The nomore++ Approach to Answer Set Solving

Christian Anger, Martin Gebser, Thomas Linke, Aadheumann, and Torsten Schaub

Institut fur Informatik, Universiait Potsdam, Postfach 90 03 27, D-14439 Potsdam

Abstract. We present a new answer set solver cafiechore++ along with its
underlying theoretical foundations. A distinguishing feature is that it treats heads
and bodies equitably as computational objects. Apart from its operational foun-
dations, we show how it improves on previous work through its new lookahead
and its support-driven strategy and underpin our claims by selected experimental
results.

1 Introduction

A large part of the success of Answer Set Programming (ASP) is owed to the early
availability of efficient solvers, likemodelg1] anddlv [2]. Since then, many other sys-
tems, sometimes following different approaches, have emerged, amongslsatf3],
cmodeld4], andnoMoR€[5].

We present a new ASP solver, calledmore++, along with its underlying theo-
retical foundationsnomore++pursues a hybrid approach in combining features from
literal-based approaches, likenodelsanddlv, with the rule-based approach of its pre-
decessonoMoRe To this end, it treats heads and bodies equitably as computational
objects. We argue that this approach allows for more effective (in terms of search space
pruning) choices than obtainable when dealing with either heads or bodies only. As a
particular consequence of this, we demonstrate that the resulting lookahead operation
allows for propagating more than previous approaches. Also, we detail a special strat-
egy, keeping the invariant property of being “unfounded-free” and empirically show
that it outperformsmodelon relevant benchmarks. In fact, due to space limitations,
we mainly compare our approach to thasafodelsOur choice is motivated by the fact
that both systems primarily address normal logic programis.addresses the more ex-
pressive class of disjunctive logic programs. Thus, many of its distinguishing features
are oriented to this extension. Alsmodelsandnomore++share the same concept of
“choice points”, on which parts of our experiments rely upon.

The paper is organized as follows. After some preliminary definitions, we start with
a strictly operational specification nbmore++. In fact, its configurable operator-based
design is a salient feature abmore++ Another major feature is its graph-based im-
plementation. For simplicity, however, we give its specification in logic programming
terminology and then describe how easily this is mapped into graph operations. We
then concentrate on two specific features: First, we introsareore++s lookahead
operation and prove that, in terms of propagation, it is more powerful than the ones
encountered ismodelsandnoMoRe Second, we presenbmore++s support-driven

! Unlike smodelsnomore++cannot (yet) handle cardinality and weight constraints.

164 Christian Anger, Martin Gebser, Thomas Linke, Antleumann, and Torsten Schaub

strategy along with further implementation details. Finally, we provide selected experi-
mental results backing up our claims.

2 Background
A logic programis a finite set of rules of the form

pO<_p17"'apm7n0tpm+la"'7n0tpn7 (1)

wheren > m > 0, and eaclp; (0 < i < n) is anatomin some alphabetl. A literal
is an atonyp or its negatiomot p. Forr as in (1), lethead(r) = py be theheadof r
andbody(r) = {p1,-..,Pm, N0t Pmi1,...,not p,} thebodyof r. Given a setX of
literals, letXt ={pe A|pe X}andX~ = {p € A | not p € X}. Forr, we then
getbody ()" = {p1,...,pm} andbody(r)” = {Pmi1, .-, Dn}-

A programlT is calledbasicif body(r)~ = () for all » € II. Thereduct 1T, of IT
relative to a seX of atoms is defined by

IT% = {head(r) — body(r)" | r € IT, body(r)” N X = 0}.

A set X of atoms is closed under a basic prograhif for any » € I1, head(r) € X if
body(r)* C X. Cn(IT) denotes the smallest set of atoms closed under basic program
II. A setX of atoms is aranswer sebf a program/7 if Cn(I1¥) = X.

As an example, consider prograli comprising rules:

r1:a < notb r3:c <« notd)
r9 : b« nota ry . d < notc
We get four answer sets, vifa, c}, {a,d}, {b, c}, and{b, d}.

For a programiI, we write head(IT) = {head(r) | r € I} andbody(II) =
{body(r) | r € IT'}. Given that heads and bodies are our primary objects of interest,
we further extend this notation: Fére head(II), definebody(h) = {body(r) | r €
I, head(r) = h}.

For being able to define assignments in terms of bodies and heads of rules (in con-
trast to arbitrary atoms), we restrict ourselves, without loss of generality, to programs
1T satistying{p | € IT,p € body(r)" U body(r)~} C head(II). That is, every body
atom must occur as the head of some rule. Any program can be transformed into such a
format, starting from the observation that all atoms.ih\ head(II)) are false.

3 Operational specification

To begin with, we give an operational specificatiomoimore++that is based on our
extended concept of assignments. The purpose of this is to provide a firm understand-
ing of the basic operations, which may serve as a basis for formal comparisons with
techniques used kgmodelwor div.

We consider assignments that map heads and bodies in a prégiato {®, ©},
indicating whether a head or body is true or false, respectively. Formally, a (partial)

The nomore++ Approach to Answer Set Solving 165

assignment is a partial mappinty: head(I1) U body(II) — {®,&}. For simplicity,
we often represent such assignments as pdifs A°), whereA® = {z | A(z) = ®}
andA® = {z | A(z) = &}. Wheneverd® N A® # (), thenA is undefined as it is no
mapping. We represent an undefined assignmebbyd (11) U body (1), head (IT) U
body(IT)). For comparing assignmentsand B, we defined C B, if A® C B® and
A® C B€. Also, we defined LI B as(A® U B, A® U B®).

