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Abstract. The paper describes an approach to the parallel natural join
execution on computing clusters with GPU and MIC Coprocessors. This
approach is based on a decomposition of natural join relational operator
using the column indices and domain-interval fragmentation. This de-
composition admits parallel executing the resource-intensive relational
operators without data transfers. All column index fragments are stored
in main memory. To process the join of two relations, each pair of index
fragments corresponding to particular domain interval is joined on a sep-
arate processor core. Described approach allows efficient parallel query
processing for very large databases on modern computing cluster systems
with many-core accelerators. A prototype of the DBMS coprocessor sys-
tem was implemented using this technique. The results of computational
experiments for GPU and Xeon Phi are presented. These results confirm
the efficiency of proposed approach.
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1 Introduction

Nowadays, human scientific and practical activities create the new challenges
that demand big data processing. According to IDC study [1], the amount of
digital data is doubling in size every two years, and by 2020 the digital universe
— the amount of digital data created and replicated — will reach 44 zettabytes,
or 44 trillion gigabytes. One of the popular ways to process efficiently big data
is using the parallel database system, which are able to process data in parallel
on the high performance system with distributed memory [2-5]. The traditional
approach for database storing is row-oriented representation. However, column-
oriented database systems have been shown to perform more than an order of
magnitude better than row-oriented database systems ("row-stores”) on analyt-
ical workloads such as those found in data warehouses, decision support, and
business intelligence applications. The elevator pitch behind this performance
difference is straightforward: column-stores are more I/0O efficient for read-only
queries since they only have to read from disk (or from memory) those attributes
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accessed by a query [6]. Column-oriented databases are particularly well suited
for compression because data of the same type is stored in consecutive sections.
This makes it possible to use compression algorithms specifically tailored to
patterns that are typical for the data type [7].

In recent years, more and more many-core processors are superseding se-
quential ones. Increasing parallelism, rather than increasing clock rate, has be-
come the primary engine of processor performance growth, and this trend is
likely to continue. Particularly, today’s GPUs (Graphic Processing Units) and
Intel’s MIC (Many Integrated Cores), greatly outperforming traditional CPUs
in arithmetic throughput and memory bandwidth, can use hundreds of parallel
processor cores to execute tens of thousands of threads [8]. Recent trends in new
hardware and architectures have gained considerable attention in the database
community. Processing units such as GPU or MIC provide advanced capabilities
for massively parallel computation. Database processing can take advantage of
such units not only by exploiting this parallelism, e.g., in query operators (either
as task or data parallelism), but also by offloading computation from the Cen-
tral Processing Unit (CPU) to these coprocessors, saving CPU time for other
tasks [9].

According to this, the problem of developing new efficient methods of parallel
database processing on modern compute clusters with many-core accelerators
using column-oriented representation and data compression is important. To
meet this goal, we offer a special type of index structures called distributed
column indices. Distributed column indices allow to perform a decomposition
of relational operators, which admits the efficient parallel execution of them on
computing cluster system, equipped with many-core accelerators. In this paper,
we consider the decomposition of the natural join operator. We will use the
notation from [10]. The symbol “o” will be used to denote the operation of
concatenation of the tuples.

2 Column Index

Let R(A, By,...,B,) be the R relation with surrogate key (surrogate) A and
the following attributes: By, ..., By. Tuples of R have length of u+1 and form of
(a,b1,...,b,), where a € Z>o and Vj € {1,...,u} (bj € @Bj). Here, ®p, is the
domain of attribute B;. Let r.B; denote a value of attribute B;. Let r. A denote a
value of the surrogate key of tuple r: r = (r.A,7.By, ...,r.B,). The surrogate key
of relation R has the property: Vr',r"” € R (r' # 1" < r'.A # r”.A). Define tuple
address as a surrogate key value of the tuple. To get the tuple by its address, we
will use &g dereferencing function: Vr € R(&g(r.A) =1).

Let R(A,B,...), T(R) = n be given. Let a linear order be defined on set
D p. The column index Ir. g for attribute B of relation R is an ordered relation,
which satisfies the following requirements:

T(Ir.) =n,ma(Ir.B) = 7a (R); (1)

Vri,20 € IR B (.Tl §$2<:>$1.B§$2.B); (2)
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Vre R(Vz € Ipp(rA=2.A=rB=uxDB)). (3)

Condition (1) means that the sets of surrogate keys of column index and in-
dexed relation are equal. Condition (2) means that index elements are sorted in
ascending order of values of attribute B. Condition (3) means that attribute A
of an index element contains the address of tuple of R, which has the same value
of B attribute as the corresponding element of column index has.

From the intensional point of view, the column index Ir g is a table with
two columns A and B (Fig. 1). The number of rows in the column index is equal
to the number of rows in the indexed table. Column B of index Ir g contains
all the values of column B in table R (including duplicates). These values are
sorted in ascending order inside column index.

R IR.B
A B - A| B
0|36 . - 3110
1114 < 1|14
2136 <-- 5127
3110 P 2 |36
4|74 <o ] 0|36
5127 e PR 6 |58
6 |58 D 4 |74

Fig. 1. Column index.

