
Towards Improving Agility in Model-driven
Development ? ??

Hessa Alfraihi

Dept of Informatics, King’s College London, Strand, London, WC2R 2LS, UK

Abstract. Agile Model Driven Development (Agile MDD) is an ap-
proach that aims to combine Agile development and Model Driven Devel-
opment (MDD). It is the intention of our research to analyse the impact
and the challenges of combining Agile and MDD and try to improve this
approach by increasing its adaptability by proposing a framework that
facilitate Agile and MDD. This includes essential procedures, recommen-
dations, and guidelines. The research is based upon extensive empirical
work. At least two case studies will be carried out addressing a wide
set of aspects and challenges of Agile MDD. The results of this research
should enable developers to successfully adopt Agile MDD in practice.

1 Introduction and Problem Statement

The constant evolution of software development led to the emergence of new
approaches and methods to cope with the continuously growing complexity of
systems. Model-Driven Development (MDD)[18] has emerged as a new paradigm
where models are the main artifacts in developing software. Essentially, MDD has
changed the view of software development; instead of concentrating on writing
code, MDD puts emphasis on the early stages of software development especially
during the analysis stage where models are created [15]. After creating models,
code is generated from them with the aid of some transformation tools. Using
models can alleviate complexity by enabling developers to work at a higher level
of abstraction and with the intrinsic separation of concerns. The ultimate ob-
jective of MDD is to automate the development process and to raise the level of
abstraction [19].

Agile development [1] is another approach which imposes a disciplined project
management upon software development. Basically, the software is developed
based on iterative and incremental activity with direct customer involvement.
The main goal of Agile development is to deliver a software that meets customer’s
needs in the shortest possible time considering rapid response to requirements’
changes.

Despite the fact that Agile development and MDD paradigm seem to share
the same motivation, accelerating the development process, they have conflicting

? Initial stage of research
?? Supervisor: Kevin Lano

viewpoints. Contrasts are based on the fact that MDD emphasises the impor-
tance of high-level models while Agile is heavily code-centric; it works at a low
level of abstraction (programming languages). Another distinction is visible in
the fact that agile addresses the methodological aspects, whereas MDD is more
concerned with the architectural-aspects [21]. Agile claims that simplicity is es-
sential whereas MDD can be viewed as a heavyweight process; many steps have
to be taken before any software is developed. Another di↵erence is visible in the
fact that people represent an essential factor with the highest priority in Agile
methods, whereas MDD relies on tools and technologies to develop a system and
people are not an explicit feature [16].

On the other hand, they complement each other in some ways. Both of them
aim to reduce the gap between requirements analysis and implementation and
hence the errors that arise from incorrect formulation. Agile approaches achieve
this by using short incremental iteration for development with direct customer
collaboration while MDD do so by automating the development process. In ad-
dition, the automation in code generation in MDD implies faster development
which is the promise of agility [10]. Moreover, the degree of abstraction in design,
in MDD, consorts with what Agile tries to achieve: eliminate the gap between
customer and developers, and provide rapid feedback to validate the system [13].
Besides, executable models - which are models that can be run- in MDD could
serve as a communication medium among developers and customers, supporting
collaboration which is the key element of Agile practices. Embracing changes
is one of the key elements of Agile in which MDD can provide strong support
for this fact in many-fold ways. For instance, traceability among artifacts, which
helps to determine which parts of the system are a↵ected by requirement change,
facilitates quick response to changes. Likewise, any change in requirements can
be easily reflected in code since it is generated automatically from models. Also,
the separation of concerns concept makes the system less sensitive to require-
ment changes.

Agile Model Driven Development (Agile MDD) is an attempt to e↵ectively
combine these two approaches to gain the benefits of the two worlds while miti-
gating their drawbacks. Early work of combining Agile and MDD seems promis-
ing [20]. However, the field of Agile MDD is still immature and there is a need for
further investigation before claiming its benefits and drawbacks on software de-
velopment process [12, 3]. Currently, a number of Agile MDD approaches/tools
have emerged, each of which identifies di↵erent practices and deals with di↵erent
concerns, yet these approaches have not been objectively analysed. Therefore,
there is a need for a critical assessment of these approaches, fundamentally aimed
at identifying their benefits, and the problems that should be tackled. Moreover,
there exists no standard practices or guidance to adapting Agile techniques and
MDD paradigms, and there are only a few published case studies with which
to examine di↵erent Agile MDD approaches. This research will study the de-
velopment approaches that employ the practices of Agile development and the

