Microservices Validation: Methodology and
Implementation

Dmitry Savchenko and Gleb Radchenko

South Ural State University, Chelyabinsk, Russia
gleb.radchenko@susu.ru

Abstract. Due to the wide spread of cloud computing, arises actual
question about architecture, design and implementation of cloud appli-
cations. The microservice model describes the design and development
of loosely coupled cloud applications when computing resources are pro-
vided on the basis of automated IaaS and PaaS cloud platforms. Such
applications consist of hundreds and thousands of service instances, so
automated validation and testing of cloud applications developed on the
basis of microservice model is a pressing issue. There are constantly de-
veloping new methods of testing both individual microservices and cloud
applications at a whole. This article presents our vision of a framework
for the validation of the microservice cloud applications, providing an
integrated approach for the implementation of various testing methods
of such applications, from basic unit tests to continuous stability testing.

Keywords: microservices - ontologies - cloud computing - validation

1 Introduction

The microservice model describes a cloud application as a suite of small indepen-
dent services, each running in its own container and communicating with other
services using lightweight mechanisms. These services are built around separate
business capabilities, independently deployable and may be written by different
development teams using different programming languages and frameworks [1].
We can mention several platforms (with varying degrees of completeness) that
support the microservice model: VAMP [2], Mjolnirr [3] and Netflix Cloud Plat-
form [4]. In the paper [5], the following features of microservices were described:

— Open Interface — microservice should provide an open description of interface
and communication messages format (either API or GUI).

— Specialization — each microservice provides a support for an independent part
of application’s business logic.

— Containerization — isolation from the execution environment and other mi-
croservices based on a container virtualization approach. Technologies like
OpenVZ, Docker or Rocket [6] became a de-facto standard for implementa-
tion of such approach.

22 Dmitry Savchenko and Gleb Radchenko

— Autonomy — microservices can be developed, tested, deployed, destroyed,
moved or duplicated independently and automatically. Continuous integra-
tion is the only option to deal with such development and deployment com-
plexity.

One of the most important stages of the process of continuous integration
is a continuous validation of the software. The goal of this study is to develop
a microservice validation methodology and design a software solution for auto-
mated microservice systems testing support. To achieve this goal it is necessary
accomplish the following tasks:

— provide a review of existing distributed systems validation methods, includ-
ing cloud, multi-agent and actor-based systems;

— develop a microservice validation methodology;

— design a framework for microservice systems validation support.

In this article, we will describe our model of validation of microservice systems
and it’s implementation as a prototype of microservice systems validation frame-
work.

The rest of this paper is organized as follows. In Section 2 we will provide a
review of the current state of distributed systems testing and validation methods.
In Section 3 we would describe the model of validation of microservice systems. In
Section 4 we would propose an architecture and describe prospective approaches
to implementation of microservice systems validation framework. In Section 5
we would summarize the results of our research and discuss further research
directions.

2 Distributed Systems Validation

To develop a model of microservice systems validation, we should analyze ex-
isting testing methods that used for such distributed systems. In the paper [5]
we proposed an approach to a microservice system validation based on ISO/IEC
29119 standard suite. Authors of [8] describe an approach to microservice testing
based on BDD approach.

We also analyze the validation methods that are used in a set of related dis-
tributed systems models, like multi-agent systems and actors. For example, it is
possible to apply ontologies-based multi-agent systems validation method [7] to
provide a validation of microservices communication. However, there are some
approaches that can’t be easily implemented for the microservice model. For ex-
ample, paper [9] describes the testing framework, which operates in accordance
with the actors model. Such analysis can be carried out only for the actor sys-
tems, because, unlike the actor model, there is no standard requirement for any
microservice that it should be able to create another instance of microservice.

We should also mention integration and stability testing methods are de-
veloped for highly loaded cloud applications. The “Chaos Monkey” [10] failure-
injection framework, provided by Netflix, implements a permanent background

Microservices Validation: Methodology and Implementation 23

work process, which at random times introduces occasional failures in the pro-
duction platform. This process may trigger a violation of network connectivity,
crash random processes or entire units of the computing system. This testing
approach leads to the fact that the application is designed with consideration of
possible random failures, and if they occur, they do not cause application mal-
function. Another approach, proposed by the Twitter development team in [11],
provides automated web services validation based on mirroring of user requests
incoming to the production environment and their simultaneous execution on
the testing environment. Comparison of results of execution of these requests al-
lows to evaluate the quality of the system being developed in the real flow of user
requests, thus avoiding the inconsistency of a standard user activity processing.

