
Combining Answer Sets of
Nonmonotonic Logic Programs

Chiaki Sakama1 and Katsumi Inoue2

1 Department of Computer and Communication Sciences
Wakayama University, Sakaedani, Wakayama 640-8510, Japan

sakama@sys.wakayama-u.ac.jp
2 National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
ki@nii.ac.jp

Abstract. This paper studies compositional semantics of nonmonotonic logic
programs. We suppose the answer set semantics of extended disjunctive programs
and consider the following problem. Given two programsP1 andP2, which have
the sets of answer setsAS(P1) andAS(P2), respectively; find a programQ
which has answer sets as minimal setsS ∪ T for S from AS(P1) andT from
AS(P2). The programQ combines answer sets ofP1 andP2, and provides a
compositional semantics of two programs. Such program composition has appli-
cation to coordinating knowledge bases in multi-agent environments. We provide
methods for computing program composition and discuss their properties.

1 Introduction

Combining knowledge of different information sources is a central topic in multi-agent
systems. In those environments, different agents generally have different knowledge and
belief, then coordination among agents is necessary to form acceptable agreements. In
computational logic, knowledge and belief of an agent are represented by a set of for-
mulas. Combining multiple knowledge bases is then formulated as the problem of com-
posing different theories. In multi-agent environments, individual agents are supposed
to have incomplete information. Since theories including incomplete information are
nonmonotonic, it is important and meaningful to develop a framework of composing
nonmonotonic theories.

To see the problem, suppose the following scenario: there is a trouble in a sys-
tem which consists of three componentsc1, c2, andc3. After some diagnoses, an ex-
pert E1 concludes that the trouble would be caused by eitherc1 or c2. On the other
hand, another expertE2 concludes that the trouble would be caused by eitherc2 or
c3. E1 (resp.E2) has no knowledge on the componentc3 (resp.c1). Two experts’ di-
agnoses are then encoded as the following logic programs:E1 = { c1 ; c2 ←} and
E2 = { c2 ; c3 ←}, where; represents disjunction. By merging two programs, the
programE1 ∪ E2 has twoanswer sets{c2} and{c1, c3}. The first one is the common
solution between two experts, while the second one is obtained by cooperation. Thus,
two solutions have different grounds and would be acceptable to each expert. The story
goes on:E1 considers that the possible cause is eitherc1 or c2, but he knows thatc1 is
older and more likely to disorder. Similarly,E2 resolves the possible cause into either

Combining Answer Sets of Nonmonotonic Logic Programs 43

c2 or c3, but she empirically knows thatc2 is fragile and more likely to cause the trou-
ble. Two experts then modify their diagnoses asE′

1 = { c1 ← not c2, c2 ← ¬ c1 }
andE′

2 = { c2 ← not c3, c3 ← ¬ c2 }, wherenot representsnegation as failure.
After the modification,E′

1 is read as:c1 is considered a cause if there is no evidence of
c2, andc2 will not become a cause unlessc1 is explicitly proved to be false.E′

2 is read
in a similar way. Merging two programs, however,E′

1 ∪ E′
2 has the single answer set

{c2}, which reflects the result of diagnosis byE′
2 but does not reflectE′

1. When two
experts are equally reliable, the result might be unsatisfactory. In fact,E′

2 puts weight
on c2 relative toc3 andE′

1 puts weight onc1 relative toc2. After integrating these
diagnoses, there is no reason to concludec2 as the plausible conclusion. The problem
is explained as follows:c1 in E′

1 andc2 in E′
2 are bothdefaultconsequences derived

from incomplete information in each program. However, simple merging has the effect
of preferringc2 to c1 as the former is included in relatively lower stratum than the lat-
ter. In logic programming consequences derived from lower stratum are preferred in a
single program, but the principle is not necessarily applied to the case of combining
different programs. As observed in the above example, the local preference inE′

1 or E′
2

does not necessarily imply the global preference inE′
1 ∪ E′

2.
Thus, composition of nonmonotonic theories is not achieved by simply merging

them. The problem is then how to build a compositional semantics of nonmonotonic
theories. In this paper, we consider composition ofextended disjunctive programsunder
the answer set semantics[12]. An answer set is a set of literals which corresponds to
a belief set being built by a rational reasoner on the basis of a program [2]. A program
generally has multiple answer sets, and different agents have different collections of
answer sets in general. We then capture composition of two programs as the problem of
building a new program which combines answer sets of the original programs. Formally,
the problems considered in this paper are described as follows:

Given : two programsP1 andP2;

Find: a programQ satisfyingAS(Q) = min(AS(P1)] AS(P2)) whereAS(P)
represents the set of answer sets of a programP andAS(P1)]AS(P2) = {S ∪T |
S ∈ AS(P1) andT ∈ AS(P2)},

wheremin(X) = {Y ∈ X | ¬∃Z ∈ X s.t. Z ⊂ Y }. The programQ satisfying
the above condition is called acompositionof P1 andP2. The result of composition
combines answer sets of two programs, which has the effect of amalgamating the orig-
inal belief of each agent. We develop methods for constructing a program having the
compositional semantics.

The rest of this paper is organized as follows. Section 2 introduces basic notions
used in this paper. Section 3 presents compositional semantics and its technical prop-
erties. Section 4 provides methods for building programs which reflect compositional
semantics. Section 5 addresses permissible composition for multi-agent coordination.
Section 6 discusses related issues and Section 7 summarizes the paper.

2 Preliminaries

In this paper, we suppose an agent that has a knowledge base written in logic program-
ming.