We distinguish two sorts of forward propagatiomiomore++ Head-oriented prop-
agation assigning to a head if one of its associated bodies belong$®aand assign-
ing © whenever all of its bodies are i#°. This is captured b{’;; (A) andT' ;7 (A) in
Definition 1. Body-oriented propagation is based on the conceptgpfortandblock-
age A body is supported if all its positive literals belong #° and it is unsupported
if one of its positive literals is iM®. This is reflected in the definitions ¢f;;(A) and
S (A) below. Analogously, but with roles partly interchangégiy (A) and By (A)
define whether a body Islockedor unblocked respectively.

Definition 1. LetII be alogic program and lefl be a partial assignment éfead (1)U

body(IT).
We define
1. T (A) = {h € head(I) | body(h) N A® # 0};
2. T1r(A) = {h € head(II) | body(h) C A°};
3. Sr(A) ={b € body(Il) | b+ C A®};
4. S1(A) = {b € body(IT) | b+ N A # 0}:;
5. Brr(A) = {b € body(IT) | b~ N A® % 0};
6. B (A) = {b€ body(Il) | b~ C A®}.

We omit the subscripll whenever it is clear from the context. In what follows, we also
adopt this convention for similar concepts without further notice.

With the above sets at hand, we can now speaifynore++s forward propagation
operatorpP.

Definition 2. LetII be alogic program and lefl be a partial assignment éfead (17)U
body(IT).
We define

Pr(A) = A U(T(A) U (S(A) N B(A)), T(A) US(A) U B(A)) .

A head is assigned if it belongs toT'(A), while a body must be supported as well as
unblocked, namely, belong {&(A) N B(A)) in order to be assigned. Conversely, a
body is markeds, whenever it is unsupported or blocked; a heag,sf it is not true,
thatis, inT'(A). As we detail in the full pape amounts to Fitting’s operator [6].

For example, let's appl to Aq = ({body(r1)},0) on I1;:

P(Ao) = A1 = ({a, body(r1)}, 0) by T(Ao)
P(A1) = Az = ({a, body(r1)}, {body(r2)}) by B(A1)

P(Az2) = Az = ({a, body(r1)}, {b, body(r2)}) by T'(As)

2We systematically use over-lining for indicating sets with antonymous contents. For example,
S andS stand for the sets of supported anssupported bodies.

166 Christian Anger, Martin Gebser, Thomas Linke, Antleumann, and Torsten Schaub

Note thatAj; is closed undeP, that is,P(A3) = As.

For describing the saturated result of the combined application of operators, we
need the following definition. Le® be an (often singleton) collection of operators and
let A be a partial assignment. Then, we denot&liythe C-smallest partial assignment
containingA and being closed under all operator€inin the above example, we have
P*(Ag) = As.

For defining backward propagation, we have to look for the inverse. dfor ex-
ample, consider the definition &f(A) and supposé € head(II) N A® whereas
body(h) N A® = (. Hence,h was not “produced” irfl"(A). Yet there must be some
bodyb € body(h) that is eventually assigned, otherwiseh cannot be true. However,
this body can only be determined if all other bodies are already&inThis leads us to
the definition oij*Y(A). Analogously, we can derive the following sets; see full paper
for details®

Definition 3. LetII be alogic program and lefl be a partial assignment éfead (17)U

body(IT).

We define
1. T2 (A) = {b| b € body(h),h € head(IT) N A®, body(h) \ {b} C A®};
2. Thy(A) = {b| b€ body(h), h € head(II) N A®Y;
3. 85 (A) ={h|hebr,be body(Il) N A®};
4.5 (A) = {h | h € b*,b € body(IT) N A° N B(A), b+ \ {h} C A®};
5. B}, (A) ={h|he€b ,bec body(IT)N A° N S(A), b=\ {h} C A°};
6. Bry(A) = {h| heb,be body(Il) N A®Y.

Combining the previous sets yields the following backward propagation opétator

Definition 4. LetII be alogic program and lefl be a partial assignment éfead (17)U
body(IT).
We define

Brr(A) = A U(T*(A) U S?(A) U B°(A), T°(A) US (A) UB(A)) .

Adding the ruleb «— c to programiI; still gives P(A3) = As. However, due to the
fact that head € A5 and thus body{c} € T°(A;3), we additionally get3*(A3) =
Az U ({d,{not c}},{{c}, ¢, {not d}}); hences must be false and must be true.

The next definition elucidates the notion of anfounded sef7] in our context.
Given an assignment, the greatest unfounded set of heads and bodigg,4), is
defined in terms of all still potentially derivable atomslin; (A).

Definition 5. LetII be alogic program and letl be a partial assignment édfead (17)U
body(IT).
We define

Unn(4) = {b € body(IT) | b+ & T (A)} U {h € head(IT) | h ¢ Trn(A))
whereU ;;(A) = Cn((IT \ {r € IT | body(r) € AS})?).

% We use the superscripto indicate sets used in backward propagation.

