
Demo: Composing, Reproducing, and Sharing
Simulations

Debashis Ganguly, William C. Garrison III, David Wilkinson,
Bruce R. Childers, Adam J. Lee, and Daniel Mosse

Department of Computer Science
University of Pittsburgh

Pittsburgh, Pennsylvania USA

Every year, research groups around the world contribute
papers and artifacts to the computer science literature. In many
areas, simulation and modeling play key roles in bringing
about these new contributions. Simulation is used to test and
validate new ideas prior to their implementation, and thus,
the artifacts (software, data sets, benchmarks, etc.) used in
simulation are fundamental to the empirical evaluation of a
research hypothesis.

Often, the primary focus of a paper is on the validation of a
central hypothesis or building proof-of-concept software, and
the details surrounding the artifacts used during and experi-
ments used for this process are often scarce. Many researchers
do not intend to build a foolproof software component to share
with the community. Artifacts may end up limited in scope
or usability, and hidden or unstated assumptions may make
the artifact difficult (if not impossible) to reuse, extend, or
compose. Many artifacts take a tremendous amount of effort
to build and validate and, as such, may remain private to the
research groups that invested in developing them in the first
place. This limits their availability, increases the difficulty of
validating claims made in papers based on these artifacts, and
limits the ability of others to build upon prior work.

Addressing this situation necessitates sharing and repro-
ducibility1. While this problem cuts across most CS disci-
plines, the modeling and simulation community has a unique
advantage in addressing it. Namely, modeling and simulation
rely on well-defined artifacts to carry out some activity; a
model, simulation component, initial conditions, input stimuli,
etc., must be specified and encapsulated in some form as part
of an evaluation. To this end, our participation at WSSSPE
2016 will concretely demonstrate our approach to sharing,
reproducing, and composing simulations toward accelerating
research productivity while also improving accountability and
credibility. Specifically, we have developed a case study in
which we compose and share access control simulations in the
form of shareable data store units for cloud systems. This case
study is openly hosted in the OCCAM collaborative repository
(http://occam.cs.pitt.edu) and integrated with Sandia’s Struc-
tural Simulation Toolkit (http://sst-simulator.org).

1Note that reproducibility in this paper is defined as experimentation that
is both repeatable and modifiable.

Our security simulator, Portuno, conducts cost analyses to
explore the suitability of different access control approaches
for a given application workload. Portuno has been used
in an array of analyses, including evaluating group-centric
approaches to information sharing and exploring the commu-
nication, computation, and administrative overheads associated
with cryptographic enforcement of role-based access controls
(RBAC) on untrusted cloud platforms. Portuno uses proba-
bilistic actor-based models of user, administrator, and system
behaviors to generate application traces (e.g., open file, edit
file, share file, modify permissions, etc). These traces are then
mapped into traces in concrete access control systems: those
that are candidates for implementing the application. Costs are
then aggregated over these candidate system traces. Portuno
supports a wide range of design choices in its actor models,
initial system states, and other parameters of an experiment.
As such, openly sharing the choices that have been made and
allowing other researchers to modify these choices can lead
to a better understanding of the trade-offs among different
access controls techniques. Figure 1(a) shows the workflow of
the composition of Portuno into OCCAM.

To compose Portuno with other simulations, share the result-
ing infrastructure, and disseminate the experimental outcomes,
Portuno is integrated with SST and incorporated in OCCAM.
SST acts as the driver of the underlying access control models,
which are implemented in Java. This is a novel use of SST as
a backbone for probabilistic modeling in an area other than
computer architecture and computer systems simulation. It also
illustrates interoperability between SST and Java models.

The combination of OCCAM, SST, and Portuno leads to a
seamless environment that is more capable than the sum of its
parts. This integrated approach offers the capability to quickly
define, run, visualize, and share simulation artifacts and results
over a huge design space. It supports an end-to-end workflow
for modeling and analyzing access controls under a variety of
scenarios, making it easier to (a) use Portuno for access control
analysis, (b) inspect and augment Portuno experiments done
by others, and (c) modify Portuno in a contained environment.

