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Abstract. In theory, the logic of decision rules should be atomic. In practice, 

this is not always possible; initially simple logic statements tend to be 

overloaded with additional conditions restricting the scope of such rules.  By 

doing so, the original logic soon becomes encumbered with contextual 

knowledge.  Contextual knowledge is re-usable on its own and could be 

modeled separately from the logic of a rule without losing the intended 

functionality.  We model constraints to explicitly define the context where 

knowledge of decision rules is actionable. We borrowed concepts from 

Semantic Web, Complex Adaptive Systems, and Contextual Reasoning. The 

proposed approach provides the means for identifying and modeling contextual 

knowledge in a simple, sound manner. The methodology presented herein 

facilitates rule authoring, fosters consistency in rules implementation and 

maintenance; facilitates developing authoritative knowledge repositories to 

promote quality, safety and efficacy of healthcare; and paves the road for future 

work in knowledge discovery. 

1   Introduction 

One well established best practice for designing rules for decision support systems 

(DSS) is that “decision rules should be atomic” [1].  Although in theory this is widely 

agreed upon, in practice this is not always possible. What normally starts as a simple 

logic statement in the antecedent of a decision rule can develop into what looks as a 

procedural piece of code when additional conditions are added to the logic in order to 

restrict the overall rule to a specific context. These additional constraints may very 

well contain relevant information and are perfectly valid, yet from a knowledge 

representation perspective, they could be considered contextual knowledge that could 

be removed from the logic of the rule. For example, a clinical decision support rule 

that alerts for an abnormal laboratory test result should specify the laboratory test 

result in question, a comparison operator and a threshold value. However, the logic of 

such rule also tends to include conditions for age and gender, among other patient 

characteristics. This results in having a single rule with a long conditional expression, 

or multiple variations for the same rule to account for different age groups and 



genders. This approach creates rules that are less re-usable, with large numbers of pre-

coordinated conditions that are difficult to maintain.  

Consistent with previous work reported in [2], we believe that decision rules could 

be modeled as adaptive agents capable of exhibiting specific behavior in response to 

their environment [3]. This approach allows us to identify and separate contextual 

knowledge from clinical knowledge and still preserve the intended functionality of 

decision rules. Furthermore, by clearly separating context from the logic of the rule, 

we not only facilitate rule implementation and maintenance, but also potentially 

promote knowledge discovery. The proposed approach to modeling contextual 

knowledge for decision rules is based on Ontologies, with some basic concepts 

borrowed from Complex Adaptive Systems and Contextual Reasoning. The work 

reported herein is part of ongoing efforts to further an authoritative knowledge 

repository to promote quality, safety and efficacy of healthcare.  

1.1   Ontologies 

Ontologies are a conceptualized and agreed upon collection of entities, relations and 

instances in a domain of interest where all elements in the ontology are 

unambiguously described by means of a declarative language and a shared vocabulary 

[4].  From a modeling perspective, Ontologies are of particular interest for this 

project as they align with ongoing efforts for extraction, modeling and curation of 

expert knowledge currently embedded in a variety of systems across Partners 

Healthcare [5-10]. A large amount of this expert knowledge is in the form of decision 

rules, and collecting this knowledge from within a variety of disparate systems into a 

single platform optimized for curation is a crucial strategic initiative at Partners [9].  

1.2   Complex Adaptive Systems 

Holland describes complex adaptive systems (cas) as a large number of simple agents, 

each exhibiting their own behavior in response to external stimuli. There are seven 

basics (four properties and three mechanisms) central to all cas [3]. Our previous 

work incorporated the four basics (aggregation, tagging, building blocks, and internal 

models) that we believed best contributed to modeling rule interactions 1. From those 

four basics, we further explore two mechanisms: a) Tagging mechanism facilitates the 

formation of aggregates and delimitation of boundaries, the latter being a key feature 

for describing behavior within a context.  b) Building Blocks mechanism allows 

reusability and building complex things from repetitions and combinations of simple 

ones. Our modeling efforts align with both mechanisms in that by tagging a decision 

rule we successfully remove contextual information from the antecedent of the rule, 

and explicitly set the boundaries of the environment where such a rule applies.  As a 

result, simplifying the logic of the rule makes it more atomic and reusable. 



1.3   Contextual Reasoning 

Reasoning about context mainly arises from the problem of locality, namely, 

knowledge that only applies in a restricted world [11]. Such a restricted application 

might be represented by a set of values that explicitly delimits the boundaries of a 

world where knowledge is valid. For example, the statement “It’s raining” is true only 

in the context of a given location and time.  This is the contextual information we 

need to explicitly define a more concise representation of the world. There is no need 

to define all possible aspects of the world that may determine a particular context, 

only those that are relevant to a given circumstance. Using the above example, we do 

not need to state whether we are wearing a raincoat or not, or the color of the raincoat 

for that matter, unless, for some reason such information is relevant. As a result, a 

partial representation – that only includes location and time – suffices for the 

purposes of setting a context that allows us to determine the validity of the statement 

“It’s raining.” 

