
Mathematical Modeling

252

Information Technology and Nanotechnology (ITNT-2015)

Method of UNIT testing for algorithms of computing

software modules

Kovartsev A.N., Popova-Kovartseva D.A., Gorshkova E.E.

Samara State Aerospace University

Abstract. The method of automating Unit testing processes for computing

software modules is considered in the paper. Modern means of testing

automation, which are analyzed in many scientific studies, specialize mainly in

testing graphical user interfaces, web-interfaces, network communications,

information systems, etc., which is the result of a huge demand in the market

for software products within these spheres. Software modules of computing

character are overshadowed by such products despite the fact that these

modules have considerable scientific and practical value. They deal mostly

with high tech spheres: aerospace cluster, energy industry, defense complex,

etc. The article presents an original method of Unit testing for computing

modules based on the algorithm of global search for infinite discontinuity points

of testing function, which allows to find fatal errors in computing software

modules, as well as incorrectness in implementation of algorithms for

mathematical models. The universal method of Unit testing is offered within the

class of computing modules, which helps to minimize the time for program

debugging and to find fatal errors with less effort, as well as to organize total

module testing for all modules of the program.

Keywords: Unit testing, testing automation, computing software modules,

global optimization, fatal errors

Citation: Kovartsev A.N., Popova-Kovartseva D.A., Gorshkova E.E. Method

of unit testing for algorithms of computing software modules. Proceedings of

Information Technology and Nanotechnology (ITNT-2015), CEUR Workshop

Proceedings, 2015; 1490: 252-261. DOI: 10.18287/1613-0073-2015-1490-252-

261

Introduction
Developers of modern software (SW) face the challenge to carry out their

projects within tight deadlines and with minimal resources consumption [1, 2],

whereas software vendors strive to carry out testing appropriately, quickly, and

thoroughly. Most types of work, used in software programming, are to be supported

by automated means of testing.

Modern means of automated testing are constantly expanding at present and

include testing of graphical user interfaces, checking requirement compatibility,

download speed, code coverage, web-interface, network communications, information

Mathematical Modeling Kovartsev A.N., Popova-Kovartseva D.A…

253

Information Technology and Nanotechnology (ITNT-2015)

systems, etc. This results from the huge demand in the market for software products

within these spheres. Software modules of computing character are overshadowed by

such products despite the fact that these modules have considerable scientific and

practical value. They deal mostly with high tech spheres [3]: aerospace cluster,

energy industry, defense complex, etc.

Testing is the method of providing the required level of SW quality. In the

general sense, software testing is the process that allows to determine the correctness,

completeness and quality of the developed software product. Unfortunately, it is

impossible to determine unambiguously whether the analyzed program functions

correctly or not, as well as to guarantee the absence of defects in a software product

because human factor problems may appear at all SW lifecycle stages [4]. Therefore,

all existing testing methods operate within private formal methods of testing

organized for the analyzed product. The list of modern methods and approaches for

solving the problem of program testing is extensive and diverse. On the one hand, this

diversity is determined by the current practice of using a computer while solving a

variety of problems and, accordingly, by the specific features of software products

themselves.

The class of computing software modules (CSM), based on the use of

mathematical models, has some specific features. Such programs, carried out on a

computer, are sure to calculate any function that realizes the display output of input

data. This implies that a computer by means of its resources finishes the definition of

a partly determined function, which results in complete definition. Consequently, it is

possible to estimate if the results of program execution are right or wrong only by

comparing the specification of the expected function with the results of its

calculation; this is carried out in the testing process. For the class of computing

software modules, methods of Unit testing [20] and test tools based on models using

formal methods [4,6] are more suitable.

Formal methods usually allow to solve a limited range of testing software tasks

within a particular class, however, they are able to work effectively in industrial

projects and require a minimum number of special skills and knowledge so that to be

used [4]. Currently, within monitoring the formal properties of SW, methods of test

construction are thoroughly developed on the basis of finite-state automation [7, 8].

For them, accuracy characteristics and evaluation of completeness of performed tests

are known. In these techniques, computing route is analyzed not only for performing

some formulae, but also for coordination with the specified automation model of the

proper behavior. Nowadays these methods are rarely used, mainly for monitoring

small critical applications [4]. Formal methods are rather “heavy-weight”, they

require well-qualified specialists, at least at the stage of software modeling. The weak

point of formal methods is the need to construct the model itself on the parallel basis

and to check its correctness.