The nomore++ Approach to Answer Set Solving 167

The setU(A) of potentially derivable atoms is formed by removing all rules whose
body belongs to1®. The resulting subprogram is reduced with respect to the empty set
so that we can compute its (possible) consequences by means@©# thgerator. The
counterpart of/(A) in smodelsknown asatmost amounts to

Cn((IT\ {r | body(r)" N A® # (})A% Nhead(D)y

As bodies are not explicitly representedsmodelsassignments, we have to refer to
atoms here.

Finally, we have the following operatéf for falsifying all elements belonging to
the greatest unfounded set (with respect to a given assignment).

Definition 6. LetII be alogic program and lefl be a partial assignment éfead (17)U
body(IT).
We define
Up(A) =AU (D, UA)) .

Consider progranil,, obtained from/7, by adding rules
rs:e<« nota,notc, rg:e« fonoth, r7:f—e, 3)

and assignmem = (0, {body(rs)}). This is a common situation imomore++, when-
ever bodies are taken to be choices. We then liagd) = Cn((Il, \ {rs})?) =
Cn({a —, b —, c—,d—, e f f—e})={ab,cd}, and thus we obtain
U(A) = (0,{body(rs), e, body(rs), f, body(r7)}). As we detail in the full paper, the
assignmentPU)*((0,?)) amounts to the well-founded semantics/6{7].

Let us compare the previous to propagatiorsimodels Basically, it is based on
two functions, calledatleastandatmost While atleastcomputes deterministic conse-
quences by forward and backward propagatmostdetects unfounded sets. Together
they allow for computing the well-founded semantics [7]. As done in [8], we represent
smodel5sassignments as sets of literals, whekg « means that is false. For brevity,
we have to refer the reader for further formal details to [8]. We mention however that
an inconsistent assignment is representeattsastthrough the set of all literals and
by atmostthrough the empty set.

Theorem 1. Let IT be a logic program. Lef be a partial assignment dfead (1) U
body(IT) and let X be a partial assignment ofead(II) such that(X+, X~) =
(A%, A®). 4

Then, we have the following results.

1. If atleast 7 (X) C atmost(X), then
(@) ifY = atleast(X) and B = (PB)*(A), then

(Y*,Y™) = (B® N head(IT), BS M head (IT)).
(b) if Y = atmost;(X) and B = U(P(A)), then
(Y*,Y™) = (B® M head(IT), BS M head (IT)).
"4 Note that(A® N body(IT), A° N body(IT)) = (0, 0).

168 Christian Anger, Martin Gebser, Thomas Linke, Antleumann, and Torsten Schaub

2. If atmost g (X) C atleast7(X), then
(PBU)*(A) is undefined and vice versa.

The last result shows thabmore++s basic propagation operatios B3, andl{ are
as powerful as those aimodelsThe reasorP is applied once befor® in (1b)is that
initially A assigns no values to bodies in order to be comparaldmtalels

The first differences are encountered when it comes to making choices. stk
els choices are restricted to literalspmore++ generally allows for assigning values
to literals as well as bodies. This leads usitmnore++s choice operato€.

Definition 7. LetII be alogic program and letl be a partial assignment éfead (17)U
body(IT).
We define

1. CH(A) = (AP U {z}, A®) forsomex € (head(IT) U body(II)) \ (A® U A®);
2. C5(A) = (A®, A5 U {z}) forsomer € (head(II) U body(IT)) \ (A® U A®).

Note that the chosen objeetcan be a head or a body.

The possibility of choosing among heads and bodies provides us with great flexibil-
ity. Notably, some choices have a higher information gain than others. On the one hand,
setting a head te yields more information than choosing some body tachéNegat-
ing some head by © implies that all bodies ibody(h) are false (via). Conversely,
choosing a body to be has generally no direct effect on the body’s heads because there
may be alternative rules (i.e. other bodies) sharing the same heads. Also, we normally
gain no information on the constituent literals of the body. On the other hand, assigning
@ to bodies is superior to assignirgto heads. When choosirg for some head, we
are generally unable to determine a corresponding body that justifies this choice and
would then be assigned, too. Unlike this, choosing a body to bBgallows us to infer
the corresponding heads (B). Moreover, assigning to a bodyb implies that every
literal in b is true (byB). The observation that assigningto heads and to bodies,
respectively, subsumes the opposite assignments also fortifirasre++s lookahead
strategy, detailed in Section 4.

Following [9], we characterize the process of answer set formation by a sequence
of assignments.

Theorem 2. Let IT be a logic program and lefl be a total assignment éfead (I7) U
body(IT).

Then,A® N head(IT) is an answer set of! iff there exists a sequen¢el’)o<;<,
of assignments with the following properties:

1. A = (PBU)*((0,0));
2. AL = (PBU)*(C°(A?)) forsomeo € {®, 0} and0 < i < n;
3. A" = A.

The purpose of the intersectio® N head(II) is to filter out the atoms forming an
answer set. Different strategies can be shown to be sound and complete. For instance,
the above result still holds after eliminatifsg For simplicity, we refer to these strategies

by (PBU)*C or (PU)*C, respectively.