3 Domain-Interval Fragmentation

Let a total ordering relation be defined on domain ® . Divide ®pg into &k > 0
nonintersecting intervals:

Vo = [vo; 1], Vi = (v1302] ..o, Vim1 = (vg—13 0k ] 5
Vo < v < ... < Ug;
k-1 (4)
o5 =J Vi
i=0
Define interval fragmentation function on domain ®p as pp, : Dp —
{0,...,k — 1}. This function satisfies the following requirement:
Vie{0,....,.k—1} (Vb eDp(po,(b)=i=beV)). (5)

Let column index Ir g be given for relation R (A, B,...) with attribute B on
domain D p. Let interval fragmented function ¢o, be defined on domain D p.
The function

(PIR,B:IR.B_>{07~-~>]€_1} (6)
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is called domain-interval fragmentation function for index Ir. g, if it satisfies the
following requirement:

Ve € I B (¢1n5 (%) = ¢o,(2.B)) . (7)

Define ith fragment (i =0,...,k — 1) of index Ip p as:
I ={zlz € Inp; ¢rn5(a) =1i}. (®)

It means that the ¢th fragment contains tuples, which have values of attribute B
from the ith domain interval. This fragmentation is called the domain-interval
fragmentation. The number of fragments is the degree of fragmentation.

The domain-interval fragmentation has the following fundamental properties,
which follow directly from its definition:

k—1
Irp = U It 5; (9)
=0
Vi j €40, k= 1} (i # ) = Lo NI =0). (10)

4 Decomposition of the Natural Join Operator

Let two relations be given:

R(A,By,...,By,C1,...,Cy) (11)
and
S(A,By,...,By,D1,...,Dy). (12)
Let two sets of column indices be given for attributes By, ..., By:
IrB,,---,Ir.B,; (13)
Isp,,-..,1sB,- (14)

Let domain-interval fragmentation of degree k be defined for these indices:

k-1
IrB, = U Ikp,: (15)
=0

k—1
Isp, = |J Iig,- (16)
=0
Let

I ri —
I}%.B]- 'BJ’*I?S.BJ. -Bj

i _ i i
Pj = TTh g, A An, If A~ As (IR.B- . B vIS.B]) (17)
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foralli=0,...,k—1and j=1,...,u. Define

k—1
P = U P! (18)
i=0
Let N
P= P;. (19)
j=1
Define
Q={ro(s.Dy,...,8.Dy)[r e RAse SA(r.A sA) e P}. (20)

Then W*\A(R) > F*\A(S) = W*\A(Q) [11].
Note that calculation of P} by (17) can be done in parallel on k different
processors without data exchange. It ensures a near-linear speedup.

5 Performance Evaluation

The described approach was implemented as a prototype of DBMS coproces-
sor system. The source code of the program is openly available in the public
GitHub repository [13]. Column indices and domain-interval fragmentation were
evaluated using this prototype.

We generated a synthetic database, which consisted of two relations R and
S with one common attribute B of integer type. In R relation, B was a pri-
mary key. In S relation, B was a foreign key. Numbers of tuples were follow-
ing: T(R) = 600000 and T'(S) = 60000000. Relation S was generated in two
ways. First, we used uniform distribution for column S.B. Second, we used
rule 80/20 [12] for column S.B. Fragmented column indices Ig g and Is g was
created for columns R.B and S.B. All fragments of both indices were loaded into
the memory of many-core coprocessor. Each pair of corresponding fragments of
Ir.p and Ig p was processed in separate thread by the merge join algorithm.

The experiments were done using the following equipment:

— NVIDIA Tesla K40m with 2880 CUDA Cores (maximum number of threads
per block is 1024) and 12 Gb memory size;
— Intel Xeon Phi SE10X accelerator with 61 cores and 8 Gb memory size.

In all the experiments shown on figures 2-4, we varied the number of frag-
ments, into which indices were splited (abscissa axis), and measured total time
of join execution (ordinate axis).

In the first series of experiments, we used database with uniform distribution
of B values in relation S. Using such a database, we investigated the influence
of the number of threads per CUDA block for GPU during join processing. The
results are presented in Fig. 2 a). We explored the following three cases: 128,
256 and 512 threads per CUDA block. The experiments show that maximum
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Fig. 2. Dependence of join execution time on the number of fragments for a) GPU and
b) Xeon Phi (uniform distribution).

speedup on GPU is achieved for uniform distribution when we use 128 threads
per CUDA block. The similar experiments were performed for Xeon Phi (see
Fig. 2, a). The results show that maximum speedup on Xeon Phi is achieved for
uniform distribution when we use 4 threads per core. In all cases, the performance
of GPU is very close to the performance of Xeon Phi.

