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Abstract

A wvisual type theory is a cognitive tool that has much in common with
language, and may be regarded as an exceptional form of spatial text
adjunct. A mathematical visual type theory called NPM has been
under development that can be viewed as an early-stage project in
mathematical knowledge management and mathematical user interface
development. We discuss in greater detail the notion of a visual type
theory, report on progress towards a usable mathematical visual type
theory, and discuss the outlook for future work on this project.

1 Introduction

Suppose that you are a working mathematician with some promising new results that you would like to share
with other mathematicians in your field. It is exactly for this purpose that the library of mathematical symbols
and the language and style of mathematics were originally developed. It is no surprise, then, that this very style
is an excellent vehicle for your purposes.

On the other hand, suppose that you are a worker at a company in a data-intensive field, and you have a
problem for which it is necessary to utilize the tools of mathematics. For example, you may wish to automate
a finitary procedure, solve a problem in software verification, or apply a physical or economic model. The
aforementioned traditional language and style of mathematics was not designed for your purposes. The needs of
such users for new styles and new forms of expression are well known and have been felt now for many decades.
Many mediums of communication and tools for interacting with other members of such fields, as well as with
software and computers, have been developed in recent decades. This effort has been enormously fruitful and
transformative, for example, from them an entirely new branch of science (namely, computer science) has arisen.

However, for those in any third walk of life, different from either of these, a communication gap exists
whose natural tendency is not to shrink, but to further widen with the growth of scientific knowledge. At the
present time there is rising interest in mathematics and other STEM areas [Mau], a growing recognition of the
growing importance of STEM knowledge, and a parallel rise in awareness of this communication gap, as well as
broader challenges for STEM education. These developments have already attracted the interest of scientists in
several fields, and has been (in part) a driver of the development of new areas such as mathematical knowledge
management [Far] and mathematical user interface development and design [JP2014], fields that intersect and
interact with multiple large knowledge domains, particularly mathematics itself and computer science, but also
others such as, e.g., educational and cognitive psychology.

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org



In this article, two questions are addressed. First, we address the general question of what theoretical space
a tool for mitigating the communication gap named above might occupy. In seeking an answer to this question
we introduce the notion of a wisual type theory in the long section 2, after establishing that such a notion is
distinct from existing notions in computer science (in particular programming language theory) and educational
psychology and therefore necessitates some kind of new terminology and a somewhat new, developing theoretical
framework. Then secondly, in the context of the general body of mathematical knowledge, e.g., the broad fields of
analysis, topology, geometry, and algebra, each of which contain numerous specializations, we ask: is it possible
to construct a mathematical visual type theory? We report that the answer is yes, and that a prototype model is
presently in development. In section 3, we describe in outline the prototype system, entitled NPM. We conclude
our preliminary report with an overview of the outlook of the project in section 4.

2 Visual Type Theory: Form and Function
2.1 Cognitive Model: Comprehension of External Representations, Ordinary Memories

According to the cognitive model of Schnotz and Bannert [SB2, Sch, SB1], the brain’s function of comprehension
of external imagery or text involves the creation of a mental model and propositional representation, which
are (respectively) depictive and descriptive representations constructed via schema-mediated structure mappings
from internal representations that more directly correspond to the given external representations (the imagery,
or the text, respectively). The distinction between depictive and descriptive representations is understood in
terms of the distinction between symbols and icons due to Pierce [Pie]. A depictive representation consists
of iconic signs associated to the content they represent through common structural features (or “similarity”).
A descriptive representation consists instead of symbols having arbitrary structure that are associated to the
content they represent by means of convention [Sch]. This model can be viewed as a refinement of the earlier
dual coding theory of Paivio [Pai] and the multimedia learning model of Mayer [May]. Such models are used by
psychologists to form hypotheses which can subsequently be tested by experiment.

We will adopt this model of visual and text comprehension as our basic framework, and we will refer to the
propositional representation and associated mental model generated by an external representation, collectively,
as an ordinary memory (an idealized but convenient notion). An ordinary memory is distinguished from other
memory types, for example spatially organized (as opposed to visual) memories [SB1, p. 616]. In [SB1] the ordi-
nary memory of a graphic (imagery consisting of a graph or chart) is divided into a deep structure and a surface
structure. The surface structure is “the outward form of the graphic,” and the deep structure is “a semantic
construct which expresses the meaning of the graphic” [SB1]. For our purposes, we seek an analogous definition
that would apply to cases other than graphics, in particular to descriptive as well as depictive representations.
Therefore we define the sketch component of an ordinary memory to be whatever serves (pragmatically) as the
individual’s immediate internal depictive representation of the ordinary memory when prompted. The reader
may perhaps wish to view this as the associated communication level representation [GMZ, Sch] of the ordinary
memory, but we will stick here to the more colloquial terminology of “sketch component”, since our entire ar-
gument is quite heuristic and only meant to suggest possible refinements, and since the terminology of [GMZ]
does not particularly isolate the depictive portion of the communication level representation as our definition
seeks to do. Notice that this definition can indeed be applied equally to external depictive as well as external
descriptive representations (as prompts). It is reasonable, and we will assume, that this sketch component or
depictive communication level representation is immediately placed in the working memory of the individual
upon exposure to an external representation of the associated concept or ordinary memory. Due to the capacity
limitations of working memory [SC], this can only be an incomplete part of the total content of the ordinary
memory, and we might regard whatever lags in a measure of time-of-recall to belong to the associated deep
component of the ordinary memory.