The nomore++ Approach to Answer Set Solving 169

4 Lookahead

We have seen thatomore++s basic propagation is as powerful as thasofodelsAn

effective way of strengthening propagation is to imsekahead® Apart from specify-

ing nomore++s lookahead, we demonstrate below thatydorid lookahead strategy,

incorporating heads and bodies, allows for stronger propagation thiaifoamone us-

ing only either heads or bodies. Uniform lookahead is for instance usadaddelson

literals andnoMoReon rules (comparable to bodies). However, we do not want to put

more computational effort into hybrid lookahead than needed in the uniform case. The

solution is simple: Assigning to heads aneb to bodies within lookahead is, in combi-

nation with propagation, powerful enough to compensate for the omitted assignments.
First of all, we operationally define our lookahead oper#tais follows.

Definition 8. LetII be alogic program and lefl be a partial assignment éfead (1)U
body(II). Furthermore, letO be a collection of operators.
For z € (head(II) U body(II)) \ (A® U A®), we define

(204, g) = {(A@,Ae u{z}) if O*((A® U{z}, A®)) is undefined
7 L) =

A otherwise
Ee’O(A z) = (A® U {x}, A°) if O*((A®, AP U {x})) is undefined
y ’ A otherwise

For X C head(IT) U body(IT), we define

LTAX) = Upexy(asuae b (4,)
L7AX) = Upexy(azuae) bn” (4, 2)
LA, X) = LA, X) U LFO(A,X)

Lookahead works in a conflict-driven way, assigning a value whenever the opposite
assignment leads to a conflict. The most powerful hybrid lookahead operator (relative
to some operator®) is LO (A, head (IT)Ubody(II)) as it includes all unassigned heads
and bodies. However, taking up the above idea of restridfing assigning> to heads
and® to bodies only, yields an equally expressive operation that relies on significantly
fewer applications of elementary lookahead/igee3. in Theorem 3). We show that
explicitly assigningd to heads aneb to bodies within/ is unnecessary as long as all
conflicts are produced and their sources properly eliminated. In fact, the two sorts of
assignments can be dealt with implicitly &*, provided thatP belongs to® and all
operators irO are monotonic (like, for instanc®, B, andif).

Theorem 3. Let IT be a logic program. Le# be a partial assignment dfead (1) U
body(IT) and let

B =P(L%C(A, body(II))) U LEC (A, head (IT)) .
Then, for every collectio® of C-monotonic operators such th& € O, we have

5 Often lookahead is additionally used for gathering heuristic values for choice operations. As
with dlv andsmodelsthis information is exploited bpomore++as well.

170 Christian Anger, Martin Gebser, Thomas Linke, Antleumann, and Torsten Schaub

r5:x «— nota,notb re:x — notc,notd
oy =1 U< ry:y«—nota,notb rg:y<«— notc,notd r9:y <« notx,noty

T10 + T < i17 “ee 77:n Tam+9 * i77L «— not jrn T2m+10 - j’m < not i'm
r5 e« not f rg: Yy < notc Ti241 & 11 < X,Y, 2, not 11
" — I U 16 : f < note r10: Y < not d Tiodn @ bn < T, Y, Z, NOL in
- r7 T «— not a 711 : 2 < not e Ti14niam © bm < NOt Jm
rg:x < notb ri2: 2z < not f Tioantom : Jm < NOt im
Fig. 1. Lookahead exampled3 and/I}, wherem = 1,... ,nandll, = {r1,...,ra} from (2).

1. LO(A, head(IT)) C B;
2. LO(A, body(II)) C P(B);
3. LO(A, head(IT) U body(IT)) C P(B).

Condition? € O stipulates that propagation (within lookahead) must be at least as
powerful as Fitting’s operator. Unlike this, the occurrenceB i B, 2., and3. are only

of formal nature and needed for synchronizing heads and bodies. In practice, lookahead
is interleaved withP? anyway, since it is integrated into propagation, iPBUL)*.

More importantly,nomore++s restricted hybrid lookahead strategy, assigningo

heads andb to bodies only, faces approximately the same computational efforts as
encountered in the uniform case sirdcemin{|head (II)|, |body(I1)|} < |head (IT)|+

|body (IT)| < 2 * mazx{|head(II)|, |body(IT)|}.5

Finally, let us demonstrate thabmore++s hybrid lookahead strategy is in fact
strictly more powerful than uniform ones. Consider Prografifis and I}, given in
Figure 1. In both programs, atomjs andj,, introduce choices, wheig, is true when-
everj,, is false and vice versa. However, in the answer sel§pfand I}, everyi,,
is true and every,, false, and residual choices produce multiple answer sets. As we
demonstrate in the following, a body-based lookahead decides gyary I3 and a
head-based one does the samdlip, whereas the opposite variants do not. Hence,
only a hybrid lookahead effectively solves both programs, whereas an approach with
uniform lookahead relies on “lucky” choices in case of eith&f or 11}, respectively.
When choices are “unlucky”, uniform approaches may even face exponentially more
choices than a hybrid lookahead, as our experiments in Section 6 demonstrate.

For readability, let us fixD to (PBU) and drop the superscript. Our initial assign-
ment isA = ((,0). In ProgramlI}, the bodies of ruless, ..., 79 cannot become true.
However, head-based lookahead cannot recognize this. Hence no atom can be decided
and we obtain(Ly)*(A, head(I13)) = (0,0) = A. Body-based lookahead is supe-
rior here. It recognizes that the bodies¢f. . . , rg have to be assigned. In particular,
body(rg) = {not x, not y} must be assigned. Having this information, assigning
to any of the bodie$ody(ram+10) = {not i,,} leads to a conflict. Thus, we get that
body(rio) = {i1,...,in} must be true. Otherwise, opera®@iinfers literalsnot « and

® Note that|body(IT)| < |II| as several rules can share one body; in uniform cases, factor 2
accounts for assigningothtruth values@® ande, one after the other.