44 Sakama and Inoue

A programconsidered in this paper is anextended disjunctive program(EDP) which
is a set ofrulesof the form:

L1 ; · · · ; Ll ← Ll+1 , . . . , Lm, not Lm+1 , . . . , not Ln (n ≥ m ≥ l ≥ 0)

where eachLi is a positive/negative literal, i.e.,A or¬A for an atomA, andnot is nega-
tion as failure(NAF). not L is called anNAF-literal. The symbol “;” represents dis-
junction. The left-hand side of the rule is thehead, and the right-hand side is thebody.
For each ruler of the above form,head(r), body+(r) andbody−(r) denote the sets
of literals {L1, . . . , Ll}, {Ll+1, . . . , Lm}, and {Lm+1, . . . , Ln}, respectively. Also,
not body−(r) denotes the set of NAF-literals{not Lm+1, . . . , not Ln}. A disjunction
of literals and a conjunction of (NAF-)literals in a rule are identified with its correspond-
ing sets of literals. A ruler is often written ashead(r) ← body+(r), not body−(r) or
head(r) ← body(r) wherebody(r) = body+(r) ∪ not body−(r). A rule r is dis-
junctive if head(r) contains more than one literal. A ruler is an integrity constraint
if head(r) = ∅; andr is a fact if body(r) = ∅. A program is anextended logic pro-
gram(ELP) if it contains no disjunctive rule. A program isNAF-freeif no rule contains
NAF-literals. A program with variables is semantically identified with its ground in-
stantiation, and we handle propositional and ground programs only.

The semantics of EDPs is given by theanswer set semantics[12]. LetLit be the set
of all ground literals in the language of a program. A setS(⊆ Lit) satisfiesa ground
rule r if body+(r) ⊆ S andbody−(r) ∩ S = ∅ imply head(r) ∩ S 6= ∅. In particular,
S satisfies a ground integrity constraintr with head(r) = ∅ if either body+(r) 6⊆ S
or body−(r) ∩ S 6= ∅. S satisfies a ground programP if S satisfies every rule in
P . Let P be an NAF-free EDP. Then, a setS(⊆ Lit) is ananswer setof P if S is
a minimal set such that (i)S satisfies every rule from the ground instantiation ofP ;
and (ii) if S contains a pair of complementary literalsL and¬L, S = Lit. Next, let
P be any EDP andS ⊆ Lit. For every ruler in the ground instantiation ofP , the
rule head(r) ∩ S ← body+(r) is included in thereduct SP if body+(r) ⊆ S and
body−(r) ∩ S = ∅. Then,S is ananswer setof P if S is an answer set ofSP .
Remark: The definition of a reduct presented above is different from the original one
in [12]. In [12], the rulehead(r) ← body+(r) is included in the reductPS (called
Gelfond-Lifschitz reduction) ifbody−(r) ∩ S = ∅. A similar but different definition
of reduct is in [11], where the rulehead(r) ← body+(r) is included in the reduct if
body+(r) ⊆ S andbody−(r) ∩ S = ∅. Thus, disjunctive heads remain unchanged in
the definition of [11].

Our reduction imposes additional conditions, but two reductions produce the same
answer sets of EDPs.

Proposition 1 For any EDPP , S is an answer set ofSP iff S is an answer set ofPS .

Proof. If S is an answer set ofPS , it is a minimal set satisfying every rule inPS .
For any ruler in SP \ PS , it holds body+(r) ⊆ S, (head(r) ← body+(r)) ∈ PS

and (head(r) ∩ S ← body+(r)) ∈ SP . As S satisfiesPS , body+(r) ⊆ S implies
head(r) ∩ S 6= ∅. So, S satisfiesSP . Assume that there is a minimal setT ⊂ S
satisfying every rule inSP . Any ruler in PS\SP satisfies either (a)body+(r) 6⊆ S or (b)
body+(r) ⊆ S, (head(r) ← body+(r)) ∈ PS and (head(r) ∩ S ← body+(r)) ∈ SP .

Combining Answer Sets of Nonmonotonic Logic Programs 45

In case of (a),body+(r) 6⊆ S implies body+(r) 6⊆ T . Then,T satisfiesr. In case
of (b), asT satisfiesSP , body+(r) ⊆ T implies T ∩ (head(r) ∩ S) 6= ∅, thereby
T ∩ head(r) 6= ∅. Thus, in each caseT satisfies every rule inPS . This contradicts the
fact thatS is a minimal set satisfyingPS . Then,S is also a minimal set satisfying every
rule in SP . Hence,S is an answer set ofP . The converse is shown in a similar manner.

ut

Example 1.Let P be the program:

p ; q ←, q ← p, r ← not p.

ForS = {q, r}, PS becomes

p ; q ←, q ← p, r ←,

while SP becomes
q ←, r ← .

Each reduct produces the same answer setS. Note that{p, q} does not become an
answer set ofP .

The new reductSP has the effect of (i) reducing any rule inP that is irrelevant
to constructingS, and (ii) eliminating any disjunct in the head of a rule that is not a
consequence inS. For technical reasons, we use the reductSP for computing answer
sets ofP .

A program has none, one, or multiple answer sets in general. The set of all answer
sets ofP is written asAS(P). Every element inAS(P) is minimal, i.e.,S ⊆ T implies
T ⊆ S for any S andT in AS(P). A program having a single answer set is called
categorical[2]. Categorical programs include important classes of programs such as
definite programs, stratified programs, andcall-consistent programs. Every NAF-free
ELP has a single answer set. An answer set isconsistentif it is not Lit. A programP is
consistentif it has a consistent answer set; otherwise,P is inconsistent. An inconsistent
program has either no answer set or the single answer setLit.

A literal L is a consequence ofcredulous reasoningin a programP (written as
L ∈ crd(P)) if L is included in some answer set ofP . A literal L is a consequence of
skeptical reasoningin P (written asL ∈ skp(P)) if L is included in every answer set
of P . Clearly,skp(P) ⊆ crd(P) for any consistent programP .

