
Supporting Autonomy for Information Systems

in a Changing Environment

J. Kusch and G. Saake

Institut f�ur Technische Informationssysteme, Abteilung Datenbanken,

Otto-von-Guericke-Universit�at Magdeburg, D{39106 Magdeburg, Germany,

E-Mail: fkusch|saakeg@iti.cs.uni-magdeburg.de

Abstract

Availability and scalability are important

features of information systems. To gain

this kind of requirements, we propose a

distributed schema catalog in conjunction

with appropriate development phases. The

distributed schema catalog has to sup-

port distribution transparency including

partitioning and replication to be 
exible

for changes within organization structures.

Additionally, phases of autonomy design

have to appoint the adequate usage of dis-

tribution transparency aspects to enable

execution autonomy by a minimum of repli-

cation.

This paper only gives a brief overview con-

cerning the development of distributed in-

formation systems based on object-oriented

structures.

1 Motivation

In the development of information systems, object-

oriented speci�cation (e.g. Troll

[

Jungclaus et al.,

1995

]

) is useful for conceptually modeling of the uni-

verse of discourse. Viewing an information system

as a collection of communicating objects is close to

the intuitive perception of such systems on a con-

ceptual level. A uniform lifecycle model of objects

(or agents) covers the description of structural and

behavioral aspects. Nowadays complex information

systems (e.g. knowledge bases) are an integral part

of organizations

[

Fasnacht, 1993

]

. In order to be

conducive for interconnecting departments, informa-

tion systems have to be 
exible to accommodate for

changes in organization structures. Mandatory fea-

tures are distribution for decentralization support

and scalability for modular system increase

[

Simon,

1995

]

. Furtheron processing in parallel enables an

important speedup

[

Gray, 1995

]

. Thus, the task is to

map the global conceptual model to computational

reality as a distributed infrastructure. However the

advantages of distribution are only usable by an ad-

equate support of software.

Object-oriented speci�cation consists of a global

abstract description as conceptual model without

non-functional requirements (e.g. distribution, per-

sistence, exception handling). A distributed infras-

tructure consists of a set of inter-connected loosely

coupled nodes with own processors and disk-spaces.

On which `level' distribution has to be combined

with the conceptual model? A complex informa-

tion system structure, which is described as concep-

tual entirety, is transparently distributed over sev-

eral nodes. Important is a partial use of the infor-

mation system, although not all nodes are available

or reachable due to a site failure. How to achieve

a maximum of node autonomy for a distributed sys-

tem (C. J. Dates �rst (of 12) rule for distributed

database systems

[

Date, 1990

]

) supported by the dis-

tributed schema catalog?

Developing highly available information systems,

we propose a distributed schema catalog in conjunc-

tion with autonomy design phases :

Distributed schema catalog. In general, dis-

tributed database systems have to deal with a

lot of tradeo�s

[

Rahm, 1994; Bell and Grimson,

1992;

�

Ozsu and Valduriez, 1991

]

, e.g. data repli-

cation versus data transfer, reuse versus auton-

omy, transparency versus e�ciency. Our goals

in gaining distribution for an object-oriented

data model are:

� Distribution transparency : For scalability

support transparency of location and mi-

gration enables objects to be used without

knowledge of their location and movement

of objects within a system without a�ect-

ing the operations

[

Herbert, 1989

]

. In con-

junction with horizontal and vertical class

partitioning, the system could be expanded

in scale without changing the speci�cation

or the references.

� Execution autonomy : For decentralization

support, neither federation does interfere

with local (or subsystem) operations nor

any knowledge of the federation is needed

for performing local (or subsystem) opera-

tions

[

Kalathil and Belford, 1994; Veijalei-

nen and Popescu-Zeletin, 1988

]

.

Existing approaches in the area of database

systems mostly do not pay enough attention

to the opportunities of autonomy and scala-

bility, which are getting increasingly important

by a new generation of parallel hardware clus-

ters

[

Gray, 1995

]

.

Additionally design phases are mandatory to

control the transparency aspects of distribution



with the view to execution autonomy.

Autonomy design phases. Multiple allocation of

data within a distributed environment promises

an increase of performance and availability and

a decrease of communication. Contrary to this

disadvantages are memory consumption and

consistency maintenance in case of a site failure.