We can observe that the sketch component is not well-defined or uniform across space or time (in different
individuals, or even in the same individual as time progresses). However, often significant uniformity can be
observed in populations. For example, we might expect that a well-known person’s face is the sketch component
of the descriptive representation given by the person’s name (for example, an internal visualization of Bill Gates
is the sketch component of Bill Gates). Likewise, a steaming cup of coffee could be expected to be the sketch
component of the ordinary memory of the depictive representation coffee. It is also perhaps noteworthy that
the sketch component of a memory can be expected to be more well-defined (i.e., uniform/canonical), in general,
than the corresponding deep component.



Images presented alongside associated text, or text adjuncts, have been shown to improve memnenic per-
formance, see, for example, [LAC, DSL|, and references cited there. In [LAC] a taxonomy of decorational,
representational, organizational, interpretational, and transformational text adjuncts is defined, and experimen-
tal evidence is presented according to which the effectiveness of text adjuncts for mnemonic and comprehension
purposes varies according to the taxonomic type, a point that will be significant for the discussion in section 3.3.
In [DSL] evidence is given that other variables can affect the magnitude of such effectiveness, such as setting and
period of exposure. In addition they found a significant effect on preservation of learning against decay during
the one-week time interval between testing that took place immediately after exposure to a text passage and
follow-up testing, due to the presence or absence of a graphic (paired with the text) depicting an illustrative
visual metaphor (which they classify as a decorative graphic). Altogether, their study lends support to the view
that “extra processing prompted by the presence of the graphics creates a cognitive trade-off for learners” [DSL,
p. 202] that can be simplistically described as a short-term cost (the extra energy demanded, e.g., by assimilation
of the graphic with the text) that has long-term benefits (e.g., reduced memory decay).

2.2 Mathematical Memories

We next turn specifically to mathematical concepts in the setting of the cognitive model of section 2.1. While
many studies have been done on integrating pictures into learning of science and mathematics (see, for example,
[BSC], [CL, p.13]), the author is not aware of any that focus on mathematical structures. As is well known, during
the late nineteenth and early twentieth century, mathematics underwent several new developments due to the
contributions of many people including Dedekind, Hilbert, Ore, Noether, and many others, which transformed
mathematics, in the minds of many, from a numerical science to an abstract, structural science [Cor]. In
this section we approach this latter, structural view with a philosophical discussion based largely on personal
experience and introspection, in order to draw several conclusions that are crucial to our argument. At the
time of publication it is too late to explore further relationships with psychology and mathematical knowledge
management here (but see for example [KK] which suggests an approach via the theory of framings). We will
also ignore for simplicity the numeracy or numerosity function of the brain [Deh], as our focus is particularly on
the production of ordinary memories of mathematical structures.

Let us try a simple thought experiment. Suppose that an individual tries to think of a group (that is, tries
to think of groups, the well-known objects defined in any first course in abstract algebra). He or she would
normally recall, after a little thought, particular experiences or encounters with groups. He or she might perhaps
recall properties groups have (e.g., “all elements are invertible”), or a theorem about groups (e.g., the Jordan-
Holder Theorem). These memories would, depending on the individual, vary widely. This is particularly true
for the depictive memory of groups—and it is just this which we would like to draw a focus on. While there
are examples of groups that evoke depictive representations (symmetric groups, dihedral groups, and orthogonal
groups, for example), and there are heuristic images that help us to see what groups in general are like, there
is no telltale visual cue, no “first-order association” of a group with a depictive representation—something that,
when visualized, prompts the entire mental model of a group. Depending on the individual, he or she might
have an intuition at hand—for example, spatial intuition for Lie groups, or model-theoretic intuition for polish
groups, or set-theoretic intuition for finite groups—but the group concept itself is beyond all such intuitions, or
rather, it is apparently a puzzling marriage of all these intuitions, and more besides that is apparently beyond
an individual’s power to clarify. In brief, the group concept can be regarded as a “dark” concept.

Indeed, (whether it is fair or unfair to use the evocative term “dark”) many other examples can be given to
illustrate that this “dark” quality is in fact commonly encountered in mathematics. While in the example of
a group given above it arises due to the formal application of mathematics and logic (the axiomatic method),
the same dark quality (the lack of a sketch component in memory) also arises due to the general application
of idealized infinite (i.e., nonfinitary or nonterminating) processes in derivations of mathematical formulas and
relations, as well as the ubiquitous use of quotient operations in mathematics (see below). Consider, for example,
the difference between a standard visual representation of the rational numbers (commonly denoted @) and the
real numbers (denoted R or (—oo,+00)) as ordered structures. In both cases, the ordering is linear and dense:
between any two elements in the ordering, there can be found another distinct element. Only in the latter case,
however, does the ordering have the additional property of completeness, which is perhaps most easily understood
in terms of a topological structure assumed to be present in both cases, or alternatively, by way of a construction
of the latter ordered set from the former one. This property, however, defies visualization: density and com-
pleteness are indistinguishable in an external or internal depiction, except via a heuristic (i.e., a diagram that



heuristically indicates some phenomenon that cannot be directly visualized). Other examples demonstrating this
phenomenon include space-filling curves, real-valued dimension (fractals), and so-called “pathological” functions
(for example, the continuous, nowhere-differentiable function discovered by Weierstrass [GO]), many of which
arose in the nineteenth century and drove the earliest efforts to place calculus on firm foundations. Or, to reach
for examples from other fields, we can think of trying to visualize manifolds (abstract spaces that are curved,
like the surface of the earth) that are not embedded in three-dimensional space. The (perhaps) most well-known
example of such a manifold, the so-called Klein bottle, has a very famous and lovely depictive representation,
but in general, for higher-dimensional manifolds with arbitrarily chosen topological invariants, no such depictive
sketch component is available. The same can be said for structures defined only up to some equivalence class
(“only up to isomorphism?”), i.e., concepts which are obtained via a quotienting operation applied to existing
families of concepts. It is not difficult to find examples in which elements of an isomorphism class—for example,
the isomorphism class of the plane R? up to topological isomorphism (i.e., homeomorphism)—are themselves
accessible via a natural depictive representation, and yet there is nevertheless no meaningful or pragmatically
useful depictive representation of the entire isomorphism class.