3 Combining Answer Sets

In this section, we introduce a compositional semantics of programs. Throughout the
paper, different programs are assumed to have the same underlying language with a
fixed interpretation.

Let S andT be two sets of literals. Then, define

S] T =
{

S ∪ T , if S ∪ T is consistent;
Lit , otherwise.

For two collectionsS andT of sets, define

S] T = {S] T | S ∈ S andT ∈ T }.

46 Sakama and Inoue

Definition 1. Let P1 and P2 be two consistent programs. A programQ is called a
compositionof P1 andP2 if it satisfies the condition

AS(Q) = min(AS(P1)] AS(P2))

wheremin(X) = {Y ∈ X | ¬∃Z ∈ X s.t.Z ⊂ Y }.

The setAS(Q) is called thecompositional semanticsof P1 andP2. By the defi-
nition, the compositional semantics is defined as the collection of minimal sets which
are obtained by combining answer sets of the original programs. Note that the opera-
tion min(·) has the effect of making every element inAS(Q) incomparable (under set
inclusion).

Example 2.LetAS(P1) = {{p}, {q}} andAS(P2) = {{p}, {r}}. Then, the compo-
sitional semantics becomesAS(Q) = { {p}, {q, r} }.

Note that we do not consider composition of inconsistent programs, because such
composition appears meaningless and trivial. So in program composition consistent
programs are handled hereafter.

Proposition 2 Let P1 andP2 be two consistent programs, andQ a result of composi-
tion. Then, for anyS ∈ AS(Q), there isT ∈ AS(Pi) for i = 1, 2 such thatT ⊆ S.

Proof. If Q is consistent, for anyS ∈ AS(Q) there existsT ∈ AS(P1) andT ′ ∈
AS(P2) such thatS = T ∪ T ′ andT ∪ T ′ is consistent. Then,T ⊆ S andT ′ ⊆ S
hold. Else ifQ is inconsistent,AS(Q) = {Lit}. Then,T ⊂ Lit andT ′ ⊂ Lit for any
T ∈ AS(P1) and anyT ′ ∈ AS(P2). ut

Proposition 2 presents that every answer set in the compositional semantics extends
some answer sets of the original programs. On the other hand, the original programs
may have an answer set which does not have its extension in their compositional se-
mantics.

Example 3.LetAS(P1) = {{p, q}} andAS(P2) = {{p}, {q, r}}. The compositional
semantics ofP1 andP2 becomesAS(Q) = {{p, q}} which extends{p, q} of P1 and
{p} of P2, but does not extend{q, r} of P2.

In the above example,{p, q} absorbs{p} and remains as a result of composition.
Consequently, the set{p, q, r}, which combines{p, q} of P1 and{q, r} of P2, becomes
non-minimal and is excluded from the result of composition.

Such cases are formally stated as follows.

Definition 2. LetP1 andP2 be two consistent programs, andQ a result of composition.
WhenAS(Q) = AS(P1), P1 absorbsP2.

In Example 3,P1 absorbsP2. If one program absorbs another program, the com-
positional semantics coincides with one of the original programs. The next proposition
characterizes situations in which absorption happens.

Combining Answer Sets of Nonmonotonic Logic Programs 47

Proposition 3 Let P1 and P2 be two consistent programs, andQ a result of compo-
sition. Then,P1 absorbsP2 iff for any S ∈ AS(P1), there isT ∈ AS(P2) such that
T ⊆ S.

Proof. For anyS ∈ AS(P1), suppose that there isT ∈ AS(P2) such thatT ⊆ S.
As S ∪ T = S, AS(P1) ⊆ AS(Q). Suppose anyT ′ ∈ AS(P2) such thatT ′ 6⊆ S for
anyS ∈ AS(P1). Then,S ⊂ S ∪ T ′. SinceS ∈ AS(Q), S ∪ T ′ 6∈ AS(Q). Thus,
AS(Q) \ AS(P1) = ∅. Hence,AS(Q) = AS(P1). Conversely, ifAS(Q) = AS(P1),
for anyS ∈ AS(P1) there isT ∈ AS(P2) such thatS = S ∪ T . Then,T ⊆ S. ut

Skeptical/credulous inference in compositional semantics has the following proper-
ties.

Proposition 4 Let P1 andP2 be two consistent programs, andQ a result of composi-
tion. WhenQ is consistent, the following relations hold.

1. crd(Q) ⊆ crd(P1) ∪ crd(P2).
2. skp(Q) = skp(P1) ∪ skp(P2).

Proof. (1) Any literal included in a consistent answer setS ∈ AS(Q) is either in-
cluded in an answer setT ∈ AS(P1) or included in an answer setT ′ ∈ AS(P2). (2) If
any literalL is included in every answer setS in AS(P1) or included in every answer
setT in AS(P2), it is included in everyS ∪ T in AS(Q). Conversely, if any literalL
is included in every consistent answer setU in AS(Q), L is included in every mini-
mal setS ∪ T for someS ∈ AS(P1) andT ∈ AS(P2). SupposeL ∈ S and there
is S′ ∈ AS(P1) such thatL 6∈ S′. If there isT ′ ∈ AS(P2) such thatL 6∈ T ′, then
L 6∈ S′ ∪T ′ so there isV ∈ AS(Q) such thatL 6∈ V ⊆ S′ ∪T ′. Contradiction. Hence,
L ∈ T for everyT ∈ AS(P2). ut

Thus, if the compositional semantics is consistent, it combines skeptical conse-
quences ofP1 andP2, and any information included in an answer set ofQ has its origin
in an answer set ofP1 or P2. The above relations do not hold whenQ is inconsistent.3

Example 4.LetAS(P1) = {{p, a}, {p, b}} andAS(P2) = {{¬p, a}, {¬p, b}} where
crd(P1) = { p, a, b }, skp(P2) = { p }, crd(P2) = {¬p, a, b }, andskp(P2) = {¬p }.
The compositional semantics ofP1 andP2 becomesAS(Q) = {Lit }wherecrd(Q) =
skp(Q) = Lit.

