
The Problem of Scheduling
for the Linear Section of a Single-Track Railway

with Independent Edges Orientations

Elena N. Akimova1,2, Damir N. Gainanov1, Oleg A. Golubev1,
Ilya D. Kolmogortsev1, and Anton V. Konygin1,2?

1 Ural Federal University, Yekaterinburg, Russia,
2 IMM UB RAS, Yekaterinburg, Russia

aen15@yandex.ru,damir@dc.ru,golubev.oa.66@gmail.com

ilia12r@gmail.com,konygin@dc.ru

Abstract. The paper is devoted to the problem of scheduling for the
linear section of a single-track railway: how to organize the flow in both
directions in the most efficient way. In this paper, the authors propose an
algorithm for scheduling with independent edges orientations, examine
the properties of this algorithm and perform the computational experi-
ments.

Keywords: scheduling · track capacity · optimization · combinatorial
graph algorithms

1 Introduction

In this paper, we continue a consideration of the problem of scheduling for the
linear section of a single-track railway started in [1]. The schedule optimiza-
tion allows to increase a track capacity of the section using the same physical
resources and to simulate further modifications of the section.

This problem with different modifications is well-known (see [2], [3], [4]). For
example, in [2] the simulation of trains on the railway based on the moving-
block system and fixed-block system was presented. The previous work was
devoted to the case, when all edges of a graph in every moment have similar
orientations. Now we consider more general situation: edges can be orientated
independently. For this case we get both theoretical results and experimental.
Numeric experiments based on algorithm, which is implemented in C++ using
the MPI+OpenMP hybrid technology.

In this work we use notations proposed in [1]. Let the linear section of a
single-track railway be given. Thus, we have a graph with the set of vertices

V = {vi | 1 ≤ i ≤ n}
? This work was partly supported by the Center of Excellence “Quantum and Video

Information Technology” of Ural Federal University Development Program. The
work was supported by Act 211 Government of the Russian Federation, contract
№02.A03.21.0006.



Scheduling for the Linear Section of a Single-Track Railway 131

and the set of edges E (standard graph theory notations, see [5]). Furthermore,
we assume that the vertices are indexed in such a way that the edges look like
{vi, vi+1}.

For each station vi we have a positive integer m(vi), being the number of
auxiliary railway tracks at this station. These tracks are the only places where
a train can stop. Each auxiliary track can hold only one train.

Therefore, if all auxiliary tracks of the station are occupied then a train
cannot stop at this station.

By l(e) we denote the length of the track corresponding to edge e from E.
Suppose all trains have equal speeds. It should be a nonnegative time interval ε
between two trains moving in same direction. Also, there is an isolated station
w ∈ V such that every train passing this station is obliged to stay at it for
a nonnegative time δ due to technical reasons (the change of locomotive crew,
train inspection, etc.). Stations v1 and vn are sources and receivers of trains.
Thus, there are two directions of movement: from v1 to vn and from vn to v1
(these directions are denoted by v1 7→ vn and vn 7→ v1, respectively). We can
assume that each train does not change the direction and does not visit any
vertex twice. For passing each other when moving in different directions, one of
the trains waits another one on an auxiliary track.

Problem statement

Let Γ = (V,E), m : V → N0 and T — the whole time period. Since adding
new stations without auxiliary tracks, we get the same problem, we can suppose
that, without loss of generality, all edges have the same length 1:

l({vi, vi+1}) = 1.

Also, we assume that trains pass one edge per the unit of time.
The section corresponds to a single-track railway. So for every moment of

time trains can move on every edge only in one direction. Thus, if we have R
— a schedule of trains movement on Γ , then we can define map sR : T × E →
{−1, 1}, where sR(t, e) = 1, if there is a movement with direction v1 7→ vn,
and sR(t, e) = −1 otherwise. Let R be a set of schedules such that there exist
partition the whole time interval T onto disjoint half-intervals with similar length
τ

T = ∪ki=0[ti, ti + τ),

where sR(ti, e) = sR(ti + τ ′, e) for all R ∈ R, e ∈ E and 0 ≤ τ ′ < τ .
We need the following sets of schedules of trains movement.

1) Let A consists of all schedules R from R, such that for all t ∈ T we have
sR(t, e) = sR(t, e′) for all e, e′ ∈ E. Thus, for R in A there are no trains moving
in opposite directions — in any moment of time trains move in fixed direction
or stop on auxiliary tracks.
2) Let B consists of all schedules R from R with property, that there exist
functions m1 : V → N0 and m2 : V → N0 such that m1(vi) + m2(vi) = m(vi)
and, for each station vi, there are m1(vi) auxiliary tracks for the direction v1 7→



132 Elena N. Akimova et al.

vn and m2(vi) auxiliary tracks for the direction vn 7→ v1. Thus, we divide all
the auxiliary tracks into two sets for both directions. Now, the trains can use
auxiliary tracks corresponding to their directions and the whole task can be
divided into two independent subtasks for each direction.

