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In this paper, we present an energy optimization model of Cloud computing, and formulate 

novel energy-aware resource allocation problem that provides energy-efficiency by 

heterogeneous job consolidation taking into account types of applications. Data centers 

process heterogeneous workloads that include CPU intensive, disk I/O intensive, memory 

intensive, network I/O intensive and other types of applications. When one type of 

applications creates a bottleneck and resource contention either in CPU, disk or network, it 

may result in degradation of the system performance and increasing energy consumption. 

We discuss energy characteristics of applications, and how an awareness of their types can 

help in intelligent allocation strategy to improve energy consumption. 

1. Introduction 

Cloud computing is an innovative distributed computing paradigm that is widely accepted by public 

and private organizations. The main objective of providers is to obtain maximum profits and guarantee 

QoS requirements of customers. One of the main concerns is energy expenditures. Intelligent job 

allocation strategies can be used to improve energy efficiency. 

Inefficient resource management has a direct negative effect on performance and cost. In the 

shared environments, it is often difficult to optimize energy consumption of physical resources and 

virtual machines (VMs) with different type of tasks (CPU intensive, disk I/O intensive, memory 

intensive, network I/O intensive, etc.). Detailed energy management at granular levels should be used 

to optimize resource usage and improve profitability [1]. 

In this paper, we present an energy optimization model in Cloud computing that takes into 

account different types of applications. We propose a heterogeneous job consolidation algorithm for 

power aware scheduling to optimize energy consumption. We evaluate power efficiency of our 

strategy and compare it with the best in the literature under different scenarios.  

The paper is structured as follow. The next section reviews related work on the energy 

optimization. Section 3 presents the problem definition, while the proposed scheduling algorithms are 

described in Section 4. Section 5 concludes the paper by presenting main contribution and future 

work. 

2. Related work 

Reducing energy consumption in Cloud computing has emerged as one the main research issues both 

in industry and academia. This is due to the fact that the energy required by the datacenters for its 

operation, power supply, and cooling, contribute significantly to the total operational costs. 

In this section, we discuss power aware resource allocation algorithms presented in the literature. 
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EMVM- Energy-aware resource allocation heuristics for efficient management [2]. The authors 

define an architectural framework and principles for energy-efficient Cloud computing. They present 

resource provisioning and allocation algorithms utilizing the dynamic consolidation of VMs for 

energy-efficient management of Cloud computing environments. The approach is validated by 

conducting a performance evaluation study using the CloudSim toolkit. It is shown that the approach 

leads to a substantial reduction of energy consumption in Cloud data centers in comparison to static 

resource allocation techniques.  

Presented power consumption model is the following. 

                                

where      is the maximum power consumed when the server is fully utilized;   is the fraction of 

power consumed by the idle server (i.e. 70%); and   is the CPU utilization.  

The total energy consumption   is defined as an integral of the power consumption function over 

a given period of time 

              
  

  

  

When VMs do not use all provided resources, they can be logically resized and consolidated to 

the minimum number of physical nodes. While idle nodes can be switched to the sleep mode to 

eliminate the idle power consumption and reduce the total energy consumption by the data center.  

Fig. 1 shows the percentage of energy consumption due to CPU utilization used in this work. 

 

Fig. 1. Percentage of energy consumption due to CPU utilization (%). 

HSFL- Hybrid shuffled frog leaping algorithm [3]. The authors propose a data center resource 

management scheme. It can not only guarantee user quality of service (QoS) specified by SLAs, but 

also achieve maximum energy saving and green computing goals. Consolidation of resources is 

achieved by VM migrations technology. Low utilized and idle hosts are switched to power saving 

mode to achieve energy saving while ensuring that SLAs are adhered to.  

Host energy consumption exhibits an almost linear proportion to CPU energy consumption. 

Moreover, the energy consumption of an idle host accounts for 70% of full-load operation energy 

consumption. The energy consumed by VM migrations also requires consideration. Energy 

consumption within a given unit time is defined as follows 

                                              
   

  

        is the energy consumption when host   is in full load.         is the average utilization 

rate of the host processor within unit time,   is the collection of VM migrations within the unit time 

window, and      is the migration time of VM  . The percentage of energy consumption due to CPU 

utilization is similar to Fig. 1. 