The nomore++ Approach to Answer Set Solving 171

not y, thus contradicting thatody(r9) = {not x, not y} is assigned>. Consequently,
we infer that all bodie$ody(ram+10) = {not i, } must be assigned. By application
of P*, we can now decide all atonig, to be true and all atomg,, to be false.

Next, considerll}, and letB = (Lpp)*(A, body(II})). Although all bodies
body(r124m) = {z,y, 2, not i,,} belong toB®, body-based lookahead does not rec-
ognize that atoms, y, andz must be true due to rules, ..., r. Here, head-based
lookahead is superior. F@r = (L‘%,)*(A, head(II})), we haver € C®, y € C9,
andz € C®. Furthermore, each, is in C® because, when trying to assign P infers
thatbody(ri2+m) = {,y, 2, not i, } is true, thus contradicting,, being false. All in
all, head-based lookahead decides all atoynswhereas a body-based approach only
recognizes that certain bodies must not be true but is unable to determine a falsifying
literal.

5 Design and implementation

The primary data structure momore++consists of a graph representing dependencies
among heads and bodies.

Definition 9. Let IT be a logic program.
The body-head dependency graply of IT is a directed graph(body(II) U
head(II), Ey U Ey U E5) with labeled arcs

1. By = {(h,b) | h € head(IT),b € body(IT), h € b*};
2. By = {(h.b) | h € head(IT),b € body(IT),h € b= };
3. Ea ={(b,h) | h € head(II),b € body(IT),h — b € IT}.

With this, the concepts given in Definitions 1 and 3 can be directly mapped into graph
concepts. To see this, observe that| (h,b) € Eq} = b*, {h | (h,b) € E1} = b,
and{b | (b,h) € E2} = body(h). For example, the graph-based counterpaff;pfA)
becomedr(A) = {h | pred®(h) N A® # 0} wherepred(v) = {v' | (v, v) € Fs}.
Hence, all operator specifications, except for that/ofcan be used unchanged for
defining graph-based propagation. The same applies to the characterization of answer
sets in Theorem 2.

The graph-based approach gives rise to further operators exploiting the graph struc-
ture. Among themnomore++uses a preprocessing operafassignings to all bodies
of 11 involved in a “self-blocking” situation.

Definition 10. Let I" be the body-head dependency graph of logic progfarand let
A be a partial assignment dfead (IT) U body(IT).
We define

Ir(A)=A U(0,{be€ body(II) | (h,b) € Eq, (b,h) € E, for someh € head(II)}) .

This takes care of integrity constraints as well as rulegherehead(r) € body(r) .
More graph-specific issues are discussed in [10, 9].

The primary strategy aiomore++is to compute answer sets in a “support-driven”
way. To this end, we rely on the graph structure for maintaining this as an invariant

172 Christian Anger, Martin Gebser, Thomas Linke, Antleumann, and Torsten Schaub

property. To be precise, in logic programming terminologwe call a set of rules?
unfounded-fregf
{p|p € body(r)",r e R} C Cn(R). 4)

Intuitively, unfounded-freeness guarantees that no ruleimjustified by an unfounded
set® As a matter of fact, this allows us to ameliorate the implementation of opérator
To see this, note thét leaves unfounded-free parts of assignments unchanged; because
given a sef? satisfying (4) along with an assignmetisuch thabody (R)NA® = 0, we
haveUg(A) = 0 (cf. Definition 5). Hence, such parts of an assignment may be ignored
when applyind/. In our setting, we are therefore interested in operators guaranteeing
that

R (A) = {r € Il | body(r) € A®} (5)

remains unfounded-free. The next result makes this precise for op@rator

Theorem 4. LetIT be a logic program and lefl be a partial assignment dfead (IT) U
body(IT) such thathead (IT) N A® C T(A).
If R(A) is unfounded-free anf(A) is defined, the®R(P(A)) is unfounded-free.

The requirement ofiead (IT) N A® C T(A) stipulates that every assignment®to a
head is justified by a body iA®. This is needed sincB(A) is defined in (5) in terms
of bodies.

As an example, considdr, in (3) and assignmend = ({ dy(rs),e},0). The
rules inR(A) = {r5} are unfounded-free, that isody(r5)" = 0 C Cn({e —}) =
{e}, ande € T(A). We obtainP*(A) = ({body(rs), e, body(r7), f},0), inducing
again an unfounded-free sB(P*(A)) = {rs,r} Slncebody(r5)+ body(r7)" =
{e} C Cn(fe . f —e}) = {e. f}.

Choice operato€® cannot guarantee unfounded-freeness as it assigiosarbi-
trary heads and bodies. Hence, as an alternata®ore++provides the following one.

Definition 11. Let IT be a logic program and letA be a partial assignment of
head(IT) U body(IT).
We define

1. D (A) = (A® U {z}, A®) for somex € (body(IT) N S(A)) \ (A% U A®);
2. DG (A) = (A%, A° U {z}) for somex € (body(IT) N S(A)) \ (A® U A°).