As observed in the above example, the result of composition may become incon-
sistent even if the original programs are consistent. WhenAS(Q) has no consistent
answer set, we consider that program composition fails. A necessary and sufficient con-
dition to have a successful program composition is as follows.

Proposition 5 Let P1 andP2 be consistent programs, andQ a result of composition.
Then,Q is consistent iff there areS ∈ AS(P1) andT ∈ AS(P2) such thatS ∪ T is
consistent.

3 This example is provided by an anonymous reviewer.

48 Sakama and Inoue

Proof. Q is consistent iff there is a consistent setS ∪ T in AS(P1)] AS(P2) for
S ∈ AS(P1) andT ∈ AS(P2). Hence, the result follows. ut

In program composition, the problem of interest is the case where one program does
not absorb the other and the result of composition is consistent. In the next section, we
present methods for computing program composition.

4 Composing Programs

In this section, every program is supposed to have a finite number of answer sets. We
first introduce an additional notation used in this section. Given programsP1, . . . , Pk,
define

P1 ; · · · ; Pk =
{head(r1); · · · ;head(rk)← body(r1), . . . , body(rk) | ri ∈ Pi (1 ≤ i ≤ k) }.

Definition 3. LetP1 andP2 be two consistent programs such thatAS(P1) = {S1, . . . , Sm }
andAS(P2) = {T1, . . . , Tn }. Then, define

P1 � P2 = R(S1, T1) ; · · · ; R(Sm, Tn)

whereR(S, T) = SP1 ∪ TP2 andR(S1, T1), . . . , R(Sm, Tn) is any enumeration of the
R(Si, Tj)’s for Si ∈ AS(P1) (i = 1, . . . ,m) andTj ∈ AS(P2) (j = 1, . . . , n).

R(S, T) merges every NAF-free rule which contributes to the construction of an
answer setS of P1 andT of P2. Those rules are then disjunctively combined for any
Si ∈ AS(P1) and for anyTj ∈ AS(P2) in every possible way. By the definition,P1 �
P2 is computed in timeO(|P1| × |P2| × |AS(P1)| × |AS(P2)|), where|P | represents
the number of rules inP and|AS(P)| represents the number of answer sets ofP . In
particular, ifP1 andP2 respectively have the single answer setAS(P1) = {S} and
AS(P2) = {T}, it becomesP1 � P2 = SP1 ∪ TP2.

The programP1 � P2 generally contains useless or redundant literals/rules, and
the following program transformations are useful to simplify the program: (i) Delete a
rule r from a program ifhead(r) ∩ body+(r) 6= ∅ (elimination of tautologies: TAUT);
(ii) Delete a ruler from a program if there is another ruler′ in the program such that
head(r′) ⊆ head(r) andbody(r′) ⊆ body(r) (elimination of non-minimal rules: NON-
MIN); (iii) A disjunction (L;L) appearing inhead(r) is merged intoL, and a conjunc-
tion (L,L) appearing inbody(r) is merged intoL (merging duplicated literals: DUPL).
These program transformations all preserve the answer sets of an EDP [4].

Example 5.Consider two programs:

P1 : p← not q, q ← not p, s← p,

P2 : p← not r, r ← not p,

Combining Answer Sets of Nonmonotonic Logic Programs 49

whereAS(P1) = {{p, s}, {q}} andAS(P2) = {{p}, {r}}. There are fourR(S, T)’s
such that

R({p, s}, {p}) : p←, s← p,

R({p, s}, {r}) : p←, s← p, r ←,

R({q}, {p}) : q ←, p←,

R({q}, {r}) : q ←, r ← .

Then,P1 � P2 contains the following seven rules (after applying DUPL):

(1) p ; q ←, (2) p ; r ←, (3) p ; q ; r ←, (4) q ; s← p,

(5) q ; r ; s← p, (6) p ; q ; s← p, (7) p ; r ; s← p.

Further, rules (3), (5), (6), and (7) are eliminated by NONMIN. Consequently, the sim-
plified program becomes

p ; q ←, p ; r ←, q ; s← p.

In the resulting program, the first rulep ; q ← corresponds to the rulesp ← not q
andq ← not p in P1. The second rulep ; r ← corresponds to the rulesp ← not r
andr ← not p in P2. On the other hand, one might wonder the effect ofq in the head
of the third ruleq ; s ← p. Without q, however, the set{p, q}, which is obtained by
combining{q} ∈ AS(P1) and{p} ∈ AS(P2), does not become an answer set of the
resulting program.

The operator� has the following properties.

Proposition 6 The operation� is commutative and associative.

Proof. The commutative lawP1 � P2 = P2 � P1 is straightforward. To see the
associative law, both(P1 � P2)� P3 andP1 � (P2 � P3) consist of rules of the form:
head(r1) ; · · · ; head(rk) ← body(r1), . . . , body(rk) for ri ∈ R(S, T, U) (1 ≤ i ≤
k) whereR(S, T, U) = SP1 ∪ TP2 ∪ UP3 for any S ∈ AS(P1), T ∈ AS(P2), and
U ∈ AS(P3). Hence,(P1 � P2)� P3 = P1 � (P2 � P3). ut

Now we show that the operator� computes a composition ofP1 andP2.

