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Abstract 

The paper proposes a modification of the pyramid method for constructing algorithms for the difference solution of the d'Alembert equation on 

a graphics processor in the event of a shortage of video memory. The authors demonstrate the effectiveness of the method on the practical 

example of dividing the grid area into two sub domains. Acceleration reaches the characteristic for the case of a domain entirely located in the 

video memory. In the article investigated the effectiveness of using the author's approach depending on the height of the pyramid and showed 

the boundaries of applicability of the proposed modification. 
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1. Introduction 

The deep interconnectedness of optics and computing technology is due to their mutual influence in the course of which at the 

turn of the 70-ies and 80-ies of the last century there were two independent branches of science: computer optics associated with 

the development of numerical methods of calculation and simulation of optical devices on a computer and optical engineering, in 

which the optical elements are created computing devices. The growth of the relevance of the mentioned industries due to the 

perfection of the architecture of computers (multithreading, multicore, vectored calculations) and technologies of formation of 

optical elements (transition from micro to nano-size). The first feature allowed us to use the methods of a rigorous diffraction 

theory [1] for calculating the nano-sized elements of optical processors, characterized by high computational complexity. 

Among the numerical methods of the strict theory of diffraction, FDTD [1], deserving high universality (Maxwell's equations 

describe all wave electromagnetic processes) and the simplicity of understanding (based on the replacement of derivatives by 

difference relations) deserved wide popularity. The latter circumstance makes it possible to write the computational procedures 

of the method in a clear form in the popular language of matrix calculations of MATLAB [2] 

Unfortunately, the software implementation of the FDTD method on modern graphics computing devices that provide faster 

CPU computation by an order of magnitude is encountered, when using this language, with high demands on the amount of 

video memory: in the production of calculations, it is necessary to use several times more volume than when Work on the central 

processor. This circumstance is aggravated traditionally by small video memory sizes (up to 2GB in modern budget video cards) 

in comparison with operating memory (not less than 4GB, even for office computers). 

The authors of this publication see the application of the pyramid method as an example of the organization of calculations 

using the difference scheme Yee [1] on the GPU using CUDA C [3]. 

2. Difference solution of the d'Alembert equation (one-dimensional case) on a graphics processor  

Traditionally, the FDTD method is understood to mean exclusively the difference solution of Maxwell's equations, which is 

not entirely correct. In the early 80's of the last century [1], the difference solution of the d'Alembert equation was also applied to 

it, which is still being done [1, 4]. We note that when solving the wave equation the problem of video memory shortage is more 

acute than for Maxwell's equations because of the necessity of finite-difference approximation of second, not first-order 

derivatives. However, the decision of the wave equation on the GPU seems more promising due to the high efficiency of 

vectorization of computational procedures [5]. 

Outlining the concept of the work, the authors decided to dwell on the one-dimensional equation of d'Alembert, seeking to 

demonstrate the possibilities of the pyramid method on a simple example. 

So known [1] the difference scheme for this equation 
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, where E the value of the electric field 

strength is, c  is the speed of light in free space, T  and zL  are size of the region in time and space. 
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Below is a fragment of the computational procedure for solving (1) in MATLAB, where
2 2 2

1 t zc c h h , 5 2 tc c h  . 
% Placement of grid functions on two time layers in video memory 

E1=zeros(1,Nz,'gpuArray'); E2=zeros(1,Nz,'gpuArray');  

for k=1:2:Nt % Passage through time layers of the grid area through one  

E1(2:Nz-1)=2*E2(2:Nz-1)-E1(2:Nz-1)+c1*diff(E2,2); % Calculations on the layer k  

E1(2)=sin(c5*k);       % Hard radiation condition on the layer к 

E2(2:Nz-1)=2*E1(2:Nz-1)-E2(2:Nz-1)+c1*diff(E1,2); % Calculations on the layer k+1 

E2(2)=sin(c5*(k+1));  % Hard radiation condition on the layer k+1 

End  

E=gather(E2); % Transfer of results to RAM 

For 
75 10zN    and 100tN  the duration of calculations on the Intel Core i7 CPU was 57.08 s., On the GeForce GTX 

TITAN X GPU - 5.55 s. (acceleration of 10.29 times) using MATLAB 2015b and the operating system CentOS 7.2. Both used 

arrays occupied 762 MB in memory, however, during the computations on the CPU, the memory requirements increased by one 

and a half time, on the GPU the memory requirements increased threefold. Apparently, with the implementation of calculations 

for the design E1(2:Nz-1)=2*E2(2:Nz-1)-E1(2:Nz-1)+c1*diff(E2,2) on the CPU, the execution of the operation of numerical 

differentiation diff(E2,2) resulted in allocating additional memory for two copies of the array E2, and the execution on the GPU 

of the design as a completely required separate area of memory for all the arrays involved and for double copying E2. MATLAB 

takes about 0.4 gigabytes in RAM, but does not use video memory for its placement. Thus, the execution of the whole algorithm 

on the CPU was accompanying by the extraction of 1.52 GB. In addition, the execution of the whole algorithm on the GPU was 

accompanying by the extraction of 2.24 GB. Moreover, if the researcher has a video card with 2 GB of memory (like most 

popular video processors now) then the organization of calculations on the GPU becomes impossible. In his previous publication 