This operator differs frong in restricting its choices teupported bodiesas this guar-
antees unfounded-freeness.

Theorem 5. LetI7 be a logic program and lefl be a partial assignment dfead (IT) U
body(IT) such thathead (IT) N A® C T(A).
If R(A) is unfounded-free, theR(D°(A)) is unfounded-free fos € {®, ©}.

" See full paper for a graph-based characterization.

81n [11], a related notion ofinfounded-free interpretatioris used for characterizing answer
sets of disjunctive programs. In our context, unfounded-freeness is used for describing partial
assignments guaranteeing that none of theassigned atoms becomes unfounded, no matter
how such an assignment is extended.

The nomore++ Approach to Answer Set Solving 173

Note that for heads there is no operator similgbtmaintaining unfounded-freeness. A
head having a true body, i.eody(h) N A® # 0, is already decided through. There-

fore, it cannot be assigned and thus is not a reasonable choice. On the other hand, if
we concentrate on heads having a body that is supported but not already unblocked, i.e.
there is a body € (body(h) N S(A)) \ (B(A) U B(A)), generally, we cannot ensure
that b is still not blocked at some later step. That is, a head chosen to be true could
become unfounded later on.

Unlike P and D, backward propagatior3 cannot maintain unfounded-freeness.
To see this, suppose a botlis assigned by D and all but onef, of its negative body
literals have already been assigredthat is,b~ \ A® = {h}. Similarly, all but onep’,
of the bodies “deriving’h are inA®, that is,body(h) \ A® = {V'}. Then,h € B°(A),
b € T"(B(A)), and backward propagation §* assigns® to ¥’, althoughd’ may
not be unfounded-free. That is why we introduce at the implementation levebi
counterpart ofp, denoted byw, indicating that some head or body must eventually be
assigneds but its unfounded-freeness has not yet been established. In the implemen-
tation, only? andD assign®, while operators like3 andC can only assigre (or
©).2 Any head or body iMd® can be turned inte> by P without causing an undefined
situation. So, by distinguishing two types of “true”, we guarantee unfounded-freeness
for objects assigned.

As mentioned above, this invariance allows us to greatly improve the implemen-
tation of operatot/. Rather than repeatedly re-establishing unfounded-freeness from
scratch, the scope 6f(A) (in Definition 5) can be restricted {@ead (IT) U body(IT))\

(A® U A®), while taking the support afl® for granted. In other word€/(A) (and so
U(A)) can be restricted to heads and bodies being either unassigned or assigied
brevity, we refrain from giving a formal definition and refer to this enhancemeit of
for further reference by. Also, our graph-based representation allows us to imple-
ment this in a “lazy fashion”: The nodes in the graph are initially marked as supported,
if (roughly) they belong td/(((, #)). Whenever such a node is assigredhis infor-
mation is propagated to the connecting nodes in order to find unfounded ones.

All in all, enforcing unfounded-freeness as an invariant4shallows for an incre-
mental implementation of operatbt. In fact, these restrictions do not sacrifice com-
pleteness. As detailed in the full version, Theorem 2 is still valid after replacing oper-
atorsC andi/ by D andV, respectively, subject to the extension of assignments by
Furthermore, any assignmestproduced by strategyPBV)*D satisfies the precondi-
tion, head (IT) N A® C T(A), of Theorems 4 and 5.

Finally, let us mention thatomore++is implemented in C++ and usgzarseas
parsernomore++facilitates the easy use of different sets of operators. For instance, if
called with command line optiorop 'D:(PBV)* , it uses operatoP for choices
and(PBV)* for propagation. One can also determine which@eif operators to use
for the lookahead operatdt via command line optionlaop . The system is freely
available at [12].

% Please note th& retains® when propagating fron®. Also, a bodyb cannot be chosen by
if someh € bt isin A%,

174 Christian Anger, Martin Gebser, Thomas Linke, Antleumann, and Torsten Schaub

He smodels |nomore++nomore++ smodels nomore++ nomore++
™ (PBVLy)*D |(PBVLyp)*D (PBVLy)*D (PBV Lyp)*D
3 1(0.00) 1(0.00) | 1(0.00) 1(0.00) 1(0.00) 1(0.00)
4 2(0.01) 2(0.01) | 2(0.00) 5(0.00) 5(0.00) 5(0.00)
5 3(0.00) 3(0.00) | 3(0.01) 26 (0.00) 23(0.02) 23(0.02)
6 4(0.01) 4(0.01) | 4(0.01) 305 (0.02) 119 (0.11) 119 (0.11)
7 30 (0.01) 5(0.02) | 5(0.02) 4814 (0.38) 719 (0.83) 719 (0.85)
8 8 (0.00) 6 (0.03) | 6(0.03) 86364 (7.29) 5039 (7.40) 5039 (7.60)

9 48 (0.01) 7 (0.05) | 7(0.05) (|1864470 (177.91) 40319 (73.94)| 40319 (76.09)

10| 1107 (0.18) | 8(0.08) | 8(0.08) n/a 362879 (818.73B62879 (842.57)
11| 18118 (2.88) 9(0.13) | 9(0.12) n/a n/a n/a
12 {398306 (65.29) 10 (0.19) | 10 (0.20) n/a n/a n/a
13 n/a 11 (0.29)| 11 (0.30) n/a n/a n/a

Table 1. Experiments fotH C,, computing (a) one answer set; (b) all answer sets

6 Selected experimental results

Because of space limitations, we confine our listed experiments to selected benchmarks
illustrating the major features efomore++ A complete evaluation, including further
ASP solvers, likedlv, assat and cmodels can be found at the ASP benchmarking
site [13]. All tests were run on an AMD Athlon 1.4GHz PC with 512MB RAM. As
in the context of [13], a memory limit of 256MB, as well as a time limit of 900s was en-
forced. All results are given in terms of number of choices and seconds (in parentheses),
reflecting the average of 10 runs.

