Restricted Dynamic Programming Heuristic for

Precedence Constrained Bottleneck Generalized
TSP

Yaroslav Saliil-?

! IMM UB RAS, Yekaterinburg, Russia,
2 Ural Federal University, Yekaterinburg, Russia
yvs314Qgmail.com

Abstract. We develop a restricted dynamical programming heuristic
for a complicated traveling salesman problem: a)cities are grouped into
clusters, resp. Generalized TSP; b)precedence constraints are imposed
on the order of visiting the clusters, resp. Precedence Constrained TSP;
c)the costs of moving to the next cluster and doing the required job inside
one are aggregated in a minimax manner, resp. Bottleneck TSP; d)all
the costs may depend on the sequence of previously visited clusters, resp.
Sequence-Dependent TSP or Time Dependent T'SP. Such multiplicity of
constraints complicates the use of mixed integer-linear programming,
while dynamic programming (DP) benefits from them; the latter may be
supplemented with a branch-and-bound strategy, which necessitates a
“DP-compliant” heuristic. The proposed heuristic always yields a feasible
solution, which is not always the case with heuristics, and its precision
may be tuned until it becomes the exact DP.

Keywords: sequential ordering problem - traveling salesman - dynamic
programming - precedence constraints - generalized traveling salesman -
bottleneck traveling salesman

Introduction

Our object is a particularly complicated version of the well-known Traveling
Salesman Problem (TSP), which combines several its generalizations that are
usually treated separately: Bottleneck TSP [23, Ch. 15], Generalized TSP [23,
Ch. 12], Precedence Constrained TSP [40, 18,29, 8], Sequence-Dependent?® TSP
[3] (as a generalization of the more well-known Time-Dependent TSP [20]). Nev-
ertheless, their combination is neither a purely scholastic effort nor art for art’s

3 Note that the Sequence Dependent designation is mostly applied to scheduling prob-
lems, see [4], and has a different meaning: the cost of present action only depends on
the cost of the previous one, not on the entire previous sequence. To the best of the
author’s knowledge, the only term for dependence on the whole (previous) sequence
was State Dependent, introduced in [35] for a scheduling problem concerning printed
circuit board assembly; nevertheless, we prefer to follow to the ‘Sequence Dependent’
designation of [3].

86 Yaroslav Salii

sake. Its possible applications include printed circuit boards design (a less general
version, without precedence constraints, was considered in [25]) and optimization
of the cycle time for industrial robots (for a survey of robotic task sequencing,
refer to [2]). See the relevant reviews of TSP and its variations in [34, 37,31,
23, 30]. For a most recent treatment of Precedence Constrained TSP (TSP-PC),
also known as Sequential Ordering Problem (SOP), see [19].

A Terminological note We call the variation of TSP we consider in this paper a
Sequence-Dependent Precedence Constrained Bottleneck Generalized TSP (SD-
BGTSP-PC); however, since the sequence dependence does not currently play an
important part in our model, we will mostly omit that designation and refer to
our problem as BGTSP-PC, bearing the possible sequence dependence in mind.
The designation TSP-PC for Precedence Constrained TSP is borrowed from [8];
we find it appealing, since it poses no risk of confusion with the very different
Prize Collecting TSP, which is also abbreviated PCTSP [23, Ch. 14], makes an
explicit reference to the “ordinary” TSP (in contrast with SOP), and does not
specifically mention asymmetricity (our method is symmetricity-agnostic), in
contrast with PCATS [6]. Another important issue is that we consider an open
problem of the TSP family, i.e., return to origin is not mandated; to the best of
our knowledge, the open TSP was first posed in [15], with a reference to a 1965
report by N.Deo and S.L.Hakimi, as “Shortest Hamiltonian Chain Problem”.

The rest of the paper is as follows: in Sect. 1 we describe general notation
and definitions; Sect. 2 describes the problem statement, and Sect. 3 completes
the description with definitions of dynamic programming subproblems and the
Bellman Equation. Section 4 describes the exact dynamic programming for our
problem and Sect. 5 describes our experience of shared memory parallelization
of this algorithm. Section 6 discusses the proposed heuristic, reports and com-
pares the results of experiments with the parallel implementation of the exact
algorithm and the proposed heuristic. Sections 1-4 follow the most recent paper
on exact solution of the problem [13],

1 General notation and definitions

We employ the standard set-theoretic notation (quantifiers, propositional con-
nectives, etc.); = denotes equality by definition. Each set, all elements of which
are sets themselves, is called a family. For every two objects a and b, denote by
{a; b} the (unique) set that contains a, b, and nothing else. In the case a = b, this
yields a singleton {a} = {b}. We employ the standard Kuratovskii ordered pair
definition: for two arbitrary objects u and v, their ordered pair (OP) is defined by
(u,v) = {{u}; {u;v}}; its first element is u and the second one is v. For an OP z,
pri(z) denotes its first element and pra(z) denotes its second element; these are
uniquely defined by the condition z = (pri(z), pra(z)); in case z € Ax B, where A
and B are sets, we have pri(z) € A and pra(z) € B. We employ the usual canon-
ical representation of ordered triplet [16, § 1.3]: for three objects a, b, and ¢, we
assume (a,b,c) = ((a,b),c). A similar convention is used for Cartesian product

Restricted DP for BGTSP-PC 87

of three sets: for arbitrary sets A, B, and C, we have Ax Bx C £ (Ax B) x C
[16, § 1.3]; it obviously means that (z,y) € A x Bx CVz € A x BYy € C.
In connection with this, let us also recall the convention concerning the nota-
tion for values of function of three variables: for sets A, B, C, and D, function
h:AxBxC — D and elements u € A x B and v € C, in accordance with the
above-mentioned representation of A x B x C, it is valid to consider the element
h(p,v) € D to be defined.

As usual, [0,00[2 {¢€ € R|0 < ¢} (R is the real line). For each nonempty set
S, denote by R [S] the set of all (nonnegative) functions from S to [0, 00[. As
usual, N 2 {1;2;...}. Assume Ny 2 {0}UN and p,g = {i € No|(p < i) A (i <
q)} Vp € Ny Vg € Ny. Note that the latter definition yields the empty set if p > g.

For a nonempty finite set K, let |K| € N be the power of the set K; then,
let (bi)[K] denote the set of all bijections of the “interval” 1,|K| onto K. In
particular, for a fixed N € N, let P 2 (bi)[1, N] be the set of all permutations
of the “interval” 1, N; for each A € P, there exists a permutation A~! € P such
that A(A"1(k)) = A=Y (\(k)) = k Vk € 1, N. Denote by P(H) (P'(H)) the family
of all (all nonempty) subsets of set H; let Fin(H) be the family of all finite sets
from P'(H).