OCCAM allows for a dynamic environment where a re-
searcher can explore ranges of inputs and simulation results
by (a) specifying ranges and having the system automatically
generate, organize, and tag output results (see Figure 1(b)
for a sample of parameters, ranges, and web interface); noteThis work is licensed under a CC-BY-4.0 license.

http://occam.cs.pitt.edu
http://sst-simulator.org
https://creativecommons.org/licenses/by/4.0/


(a) Workflow (b) Interface for parameters and ranges

(c) Error signaled in interface (d) Visualization 1

(e) Visualization 2 (f) Provenance

Fig. 1. Web interface of OCCAM



that Figure 1(c) shows what happens when a parameter is
specified incorrectly when a research is able to specify a range
(e.g., number of iterations 4-20 while being a multiple of
4, OCCAM generates automatically 4, 8, 12, 16, and 20),
(b) visualizing the results of already executed simulations
(see Figures 1(d) and 1(e) for a sample of automatically
generated visualization of results, which can be manipulated
dynamically through our web interface), and (c) requesting the
system to extend the simulation runs for different input ranges.
In effect, users of OCCAM can be researchers, developers,
experimentalists, or curious users.

Traditional digital archives for publishing experimentation,
such as Open Science Framework and Dataverse, focus on
sharing data without directly enabling reproducibility. Some
archives, such as MyExperiment, specialize their systems fur-
ther by holding the source code and other offered information,
and introducing a means of visualizing the experimentation
through a workflow of that experiment. In contrast, OCCAM
goes several steps forward by retaining all of the data and code
necessary for an experiment to be executed/run/reproduced,
in addition to also giving a consistent means of visualizing
the workflow of the experiment, deploying it, and viewing the
results. In the case of OCCAM, the workflow can be composed
of several simulators and not only of steps of a simulation.
Simulation results can be viewed and manipulated in a dy-
namic and interactive analyses, representing the “article of the
future”. Papers currently and recently have been disseminated
as PDFs with limited space, fixed content (e.g., a specific set
of results/graphs), and inadequate or incomplete details (e.g.,
missing setup, limited sweeps, etc.). With OCCAM, the results
will be integrated in the articles, which will be enhanced
to provide greater transparency, actual reproducibility, and
complete provenance of the results. For example, a reader can
click on a graph, and is taken to the digital library repository
of the data used to produce the graph, including the simulator,
the input data, the configuration files for the simulator, etc. See
Figure 1(f) for an example of the output of the provenance.
In addition, the reader will be able to extend a graph beyond
what is shown on the paper, to see trends and other further
results the reader wants to see, not only the (fixed) extended
results on a website provided by the authors.

Our seamless environment also enables the novel compo-
sition of simulators. In particular, we can combine Portuno
with other simulations. For example, we are currently investi-
gating how Microns hybrid memory cube (HMC) can decrease
the overheads associated with enforcing cryptographic access
controls in cloud environments. Recent simulations by our
team show that the administrative costs involved in altering
cryptographically enforced RBAC policies are prohibitive:
e.g., revoking a user from a single role may require thousands
of re-encryptions in even a moderately-sized organization.
The use of HMCs, perhaps combined with trusted execution
environments like Intel’s SGX, would allow users to push the
re-encryption to the data, rather than bringing bulk data to
the processor to re-encrypt. The administrative action traces
generated by various Portuno configurations would serve as

good candidate inputs for HMC simulators that could help us
explore the potential benefits of this architectural enhancement
to speed up the management of files on untrusted infrastruc-
ture.

At the workshop, we will show how sharing, composing
and repeating simulations through a collaborative repository
(OCCAM) and a general simulation framework (SST) can
accelerate our efforts as a community. Using our work on
access controls as a case study, we will explain our technical
approach, how our integrated environment facilitates design
exploration, and the potential of composing separate models.
In the spirit of this abstract, interactive results obtained from
Portuno, SST, and OCCAM are available at http://tinyurl.com/
hj2oewn.

ACKNOWLEDGEMENTS

The material in this document is based in part upon work
supported by the National Science Foundation (NSF) un-
der grant numbers ACI-1535232, CNS-1305220, and CNS-
1228697. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the NSF.

http://tinyurl.com/hj2oewn
http://tinyurl.com/hj2oewn