Thus we aspire execution autonomy enabled by

a minimum of replication, which has to be guar-

anteed by an extended development process:

� In former development phases autonomy

modules have to be modeled conceptually,

which are based on informal autonomy re-

quirements.

� In later development phases the initial dis-

tribution structure has to be appointed,

which is based on the modeled autonomy

modules. Altogether this e�ects the trans-

parency aspects of distribution, e.g. object

class location and partitioning and object

location and replication.

Evolution requirements of the distribution

structure are mostly not equal to those of the

conceptual model. Thus the additional auton-

omy design phases has to be performed indepen-

dently from the remaining development phases.

To focus our approach within the area of object-

oriented speci�cation and distributed databases, this

work is based on a homogeneous integrated schema

and covers only structural aspects including integrity

constraints.

2 Object-Oriented Structures

Conceptual modeling of information systems re-

quires the description of the application domain, the

so-called universe of discourse, on a high abstrac-

tion level. Looking at an information system and

its environment as a collection of interacting objects

seems to be a very natural way for conceptualizing

information structures and processes. Objects have

a local state, show a speci�c behavior, communicate

with other objects and may be themselves composed

from smaller objects. This observation is con�rmed

by the current success of object-oriented analysis and

design frameworks, e.g.

[

Rumbaugh et al., 1991

]

.

This paper emphasizes only the structural aspects

of the object model as base of data maintenance.

Thus, execution autonomy refers to data model op-

erations, e.g. creation, deletion, migration of ob-

jects and object classes. Behavioral features, e.g.

processes, synchronization and transactions, are not

regarded. Mandatory structural features of object-

oriented database systems and information systems

as pointed out in i.e.

[

Jungclaus et al., 1995; Cattel,

1994; Ahmed et al., 1991; Rumbaugh et al., 1991;

Atkinson et al., 1990

]

are

� class types,

� objects with a global, immutable and system

wide unique object identity,

� object classes,

� specialized classes supporting semantic inheri-

tance

[

Saake, 1993

]

,

� component relations to model complex objects

and

� object preserving views.

These abstractions of the conceptual model are

grouped into an object base. Thus, each object base

contains a set of classes, which consist of a class type

and a set of objects.

With the view to a later implementation, the cho-

sen abstractions gain a \small is beautiful" object

model.

3 Distributed Schema Catalog

Supporting autonomy for information systems in a

changing environment, a schema catalog is intro-

duced which enables distribution transparency, and

in conjunction with internal structures an increase of

availability. To characterize the distributed schema

catalog, the aspects data de�nition interface, data-

logical architecture and meta schema are brie
y rep-

resented.

Data de�nition interface. Trends about infor-

mation systems and knowledge bases point out the

everlasting complexity increase for data process-

ing

[

Hwang and Briggs, 1989

]

. Representing complex

data in an adequate way, a variety of abstractions are

needed. To take some of the load o� the development

phases, the data de�nition language of a distributed

schema catalog has to support the abstractions of

the conceptual model, i.e. object classes, specialized

classes, component relations, and views.

This has an e�ect on the development phases,

which are discussed in section 4 in detail. The

development process gets simpli�ed, since there is

no transformation necessary between the conceptual

model and the phase of implementation. Furtheron

the phase of distribution design is super
uous in

early stages of development. Considering changing

environments, aspects of distribution, i.e. location,

partitioning and replication, are not statically decid-

able in advance. Due to distribution transparency,

the phase of distribution design could be displaced

as a later distribution tuning phase, dependent of the

data access pro�le. This strategy seems to be more

adequate for the design of distributed information

systems.

Data-logical architecture. Base of the dis-

tributed schema catalog is a distributed infrastruc-

ture, consisting of a graph of nodes and inter-node-

connections. Each node contains a set of instance-

bu�ers for persistently maintaining data. The inter-

node-connections are established via broadcast chan-

nels to neglect network partitioning problems.

Due to the increase of hardware performance and

complexity, the schema catalog has to perform the

mapping from the conceptual speci�cation structure

to the distributed infrastructure. To support ex-

ecution autonomy and scalability within a chang-

ing environment, location and partitioning of object

classes and location and replication of objects have

to be archived in an transparent way. Object classes



GCS

RGLS

...