AETC- Algorithm of energy-aware task consolidation [4]. The authors propose a technique of 

energy-aware task consolidation (ETC) to minimize energy consumption. ETC restricts CPU use 

below a specified peak threshold by consolidating tasks amongst virtual clusters. In addition, the 

energy cost model considers network latency, when a task migrates to another virtual cluster. They 

define a default CPU utilization threshold of 70% to demonstrate task consolidation management 

amongst virtual clusters. Although the idle state of virtual machines and network transmission are 

assumed to be a constant ratio of basic energy consumption unit in his study. The simulation results 
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show that ETC can significantly reduce power consumption when managing task consolidation for 

Cloud systems. ETC is designed to work in a data center for VMs that reside on the same rack or on 

racks where network bandwidth is relatively constant. 

 

 

Fig. 2. Stepwise energy consumption due to CPU utilization (%). 

The model assumes energy consumption               in the idle state. An additional energy β 

is required for executing tasks when CPU utilization is increased.  

      

 
 
 
 

 
 
 

                                                                                
                                           

                                                      
                                                     
                                                 
                                           
                                      

  

The energy consumption of a virtual machine    is defined as follows. The total energy 

consumption of     during the time period       is given the following formula: 

                

 

   

  

Given a virtual cluster,     which consists of   VMs, the energy consumption of VC during the 

time period       tm is as follows: 

                   

 

   

  

Fig. 2 shows the percentage of energy consumption due to CPU utilization. 

CTES- Cooperative Two-Tier Energy-Aware Scheduling [5]. The authors propose a cooperative 

two-tier task scheduling approach to benefit both Cloud providers and their customers. It regulates the 

execution speeds of real-time tasks in a way that a host reaches the optimum level of utilization 

instead of migrating its tasks to other hosts. They also propose several predictive global task 

scheduling policies to map arrived tasks to feasible VM, in his technique, a host is locally scheduled to 

reach its optimum CPU usage instead of migrating its tasks to other hosts. They divide the energy 

consumption of a host into two parts, static and dynamic energies. His simulation results show that the 

proposed task scheduling approach reduces the total energy consumption of a Cloud. 

The utilization of a host,   is defined as:       
      

   
, where        are the allocated MIPS of 

      in time   and     is the maximum computing power of       
We suppose that an idle host changes its state to be powered off immediately. Thus, the total 

power of a host is defined as: 
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        is the power consumed during the idle time of a computing node. It is defined as         
     .      is the power consumed when a host works with its maximum utilization. Utilization.   

is the constant ratio of the static power of a host to its maximum power             which depends 

on the physical characteristics of a host. 

Dynamic power consumption is: 

  
       

    
      

             
      

If the system uses the power     , the energy consumption will be          
      
 

 where      

is the time in which a host works at its maximum computing power to finish a certain number of 

instructions. The percentage of energy consumption due to CPU utilization is similar to Fig. 1. 

Therefore, the energy consumption of a host to finish its certain amount of instructions is obtained 

by:  

             
         

 
 

DVMA- A Decentralized Virtual Machine Migration Approach [6]. The authors propose a 

decentralized virtual machine migration approach inside the data centers for Cloud computing 

environments which use virtual machines to host many third-party applications. They define a system 

models and power models then; they present the key steps of the decentralized mechanism, including 

the establishment of load vectors, load information collection, VM selection, and destination 

determination. A two-threshold decentralized migration algorithms is implemented to further save the 

energy consumption as well as keeping the quality of services. Performance evaluation results of their 

simulation experiments illustrate that their approach can achieve better load balancing effect and less 

power consumption than other strategies. 