Let us note that, due to the fairly early development stateashore++, its base
speed is still inferior to more mature ASP solvers, ldmodelsor div. This can for
instance be seen in the results of the “Same Generation” benchmark, svhedels
outperformsiomore++roughly by a factor of two (cf. [13])t° Despite this, the selected
experiments demonstrate the computational value of crucial featuresrajre++and
provide an indication of the prospect of the overall approach.

In all test series, we rarsmodels with its (head-based) lookahead. For
a complement, we also give tests foomore++ with body-based lookahead
LPBY) (A, body(IT)), abridgedL,. The tests witmomore++s hybrid lookahead rely
on L PBY)(A body(IT))LLEPBY) (A, head(IT)), abbreviated by ;. For illustrat-
ing nomore++s support-driven strategy, we give in Table 1 results obtained on classi-
cal Hamiltonian cycle problems on complete grapH€’(), both for the first and for
all answer sets. Whilaomore++ does not make any wrong choices leading to a lin-
ear performance in Table 1(smodelsnakes an exponential number of choices, even
for finding the first answer setomore++s support-driven strategy enforces that rules
are chained in the appropriate way. This is nicely reflected @), examples, where
solutions are characterized by unfounded-free sets of rules. We note that;,pex-

10 Other apt benchmarks are “Factoring” and “Schur Numbers” (cf. [13]); in both casedels
still outperformsnomore++by an order of magnitude.

The nomore++ Approach to Answer Set Solving 175

n smodels nomore++nomore++| | smodel§ nomore++ |nomore++
H3 (PBVLp)*D | (PBVLyp)*D H4 (PBVLy)*D (PBV Lyp)*D
1 5 (0.00) 3(0.00) | 3(0.00) || 1 |3(0.00) 5 (0.00) 3(0.01)
2 15 (0.00) 4 (0.00) | 4(0.00) || 2 |6 (0.00) 11 (0.01) 6 (0.01)
3 38 (0.00) 5(0.01) | 5(0.01) || 3 |9(0.00) 43 (0.01) 9 (0.01)
4 137 (0.00) 6 (0.00) | 6(0.00) || 4 |12 (0.00 120 (0.03) | 12(0.01)
5 460 (0.01) 7(0.01) | 7(0.01) || 5|15(0.00) 269 (0.07) | 15(0.01)
6 1447 (0.02) 8(0.01) | 8(0.01) | 6|18 (0.00) 1158 (0.27) | 18(0.01)
7 4738 (0.06) 9(0.00) | 9(0.01) || 7 (21(0.00) 5285 (1.15) | 21(0.02)
8 14725 (0.19) | 10(0.00)| 10 (0.01)|| 8 |24 (0.01) 15222 (3.27) | 24 (0.02)
9| 46230(0.58) | 11(0.01)| 11 (0.01)|| 9 |27 (0.00) 51377 (10.88) | 27 (0.02)
10| 143283 (1.82) | 12(0.01)| 12 (0.01)|| 10|30 (0.00) 602312 (118.75) 30 (0.03)
11| 440234 (5.70) | 13 (0.01)| 13 (0.01)|| 11|33 (0.00)3284697 (645.62)33 (0.03)
12| 1354823 (17.85) 14 (0.01)| 14 (0.01)|f 12|36 (0.01 n/a 36 (0.03)
13| 4147650 (55.63)| 15 (0.01)| 15 (0.01) || 13|39 (0.01 n/a 39 (0.04)
14|12667755 (173.21)16 (0.01)| 16 (0.01)|| 14|42 (0.01 n/a 42 (0.04)
15|38647666 (538.24)17 (0.01)| 17 (0.02) || 15|45 (0.01 n/a 45 (0.04)
16 n/a 18 (0.01)| 18 (0.01)|| 16|48 (0.01 n/a 48 (0.04)

Table 2. Experiments computing one answer set forii@); (b) 111

amples,dlv performs much better regarding time (cf. [13]); the different concept of
“choice points” makes them incomparable in this respect.

The results in Table 2(a) and (b) aim at supportiagnore++s hybrid lookahead;
they are obtained on (extensions of the) lookahead examfilend I} from Figure 1.
The exact programs as well as additional measurements, like those for computing all
answer sets, can be found at [12]. We see that a hybrid approach is superior to both
kinds of uniform lookaheadsmodelsemploys a head-based lookahead, leading to a
good performance on examplég’, yet a bad one oi/3. The converse is true when
restrictingnomore++to lookahead on bodies onlgomore++with hybrid lookahead
performs choice-point-optimal on both types of examples. Also, a comparison of the
two nomore++ variants shows that a hybrid lookahead does not lead to any computa-
tional overhead. Note that these examples are designed to show the effect of lookahead.
Depending on heuristics, a better performance may be obtainable without lookahead.
Note thatdlv performs worse than eithemodelor nomore++on some of thdl} and
I3 benchmarks!!