2 Problem statement

Here and below, fix a nonempty set X, where everything happens, a point x° €
X, which is called the base, a natural number N, N > 2, which is the main
dimension parameter, sets

M, eFinX,...,My € Fin X,
referred to as megalopolises, and relations
M; € P'(My X My),...,My € P'(Myx x My). (1)
For j € 1,N, OPs z € M; describe the possible ways of conducting interior

jobs inside the megalopolis M;: pri(z) determines the entry point and pra(z)
determines the exit point. The scheme of movements is as follows:

(:co) - (pr1 (=) € Maqy ~ pra (V) € Ma(l)) -

N (pr1 (@) € My ~ pra (2?)) € Ma(z)) N o)

- (pfl (=) € Moy ~ pra (2V) € Ma<M>~

where o is a permutation of indices from 1, N and OPs 2z ..., 2(") satisfy the
conditions
Z(l) S Ma(l),...,Z(N) S Ma(N)- (3)

88 Yaroslav Salii

In (2), we choose the permutation «, in our terms, the route, and a tuple
(2, ..., 2™)) that agrees with the route in the sense of (3); this tuple is
called a track. Let us stress that the choice of o may be restricted by prece-
dence constraints, which will be introduced below. Megalopolises are assumed to
be disjoint, and the base does not belong to any one of them:

(¢ M; Vi e ,N)AN(M,NnM, =2 V¥pe1,NVge1,N\{p}). (4)

Although this convention is rather common, there are engineering problems
where it does not hold and the megalopolises could intersect [17]. For greater
clarity in definitions below, let us gather the possible entry points? and exit
points into separate sets for each megalopolis:

Mgn) £ {pri(z) : 2z € M} Vj € 1, N,
M 2 {pra(2) : z € My} Vj € T, N. (5)

In terms of the megalopolises and sets (5), let us describe three specific nonempty
subsets of X:

Xé{xo}u(gMi>, (6)

i 2 (2} (Ul) (2)). @

=1
X -y 0 o (out) \ .
ot 2 {2} U (M); (8)
=1

clearly, X;, € X X, C X. Like (5), these three sets serve to clarify the future
definitions, a kind of syntactic sugar. The “empty” set {&} in X, has a special
meaning: it signifies that the entry point is irrelevant. It is worth mention that
generally X # X: we often deal with Euclidean plane X = R?, whereas the
problem itself revolves around the discrete set of points X; the case of continuous
M; is also worth mention, it is known as Generalized TSP with Neighborhoods
(GTSPN), see [2,28]. It has also been studied since the end of 1980s by L.N.
Korotayeva and A.G. Chentsov and their colleagues [26, 25] under the plain label
of GTSP or “Routing Problem”.
The author is aware of the three means to define precedence constraints:

— Partial order [46];
— Directed acyclic graph [18];
— Nondescript binary relation (a set of OPs) [11].

Clearly, these approaches produce the same results (all may be reduced to a
kind of binary relation, note also the result of [1] on path information) and their

4 the terms “city” and “point” are used interchangeably

Restricted DP for BGTSP-PC 89

choice is mostly a matter of taste and specific objectives of a paper. We find the
third approach to be the most convenient means of expressing the precedence
constraints for a dynamic programming procedure. Let us introduce the set
K € P(1,N x 1, N) of OPs and call its elements address pairs. In an address
pair h € K, the first element prqi(h) € 1, N is called a sender, and the second
one pra(h) € 1, N a receiver. The essence of precedence constraints is that for
each pair the sender must be visited before the receiver. The case K = & is not
excluded and corresponds to the lack of precedence constraints, although in this
case it is probably better to forgo Dynamic Programming and implement a more
usual branch-and-cut algorithm (see the description in [5]).

Recall that P = (bi)[1, N] is the set of all (complete) routes; it is a nonempty
set of cardinality |P| = N!. In terms of address pairs, the set of feasible routes
is expressed as follows (see [11, Pt. 2]):

A= {ae]P"ofl(prl(h)) <a (pra(h)) VhGK}. 9)

Since we use generic, nondescript binary relation, we must impose the following
condition to ensure the existence of feasible routes (see [11, Pt. 2]):

VKo € P'(K) 320 € Ko : pri1(z0) # pra(z) Vz € Ko; (10)

it implies that, in particular, pri(z) # pra(z) Vz € K and is clearly equivalent to
the condition of acyclicity for the corresponding precedence digraph. One may
characterize A as the set of all routes « € IP such that

((prl(z) = a(ty)) A (pra(z) = a(tg))> = (t < to)

for an address pair z € K and “times” ¢; € 1, N and t; € 1, N. In addition to
the route, we also choose the track, or trajectory, which is determined (2) by
the OPs (1) ..., (™) supplemented with the initial OP ({@}, xo). To formally
define the set of tracks that agree with some route in the sense of (2), denote by
Z the set of all tuples (2;)N;: 0, N = Xj, X Xoui. For a € P, assume

2 2 {Gylloe 2

(zo = (xo,zo)) A (zt € M) Vt € 1,]\7)}, (11)

evidently, Z, € Fin(Z).

At last, we can proceed to the definition of the quality criterion for our
problem. To account for the influence of the set of pending tasks on the cost
function (recall that our problem is sequence dependent), we will need the symbol
N 2 P'(1,N) (we call an element of N a task set). Now, let us introduce the
following N + 1 cost functions

(S R+(Xout X Xin X ‘ﬁ), c € R+(Xin X Xout X ‘ﬁ)7 ...,CN € R+(Xin X Xout X ‘)’K)
(12)

90 Yaroslav Salii

For a € P and (z;)Y, € Z(®), assume

@ [()X,] 2 max c(pra(zt), pri(ze41),{a(s) :s € t+ 1, N})+
te0,N—

(13)
+ Cat+1) (241, {a(s) : s €t +1,N})|.

This is a case of minimaz (bottleneck) aggregation of the summary cost of
moving from the current megalopolis to the next, where the exterior movement
cost is described by ¢ € Ry (Xout X Xin X N), and the cost of conducting the
interior job in the next megalopolis, ci11 € Ry (Xin X Xout X).

The interior jobs setting introduced in [10] provides a means for universal
expression of what we are to do inside a megalopolis, thereby unifying the Gen-
eralized TSP [23, Ch. 13] and Clustered TSP [14] approaches:

Generalized or International TSP. Each cluster is to be visited exactly once,
i.e., only one city is to be visited per cluster. To adapt our statement to these
requirements, we set Vi € 1, N M; £ {(b, b):be Mi}, i.e., we mandate exit at
the point of entry for every megalopolis, and set the rudimentary zero interior
job costs: Vi € 1, NVb € MVK € M ¢;(b,b, K) = 0.

Clustered TSP. For each cluster, all of its cities must be visited contiguously
before proceeding to the next cluster, i.e., we have an open TSP (Shortest Hamil-
tonian Chain Problem [15]) inside each cluster thus we can never exit a cluster at
the city we used to enter it, hence Vi € 1, N M; = {(a,b) : (a,b € M;)A(b# a)},
and the costs of interior jobs are set to the costs of the respective open TSP tours
starting at the respective entry points.

The problem statement for BGTSP-PC is as follows:

¢ [(z:)il] = telgl%)il c(pra(zt), pri(ze41),{a(s) :s €t + 1, N})+

+ Cagt+1)(ze41,{a(s) 1 s €t +1,N})|;

(2] = min, o € A, ()Y € 2. (BGTSP-PC)

Denote the value (extremum) of the problem by V,

£ mi ' (@) (5 \N .
V= 1216111&3 (Zi)glgz((,) ¢ [(Zl)i:():l € [0,00[7 (14)

This extremum is attained by a feasible solution, expressed as an OP formed by
the route and the track (o, (z;)~,),o € A, (2)Y, € Z(®. A feasible solution

(@, (29X, is considered optimal if €,0[(2?)~] = V; there may be multiple

optimal solutions.

