situation: the ageéntloes not believe

54 Sakama and Inoue

the existence of an alien unless its existence is proved, while the Bgdmlieves the
existence of aliens with no doubt. The situation is encoded by the above program. Then,
what conclusion should be drawn after combining these conflicting beliefs of agents? If
one simply merges beliefs by program union, the existence of alien is concluded by the
answer sefp}. In our compositional semantics, two beliefs do not coexist thereby con-
tradict. In multi-agent environments, different agents have different levels of beliefs. A
cautious agent might have knowledge in a default form, while an optimistic agent might
have knowledge in a definite form. In this circumstance, it appears careless to simply
merge knowledge from different information sources. As argued in the introduction,
simple merging of different programs does not always reflect the meaning of individ-
ual programs. We then took an approach of retaining belief of each agent and combine
answer sets of different programs. As a result, the compositional semantics maintains
information included in (at least one) answer set of the original programs. In this sense,
our program composition is intended to coordinate agents, rather than to synthesize
a program by its component. Note that program composition should be distinguished
from revisionor update in which one of two information is known more reliable. In

the above example, it is reasonable to acd@ptl P, as a result of revision/update of

P, with P,. Because in this cag®, is considered new information which precedgs

In program compositio”, and P, are supposed to have the same status, so there is no
reason to relyP, over P;.

Baralet al. [1] introduce algorithms for combining logic programs by enforcing sat-
isfaction of integrity constraints. They request that every answer set of a resulting pro-
gram to be a subset of an answer sePgf) P, which is different from our requirement.
Their algorithm is not applicable to unstratified logic programs. The compositional se-
mantics introduced in this paper does not enforce satisfaction of integrity constraints of
original programs. One reason for this is that in nonmonotonic logic programs incon-
sistency may arise aside from integrity constraints. For instance, the integrity constraint
+— p has the same effect as the ryle- p, not ¢ under the answer set semantics. Then,
there seems no reason to handle integrity constraints exceptionally in a program. If de-
sired, however, it is easy to have a variant of program composition satisfying constraints
as(P; © P,) UIC; UIC,, whereIC; (i = 1,2) is the set of integrity constraints in-
cluded inP;. By the introduction of integrity constraints, every answer set which does
not satisfy/C; U IC, is filtered out. This is also realized by a permissible version of
the compositional semantics by puttiity3; = IC, and PB, = IC5. Combination
of propositional theories has also been studied under the nanmesrging[14] or ar-
bitration [15], but they do not handle nonmonotonic theories. Sakama and Inoue [16]
introduce a framework of coordination between logic programs. They study two prob-
lems as follows: given two prograni® and P, (i) find a program@ which has the
set of answer sets such thdS(Q) = AS(P1) U AS(P); and (i) find a progranR
which has the set of answer sets such h&(R) = AS(P;) N AS(P,). A program@
is calledgenerous coordinatioand R is calledrigorous coordinatiorof two programs.

They provide methods of building such programs. Compared with the program com-

position of this paper, generous/rigorous coordination does not change answer sets of
the original programs. That is, generous one collects every answer set of each program,
while rigorous one picks up answer sets that are common between two programs. By

Combining Answer Sets of Nonmonotonic Logic Programs 55

contrast, we combine answer sets of each program in every possible way. The result-
ing program and its compositional semantics are both different from generous/rigorous
coordination. As addressed above, our program composition is also intended to coordi-
nate agents, it would be interesting to investigate relations among those different types
of coordination.

The program composition introduced in Section 4 produces NAF-free EDPs. One
may think this uneasy, because this is the case even for composing ELPs containing no
disjunction. Disjunctive programs are generally harder to compute, so that it is desirable
to have a non-disjunctive program as a result of composing non-disjunctive programs.
Technically, the progranf; © P, is transformed to a non-disjunctive progran®if® P,
is head-cycle-fregi.e., it contains no positive cycle through disjuncts appearing in the
head of a disjunctive rule [3]. [P, ® P, is head-cycle-free, the program is converted
to an ELP by shifting disjuncts in the head of a rule to the body as NAF-literals in
every possible way but leaving one in the head. For instance, the prdgramP; in
Example 5 is converted to the ELRp «— notq, ¢ < notp, p «— notr, r «
notp, q < p, nots, s+« p, notq}.The resulting program has the same answer sets
as the original disjunctive program.