The problem is to construct and implement a scheduling algorithm to send as
much as possible trains for period of time T in both directions (more specifically
we are interested in the schedule at which the minimum number of trains in both
directions over a specified period of time is maximal, this number per time τ we
call track capacity of the section with given schedule).

Properties of schedules from A and A∩B were studied in [1]. In current paper
our aim is to analyze properties of schedules from B. We show, that with some
additional assumptions, the maximal track capacity for schedules from A ∩ B
equals to maximal track capacity for schedules from B. In addition, we have
numerical experiments, that confirm our conjecture, that this is true in common
case (without additional assumptions).

2 Assessment of track capacity

In this section we suppose, that ε = 0 and there are no isolated stations.

Proposition 1. The maximal track capacity for schedules from R doesn’t exceed
doubled maximal track capacity for schedules from A ∩ B.

Proposition 2. Let R is a schedule from B and for every edge of Γ total time,
when the edge is orientated in direction v1 7→ vn equals time, when the edge is
orientated in direction vn 7→ v1. Then there exist schedule R′ from A ∩ B such
that track capacity for schedule R′ doesn’t exceed track capacity for R.

The following propositions were obtained earlier.

Proposition 3 ([1], Theorem 1). Let R is a schedule from A ∩ B. Then the
track capacity for the section with schedule R doesn’t exceed f , where

f =
1

4
min
i

∑
i≤j≤i+τ

m(vi).

Proposition 4 ([1], Corollary). Let R is a schedule from A ∩ B. Then there
exists schedule R′ from A ∩ B such that the track capacity of the section with
schedule R equals to track capacity of the section with schedule R′ and for R′ we
can assume

m1(vi) = m2(vi) =
m(vi)

2
, for even m(vi),

|m1(vi)−m2(vi)| ≤ 1, for odd m(vi) .

Thus propositions 2, 3 and 4 make possible to determine a maximal track
capacity for schedules from B in case, when for every edge of Γ total time,
when the edge is orientated in direction v1 7→ vn equals time, when the edge



Scheduling for the Linear Section of a Single-Track Railway 133

is orientated in direction vn 7→ v1. In common case, rough estimations can be
obtained from proposition 1.

We suppose that the following conjectures are correct.

Conjecture 1. Track capacity for the section with schedule from B doesn’t exceed
of track capacity of the section with some schedule from A ∩ B.

Conjecture 2. Track capacity for the section with schedule fromR doesn’t exceed
of track capacity of the section with some schedule from A ∩ B.

3 Numerical experiments

Consider a mathematical model of linear section of a single-track railway with 65
stations and 2 of them are isolated with δ1 = 80 and δ2 = 135 (isolated station
w with δ described in Introduction).

Algorithm

For τ from 60 to 720 minutes and for arbitrary independent edges orientation
lets find the maximal track capacity. Below we give verbal description and
pseudocode of the algorithm.

For t ∈ T

1. if there is no train at the first station v1 or at the last station vn, we create
it there;

2. iterate stations from last to first

(a) for each station, do the following;

(b) if sR(t, {vi, vi−1}) = −1 and train will be able to move to the next station
vi+1 then we send it there;

(c) if there is a train on vi then go to (a);

3. as we reach the first station v1, we create and send new trains as much as
possible;

4. iterate stations from first to last

(a) for each station, do the following;

(b) if sR(t, {vi, vi+1}) = 1 and train will be able to move to the next station
vi−1 then we send it there;

(c) if there is a train on vi then go to (a);

5. as we reach the first station vn, we create and send new trains as much as
possible;

6. increase the time counter and go to 2.

Pseudocode of the algorithm



134 Elena N. Akimova et al.

V_{i,t}:= []

V_{1,0}:= m_1(i,t)

V_{n,0}:= m_2(i,t)

for t in T

{

for i in (n..2)

{

if s_r(t, e_{i,i-1}) == -1

{

while m_1(i,t) > 0

{

train <- minNumberTrainOnStation(V_{i,t})

remove train from V_{i,t}

add train to V_{i-1,t+1}

}

}

}

while m_1(1, t+1) == 0

{

create newTrain

add newTrain to V_{1, t+1}

}

for i in (1..n-1)

{

if s_r(t, e_{i,i+1}) == 1

{

while m_2(i,t) > 0

{

train <- minNumberTrainOnStation(V{i,t})

remove train from V_{i,t}

add train to V_{i+1,t+1}

}

}

}

while m_2(n, t+1) == 0

{

create newTrain

add newTrain to V_{n, t+1}

}

}

The algorithm was implemented in C++ (we used standard data structures,
see [6], [7]) using Intel Xeon Phi with offload mode and MPI[8]). The data was
distributed between nodes of supercomputers and calculated on Intel Xeon Phi.