Restricted DP for BGTSP-PC 91
3 Subproblems and Bellman equation

A dynamic programming (DP henceforth) solution consists of embedding a prob-
lem into a family of similar problems and obtaining a relation between the ex-
trema and solutions of less difficult problems of the family and the full problem;
this relation is expressed through a Bellman (recurrence) equation (see the gen-
eral description of the method in [38, Ch. 9]). Note that the method below is an
example of backwards DP akin to [7], whereas the forward DP [24, §1.2] seems
to be more common as applied to the problems of the TSP family.

Precedence constraints pose a challenge when we attempt to reduce the full
problem to a series of subproblems since they are formulated with respect to a
complete set of megalopolises (in non-generalized TSP, cities) 1, N, and it is not
immediately clear how to ‘extend’ precedence constraints to its subsets. The idea
is to regard the set of megalopolises, which is to be visited in some subproblem,
as a ‘prefix’ (the forward approach of [24, 33,46, 8]) of some feasible route, or
a ‘suffix’ (the backwards approach of [7,11]) thereof. Naturally, such prefix or
suffix has to be ordered consistently with the precedence constraints on a full
route. Since we chose the backwards approach, in the following definitions we
default to suffizes, with a possible passing reference to prefizes.

To properly describe the ‘feasible suffixes’, we need several new definitions.
First of all, a subset K of the complete task set 1, N is considered feasible if
Vz € K (pri1(z) € K) = (pra(z) € K). For prefixes, the implication is reversed,
see [24, §1.3]. Any task set encountered below is to be assumed feasible unless
explicitly stated otherwise, i.e., let us redefine 1 to be not the set of all task
sets but the set of all feasible task sets.

Infeasible task sets do not influence the solution of the problem, and it is this
lack of influence that makes it possible to apply DP to precedence constrained
problems of the TSP family thanks to a reduction of state space. For a quantifi-
cation of this lack of influence and the respective reduction of state space, refer
to [46,47,43].

For an arbitrary task set K € N, consider the set X'[K] of the address pairs
that are “saturated” in K:

LK) = {z ek \ (pri(z) € K)&(pra(2) € K)}.
With its help, define the mapping I : 91 — I as follows:
H(f()éff\{prz(z):zez[fq}vf(em. (15)

We call the mapping I a crossing-out rule. For a task set f(, it specifies the
possible “entry points”, from which it is possible to start a walk through K. From
the partially ordered set perspective, the mapping I produces a specific maximum
antichain, retaining, for each chain present in K, only its minimum element. In a
forward procedure, the respective mapping would retain the mazimum element,
see [46].

92 Yaroslav Salii

We can now define the set of partial routes through a task set K € 0, which
we described above as ‘feasible suffixes’:

(I —bi)[K] ﬁ{a € (bi)[K] \ a(s) e I({a(t) s t € s,|K[}) Vs € 1|K|} (16)

This set is non-empty for feasible K € 91 (see the proof in [11, Pr. 2.2.2,2.2.3]).
Note that feasible complete routes (9) satisfy this definition, i.e., A = (I —
bi)[1, N] [11, Th. 2.2.1].

The complete problem is to visit the set of megalopolises 1, N, starting from
a separate point, the base z°. Subproblems resemble the full problem inasmuch
as they involve visiting a feasible subset K € I, starting from some = € Xgyus.
However, there has to be an additional restriction on the base point for subprob-
lems: the movement from the base to an element of K we decide to visit first
must be feasible with respect to precedence constraints. Once more, the map-

ping T is used to formally express this feasibility: let © € X, belong to Mgout)
for some i € 1, N \ K. Clearly, the movement from z to the element of K we
will visit first is to be considered feasible if and only if the megalopolis M; may
occupy the first place in a partial route over {i} U K; thus, = € Mgout) is said to
be a feasible base for the task set K if and only if K U {i} is a feasible set and
i€ [(KU{i}).

We also need to define the set of partial tracks that agree with a given partial
route. For K € M, a feasible base x € Xoyt, and « € (I — bi)[K], let

i

Z(r, K, a) 2 {(zi)li_((l) € Zk

(20 = ({@},2))& (2 € Mgy ¥t € LIK])}. a7)

We can finally define the quality criterion for subproblems

¢§?) [(Zz)li(cl)] £ max |:c<pr2(zt)aprl(zt+l)v {a(s):set+1,]K| })+
te0,|K|—1 (18)

+ Ca(t+1) (Zt—i-la {a(s) s et +1,]K]| })}

A subproblem itself is to minimize this criterion by choosing the right partial
route and track. Minimizing, we obtain the value (extremum) of the subproblem,

K)2 ' i ¢z EN €10, 0ol 19
’U(I7) ae(ggll)[[(] (zl)‘li(l)rél;I(la:,K,a) K [(Z)170] 6[,OO[()

A partial route and track pair (a*,(zz*)lé(l)), a* € (I — bi)[K],(z)y:{(‘) €

Z(x, K, a*), is said to be optimal for the problem described by the OP (z, K) if
it attains its extremum: QZ(I?*) [(zz*)li{(l)] = v(z, K).

Let us supplement the definition of v(z, K) with the trivial case K = &; to
find out which x € X,y we can use, we may actually apply the definition of feasi-

ble base to the empty set. This yields the points x belonging to all megalopolises

Restricted DP for BGTSP-PC 93

that are not senders, {z €EL,N|VzeKi# prl(z)}, and thus qualified to ter-
minate a feasible (full) route. We need this trivial case to prime the recurrence
procedure for of V; set

v(z, D) 20 Ve € Xout-

This initial condition serves the needs of the open TSP-like problems (see [15]).
To accommodate for the more oft-cited closed TSP setting, where it is mandated
to return to the starting point after walking through 1, N, it is only necessary
to replace zero costs with the costs of going from x to the starting point. It is
equally easy to introduce a more general terminal cost function reminiscent of
that in the optimal control theory; it is explored in [11].

At long last, we are prepared to state the Bellman equation: for K € 9t and
a feasible base = € Xout,

v(z, K) = jgﬁ(i%) ZHEII{\/IJIE max{c(a?,prl(z),K) +¢j (2, K); v(pra(2), K\ {5})}
(BF)

For the proof, refer to [13]; it is not too complex yet rather laborious, in no small
part due to the generalized clustered character of the problem.

