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Abstract

In  applying  machine  learning  to  malware
identification,  different  types  of  features  have
proven to be successful. These features have also
been tested with different kinds of classification
methodologies and have had varying degrees of
success.  Every  time  a  new  machine  learning
methodology  is  introduced  for  classifying
malware, there is the potential for increasing the
overall  quality  of  malware  classification  in  the
field.  Even  new   classifiers  with  the  same
accuracy  as  those  used  previously  can  be
combined using one of a few different ensemble
techniques sharpen the classification and raise the
accuracy to new heights.

For  our  purposes,  we have  attempted  to
create  a  coalition  of  classifiers  which  each  use
different  features. These classifiers when trained,
provide multiple angles to the same problem and
can  be  used  to  test  ensemble  techniques.
Eventually,  such  an  ensemble  of  individual
malware classifiers could create a highly precise
means  of  picking  out  malware  from  other
software. 

Specifically,  we  have  created  a  convol-
utional neural network which processes byte data
as  an  image,  and  a  deep  feed  forward  neural
network which utilizes opcode N-gram features.
Both  of  these  classifiers,  while  not  perfect,
provide a significant level of classification. They
achieve  this  independently  of  one  another,  and
when combined, they each contribute enough to
improve the final accuracy.

The majority of the effort in this research
was placed on gathering the N-gram features, a
time  and  resource  intensive  process.  Tinkering
with  the  parameters  or  structure  of  classifiers

could  provide  further  improvements  to  the
system.

Introduction

The increased  use  of  technology by citizens  in
recent decades has made society dependent on it.
Technology is not going away anytime soon, and
since software has become so entangled in daily
life (e.g. monetary transactions, social media, and
storage of personal  information),  it  has  become
an  increasingly  prevalent  target  for  malicious
individuals. With highly motivated and intelligent
attackers  creating malware,  many of  the simple
defenses currently in place are now insufficient to
protect  against  them.  The  common  anti-virus
softwares  are  unable  to  guarantee  protection
against  new malware,  even if  that  malware has
only  been  slightly  modified  from  one  that  is
similar.

With this in mind research has turned to
machine  learning  techniques  as  a  possible
solution.  Anti-virus  softwares  rely  on  specific
malware  signatures  (longer  byte  sequences  that
are only found in a particular malware executable
or highly similar  executables).  These signatures
are  a  sure  sign  that  a  file  is  a  malware.
Unfortunately,  the trade off  of  such high confi-
dence  is  a  failure  to  generalize  well  to  new or
unseen malware. Minor changes to a malware can
disrupt  the  signature  and  allow  it  to  slip  past
detection.  Another  method used in  current  anti-
virus software is a collection of heuristics created
by  experts.  These  painstakingly  created  rules
attempt  to  capture  the  essence  of  a  type  of
malware. They can do better at generalizing, but
the effort needed to keep an anti-virus software
up-to-date with new rules for each new type of
malware  is  unsustainable.  Machine  learning
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attempts to identify particular indicative features
of a malware that can be generalized across all
malicious software of its kind.

Previous machine learning attempts have
used shorter byte or assembly opcode sequences
as a feature. These sequences, called n-grams, are
representative of specific actions taken within the
execution  of  a  malware.  The  same  actions  are
replicated  in  all  malware  that  are  in  the  same
family.

For the sake of identifying malware, it is
helpful to organize them by family. Each family
of  malware  has  a  similar  course  of  action  or
purpose. For example, a Keylogger is a type of
malware that records all of the text typed into a
keyboard, reporting this information back to the
attacker  who can extract  usernames,  passwords,
and other  important  data from it.  Although two
Keyloggers may accomplish their tasks in unique
ways  from  one  another,  they  both  rely  on  the
same  essential   components  to  do  their  work.
Therefore, identifying malware by family allows
for  a  system to find multiple  types  of  malware
without  treating  them  all  as  one  identical
classification. Furthermore, if a particular family
of malware can be accurately classified, then the
features used to classify it are clear indicators of
that specific malware family. Some digging may
then  uncover  how that  feature  correlates  to  the
malware  family  in  question,  providing  more
insight into how attackers are doing their work.