principles of MDD in order to build software systems. To this aim, we will analyse
and evaluate the features of those development methodologies as well as iden-
tify the major drawbacks and deficiencies of the related works. Based on this, a
framework will be proposed for more e↵ective Agile MDD includes solutions and
improved techniques to overcome these challenges and provide guidance for the
adoption of Agile MDD. More precisely, the research will answer the following
research questions:
RQ1: What are the benefits of combining Agile methods and MDD?
RQ2: What are the main obstacles and challenges of the adoption of Agile MDD
in practice?
RQ3: Are there solutions to addressing these challenges? What are the solu-
tions?
RQ4: How can the process of Agile MDD in practice be improved?

2 Related Work

In the last years, a few studies have been published that investigate the combi-
nation of Agile and MDD. Hansson and Zhao [3] have conducted a substantial
systematic literature review for the experiences of Agile MDD approaches from
an empirical point of view. In their results section, they present some strategies
of achieving Agile MDD and they briefly highlight the impact and the chal-
lenges of the current approaches. However, their focus was on the strategies of
achieving Agile MDD not its benefits and challenges. Matinnejad [12] has pro-
posed a criteria-based evaluation framework to review and compare some Agile
MDD approaches. Based on the evaluation results, an empirical analysis was
performed. In addition, Agile MDD approaches were characterised into three
di↵erent categories: an Agile-based approach where MDD process is introduced
into agile software project, an MDD-based approach where Agile methods are
applied to existing MDD process, and an Assembly-based approach which has
some elements from agile methods and other elements from the MDD process.
Although this work represents a significant attempt to examine Agile MDD ap-
proaches, it was limited to a narrow scope. Stavru et al. in [20], have analysed
the challenges of MDD and then they evaluated the potential of Agile practices
and techniques to address these challenges. Yet, this evaluation is derived from
subjective opinions of experts and there is no proof of validation. Mahé et al. in
[11], have examined the possible joins between Agile and MDD approaches along-
side the expected benefits and challenges of combining them. However, there is
no evidence to prove their results since it is based on a theoretical perspective.
With regards to MDD, Whittle et al. [22] have conducted a substantial empirical
research on MDD where they identified the success and failure factors of MDD
use. But, their focus was on MDD, not Agile perspectives.

To summarise, there is a lack of empirical research examining the impact and
challenges of Agile MDD and how to maximise its e↵ectiveness. In particular,

it appears there are three gaps in: understanding the state of practice of Agile
MDD, examining the benefits that Agile MDD is supposed to provide, and iden-
tifying the challenges of Agile MDD’s adoption. Therefore, this motivates us to
conduct this research to fill existing gaps in the area.

3 Proposed Solution and Contributions

This section outlines the methods and solutions selected to investigate the gaps
as well as the expected contributions.

3.1 Research Design

3.1.1 Systematic Literature Review (SLR) A Systematic Literature Re-
view will be performed in order to examine the practices of Agile MDD in soft-
ware development. The key aim of this review is to find the answer to the fol-
lowing research questions:

1. What is the current state of practice in Agile MDD approaches?
2. What Agile and MDD practices and techniques are being used in Agile MDD

approaches?
3. What are the impact and the challenges of adopting Agile MDD?

3.1.2 Interview-based Survey At first glance, Agile MDD seems a straight-
forward summation of the two approaches, however it is quite challenging to ob-
tain a coherent Agile MDD that can inherit the advantages of both approaches
while avoiding their disadvantages [24]. To identify the impacts and the chal-
lenges of Agile MDD approaches from a practical point of view, we will conduct
an interview. The interview has an exploratory and descriptive purpose. Specif-
ically, the objectives of this interview are three fold: firstly, to gain insight into
development of Agile MDD and how it has been achieved; secondly, to find out
the benefits that Agile MDD has brought to the software development process;
and thirdly, to investigate the main challenges and obstacles practitioners have
encountered during the Agile MDD process. The interview will be conducted
with industry practitioners who have worked in Agile and MDD approaches al-
together. The interview is based on a semi-structured, open-ended approach [17]
where the participants will be given the same questions in the same order while
allowing for limited probing for further information. This kind of approach will
make the analysis easier and comparison can be made.