[7], using the difference scheme for the Maxwell equations, the CUDA C software tool the authors proposed to solve this 

problem using the method of pyramids.  

3. The pyramid method application 

Will this be possible in this case, given that MATLAB is not specialized for working with graphics processors and its tools 

in this area are very meager? 

The essence of the mentioned method in the author's modification consists in splitting the grid domain into overlapping sub 

regions that fit in the video memory completely, with the subsequent organization of communications in the production of 

vector computations in each sub region separately. In this case, transfers from RAM to video and vice versa are performed not 

on each time layer, but through a certain number of them h  (the height of the pyramid). This, on the one hand, leads to a 

reduction in h the number of communications. On the other hand, to the duplication of arithmetic operations in overlapping 

fragments of grid subdomains (the form of pyramids is available in the two-dimensional case). 

A fragment of the computational procedure implementing this strategy in the case under consideration is presented below, 

where
2

z
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Fig. 1. The scheme of the algorithm of the pyramids to work with the first domain; (1) there is a message to GPU, (2) there is a calculate to GPU, . (1) there is a 

message to CPU. 

% creating temporary layers on CPU and GPU  

E1=zeros(1,Nz); E2=zeros(1,Nz); E1m=zeros(1,h); E2m=zeros(1,h); 

E1g=zeros(1,N+h,'gpuArray'); E2=zeros(1,N+h,'gpuArray'); 

for t=1:h:Nt % Passage through the pyramids 

 % work with the left subdomain  

E1g=gpuArray(E1(1:N+h)); E2g=gpuArray(E2(1:N+h)); % Forwarding CPU ==> GPU    

for k=1:2:h    % Calculations inside the first pyramids  

E1g(2:N+h-k)=2*E2g(2:N+h-k)-E1g(2:N+h-k)+c1*diff(E2g(1:N+h-k+1),2);  

E1g(2)=sin(c5*(t+k-1)); 
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E2g(2:N+h-k-1)=2*E1g(2:N+h-k-1)-E2g(2:N+h-k-1)+c1*diff(E1g(1:N+h-k),2);  

E2g(2)=sin(c5*(t+k)); 

end 

E1(2:N-h)=gather(E1g(2:N-h)); E2(2:N-h)=gather(E2g(2:N-h)); % Forwarding GPU ==> CPU 

E1m(1:h)=gather(E1g(N-h+1:N)); E2m(1:h)=gather(E2g(N-h+1:N)); 

 % work with the right subdomain 

E1g(1:N+h-1)=gpuArray(E1(N-h+1:Nz)); E2g(1:N+h-1)=gpuArray(E2(N-h+1:Nz));  

for t=1:2:h % Calculation by layers of the pyramid  

E1g(t+1:N+h-2)=2*E2g(t+1:N+h-2)-E1g(t+1:N+h-2)+c1*diff(E2g(t:N+h-1),2);  

E2g(t+2:N+h-2)=2*E1g(t+2:N+h-2)-E2g(t+2:N+h-2)+c1*diff(E1g(t+1:N+h-1),2);  

end 

E1(N+1:Nz-1)=gather(E1g(h+1:N+h-2)); % Forwarding GPU ==> CPU 

E2(N+1:Nz-1)=gather(E2g(h+1:N+h-2)); 

E1(N-h+1:N)=E1m(1:h); E2(N-h+1:N)=E2m(1:h); % Replenishment of the result 

end  

In the course of experiments with the new algorithm, the dependence of the calculation time on the height of the pyramid. 

The Table 1 contains the results. 

Table 1. The dependence of the calculation duration of the calculation of the height of the pyramid. 

Height of the pyramid, h  Computation time (s) Acceleration 

2 53.02 1.08 

4 29.58 1.93 

10 15.49 3.7 

20 10.75 5.31 

50 7.9 7.23 

4. Conclusion 

Thus, the method of pyramids can be effectively using in arranging calculations for solving difference equations with the help 

of MATLAB on graphic processors in the case when arrays storing values of grid functions do not fit into video memory as a 

whole. The development of the proposed algorithm for cases of large dimensions will be the next stage of the authors' research in 

this direction. 
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