The analysis of existing methods of testing of microservice systems shows,
that there is no unified model of microservice system validation that would
support a continuous integration of microservices.

Development Testing

Microservice
Interface Definition
(B

Coding Source

Code

Internal Unit Testing

[Test failed]

[Test passed]

Contalner. R RN Contaln_er
Implementation JContainer with Self-testing
[Test failed] the Microservice

[Test passed] _%
_ Security Unit

[Test failed]
[Integration Testing

Microservice Integration

[Test environment] Load Integration
Testing

Integration

[Test failed] Security Testing

Test passed]

Microservice Deployment
[Production environment]

Continuous System

Stability Testing

[Test passed]
>@®

[Test failed]

Fig. 1. Microservice validation procedure

24 Dmitry Savchenko and Gleb Radchenko

3 Model of Validation of Microservice Systems

Based on the microservice features shown in the introduction, we propose the
following model of microservice systems validation (see fig. 1).

1. To provide an automated validation of microservices interface and commu-
nication process, we should require a definition of the interface of every
microservice.

2. According with the features of the programming language and framework
chosen to implement the microservice, a developer should provide appro-
priate automated unit-testing of the microservice source code to ensure it’s
compliance with the requirements.

3. If the source code is passing all the unit tests, the microservice is packed into
the container and a set of container self-tests is provided to ensure that all
the components of the container are functioning correctly and the interface of
the container corresponds to the interface definition provided on the step 1.

4. If the self-test is successful, then microservice load testing and security testing
is provided. Steps 1-4 can be provided locally on a microservice developer’s
machine.

5. If all tests pass, the microservice is deployed on a test microservice envi-
ronment, where functional integration testing, load integration testing and
security integration testing is performed. It allow to detect a set of issues
caused by microservices orchestration, including load balancing, life cycle
management and communication issues.

6. If the microservice is passing all tests inside the test environment, it can
be deployed to the production environment. A continuous stability testing is
performed in a production environment in accordance with the methodology
of deliberate provocation of random failures of the system components.

4 Microservice Systems Validation Framework

To evaluate the proposed validation model, a Microservice Systems Validation
Framework (MSVF) is being developed. The MSVF should support microservice
application testing from the source code to the continuous stability testing, re-
gardless of the basic programming languages and software frameworks used for
the microservice development (see fig. 2).

MSVF would provide its users a catalog of testing methods, that can be used
to test a microservice application and an API for integration with continuous
integration platforms. Each testing method can be considered as a separate mi-
croservice template, that can be tuned to provide validation of specific part or
activity of user’s microservice application.

We can define the following main actors, who would interact with the MSVEF:

— Validation methods developer: provides development of new validation meth-
ods and their integration into the MSVF. The validation method can be
implemented as an independent microservice, that implements a specific

Microservices Validation: Methodology and Implementation 25

Microservice Systems Validation Framework

hoose application
for validation
rate and edit validation
objective

<<Include>> !

Choose and configure
validation methods
Execute validation
objective
Get validation
results

;. : Develop validation
Validation method
methods

developer

A

Microservice
application

Tester

Fig. 2. Microservice Systems Validation Framework Use Cases

method of validation that can be adopted to a specific microservice or mi-
croservice application, including:

e component-level testing: supports unit-testing of the microservice source
code and container self-testing;

o integration-level testing: supports functional integration testing of the
microservice system on a testing environment;

e [oad testing : supports load integration testing of the microservice system
on a testing environment;

e stability testing : supports validation methods that provides deliberate
provocation of random failures of the microservice system in a production
environment.

— Tester: is the main user of the MSVF platform. Tester can choose a service
or microservice application for validation; define a validation objective that
consists of a set of validation methods, adapted to the chosen application;
execute validation objectives and gather the results of the validation.

— Microservice application: represents the validated microservice application.

We can define the following basic components of the MSVF (see fig. 3):

— Validation Methods Manager responds for listing, creation and modification
of validation methods available in the MSVF.