If we set these examples in the context of our cognitive model, we can observe that the ordinary process of
creating a mental model and a propositional representation, and an associated sketch component, is confused by
the richness and complexity of the concept—in particular the lack of a fixed, canonical, uniform visualization.
To couch this point in empirical terms, an experiment could be performed in which mathematicians (or some
other chosen population) could be asked to draw pictures of mathematical objects. Our hypothesis, then, would
be threefold: first, that there would not be found any uniformity in these sketches, second, in fact in many cases
such an experiment might well yield descriptive representations serving as proxies to depictive representations (in
other words, there is in that individual’s mind no properly depictive representation at all, and the individual has
simply “doubled up” the descriptive representation to serve dual purposes, depictive and descriptive), and third,
that there would oftentimes be little or no pragmatic utility (for the purpose of problem solving or memnonic
value) in the sketches produced. Assuming this is accurate, what is therefore observed is a certain inefficient or
wasteful use of the brain’s cognitive system: immediate or sketch components of the brain’s recall of mathematical
concepts is of little use to the user or learner of mathematics.

2.3 Haptical Memories, Barriers to Entry

It is unclear just how it is, exactly, that mathematicians construct and maintain memories of mathematical
concepts. However, if the author ventures to argue on the basis of his own experience, he would cautiously
lean towards the view that mathematicians rely often on memory mechanisms of the brain other than the
ordinary memory system. In particular, they often rely on what we will refer to here as “muscle memory” or
“haptical memory”. Units of such haptical memory are produced in the course of problem solving: passing from
a question whose answer is not clear prima facie to an answer via logical inference and computation, which may
be abridged by prior knowledge or by assumptions and conjectures. (This, we believe, is what mathematicians
often refer to simply as “working”) Let it be granted, then, for the sake of argument, that mathematicians,
at least in large part, rely for their memories of mathematical concepts on a posited haptical memory system
that is broadly available in the human population. This haptical memory system is assumed to interact, via
structure mappings, with the ordinary memory comprehension system, hence it influences the construction of
the propositional representation and—perhaps directly, or perhaps indirectly—the mental model of a concept as
well.

Haptical memory tactics can be very powerful. However, while an ordinary memory can be formed in an
instant, a haptical memory takes several minutes at the very least, and as noted in [SK] places significant
cognitive demands on the brain. This matters little in many situations, but with the sheer number of abstractions
present in modern mathematics, and the increasing demands for mathematical knowledge in fields outside of
mathematics, the acquisition of mathematics through haptical memory tactics is increasingly impractical in many
settings. Moreover, mathematical information, once acquired, still must be managed and maintained, activities
for which the brain demands energy (due to being so-called biologically secondary knowledge [SK, p.474]). This
establishes high barriers to entry at the boundary between those who are willing and able to invest significant
resources to acquire, manage, and maintain haptical memories of mathematical concepts, and those who are not.

Cognitive load theory [SC, SK] poses many potential strategies for confronting this conundrum. The findings
in [DSL] noted in section 2.1 lend partial support to an approach focusing on the use of visual adjuncts to
the normal descriptive representations of mathematical structures (i.e., the rigorous development and study of



mathematical structures, written down in the language of logic). This, by itself, would not seem to be a new
idea, indeed modern math and science textbooks are rife with illustrations of mathematical concepts intended
to facilitate learning and boost concept retention, and there has been no lack of reflection on and criticism of
the famously influential “Bourbaki style”. However, in light of the observation in section 2.2 that mathematical
concepts are dark, we can focus attention in particular on the sketch component of memory for mathematical
concepts, which is, as observed there, (depending on the individual) missing and/or dysfunctional (serving little
or no practical purpose). This begs the question: what if this particular dysfunctional part of the full ordinary
memory was replaced by some sort of (in the language of [LAC]) transformational representation? The findings
in [DSL] indicate that through such a strategy the problems with the significant time demands and rapid decay
of haptical memories might be mitigated.

2.4 Visual Type Theory: Definition

A wvisual type theory is a system of depictive representations created in the course of implementation of the
strategy suggested at the end of the previous section. Such a system must have several properties in order to
properly be considered a visual type theory:

1. It should depictively reflect logical or natural relationships between the objects being depicted.

2. It should be almost regular in the sense that it should be regular in its prescribed use as a general principle,
however it should tolerate irregularity when such an irregularity compellingly suggests itself.

3. It should be generative in the sense that there is a natural way to generate new representations based on
the patterns of existing representations.

4. Tt should possess the property of density: the informational content [Sch, p.103] of each representation of
the system should be high in proportion to its visual complexity. For this it might rely on absence loading
(section 3.3).

A visual type theory can, in theory, function as a communication medium as language does. It differs from
language, however, by consisting of depictive, not descriptive representations. Thus we arrive at the “visual”
part of the term visual type theory. We use the terminology “type theory” because in the visual type theory of
section 3 the representations are very similar to types (for variables) written in a “visual” style of notation, and
also because calling it a form of type theory reminds us to distinguish it from language while preserving the idea
that such a system, like language, is nevertheless (almost-) regular and generative. Visual type theory provides a
system of representations that could be described as “anchors” or “visual anchors” that are particularly useful in
situations where concepts are otherwise highly abstract (or, in the language of section 2.2, dark). Through the
use of a visual type theory an individual acquires memory tactics in addition to the haptical tactics of problems
solving and computation, rote associative memory building, etc.