4 Exact dynamic programming

In this section we describe the exact DP solution of (BGTSP-PC), on which the
heuristic is based. Recall that earlier we have redefined the set 91 to be the set
of all feasible task sets. Yet, we find it more appealing to use a different symbol
in this section: let G £ {K € P'(1,N) ’Vz €K (pri(z) € K) = (pr2(z) € K)}
be the set of all feasible task sets; note the exclusion of the empty task set. It is
regarded as “feasible”, but it is more straightforward to treat it separately. We
now proceed to describe the procedure of generating and traversing the set of all
feasible states, where to traverse a state means to obtain its value (19) through
(BF).
First of all, partition the feasible task sets according to their cardinality,

G, 2 {Keg|s=IKl} vs e TN,

Note the boundary elements of this partition: the last one, Gy = {m} is
the singleton reflecting the complete task set. The first element G; is the set
of all “nonsenders”, which are eligible to terminate a feasible route; clearly, no
“sender” megalopolis is eligible to do so. The remaining elements of the partition
are defined in a recurrent way,

Gor = {K\{t} K €Ga,te]I(K)} Vs €2, N. (20)

For the proof of validity of this procedure, refer to [11, Prp. 4.9.1].
Let us now describe the procedure that constructs the states based on feasible
task sets. Consider the feasible expansion of a feasible set,

JK)2{je,N\K| {j}UK € Go1} € P'(T,N\ K), (21)

94 Yaroslav Salii

the set of megalopolises the addition of which to K yields a feasible set. In
view of (20), this definition links well with that of feasible base introduced in
Section 3, namely, feasible bases for K are exactly the cities that belong to the
megalopolises that form the feasible expansion of K. Let us collect all feasible
bases for a task set K into the set®

MIK] & M,
jeJ(K)

and construct the appropriate states,
D[K] £ {(x,K) tx € M[K]}

Collecting D[K] for all feasible K of a certain cardinality, we obtain the layers
of state space,

Dy 2 | DyK] € P (Xow x Gs) Vs € LN — 1
Keg,

let us supplement this definition with the two boundary cases Dy £ {(m, {2}):
x € Mg_omw €Gi}and Dy £ {(2°,1,N)}.

From the feasible task sets, the state space layers inherit a connection between
the elements of neighbouring cardinality:

(y, K\ {k}) € D,y Vs € T, N VK € G, Vk € I(K) ¥y e MO™. (22)

This connection substantiates a natural assumption that to calculate (BF) for
states from Dy, it is necessary to know the values v(-,-) (19) for all of the states
from D,_;. Note that it is actually not the only option, for example, in [45],
a kind of “depth-first” state generation and traversal was implemented for a
precedence constrained scheduling problem.

Technically, we consider the restrictions of v(-,-) (19) onto the state space
layers, i.e., restrictions onto subproblems with fixed task set cardinality,

Vs € 0,N vs € Ri[Ds];
vs(z, K) = v(x, K) ¥(z, K) € Ds.

Then, we say that for all s € 1, N, the function v; € R [Dy] is obtained from
the function vs_1 € R4 [Ds—1] through “stratified” (BF),

vs(x, K) = jg%(i%) ZHEII%/E max{c(x,prl(z),K) + cj(z,K); vs,l(pr2(2)7K\{j})};
w(# {2)) =0, (2{2}) € Du; (BF,)
vg— V] — ... — oy =V.

® In an ordinary, non-generalized TSP, there is no need for a separate set MIK], or
rather, this set would match the feasible expansion of K.

Restricted DP for BGTSP-PC 95

Note that feasible sets and, therefore, feasible states, are generated top-to-
bottom (20), whereas the costs are calculated bottom-up; such implementation
of (BFy) would first generate all the states and only after that start to calculate
their values. Our implementation did the generation and computation at the
same time, which was made possible by the bottom-up generation procedure
stemming from the following alternative definition of feasible expansion

J(K) = {j e TN\K |¥z € K [(j # pra()V((pmi (=) =) = (pral2) €)] }

(23)
It can be proved that both implementations generate the same set of feasible
states. More sophisticated procedures for generation of feasible sets are known
in the literature that were never, to the best of author’s knowledge, applied
to precedence constrained discrete optimization problems. In the perspective of
partial order theory, a feasible set is nothing else than an order ideal, see the list
of algorithms for generating them in [9, Apx. 2.2].

After the value V = vy (mo,ﬁ) of the complete problem is found through
backwards traversal of (BF;), we need to obtain the actual solution of the prob-
lem, the optimal route and track. Starting with vy, at each step from v, to vs_1,
append js € I(K) and z; € M, that yield the corresponding extremum in (BF)
to the end of optimal route and track. There may be multiple optimal routes
and tracks, more so for a bottleneck problem, and it is possible to obtain all
of them through this procedure; however, we were only concerned with finding
some optimal solution.

5 Parallel implementation of exact DP

The algorithm specified in the previous section was implemented in C++ with the
work sharing done through the OpenMP shared memory multiprocessing API. A
similar parallel implementation was reported in [21] for the additive GTSP-PC
without sequence dependence; a similar non-OpenMP based on C# threads was
reported in [27] for the same problem. A different parallelization strategy for
GTSP-PC was reported in [12]. The divide-and-conquer approach of [33] may
be applied to GTSP-PC in a way that will not invalidate precedence constraints
[44]; the author is not aware of applications of the divide-and-conquer strategy
to DP for precedence-constrained problems.
Let us first recall the general structure of the algorithm:

1. Prime the feasible state generation with the layer Dy of states with empty
task sets. Generate the feasible states Dy,..., Dy through procedure (23).

2. Prime the calculation of V, the value of the complete problem, with the
trivial values vg(+,-) = 0. Calculate V through recurrence equation (BF).

3. Recover an optimal solution (a route and a track that agrees with it) based
on the optimal values of the Bellman function v(-,-), starting with the value
of the complete problem, V.

96 Yaroslav Salii

Recall that, for each k& € 1, N, to generate the next state space layer Dy,
with the aid of bottorn-up procedure (23), we only need to know the previous
layer Dy_1; the same is true for the values of the states as specified in (BFy).
Thus, steps 1 and 2 can in fact be conducted almost simultaneously: for all
i €0, N — 1, from G; we generate both the next set of feasible task sets G, and
the “current” state space layer D; with the aid of J(-) (23), supplemented by
M[] and D[] in the latter case. As soon as a state in layer D; is generated, it
can be priced because the values for the previous layer D;_; are already known.
Figures 1 and 2 exhibit this process for two neighbouring iterations; the circled
items have to be accessible for the process to go on; the single arrows denote
generation and the double arrows denote pricing.

VAN

Fig. 1. Step i: Generate G,+1 and D; from G;. Price D; with the aid of values of D;_;.

/X \ (j

Fig. 2. Step ¢+ 1: Generate G;+2 and Dj ;1 from G;11. Price D; 11 with the aid of values
Of Di.

The parallel work sharing through OpenMP happens in the treatment of the
current set of feasible task sets G;. Each of the feasible task sets can be processed
independently, and since the states corresponding to different task sets never
coincide, no race conditions occur in generation and pricing of the feasible states
set D;. On the contrary, it is possible that some K’ € G;11 could be generated
from both K; € G; and Ky € G;, K1 # K, a trivial example of which is the
final Gy ; see the paragraph below for an exception to this rule. To avoid race
conditions, an omp critical directive had to be placed around the operation of

Restricted DP for BGTSP-PC 97

writing to G;+1 to prevent another thread from writing there at the same time.
Better algorithms for generating the feasible task sets would eliminate this race
condition altogether since they never generate a new feasible task set more than
once, for more details on those algorithms, see the list [9, Apx. 2.2] and the
corresponding papers. The one we used was related to the algorithm from [33]
and hence at most quadratic in the total number of feasible task sets.