Lemma 7 Let P1 and P2 be two consistent programs, andS ∈ AS(P1) and T ∈
AS(P2). Then,S ∪ T is an answer set ofSP1 ∪ TP2 if SP1 ∪ TP2 is consistent.

Proof. S is a minimal set satisfyingSP1 andT is a minimal set satisfyingTP2. Since
body(r) ⊆ S andhead(r) ⊆ S for anyr ∈ SP1 andbody(r′) ⊆ T andhead(r′) ⊆ T
for any r′ ∈ TP2, S ∪ T satisfiesSP1 ∪ TP2. Suppose that there isT ′ ⊂ T such that
S∪T ′ satisfiesSP1∪TP2. For anyL ∈ T \T ′, if L 6∈ S, T ′ satisfiesTP2. But this cannot
happen, sinceT is a minimal set satisfyingTP2. Then,L ∈ S, therebyS ∪T = S ∪T ′.
Thus,S ∪ T is a minimal set satisfyingSP1 ∪ TP2. As SP1 ∪ TP2 is NAF-free and
consistent,S ∪ T becomes an answer set of it. ut

Lemma 8 If U is a minimal set satisfying(R(S1, T1) ; R(S2, T2)), U is a minimal set
satisfyingR(S1, T1) or R(S2, T2).

50 Sakama and Inoue

Proof. If U does not satisfy neitherR(S1, T1) nor R(S2, T2), there isr in R(S1, T1)
such thatbody(r) ⊆ U andhead(r) ∩ U = ∅; and there isr′ in R(S2, T2) such that
body(r′) ⊆ U andhead(r′)∩U = ∅. Then,U does not satisfy the rulehead(r);head(r′)←
body(r), body(r′) in (R(S1, T1) ; R(S2, T2)). Contradiction. Then,U satisfiesR(S1, T1)
orR(S2, T2). Suppose thatU satisfiesR(S1, T1). If there isV ⊂ U satisfyingR(S1, T1),
for any ruler ∈ R(S1, T1) it holds body(r) 6⊆ V or head(r) ∩ V 6= ∅. Then,V sat-
isfies every rulehead(r);head(r′) ← body(r), body(r′) in (R(S1, T1) ; R(S2, T2))
for any r′ ∈ R(S2, T2). This contradicts the fact thatU is a minimal set satisfying
(R(S1, T1) ; R(S2, T2)). ut

Lemma 9 (R(S1, T1) ; R(S2, T2)) is consistent iff eitherR(S1, T1) or R(S2, T2) is
consistent.

Proof. Suppose thatR(S1, T1) has a consistent answer setU . Then, for anyr ∈
R(S1, T1), head(r)∩U 6= ∅ or body(r) 6⊆ U . Thus,U satisfies every rulehead(r);head(r′)←
body(r), body(r′) in (R(S1, T1) ; R(S2, T2)) for anyr′ ∈ R(S2, T2). Hence,(R(S1, T1) ; R(S2, T2))
is consistent. Conversely, ifV is a consistent answer set of(R(S1, T1) ; R(S2, T2)), V
is a minimal set satisfyingR(S1, T1) or R(S2, T2) by Lemma 8. Then, the result fol-
lows. ut

Theorem 10. Let P1 and P2 be two consistent programs. Then,AS(P1 � P2) =
min(AS(P1)] AS(P2)).

Proof. Let U ∈ min(AS(P1)] AS(P2)). (i) If U = Lit, S ∪ T is inconsistent
for any S ∈ AS(P1) and for anyT ∈ AS(P2) (Proposition 5). Then,R(S, T) is
inconsistent for anyS ∈ AS(P1) and for anyT ∈ AS(P2), soAS(P1 � P2) = {Lit}
by Lemma 9. (ii) Else ifU 6= Lit, there isS ∈ AS(P1) andT ∈ AS(P2) such that
U = S∪T is consistent. By Lemma 7,U is an answer set ofR(S, T). Then,U satisfies
P1 � P2. Suppose that there is a minimal setV ⊂ U which satisfiesP1 � P2. In this
case,V is a minimal set satisfying someR(S′, T ′) in P1�P2 (Lemma 8). It then holds
that V = S′ ∪ T ′ for someS′ ∈ AS(P1) andT ′ ∈ AS(P2) (by Lemma 7). Since
V ∈ AS(P1)] AS(P2) andV ⊂ U , U 6∈ min(AS(P1)] AS(P2)). Contradiction.
Thus,U is a minimal set satisfyingP1 � P2, soU ∈ AS(P1 � P2).

Conversely, letU ∈ AS(P1 � P2). (i) If U = Lit, R(S, T) is inconsistent for any
S ∈ AS(P1) and for anyT ∈ AS(P2) (by Lemma 9). Then,S ∪ T is inconsistent for
anyS ∈ AS(P1) and for anyT ∈ AS(P2), therebymin(AS(P1)]AS(P2)) = {Lit}.
(ii) Else if U 6= Lit, U is a consistent minimal set satisfying someR(S, T) in P1 � P2

(Lemma 8). It then holdsU = S ∪ T for someS ∈ AS(P1) and T ∈ AS(P2)
(by Lemma 7). Thus,U ∈ AS(P1)] AS(P2). Suppose that there is a minimal set
V ⊂ U such thatV = S′ ∪ T ′ for someS′ ∈ AS(P1) andT ′ ∈ AS(P2). In this
case,V ∈ min(AS(P1)] AS(P2)), andV becomes an answer set ofP1 � P2 by the
proof presented above. This contradicts the assumption ofU ∈ AS(P1 � P2). Hence,
U ∈ min(AS(P1)] AS(P2)). ut

Example 6.In Example 5,AS(P1 � P2) = {{p, q}, {p, s}, {q, r}}, which coincides
with the result of composition.