The practice of industrial software production shows that the most effective

strategy is to search and correct as many errors as possible at the earliest stage of

software development. Methods of Unit testing are appropriate for this purpose. Unit

testing consists in checking the software performance on a set of input and

corresponding output data. This approach allows to reveal a significant number of

errors and locate them quickly as it is easier to find an error within a module than to

do it within the whole project. CSM can be easily interpreted with a vector

Mathematical Modeling Kovartsev A.N., Popova-Kovartseva D.A…

254

Information Technology and Nanotechnology (ITNT-2015)

computable function 𝑍 = 𝑓(𝑋) = (𝑓1(𝑋), 𝑓2(𝑋), … , (𝑋))𝑇 , having a set of input

parameters 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 of the module and a set of calculated data 𝑍 =
(𝑧1, 𝑧2, … , 𝑧𝑚)𝑇 .

The origin of errors for CSM is extensive and diverse. Errors occur when initial

and boundary conditions, which characterize the value and location of external

factors, are set incorrectly. They may be related with a set of limitations and

assumptions resulting from the physical nature of the object and limiting the range of

input parameters.

Among the errors of this kind for CSM, two most common groups can be

distinguished: calculation errors and logical (algorithmic) errors. Calculation errors

are mostly connected with incorrect recording or programming of mathematical

expressions and manifest themselves as arithmetic error of division by 0, the square

root of a negative number, as calculation of rational or transcendental functions, etc.

They can only be detected while executing the program and lead to program stoppage.

Logical errors are connected with the distortion of problem solving algorithm

and result from incorrect problem setting, wrong consideration of all conditions for

solving the problem, incorrect management organization within CSM, and errors in

the input of logical expressions. These errors are difficult to correct, corrections often

being made with the help of formal methods [5].

Nevertheless, there is a universal method for detecting errors of calculating and

partly logical character in computing software modules [3, 9]. This method is based

on the fact that all computing modules, implemented as a program, “work” within

integrity of used functions or mathematical models. Otherwise, the program can’t be

used. If we organize the search for infinite discontinuity of the function by some

means, we will be able to detect all calculating errors of any origin mentioned above.

Relatively “simple” methods of global optimization (GO) of multivariable functions

are appropriate for this purpose[10].

In this paper we consider the improved algorithm of global search for points of

discontinuity of the second type, intended for detecting error situations in the software

modules of computing character. This algorithm is the basis of Unit testing for

computing software modules.

1. Problem Statement
Let the area of error search in computing module be a unit cube (in general –

hypercube)]1,0[]1,0[]1,0[П , which is proportionally divided into eight

smaller cubes.

Unit testing algorithm of computing modules, formally described by vector

function 𝑍 = 𝑓(𝑋), can be put as the problem of global optimization

,,...,1),(max 2 mkXfk
X

 (1)

which is aimed at detecting (or ensuring the absence of) discontinuity points of the

second type in the examined function. The infinite discontinuity  is realized in

numbers marked by code NaN on a computer; in fact we can specify the upper limit

Mathematical Modeling Kovartsev A.N., Popova-Kovartseva D.A…

255

Information Technology and Nanotechnology (ITNT-2015)

of acceptable values |𝑓𝑘(𝑋)| ≤ 𝑀𝑠𝑢𝑝
(𝑘)

 or each calculating parameter of a module. To

simplify the situation, we will further consider scalar function 𝑓(𝑋) = 𝑚𝑎𝑥𝑓𝑖
2(𝑋).

Among the well-known one-parameter methods of multiextremal optimization,

R.G. Strongin statistic information method is the most effective [10]. The method is

based on the use of approximate posterior probability distribution of global extremum

location, which is formed in the process of function testing, which allows to realize a

more balanced strategy to search for function global minimum. This strategy is so

effective that it is often transferred from one-dimensional case to multivariable

function optimization.

It is shown in the paper [10] that function extremum search is realized by

maximizing a simple characteristic function:

)(2
)(

)(
)()(1

1

2
1

1 




 




 ii

ii

ii
ii zz

xx

zz
xxiR , (2)

where  – estimation of Lipschitz constant, which is calculated in the process of

function extremum search:










,0

,01

MrM

M

)(
max

1

1










ii

ii

i xx

zz
M ,

where r – parameter.