Now that we have defined visual type theory, a word of caution may be in order. No memory is as simple as
a sketch component (section 2.1), taken by itself, would indicate. Beyond the sketch memory there may exist
an effectively limitless complex of information. In practice, visual type theory can do no more than provide a
user with integrated systems of well-chosen sketch memories of concepts. It leaves to the user the job of filling in
deeper memories, and acquiring other abilities a user might need that the visual type theory is possibly unable to
provide alone. This is true in particular for a mathematical visual type theory and thus, in this case we caution
the reader that visual type theory is not (and is not advertised to be) a “Royal Road to geometry,” and does not
disprove the famous ancient dictum of Euclid. Sketch memories are simplistic and can contain inaccuracies that
only deep memories can correct. Sketch memories are accompanied by the hazard of false assurances, overhasty
opinions, and misguided actions. However, in light of the observation of section 2.2 that abstract mathematical
concepts often lack a sketch component (creating a vacuum that, as argued in section 1 and section 2.2, can also
impede mathematical cognition and comprehension), a trade-off is expected between which, perhaps, a balance
can be struck.

2.5 Visual Type Theory as Language

To conclude this section, we now ask the question: Is a visual type theory a form of language? If so, just what
kind of language is it? As a device with a formal definition and prescribed rules of use, a visual type theory
(if perfectly regular) may be viewed as being something like a formal language. As a device with a pattern



of growth and an internally consistent set of heuristic (though not unbending) principles, it may be viewed as
being something like a natural language. Visual type theories also have many properties in common with both
types of language: their purpose, like that of all languages, is to express thoughts, display relationships quickly
and memorably, to facilitate the possession, understanding, and management of complex and abstract ideas, to
port well through different environments, and, potentially, to serve as a method of communication between users
who share the necessary prior knowledge. But, as we have argued in section 2.4, visual type theory technically
cannot be considered a language at all: it is not a mapping between syntax and semantics, or in other words,
a cognitive tool whose elements travel via the descriptive channels of the ordinary memory system—instead,
unlike in a language, they travel via the depictive channels. However, with so many commonalities with existing
language notions (and because the use of generally familiar vocabulary to discuss visual type theory is, by all
indication, inevitable), it might be wise to bend the notion of language slightly by referring to visual type theory
as a language paradigm. As such a paradigm, it is distinct from any of the major paradigms that currently exist
in computer science: it is not a formal language, nor a compilable programming language, nor a specification
language, nor a natural language. From this observation, we can draw several closely related and important
corollaries. First, we have seen that visual type theories are not developed as a language would be, in order to
replace existing mathematical language—mneither in whole nor in part. It is not the case that the use of visual
type theory would impinge in any way upon mathematical practice if it is used as prescribed here. Second, a
visual type theory is not a universal formal system for expressing mathematics, for it operates within an entirely
different language paradigm. Rather, it is a supplementary system that runs in parallel with formal languages,
whether locally or globally defined. In other words, the depictive character of visual type theory provides it
with the property of independence: the mathematical formalization a user chooses can be switched out easily
while the visual type theory, say, T', stays in place, just as T can also itself be removed or added, turned off
or turned on at any moment, without affecting the rigor expressed by formal syntax. These formal languages
can be of virtually any kind—past, present, or future. This suggests particular uses for visual type theory in
mathematical knowledge management, in its role as custodian of past and present mathematical documents and
for confronting the problems of informality and logical heterogeneity [RK].

It may be noteworthy that an attempt to change this prescribed role—to use a visual type theory T as a basis
for an imagined “visual” formalization of mathematics, for example—regardless of success or failure, would take
away this property of independence, and force T' to cease being a visual type theory, and to become instead a
“visual” formal language.® The independence property removes the most stringent pressures that a language can
be subject to: the demands of rigor, compilability, security, searchability, etc. In contrast, these pressures fall
directly on formal languages and programming languages. Such languages must cater to the needs of machines
first, and human beings, second. In contrast, visual type theories, like natural languages, occupy a space in
which this priority is exactly reversed.

3 Progress Report: A Mathematical Visual Type Theory

3.1 Overview, Principles of Design

Now that we have explained at length the simple idea of setting up a visual type theory, we can discuss such a
visual type theory for mathematics that is currently under development, called NPM. (The abbreviation NPM
originally stood for “not Principia Mathematica,” but we will not dwell on this.) A system at minimum requires
a supply of depictive glyphs (which are intended to serve as canonical sketch components for ordinary memories
of mathematical abstractions, cf. section 2.2), rules that govern their use, and tools that make their use in the
real world possible. More concretely, we have:

1. a set of glyphs called the NPM glyphs. (more concretely, a scalable font, the NPM font).
2. the grammatical rules governing the use of glyphs (Briefly, the NPM grammar),
3. the “Principles of Design” of the NPM system. (Guidelines for the ongoing development of NPM.)

4. the correspondence between glyphs and mathematical concepts (the NPM meaning map or interpretation),
and

5. supporting software/technology (see section 4).

1Many such languages (and similar tools) exist, cf. [Mye].



By the Principles of Design we mean to include both the informal or heuristic relationships between mathematical
concepts and visual elements of NPM glyphs, and the underlying motives and principles of visual type theory.
We also include the following basic principles (hereafter: Principles of Design #’s 1, 2, 3, and 4), which lay at
the heart of NPM. They have no relationship with the general notion of visual type theory explained above.

