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Abstract. In this paper we consider the approach to solving the problem of
search for systems of diagonal orthogonal Latin squares in the form of the Boolean
Satisfiability problem. We describe two different propositional encodings that
we use. The first encoding is constructed for finding pairs of orthogonal diag-
onal Latin squares of order 10. Using this encoding we managed to find 17 pre-
viously unknown pairs of such squares using the volunteer computing project
SAT@home. The second encoding is constructed for finding pseudotriples of or-
thogonal diagonal Latin squares of order 10. Using the pairs found with the help
of SAT@home and the second encoding we successfully constructed several new
pseudotriples of diagonal Latin squares of order 10.

1 Introduction

The combinatorial problems related to Latin squares are very interesting. These prob-
lems attract the attention of mathematicians for several centuries. In recent years a
number of new computational approaches to solving these problems have appeared.
For example in [11] it was shown that there is no finite projective plane of order 10. It
was done using special algorithms based on constructions and results from the theory
of error correcting codes [13]. Corresponding experiment took several years, and on its
final stage employed quite a powerful (at that moment) computing cluster. More recent
example is the proof of hypothesis about the minimal number of clues in Sudoku [14]
where special algorithms were used to enumerate and check all possible Sudoku vari-
ants. To solve this problem a modern computing cluster had been working for almost a
year. In [15] to search for some sets of Latin squares a special program system based
on the algorithms of search for maximal clique in a graph was used.

Also, in application to the problems of search for combinatorial designs, the SAT
approach shows high effectiveness [20]. It is based on reducing the original problem
to the Boolean Satisfiability problem (SAT) [4]. All known SAT solving algorithms are
exponential in the worst case since SAT itself is NP-hard. Nevertheless, modern SAT
solvers successfully cope with many classes of instances from different areas, such as
verification, cryptanalysis, bioinformatics, analysis of collective behavior, etc.

Some SAT instances are very difficult and that is why to solve them it is necessary to
involve significant amounts of computational resources. That is why the improvement
of the effectiveness of SAT solving algorithms, including the development of algorithms
that are able to work in parallel and distributed computing environments is a very im-
portant direction of research. In 2011 for the purpose of solving hard SAT instances
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there was launched the volunteer computing project SAT@home [17]. One of the aims
of the project is to find new combinatorial designs based on the systems of orthogonal
Latin squares.

Let us give a brief outline of the article. In the second section we discuss relevant
problems regarding the search for systems of orthogonal Latin squares. In the third
section we describe the technique we use to construct the propositional encodings of the
considered problems. In the fourth section we say about the computational experiment
on the search for pairs of orthogonal diagonal Latin squares of order 10 that was held in
SAT@home. Later in the same section we display the results we obtained for the search
of pseudotriples of orthogonal diagonal Latin squares of order 10, using the computing
cluster.

2 Some Relevant Problems of Search for Systems of Latin Squares

The Latin square of order n is the square table n×n that is filled with the elements from
some set M , |M | = n in such a way that in each row and each column every element
from M appears exactly once. Leonard Euler in his works considered as M the set of
Latin letters, and that is how the Latin squares got their name. Hereinafter as M we use
the set {0, . . . , n− 1}.

Two Latin squares A and B of the same order n are called orthogonal if all ordered
pairs of the kind (aij , bij), i, j ∈ {1, . . . , n} are different. If there is a set of m different
Latin squares among which each two squares are orthogonal then this set is called a
system of m mutually (or pairwise) orthogonal Latin squares. The question if there
exist 3 pairwise orthogonal Latin squares of order 10 is of particular interest [7] since
this problem remains unanswered for many years. From the computational point of view
the problem is very difficult, therefore it is interesting to search for such triples of Latin
squares of order 10 for which the orthogonality condition is somehow weakened. For
example, we can demand that it should hold in full only for one (two) pairs of squares
out of three and only partly for the remaining two (one). There can be other variants of
weakening this condition. In the remainder of the paper we will refer to such systems
of squares as pseudotriples.