The condition of Lipschitz for optimized function simplifies greatly the search

for function extremum as the limitation of function growth degree allows to find local

extremum vicinity quickly. However, while searching for a set of infinite

discontinuity, areas of function monotony as well as extremum vicinity are equally

useless. It is much more important to determine the criteria which will be responsive

to the fast increase and decrease of function.

Nowadays, mathematical aspects of function behavior in vicinities of

discontinuity points are not analyzed thoroughly, which complicates detecting

function discontinuity presence while analyzing its behavior on local continuous

sections. The paper [11] offers the characteristic function, created by analogy with

(2), but it is more adapted to solve the task of search for infinite discontinuities points.

The following characteristic function is offered to use:

r
i

c
i DXfdiR 22))(()( , (3)

where 𝑋𝑖
𝑐– the centre of a cube, 𝐷𝑗 – cube diagonal of search algorithm, r – scaling

parameter.

The second differential of function can be calculated with the help of

interpolation of initial function using Newton’s first interpolation formula [12] for full

factorial plan 3𝑛 [13]. Then, using 𝑃2,2,2(𝑋) it is easy to calculate 𝑑2𝑓(𝑋) ≈

𝑑2𝑃2,2,2(𝑋).
In search algorithm, there is a proportional division of search area into smaller

parts: the unit interval – into 2 parts; square – into 4 parts, cube – into 8 parts, etc. Fig.

1 shows a diagram of search area division for two-dimensional case. We will consider

the three-dimensional case further in order to present a good illustration.

Mathematical Modeling Kovartsev A.N., Popova-Kovartseva D.A…

256

Information Technology and Nanotechnology (ITNT-2015)

Fig. 1. – Diagram of Search Area Division

Construction of interpolating polynomial for multidimensional case can be

realized as follows.

𝑍 = ‖𝑧𝑖𝑗𝑘‖(𝑖, 𝑗, 𝑘 = 0,1,2)

is the matrix of testing function values at nodal points of full factorial plan 3𝑛 . We

introduce new variables 𝑞 =
𝑥1−𝑥1

(0)

ℎ
; 𝑝 =

𝑥2−𝑥2
(0)

ℎ
; 𝑟 =

𝑥3−𝑥3
(0)

ℎ
. The starting point of

interpolation grid is 𝑋(0) = (𝑥1
(0)

, 𝑥2
(0)

, 𝑥3
(0)

; h – the step of interpolation grid.

Newton’s interpolation polynomial is to be calculated in the form of matrix. Symbols

of multidimensional matrix and content of main operations are borrowed from the

paper [13]. To do this, we need to calculate the matrix of finite differences 𝑍.



















zzz

zzz

zzz

zzz

zzz

zzz

zzz

zzz

zzz

Z

qqpprrqqpprqqpp

qqprrqqprqqp

qqrrqqrqq

qpprrqpprqpp

qprrqprqp

qrrqrq

pprrpprpp

prrprp

rrr

22212222

21211212

22122

22112121

21111111

21111

22122

21111

21

~




































 (4)

Here α= 000. We introduce a vector

.)2/)1(1(

;)2/)1(1(

;)2/)1(1(







rrrR

pppP

qqqQ

 (5)

Considering),( -convoluted product of vectors Q, P, R with λ = 0, µ= 0, we get

the matrix of independent variables

𝑋̃ = 𝑄𝑃𝑅 = ‖𝑞𝑖 ∙ 𝑝𝑗 ∙ 𝑟𝑘‖ (𝑖, 𝑗, 𝑘 = 0,1,2 (6)

Thus, Newton’s interpolation polynomial has the following matrix form

  