Combining Answer Sets of Nonmonotonic Logic Programs 51

Two programsP1 andP2 aremergedby taking their unionP1 ∪ P2. Program com-
position and merging bring syntactically and semantically different results in general,
but there are some relations for special cases.

Proposition 11 For two consistent NAF-free programsP1 andP2, if P1∪P2 is consis-
tent,P1 � P2 is consistent.

Proof. If P1∪P2 is consistent, there isSP1 for S ∈ AS(P1) andTP2 for T ∈ AS(P2)
such thatSP1 ∪ TP2 is consistent. Then,S ∪ T is consistent. By Proposition 5 and
Theorem 10,P1 � P2 is consistent. ut

The converse of Proposition 11 does not hold in general.

Example 7.Let P1 = { p ←} andP2 = {← p }. Then,P1 � P2 = { p ←}, but
P1 ∪ P2 has no answer set.

In the general case, there is no relation for the “easiness” of inconsistency arising
between composition and merging.

Example 8.Let P1 = { p ← not¬p } andP2 = {¬p ← not p }. Then,P1 ∪ P2 is
consistent, butP1 � P2 = { p ← , ¬p ←} is inconsistent. On the other hand, let
P3 = { p← not q, q ← not r } andP4 = { r ← not p }. Then,P3∪P4 is inconsistent,
butP3 � P4 = { q ; r ←} is consistent.

For extended logic programs, the following syntactical and semantical relations
hold.

Proposition 12 For two consistent NAF-free ELPsP1 andP2, P1 � P2 ⊆ P1 ∪ P2.

Proof. An NAF-free ELP has the single answer set. LetAS(P1) = {S} andAS(P2) =
{T}. Then,P1 \ SP1 = { r | r ∈ P1 and body(r) 6⊆ S }, andSP1 \ P1 = ∅. This is
also the case forP2. SinceP1 � P2 = SP1 ∪ TP2, the result follows. ut

Proposition 13 Let P1 andP2 be two consistent NAF-free ELPs. Then,U ⊆ V holds
for the answer setU of P1 � P2 and the answer setV of P1 ∪ P2.

Proof. LetAS(P1) = {S} andAS(P2) = {T}. Then,AS(P1 � P2) = {S ∪ T}. If
P1 ∪ P2 is inconsistent,AS(P1 ∪ P2) = {Lit}. So,S ∪ T ⊆ Lit. Else ifP1 ∪ P2 has
the consistent answer setV , S ∪ T is consistent by Proposition 11. Then,S ∪ T ⊂ V
by Proposition 12. ut

Example 9.Let P1 = { p ← q } andP2 = { q ←}. Then,P1 � P2 = { q ←} and
P1 ∪ P2 = { p ← q, q ←}. SoP1 � P2 ⊆ P1 ∪ P2 and{q} ∈ AS(P1 � P2) is a
subset of{p, q} ∈ AS(P1 ∪ P2).

52 Sakama and Inoue

5 Permissible Composition

In Section 3, we introduced the compositional semantics of two programs and Section 4
provided a method of composing programs. In this section, we argue permissible con-
ditions for the compositional semantics in multi-agent coordination. First, we introduce
a criterion for selecting answer sets in the compositional semantics.

Definition 4. LetP1 andP2 be two consistent programs, andQ a result of composition.
Then, any answer setS ∈ AS(Q) is conservativeif it satisfies every rule inP1 ∪ P2.

Example 10.Recall two programsP1 andP2 in Example 5:

P1 : p← not q, q ← not p, s← p,

P2 : p← not r, r ← not p,

whereAS(P1) = {{p, s}, {q}} andAS(P2) = {{p}, {r}}. The compositional seman-
tics ofP1 andP2 isAS(Q) = {{p, q}, {p, s}, {q, r}}. Among them,{p, s} and{q, r}
satisfy every rule inP1 ∪ P2, so they are conservative. Note that{p, q} does not satisfy
the third rule ofP1.

Conservative answer sets are acceptable to each agent because they satisfy the orig-
inal program of each agent. Unfortunately, conservative answer sets do not always exist
in the compositional semantics. For instance, in Example 10 ifP2 contains constraints
← s and← q, no conservative answer set exists. Existence of no conservative an-
swer set is not a serious flaw in the compositional semantics, however. In fact, different
agents have different beliefs in the multi-agent environment, and it may happen that one
agent must give up some original belief to reach a reasonable compromise. On the other
hand, an agent may possess somepersistentbeliefs that cannot be abandoned. Those
persistent beliefs are retained by each agent in coordination. Formally, those beliefs in
a programP are distinguished asPB ⊆ P wherePB is the set of rules that should be
satisfied by the compositional semantics. In this setting, a variant of the compositional
semantics is defined as follows.

Definition 5. Let P1 andP2 be two consistent programs, andPB1 andPB2 their per-
sistent beliefs, respectively. A programΩ is called apermissible compositionof P1 and
P2 if it satisfies the condition

AS(Ω) = {S | S ∈ min(AS(P1)] AS(P2)) andS satisfiesPB1 ∪ PB2}.

The setAS(Ω) is called thepermissible compositional semanticsof P1 andP2. Any
answer set inAS(Ω) is called apermissible answer set. By the definition, permissible
composition adds an extra condition to the compositional semantics of Definition 1.
The permissible compositional semantics reduces to the compositional semantics when
PB1 ∪ PB2 = ∅. In particular, conservative answer sets are permissible answer sets
with PB1 ∪ PB2 = P1 ∪ P2. Every permissible answer set satisfies persistent beliefs
of each agent, and extends some answer sets of an agent by additional information of
another agent.