Related Work

In  recent  years,  the  topography  of  malware
research has been churning.  Due to a recent surge
of success, as well as the nature of the problem,
machine  learning  techniques  have  served  as  a
backbone  for  a  significant  portion  of  this
research. The quantity of effort put forth recently
has  stemmed from the  multiple  large  scale  and
damaging malware attacks. Under the public eye,
funding  and  attention  have  turned  to  a  more
innovative  solution  to  the  persistent  problem.
These  recent  years  have  brought  about  many
fruitful developments, and have allowed for the

production of better protection against malware to
be available to businesses and tech-owners.

Schultz, Eskin, Zadok, and Stolfo [1] were
the  first  to  publish  a  work  attempting  to  apply
machine  learning  to  malware.  They  looked  at
executable files and found features  for classifi-
cation within. Their system used a Naïve Bayes
classifier. By training on general indicators from
the executable file, they ended up with a system
that was significantly more accurate than an anti-
virus, although it had potential to falsely identify
benign software as malicious.

As with many developments  in  machine
learning,  a  lot  of  effort  initially  was  spent  on
feature  discovery.  Many  components  of  the
executable file were tested as features, including
gathering n-grams  from the bytes. N-grams were
first used in text classification, but Abou-Assaleh,
Cercone,  Keˇselj,  and  Sweidan  [2]  applied  this
technique  for  malware  classification.  They
extracted these specific sequences of bytes from
the  executable  files  and  used  their  frequency
within the file as a feature. The combined power
of  these  n-gram  features  served  as  a  good
classification method for malware.

In more recent years, with a successful set
of  features  for  classifying,  research  has  been
directed  toward  different  classifier  alternatives.
This set of possible classifiers including support
vector machines, k-nearest neighbor, and artificial
neural  networks  have  performed  at  varying
degrees, but many have formed a  high accuracy
classification system. In the pursuit  of the most
accurate  classifier  possible,  new  research  has
offered  up  an  ensemble  classifier  [3,  4].  An
ensemble  classifier  is  a  classification  system
which utilizes  multiple  classifiers  to  come to  a
final class decision. The benefit of using multiple
classifiers is that where one classifier fails, others
may succeed, further cutting down error rates. 

Preprocessing

For this research we used a dataset made
available  by  Microsoft  through  the  machine
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learning website Kaggle. It includes nine different
malware  families  and  over  10,000  malwares.
Based off  of  this  dataset,  we chose  to  create  a
classifier  to  distinguish  between  the  different
malware  families.  The  winner  of  the  Kaggle
competition provided a paper with the techniques
that  they  used  [5].  This  served  as  a  launching
point  for  our  research.  From  it,  we  settled  on
using a convolutional neural network to treat byte
data as an input image, and opcode n-grams for
use in a more standard neural network.

Each  of  the  10,000  malwares  provided,
had both a byte file and an assembly file, which
has  been  disassembled  from the  byte  file.  The
byte file was used to create the byte “images” in
the following manner.  Each byte was converted
into  a  pixel  value  to  be  used  in  the  black  and
white image. Since each line of the byte file is
sixteen bytes long, the image created represents
this same shape: sixteen pixel wide and sixty-four
pixels tall. 

Figure 1. Example Byte image as input to Convolutional

Neural Network

Figure one shows how a byte image is used as an
input  to  the  convolutional  neural  network.  The
network  performs  convolutions  on  the  pixels
creating  a  matrix  of  smaller  convolved images.
As it passes through each layer of the network,
the information from the image is condensed and
routed into a final output layer, giving a value to
each possible class node. The class node with the
maximum value is  the projected class given by
the network.  Our network had nine class nodes
corresponding  with  the  nine  possible  malware
families.

For the second classifier in our coalition,
the features were opcode n-grams. One possible

n-gram may have been: “mov eax, [ebp+arg_0]”.
This is a 3-gram, a sequence of three consecutive
data  points  in  the  assembly  code.  For  each
malware,  the  number  of  times  that  this  3-gram
occurred in its assembly would be an input to the
classifier. Due to results from  Abou-Assaleh, T.,
N. Cercone, V. Keselj, and R. Sweidan [2] as well
as findings from Xiaozhou Wang, Jiwei Liu, and
Xueer Chen [5],  we settled on n-grams ranging
from two to four data points.

The  feature  gathering  for  this  classifier
was more complicated than for the convolutional
neural network. A method was needed to identify
certain n-grams as possible features and then to
decide  which  of  those  chosen  n-grams  would
provide the most classification power. There were
four stages to this process.

