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Abstract. We present an analysis of high performance computational
method for solving the problem of crystal grows. The method uses PETSc
and PETIGA C-language based libraries and supports parallel comput-
ing. The evolution of calculation process was studied in series of special
computations are obtained on innovative mobile cluster platform, which
provides exclusive system tuning abilities. The results of research con-
firm the high efficiency of the proposed algorithm on multi-core computer
systems and allow us to recommend the use of PETSc and PETIGA for
solving high order differential equations.
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1 Introduction

Problems involving differential operators of order more than two have not his-
torically lent themselves well to finite element analysis[4]. Such applications have
the variational statements with second derivatives, requiring the use of a globally
C1− continuous basis. The complexity of the general solution of this problem
led to the use of finite-difference and spectral methods, both of which are viable
methods, but far more limited than FEA in their scope and flexibility. By the
use of isogeometric analysis, we have a higher-order accurate, robust method
with great geometric suppleness and compactly supported basis functions. At
the same time a higher order continuity is still possible. Thus, it is a conve-
nient technology for the study of equations involving higher-order differential
operators[10].

1.1 Phase field models

Two different approaches have been used to describe phase transition phenom-
ena: sharp interface models and phase-field(diffuse-interface) models[9]. Usually,



110 Ilya Starodumov et al.

the evolution of interfaces, such as the liquidsolid interface, has been described by
sharp-interface models. That approach needs the resolution of a moving bound-
ary problem, separate differential equations hold in each phase, and certain quan-
tities may suffer jump discontinuities across the interface. Phase-field models
provide an alternative description for phase-transition phenomena. It is possible
due to approximating the interface as being diffuse such that it does not need to
be tracked explicitly.An other description for phase-transition phenomena was
provided by phase-field models. Such models can be derived from classical irre-
versible thermodynamics. Developed by K. R. Elder et al. as recently as 2002[6,
5] the PFC model, which shares many features with the CDFT (the classical
density functional theory) of freezing, was presented as an extension of the PF
models to study processes with smaller length scales.Essential progress has been
made in the simulation of the parabolic PFC-equation[11–13], special efforts are
required to solve numerically the modified (hyperbolic) PFC-equation due to
the second-order time derivative of the equation. One of the challenges to PFC
has been modeling different close-packed crystal structures[7, 2]. Such a task in
three-dimensional case will be considered in the current article further.

1.2 The modified phase field crystal problem

Originally, the PFC model has been formulated in a parabolic form. For now it
has been extended to allow faster degrees of freedom consistent with inertia in
correspondence to transformation propagative regimes. Particularly, a modified
or hyperbolic PFC model which includes an inertial term was introduced, and
therefore, gives a possibility of the description of both fast and slow dynamics
of transition [8]. The modified phase field crystal model describes a continuous
field of atomic density φ(x, t) and it is expressed by the sixth order in space and
second order in time equation:

τ
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where t is the time, τ is the relaxation time of the atomic flux to its stationary
state, and µ represents the chemical potential, obtained from the free-energy
functional
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associated to the domain Ω. The chemical potential is can be obtained as the
variational derivative of the free-energy functional F , namely
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δφ
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The function f represents the homogeneous part of the free energy density. It
takes on the form
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Here, ε = (Tc − T )/Tc is the undercooling, where T and Tc are the temperature
and critical temperature of transition, respectively. α is a coefficient which means
a measure of metastability.

2 Computational experiments

The modified PFC equation is a hyperbolic differential equation of the sixth
order. The solution of this equation from the computational point of view is not
an easy task. Therefore, we developed special numerical algorithm using a C-
language code based on the PETIGA library[3]. This software can be described
as an extension of PETSc[1] that adds the utilization of IGA capability. PETSc
is a suite of data structures and routines that provide frames to develop large-
scale application codes on parallel computers and consists of parallel linear and
nonlinear equation solvers and time integrators[14]. Specification of the compu-
tational algorithm is not a subject of current work, but it is represented in [2],
where the software allows to get the first numerical results on three dimensional
structures predicted by the modified phase field crystal equation. It should be
noted that the algorithm takes advantage of the PETSC for parallel computa-
tions based on MPI methods. Experience of simulations in [2] shows that the
computational complexity of the software is quite high and significant results are
impossible without the use of high-performance clusters. This makes it relevant
to the optimization problem of the program, which should start with a study
of the effectiveness of the already implemented algorithm. The most importaint
issues are the parallelization efficiency and amount of required computational
resources.