In this paper we consider the following weakened variant of the orthogonality con-
dition: we fix the number of ordered pairs of elements for which the orthogonality
condition should hold simultaneously for all three pairs of squares (A and B, A and
C, B and C), comprising the pseudotriple A,B,C. The corresponding number of pairs
of elements we call the characteristics of the pseudotriple considered. Currently the
record pseudotriple in this notation is the one published in [9]. It is shown in Fig. 1. In
this pseudotriple square A is fully orthogonal to squares B and C, but squares B and C
are orthogonal only over 91 pairs of elements out of 100. It means that in our notation
the characteristics of this pseudotriple is 91.

The problems of search for combinatorial designs can be solved using different
approaches. In the present paper we develop the SAT approach to corresponding prob-
lems. To apply the SAT approach one has to reduce the original problem to the Boolean
equation in the form ”CNF=1” (here CNF stands for conjunctive normal form). Corre-
sponding transition process is usually referred to as encoding the original problem to
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A =



0 8 9 7 5 6 4 2 3 1
9 1 4 6 2 7 3 8 0 5
7 4 2 5 1 3 8 6 9 0
8 6 5 3 9 2 1 0 4 7
6 2 1 8 4 0 9 5 7 3
4 9 3 2 7 5 0 1 6 8
5 3 7 1 0 8 6 9 2 4
3 5 0 9 8 4 2 7 1 6
1 7 6 0 3 9 5 4 8 2
2 0 8 4 6 1 7 3 5 9


B =



0 7 8 9 1 2 3 4 5 6
9 0 6 1 8 3 2 5 4 7
7 2 0 4 3 9 1 8 6 5
8 5 3 0 2 1 7 6 9 4
6 9 5 3 0 7 4 2 1 8
4 1 7 6 5 0 8 9 3 2
5 4 2 8 9 6 0 3 7 1
3 6 1 7 4 8 5 0 2 9
1 8 4 2 6 5 9 7 0 3
2 3 9 5 7 4 6 1 8 0


C =



0 7 8 9 1 2 3 4 5 6
6 4 2 8 9 5 1 3 7 0
4 9 5 3 2 7 6 0 1 8
5 1 7 6 4 3 8 9 0 2
3 2 9 0 7 1 5 6 8 4
1 0 3 7 6 8 2 5 4 9
2 8 0 1 3 4 9 7 6 5
9 5 4 2 8 6 0 1 3 7
7 3 6 5 0 9 4 8 2 1
8 6 1 4 5 0 7 2 9 3



Fig. 1. Record pseudotriple of order 10 from [9]

SAT. First attempts on the application of the SAT approach to finding systems of orthog-
onal Latin squares started in the 90-ies years of XX century. A lot of useful information
about this area can be found in [20]. In particular, the author of [20] have been trying to
find three mutually orthogonal Latin square of order 10 for more than 10 years using a
specially constructed grid system of 40 PCs (however, without any success).

In our opinion it is also interesting to search for systems of orthogonal diagonal
Latin squares. The Latin square is called diagonal if both its primary and secondary
diagonals contain all numbers from 0 to n− 1, where n is the order of the Latin square.
In other words the constraint on the uniqueness is extended from rows and columns to
two diagonals. The existence of a pair of mutually orthogonal diagonal Latin squares of
order 10 was proved only in 1992 — in the paper [6] there were displayed 3 such pairs.

Similar to the problem of search for pseudotriples of Latin squares we can consider
the problem of search for pseudotriples of diagonal Latin squares of order 10. In any
available sources we have not found if the problem in such formulation have been stud-
ied. Implicitly, however, in [6] one of squares in the first and the second pairs is the
same. The corresponding pairs are shown in Fig. 2 and Fig. 3, respectively.