#1. NPM should aspire to be as beautiful as the mathematics it expresses. It should “fit in” with the notation
and methods of ordinary mathematical practice.

#2. NPM should be both printable and hand-writable (with a pen or similar stylus).

#3. NPM should have a many-one meaning map between the logical space and conceptual space of mathematics,
and be as close to a one-to-one map as possible.

#4. NPM should aspire to be universal: to provide one internally consistent set of glyphs for all of mathematics
(or more precisely, all reasonably well-established knowledge in all mathematical areas).

Principle of Design #1 and #2 impact various design decisions in the development of NPM glyphs. Principle
of Design #2 primarily aims, without specifying a reason, to preserve the traditional bond between haptical
experience and mathematical memory. Principle of Design #1, together with the density requirement of visual
type theory (section 2.4), suggests that the design be simple, with a minimum of flourishes. This conclusion
is supported by studies on text adjuncts which find that learning and memory outcomes may decrease due to
interference effects [SB2] and in accordance with a so-called coherence effect or coherence principle [MM, p.
95]. The glyphs should also strive to conform to typographical design standards and principles. For example, it
should aim to “induce a state of energetic repose, which is the ideal condition for reading” [Bri, p. 24].

Principle of Design #3 has two parts. First, it says that there should be no overloading of NPM glyphs. Just
like the syntax of a strictly typed formal computing language, every NPM glyph should have a definite, fixed
meaning, with nothing left to context to interpret. Second, it says that as much as possible, the sketch memory
of a mathematical concept provided by NPM should be like a fingerprint: it should be a unique identifier.
There are many cases in which this specification cannot be fulfilled. Consider notions that exhibit so-called
“cryptomorphism,” or nontrivial equivalences between several different definitions. The concept of a matroid,
the concept of a lattice, or the concept of a topos are just a few examples of cryptomorphic notions. It is
usually sensible to express such cryptomorphism in NPM, rather than choosing one notion and expressing it
visually, ignoring the others. Principle of Design #3 tells us, however, to select one of these glyphs and give
it precedence over the others. Principle of Design #3 provides a counterweight to the common experience of
encountering overloaded notation in mathematics, and disagreement between the notations and terminology
used by different authors. It is notable that without changing a single letter or a single word in the canon of
mathematical terminology and notation, we obtain in this way a tool for disambiguation that is always near
at hand, yet unobtrusive because it is depictive and thus does not share the same cognitive channel as the
descriptive symbolism. We note, echoing section 2.5, that this benefit to the use of NPM can be enjoyed without
explicitly writing or reading NPM glyphs. We also note that, although NPM commits itself to disambiguation
just as formal languages and programming languages do, it does so in response to the needs of a reasoning human
being maintaining a large, abstract, technical language, not those of a mechanical parser.

Principle of Design #4 states that NPM should be developed to serve as a tool on the broadest possible
base, where “base” refers to the potential users of the glyphs and grammar as a cognitive tool—even though, as
stated in the introduction, a major goal and motivation of NPM is to increase understanding and lower barriers to
entry to mathematics, particularly for those in career paths or life situations which do not permit them to pursue
focused, rigorous mathematical studies. Although this may seem like a point of ambition for the NPM project,
in the author’s view a mathematician would in fact consider it to be the only path forward, given the deep,
inescapable connections between mathematical knowledge in different fields. Any attempt to draw a boundary
around the parts of mathematics NPM does and does not attempt to assimilate into its linguistic pattern would
inevitably be disrupted, due to the natural course that mathematics itself tends to run.

Before taking steps to finalize a mathematical visual type theory, it must be checked whether such a con-
struction could really exist. In particular, it must be determined if it can in fact be universally applicable across
all (or at least, some significant majority) of mathematical specializations. Due to the minute, technical details
involved, this task cannot be considered completed until a real mathematical visual type theory has been found
meeting the specifications to an extent that convincingly indicates that the project can be continued all the
way to completion. Until then, it is still not determined whether a visual type theory could exist which holds,



in one grammar and one glyph set, all the concepts of mathematics at once, or whether any attempt to create
such a system would inevitably burst at the seams, overwhelmed by unexpected, accidental conflicts between
patterns inspired by different background knowledge areas. An extensive effort to find an answer to this question
has recently been concluded, and it has been confirmed that a visual type theory, conforming to all the above-
named specifications, is indeed theoretically possible. (However, difficult challenges of a mathematical nature
still remain, as will be discussed further in section 4.) We now describe this system in outline.

3.2 Grammar

NPM (viewed as a language) has a large vocabulary of glyphs, but a simple grammar. NPM glyphs are primarily
used as identifiers and as modifiers on function and relation symbols. They may appear under arrows, under
relations, or standing alone. These are the only prescribed uses of NPM glyphs, though they may also theoretically
appear anywhere else they are determined to be useful.