     1. 1-gram Selection
     2. 1-gram Paring
     3. n-gram Selection
     4. n-gram Paring

1. 1-gram Selection

Unless intending to evaluate every possible two
to four-gram of operations in an assembly file (a
number  easily  in  the  billions)  we  needed  a
criterion to select particular n-grams. One way of
doing  this  is  to  build  larger  n-grams  off  of
particular  1-grams.  Based  off  of  the  work  by
Xiaozhou Wang, Jiwei Liu, and Xueer Chen [5],
we  mimicked  the  execution  of  the  assembly,
following every unconditional jump and counting
the  frequency  of  each  1-gram.  If  it  occured  at
least two hundred times in a file it was considered
a valid 1-gram.

2. 1-gram Paring

Even after using a specific criterion to limit the
number of 1-grams selected, there were too many
to build n-grams off of.  We used a few further
criteria to further pare down the list of 1-grams.
First,  we removed  1-grams  with  only  one
character.  We then removed 1-grams that started
with a register. While  we could assume that the
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malware would be manipulating the registers, we
intuited that  having  the  registers  themselves  be
the start of an n-gram would be unhelpful since it
gives  no  vision  into  how  they  are  being
manipulated.  Further  paring  involved  removing
items that began with “loc_” or  “sub_” as they
are  somewhat  file  specific,  relying  on  file
locations, and are, therefore, not merely specific
to a type of malware.

These heuristic decisions were made due
to the limitations of my system being unable to
handle  the  enormous  number  of  n-grams  that
would be generated from a larger set of 1-grams.
It is possible that the 1-grams that were removed
could  have  produced  potent  n-grams  for
classification,  but  based  on  our reasoning,  they
were  less  likely  to.  After  all  of  paring  was
complete  we  were left  with  855  different  1-
grams.

3. n-gram Selection

With the 1-grams selected, we ran through all of
the files a second time, grabbing every possible 2
through 4-gram that began with a 1-gram in the
list.  Upon completion there were 14,566,780 n-
grams.  Each  with  a  particular  frequency  per
malware file. 

4. n-gram Paring

The most important step to generating an accurate
classifier  is  to  select  the  n-grams  from the  14
million that will actually aid in separating some
families of malware from others. The best way to
evaluate the benefit of an individual feature as an
element  of  a  classifier  is  to  test  its  ability  to
classify on its own. If a simple classifier trained
on the individual  feature is  able  to  classify  the
malwares in a way that exceeds randomness then
that feature would be helpful to include in a larger
classifier. 

Information  gain  is  an  algorithm  that
encapsulates  this  idea.  First,  it  calculates  the
entropy in a dataset. Then, it classifies that dataset
based  on  some  feature.   For  each  class,  the
algorithm  calculates  the  entropy  of  the  items
within.  Subtracting  the  average  entropy  of  the

each designated  class  from the  original  entropy
gives the information gain, or the improvement in
classification ability based off of that feature. 

In  figure  two it  is  clear  that  the  feature
helps to distinguish between the two classes, and
the entropy in each new class evidences that. By
examining the change in entropy, the helpfulness
of a feature is revealed. Unfortunately, to train a
classifier  on  14  million  possible  features  is  a
lengthy process. In order to compensate for this I
took two different measures.

Figure 2. Change in entropy by classifying on a

single feature

First, rather than running the information
gain on each individual feature, we split the list of
features into batches of five.  Training the mini-
classifier on five features instead of one allowed
for a quick check to see if any of the five features
were helpful. Even with four unhelpful features,
we assumed  that  after  training,  the  one  helpful
feature  would  still  significantly  effect  class-
ification, leading to a noticeable information gain.

Second,  we  distributed  the  work  across
several different machines in Taylor University’s
Computer Science Department. By re-purposing a
bit  of  code  written  for  distributing  graphics
rendering tasks, we were able to create a task list
of  n-grams  to  run  through  the  algorithm  and
return the result to a central server. Even with up
to  sixty-two  machines  churning  through  the
features,  it  took three full  days to complete the
information gain on the 14 million n-grams. 

We iterated through the information gain
values for each set of five features, finding each
set with a value above zero. There were approx-
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imately  72,000  sets  of  five  which  provided  a
positive information gain. We split these sets of
five  into  individual  tasks  and  re-ran  the  infor-
mation gain test. We were left with 10,985 indi-
vidual n-grams, to use as features.