2

0,,

3

2,2,2

310

210210

~~~~
)(

ccc

cccccc XZXZXP , (6) 

 

 

0 

1 

1 

0  x 

 y 



Mathematical Modeling   Kovartsev A.N., Popova-Kovartseva D.A… 

257 

Information Technology and Nanotechnology (ITNT-2015) 

where ),,( 210 cccc   – Caylean summation index [14].  

The elements of matrix (4) can be calculated using the definition of finite 

differences of corresponding orders. 

To calculate partial derivatives we need vectors 

𝑄′ = (0    1    𝑞 − 0.5)′;  𝑃; = (0  1   𝑝 − 0.5)′;   𝑅′ = (0   1   𝑟 − 0.5)′;  𝑄′′ = 𝑃′′ =
𝑅′′ = (0   0   1)′,  
then 

,
1

))(
~

()(;
1

))(
~

()(;
1

))(
~

()( 3

3

3

2

3

1 h
RQPZXP

h
RPQZXP

h
PRQZXP xxx

  

and the second derivatives: 

.
1

))(
~

()(;
1

))(
~

()(;
1

))(
~

()(
2

3

332

3

222

3

11 h
RQPZXP

h
RPQZXP

h
PRQZXP xxxxxx

  

Now it is easy to calculate the value of the second differential in the centers of 

each eight cubes of original search area partition: 

.)))()()((2)()()(()( 2

323121332211

2 hXPXPXPXPXPXPXfd c
ixx

c
ixx

c
ixx

c
ixx

c
ixx

c
ixx

c
i

  

The value of characteristic function is calculated for each of new cubes, which 

are written onto the line ordered list in descending order of values. At each stage of 

search algorithm for discontinuity points of testing function, the first item on the list is 

chosen – a cube with maximum value of characteristic function, which is subjected to 

further division. The algorithm works till the condition of algorithm stoppage appears: 

(max|𝑧𝑖| > 𝑀𝑠𝑢𝑝)˅(𝑚𝑖𝑛𝑖ℎ𝑖 < 𝜀). This condition of algorithm stoppage ensures the 

completion of its work if the value of testing function is outside function domain or 

the given density of viewing the original area of testing function is reached. 

2. Examples of using the proposed method of Unit testing for computing modules 

2.1. Method testing with model examples 
The proposed testing method of CSM got its name as finite differences method 

(FDM) due to the use of finite differences of the function. The efficiency of its work 

can be evaluated by means of discontinuous function – Kovartsev’s test [11], 

specially developed for this case, and a set of test functions generated by the GKLS 

generator [15]. The first test is characterized by a single discontinuity point (which is 

difficult to detect) added to linear combination of error functions. The second one is a 

continuous function with a large number of local extrema. Test functions are 

presented in Table 1. 

In literature, the efficiency of search algorithms is usually evaluated using the 

operating characteristics machine [16]. Operating characteristic is the dependence of 

error detection probability 𝑃𝑎𝑙𝑔  on the amount of calls to the tested function 𝑁𝑓 . 

Since the second-order discontinuity points can be found by any of the global 

optimization algorithms, the efficiency of the proposed FDM algorithm was compared 

with the efficiency of direct GO method, for example, the modified bisection method 

(BM) [17]. 

 

 



Mathematical Modeling   Kovartsev A.N., Popova-Kovartseva D.A… 

258 

Information Technology and Nanotechnology (ITNT-2015) 

Table 1. A set of test functions 

№ Function General view 

1 Kovartsev test function: 

)1/(1)1(),( 01.0

2)22(2)11(
19

0

01.0

2)22(2)11(

21

bxbx

i

iaxiax

eeixxf









 
 

]1;0[, 21 xx  

20 local extrema. One second-order discontinuity 

point 
 

2 GKLS test functions. 

Continuous twice differentiable function. 10 local 

extrema. One global extremum. Points of 

discontinuity are not observed. 

 
The operating characteristics of FDM and BM methods are shown in Fig. 2. 

They are created for test function 1 which has a local discontinuity point of the second 

type (see Table 1). As we can see from fig. 2, the efficiency of the proposed algorithm 

is much greater than the efficiency of the bisection method. In Fig. 2 the solid line 

indicates operating characteristics of FDM algorithm, the dashed one indicates 

characteristics of BM algorithm. It happens because the bisection method is focused on 

the optimization of continuous functions, which leads to a more detailed analysis of the 

function areas when Lipschitz constant evaluation increases. This situation occurs 

every time when the function is calculated near the points of its discontinuity. By 