A =



0 9 4 6 1 7 5 8 2 3
7 1 9 4 5 3 8 0 6 2
4 6 2 8 3 1 7 5 9 0
6 0 7 3 2 8 4 9 1 5
5 3 6 7 4 2 9 1 0 8
8 4 1 2 9 5 0 6 3 7
2 5 3 0 8 9 6 4 7 1
3 2 8 9 0 4 1 7 5 6
9 7 5 1 6 0 3 2 8 4
1 8 0 5 7 6 2 3 4 9


B =



0 8 5 1 7 3 4 6 9 2
5 1 7 2 9 8 0 3 4 6
1 7 2 9 5 6 8 0 3 4
9 6 4 3 0 2 7 1 5 8
3 0 8 6 4 1 5 9 2 7
4 3 0 8 6 5 9 2 7 1
7 2 9 5 1 4 6 8 0 3
6 4 3 0 8 9 2 7 1 5
2 9 6 4 3 7 1 5 8 0
8 5 1 7 2 0 3 4 6 9


Fig. 2. First pair of orthogonal diagonal Latin squares of order 10 from [6]
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A =



0 4 1 9 8 2 7 3 5 6
3 1 6 8 2 9 4 5 0 7
6 5 2 4 9 0 3 8 7 1
1 8 5 3 7 4 9 0 6 2
9 2 0 5 4 7 8 6 1 3
8 6 3 7 1 5 0 9 2 4
4 0 7 2 5 3 6 1 9 8
2 9 4 1 6 8 5 7 3 0
7 3 9 6 0 1 2 4 8 5
5 7 8 0 3 6 1 2 4 9


B =



0 8 5 1 7 3 4 6 9 2
5 1 7 2 9 8 0 3 4 6
1 7 2 9 5 6 8 0 3 4
9 6 4 3 0 2 7 1 5 8
3 0 8 6 4 1 5 9 2 7
4 3 0 8 6 5 9 2 7 1
7 2 9 5 1 4 6 8 0 3
6 4 3 0 8 9 2 7 1 5
2 9 6 4 3 7 1 5 8 0
8 5 1 7 2 0 3 4 6 9


Fig. 3. Second pair of orthogonal diagonal Latin squares of order 10 from [6]

Based on the pairs shown in Fig. 2 and Fig. 3 it is easy to construct the pseu-
dotriple of diagonal Latin squares of order 10 (see Fig. 4). The characteristics of this

A =



0 8 5 1 7 3 4 6 9 2
5 1 7 2 9 8 0 3 4 6
1 7 2 9 5 6 8 0 3 4
9 6 4 3 0 2 7 1 5 8
3 0 8 6 4 1 5 9 2 7
4 3 0 8 6 5 9 2 7 1
7 2 9 5 1 4 6 8 0 3
6 4 3 0 8 9 2 7 1 5
2 9 6 4 3 7 1 5 8 0
8 5 1 7 2 0 3 4 6 9


B =



0 9 4 6 1 7 5 8 2 3
7 1 9 4 5 3 8 0 6 2
4 6 2 8 3 1 7 5 9 0
6 0 7 3 2 8 4 9 1 5
5 3 6 7 4 2 9 1 0 8
8 4 1 2 9 5 0 6 3 7
2 5 3 0 8 9 6 4 7 1
3 2 8 9 0 4 1 7 5 6
9 7 5 1 6 0 3 2 8 4
1 8 0 5 7 6 2 3 4 9


C =



0 4 1 9 8 2 7 3 5 6
3 1 6 8 2 9 4 5 0 7
6 5 2 4 9 0 3 8 7 1
1 8 5 3 7 4 9 0 6 2
9 2 0 5 4 7 8 6 1 3
8 6 3 7 1 5 0 9 2 4
4 0 7 2 5 3 6 1 9 8
2 9 4 1 6 8 5 7 3 0
7 3 9 6 0 1 2 4 8 5
5 7 8 0 3 6 1 2 4 9



Fig. 4. Pseudotriple of diagonal Latin squares of order 10 from [6]

pseudotriple is equal to 60. In Fig. 5 we present the corresponding 60 ordered pairs of
elements.