 Testing

In order to test the the n-gram features, we used a
deep feed-forward neural network. This network
took 10,985 inputs, one for each n-gram. It had
two hidden layers,  each  with  7,300 nodes.  The
output  had  nine  nodes,  one  for  each  family  of
malware. The structure of the network was based
off of a tutorial by Nathan Lintz [6], and was built
using the TensorFlow library. 

The  convolutional  neural  network  was
also  built  in  the  TensorFlow  library,  taking  an
input  of  a  16x64  pixel  image.  It  held  four
convolutional  layers  and  finished  with  nine
output  nodes.  In  order  to  prevent  over-fitting,
both networks employed dropout at every layer.
Dropout  ignores  a percentage of  the weights  in
the neural network during training. This prevents
the network from hyper fitting to the training data
and, therefore, failing on the testing data.

The testing methodology that was used for
both  of  these  networks  was  10-fold  cross
validation. The entire set of 10,000 malwares was
shuffled and split into ten separate sets with 90%
of  files  used  for  training  and  10% for  testing.
Each iteration  of  cross  validation  took place  in
the following manner:

First,  both  networks  were  trained  to
completion on the training set. Next, the networks
attempted  to  classify  the  test  sets.  The features
(byte image or n-gram frequency) were used as
inputs to the classifier and the output was a set of
float values assigned to the nine class nodes. The
node  with  the  highest  value  was  the  network’s
classification. Finally, we utilized the output float
values from each classifier to create an ensemble
classifier.  To  get  a  final  classification  from the
ensemble classifier we multiplied the accuracy of
each classifier on the test set by its output values
for each malware. We summed these class values
for  each  classifier.  This  gave  a  weighted  cons-
ensus between the two classifiers.

The feed-forward neural  network trained
on the  malware  n-grams twenty  times,  and  the
convolutional  neural  network  trained  on  the
16x64  pixel  images  fifty  times.  We  chose  the

Figure 3. Testing framework for individual and ensemble classifiers
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number  of  iterations  after  overseeing  training.
Each network took approximately that number of
iterations to settle.

Results

After running the cross validations on both of the
networks,  we  were  left  with  a  final  average
accuracy for each. The deep feed-forward neural
network  using  n-gram  features  trained  to  be
96.7%  accurate.  The  convolutional  neural
network,  on  the  other  hand,  trained  to  88.5%
accuracy  on  the  test  data.  By  multiplying  the
nodes by these accuracies, we created weighted
nodes.  Combining  these  nodes  as  an  ensemble
classifier returned an accuracy of  97.7%.

The  training  time  for  the  feed-forward
neural network was much longer than the training
for  the  convolutional  neural  network.  This  was
expected  since the  feed-forward neural  network
was training weights for every input node rather
than the training the smaller convolutions. 

Conclusion

The  final  outcome  of  my  research  was  an
ensemble classifier  with 97.7% accuracy on the
10,000  malwares.  This  value  is  one  percent
higher  than  the  best  individual  classifier  in  the
coalition  (96.7% percent  from the  feed-forward
neural network).  Yi-Bin, Shu-Chang Din, Chao-
Fu  Zheng,  and  Bai-Jian  Gao  [3]  showed  that
simpler  classifiers  such  as  support  vector
machines  and  decision  trees  could  be  used  as
components  to  build  an  improved  ensemble
classifier.  Our work shows that neural networks
can  be  used  as  constituents  to  an  ensemble
classifier  and  still  create  an  improved  class-
ification. 

While  limited in our time to tinker  with
the networks and improve their performance, the
principle  that  ensembles  improve  the  overall
classification  will  most  likely  still  hold  as  the
individual  classifiers  become  more  accurate.
Furthermore,  adding  more  classifiers  to  the
ensemble  should  add  to  the  accuracy  of  the
system as a whole.

Future Work

Ultimately,  the  use  of  ensembles  of  complex
classifiers has barely scratched the surface of 
what  is  possible.  Feature  gathering  took  up  a
large portion of research time, and there is plenty
more to be done on the classifiers. Manipulating
the  structure  and  number  of  layers  in  both  the
convolutional  neural  network  and  feed-forward
neural  network  could  drastically  effect  the
performance  of  the  classifiers.  Adding  new
classifiers also has the potential to  add signifi-
cant improvements to the malware classification.
Now  that  using  an  ensemble  method  has  been
applied  to  neural  networks  with  success,  it  is
worth investing more time to perfect this method
and  compare  it  to  ensembles  which  depend  on
simpler classifiers.
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