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1 The P-type Model

The p-type data model was conceived in the early

eighties as an answer to database needs
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. It was

expressed within the Algebraic Data Types (ADT)

paradigm
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and its main concern was the shar-

ing of objects by several kinds of users seeing them

through one or several views. A p-type is orga-

nized in a hierarchy of classes, where classes model

database views. An object belongs to one and only

one p-type, and to several views. Multiple special-

isation is not necessary to express that an object

belongs to several subclasses (views of a p-type). It

is used only to specify a subset of the views intersec-

tion.

To specify a p-type one �rst gives its minimal view

then its other views by simple or multiple strict spe-

cialisation, adding attributes and/or assertions. The

root of the hierarchy of views is called the minimal

view in that all the objects of the p-type must satisfy

its properties. The ADT of a p-type is derived from

its views declaration. This type contains all the at-

tributes and methods which appear in the views of

the p-type, including the minimal view. An object

belongs to a view i� it satis�es its assertions. Ob-

jects which are instances of a p-type may belong to

several views, among which only the minimal view

is mandatory.

A p-type is de�ned as an algebraic data type

< S;F;E > where S is a set of sorts fs
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. One sort,

T , called the set of interest of the type, is central,

in that the aim of the type de�nition is to establish

the elements of the type and de�ne their behaviour.

In general, the type is given the name of its set of

interest : T . Among all possible functions, we call

attributes those of the form T ! s; s 2 S. Other

functions are called methods.

The algebraic type of the p-type is derived from

the views declarations (including the minimal view).

The type PERSON contains all the attributes and

methods which appear in its views. The domain of

an attribute in type PERSON is the union of its

domains in the views where it is declared.

Let t
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: < S;Fmin;Emin >,
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views of a p-type T . T is de�ned as < S;F;E >

where S is the support set of T , F =

S

i

F

i

and

E = E

min

.

As a simple example, consider a p-type PERSON

whose minimal view has the attributes Name, Age,

and Sex, and its di�erent views are ADULT : PER-

SON (Age� 18), SENIOR : PERSON (Age>65),

and STUDENT, characterized by speci�c attributes.

In the graph presented in �gure 1, a student aged

between 18 and 65 belongs to the views PERSON

(the minimal view is mandatory), STUDENT, and

ADULT, provided it satis�es the properties of these

views.

STUDENT

PERSON

ADULT SENIOR

Figure 1: Graph of p-type PERSON

The set of interest (domain) of the minimal view

person is identical to that of the p-type PERSON.

The domain of another view is a subset of the do-

main of the view it specializes, or of the intersection

of the domains of the views it specializes in case of

multiple specialization.

PERSON

STUDENT

ADULT

SENIOR

o

Figure 2: Inclusion set of p-type PERSON

In the general case, any view may be a strict spe-

cialisation of one or more views, and have its own

attributes and/or assertions. Assertions are Horn

clauses with literals of the form 8x Attribute(x) in

Domain, called Domain predicate. An example of

such an assertion is Age(x)>18! MilitaryService(x)

in fdone, deferred, exemptg. Assertions reduced to

a single Domain predicate, such as Age(x) in [18,

65] may stand for an attribute domain de�nition in

a view.



Unlike most OODBMS such as the O2 proposal
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, attributes whose values are calculated by a

method (or a procedure) are true attributes, and

therefore are not themselves considered as methods.

Any attribute may be stored or not, and may be cal-

culated or not. A calc-stored attribute is calculated

from the values of other attributes (e.g., Age from

BirthDate and CurrentDate) and automatically up-

dated whenever necessary.

2 An Example

A base schema is made up of several p-type de�ni-

tions. In general, these p-types are not independent.

In OSIRIS the interrelationships between di�erent

p-types of a schema are expressed by attribute de�-

nitions and by Inter-Object Dependencies (IODs).

We present the main features of the p-type de-

scription language and of the Inter-Object Depen-

dencies through a very simple OSIRIS example. The

universe modelled is that of persons and vehicles.

Persons may be and/or students, teachers, trainee-

teachers, professors, sportsmen. They are also ei-

ther adults or minors according to their age. A

given person is a model of the minimal view and

may belong to none, any or several other views.

The view TRAINEE, which inherits STUDENT and

TEACHER, is not necessary to express that a per-

son can be a student and a teacher at the same time.