An idle physical node even with 0% of utilization could still consume a plenty of power. Let α be 

the fraction of power consumed by an idle node compared to a full utilized node and  the current 

CPU utilization of the node. Then, we use the power model defined as follows to compute the power 

consumption of a physical nodes     :          
                

     , where   
    is the 

power consumption of      when it is fully utilized (i.e., it reaches 100% of CPU utilization). The 

percentage of energy consumption due to CPU utilization is similar to Fig. 1. 

EDRP- Energy and Deadline Aware Resource Provisioning [7]. The authors addresses the 

problem of minimizing the operation cost of a Cloud system by maximizing its energy efficiency 

while ensuring that user deadlines as defined in Service Level Agreements are met. They take into 

account two types of workload models, independent batch requests and task graphs with dependencies. 

The power consumption of    at time   includes the static power consumption        
     and the 

dynamic power consumption         
     . Both are correlated with the utilization rate of    at time  : 

        . We evaluate          by considering only the CPU requirements of the hosted VMs indicated 

in       , and do not differentiate between VMs that are running tasks and idle VMs, since 

background CPU activities are needed even during idle periods.        
      is constant when          

  , 0 otherwise.  The relationship between         
      and          is much more complex. Servers 

have optimal utilization levels in terms of performance-per-watt, which we define as       for   . It is 

commonly accepted that for modern servers           , and the increase in power consumption 

beyond this operating point is more drastic than when               . Even for identical utilization 

levels, the energy efficiency of different servers may vary. This is captured by the coefficients    and 

  , representing the power consumption increase of     when               and                
respectively.         

       is then calculated as:  

 
                                                                               

                       
                            

  

We would like to point out that the exact formulations of          
      do not undermine the 

analysis, since its increment is faster when                than when               . 
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Suppose the upper bound of the maximum schedule length of all applications is     . The total 

energy consumption (COSP) is the sum of the power consumption across all servers throughout the 

operation timeline:  

                
             

      

    

   

 

 

   

  

In Fig. 3, we show the nonlinear percentage of energy consumption due to CPU utilization used in 

this work. 

 

Fig. 3. Nonlinear energy consumption due to CPU utilization (%). 

BFDP- Best Fit Decreasing Power [8]. The authors propose a simulation-driven methodology 

with an energy model based on polynomial regression with Lasso to predict energy consumption to 

verify its performance, and a resource scheduling algorithm BFDP shifting its optimization goal from 

resource consolidation to power consumption to improve the energy efficiency without degrading the 

QoS of the system and they consider four type of jobs, CPU-intensive, Memory-intensive, Network-

intensive and I/O-intensive. The authors introduced the mechanism of utilization thresholds in BFDP 

to alleviate the over-consolidation issue in the Best-Fit strategy. Their results showed that are effective 

because BFDP creates less SLA violations than the BFDR in light workloads. 

The authors uses a nonlinear energy model: 

                  

 

   

  

where        is the kernel function of expression   ,    is the CPU and memory utility.    is the 

parameter of the kernel function to be determined through the model training process.    is a constant. 

Fig. 4 presents a relationship between CPU and memory utilization and full-system power. 

 

Fig. 4. Relationship between CPU and memory utilization and full-system power [8]. 

PAHD- Power-aware Applications Hybrid Deployment [9]. The authors present I/O Intensive and 

CPU-Intensive applications hybrid deployment to optimize resource utilization within virtualization 

environments. To demonstrate the problem of I/O and CPU resource in virtualization environment, 
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they use Xen as the Virtual Machine Monitor to make experiments. Under different resource 

allocation configurations, they evaluate power efficiency up to 2%12%, compared to the default 

deployment. Finally they conclude that if the CPU-Intensive application is allocated twice as much 

CPU compared to I/O-Intensive application, there are an improvement in the power efficiency. 

Table 1 shows the summary of the algorithm domains, the main characteristics of described 

algorithms, and the criteria used to evaluate quality of the algorithms. 

Table 1. Related work algorithms. 