To assess the performance of the computational program, we developed a
series of experimental tasks. We made 3 types of experiments for homogeneous
HPC cluster. For correct analysis, the configuration of hardware and software
computer system must be optimized in order to minimize possible errors. Thus,
the researchers had the task to form an experimental computational cluster
in a short time with exclusive access to hardware and software. Such an ap-
proach could quickly adjust the computer system for each experiment with the
requirements to minimize measurement uncertain. The use of traditional large-
scale computer systems for this task seems impractical and required a significant
amount of effort and time. At the same time, the use of personal workstations is
not possible because of their insufficient performance. In this situation, we able
to find a solution with innovative Immers technology. Such solutions make it
possible to build compact HPC autonomous mobile computational clusters with
a form factor close to the personal workstation. In that conditions we got the
ability to use the optimum set of system software and hardware settings. Due to
this potential sources of measurement error were fixed.

The cluster configuration includes 5 computational nodes connected by In-
finiband QDR network of 40 GB/sec. Each compute node consists of two 14-core
processor Intel E5-2697 v3 and 64GB of DDR4 RAM. All computational nodes
were running under the managment of SLES 11.3 OS. No extra optimization
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software were installed. In all experiments, the program calculated the task for
1 time step.

Descriptions and the results of experimental calculations are presented below.
The purpose of these calculations was to evaluate the amount and specificity of
computational resources, to assess the balancing of the program parallelization
and estimate the amount of overhead.

2.1 First experiment

The purpose of the first experiment is evaluation of dependence the complexity
of the problem from the amount of finite elements. Fixed parameters for this
experiment are: computational domain size 160x160x160 and using of 5 nodes
including 28 processor cores on each node. Variable parameter is a grid size:
10x10x10, 20x20x20, 40x40x40, 80x80x80, 160x160x160. Results of the
experiment are presented in the following figures:

a) Growth of the size of the problem and calculation time

Total memory used for different grid size, bytes.

Total flops for different grid size.
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MPI message total lengths for different grid size , bytes.

Maximum computational time for a single core in cases of different grid size,
sec.

b) MPIBarrier call time

Percentage of MPIBarrier call time in the maximum computation time for a
single core in cases of different grid size.
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c) Some indicators of the balance

[Blue]The ratio of the maximum time for a single core to a minimum. [Red]The
ratio of the maximum memory usage to a minimum during the calculation.
[Green]The ratio of the maximum flops indicator to a minimum during the
calculation. Diagrams for different grid size.

c) Network activity

Percentage of MPI messages in maximum computation time for a single core in
cases of different grid size.

2.2 Second experiment

The purpose of the second experiment is the assessment of the efficiency of the
algorithm parallelization by increasing the number of computing nodes. Fixed
parameters for this task are: computational domain size 160x160x160 and the
grid size 50x50x50. Variable parameter is the number of nodes: from 1 to 5
nodes included 28 processor cores on each node. Results of the experiment are
presented in the following figures:
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a) Growth of the size of the problem and calculation time

Total memory used for different amount of nodes, bytes.

Total flops for different amount of nodes.

MPI message total lengths for different amount of nodes , bytes.
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Maximum computational time for a single core in cases of different amount of
nodes, sec.

b) MPIBarrier call time

Percentage of MPIBarrier call time in the maximum computation time for a
single core in cases of different amount of nodes.

c) Some indicators of the balance
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[Red]The ratio of the maximum time for a single core to a minimum.
[Green]The ratio of the maximum memory usage to a minimum during the
calculation. [Blue]The ratio of the maximum flops indicator to a minimum
during the calculation.

c) Network activity

Percentage of MPI messages in maximum computation time for a single core in
cases of different amount of nodes.