Speaking pedantically, the precedence constraints K may in fact mandate
a total order on 1, N. In that case the route is actually fixed from the start
and only an optimal track is to be determined; a Generalized TSP under such
conditions is known as Serdyukov TSP, and there is also Ordered Cluster TSP
[23, p. 26], with the usual difference between Generalized and Clustered TSP as
regards the cities to be visited in each megalopolis. In this case, it is futile to do
a parallel processing of elements of G; since each of them is a singleton. Still, the
corresponding state space layers D; do not degenerate into singletons and it is
possible to share the work by pricing the newly generated elements of each D;
in parallel.

Data structures. Our principal data structure was nested hash table implemented
with the aid of std::unordered map (hence C++11). Its type can be spec-
ified as std::vector <std::unordered map<uint32_t, std::unordered map
<uint16_t, float>>>, where uintXX_t stands for XX-bit unsigned integer type.
Semantically, to access the cost of walking through K € G U {&} starting from
z € M[K], i.e., v(z,K), we had to call the subscript operator three times:
[IKI] [K] [x]. The task sets were coded in the standard bit-masking way; our
implementation provided for up to 31 megalopolises; zero was reserved for the
base. The cities were numbered such that the numbers for all cities in each
megalopolis were consecutive. A nested structure let us avoid the unnecessary
repetition of 32-bit task set labels at every state that corresponds to the same
task set, of which there is a non-negligible number in generalized problems; for
non-generalized problems, the flat structure as specified in, for example, [36],
may be justified. An additional benefit of nested structure was the ability to
generate the next (in the sense of task set cardinality) feasible states layer by
only going through the corresponding set of feasible task sets, without resort-
ing to examining the whole list of present feasible states, which is considerably
larger, more so in a generalized problem such as ours.

We adopted hash table as a base data structure because of its amortized
constant-time search and the lack of a need to remove elements once installed;
since both keys we used were unsigned integer numbers, we did not have to
invent our own hash function. Our first experiments were with std: :map, which
offered logarithmic search time, but the switch to std::unordered map made
the computation time decrease by a factor of 4 (we admit to only comparing
their performance on a single test problem), at which point we settled with the
hash table. On the flip side, the use of a hash table did little to help decrease the
memory footprint, this perennial problem of dynamical programming for TSPs;
it also became rather difficult to predict that footprint. We did not do rigorous
memory profiling, but we can still say that 4GB of RAM were enough for the

98 Yaroslav Salii

solution of the 27-25-25 problem, and 30-25-25 (see the problem descriptions
in Sect. 6) took more than 15GB and less than 40GB. The use of hash table also
mandated the implementation of OpenMP tasks work-sharing construct, which
only became available in the third version of the shared memory API, with a
single task being the processing of a single feasible task set, i.e, the generation
and pricing of its corresponding states and the generation of “successor” feasible
task sets. The pseudocode of OpenMP tasks implementation is listed below, where
the blocks are defined by indentation instead of braces as would befit C++.

For eachs€1,N -1

#pragma omp parallel default (shared)

#pragma omp single nowait

For each K € G,

#pragma omp task untied firstprivate(K)
Generate J(K)

For each j € J(K)
#pragma omp critical (expand)
fool| K |+1].add(K U {j})
For each z € M[K]
Compute vs(z, K)
#pragma omp critical (costwrite)
fool|K|]1[K] [z] :=v4(x, K)

5.1 Experiment

For problem descriptions, refer to Subsect. 6.1. Here and below, the absolute
computation time and the scaling factor (serial run time divided by the run
time considered) are expressed as “MM:SS —— Ratio”. The times specified
include input-output operations. The following results were reported in [42]:

Table 1. PC-BGTSP OpenMP Speedup 1

Problem srl par-4 par-8
27-10-25-NO || 04:58 ——1{01:25 ——3.506 | 00:44 ——6.773
27-20-25-NO || 38:45 ——110:34 ——3.667| 05:18 ——7.311
27-25-25-NO || 73:32 ——1{20:27 ——3.596 | 10:13 ——7.197

They were all obtained on the Uran supercomputer (for details, see http:
//parallel.uran.ru/node/6 [in Russian]) at IMM UrB RAS. The Uran super-
computer ran 64-bit Scientific Linux 6.4; the compiler used was GCC 4.4.7,
optimization level -02. Evidently, the speed-up was near-linear, as much as it
could scale for a shared-memory implementation. Eight was the maximum num-
ber of cores per node that was available at the time.

Restricted DP for BGTSP-PC

99

Computation times from a more recent implementation of the algorithm,
which featured a streamlined code, a probable source of improvement through
aiding optimizing compiler rather than trying to actually optimize the code, are

listed below:

Table 2. PC-BGTSP OpenMP Speedup 11

Problem srl par-2 par-3 par-4
27-10-25-NO || 02:57 ——1{01:27 ——2.034 | 01:00 ——2.95 |00:46 —— 3.848
27-20-25-NO || 22:34 ——1{11:28 ——1.968 | 08:08 ——2.775 | 05:53 —— 3.836
27-25-25-NO || 42:56 ——1{22:23 ——1.918 | 14:48 ——2.901 [11:23 —— 3.772

These computations were carried out on the author’s PC (Intel Core
13-3450) in 64-bit Windows 7 environment. The compiler used was Intel C++
16 Update 1 since Microsoft Visual C++ would not support the required
OpenMP 3.0 API; the compilation parameters were copied over from the default
“Release” configuration, with the obvious addition of a flag that allows OpenMP
code generation. The superlinear speedup as seen on the two-core calculation for
27-10-25-NO is most probably caused by OpenMP tasks overhead.

As evident from the two tables above, the proposed shared-memory parallel
implementation scheme that works through OpenMP tasks provides a reasonable
speedup for the problems considered, with the main barrier being the number of
cores on a single node that could work through OpenMP. It seems to be possible to
make a similar message-passing implementation, however, the latter seems to be
sensible only for the problems of greater magnitude than those specified above,
either through a greater number of megalopolises or cities therein, or less strict
precedence constraints, as it would certainly impose a greater overhead. However,
a rudimentary message-passing implementation might be used to divide the work
between two nodes with the aim of using only half as much memory on each node
as required for a single-node (shared memory) implementation, see [33, 44].

6 Restricted DP heuristic. Experiment

The heuristic we implement was proposed for Time-Dependent TSP in [36],
and then reviewed and implemented as ‘a framework for solving realistic Vehicle
Routing Problems’ [22]. It consists of retaining only H, H € N, best, as measured
by their values, states at each state space layer; we call H the depth parameter
or simply depth. Naturally, if H surpasses the cardinality of the most populous
state space layer, this heuristic turns into exact dynamic programming. On the
other hand, fixing H = 1 yields the well-known nearest neighbour heuristic.

In contrast with the exact algorithm, the base data structure chosen for
the heuristic was std::map. Our intention was to implement a heuristic that

100 Yaroslav Salii

is reasonably fast and has a minimum memory footprint. We did not calculate
the Pareto optimum, but we figured that the linear search time associated with
the use of a common array for states will not meet our definition of “fast”
and thereby took the compromise data structure. We used (std::deque) for
keeping a “sorted list” of states when searching for the H best at each layer,
but linear search time was not an issue here since removal only happened from
the end (i.e., the worst state would go when a better one was obtained), and the
addition of a state mandated re-sorting the container (done through std: :sort)
anyway. Another sacrifice made to diminish the memory footprint was the lack
of buffering when generating and pricing the new states, i.e., they were examined
one at a time.