For our modeling purposes we aim at characterizing such a world by borrowing 

concepts from knowledge representation and reasoning for Ontologies and Semantic 

Web technologies [12-15]. We specifically base our approach on the metaphor of 

context as a box [16][17]. This metaphor defines contextual metadata in terms of 

three basic elements: a set of parameters Pi and a value Vi for each parameter Pi; a 

collection of expressions representing the domain at hand; and three abstract forms of 

reasoning: expand/contract, push/pop, and shifting, each corresponding to an 

operation on one of the basic elements of the representation, i.e. parameter, value and 

expression. Each parameter is seen as a dimension of a box (context), which in 

combination with a value indicate the position of the specific context within a (multi) 

dimensional space. Hence delimiting what is “inside and outside the box.” The 

remaining of this section describes in more detail these contextual reasoning 

operations. 

Expand/Contract operations are based on the intuition that an explicit 

representation associated with a given context only contains a partial subset of facts – 

information inside the box. As a result, such subset could be expanded as more 

pertinent information is available, or contracted if information no longer relevant is 

removed.  

Push/Pop. Push operation removes information from inside the box and adds it as a 

parameter value outside the box; conversely, pop removes a parameter value and adds 

it as information inside the box. For example, if our original statement about the 

weather were “It’s raining in Boston” then we would only have time as a context 

parameter (the location information is inside the box). However, we may choose to 

remove “Boston” (where we are located) from our statement and push it outside the 

box as location information. These operations have a direct effect on both the number 

of parameters and their values, while delimiting the box and the information inside it.  

Shifting operator allows us to move from one representation to another by 

changing the value of one or more contextual parameters, as long as the relationship 

between the parameter’s values and the statements inside the box is known. A simple 

example would be to state “Today is raining” in the context where the date/time 

parameter is set to today’s date, and then having the statement “Yesterday it was 



raining” and shifting the value of the date/time parameter to tomorrow’s date. We can 

see that both statements refer to the same fact, though the context was shifted.  

These operations provide the mechanisms for handling the fundamental aspects of 

the proposed contextual representation: a) partiality, namely the portion of the world 

being represented; b) approximation or level of detail by which the portion of the 

world is being depicted and; c) the point of view or perspective from which the world 

is being observed.  Authors in [16][17] showed that “at a suitable level of 

abstraction, a logic of contextual reasoning is precisely a logic of the relationships 

between partial, approximate and perspectival theories of the world.”  

We believe that the context as a box metaphor is consistent with the Tagging 

mechanism for cas in that both approaches specify a context and delimit the scope of 

decision rules. Our only departure from the context as a box metaphor is that we do 

not allow any overlapping boxes; all boxes (contexts) must be mutually exclusive, 

since any overlap may lead to ambiguity, and its inherent difficulties (e.g. limitations 

of existing rule engines to deal with ambiguity). In the following sections we will 

further expand on this notion of decision rules as “agents interacting inside a box.” 

Furthermore, by applying these concepts to if...then decision rules we are able to 

explicitly circumscribe the context where actions specified in the consequent of a rule 

are executed when the conditions in the antecedent are satisfied. 

2   Modeling Contextual Knowledge as Constraints 

Capturing context is critical for understanding and handling knowledge. This is 

particularly true in a clinical setting where knowledge embedded in decision rules 

often times is tailored to specific scenarios. However, it is also most desirable to 

preserve the generality of rules, ensuring a high degree of reusability and 

maintainability.  

 

Fig. 1. Simplified Schema for Decision Rules. 

The schema for decision rules in [2] consists of a) Generic Properties: Provenance 

[18], and Constraints for the rule; and b) Type Specific Properties, which model the 

rule expression (described elsewhere 1) and represent the rule itself and its behavior. 

We currently focus on the type-specific property hasConstraint, and we will further 

describe it in the following section.  



2.1   Type Specific Property “hasConstraint” 

Rule execution can be constrained to narrower scopes by restricting it to more specific 

contexts. As long as we keep this in mind, we can define as many “sub contexts” as 

needed for a single rule. For example, an alert for an abnormal laboratory test result 

may be relevant to all patients regardless of gender and age, and so the constraints in 

the generic properties of the rule should be set to Gender=“ANY”, 

AgeGroup=“ANY”. The “ANY” value means that such dimension is unrestricted. 