contrast, FDM method is oriented on looking for areas of rapid growth of the test 

function. 

The situation changes if FDM method “works” with continuous function. Figure 

3 shows the operating characteristics of these methods,  created for continuous GKLS 

test function.  

The figure illustrates the fact that the efficiency of FDM algorithm for continuous 

functions is much lower than the efficiency of BM algorithm. If we have continuous 

functions with no discontinuity points of the second type (test software module has no 

errors), the finite difference method is forced to examine thoroughly the space of the 

optimized variables.  

2.2. Testing of software modules for calculating acoustic characteristics of gas 

pressure regulator 
This part presents the results of Unit testing for computing models included in 

the program that realizes the optimization of gas pressure regulator (GPR) parameters 

with use of orifice plates [21].Significant changes in pressure during orificing and 

speed acceleration generate the noise which accompanies the work of these machines. 

This noise exceeds the established health standards. Rational choice of orifice flow 

area (and their quantity) can significantly reduce the noise level of this device [18]. 



Mathematical Modeling   Kovartsev A.N., Popova-Kovartseva D.A… 

259 

Information Technology and Nanotechnology (ITNT-2015) 

 

Fig. 2. – Operating characteristics of FDM and BM methods for function №1 

 

Fig. 3. – Operating characteristics of FDM and BM methods for function №2 

Output parameters of GPR for the stationary case have been calculated by 

solving the system of nonlinear equations that describe gas motion in its specific 

sections: the valve mechanism and orifice package: 



















 ,0

....

,0

,0

n1

21

1

GG

GG

GG

n

x

  (7) 



Mathematical Modeling   Kovartsev A.N., Popova-Kovartseva D.A… 

260 

Information Technology and Nanotechnology (ITNT-2015) 

𝐺𝑥– gas flow through the valve, 𝐺𝑖 – gas flow through i-orifice plate. When the 

input parameters of module are given, for example, 𝑝𝑖 , 𝑝𝑖+1– pressure before and after 

orifice plate correspondingly; 𝑆𝑖 – areas of i-orifice flow, etc. we can calculate gas 

mass flux through orifice and as a result – acoustic power generated by orifice plate 

[19]. 

We used a rather simple module for calculating the orifice flow capacity (𝐶𝑣𝑖) in 

order to calculate the gas mass flux through orifice. Testing the module by FDM 

method with approximately 200 calls to the module revealed methodological error in 

the algorithm model. It turned out that if 𝑝𝑖 → 𝑝𝑖+1 − 𝐶𝑣𝑖 → ∞, and 𝑝𝑖 < 𝑝𝑖+1, flow 

capacity is indefinite (error code NaN occurs). 

Certainly, it would be possible to require the calculation with this module 

𝐶𝑣𝑖(𝑝𝑖 , 𝑝𝑖+1) to be carried out only in accordance with the condition 𝑝𝑖 >  𝑝𝑖+1, which 

is natural for this type of device. But how can it be realized when numerical method 

for solving systems of nonlinear equations (8) generates the values of independent 

variables at each iteration on its own, not taking into consideration the above 

mentioned circumstances? The easiest way to solve the problem is the artificial 

replacement of function infinite discontinuity 𝐶𝑣𝑖(𝑝𝑖 , 𝑝𝑖+1)with a larger but finite 

discontinuity, and extension of definition by “penalty” value where it is indefinite. In 

this case, the algorithm for solving systems of nonlinear equations is to find solutions 

on its own, “starting with” “dysfunctional” combinations of independent variables. 

High speed of detecting fallible combinations of FDM independent variables in 

this example can be explained by the fact that at the first stage of  work, when the area 

of rapid function growth is not detected, FDM distributes test points of testing 

function in the search area. Since function 𝐶𝑣𝑖(𝑝𝑖 , 𝑝𝑖+1) has significant areas of 

uncertainty, FDM finds them quickly. 

Conclusion 
The paper offers an original method of Unit testing for computing modules, 

based on the algorithm of global search for infinite discontinuity of the testing 

function, which allows to detect fatal errors in software computing modules, as well 

as incorrectness in implementation of mathematical models of algorithms.  