2.3 Third experiment

The purpose of of the third experiment is estimation of efficiency of the
algorithm parallelization by increasing the number of cores on single node.
Fixed parameters for this task are: only one node, computational domain
domain size 160x160x160 and the grid size 50x50x50. Variable parameter is the
number of cores on single node: from 1 to 28. Results of the experiment are
presented in the following figures:

a) Growth of the size of the problem and calculation time

Total memory used for different computation cores amount, bytes.
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Total flops for different computation cores amount.

MPI message total lengths for different computation cores amount, bytes.

Maximum computational time for a single core in cases of different
computation cores amount, sec.
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b) MPIBarrier call time

Percentage of MPIBarrier call time in the maximum computation time for a
single core in cases of different computation cores amount.

c) Some indicators of the balance

[Red]The ratio of the maximum time for a single core to a minimum.
[Green]The ratio of the maximum memory usage to a minimum during the
calculation. [Blue]The ratio of the maximum flops indicator to a minimum
during the calculation.
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c) Network activity

Percentage of MPI messages in maximum computation time for a single core in
cases of different computation cores amount.

3 Results

During computing the tasks the cluster Immers showed the best performance
4.45E+09 Flops/sec, 3.68E+09 Flops/sec and 8,03E+08 Flops/sec for the first,
second and third experiments, respectively.The experiments results suggest the
following conclusions:

3.1 Estimating the size of the problem and the computation time

In the first experiment, the total memory usage, the total number of operations
and the total size of messages MPI grow exponentially. These indicators are
rising at roughly the same speed. In the second experiment, the total amount
of memory used and the total size of MPI messages almost unchanged. The
total number of operations is slightly reduced, and this process requires further
study. The computation time is also reduced with a logarithmic rate as
expected. In the third experiment, there is a large variation in the total
amount of memory used - this effect requires further study. Variations in the
total number of operations and the total amount of MPI message, apparently
associated to variations from memory. Computational time is change expected.

3.2 Balancing

In the first experiment, variation in the memory up to 40%, the number of
operations up to 60%. In the second experiment, variation in the memory up to
20%, the number of operations up to 35%. In the third experiment, variation in
the memory up to 28%, the number of operations up to 55%. The indicators
seem to be unexpectedly large and require further research.
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3.3 Overhead

The overhead of synchronization, as expected, increases with increasing
amounts of computing nodes and decreasing the size of the grid. Meanwhile,
the proportion of execution time MPI Barrier in total computation time is less
than 0.001%, which is quite a bit.

4 Conclusions and further work

Current work shows that the solution of the crystal growth problem in the
hyperbolic statement allows to simulate the structural transformation of
matter at the supercooling. These studies have a big practical importance in
the materials science applications. The computational complexity of the
hyperbolic PFC equation is forcing scientists to develop special
high-performance algorithms. One of the algorithms, which is used PETSC and
PETIGA libraries, discussed in the article. This algorithm has already shown
effectiveness, but the important issues are the conditions of its applicability
and the possibility of it’s improvement in terms of parallel programming. An
important step in the matter of such issues is to study the efficiency of use of
computing resources. To investigate this question, the authors have set specific
numerical experiments. To reduce the error in the results due to the
peculiarities of the computing cluster setup researchers have used homogeneous
autonomous mobile computer. This approach has proved successful in the sense
that the used hardware configuration eliminates the influence of unaccounted
factors in the work of the computational algorithm.
The calculation results have showed a good balance of parallel computing.
Authors have evaluated the overall computing resources. We can say that the
amount of consumed memory and CPU time is linearly dependent on the
complexity of the problem in terms of the number of computational cells. Also,
in all the experiments overheads for synchronization tasks were low and even
not up-to-date QDR network system was mostly idle. We believe that these
results are a consequence of the high-quality implementation of computational
algorithm. Some issues are deviations in performance of computational
algorithm in the third experiment. Apparently, they are caused by the
peculiarities of the CPU and data exchange on the nodes. It should be noted
that these variations are generally not significant effect on the calculations
efficiency.
The continuation of this work would be conducting similar experiments on a
heterogeneous HPC cluster. Comparison of the results with the results of this
paper will be useful for choosing the best HPC configuration with capability of
solving of hyperbolic PFC equations. For researchers,who conduct a big series
of experiments, these conclusions can be especially interesting.
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