26 Dmitry Savchenko and Gleb Radchenko

Microservice Systems Validation Framework
< - Validation Method
Microservice
application
<<Interface>>
Validation Method
Validation Interface
Validation Methods Manager -name : string
methods +createMethod() r T
+bindToApplication
developer +deleteMethod() +run() pp 0

Validation Objectives
Manager

+createObjective()

+deleteObjective()

Validation Objective
-Name
<<Interface>> -Methods|]

Validation Objective B -Application
= | Interface

+addValidationMethod()
+bindToApplication()
+runValidation()

Fig. 3. Microservice Systems Validation Framework Architecture

— Validation Method Interface is a common API that should be provided by
any validation method in the MSVF to support adaptation of validation
method to a specific microservice application.

— Validation Method is an implementation of specific validation method in the
form of microservice template.

— Validation Objectives Manager responds for listing, creation and modification
of validation objectives.

— Validation Objectives Interface defines an interface of validation objectives,
including methods for integration and tuning of validation methods.

— Validation Objective represents a suite of validation methods, tuned for a
specific microservice application.

Currently, the MSVF is being developed to support VAMP and Mjolnirr mi-
croservice platforms and Jenkins as a continuous integration framework. VAMP
and Mjolnirr cloud infrastructure is deployed on a set of computing nodes pro-
vided by the Supercomputer Center of South Ural State University. The MSVF
is being implemented as a separate Java-based microservice with its own web
and REST interface, providing integration and execution of validation methods
and objectives.

Microservices Validation: Methodology and Implementation 27

To support the validation process, a set of standard validation methods
is being developed and integrated to the MSVF, including component-level,
integration-level, load and stability testing methods.

5 Conclusion

In this paper, we provided an overview of existing validation approaches that
used to test distributed and cloud systems. On the basis of this overview, we pre-
sented a model of validation of microservice systems, supporting such microser-
vice features as open interface, containerization and autonomy. This method-
ology covers the microservice systems development process, from the creation
of a separate microservice to the production environment continuous stability
testing. Based on this model, an architecture of microservice systems validation
framework was presented.

Currently we implement the microservice systems validation framework as a
software solution that would support microservice applications validation in the
cloud environment. It would provide its users a catalog of microservice applica-
tions testing methods and an API for integration with continuous integration
platforms. Currently, the microservice systems validation framework is being de-
veloped to support VAMP and Mjolnirr microservice platforms and Jenkins as
a continuous integration framework.

Acknowledgment

The reported study was partially supported by RFBR, research project No.
14-07-00420-a and by Grant of the President of the Russian Federation No. MK-
7524.2015.9.

References

1. Thones, J.: Microservices. IEEE Softw. 32, 116-116 (2015).

2. Vamp : The Very Awesome Microservices Platform, http://vamp.io/.

3. Savchenko, D., Radchenko, G.: Mjolnirr: A Hybrid Approach to Distributed Com-
puting Architecture and Implementation. 4th International Conference on Cloud
Computing and Services Science. 445-450, Barcelona, Spain (2014).

4. Tilkov, S.: The Modern Cloud-Based Platform. IEEE Softw. 32, 116-116 (2015).

5. Savchenko, D., Radchenko, G.: Microservices validation: Mjolnirr platform case
study. 38th International Convention on Information and Communication Tech-
nology, Electronics and Microelectronics, MIPRO’2015. 248-253. IEEE, Chroatia,
Opatija (2015).

6. Pahl, C.: Containerization and the PaaS Cloud. IEEE Cloud Comput. 2, 24-31
(2015).

7. Nguyen, C., Perini, A., Tonella, P.: Ontology-based Test Generation for MultiAgent
Systems. 7th international joint conference on Autonomous agents and multiagent
systems. 1315-1320. International Foundation for Autonomous Agents and Multi-
agent Systems, Richland, SC (2008).

28

10.

11.

Dmitry Savchenko and Gleb Radchenko

Rahman, M., Gao, J.: A Reusable Automated Acceptance Testing Architecture for
Microservices in Behavior-Driven Development. 2015 IEEE Symposium on Service-
Oriented System Engineering (SOSE). 321-325. IEEE (2015).

Tasharofi, S., Karmani, R., Lauterburg, S., Legay, A., Marinov, D., Agha, G.:
TransDPOR: A Novel Dynamic Partial-Order Reduction Technique for Testing
Actor Programs. Formal Techniques for Distributed Systems. 219-234 (2012).
Izrailevsky, Y., Tseitlin, A.: The Netflix Simian Army,
http://techblog.netflix.com/2011/07 /netflix-simian-army.html.

Khanduri, P.: Diffy: Testing services without writing tests,
https://blog.twitter.com/2015/diffy-testing-services-without-writing-tests.