7 Conclusion

This paper has studied a compositional semantics of nonmonotonic logic programs.
Given two programs, we first introduced combination of answer sets as the composi-
tional semantics of those programs. Then, we developed a method of building a program
which reflects the compositional semantics of the original programs. A permissible
composition was also introduced for multi-agent coordination. The proposed frame-
work provides a new compositional semantics of nonmonotonic logic programs, and
serves as a declarative basis for coordination in multi-agent systems. From the view-
point of answer set programming, program composition is considered as a program
development under a specification that requests a program reflecting the meanings of
two or more programs.

The approach taken in this paper requires computing every answer set of programs
before composition. This may often be infeasible when a program possesses an expo-
nential number of answer sets. The same problem arises in computing answer sets by
existing answer set solvers, however. This paper considered compositional semantics as
minimal sets that reflect the meaning of original programs. By contrast, a program may
havenon-minimalanswer sets in the context géneral extended disjunctive programs
which possibly contain NAF in the heads of rules [13]. In this context, the composi-
tional semantics would be defined as a collection of hon-minimal answer sets. These
extensions and variants of compositional semantics will be investigated in future study.

References

1. C.Baral, S. Kraus, and J. Minker. Combining multiple knowledge b3S&& Transactions
of Knowledge and Data Engineering(2):208-220, 1991.

56

10.

11.

12.

13.

14.

15.

16.

17.

Sakama and Inoue

C. Baral and M. Gelfond. Logic programming and knowledge representalmmnal of
Logic Programming19/20:73-148, 1994.

. R. Ben-Eliyahu and R. Dechter. Propositional semantics for disjunctive logic programs.

Annals of Mathematics and Artificial Intelligenck2(1):53-87, 1994.

. S. Brass and J. Dix. Characterizations of the disjunctive stable semantics by partial evalua-

tion. Journal of Logic Programming32(3):207—-228, 1997.

. A. Brogi, S. Contiero, and F. Turini. Programming by combining general logic programs.

Journal of Logic and Computatio®(1):7—-24, 1999.

. A. Brogi. On the semantics of logic program compositiBnogram Development in Com-

putational Logi¢ LNCS 3049, pp. 115-151, Springer, 2004.

. A. Brogi, E. Lamma, P. Mancarella, and P. Mello. A unifying view for logic programming

with nonmonotonic reasoning-heoretical Computer Science84(1):1-59, 1997.

. F. Bry. A compositional semantics for logic programs and deductive datatfasesedings

of the Joint International Conference and Symposium on Logic Programmying53—467,
MIT Press, 1996.

. M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic programmidgurnal of Logic

Programming 19/20:443-502, 1994.

S. Etalle and F. Teusink. A compositional semantics for normal open progPamesedings

of the Joint International Conference and Symposium on Logic Programming68—482,

MIT Press, 1988.

W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic programs: se-
mantics and complexityProceedings of the 9th European Conference on Logics in Artificial
Intelligence LNAI 3229, pp. 200-212, Springer, 2004.

M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing(3/4):365—-385, 1991.

K. Inoue and C. Sakama. Negation as failure in the hdadrnal of Logic Programming
35(1):39-78, 1998.

S. Konieczny and R. PincéRez. On the logic of merging?roceedings of the 6th Interna-
tional Conference on Principles of Knowledge Representation and Reasppirg38—498,
Morgan Kaufmann, 1998.

P. Liberatore and M. Schaerf. Arbitration (or how to merge knowledge bdE&f}. Trans-
actions on Knowledge and Data Engineerib@(1):76-90, 1998.

C. Sakama and K. Inoue. Coordination between logical agdpisceedings of the 5th
International Workshop on Computational Logic in Multi-Agent Systérasture Notes in
Artificial Intelligence, 3487, pp. 161-177, Springer, 2005.

S. Verbaeten, M. Denecker, and D. De. Schreye. Compositionality of normal open logic
programs. Proceedings of the 1997 International Symposium on Logic Programmjmng
371-385, MIT Press, 1997.