In the present paper we consider the problem of search for new pairs of orthogonal
diagonal Latin squares of order 10 and also the problem of search for pseudotriples of
diagonal Latin squares of order 10. In the next section we describe the propositional
encodings that we used in our experiments.

3 Encoding Problems of Search for Systems of Latin Squares to
SAT

It is a widely known fact that the system of mutually orthogonal Latin squares as a com-
binatorial design is equivalent to a number of other combinatorial designs. For example,
the pair of orthogonal Latin squares is equivalent to a special set of transversals, to an
orthogonal array with some special properties, etc. It means that if we want to construct
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

00 01 02 − − 05 06 − 08 −
10 11 − 13 − 15 16 − 18 −
− 21 22 − 24 25 − 27 − 29
− − 32 33 − − 36 37 − 39
− 41 − − 44 45 46 − 48 49
50 − 52 53 − 55 − 57 58 59
60 61 − − − 65 66 − − 69
− − 72 73 74 75 − 77 − 79
− − − 83 84 85 − 87 88 −
90 91 − 93 94 − 96 97 98 99


Fig. 5. The set formed by 60 ordered pairs of elements, over which all three pairs from Fig. 4 are
orthogonal

a system of mutually orthogonal Latin squares — we can do it in a number of various
ways using equivalent objects. That is why it is possible to construct vastly different
propositional encodings for the same problem. Generally speaking, even when we use
one particular representation of a system of orthogonal Latin squares, the predicates
involved in the encoding can be transformed to the form “CNF=1” [18] in different
ways, thus producing essentially different encodings. Actually, we believe that the im-
pact of the representation method and techniques used to produce the SAT encodings
of the problem on the effectiveness of SAT solvers on corresponding instances is very
interesting and we intend to study this question in the nearest future.

In our computational experiments on the search of pairs of orthogonal diagonal
Latin squares we used the propositional encoding based on the so called “naive” scheme.
It was described, for example, in [12].

Let us briefly describe this encoding. We consider two matrices A = ||aij || and
B = ||bij ||, i, j = 1, . . . , n. The contents of each matrix cell are encoded via n Boolean
variables. It means that one matrix is encoded using n3 Boolean variables. By x(i, j, k)
and y(i, j, k) we denote the variables corresponding to matrices A and B, respectively.
Here the variable x(i, j, k), i, j, k ∈ {1, . . . , n} has the value of “Truth” if and only if
in the corresponding cell in the i-th row and j-th column of the matrix A there is the
number k − 1. For matrices A and B to represent Latin squares they should satisfy the
following constraints on the corresponding variables. Without the loss of generality let
us consider these constraints on the example of matrix A.

Each matrix cell contains exactly one number from 0 to n− 1:

–
∧n

i=1

∧n
j=1

∨n
k=1 x(i, j, k)

–
∧n

i=1

∧n
j=1

∧n−1
k=1

∧n
r=k+1(¬x(i, j, k) ∨ ¬x(i, j, r))

Each number from 0 to n− 1 appears in each row exactly once:

–
∧n

j=1

∧n
k=1

∨n
i=1 x(i, j, k)

–
∧n

j=1

∧n
k=1

∧n−1
i=1

∧n
r=i+1(¬x(i, j, k) ∨ ¬x(r, j, k))

Each number from 0 to n− 1 appears in each column exactly once:

–
∧n

i=1

∧n
k=1

∨n
j=1 x(i, j, k)
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–
∧n

i=1

∧n
k=1

∧n−1
j=1

∧n
r=j+1(¬x(i, j, k) ∨ ¬x(i, r, k))

In a similar way we write the constraints on the variables forming the matrix B. After
this we need to write the orthogonality condition. For example, we can do it in the
following manner:

n∧
i=1

n∧
j=1

n∧
k=1

n∧
p=1

n∧
q=1

n∧
r=1

(¬x(i, j, k) ∨ ¬y(i, j, k) ∨ ¬x(p, q, r) ∨ ¬y(p, q, r))

Since in the paper we consider not just Latin squares but diagonal Latin squares, we
need to augment the described encoding with the constraint, specifying that the primary
and secondary diagonals contain all numbers from 0 to n − 1, where n is the order of
the Latin square.