For skewed distribution (rule 80/20) of B values in relation S, we are seeing
the very opposite picture (see Fig. 3). In such a way, we have 20% of very

1,20
IJ]\ —{3— 128 threads per block —{1— 1 thread per core
100 —O -256 threads per block || —O -2 threads per core
\EL --/x--512 threads per block --/x--4 threads per core
n n
2 I R &
@ o Argr—
¢ E s
= F 0,30 P~ S
0,20 ==
0,10
0,00
600 2000 6000 20000 60 000 200 000 600 2000 6000 20000 60 000 200 000
Number of fragments Number of fragments
(a) (b)

Fig. 3. Dependence of join execution time on the number of fragments for a) GPU and
b) Xeon Phi (80/20 rule).

“big” fragments and 80% of very “small” fragments for column index Ig . In
this situation, the maximum performance is achieved on GPU, when we use the
greater number of threads per CUDA block. For the skewed data, the maximum
performance is achieved on Xeon Phi, when we use the smaller number of threads
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per core. And again, the performance of GPU is very close to the performance
of Xeon Phi for skewed data.

In the last series of experiments, we investigated how our algorithm is robust
with respect to data skew. To simulate data skew, a probabilistic model was
used. In accordance with this model, the skew coefficient 6 (0 < 6 < 1) specifies
distribution in which, to each distinct value of S.B, some weight coefficient p;
(i =1,...,N) is assigned by the formula

) N
> pi=1,
=1

pi = m7

where IV is the number of distinct values for attribute S.B and H} = 17° +
27% 4+ ...+ N7 is the N-th harmonic number of order s. The case of § = 0
corresponds to uniform distribution. The case of § = 0.5 corresponds to 45/20
rule, in accordance with which 20% distinct values have 45% occurrences in
column B of relation S. The case of § = 0.73 corresponds to 65/20 rule and the
case of § = 0.86 corresponds to 80/20 rule. In these experiments, we used 512
threads per CUDA block for GPU and 1 thread per core for Xeon Phi. The results
are presented in Fig. 4. We see that load balancing can be effectively managed

0,60 5 0,60
A —J— Uniform J)\ —{— Uniform
0,50 N -0 -80/20 H 0,50 > -0 -80/20
(SN --A--65/20 o --A--65/20
4 ~ H
- 0,40 < —0—-45/20 A_O"w < —0—45/20
g D C. § A “oo
n . ~ @ ... ~
2 0,30 < = 2 0,30 ~ >
£ \\A~ o. £ ‘*A RS ~
£ - ~. £ - <
0,20 S O- 0,20 Sy -,
e =SS D S
0,10 0,10 ff L =
0,00 0,00
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Fig.4. The influence of number of fragments on load balancing for a) GPU and
b) Xeon Phi.

by increasing the number of fragments, into which we split the column indices
on GPU as well as on Xeon Phi. When the number of fragments much greater
than the number of threads, one thread can handle many small fragments, while
another thread will process one big fragment. If the number of fragments equals
to the number of threads, we have no such a possibility.

Performed experiments let us make three main conclusions. First, the pro-
posed approach based on fragmented column indices allows to perform resource-
intensive join operator for T'(Ig. ) = 600000 and T'(Is.p) = 60000000 during
less then 0.2 second on Xeon Phi coprocessor or NVIDIA Tesla GPU. Second, the
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performance of Xeon Phi is very close to the performance of NVIDIA Tesla GPU
for such kind of workload. Third, the described approach eliminates data trans-
fer, hence we may expect a near-linear speedup on computing cluster systems
with thousands nodes equipped with many-core accelerators.

6 Related Work

Binary table model was introduced in the paper [14]. On the basis of this
model, several column-oriented DBMS were designed. As it was demonstrated
by work [15] and [16], column-oriented systems offer an order-of-magnitude per-
formance improvement over traditional row-oriented systems for analytical pro-
cessing workloads, such as those found in data warehouses or decision support
systems. One of the main disadvantages of column-oriented DBMS is lacking the
optimization technique, which is intrinsic to relational (row-oriented) DBMS.
The work [6] investigated column-oriented simulation in a relational DBMS via
the following techniques: vertical partitioning, index-only plans and material-
ized views. The investigation showed that such techniques do not improve the
performance of row stores for analytical processing workloads. To overcome the
problems faced with work [6], the work [17] introduced two new operators: In-
dex Merge and Index Merge Join. The algorithms presented in this paper were
designed specifically to take advantage of parallel processing whenever possible.
Another approach was proposed in work [18]. This paper introduced a new in-
dex type, column store indexes, where data is stored column-wise in compressed
form. Column store indexes are intended for data-warehousing workloads where
queries typically process large numbers of rows but only a few columns. To fur-
ther speed up such queries, the paper [18] also introduced a new query processing
mode, batch processing, where operators process a batch of rows (in columnar
format) at a time instead of a row at a time.

7 Conclusions

In this article, we presented a decomposition of the natural join operator based
on the column indices and the domain-interval fragmentation. Our approach was
evaluated using the prototype DBMS coprocessor system. Experiments showed
its efficiency for a resource-intensive natural join operator. Proposed approach
can be used on computing cluster systems with many-core accelerators. De-
scribed technique is suitable for data warehouse workloads as well as for OLTP
workloads.

As a direction of a future research, we are going to use described approach
for the decomposition of another relational operators and compare speedup with
existing DBMS.
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