7 Discussion

We have presented a new ASP solver, along with its underlying theory, design and
some experimental results. Its distinguishing features are (i) the extended concept of an

1 dlv handles examples of fordf¥% only up ton = 8 (computing one answer set) afff
examples up taw = 11 (computing all answer sets; see [12] for details). Alsomore++
outperformadlv on some other relevant benchmarks, such as “Schur Numbers”, by one order

of magnitude (see [13]).

176 Christian Anger, Martin Gebser, Thomas Linke, Antleumann, and Torsten Schaub

assignment, including atoms as well as bodies, (ii) the more powerful lookahead oper-
ation, and (iii) its support-driven strategy. We draw from previous work omtiMdoRe
system [5], whose methodology for answer set computation is based on “coloring” the
rule dependency graph (RDG) of a program. It therefore pursues a rule-based approach,
which amounts to restricting the domain of assignmentsdeg (17). The functionality
of noMoRewas described in [9] by graph-theoretical operators simild? te, andC.
nomore++s operators for backward propagatids) @nd lookahead4) have been pre-
sented here for the first time. In general, operator-based specifications facilitate formal
comparisons between techniques used by different ASP solvers. Operators capturing
propagation indlv are given in [14]. Pruning operators based on Fitting’s [6] and
well-founded semantics [7] are investigated in [15]. The full paper contains a detailed
comparison of these operators.

dlv and smodelspursue a purely literal-based approach, which boils down to re-
stricting the domain of assignmentsfead (7). Interestingly,smodelsimplementa-
tion relies on a rule-head dependency graph, in which rules and atoms are connected via
pointers. This data structure is more redundant than the body-head dependency graph,
since the number of unique bodies in a program is always less or equal to the num-
ber of rulest? Moreover,smodelsdoes not take the concept of support into account.
Contrastinglydlv uses a partly support-driven strategy for selecting choices (so-called
possibly-true literaly Also, dlv uses a truth value “must be true”, which is similar to
®. Interestingly, its choice operator assigns eitheor @, depending on the support
status of the chosen literal. Our empirical studies show definite prospaonuire++
but also reveal an unfledged state of development. A major concern in future work will
be to close the engineering gap to the mature ASP sodvecslelsanddlv.

References

1. Simons, P., Niem@| I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligencel38(2002) 181-234

2. Leone, N., Faber, W., Pfeifer, G., Eiter, T., Gottlob, G., Koch, C., Mateis, C., Perri, S., Scar-
cello, F.: The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic (2005) To appear.

3. Lin, F, Zhao, Y.: Assat: computing answer sets of a logic program by sat solvers. Atrtificial
Intelligencel57(2004) 115-137

4. Lierler, Y., Maratea, M.: Cmodels-2: Sat-based answer sets solver enhanced to non-tight
programs. In Lifschitz, V., Niemédl I., eds.: Proceedings of the Seventh International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’04). Volume 2923
of Lecture Notes in Computer Science., Springer-Verlag (2004) 346-350

5. Anger, C., Konczak, K., Linke, TnoMoRe A system for non-monotonic reasoning under
answer set semantics. In Eiter, T., Faber, W., Truszskiy M., eds.: Proceedings of the 6th
International Conference on Logic Programming and Nonmonotonic Reasoning, Springer-
Verlag (2001) 406—410

6. Fitting, M.: Fixpoint semantics for logic programming: A survey. Theoretical Computer
Science278(2002) 25-51

12 Measuring over 241 ground programs in [13], the ratio of the number of distinct bodies over
the number of rules i8.41.

10.

11.
12.
13.
14.

15.

The nomore++ Approach to Answer Set Solving 177

. van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.

Journal of the ACM38(1991) 620-650

. Niemeh, |., Simons, P.: Efficient implementation of the well-founded and stable model

semantics. In Maher, M., ed.: Proceedings of the Joint International Conference and Sympo-
sium on Logic Programming, The MIT Press (1996) 289-303

. Konczak, K., Linke, T., Schaub, T.: Graphs and colorings for answer set programming:

Abridged report. In Vos, M.D., Provetti, A., eds.: Proceedings of the Second International
Workshop on Answer Set Programming (ASP’03). Volume 78., CEUR Workshop Proceed-
ings (2003) 137-150

Linke, T., Sarsakov, V.: Suitable graphs for answer set programming. In Baader, F.,
Voronkov, A., eds.: Proceedings of the Eleventh International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR’04). Volume 3452 of Lecture Notes
in Computer Science., Springer-Verlag (2005) 154-168

Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: Unfounded sets, fixpoint se-
mantics, and computation. Information and Computati8f(1997) 69-112
(http://www.cs.uni-potsdam.de/nomore)

(http://asparagus.cs.uni-potsdam.de)

Faber., W.: Enhancing Efficiency and Expressiveness in Answer Set Programming Systems.
Dissertation, Technische Univeid&itwien (2002)

Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning operators for answer set program-
ming systems. In Benferhat, S., Giunchiglia, E., eds.: Proceedings of the ninth International
Workshop on Non-Monotonic Reasoning (NMR’04). (2002) 200-209