–
∧n

i=1

∨n
k=1 x(i, i, k)

–
∧n

k=1

∧n−1
i=1

∧n
j=i+1(¬x(i, i, k) ∨ ¬x(j, j, k))

–
∧n

i=1

∨n
k=1 x(i, n− i+ 1, k)

–
∧n

k=1

∧n−1
i=1

∧n
j=i+1(¬x(i, n− i+ 1, k) ∨ ¬x(j, j, k))

Also we consider the optimization variant of the problem of search for three mu-
tually orthogonal diagonal Latin squares. Since at the present moment it is unknown
if there even exist three mutually orthogonal diagonal Latin squares, we believe that
it is natural to weaken this problem and to evaluate the effectiveness of our methods
in application to the weakened variant. Among all the constraints that form the corre-
sponding encoding it is most natural to weaken the orthogonality condition. It can be
done via different means. For example, one can demand that the orthogonality condition
holds only for fixed cells, for fixed ordered pairs, or for the fixed number of cells or for
the fixed number of different pairs. In our experiments we weakened the orthogonality
condition in the following way. We first fix the parameter K, K ≤ n2, called the charac-
teristics of the pseudotriple. Then we demand that each two squares in the pseudotriple
are orthogonal over the same set of ordered pairs of elements (a1, b1), . . . , (aK , bK).

To consider the corresponding problem in the SAT form, it is necessary to signif-
icantly modify the propositional encoding described above. In particular, we have to
replace the “old” orthogonality condition with the “new” one. For this purpose we
introduce an additional construct: the special matrix M = {mij}, mij ∈ {0, 1},
i, j ∈ {1, . . . , n}. We will refer to this matrix as markings matrix. We assume that
if mij = 1, then for the corresponding pair (i − 1, j − 1) the orthogonality condition
must hold. In the propositional form this constraint is written in the following manner:

n∧
i=1

n∧
j=1

(
¬mij ∨

n∨
p=1

n∨
q=1

(x(p, q, i) ∧ y(p, q, j))

)

Additionally, if we search for the pseudotriple with the value of characteristics not
less than K (it corresponds to the situation when the markings matrix M contains at
least K ones) we need to encode the corresponding constraint. For example, it can
be done via the following natural manner. First we sort the bits in the Boolean vector
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(m11, . . . ,m1n, . . . ,mnn) in the descending order, just as we would if it were simply
integer numbers. Assume that as the result we obtain the Boolean vector (α1, . . . , αn2).
Then it is clear that the constraint we need would be satisfied if and only if αK = 1.
To sort the bits in the Boolean vector it is possible to use various encoding techniques.
In our computational experiments we used the CNFs in which it was done using the
Batcher sorting networks [2].

4 Computational Experiments

The problems of search for orthogonal Latin squares using the SAT approach are good
candidates for organization of large-scale computational experiments in distributed com-
puting environments. In particular, they suit well for volunteer computing projects [16].
It is explained by the fact that SAT instances on their own allow one to use natural large
scale parallelization strategies. In 2011 the authors of the present paper in collabora-
tion with colleagues from IITP RAS developed and launched the volunteer computing
project SAT@home [17]. This project is designed to solve hard SAT instances from
various areas. It is based on the open BOINC platform [1]. As of February, 8, 2015
the project involves 3138 active PCs from participants all over the world. The average
performance of SAT@home is about 7 TFLOPs.

In subsection 4.1 we describe the experiment performed in SAT@home on the
search for new pairs of orthogonal diagonal Latin squares of order 10. In subsection
4.2 we use the pairs found on the previous step to search for pseudotriples of diagonal
Latin squares of order 10.