It has been created to designate a subset of their

intersection, characterized by some more assertions,

which restrict its domain.

class PERSON { Minimal view of p-type PERSON

attr

Name : P NAME; { P NAME is declared elsewhere

Children : setof PERSON;

Sex : CHAR;

Age : INT;

MilitaryService : STRING;

IncomeTax : REAL calc; { procedural attachment

CarsOwned : setof CAR;

{ CAR is a view of a p-type VEHICLE

key Name { External key

methods { other functions speci�cation

assertions

{ Domain Assertions

Sex in f \f", \m" g;

0 �Age � 120

MilitaryService in

f \yes", \no", \deferred", \exempt" g;

{ Inter-Attribute Dependencies

Age < 18)MilitaryService = \no";

Age � 18) MilitaryService in

f \yes", \deferred", \exempt" g;

Sex = `f' ) MilitaryService = \no";

end;

The minimal view automatically contains a private

attribute OID : t

oid

.

view STUDENT : PERSON : : :

view TEACHER : PERSON : : :

view PROFESSOR : TEACHER : : :

view TRAINEE : STUDENT , TEACHER

{ specializes STUDENT and TEACHER

assertions

Status = \trainee";

Studies = \graduate";

Diplomas contain \degree";

end;

.

.

.

view ADULT : PERSON

assertions

Age � 18;

end;

view SENIOR : ADULT

assertions

Age > 65;

end;

implementation PERSON

{ stored attributes

{ body of methods

end;

The attributes of the type PERSON are those

of the minimal view, PERSON, plus those de�ned

in other views : Studies, Year, Status, Diplomas.

Within a given view, the user may only access the

attributes inherited from its super-views and the at-

tributes proper to the view, if any.

Objects which are instances of the p-type PER-

SON may satisfy one or several views, among which

only the minimal view is mandatory.

A part of the description of the p-type VEHICLE

migh be :

class VEHICLE

attr

Type : STRING;

Year : DATE;

: : :

assertions

Type in f \car", \truck", \bus", \tractor"g;

end;

view CAR : VEHICLE

attr

Owner : PERSON;

: : :

assertions

Type = \car";

end;

Within the scope of the de�nition of p-type PER-

SON and view CAR of p-type VEHICLE, the inter-

relationships between cars and persons are expressed

through the attributes CarOwner and Owner of the

p-types PERSON and VEHICLE respectively. To

express that these two attributes are reciprocal, one

writes an Inter Object Dependency :

PERSON.CarsOwned reverse CAR.Owner

CarsOwned in p-type PERSON being declared as

the reverse function of Owner in p-type VEHICLE,

the OSIRIS system ensures integrity maintenance.

In particular, every car whose owner is a person X

must belong to the set of cars of X. For example,



suppressing a car Y with owner X implies that Y no

longer belongs to the set of cars owned by X. Sim-

ilarly, adding a car Y with Owner X would trigger

the checking that Y belongs to the set of cars owned

by X, and adding it if necessary. Thus referential

integrity is checked and automatically maintained.

This deductive aspect (deducing a new CarsOwned

value from the insertion of a new car) is also present

in Inter Attribute Dependencies (e.g. value \no"

for MilitaryService can be deduced from an Age less

than 18).

When modelling the universe of persons, i.e., char-

acterizing its subclasses, the modeller has to make

choices. For example, the SENIOR view can be de-

�ned as an ADULT whose Age is > 65, or as a PER-

SON with the same constraint on the age. Both

views would be considered equivalent by the Osiris

system. However, di�erent consequences might re-

sult from either choice. If the view ADULT is modi-

�ed, e.g., enriched with some new property, the view

SENIOR will inherit this property only if it has been

explicitly de�ned from the view ADULT or any sub-

view of it.

3 The Classi�cation Space

The key to implementation is de�nition of the par-

titioning of the object space based on the Domain

Predicates of the p-type. Each Domain Predicate

de�nes a partitioning of the attribute it covers. The

product of partition of an attribute by all the predi-

cates of the p-type

[

13

] [

14

]

, determines a partition-

ing of the domain of that attribute into Stable-Sub-

Domains (SSD). An instance whose attribute values

change within the same SSD satis�es the same Do-

main Predicates, hence the same assertions. This

is the stability property on which the whole system

relies.

In the example given above, the partitioning of

the attribute domains is :

Domain (Age) = d

11

S

d

12

S

d

13

Domain (MilitaryService) = d

21

S

d

22

Domain (Sex) = d

31

S

d

32

where

d

11

= [0, 18[, d

12

= [18, 65], d

13

= ]65, 120]

d

21

= f\no"g,

d

22

= f\yes", \deferred", \exempt"g

d

31

= f\m" g, d

32

= f\f"g

By de�nition, each subdomain d

ij

has the follow-

ing property : when the value of attribute Attr

i

changes within the subdomain d

ij

, all domain pred-

icates maintain their truth value and consequently

the assertions do likewise. Divisions d

ij

are therefore

stability zones for the assertions, hence their name :

Stable Subdomains (SSDs). Domain Predicates are

transformed into elementary predicates of the form

Attr

i

2 d

ij

, where the d

ij

are the SSDs of Attr

i

. In-

troducing a new assertion with predicate Age > 40

would cause the splitting of d

12

into [18, 40] and ]40,

65], and the corresponding internal rewriting of the

concerned assertions.