The decoration of mathematical calculations with NPM glyphs performs several functions. It distinguishes
calculations in one setting from calculations in a different setting, when the two are formally similar. It also
allows users to assemble objects and notions into coherent conceptual wholes, or in other words, to build new
abstractions out of preexisting abstractions in a convenient and regular way. Often, these new wholes take the
form of categories, or sometimes (depending on the setting) 2-categories (more rarely, even higher categories can
appear). It is convenient to express such categories using NPM for several reasons. Such categories are abundant
throughout mathematics and can be difficult to manage due to their number. In a given mathematical special-
ization it is not uncommon for many dozens of categories to arise, even considering only the basic prerequisite
knowledge. Categories are also particularly susceptible to the property of having a complicated definition in
spite of playing a very basic role in some derived setting or field of investigation. NPM assists in managing such
levels of suppressed complexity, creating room to focus on the most relevant details in a given setting. NPM is
good at encapsulating complexities, allowing them to be stored neatly, extracted when needed, and stored again
when the need is met. Glyphs may be combined in natural ways, providing “ramps” leading from basic ideas
to more complex concepts. An NPM expression of a subtle and complex mathematical notion can be a helpful
guidepost, and a landmark in the memory of the user that can easily be recalled later, even sometimes used (to
one’s delight) to reconstruct a forgotten definition. It can also be helpful in drawing attention to relationships
between concepts. This is particularly helpful when (for whatever reason) terminology and notation cannot
perform the same role, as is sometimes the case. Nonetheless, as the reader can imagine, NPM does not do
everything well. Statements which are “decorated” with NPM glyphs can become heavy, and this can become
counterproductive and wasteful. This phenomenon reinforces the principle (section 2.5) that NPM might remain
in its role as a visual type theory as opposed to being viewed as an extension of mathematical formalism. In this
role its explicit appearance in mathematical calculations and statements would, a priori, be optional and left to
the user’s discretion.

3.3 Glyphs

Finally, we address the question of the appearance and design of the glyphs themselves. Although glyphs
of NPM bears some resemblance to other sign systems—most notably perhaps, Chinese Han characters and
chemical nomenclature—they rely for much of their power on a tool called absence loading, which we now define,
and which is not a part of the prior knowledge of either of these sign systems.

The space in which a glyph is written or imprinted is called the body, or bounding box. Absence loading is
the association of a spatial region in the bounding box (a region anywhere in the bounding box that may have
any size or shape) to a logical constraint ®. Once this region is assigned, information concerning ® may then
be associated, via convention, to hand-drawn or printed lines which are placed in that region. In particular,
an empty or vacant region (i.e., the absence of any line or mark of any kind) indicates that either nothing is
assumed about ®, nothing is known about ®, or that information about the status of ® is not relevant to the
context where the glyph is drawn or printed. (It is left to context to determine which of these cases applies.)

Here is an example. Consider two sets A and B (in some fixed universe U). We can construct a simple glyph
using absence loading that would tell us whether something, say x, is in the set A, and whether it is in the set
B. Suppose that we take the symbol ~ as a guide for the eye, and “load” or “charge” the two regions below



the horizontal line ~ with information about membership in A and B, respectively:

D region 1: x € A
1 2 region 2: x € B

Now let us assume that a dot in the loaded regions shall denote: positive, certain membership in A, and positive,
certain membership in B, respectively. Then we can see that our entire language consists of the symbols |
denoting the general universe of sets and elements U, * , denoting the set of elements of A, ~ * , denoting
the set of elements of B, and * * , denoting the set of elements in both A and B. If we close off the grammar
and glyph system here, we can see that we have the power to denote only the sets A, B, and AN B, along with
the universe U. However, we can fill the loaded regions with any symbol we wish. Next, suppose we place, say,
an open circle o in the regions to denote positive, certain non-membership in A and B, respectively. Then we
generate the usual four disjoint classes: B— A, A— B, ANB and U — A — B via the symbols ©° * , *° , **
and . Notice the additional flexibility: we can, using the same symbol system, leave the region assigned to A
or B absent, leaving us with a smaller set of symbols germane to that setting, for example, ~ , * , °  can
serve in any setting in which we are not interested in B, only in the set A. Hence if we were in a setting in which
we wish to ignore some information, we could continue use the glyphs we have defined rather than switching to
another set of glyphs. This is achieved by making use of natural visual processing mechanisms: upon exposure
to visual information, relative locations in memory are maintained, but visual information considered irrelevant
is filtered out in favor of visual information that is the focus of attention. For this reason, the notation is
interpreted as a depictive representation, not descriptive one. Certainly, in this notation the amount of depictive
power obtained is rather slight, but it’s not so bad for a line, two dots, and two circles. What we really mean by
this, of course, is that the notation has the property of density that was defined in section 2.4. This density is
more noticable if one compares an absence loading notation to other depictive representations of the situation.
Consider the most common depictive representation, a Venn diagram:

o o

While we will not draw them, the Venn diagram above suggests other possible “visual” notations for the two sets
and their subsets. Note that while it is also possible to extend such a Venn-diagram-inspired notation to denote
three sets, already in the case of four sets, Venn notation is stretched to its breaking point and has practical
value only in exceptional cases where some of the intersections are empty. This is not so for the notation using
absence loading: given three sets A, B, C, we extend the line to produce an immediately evident extension of the
sign system:

e O o

Given more sets Aq,..., A7, we can continue further: * °**°°* _etc. This, for example, would generate a
language of 37 or 2187 unique? glyphs, or something close to the number of Chinese Han characters in frequent use
[L]. This extension of the notation naturally suggests itself because the use of spatial regions of the bounding box
naturally induces visual patterns. The corresponding descriptive representation (using formal logical symbols)
can easily be derived from the depictive representation, and vice versa. Although this set of examples has little
practical value, absence loading can provide a potentially useful notation alternative to descriptive notation
in any setting in which frequently recurring conditions ®, W, etc. arise in highly variable combinations. Such
settings are found in many technical and scientific knowledge areas.