However, threshold value(s) for the rule may depend on the age of the patient. 

Therefore, by specifying such threshold values constrained by age groups in the data 

definition of the rule expression, we can still model an alerting rule as simply as if 

LabResult <operator> threshold then alert; where the values assigned to threshold are 

constrained by the context (AgeGroup) where such values apply. Hence, the logic is 

the same, but the content (operator and threshold values) is defined by the context; in 

other words, the content – what is inside the box - is dependent on the parameters and 

values outside the box.  This is consistent with the context as a box metaphor. Such 

metaphor and the operations presented in a previous section lay the foundation for our 

work and allow us to extend/restrict the scope of such rules.  

2.2   Clinically-Relevant Constraints 

In previous research [19-22] authors identified clinically-relevant constraints that 

should be considered when modeling clinical scenarios. Such constraints are 

represented by three main context dimensions: a) Patient, further subdivided into age, 

gender, clinical condition, clinical protocol/trial, and health insurance plan; b) 

Provider-related including: group, role, and clinical specialty; and c) Care Setting 

consisting of care setting (inpatient/outpatient), geographic region, facility, 

department, unit, unit type, room, and bed [21]. From these dimensions, we defined a 

partial approximation by choosing the following four: Patient gender and age group, 

care setting site, and venue; and abstracted away those dimensions that currently do 

not advance our purposes. However, as our clinical content evolves, we may choose 

to further expand such partial representation and include additional dimensions. We 

modeled the Patient AgeGroup dimension as three subcategories: “Prenatal,” 

“Pediatric,” and “Adult.” Patient Gender as “Male” and “Female.” Care Setting Site 

currently includes a limited number of Partners Healthcare hospitals: “Brigham and 

Women’s Hospital” (BWH), “Massachusetts General Hospital” (MGH) and, 

“Newton-Wellesley Hospital” (NW). Venue includes “Inpatient,” “Outpatient,” 

“Intensive Care Unit” (ICU), and “Emergency Department” (ED). All dimensions 

support a value of “ANY” to denote that a dimension is explicitly included, but it is 

left unrestricted. In other words, the scope of a dimension with a value of “ANY” 

includes all possible values available in such dimension.  For example, an AgeGroup 

dimension with a value of “ANY” would include all three age groups, and be satisfied 

by any of these values.  

These four dimensions define a box into which we place our decision rules. Values 

of “ANY” to specify the scope of a dimension allow us to always include all four 

dimensions, even if not restricted. This has the advantage of providing a fully explicit 



depiction of the dimensions of our box. As shown in Fig. 2a, an unrestricted decision 

rule is placed in a box with all four dimensions set to a value of “ANY”. This means 

that this hypothetical rule inside the box will apply to any patient regardless of age or 

gender, at any site or venue. 

 

Fig. 2. (a) A hypothetical decision rule inside an unrestricted box with dimensions unrestricted 

with an assigned value of ANY. (b) Rule with context-specific threshold value for adult 

inpatient females at BWH. (c) Rule with threshold value for adult inpatient males at BWH. 

However, if we chose to define a specific threshold value, e.g. 40 mg for adult 

inpatient women at the BWH, then instead of adding such constraints to the logic of 

the rule and changing the threshold value to 40 mg, we push the constraint values into 

the parameters (dimensions) outside the box and expand (add) the context-specific 

threshold value inside the box (Fig. 2b). This is equivalent to having both the rule and 

the threshold value dependent on the context. Additional context-dependent threshold 

values may exist for a given rule. This would be equivalent to “stacking” boxes. For 

example, we may define an additional threshold value of 30 mg for adult males for 

the same site and venue for the above rule. We shift the value for the Gender 

dimension and change the threshold value accordingly (Fig. 2c). This will result in 

two boxes for the same rule, each having its own context-delimited threshold. 

 

Fig. 3. Mutually exclusive boxes stacked to delimit multiple scopes of a single decision rule 

with context-specific threshold values. 

For the sake of graphically representing this notion of “stacking boxes”, let us 

momentarily abstract away (remove) the Venue dimension, and draw a 3D 



representation (Fig. 3). These two boxes are stacked side-by-side to cover the Gender 

dimension of the context box. Such (broader) box is divided into two, more 

restrictive, non-overlapping boxes, each box describing a partial representation 

(portion) of the world, with its own threshold value. 

We believe that by having fully circumscribed, mutually exclusive boxes 

representing partial views of the world we can build a robust contextual 

representation (consistent with cas internal models) of clinical decision rules that can 

be aggregated and reasoned upon. Similar to the building blocks mechanism of cas, 

the rationale behind the context as a box approach is to model simple, well-

circumscribed behaviors for rules and, then, aggregate them to model more complex 

behaviors. In the remaining of this paper, we present some exploratory examples and 

discuss findings and limitations.  