The proposed scheme of accelerating algorithms for global optimization applied 

to the search for points of discontinuity of the second order has confirmed completely 

its viability with model and real examples. The basic idea of FDM algorithm is to 

introduce a new heuristic characteristic function to the classical algorithm of global 

optimization. The new function is based on the analysis of Strongin characteristic 

function and takes into account the problem matters being solved. FDM algorithm is 

the universal method of Unit testing for the class of computing modules. The 

application of this method leads to the reduction of time for debugging, helps to find 

fatal errors with less effort, and, as a result, to organize total testing of all program 

modules. 

References 
1. Dastin E, Reshka D, Paul D. Automatic software testing. Application, operation and 

maintenance. Moscow: Lori, 2003; 567 p. [in Russian] 

2. Lipaev VV. Program testing. M.: Radio and connection, 1986; 296 p. [in Russian] 



Mathematical Modeling   Kovartsev A.N., Popova-Kovartseva D.A… 

261 

Information Technology and Nanotechnology (ITNT-2015) 

3. Kovartsev AN. Automation of software development and testing. Samara State Aerospace 

University, 1999; 148 p. [in Russian] 

4. Kuliamin VV. Software verification methods. Source: 

<http://panda.ispras.ru/~kuliamin/docs/VerMethods-2008-ru.pdf > 

5. Kovartsev AN. An efficient algorithm for testing the truth of assertions for real numbers 

expressed in relational signatures. Computer Optics, 2014; 38(3): 550-554. [in Russian] 

6. Heitmeyer C, Archer M, Bharadwaj R, Jeffords R. Tools for constructing requirements 

specifications: The SCR toolset at the age of ten. Journal of Computer Systems Science 

and Engineering, 2005; 20(1): 19-35.  

7. Farchi E, Hartman F, Pinter SS. Using a model-based test generator to test for standard 

conformance. IBM Systems Journal, 2002; 41(1): 89-110.  

8. Cavalli A, Gervy C, Prokopenko S. New approaches for passive testing using an 

Extended Finite State Machine specification. Information and Software Technology, 2003; 

45(12): 837-852. 

9. Kovartsev AN, Logvinov AL. Efficiency improvement of testing algorithms for 

computing modules. Journal of Telecommunication systems, 2004; 4. [in Russian] 

10. Strongin RG. Search for global optimum. Moscow: Znanie, 1990. [in Russian] 

11. Kovartsev AN, Popova-Kovartseva DA, Serpovskaya EE. Testing mathematical models 

of computing algorithms based on global optimization method. Information technology 

and nanotechnologies. SSAU, 2015; 191-196. [in Russian] 

12. Kovartsev AN. Computational mathematical. Samara: Ofort, 2011; 230 p. [in Russian] 

13. Ermakov SM, Zhigliavsky AA. Mathematical theory of optimal experiment operation.  

Moscow: Nauka, 1987; 320 p. [in Russian] 

14. Sokolov NP. Introduction to multidimensional matrix theory. Kiev: Nukova dumka, 1972; 

177 p. [in Russian] 

15. Gaviano M, Kvasov DE, Lera D, Sergeyev YaD. Software for generation of classes of 

test functions with known local and global minima for global optimization. ACM TOMS, 

2003; 29(4): 469-480. 

16. Gergel VP, Strongin RG. Absolute. Software system for global optimization method 

studying. Textbook. Nizhny Novgorod: Nizhegorodsky University Press, 1998; 141 p. [in 

Russian] 

17. Kovartsev AN, Popova-Kovartseva DA, Abolmasov PV. Efficiency study of global 

parallel optimization for multivariable function. Vestnik NNGU, 2013; 3(1): 252-261. [in 

Russian] 

18. Igolkin АА, Kruchkovа AN, Koh AI, Safin AI, Shakhmatov EV. Pressure reducing 

valve noise reduction. Proceedings of the Nineteen International Congress on Sound and 

Vibration (ICSV 19). The international institute of Acoustics and Vibration, 2012, July 08-

12.  

19. Istvan L, Beranek V, Beranek L. Noise and vibration control engineering. Second 

edition. Principles and applications. Published by Wiley and Sons, Inc, 2006; 966 p. 

20. Meszaros, G. xUnit test patterns: rafactoring test code. U.S. at Courier in Wesrford, 

Massachusetts, 2009; 835 p. 

21. Karczub DG, Catron FW, Allen C. Blow-down valve noise and interactions with down 

stream orifice plates. Fagerlund Proceedings of IMECE’03. ASME International 

Mechanical Engineering Congress, 2003; 43-49. 

http://panda.ispras.ru/~kuliamin/docs/VerMethods-2008-ru.pdf