Now we come to apply absence loading to the generation of mathematical glyphs, and the design choices
specifically made in the development of NPM. For the typeset glyphs we use in this article we employ a design
based on scripts of several natural languages.®> We begin with the glyph for a set. If pressed, we will say this is

2Unique up to equivalence defined by the Gestalt laws.
3Elements of the design were influenced by, e.g., the Hiragana syllabary and Sanscrit alphabet, Arabic and Khmer scripts, and
Chinese Han characters.
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Figure 1: Absence-loaded regions of the Hausdorff space radical.

the set concept determined formally by the Zermelo-Frankel axioms, including the axiom of choice:

+J

We observe a vertical center line, to serve as a visual anchor, partially enclosed by a pair of dots (represented as
they might be drawn using a brush). We can now begin developing the glyph as structural features are added
to a set. This will give rise to the first of the two major families of glyphs, the structure glyphs. Following
terminology for Chinese and Japanese, we call the most basic glyphs radicals, and thus we say that the set glyph
is one of the basic radicals of the NPM system. From the set glyph immediately follow two of the most important
radicals, that of groups and semigroups (left), and that of categories (right).

BN T

On the left is the NPM glyph of the category concept, and on the right is the glyph of the mathematical group
concept. The depictive elements in these glyphs are briefly the following: a group is a set with a little bit of
extra structure added (a binary operation satisfying various properties). This additional structure is represented
by extending the dots of the set glyph to the ascending diagonal lines of the group glyph. Thus, via absence
loading, when we write the glyph of a set, or invoke it, we simultaneously invoke all groups. (In other words, it
is unspoken whether or not the sets we invoke are in fact groups.) On the other hand, the relationship between
the category radical and the set radical is slightly irregular: a set is what is known as a zero category: in the
language of category theory, this is a set of objects with no morphisms between them. There is an ascending
sequence of O-categories, 1-categories (which are the usual categories), 2-categories, 3-categories, etc. Since this
sequence and the “higher category theory” it leads to is foundational to many areas of mathematics, we build
into NPM the relationship between sets and categories. In other words, NPM views a set as a zero category—as
well as a structure with a coherent definition and theoretical area of study of its own.
These characters can now be recombined to give the character for a groupoid, a category in which all morphisms

are invertible:

N/

K

Coincidentally, this character is reminiscent of the Han character for water, K. Guided by the Han character,
we make the strokes slightly asymmetric, for this increases its aesthetic appeal and evokes the experience of
writing the glyph by hand. There are numerous variants of these basic glyphs that will not be discussed in this
overview.

Now we come to the second major family: the topological glyphs, which differ from the structure glyphs
semantically, grammatically, as well as typographically. The topological family has two radicals instead of one,



the Kolmogorov space radical (left) and the Hausdorff space radical (right):

l I¢

The treatment of the Hausdorff glyph as a radical reflects the importance of Hausdorff spaces, particularly in
analytic areas of study (for example, harmonic analysis) where a topological space is needed that can support a
notion of measure (in the sense of Lebesgue theory). Kolmogorov spaces, on the other hand, are often studied
very differently. For example, they frequently arise in situations in which the so-called specialization ordering is
an important part of the structure (the specialization ordering is trivial in the case of a Hausdorff space). These
differences are reflected directly (depictively) in the associated NPM glyphs, in the sense that the Hausdorff
property is not added to the Kolmogorov space radical, even though a priori this is how one might have expected
to proceed.

For the sake of brevity, we will not develop the topological radical’s many variants here. Figure 1 indicates
absence-loaded regions of the radical, along with the class of properties reflected (or “loaded” or “held”) in
each region. Note that positions are disjoint and reflect design choices regarding proximity to the center of the
glyph. In particular, compactness is placed directly in the center of the glyph: this reflects the general fact that
compactness across virtually all of mathematics is among the most important and most impactful properties of
a topological space. We note, in passing, that the glyph of a compact Hausdorff space is denoted in NPM by

I

Here the intuition of compactness is represented depictively by a closed circle. It may also be noteworthy
that the algebraic structure region’s location is deliberately chosen to allow maximum flexibility concerning size
adjustment (or “expansion” of a region), as a great deal of the variation in topological spaces arising in practice
is due to variations in algebraic structure.

We will now give a demonstration of how NPM grammar patterns can be combined to create complex glyphs
out of simple ones. For this we will study the development of structures arising in analysis. Let us go back to

the group glyph
\J/

We can add the assumption that it is abelian by transforming the enclosing strokes into a cross:

.:l_.

This depictively evokes the symbol of addition, the Greek cross used by Widman (in 1489) and Descartes [Caj].
Next we can transform to a vector space by assuming the action of a field:

._J.J

Now we begin to see that, in but a single glance, we can perceive via NPM the close relationship between many
diverse structures, each with a distinct theory and semantic space of their own: vectors spaces, groups, sets, and
categories.* Now we combine the topological and structure glyphs to generate the notion of a topological vector

space:
)| @

4The concept of a module (in the mathematical sense) is also very closely related to the rest of these concepts, and is therefore
represented in NPM by an evocatively similar glyph:

The line depicting the scalar action of a ring or algebra is not so far extended (ascends not as far as the cap height).




When such structures are studied, several properties come to the fore, generating a family of glyphs that in NPM

" e G,

The additional strokes in the glyphs reflect structural and topological properties: completeness, the presence of
an inner product structure, the presence of a norm structure, and several properties related to the presence of an
involution [Dix]. These glyphs (at left, at center, at right) depict structures that are known in analysis as Banach
spaces, Hilbert spaces, and C*-algebras, respectively, each of which is the basis of a substantial mathematical
theory.