4.1 Finding Pairs of Orthogonal Diagonal Latin Squares of Order 10

In 2012 we launched the experiment in SAT@home aimed at finding new pairs of or-
thogonal diagonal Latin squares of order 10. In this experiment we used the proposi-
tional encoding described in the previous section. The client application (the part that
works on participants PCs) was based on the CDCL SAT solver MINISAT 2.2 [8] with
slight modifications, that made it possible to reduce the amount of RAM consumed.

In the SAT instances to be solved we fixed the first row of the first Latin square to
0 1 2 3 4 5 6 7 8 9 (by assigning values to corresponding Boolean variables). It
is possible because every pair of orthogonal diagonal Latin squares can be transformed
to such kind by means of simple manipulations that do not violate orthogonality and
diagonality conditions. The decomposition of this SAT instance was performed in the
following manner. By varying the values in the first 8 cells of the second and the third
rows of the first Latin square we produced about 230 billions of possible variants of
corresponding assignments, that do not violate any condition. We decided to process in
SAT@home only first 20 million subproblems out of 230 billions (i.e. about 0.0087%
of the search space). As a result each subproblem was formed by assigning values to
variables corresponding to the first 8 cells of the second and the third rows (with the
fixed first row) in the SAT instance considered. The values of remaining 74 cells of the
first Latin square and of all cells of the second Latin square were unknown, so the SAT
solver had to find it.
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To solve each subproblem the SAT solver MINISAT 2.2 had the limit of 2600
restarts that is approximately equal to 5 minutes of work on one core of Intel Core
2 Duo E8400 processor. After reaching the limit the computations were interrupted. In
one job batch downloaded by project participant there were 20 of such subproblems.
This number was chosen so that one job batch can be processed in about 2 hours on
one processor core (because it suits well for BOINC projects). To process 20 million
subproblems (in the form of 1 million job batches) it took SAT@home about 9 months
(from September 2012 to May 2013). The computations for the majority of subprob-
lems were interrupted, but 17 subproblems were solved and resulted in 17 previously
unknown pairs of orthogonal diagonal Latin squares of order 10 (we compared them
with the pairs from [6]). All the pairs found are published on the site of the SAT@home
project1 in the “Found solutions” section. In Fig. 6 we show the first pair of orthogonal
diagonal Latin squares of order 10 found in the SAT@home project.



0 1 2 3 4 5 6 7 8 9
1 2 0 4 3 7 9 8 5 6
7 3 5 9 0 4 8 6 2 1
3 5 6 8 9 0 4 1 7 2
4 9 7 2 6 8 1 5 0 3
5 8 4 6 7 1 3 2 9 0
8 4 9 1 2 3 7 0 6 5
6 7 3 0 1 2 5 9 4 8
9 0 1 5 8 6 2 4 3 7
2 6 8 7 5 9 0 3 1 4





0 1 2 3 4 5 6 7 8 9
7 5 1 9 2 8 0 4 6 3
1 0 3 4 6 7 5 2 9 8
9 8 4 7 5 2 1 0 3 6
6 7 9 0 8 3 2 1 5 4
4 6 5 1 0 9 8 3 2 7
2 3 8 5 1 6 4 9 7 0
5 2 7 8 3 4 9 6 0 1
3 4 6 2 9 0 7 8 1 5
8 9 0 6 7 1 3 5 4 2


Fig. 6. The first pair of orthogonal diagonal Latin squares of order 10 found in the SAT@home
project

As we noted in the previous section, one can construct many different propositional
encodings for the problem of search for pairs of orthogonal Latin squares. However, in
this case the question of comparison of the effectiveness of corresponding encodings
becomes highly relevant. The practice showed that the number of variables, clauses and
literals usually does not make it possible to adequately evaluate the effectiveness of SAT
solvers on corresponding SAT instances. In the nearest future we plan to use the pairs
found in the SAT@home project to estimate the effectiveness of different encodings of
this particular problem. For each encoding we can construct the set of CNFs (where
each CNF corresponds to one known pair of orthogonal diagonal Latin squares of order
10) and to make these SAT instances solvable in reasonable time we can weaken them
by assigning correct values to Boolean variables corresponding to several rows of the
first Latin square of the pair. This series of experiments will make it possible to choose
the most effective combination SAT solver + SAT encoding for this particular problem.