Application 

domain 
Characteristics 

Evaluation 

criteria 
Ref 
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EMVM  ●  ●   ●   ● ● ●  ● ●   ● ● ● [2] 

HSFL  ●  ●   ●    ● ●  ● ●   ● ●  [3] 

AETC  ●  ●    ● ●  ● ●   ●   ● ●  [4] 

CTES  ●   ●  ●  ●  ●   ● ●   ● ● ● [5] 

DVMA  ●   ●      ● ●   ●   ● ●  [6] 

EDRP  ●  ●    ● ●  ● ● ●  ●   ● ● ● [7] 

BFDP  ●  ●     ●  ● ●  ● ● ●  ● ●  [8] 

PAHD ●          ●    ● ●  ● ●  [9] 

3. Problem definition 

We assume that   servers of the data center are identical, and described by tuples { ,  ,    ,     , 

    }, where   is a measure of instruction execution speed (MIPS),     is the amount of memory 

(MB),      is the available bandwidth (Mbps), and     is energy efficiency (MIPS per watt). We also 

assume that data centers have enough resources to execute any job. 

The main objective of the proposed strategies is to minimize the total power consumption   of 

running workloads providing QoS guarantees. 

3.1 Job model 

We consider   independent jobs           . The job    is described by a tuple 

                       , where      is the released time,    is a processing time. The release time 

    of a job is not available before the job is submitted.     is the SLA from a set 

                           offered by the provider [19, 10, 20]. Each SLA represents a SL 

guarantee, and is denoted by the slack factor     .    is the deadline of the job    and is calculated at 

the release of the job as             . Finally       characterizes a job as CPU intensive, disk I/O 

intensive, memory intensive, network I/O intensive, etc. 

3.2 Energy model 

We present a nonlinear model of the power consumption by considering types of applications. Fig. 5 

shows examples of the normalized power consumption of jobs of type A and type B vs CPU utilization 

(%). Characteristics of CPU intensive, disk I/O intensive, memory intensive, network I/O intensive, 

etc. applications influence on power consumption differently due to corresponding hardware 

characteristics. 

Moreover, an allocation of two different applications to the same server could cause reduced power 

consumption, less than the sum of their individual power consumptions. It also has an impact on 

performance enhancement avoiding creation of a bottleneck and resource contention (either in CPU, 
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disk or network) that may result in additional degradation of the system performance and increased 

energy consumption. 

We propose a hybrid model that takes into account power consumption of individual jobs and 

their combinations. Due to diversity of applications and their combinations, we propose to consider 

aggregated utilization of each type of applications (total utilization that contributes each job type or 

concentration). 

 

Fig 5. Normalized power consumption of jobs A and B vs CPU utilization (%). 

The power consumption of the processor at time   consists of two parts: an idle power 

consumption when the processor is turned on, but not used       
    

, and power consumption when 

the processor is in use       
    

   : 

  
                     

    
       

    
         

  ,     (1) 

where        , if the processor is on at time  , and         otherwise.       is the utilization at 

time  .    is a coefficient proposed in [15] to fit non-linear power profiles. 

      
    

            
    

       
    

            ,     (2) 

where      
    

 is the maximum power consumption when the processor is fully utilized. 

          is the coefficient that represents the increment of power consumption when a 

processor runs different types of applications. The concentration of type A vs type B at the time   is 

defined as      . 

          

 
 
 

 
                                                                
                                         
                                       
                                  
                                      

     (3) 

Fig. 6 shows the proportion of power consumption, when the processor runs different jobs A and B. 
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Fig 6. Proportion of the power consumption vs concentration of jobs A. 

The total power consumed by the system is the integral of power consumed during operation: 

             
    
   

, with           
        

         (4) 

We define        
    

          
    

. Following [11], with the power consumption of a processor 

Fujitsu PRIMERGY TX300 S7, we set       . We set         , for      (all jobs are type A), 

and            for      (all jobs are type B). 

Fig. 7 shows the normalized power consumption when the processor runs two types of applications.  

 

 

Fig 7. Normalized power consumption of job A and B vs CPU utilization (%) and concentration of jobs A (%). 

4. Scheduling algorithms 

In this section, we describe our scheduling approach and proposed energy-aware scheduling methods. 