Combining Answer Sets of Nonmonotonic Logic Programs 53

Program composition that reflects the permissible compositional semantics is achieved
by introducing every rule inPB1 ∪ PB2 as a constraint toP1 � P2. Given a program
P , let IC(P) = {← body(r), not head(r) | r ∈ P } wherenot head(r) is the
conjunction of NAF-literals{not L1, . . . , not Ll } for head(r) = {L1, . . . , Ll }.

Theorem 14. Let P1 and P2 be consistent programs, andΩ a result of permissible
composition. Then,AS(Ω) = AS((P1 � P2) ∪ IC(PB1) ∪ IC(PB2)).

Proof. By the definition ofAS(Ω) and the result of Theorem 10,S ∈ AS(Ω) iff S is
an answer set ofP1 � P2 and satisfiesPB1 ∪ PB2

iff S is an answer set ofP1 � P2 and satisfiesIC(PB1) ∪ IC(PB2)
iff S ∈ AS((P1 � P2) ∪ IC(PB1) ∪ IC(PB2)). ut

Example 11.Consider two programsP1 andP2 in Example 10 wherePB1 = { s ←
p } andPB2 = ∅. Then,(P1 � P2) ∪ IC(PB1) ∪ IC(PB2) becomes

p ; q ←, p ; r ←, q ; s← p, ← p, not s,

which has two permissible answer sets{p, s} and{q, r}.

6 Discussion

A lot of studies exist for compositional semantics of logic programs (see [6, 9] for ex-
cellent surveys). A semantics iscompositionalif the meaning of a program can be
obtained from the meaning of its components. The union of programs is the simplest
composition between programs. However, semantics of logic programs is not compo-
sitional with respect to the union of programs even for definite logic programs. For
instance, two definite logic programsP1 = { p← q } andP2 = { q ←} have the least
Herbrand models∅ and{q}, respectively. But the least Herbrand model of the program
unionP1 ∪ P2 is not obtained by the composition of∅ and{q}. To solve the problem,
a number of different compositional semantics have been proposed in the literature [6].
In composing nonmonotonic logic programs, difficulty of the problem is understood as:
“non-monotonic reasoning and compositionality are intuitively orthogonal issues that
do not seem easy to be reconciled. Indeed the semantics for extended logic programs
are typically non-compositional w.r.t. program union” [6]. With this reason, studies for
compositional semantics of nonmonotonic logic programs mainly concern with the is-
sue of devising a compositional semantics that can accommodate (restricted) nonmono-
tonicity, or imposing syntactic conditions on programs to be compositional [5, 7, 8, 10,
17].

In this respect, our approach is different from those previous studies. Our primary
interest is not simply merging two programs but building a new program that combines
answer sets of the original programs. One may wonder the practical value of such com-
bination of answer sets aside from original programs. For instance, given two programs
P1 = {¬p ← not p } andP2 = { p ←}, one would consider the meaning of program
composition as the answer set{p} of P1 ∪ P2. By contrast, our compositional seman-
tics P1 � P2 becomes inconsistent, i.e., combination of{¬p} and{p} producesLit.
To justify our position, suppose the following situation: the agentP1 does not believe

54 Sakama and Inoue

the existence of an alien unless its existence is proved, while the agentP2 believes the
existence of aliens with no doubt. The situation is encoded by the above program. Then,
what conclusion should be drawn after combining these conflicting beliefs of agents? If
one simply merges beliefs by program union, the existence of alien is concluded by the
answer set{p}. In our compositional semantics, two beliefs do not coexist thereby con-
tradict. In multi-agent environments, different agents have different levels of beliefs. A
cautious agent might have knowledge in a default form, while an optimistic agent might
have knowledge in a definite form. In this circumstance, it appears careless to simply
merge knowledge from different information sources. As argued in the introduction,
simple merging of different programs does not always reflect the meaning of individ-
ual programs. We then took an approach of retaining belief of each agent and combine
answer sets of different programs. As a result, the compositional semantics maintains
information included in (at least one) answer set of the original programs. In this sense,
our program composition is intended to coordinate agents, rather than to synthesize
a program by its component. Note that program composition should be distinguished
from revisionor update, in which one of two information is known more reliable. In
the above example, it is reasonable to acceptP1 ∪ P2 as a result of revision/update of
P1 with P2. Because in this caseP2 is considered new information which precedesP1.
In program compositionP1 andP2 are supposed to have the same status, so there is no
reason to relyP2 overP1.

Baralet al. [1] introduce algorithms for combining logic programs by enforcing sat-
isfaction of integrity constraints. They request that every answer set of a resulting pro-
gram to be a subset of an answer set ofP1∪P2, which is different from our requirement.
Their algorithm is not applicable to unstratified logic programs. The compositional se-
mantics introduced in this paper does not enforce satisfaction of integrity constraints of
original programs. One reason for this is that in nonmonotonic logic programs incon-
sistency may arise aside from integrity constraints. For instance, the integrity constraint
← p has the same effect as the ruleq ← p, not q under the answer set semantics. Then,
there seems no reason to handle integrity constraints exceptionally in a program. If de-
sired, however, it is easy to have a variant of program composition satisfying constraints
as(P1 � P2) ∪ IC1 ∪ IC2, whereICi (i = 1, 2) is the set of integrity constraints in-
cluded inPi. By the introduction of integrity constraints, every answer set which does
not satisfyIC1 ∪ IC2 is filtered out. This is also realized by a permissible version of
the compositional semantics by puttingPB1 = IC1 andPB2 = IC2. Combination
of propositional theories has also been studied under the names ofmerging[14] or ar-
bitration [15], but they do not handle nonmonotonic theories. Sakama and Inoue [16]
introduce a framework of coordination between logic programs. They study two prob-
lems as follows: given two programsP1 andP2, (i) find a programQ which has the
set of answer sets such thatAS(Q) = AS(P1) ∪ AS(P2); and (ii) find a programR
which has the set of answer sets such thatAS(R) = AS(P1)∩AS(P2). A programQ
is calledgenerous coordinationandR is calledrigorous coordinationof two programs.
They provide methods of building such programs. Compared with the program com-
position of this paper, generous/rigorous coordination does not change answer sets of
the original programs. That is, generous one collects every answer set of each program,
while rigorous one picks up answer sets that are common between two programs. By

Combining Answer Sets of Nonmonotonic Logic Programs 55

contrast, we combine answer sets of each program in every possible way. The result-
ing program and its compositional semantics are both different from generous/rigorous
coordination. As addressed above, our program composition is also intended to coordi-
nate agents, it would be interesting to investigate relations among those different types
of coordination.