1 http://sat.isa.ru/pdsat/
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4.2 Finding Pseudotriples of Diagonal Latin Squares of Order 10

We considered the following formulation of the problem: to find the pseudotriple of
diagonal Latin squares of order 10 with the characteristics value larger than that of the
pseudotriple from [6] (see section 2).

On the first stage of the experiment using the encodings described above we con-
structed the CNFs, in which there was encoded the constraint that the value of char-
acteristics K (see section 3) is greater or equal to the number varied from 61 to 67
with step 1 (i.e. we considered 7 such CNFs). In computational experiments we used
the parallel SAT solvers PLINGELING and TREENGELING [3]. Our choice is motivated
by the fact that on the SAT competition 2014 these solvers rated in top 3 in paral-
lel categories “Parallel, Application SAT+UNSAT” and “Parallel, Hard-combinatorial
SAT+UNSAT”. The experiments were carried out within the computing cluster “Aca-
demician V.M. Matrosov” of Irkutsk supercomputer center of SB RAS2. Each comput-
ing node of this cluster has two 16-core AMD Opteron 6276 processors. Thus each
of the SAT solvers mentioned was launched in multithreaded mode on one computing
node, i.e. it employed 32 threads. In the Table 1 we show the results obtained using
these solvers in application to 7 SAT instances considered (the wall time is displayed).

K 61 62 63 64 65 66
PLINGELING 51 min 32 min 1h.10 min 1h 29 min 1h 21 min ¿1 day

TREENGELING 20 min 1h 15 min 2h 2 min 4h 8 min ¿1 day ¿1 day
Table 1. The runtime of SAT solvers applied to CNFs encoding the search for pseudotriples with
different constraints on the value of characteristics (K)

As a result of the experiments of the first stage we found the pseudotriple with
the characteristics value 65 that is better than that of the pseudotriple from [6] (its
characteristics value is 60). Note that the runtime of all considered solvers on the CNF
encoding the search for a pseudotriple with characteristics value ≥ 66 was greater than 1
day, and by this time each of the solvers consumed all available RAM of the computing
node (64 Gb) and started using swap.

On the second stage of our experiments on the search for pseudotriples we used
the previously found pairs of orthogonal diagonal Latin squares of order 10 (3 pairs
from [6] and 17 pairs found in SAT@home). For a fixed value of characteristics K we
formed 20 CNFs by assigning values to the Boolean variables corresponding to first two
squares (i.e. for each pair of orthogonal diagonal Latin squares and for each value of K
we constructed one such CNF). Thus each of the CNFs produced encodes the following
problem: for two fixed orthogonal diagonal Latin squares to find a diagonal Latin square
such that in total they form the pseudotriple with characteristics value ≥ K.

We considered 6 values of parameter K — from 65 to 70. It means that in total
we constructed 120 SAT instances (20 for each value of K). Each of two considered
solvers was launched on all these CNFs on one computing node of the cluster with time

2 http://hpc.icc.ru
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limit 1 hour per instance. In the Table 2 we show how many SAT instances out of the
family of 20 could the SAT solver solve within the time limit. As a result we managed
to find the pseudotriple with the characteristics value 70.