4.1 Scheduling approach 

We address a two-level scheduling approach [12, 13, 14, 15]. At the upper level, the system verifies 

whether a job can be accepted or not using a Greedy acceptance policy. If the job is accepted then the 

system selects a machine from the set of admissible machines to execute the job on the lower level.  
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The greedy higher-level acceptance policy is based on the preemptive Earliest Due Date (EDD) 

algorithm, which gives priority to jobs according to their deadlines. When a job   arrives to the system, 

in order to determine whether to accept or reject it, the system searches for the set of machines capable 

of executing the job   before its deadline assuring that no jobs in the machine will miss their deadlines. 

If the set of available machines is not empty              job   is accepted otherwise it is rejected. 

This completes the first stage of scheduling.  

Note that the preemptive EDD algorithm is well suited for our purpose as it is easy to apply and it 

yields an optimal solution for the 1 | prmp,   , online | Lmax problem. By EDD, we verify that all 

already accepted jobs with a deadline greater than the deadline of the incoming job will be completed 

before their deadline. 

4.2 Allocation strategies 

The machine for job allocation can be determined by taking into account different criteria. In this 

work, we study ten allocation strategies Rand, FFit, RR, ML, MTe, Me, Mu, Mau, Mujt, and Mc. (see 

Table 2). They are characterized by the type and the amount of information used for allocation 

decision.  

We categorize the proposed methods in three groups: (1) knowledge-free, with no information 

about applications and resources [16, 17, 18]; (2) energy-aware, with power consumption information; 

and (3) utilization-aware with utilization of machines information. 

Table 2. Job allocation strategies. 

Type Strategy Description 

K
n

o
w

le
d

g
e 

F
re

e 

Rand allocates job   to a suitable  machine randomly selected using a uniform 

distribution in the range        . 

FFit (First Fit) allocates job    to the first machine available and capable to execute it. 

RR (Round Robin) allocates job   to the machine available and capable to execute by Round 

Robin strategy 

ML (Min load) allocates job   to the machine with the least load at time   :              , 

E
n

er
g

y
 

aw
ar

e 

MTe  

(Min-Total_energy) 

 
 

Me 

(Min-energy) 

allocates job   to the machine with minimum total power consumption at 

time    :              
       

  
     

 

allocates job   to the machine with minimum power consumption at time    : 

            
    

      

U
ti

li
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n
 

aw
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e 

Mu 

(Min-utilization) 
allocates job   to the machine with minimum total utilization at time    

            
    

  

Mau 

(Max-utilization) 
allocates job   to the machine with maximum total utilization at time    

            
    

  

Mujt 

(Min-util_job_type) 
allocates job   to the machine with minimum utilization of jobs of the same 

type at time     

 
Mc 

(Min-concentration) 
allocates job   to the machine with minimum concentration of jobs of the 

same type at time    

5. Conclusions 

In this paper, we consider the problem of energy optimization in Cloud computing from the 

perspective of the Cloud service provider. We formulate and discuss the energy model and energy-

aware resource allocation problem that provide energy-efficiency and QoS guarantees simultaneously 

by heterogeneous job consolidation taking into account types of applications. A generic Cloud 

computing environment has to process multiple applications for multiple users, which create mixed 

workloads of different types with different energy consumption.  
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We consider energy characteristics of applications such as CPU intensive, disk I/O intensive, 

memory intensive, network I/O intensive, etc. and their influence on power consumption due to the 

nature of used hardware. We discuss how an awareness of the job type could help to improve energy 

consumption. Intelligent job allocation has an impact on performance enhancement avoiding creation 

of bottlenecks and resource contentions either in CPU, disk or network, and on decreasing total energy 

consumption.  

We propose a hybrid model that take into account the power consumption of individual jobs and 

their combination. We propose using aggregated utilization of applications, and their concentration for 

job allocation. 

However, further study for energy consumption of multiple job types and their concentration is 

required to assess the actual efficiency and effectiveness of the proposed method. This will be the 

subject of future work for better understanding of the resource contentions and its impact on the 

energy consumption, QoS and multi-objective optimization in clouds. 
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