3   Results 

We focused our initial analysis on the clinical content of the Results Manager (RM) 

computerized application at Partners Healthcare [23]. RM is an application in the 

outpatient setting consisting of 84 rules that enable clinicians to review, acknowledge, 

and act upon abnormal/critical results of chemistry, hematology, toxicology, 

radiology, and cytology tests in a timely manner.  

The generic representation of RM alerting rules is as follows: If LabResult 

<Operator> <threshold> then Alert; where LabResult is the value of a given 

laboratory test result, e.g. “Potassium” (chemistry), “Acetaminophen” (toxicology), 

“INR” (hematology); Operator is a comparison operator to determine whether the 

laboratory test result is normal/abnormal when compared to a threshold value. 

Threshold value is a reference value for the laboratory test based on values found in 

the population. Original rules were enhanced to include variations on reference 

threshold values based on gender, age, and health status of the patient, resulting in a 

repository of 166 rules. For example, a patient in the ICU or with a chronic condition 

most likely has some abnormal laboratory test results. This is why, besides age and 

gender, venue is important to determine the threshold value of a test.  We propose the 

following approach: starting with the general representation of the rule, with all 

dimensions set to “ANY”, we push the constraint on the venue dimension outside the 

box, and expand (add) the context-specific threshold value inside the box. Therefore, 

in this scenario, the venue would be set to “ICU”, and the threshold value for patients 

in critical condition would be added inside the box, with the desired effect of having a 

decision rule with a threshold value targeted to a specific context, that will only 

trigger an alert under these more delimited circumstances. 

Some chemistry rules may need to be restricted to age ranges within an AgeGroup. 

For example, for patients with some suspected thyroid gland dysfunction, a 

thyrotropin (TSH) chemistry test might be ordered to check the endocrine function of 

the gland. TSH reference values are age-related, with specific reference values for 

Pediatric and Adult populations, with further subgroups in the Pediatric population 

with age ranges of [1 day, 4 days), [4 days, 8days), and [8 days, 18 years).  The 

initial generic representation of this rule is depicted in Fig. 4a. In Fig. 4b we push the 



Adult AgeGroup outside the box and expand the operator and threshold value. In Figs. 

4c-4e, we shift the AgeGroup to Pediatric (PEDI) and include the additional age 

range, and replace (contract and expand) the facts inside the box for threshold and 

operator. 

 

Fig. 4. An example of pushing, expanding and shifting parameters for a single rule in multiple 

contexts. 

4   Discussion 

We have evaluated the feasibility of the modeling strategy proposed above by 

implementing relevant test scenarios through our analysis of the clinical decision rules 

in the aforementioned application.  

We have shown that with a relatively simple approach we can model abstract 

contextual knowledge from a variety of rules while preserving the desired 

functionality. We found that by applying contextual reasoning operators we could 

expand/contract the context where decision rules apply, while keeping the rule 

representation as atomic as possible.  Further, given that both contextual and clinical 

knowledge may lie on the same continuum with no fixed point separating them, 

having the flexibility to vary the degree of approximation of a given representation 

allows us to regulate the interplay between what goes inside (clinical knowledge) and 

outside the box (contextual knowledge). By doing so, decision rules can easily be 

adapted to new contexts, without encumbering the rule logic with extra conditions. 

We believe this approach is consistent with the internal models and building blocks 



concepts of cas, and it will allow us to model more complex behavior for rules while 

preserving a simple and sound representation. Likewise, from an ontology 

perspective, the same mechanisms can be applied to represent both contextual and 

clinical knowledge as “conceptual building blocks” that can be reason upon while 

preserving the correctness and expressiveness of the underlying ontology [24]. 

5   Conclusions 

Sound and comprehensive approaches are key to accurately modeling knowledge 

content of any type. In the case of clinical decision rules, it is highly desirable to 

capture and model not only knowledge pertaining the logic and actions of such rules, 

but also the context where such knowledge becomes actionable. Currently, contextual 

knowledge is not identified as such at modeling time, and we strongly believe that it 

should be. Such contextual knowledge should be removed from the antecedent of a 

rule, so the logic remains as atomic as possible. The proposed approach provides the 

means for identifying and modeling contextual knowledge in a simple, yet sound 

manner. Furthermore, the methodology presented herein facilitates rule authoring, 

fosters consistency in rule implementation and maintenance; facilitates developing 

authoritative knowledge repositories to promote quality, safety and efficacy of 

healthcare; and paves the road for future work in knowledge discovery. 
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