3.1.3 Developing Agile MDD Framework Upon the completion of the
analysis of the results of the literature reviews and interview findings, a frame-
work will be developed considering the limitations and benefits. In addition, this
framework will combine the best practices of Agile and MDD alongside recom-
mendations and guidelines to developers to more e↵ectively adopt Agile MDD.

3.1.4 The Case Study To evaluate the usability and the e↵ectiveness of
the proposed framework, at least two case studies will be developed. We have
already planned one of these case studies and its requirements and specification
are described thereafter. This case study will focus on transformation domain.
In this case study we will translate UML models to ANSI C language using
UML-RSDS [9]. The main functional requirement is (F1): Translate UMLRSDS
designs (UML class diagram, use cases, OCL, activities) into ANSI C code, Fig-
ure 1 depicts the architecture of this code generator .
This functionality in turn is decomposed into five sub-goals in which each sub-
goal represents a separate sub-transformation:

– F1.1: Translation of types
– F1.2: Translation of class diagrams
– F1.3: Translation of OCL expressions
– F1.4: Translation of activities
– F1.5: Translation of use cases

Each translation depends on all the previous translations. Therefore, the de-
velopment of these translations is organised into five iterations, one for each
translations. The stakeholders of this case study are: customers who needed to
develop this system, the UML-RSDS development team, and end users who use
such a system. Direct access is only available to the development team. There-
fore, access to other stakeholders is substituted by the research team due to the
need for those stakeholders. Besides the above functional requirement, a number

Fig. 1: C Code Generator Architecture

of non-functional requirements are considered, which includes: termination, syn-
tactic correctness, model-level semantic preservation, traceability,and e�ciency.
The Agile MDD approach will be compared with a non-agile, non-MDD ap-
proach with manual coding.

The other case study concerns re-engineering financial optimisation algorithm
from Matlab to C# platform. This case study will be developed for a public

financial management company, which serves local and national governments
with a broad range of services, including investment management, pricing, risk
evaluation, and other financial services. A representative of this company will
be the customer of the development. Initially, we will incorporate the basic of
MDD concepts such as models, transformations, and code generator with some
agile principles such as re-factoring, direct collaboration with the customer, pair
development, and Test Driven Development. The main aim of this case study is
to find an e↵ective way to combine agile development and MDD and to exam-
ine their benefits and shortcomings. To evaluate the use of Agile MDD process,
the results will be compared against the current application in the company
which has been developed in a traditional approach (neither MDD nor Agile
development were used).

3.2 The Expected Contributions

The expected contributions of this PhD thesis research is as the following:

1. A Systematic Literature Review in order to give a comprehensive overview
of the practical practices of Agile MDD approaches, their impact on devel-
opment process, and the challenges/issues of Adopting Agile MDD.

2. A framework that comprises the best practices for adopting more e↵ective
Agile MDD.

3. Recommendations, techniques and guidelines to developers who need to cope
with the combination of Agile and MDD in practice.

4. A set of case studies which implement the proposed framework and recom-
mendations.

This research will help to create more productive and higher quality Agile MDD
as it helps developers to be aware of and address potential challenges early
via an Agile MDD framework. Also, it will help developers to find validated
solutions to address the challenges in their practices. The SLR has relevance in
the software engineering community as it should improve the understanding of
the mechanisms behind the influence of Agile MDD on software development
process.

4 Current State and Outlook

This research e↵ort is still at an early stage. What we have carried out until now
is:

4.1 The Systematic Literature Review

The main source we used to search for primary papers are ACM and IEEE Ex-
plore digital libraries by applying the search string (AGILE AND MODEL-
DRIVEN). We experimented with many search strings and this one returned
the largest number of publications. Further relevant publications have been found

at Google Scholar. Only publications written in English and published after 2001
were included. To select the eligible studies, we have performed two activities.
Firstly, the title, the abstract, and the conclusion of the publications were anal-
ysed to check their eligibility. Secondly, the full text of the study is analysed for
further refinement of the results. After applying our criteria of inclusion and ex-
clusion, the number of relevant publications was only 10 papers. This relatively
low number of publications indicates that the area of Agile MDD is still imma-
ture. However, a manual search was performed on the references of the eligible
publications to make sure we have not missed any relevant study.
The initial results of the literature review revealed that there are promising bene-
fits for combining Agile practices and MDD ,which include: increased productiv-
ity, improved product quality, the ease to respond to requirements changes, and
a faster development process. While the most frequently reported challenges are:
steep learning curve, insu�cient tool-support, insu�cient agility, lack of model
and transformation management, and lack of systematic process. In order to
make Agile MDD more e�cient, these problems need to be addressed. Table 1
presents a comparison between di↵erent Agile MDD approaches.