The heuristic is based on a restricted recurrence relation reminiscent of the
exact Bellman function in (BF). All “restricted” items in the expressions below
and elsewhere are denoted by placing a tilde ™~ above the respective notation
used for the “exact” items.

Us(z, K) = min min max{c(gc,prl(z),K) +¢j (2, K); 'ﬁs,l(prg(z),K\{j})};
JEI(K) zeM;

50(3/\7»{@}) =0, (i'v {@}) € Do; B (B\F‘s)

99—V —> ... —ony=V.

The main difference between (BF) and (B\Z/T s) lies in a restriction of I(-) and
M;: whereas in the exact procedure, for each layer D1, ..., Dy, the existence of
vs—1(pra(2), K\{j}) is guaranteed for all j € I(K) and z € M;, the minimization
over which yields vg(z, K), it is not always the case for a restricted procedure. It
is entirely possible that some state (I, K\{l}) € Ds_1 did not make it into the H
best that formed D,_; C D,_1; its (heuristic) value o(I, K\{l}) was not retained
and could not be used in the computation of 7, (z, K). Hence the need for I(K) C
I[(K) and 1\7[[j C M, that retain only the elements j € I(K) and (2in, Zout) € M;
for which the states (zout, K \ {j}) were among the H best that formed D, ;.
Since in the restricted case the domain over which the minimization is conducted
becomes smaller, we obviously have v, (z, K) < v5(z, K) Vs € 1, N for all (z, K)
for which v, was calculated, thus, (]’3\15 s) provides an upper bound V for the
value V. The outline of the algorithm is as follows:

1. Prime the algorithm with QVO = Go, l~)0 = Dy, and cﬁ(/h = G;. The depth
requirement is not imposed on Dy because all the states have the value of
Zero.

2. Foreachl € 1,N —1

— For each K € G,
Generate its feasible expansion J(K)
For each j € J(K)
* For every xou € M;Out)
(a) Calculate U(Zous, K)

Restricted DP for BGTSP-PC 101

(b) If |D;| = H and 3(y, K') € Dy : 0(y, K') > 0(zous, K),
remove (y, K') from D; and add (z, K) to D.
— For each (z,K) € D,
Let i € J(K) be such that z € M. Add K U {i} to G41.
3. Calculate 9(z°,1,N) = V.
4. Recover a route and track that conform to V (when substituted into (13),
yield at most V).

The recovery procedure that obtains a route and track yielding at most 1%
when substituted into quality criterion (13) from the values of (-, -) differs from
the same procedure for the exact DP as much as (BF;) differs from (E}/7 s); we
will omit the details. The only interesting difference is the fact that a heuristic
solution could possibly perform better than the corresponding heuristic value V'
because not all theoretically available information is actually used to determine
V (some is lost as the states are dropped). However, our model problems did
not exhibit this behaviour.

For an upper estimate of complexity of the algorithm, let us fix some more
constants. Recall that we have N megalopolises plus the base. Let each mega-
lopolis have at most m cities. Let b denote the constant time required to cal-
culate the summary cost of exterior movement c(w,prl(z)) and interior job
ci(prl(z),prg(z)); the latter assumption is correct if all possible interior jobs
are either simple or pre-calculated. Assume the time to compute the maximum
of two values is also included in b.

Let us now consider, how long does it take to compute the heuristic value for
a state (z, K). The generation of a feasible state K takes at most N2 operations
(see [9, Apx. 2.2]); then, we have to actually compute v(x, K), to which end we
need to consider all i € ﬁ(K), of which there are never more than N, and at
most m? pairs (Zin, Zout) Which form the set Mj;; for each such pair, it takes b to
calculate

maX{C(J:, Zin) + €i(Zin, Zout); V)| -1 (Zout, K \ {i}) }

Thus, to calculate (E\ﬁs) for a state (x, K), it takes at most N2> - N -m? - b =
N3m?2b.

There are N + 1 layers, each having at most H states, with the exception
of Dy, which is not constrained by H, but still has at most N states. The last
layer Dy always has a single state (zo, 1,7]\7) Thus, the computation of V' takes
at most

(N + (N —2)H +1)N3m?h = O(N*Hm?b). (24)

The search for a conforming solution necessitates the examination of, in the
worst case, all (N + (N —2)H +1) states. The examination consists of checking if
it was indeed the given state (z, K) that led to v(y, KU{j}); thus, it is the same
as actually calculating v(y, Ku {]}) without the need to generate it, hence the
cost (N +(N —2)H +1)Nm?b, which does not change the O-value in (24). This is
a rather generous estimate, since a feasible task set K is actually only generated

102 Yaroslav Salii

once for all states that contain it, and not all of m? pairs (2in, 2out) € M; have to
be examined each time since the state that has z,y; might have been left out of
H best. The same can be said with respect to I(K), the cardinality of which is
actually at most K, with this bound being true only for K that are antichains.

6.1 Experiment

The model problems were borrowed from our previous research in exact solu-
tions of (BGTSP-PC), namely, the sequence-dependent case [13] and the pre-
viously considered “sequence-independent” cases [41,42]. The model problems
were considered on a subset of Euclidean space X = [0,1024] x [0,768] C R x R
for Ny = 30 and Ny = 27 megalopolises with |K| = 25 precedence constraints
and 25 cities in each megalopolis; each city could serve as both exit point and
entry point.-

The cost of exterior movement was specified as Fuclidean distance in X; for
the sequence dependent-case, it was multiplied by a trivially sequence-dependent
coefficient o(|K]) = 1+ N_T‘Kl The cost of interior jobs was the Manhattan
norm ||-|| of movement from the “entry point” into the megalopolis to the “exit
point” through its center (for two plane vectors z = (z1,x2),y = (y1,y2), the
Manhattan norm is || — y|| = |1 — y1| + |x2 — y2|); this type of interior jobs is
closer to the classical Generalized TSP than to Clustered TSP.

Megalopolises were modeled as equal radius disks, and the cities were placed
on the circumference with equal angular distances between them (which, obvi-
ously, depended on the number of cities in the megalopolis); megalopolises were
distributed randomly. Below, dimensions of the problems are encoded in the
form “X-Y-Z-W”, where X is the number of megalopolises, Y is the number of
cities per megalopolis, Z is the number of precedence constraints, and W is ei-
ther “SD” for the sequence dependence as specified above or “NO” for problems
without sequence dependence. In the two 30-25-25—* problems, the geometry is
the same (cities have the same coordinates). All data sets are available from the
author on request.

Since it is the exact form of precedence constraints and not just their number
that influences the complexity of solving the appropriate problem via dynamic
programming [46, 47, 43], we list them below, in our preferred address pairs form:
(1,10); (12.2); (2,13); (13,15); (6,16); (15,16); (18,27); (9,27); (10,9); (11,19);
(20,19); (25,26); (23,22); (21,20); (24,22); (14,16); (7,10); (8,2); (1,9); (14,26);
(2,27); (3,6); (3,19); (18,17); (14,25).