Next, we illustrate how NPM provides representations that can concisely express otherwise obscure relation-
ships between mathematical concepts. For this example, we return to the category radical,

/J\

and we develop it to the notion of a topos, whose glyph is

v

[-’<‘_;
N

¥

There is more to tell, however, in unpacking this glyph. The terminology “topos” is in fact used to denote
two mathematical concepts, the first known as elementary topos and the chronologically earlier concept of
Grothendieck topos. The Grothendieck topos can be defined as an elementary topos that is cocomplete and has a
small generating set. However, this definition does not reflect the (so to speak) “correct” intuition in all situations
where the notion of a Grothendieck topos is used. Therefore the position of NPM is that a Grothendieck topos
is denoted using a glyph based on a different radical than that of the elementary topos:

|

This glyph, which irregularly displays the category glyph in the geometric region (see Figure 1), evokes the
Kolmogorov space radical above—in other words, it evokes a spatial object, not a structural one. This reflects
the language of generalized spaces developed in the original work by Grothendieck and his school [SGA4], based
on geometric morphisms. The fact that the two approaches to topos theory in fact converge on the same notion
and a common underlying theory was the product of years of development by mathematicians; for better or for
worse, NPM can capture the entire thrilling story, more or less, simply by invoking their names.

For the last demonstration, we show how NPM may be used to express logical relations between structures,
and in particular its grammatical role with respect to morphisms. We choose a relation in order theory, known

which is abbreviated,® for convenience, to

5This abbreviation is a regular, recurring NPM pattern. The vertical line which is suppressed is called the limit file, and is
decorated with absence-loaded regions for expressing the limit properties of a category. Thus a category glyph with limit file

extended is written /]\, and extra strokes are added which, in the case above, for example, reflect the fact that the structure is
assumed to be cartesian closed and to have all finite limits. This creates a depictive relationship between this and the order glyph

: (see Table 1) that once again reflects underlying mathematical structure. Cf., for example,

@

which is the Heyting algebra glyph.



as Priestley duality:

E é

Here, a glyph set above an arrow denotes the objects of a category whose morphisms are described using the
glyph centered below the arrow, and the symbol == denotes a duality (i.e., an equivalence between one and
the opposite of the other category). Within order theory there are at least two important cases of this duality:

Birkhoff duality
7& Z

> o =

e
ﬁ{

Notice that the NPM representations suggest, via highly automated cognitive processing mechanisms, that there
are many relationships and patterns to be recognized between the three formulas. The task of bringing to the
fore the same parallels in the structure of these statements cannot be as easily achieved via descriptive methods.®
Variations of this broad duality relationship, which is a form of spectral duality, can be found not only in order
theory, but in many other mathematical disciplines as well. NPM captures each one of these and often succeeds
in capturing something of the metaphorical relationship between these different dualities in an evocative and
information dense, calligraphic, yet useful form.
Finally, the entire collection of NPM radicals is presented in Table 1.

and Stone duality

4 Conclusion and Outlook

The problem of developing an implementation of a visual type theory for mathematics such as NPM demands
ventures in both the sciences and the arts, across the boundaries between mathematics, computer science, and
graphic design, and poses many challenges. For its grounding as a tool for cognition, it appeals to fields such
as educational and cognitive psychology for a model on which to base its mechanical function, and for empirical
results that may clarify its role. The empirical results reviewed in section 2.1 are encouraging in this respect,
but as these studies arise from experiments involving text adjuncts like (among others) graphs, charts, and
representational images, we could regard this evidence as not directly hitting the bull’s eye. For instance,
the evidence on transformational and decorational text adjuncts in [LAC, DSL] suggests that an information
dense, grammatically regular, depictive device like a visual type theory may in some settings boost learning
and memory performance. However, absence loading (section 3.3), construed as a memnonic device and tool
for schema-construction (cf. sections 2.5, 3.1, where it was noted that a visual type theory could be used as a
public or as a private language for this purpose), still has not itself been scientifically tested or evaluated. It is

6We cannot fully explain the glyphs appearing in the dualities here; however, Yﬂ‘ is the glyph of finiteness (the three strokes of the

|
glyph correspond to ascending and descending chain condition, and cochain-finiteness, respectively), and ( denotes distributivity.
The rest can be inferred from formal statements.
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Table 1: NPM: The Basic Radicals, July 2016.

also unclear how the prior knowledge demanded for the use of a visual type theory would affect its performance
as a memnonic and organizing tool in practice. However, the author would regard it as too much to argue that
the existing evidence falls off the target altogether, and would suggest that results so far are promising from the
point of view of visual type theory, and that further research is warranted.

As regards potential NPM enthusiasts who are mathematically trained, there appears to be, fortunately, only
two major axes along which NPM must be brought to smoother interoperability if NPM is to become usable: TeX
platforms, since TeX is the near-universal language of mathematical and technical writing, and the space within
and around the large family of proof assistants currently available (Coq, Agda, Isabelle, CompCert, Lean, and
others), perhaps via adaptation of existing middleware such as the Proof General [Asp]. A first-generation NPM
system could provide such inter-operability, however minimal. The creation and maintenance of a full library of
NPM glyphs even on this minimal basis would require not only facility in typographical design, but also broad
knowledge of mathematics, in order to maximize the quality and realism of the language. The author’s hope is
that the project is continued without losing the sense of purpose it has carried since its earliest beginnings: for
the NPM developer, the task faced is not only to be of service to its users, but also to be a participant in the
relationship, as old as civilization itself, between people and mathematics.

A working NPM platform would involve a usable glyph set easily numbering in the tens of millions. If
such a platform is one day available, the problem of how to improve user interface can then be approached in



conformity with a plan for growth. This suggests connections to the fields of mathematical user interface design
and human-computer interaction, as well as programming language theory, which supplies an understanding of
the anatomy and life cycles of formal languages existing in diverse and rapidly changing environments. Further
study in these areas can perhaps provide models and guidelines which can be adapted to the visual type theory
paradigm. All research related to NPM’s development would also have to follow developments in a number of
areas including proof assistants and proof engineering, mathematical typesetting, mathematical software, and
mathematical knowledge management.
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