Publication
ID

Reference Approach-
type

Based-upon Aim Domain Models used Verification Round-trip Engi-
neering

Automatic Model
Integration

P1 [24] MDD-Based Scrum, XP,
MDD

Shorten delivery cy-
cle time, improve
quality

TelecommunicationClass dia-
gram, state-
machine,sequence
diagram

High ⇥ ⇥

P2 [6] Assembly-
Based

Parallel Ag-
ile, MDD

Apply MDD ap-
proach to small-
sized projects

Web application Domain model,
test model, tem-
plates

Low ⇥ ⇥

P3 [5] MDD-Based Mockup
Models,
Scrum-like

Involve customers,
create high level
designs

Web application Mock-up models,
use case

Low ⇥ ⇥

P4 [4] MDD-Based General Ag-
ile process,
MDE

Shorten develop-
ment cycle, get early
feedback

Mechatronic sys-
tems

plant models High ⇥ ⇥

P5 [23] MDD-Based XP, MDD Enhance MDD for
agility and quality

TelecommunicationClass diagram,
use case, state
transition

High ⇥ ⇥

P6 [7] MDD-Based Reactive
System Mod-
elling

Get early feedback Reactive multi-
agent systems

Environment,
behaviour, de-
sign, run-time
models

Low ⇥ ⇥

P7 [14] MDD-Based Scrum, MDA Shorten develop-
ment cycle

Financial sys-
tems

XML model Medium X X

P8 [8] MDD-Based General
Agile pro-
cess, MDD,
Product-line

Shorten develop-
ment time

Business systems Feature models Low ⇥ ⇥

P9 [2] Agile-Based Scrum,
MDE, Rapid
Application
Prototype

Involve customers,
quick designs

Web applica-
tions

Mock-up models Low ⇥ ⇥

P10 [9] MDD-based Scrum, MDD Improve agility in
MDD

Transformation Class diagram,
use case

Medium ⇥ ⇥

Table 1: Comparison of Agile MDD Approaches

4.2 The Interview-based Study

So far, we have performed four interviews with industrial practitioners from
di↵erent domains in order gain insight on the practical aspects of Agile MDD.
At least two more interviews are required to have a su�cient understanding of
the area. The initial result of the interviews show significant benefits of adopting

Agile MDD such as a higher level of abstraction and shorter development time.
However, all the participants encountered some challenges and obstacles. The
most frequently stated issues are: a sharp learning curve and lack of tool support.
In-depth analysis of the interviews will be conducted to answer our research
questions.

5 Conclusion and Future Work

The proliferation of Agile development and MDD over recent years make it an
important research field. Yet, we have limited understanding of the benefits and
challenges of combining them and how they can e↵ectively be adopted. The
specific characteristics of Agile MDD impose many challenges that need to be
properly addressed in the adoption of Agile MDD. An important contribution of
our work is to obtain a comprehensive understanding of the current state of Agile
MDD, to analyse their impact and issues in more detail and what can be done
to improve the situation in practice. As future work, we are aiming for a paper
summarising our findings from the SLR and the interviews (once the interviews
are completed). Based on the results of both SLR and the interview, a framework
will be developed for adopting Agile MDD in practice alongside formulating rec-
ommendations and guidelines for an improved approach. The framework should
propose the best techniques, processes, and recommendation to better achieve
Agile MDD in practice. To evaluate and validate the framework and the recom-
mendations, a set of case studies will be conducted in some domains and the
framework will be discussed with experts in industry to validate it.

References

1. Manifesto for agile software development. Available at http: // www.

agilemanifesto. org , march 2015.
2. Fábio Paulo Basso, Raquel Mainardi Pillat, Fabricia Roos-Frantz, and Rafael Z

Frantz. Combining mde and scrum on the rapid prototyping of web information
systems. International Journal of Web Engineering and Technology, 10(3):214–244,
2015.