K 65 66 67 68 69 70
PLINGELING 15 11 11 1 3 0

TREENGELING 20 19 15 3 11 1
Table 2. The number of SAT instances, encoding the search for pseudotriples of diagonal Latin
squares with two known squares, that the solver managed to solve within the time limit of one
hour (out of 20 SAT instances)

The experiments of this stage required substantial computational resources since the
amount of SAT instances was quite large. To search for pseudotriples with characteris-
tics greater than 70 we chose the solver that performed best on the second stage. As it
is easy to see from the Table 2 it was TREENGELING. On the third stage we launched
this SAT solver on 80 SAT instances encoding the search for pseudotriples with two
known squares and K varying from 71 to 74. The time limit was increased to 10 hours.
As a result we found pseudotriple with characteristics 73. On all 20 SAT instances with
K = 74 the solution was not found before the time limit. In Fig. 7 we display the
record pseudotriple with characteristics value 73. In Fig. 8 we show the corresponding
73 ordered pairs of elements over which the orthogonality condition holds for all pairs
of Latin squares from the triple. Note that this pseudotriple is based on one of the 17
pairs of orthogonal diagonal Latin squares of order 10 found in the SAT@home project
(in the figure the first two squares correspond to the pair found in SAT@home).

A =



0 1 2 3 4 5 6 7 8 9
1 2 0 4 3 8 7 9 5 6
5 6 9 0 7 3 4 8 1 2
9 8 7 5 6 4 0 1 2 3
3 7 5 9 8 1 2 6 4 0
7 5 1 8 2 6 9 3 0 4
2 4 8 7 1 9 3 0 6 5
8 9 6 1 0 2 5 4 3 7
6 3 4 2 9 0 1 5 7 8
4 0 3 6 5 7 8 2 9 1


B =



0 1 2 3 4 5 6 7 8 9
7 4 8 0 5 9 2 3 6 1
4 2 5 9 3 7 8 1 0 6
6 0 4 7 9 1 3 8 5 2
9 6 1 8 2 4 0 5 3 7
1 3 9 6 7 8 4 0 2 5
8 9 3 5 6 2 1 4 7 0
5 7 0 2 1 3 9 6 4 8
3 8 7 1 0 6 5 2 9 4
2 5 6 4 8 0 7 9 1 3


C =



1 3 4 6 0 8 5 7 9 2
8 6 2 4 7 1 0 5 3 9
6 8 7 9 3 5 1 4 2 0
5 9 1 0 4 6 8 2 7 3
4 2 5 7 8 9 3 0 1 6
9 7 0 2 5 3 4 8 6 1
0 4 9 1 6 7 2 3 8 5
3 1 6 5 2 0 7 9 4 8
2 0 3 8 9 4 6 1 5 7
7 5 8 3 1 2 9 6 0 4



Fig. 7. New pseudotriple of diagonal Latin squares of order 10 with characteristics 73
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

− 01 02 03 04 05 06 − 08 09
10 − 12 13 14 15 16 − 18 19
20 − − 23 24 25 26 27 28 −
30 − 32 33 34 35 36 37 38 −
40 41 − 43 44 − 46 47 − 49
50 51 − 53 − 55 56 57 58 −
60 − 62 63 64 65 66 − 68 69
70 71 − 73 − 75 − 77 78 79
− 81 82 83 − − − 87 88 89
90 91 92 − 94 95 − 97 − 99


Fig. 8. The set formed by 73 ordered pairs of elements, over which all three pairs of squares from
Fig. 7 are orthogonal

5 Related Work

The predecessor of the SAT@home was the BNB-Grid system [10, 19]. Apparently,
[5] became the first paper about the use of a desktop grid based on the BOINC plat-
form for solving SAT. It did not evolve into a publicly available volunteer computing
project (like SAT@home did). The volunteer computing project with the most similar
to SAT@home problem area is Sudoku@vtaiwan3. It was used to confirm the solution
of the problem regarding the minimal number of clues in Sudoku, previously solved
using the computing cluster [14]. In [20] there was described the attempt to solve the
problem of search for three mutually orthogonal Latin squares of order 10 using the
PSATO SAT solver in a grid system of 40 PCs (however, without any success).
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