The partitioning of each attribute domain is ex-

tended to the object space. This partitioning, whose

elements are named Eq-classes, is called the Classi-

�cation Space. It is the quotient space of the object

space with respect to the equivalence relation 'satisfy

the same subset of Domain Predicates'. The classi-

�cation space of a p-type is the cartesian product

of the sets of Stable Subdomains of its classifying

attributes. Elements of the classi�cation space are

called Eq-classes. For a p-type with n classifying at-

tributes

1

, Eq-classes are n-tuples (d

1i

; d

2j

; : : : d

nl

).

The classi�cation space can be illustrated in a 3-

dimensional space by the �gure shown �gure 3, ob-

tained by considering only attributes Age, Military-

Service and Sex, and the domain constraints above,

leading to a partitioning into 3x2x2 = 12 Eq-classes.

d11          d12         d13

d31

d32

d22
(d12,d22,d32)

Eq-class

Sex

Age

Military-
Service

d21

Figure 3: Space partitioning

It is possible to determine at compile time the set

of views to which each Eq-class belongs. Classify-

ing an instance, i.e., determining the set of views to

which it belongs, is no longer performed by following

the hierarchy of views. Classi�cation is performed

by a boolean (propositional) solver, based on the

structure of the Classi�cation Space, in time linear

to the number of views and of SSD, and polynomial

to the number of attributes and p-type assertions

[

2

]

. When the object is not completely known, its

known attribute values determine several Eq-classes

instead of a single one. These Eq-classes determine

which views are valid, invalid, or potential, i.e., views

whose validity still depends on missing attribute val-

ues.

Eq-classes are never represented explicitly in their

totality. They up hold and direct the compilation

process, and at execution time, they index the actual

objects of the database. Ther number of actual Eq-

classes is therefore limited by the objects which are

really entered in the base
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.

Primary indexing through Eq-classes also enables

semantic query optimization. The query (PERSON

j Age < 30) would automatically select individuals

from Eq-classes having SSD d

11

as a component, and

reject those corresponding to d

13

. Only the elements

of those indexed by d

12

( 18�Age�65) have to be

checked for the condition Age < 30.

1

Classifying attributes are attributes whose domain is

partitioned in at least two SSDs.



4 Databases vs Knowledge Bases

Besides security and the ability to e�ciently man-

age large quantities of data, concurrency and data

sharing are important features of databases. In typ-

ical database applications, an object is assigned one

class and the database has to deal with further evo-

lution of its attribute values. In a knowledge base,

objects are often not completely known, and object

evolution mainly consists in the determination of un-

known attribute values, but rarely in value changes.

The objective is to obtain the most re�ned informa-

tion about the object, including its valid and poten-

tial classes, deduced attribute values or value ranges,

and explanations about all inferred information.

Another important feature of p-types is that an

object can belong to several views and change views

(not its p-type) in its lifetime, whereas is OODBMS

instanciation is made in one class and is �nal, as

in programming languages. Belonging to a view is

a property which is de�ned as satisfying the asser-

tions of the view, i.e., both its proper and inherited

assertions. A mandatory assignation to a view, as

is usually the case in a database situation (create p

as V) will cause the assertions of V to be veri�ed,

considering them as integrity constraints. The way

view determination has been designed of p-types
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consists in determining all the valid views of a given

object, extending this determination to that of those

possible when the object is not completely known.

This process is the very process of instance classi�-

cation in knowledge bases.

Dealing with incomplete information is an impor-

tant aspect of knowledge bases. In Osiris, it may

happen that incomplete information leads to an ab-

solutely certain conclusion, without having to make

hypotheses about unknown values of attributes. In

some way, all possible hypotheses have been \com-

piled" through the Eq-classes. When probabilistic

information is available about the distribution of the

values of the attributes in its SSDs, the classifying

process is able to evaluate the probability assigned

to each view when some attributes have unknown

values
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. Classifying a completely known instance

is then a particular case of the probabilistic classi-

�cation : the SSD of a known attribute value has

a probability value 1 and the others 0. As a re-

sult of classi�cation, views known to be certain have

a probability 1, and those impossible a probabil-

ity 0. When the actual probability of SSDs is not

known, assigning to them an arbitrary probability

value (e.g., equi-probability), will lead to 0, 1, and

non-zero-one values, still characterizing impossible,

certain, and potential views. However, in this case,

the probability value is not signi�cant and only indi-

cates that the view is potential (i.e., neither certain

nor impossible).

The consistency of the base is ensured by the in-

tegrity constraints expressed by the assertions. In-

tegrity constraints veri�cation is a by-product of the

classi�cation process. In e�ect, classifying an object

in a given view means that the object is a valid in-

terpretation of its assertions. When the user assigns

an object to a given view, which is the usual situa-

tion in databases, checking the integrity constraints

of that view is performed by checking that this view

belongs to the objects views.