3. H̊akan Burden, Sebastian Hansson, and Yu Zhao. How MAD are we? Empirical
Evidence for Model-driven Agile Development. In Proceedings of XM 2014, 3rd
Extreme Modeling Workshop, volume 1239, pages 2–11, Valencia, SPain, September
2014. CEUR.

4. Ulf Eliasson, Rogardt Heldal, Jonn Lantz, and Christian Berger. Agile model-
driven engineering in mechatronic systems-an industrial case study. In Model-
Driven Engineering Languages and Systems, pages 433–449. Springer, 2014.

5. Julián Grigera, José Mat́ıas Rivero, Esteban Robles Luna, Franco Giacosa, and
Gustavo Rossi. From requirements to web applications in an agile model-driven ap-
proach. In International Conference on Web Engineering, pages 200–214. Springer,
2012.

6. Gábor Guta, Wolfgang Schreiner, and Dirk Draheim. A lightweight mdsd process
applied in small projects. In Software Engineering and Advanced Applications,
2009. SEAA’09. 35th Euromicro Conference on, pages 255–258. IEEE, 2009.

7. James Kirby Jr. Model-driven agile development of reactive multi-agent systems.
Technical report, DTIC Document, 2006.

8. Vinay Kulkarni, Souvik Barat, and Uday Ramteerthkar. Early experience with
agile methodology in a model-driven approach. In International Conference on
Model Driven Engineering Languages and Systems, pages 578–590. Springer, 2011.

9. Kevin Lano. Uml-reactive system design support. Technical report, King’s College
London, 2012.

10. Kevin Lano, Hessa Alfraihi, Sobhan Yassipour Tehrani, and Howard Haughton.
Improving the application of agile model-based development: Experiences from
case studies. In The Tenth International Conference on Software Engineering Ad-
vances, pages 213–219. International Academy, Research, and Industry Association
(IARIA), November 2015.

11. Vincent Mahé, Benoit Combemale, and Juan Cadavid. Crossing model driven engi-
neering and agility: Preliminary thought on benefits and challenges. In Proceedings
of the 3rd Workshop on Model-Driven Tool & Process Integration, in conjunction
with Sixth European Conference on Modelling Foundations and Applications, pages
97–108, Paris, France, 2010.

12. Reza Matinnejad. Agile model driven development: An intelligent compromise. In
Software Engineering Research, Management and Applications (SERA), 2011 9th
International Conference on, pages 197–202. IEEE, 2011.

13. Stephen J Mellor. MDA distilled: principles of model-driven architecture. Addison-
Wesley Professional, 2004.

14. Mina Boström Nakićenović. An agile driven architecture modernization to a model-
driven development solution. International Journal on Advances in Software Vol-
ume 5, Number 3 & 4, 2012, 2012.

15. Ruben Picek. Suitability of modern software development methodologies for
model driven development. Journal of Information and Organizational Sciences,
33(2):285–295, 2009.

16. Ruben Picek. Suitability of modern software development methodologies for
model driven development. Journal of Information and Organizational Sciences,
33(2):285–295, 2009.

17. Jane Ritchie, Jane Lewis, Carol McNaughton Nicholls, Rachel Ormston, et al.
Qualitative research practice: A guide for social science students and researchers.
Sage, 2013.

18. Bran Selic. The pragmatics of model-driven development. IEEE software, 20(5):19,
2003.

19. Bran Selic. Model-driven development: Its essence and opportunities. In Object
and Component-Oriented Real-Time Distributed Computing, 2006. ISORC 2006.
Ninth IEEE International Symposium on, pages 7–pp. IEEE, 2006.

20. Stavros Stavru, Iva Krasteva, and Sylvia Ilieva. Challenges of model-driven
modernization-an agile perspective. In MODELSWARD, pages 219–230, 2013.

21. Hans Wegener. Agility in model-driven software development? implications for
organization, process, and architecture. In OOPSLA 2002 Workshop on Generative
Techniques in the Context of Model Driven Architecture, volume 23, 2002.

22. Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of practice in
model-driven engineering. Software, IEEE, 31(3):79–85, 2014.

23. Yuefeng Zhang. Test-driven modeling for model-driven development. Software,
IEEE, 21(5):80–86, 2004.

24. Yuefeng Zhang and Shailesh Patel. Agile model-driven development in practice.
IEEE software, 28(2):84, 2011.