Scheduling for the Linear Section of a Single-Track Railway 135

Each node processes its own predefined set of time intervals. The communication
between nodes is minimal, therefore we have obtained almost linear speedup.

For our experiments we use |T | = 14400 (equal to 10 days), cluster with 6
nodes. A node configuration one can see in Table 1.

Table 1. Configuration for one node of the cluster

CPU 2 x Intel Xeon Processor E5-2620 6C 2.0GHz 15MB Cache 1333MHz

RAM 4 x 8GB (PC3L-10600 CL9 ECC DDR3 1333MHz LP RDIMM)

Coprocessor 2 x Intel Xeon Phi 5110P

HDD IBM 500GB 7.2K 6Gbps NL SATA 3.5” G2SS

NIC Emulex Dual Port 10GbE SFP+ Embedded VFA III for IBM System x

Network 10 Gb Ethernet

Switch IBM System Networking RackSwitch G8124E (Rear to Front)

The algorthim uses class Generator, which produces fixed distribution of
movement direction for each edge with given time interval τ . All these distribu-
tions are processed independently, so we have linear growth of speedup. After
the processing the algorithm chooses the best schedule.

Tasks for nodes are distributed with MPI in a way that all cores of the
processor are used. Thus we create 24 threads with OpenMP for every node (2
processor with 12 cores per node).

We using Intel Xeon Phi with offload mode and create 240 threads with
OpenMP.

Execution times, speedup and efficiency of the program for different config-
urations can be seen from Table 2 and Table 3. Table 2 describes speedup and
efficiency of the program compared with 1 node with 12 threads. In this paper
the speedup is the ratio of the execution time for 1 node with 12 threads to the
value of the Table 2. The efficiency is a ratio of speedup to number of devices
(number of nodes or number of Intel Xeon Phi).

Table 2. Execution time of the program

Number of nodes and number of thread per node Times (minutes)

1 node x 12 threads 296

2 node x 12 threads 168

6 node x 12 threads 61

1 node x 1 mic 249

1 node x 2 mic 133

2 node x 1 mic 149

2 node x 2 mic 71



136 Elena N. Akimova et al.

Table 3. Speedup and efficiency of the program

Number of node and number of thread per node speedup efficiency

2 node x 12 threads 1.761 0.88

6 node x 12 threads 4.852 0.8

1 node x 2 mic 1.87 0.93

2 node x 1 mic 1.67 0.83

2 node x 2 mic 3.5 0.82

4 Conclusion

Estimations of track capacity from B were obtained. The software, which imple-
ments the algorithm using MPI and Intel Xeon Phi coprocessor, was created. The
numerical experiments were performed on the supercomputer with Intel Xeon
Phi. Thus we have obtained a numerical confirmation of Conjecture 1. In future
we are going to continue our research and check the correctness of Conjecture 2.

References

1. Akimova E.N., Gainanov D.N., Golubev O.A., Kolmogortsev I.D., Konygin A.V.:
The Problem of Scheduling for the Linear Section of a Single-Track Railway. In:
ICNAAM (2015)

2. KePing L., ZiYou G., Bin N.: Cellular automaton model for railway traffic. Journal
of Computational Physics, vol. 209 (1), 179–192 (2005)

3. Harrod S.: Optimal Scheduling of Mixed Speed Trains on a Single Track Line, in
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.5597

4. Higgins A., Kozan E., Ferreira L.: Optimal Scheduling of Trains on a Single Line
Track. In: Transpn. Res.-B., vol. 30 (2), 147–161 (1996)

5. Diestel R.: Graph Theory. Springer-Verlag, New York (2000)
6. Cormen Th., Leiserson Ch., Rivest R., Stein C.: Introduction to Algorithms, third

edition. MIT Press (2009)
7. Sedgewick R., Wayne K.: Algorithms, fourth edition. Addison-Wesley (2011)
8. Gropp W., Lusk E., Thakur R.: Using MPI-2 Advanced Features of the Message-

Passing Interface. MIT Press (1999)