It is not reasonable to directly relate these dimension parameters to the
top results for TSP-PC [19] since the combination of generalized nature of the
problem and precedence constraints on megalopolises, in absence of a requirement
to visit of all cities of a megalopolis, precludes a direct transformation into a
generic (bottleneck) TSP-PC. Still, the number of cities taken into account is
rather considerable for a highly constrained problem, n; = 30 - 25 = 750 cities
and ny = 27 - 25 = 675 cities, respectively. Computation times are specified in
the HH:MM:SS or MM:SS format.

Restricted DP for BGTSP-PC 103

All algorithms for all problems were encoded in C++11; exact algorithms were
parallelized with the aid of the shared memory multiprocessing API OpenMP 3.0.
Since a heuristic is meant to be simple to compute, we did not make a parallel
implementation, yet, it is possible make such an implementation with the same
means. The exact programs were run on the Uran supercomputer (for details,
see http://parallel.uran.ru/node/6 [in Russian]) at IMM UrB RAS, and
the heuristic was run on the author’s PC (Intel Core-i4-3450, 16 GB RAM).
The Uran supercomputer ran 64-bit Scientific Linux 6.4; the compiler used
was GCC 4.4.7, optimization level -02. The author’s PC ran 64-bit Windows 7,
the compiler used was Microsoft Visual C++ 2013 with default optimization
options (“Release” configuration).

6.2 27-25-25-NO

An exact solution was reported at the conference [42]. The value of the problem
was V = 341.962. It took the Uran supercomputer 01:13:32 on a single core,
00:20:27 on 4 cores, and 00:10:13 on 8 cores to arrive at this conclusion; each
core ran a single thread. The computation times relate as 7.197:2.002:1. The
single-core to four-core relation is 3.596:1.

6.3 30-25-25-NO

An exact solution was reported at the conference [42]. The value of the problem
was V = 316.68. It took the Uran supercomputer 01:42:48 to arrive at this
conclusion on 8 cores.

6.4 30-25-25-SD

An exact solution of this problem was reported in [13]; the value of the problem
was V = 376.63, and the computation took the Uran supercomputer 01:46:34
on 12 cores.

Yaroslav Salii

104

T ! T 6C1 69°T 250! 80°C ¥0°¢ 94°¢ 8¢C \,\\I,
€9°9LE | €9°9LE | €9°9LE | 8GG LY | PELTEI | PEL'6LSG | LEO'TBL | 9€8'89L | 8E0'996 | LGG'TL6|| A
I¥:0¢| 00:90| TO:€O| ¥¥P:00| €T1:00| P¥0:00| €0:00| €0:00| c0:00| €0-00 || WL

7 oooomi ooooﬂi ooomi oommi oooﬂi ommi omﬂi ooﬂi oﬂi H: H 7

dS-G¢-9¢-0€ 10} dd PeLsey *g 9[qeL

T T ve'l ve'l LG°T 16°T [4*é 8V'C G0'€ mm.mi >\\2w
89°9T€ | 89'9TE | LBLT6E | LBL'T6E | 6CL°L6T | €807909 | €G6°86L | LEOT8L | 8€0'996 ﬁm.mwoi A
LT1:0¢| #1:90| 8%:10| ¥¥:00| <€I:00| ¥0:00| ¥0-00| €0-00| €000 monooi ouwIlLT,

7 oooomi ooooH7 ooomi oommi oooH7 ommi omﬁi ooH7 oH7 ﬂii H 7

ON—-GC-GC-0€ 10] dd PaI°LIseY ¥ S[qelL

€'t €C'T 9¢'T 6L°T 6L°T wec| Gve 9.1 g€ 67 || A/A
6€T°98¢ | ST6'6TV | LOT'TES | ¢€I°CTI | CEY'ETI | €6L°6E8 | L2'9€8 | €9L7C09 | VO'CSTT | CT°C6IT| A
LEGT| ¢S¥0| €€T0| €€00| O0r:00f €000 €0:00| c0:00| c0:00| &0-00 ||°oWLL

7 oooomi ooooH7 ooomi ocmmi oooﬂi ommi omﬁi ooﬁi oﬂi H: o 7

ON—GC—GC—LC 10} dd PeLIsey ¢ 9[qeL

Restricted DP for BGTSP-PC 105

6.5 Conclusion

For all of the problems considered, the proposed heuristic found near-optimal
solutions in a reasonable amount of time. The memory footprint of the heuristic
was quite small as compared to that of the exact procedure: at most 100MB were
necessary for 20000-deep solution of 30-25-25-NO, which is quite low as far as
DP is concerned. Two problems were solved to optimality (30-25-25-NO and
30-25-25-SD), and one (27-25-25-NO) was solved to within 13% of optimal.
The run time did not exceed 30:00.

Our intention for implementing a DP-compliant heuristic was the possible
use of the latter in a Morin—-Marsten branch-and-bound strategy for dynamic
programming [39] to overcome the memory limitations and possibly improve the
computation times. The results of experiments with the heuristic can be consid-
ered proof-of-concept: for small depth parameters (up to 250), the computation
times stayed reasonably small while the result exhibited a marked improvement
over the greedy algorithm (the H = 1 column) and the larger depth parameters
yielded near-optimal results. Thus, a large depth parameter may yield a decent
upper bound in a reasonable time. To finally implement a branch-and-bound
solution, we still need a lower bound for the problem. We are not aware of lower
bound algorithms that specifically target precedence-constrained BTSP or gen-
eralized BTSP, therefore, the search has to start at general-purpose lower bound
algorithms for plain BTSP; for a most recent treatment of such, refer to [32].

It is also interesting to note how the heuristic tends to stick to a locally best
solution as the depth increases beyond a certain number (H = 150, H = 250 in
27-25-25-NO, H = 150 in 30-25-25-NO and 30-25-25-SD).

Acknowledgement. This work was supported by the Russian Foundation for
Basic Research (project no. 13-08-00643). The author would also like to express
his gratitude to the anonymous reviewers who pointed out the important short-
comings of this paper and made it possible to rectify them in the final version.

References

1. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM Journal on Computing 1(2), 131-137 (1972)

2. Alatartsev, S., Stellmacher, S., Ortmeier, F.: Robotic task sequencing problem: A
survey. Journal of Intelligent & Robotic Systems pp. 1-20 (2015)

3. Alkaya, A.F., Duman, E.: A new generalization of the traveling salesman problem.
Appl. Comput. Math 9(2), 162-175 (2010)

4. Allahverdi, A., Gupta, J.N., Aldowaisan, T.: A review of scheduling research in-
volving setup considerations. Omega 27(2), 219-239 (1999)

5. Applegate, D.L., Cook, W.J., Bixby, R.E., Chvatal, V.: The traveling salesman
problem. Princeton Univ. Press (2006)

6. Balas, E., Fischetti, M., Pulleyblank, W.R.: The precedence-constrained asym-
metric traveling salesman polytope. Mathematical programming 68(1-3), 241-265
(1995)

106

7.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Yaroslav Salii

Bellman, R.: Dynamic programming treatment of the travelling salesman problem.
Journal of the ACM (JACM) 9(1), 61-63 (1962)

Bianco, L., Mingozzi, A., Ricciardelli, S., Spadoni, M.: The traveling salesman prob-
lem with precedence constraints. In: Papers of the 19th Annual Meeting/Vortrage
der 19. Jahrestagung. pp. 299-306. Springer (1992)