Other consistency aspects may be considered in a

knowledge base context : class validity and assertion

contradiction. We also de�ne Domain-inconsistency

which is weaker than logical inconsistency and in-

dicates a probable distortion between several asser-

tions (possibly written by several users).

Within a p-type a view may be de�ned with asser-

tions which make it inconsistent, i.e. no object in-

stance of the p-type can be a model of its assertions

(inherited and proper assertions). This is detected

by an empty set of valid Eq-classes for the view.

Assertions can be checked for logical inconsistency,

which is possible in spite of their �rst order general

form, because the static process enables their trans-

formation into an equivalent set of propositional for-

mulas. Assertions :

a1: Age< 18) MilitaryService = \no"

a2: Age � 18) MilitaryService 2

f\yes", \deferred", \exempt"g

a3: Sex = \f" ) MilitaryService = \no"

may be transformed into a propositional system

where attributes are implicitly universally quanti-

�ed, and where p

ij

is the proposition expressing that

attribute Attr

i

is in SSD d

ij

:

a1': p

11

) p

21

a2': p

12

W

p

13

) p

22

a3': p

32

) p

21

along with propositions of the form

p

ij

) not p

ik

for all k 6= j

expressing the mutual exclusion of stable subdo-

mains for the same attribute :

(8i)d

ij

T

d

ik

= ; for all k 6= j.

Domain inconsistency is weaker than logical in-

consistency. An assertion is said to be domain-

inconsistent when its antecedent is always invali-

dated by other assertions of the type. In the context

of the above example, the assertion 'Sex = \f" and

Age > 30) some conclusion' is always valid, what-

ever its conclusion, because its antecedent is always

false, being contradictory to assertions a1-a3, which

impose that there cannot be any female aged over 18

in the base

2

. Assertion a2 should have been writ-

ten : Age � 18 and Sex = `m

0

)

MilitaryService 2 f\yes"; \deferred"; \exempt"g.

One can assume that such Domain-inconsistent as-

sertions are not written deliberately and their de-

tection is essential to the designer. Once they have

been detected, it is up to the user to decide whether

to maintain them or not. Domain-inconsistencies

may be intended by the programmer; they may be

harmless, but they may have unwanted hidden con-

sequences, hence the interest of their detection.

P-types were designed in a database perspec-

tive and the Osiris implementation ful�lls the usual

database requirements. Persistency, transactions,

concurrency, etc., are provided through the use of

a set of persistent C++ classes (called the Osiris

2

This is due to assertion a2: Age � 18 )

MilitaryService 2 f\yes"; \deferred"; \exempt"g



kernel) which will be implemented in two ways :

by an object manager
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and a relational database
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. The relational version of the kernel will

implement data sharing

3

and a nested transaction

mechanism similar to that described in

[
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. The

main objective for a relational implementation was

to inherit the qualities of the second generation rela-

tional DBMS. Among these, e�cient storage of large

data volumes, concurrency control, and con�dential-

ity management.

5 Conclusion

To conclude, we add that the p-type data model

resembles more nearly Terminological Logics which

can classify an instance into several concepts, than

the data model of most OODBMS in which an in-

stance must be created in exactly one class and can-

not change its class in its lifetime
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. Work remains

to extend OSIRIS to view subsumption, which may

be expressed as the inclusion of sets of Eq-classes

in the Classi�cation Space. The complexity of view

subsumption with respect to the class of assertions

taken into account, i.e., Horn clauses with Domain

Predicates as literals, is still to be evaluated.

Although no commercial OODBMS has until now

incorporated a view mechanism, the idea that views

need to be included is becoming widely accepted. In

1992, E. Bertino acknowledged that "several ques-

tions about a suitable view model for OODBMS still

need to be addressed in current research"

[
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]

.

Views are a primary concept in p-types, and are

not superimposed to a given object model. A p-type

is a semantic unit for the grouping of subclasses,

namely views. A real world entity is instanciated

in one and only one p-type, and may belong to sev-

eral views : those of which it satis�es the proper-

ties. Grouping subclasses as views of a p-type is

the corollary of considering the unity of the object,

which is indeed the basis of object modelling. A

person is unique, whether considered as a student,

a sportsman, an adult, etc. In P/FDM, a prolog-

based implementation of a functional data model,

a given object may also be instanciated in several

subclasses, with the same OID

[
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. P. Gray remarks

that this approach is equivalent to views, which we

acknowledge.

We would also like to mention Date's opinion that

"the process of inserting a row can be regarded as

a process of inserting that row into the database

(rather than into some speci�c table)"

[
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. In an

object-oriented perspective, this argues well for au-

tomatic classi�cation of objects in views.
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