The program composition introduced in Section 4 produces NAF-free EDPs. One
may think this uneasy, because this is the case even for composing ELPs containing no
disjunction. Disjunctive programs are generally harder to compute, so that it is desirable
to have a non-disjunctive program as a result of composing non-disjunctive programs.
Technically, the programP1�P2 is transformed to a non-disjunctive program ifP1�P2

is head-cycle-free, i.e., it contains no positive cycle through disjuncts appearing in the
head of a disjunctive rule [3]. IfP1 � P2 is head-cycle-free, the program is converted
to an ELP by shifting disjuncts in the head of a rule to the body as NAF-literals in
every possible way but leaving one in the head. For instance, the programP1 � P2 in
Example 5 is converted to the ELP:{ p ← not q, q ← not p, p ← not r, r ←
not p, q ← p, not s, s← p, not q }. The resulting program has the same answer sets
as the original disjunctive program.

7 Conclusion

This paper has studied a compositional semantics of nonmonotonic logic programs.
Given two programs, we first introduced combination of answer sets as the composi-
tional semantics of those programs. Then, we developed a method of building a program
which reflects the compositional semantics of the original programs. A permissible
composition was also introduced for multi-agent coordination. The proposed frame-
work provides a new compositional semantics of nonmonotonic logic programs, and
serves as a declarative basis for coordination in multi-agent systems. From the view-
point of answer set programming, program composition is considered as a program
development under a specification that requests a program reflecting the meanings of
two or more programs.

The approach taken in this paper requires computing every answer set of programs
before composition. This may often be infeasible when a program possesses an expo-
nential number of answer sets. The same problem arises in computing answer sets by
existing answer set solvers, however. This paper considered compositional semantics as
minimal sets that reflect the meaning of original programs. By contrast, a program may
havenon-minimalanswer sets in the context ofgeneral extended disjunctive programs
which possibly contain NAF in the heads of rules [13]. In this context, the composi-
tional semantics would be defined as a collection of non-minimal answer sets. These
extensions and variants of compositional semantics will be investigated in future study.

References

1. C. Baral, S. Kraus, and J. Minker. Combining multiple knowledge bases.IEEE Transactions
of Knowledge and Data Engineering, 3(2):208–220, 1991.

56 Sakama and Inoue

2. C. Baral and M. Gelfond. Logic programming and knowledge representation.Journal of
Logic Programming, 19/20:73–148, 1994.

3. R. Ben-Eliyahu and R. Dechter. Propositional semantics for disjunctive logic programs.
Annals of Mathematics and Artificial Intelligence, 12(1):53–87, 1994.

4. S. Brass and J. Dix. Characterizations of the disjunctive stable semantics by partial evalua-
tion. Journal of Logic Programming, 32(3):207–228, 1997.

5. A. Brogi, S. Contiero, and F. Turini. Programming by combining general logic programs.
Journal of Logic and Computation, 9(1):7–24, 1999.

6. A. Brogi. On the semantics of logic program composition.Program Development in Com-
putational Logic, LNCS 3049, pp. 115–151, Springer, 2004.

7. A. Brogi, E. Lamma, P. Mancarella, and P. Mello. A unifying view for logic programming
with nonmonotonic reasoning.Theoretical Computer Science, 184(1):1–59, 1997.

8. F. Bry. A compositional semantics for logic programs and deductive databases.Proceedings
of the Joint International Conference and Symposium on Logic Programming, pp. 453–467,
MIT Press, 1996.

9. M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic programming.Journal of Logic
Programming, 19/20:443–502, 1994.

10. S. Etalle and F. Teusink. A compositional semantics for normal open programs.Proceedings
of the Joint International Conference and Symposium on Logic Programming, pp. 468–482,
MIT Press, 1988.

11. W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic programs: se-
mantics and complexity.Proceedings of the 9th European Conference on Logics in Artificial
Intelligence, LNAI 3229, pp. 200–212, Springer, 2004.

12. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9(3/4):365–385, 1991.

13. K. Inoue and C. Sakama. Negation as failure in the head.Journal of Logic Programming,
35(1):39–78, 1998.

14. S. Konieczny and R. Pino-Pérez. On the logic of merging.Proceedings of the 6th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning, pp. 488–498,
Morgan Kaufmann, 1998.

15. P. Liberatore and M. Schaerf. Arbitration (or how to merge knowledge bases).IEEE Trans-
actions on Knowledge and Data Engineering10(1):76–90, 1998.

16. C. Sakama and K. Inoue. Coordination between logical agents.Proceedings of the 5th
International Workshop on Computational Logic in Multi-Agent Systems, Lecture Notes in
Artificial Intelligence, 3487, pp. 161–177, Springer, 2005.

17. S. Verbaeten, M. Denecker, and D. De. Schreye. Compositionality of normal open logic
programs.Proceedings of the 1997 International Symposium on Logic Programming, pp.
371–385, MIT Press, 1997.