Caspard, N., Leclerc, B., Monjardet, B.: Finite ordered sets: concepts, results and
uses. No. 144 in Encyclopedia of Mathematics and Its Applications, Cambridge
University Press (2012)

Cheblokov, I.B., Chentsov, A.G.: About one route problem with interior
works [in Russian]. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika.
Komp’yuternye Nauki (1), 96-119 (2012)

Chentsov, A.G.: Extremal problems of routing and scheduling: a theoretical
aproach [in Russian]. Izhevsk:jjRegular and Chaotic Dynamics; (2008)
Chentsov, A.G.: On a parallel procedure for constructing the bellman function
in the generalized problem of courier with internal jobs. Autom. Remote Control
73(3), 532-546 (2012)

Chentsov, A.G., Salii, Y.V.: A model of “nonadditive” routing problem where the
costs depend on the set of pending tasks. Vestnik YuUrGU. Ser. Mat. Model. Progr.
8(1), 24-45 (2015)

Chisman, J.A.: The clustered traveling salesman problem. Computers & Opera-
tions Research 2(2), 115-119 (1975)

Christofides, N.: The shortest hamiltonian chain of a graph. STAM Journal on
Applied Mathematics 19(4), 689-696 (1970)

Dieudonné, J.: Foundations of modern analysis, Pure and Applied Mathematics,
vol. 10. Academic Press New York, enlarged and corrected printing edn. (1969)
Dolgui, A., Pashkevich, A.: Cluster-level operations planning for the out-of-position
robotic arc-welding. International Journal of Production Research 44(4), 675-702
(2006)

Escudero, L.: An inexact algorithm for the sequential ordering problem. European
Journal of Operational Research 37(2), 236-249 (1988)

Gouveia, L., Ruthmair, M.: Load-dependent and precedence-based models for
pickup and delivery problems. Computers & Operations Research 63, 56-71 (2015)
Gouveia, L., VoB, S.: A classification of formulations for the (time-dependent)
traveling salesman problem. European Journal of Operational Research 83(1), 69—
82 (1995)

Grigoriev, A.M., Ivanko, E.E., Chentsov, A.G.: Dynamic programming in a gen-
eralized courier problem with inner tasks: elements of a parallel structure. Model.
Anal. Inform. Sist. 18(3), 101-124 (2011)

Gromicho, J., van Hoorn, J.J., Kok, A., Schutten, J.: Restricted dynamic pro-
gramming: a flexible framework for solving realistic vrps. Computers & operations
research 39(5), 902-909 (2012)

Gutin, G., Punnen, A.P. (eds.): The traveling salesman problem and its variations,
Combinatorial optimization, vol. 12. Springer Science & Business Media (2002)
Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial & Applied Mathematics 10(1), 196-210 (1962)
Korotayeva, L.N., Chentsov, A.G.: On a generalization of the bottleneck traveling
salesman problem. Comput. Math. Math. Phys. 35(7), 853-859 (1995)
Korotayeva, L.N., Sesekin, A.N., Chentsov, A.G.: A modification of the dynamic
programming method for the travelling-salesman problem. USSR Computational
Mathematics and Mathematical Physics 29(4), 96-100 (1989)

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Restricted DP for BGTSP-PC 107

Koshelev, G.N., Kosheleva, M.S.: A parallel implementation of dynamic program-
ming in a constrained routing problem [in Russian]. In: Problems in Contemporary
Mathematics and Its Applications: Proceedings of 46th International Youth School
and Conference. p. 110. N.N. Krasovskii Institute of Mathematics and Mechanics,
UrB RAS; B.N. Yeltsin Ural Federal University (2015)

Kovacs, A.: Integrated task sequencing and path planning for robotic remote
laser welding. International Journal of Production Research (ahead-of-print), 1-
15 (2015)

Kubo, M., Kasugai, H.: The precedence constrained traveling salesman problem.
Journal of the Operations Research Society of Japan 34(2), 152-172 (1991)
Laporte, G., Martin, [.R.: Locating a cycle in a transportation or a telecommuni-
cations network. Networks 50(1), 92-108 (2007)

Laporte, G., Osman, I.H.: Routing problems: A bibliography. Annals of Operations
Research 61(1), 227-262 (1995)

LaRusic, J., Punnen, A.P.: The asymmetric bottleneck traveling salesman problem:
Algorithms, complexity and empirical analysis. Computers & Operations Research
43, 20-35 (2014)

Lawler, E.L.: Efficient implementation of dynamic programming algorithms for
sequencing problems. Stichting mathematisch centrum preprint (1979)

Lawler, E.L., Lenstra, J.K., Kan, A.R., Shmoys, D.B. (eds.): The traveling sales-
man problem: a guided tour of combinatorial optimization, vol. 3. Wiley New York
(1985)

Leon, V.J., Peters, B.A.: Replanning and analysis of partial setup strategies in
printed circuit board assembly systems. International Journal of Flexible Manu-
facturing Systems 8(4), 389411 (1996)

Malandraki, C., Dial, R.B.: A restricted dynamic programming heuristic algorithm
for the time dependent traveling salesman problem. European Journal of Opera-
tional Research 90(1), 45-55 (1996)

Melamed, I.I., Sergeev, S.I., Sigal, I.LK.: The traveling salesman problem. issues in
theory. Automation and Remote Control 50(9), 1147-1173 (1989)

Minoux, M.: Programmation mathématique. Théorie et algorithmes. Lavoisier, 2¢
edn. (2008)

Morin, T.L., Marsten, R.E.: Branch-and-bound strategies for dynamic program-
ming. Operations Research 24(4), 611-627 (1976)

Plotinsky, Y.M.: Generalized delivery problem. Automation and Remote Control
34(6), 946-949 (1973)

Salii, Y.V., Chentsov, A.G.: On a bottleneck routing problem with internal tasks
[in Russian]. Tambov University Reports. Series: Natural and Technical Sciences
17(3) (2012)

Salii, Y.V., Chentsov, A.G.: On a precedence constrained bottleneck routing prob-
lem with internal tasks [in Russian|. In: International Conference jjDiscrete Op-
timization and Operations Research;; (Novosibirsk, June 24- - 28, 2013). p. 134.
Sobolev Institute of Mathematics, Novosibirsk State University (2013)

Salii, Y.V.: On the effect of precedence constraints on computational complexity
of dynamic programming method for routing problems [in Russian]. Vestnik Ud-
murtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki (1), 76-86
(2014)

Salii, Y.V.: On forward and backward programming for precedence constrained
routing problems and the algorithms for generation of feasible subproblems [in

108

45.

46.

47.

Yaroslav Salii

Russian]. In: Bulletin of Association for Mathematical Programming. pp. 168
169. No. 13, N.N. Krasovskii Institute of Mathematics and Mechanics, UrB RAS;
B.N. Yeltsin Ural Federal University (2015)

Schrage, L., Baker, K.R.: Dynamic programming solution of sequencing problems
with precedence constraints. Operations research 26(3), 444-449 (1978)

Steiner, G.: On the complexity of dynamic programming for sequencing problems
with precedence constraints. Annals of Operations Research 26(1), 103-123 (1990)
Steiner, G.: On estimating the number of order ideals in partial orders, with some
applications. Journal of statistical planning and inference 34(2), 281-290 (1993)