...

1 n

1 m

1 m

LCS LCS

LISLIS

ES ES...Views

Replicated:

Objects

Conceptual

model

Distributed

schema catalog

Object
classes,
specia−
lizations,
component
relations

Name, Id and
horizontal partitioning
information of each
object class,specialized
class and view

Class type of each
local object class,
spezialization and
view (incl.component
relations)

Figure 1: Data-logical Architecture of the Distributed Schema Catalog

should be located to a set of nodes (horizontal par-

titioning). Objects of specialized classes should be

located to a set of instance-bu�ers of di�erent nodes

(vertical partitioning). The consideration of object

encapsulation leads to the fact, that specialization is

the only way of vertically partitioning objects. An

object should be located to several nodes within a

horizontally partitioned object class (replication).

As architecture of the distributed schema catalog

(�gure 1) our approach proposes a replicated global

location schema (RGLS) with distributed local con-

ceptual schemas (LCS's) and appropriate local in-

ternal schemas (LIS's). This depicts a specializa-

tion of the ANSI-4-level-architecture. The RGLS,

which is replicated to each node, contains the name,

identi�cation and horizontal partitioning informa-

tion of each object class. As a virtual global schema,

the RGLS o�ers with respect to autonomy minimal

global knowledge for the access of remote informa-

tion. The LCS's contain class type information of

each object class, which is replicated to those sites,

where parts of their extension are located. Thus,

objects are co-located with their types. At least the

LIS's contain objects, which are maintained via a set

of instance-bu�ers.

Further internal details, which are mandatory for

scalability and execution autonomy are brie
y de-

picted:

� Object identi�ers are built as compound object

identi�er of a class Id and a class internal Id.

Class internal Id's are maintained via areas of

free Id's.

� Relations between and within object classes are

maintained through object identi�er references,

which implicitly contain location information

(via class information).

� Replication of key attributes has to be main-

tained implicitly.

� If a failed node gets online, several complex data

updating operations have to be performed on

the whole object base.

This allows to perform consistency preserving oper-

ations even if nodes in the context of this operations

are o�ine.

Access to object properties is always directed to

the RGLS, which determines a path over a hierarchi-

cal structure of LCS's and LIS's. In conjunction with

compound object identi�ers location transparency is

enabled.

Meta schema. The conceptual model has to be

free of non-functional requirements. For orthog-

onally in
uencing distribution, a meta schema is

introduced, which is modeled as a re
exive sys-

tem

[

Maes, 1988

]

exclusively with the selected ab-

stractions of the object model. To maintain trans-

parency aspects, the meta schema is modeled as a

set of vertically partitioned classes for each node

of the distributed infrastructure, specialized from

a totally horizontally partitioned class with repli-

cated objects. Replicated objects contain repli-

cated schema information of horizontally partitioned

classes, whereas the specialized parts are managing

node related class information (i.e. only local objects

of an object class and related instance-bu�ers). This

meta schema architecture enables a sound mainte-

nance of horizontally partitioned classes and repli-

cated objects. Distributed administration is per-

formed by the events of the meta schema.

4 Autonomy Design

Nowadays information systems are based on dis-

tributed infrastructures to manage the requirements

of the users. To take advantage of a decentraliz-

able platform several existing disadvantages

[

Rahm,

1994; Bell and Grimson, 1992;

�

Ozsu and Valduriez,

1991

]

of distributed database systems have to be re-

garded. Due to the possibility of node failures (e.g.

power failure, hardware- or software failure, instal-

lation or maintenance tasks or user control failure)

autonomy considerations have to be taken into ac-

count. This should save failure costs of the whole

information system.

Developing highly available information systems,

the development process has to be extended. Base of

the development process is the presented distributed



1. Requirements acquisition

3. Conceptual modeling

7. Distribution tuning
(within the autonomy modules)

2. Autonomy requirements acquisition

4. Autonomy modularization

6. Autonomy distribution

5. Implementation (incl.any 
initial distribution structure)

Figure 2: Phases of Autonomy Design

schema catalog which supports location, partition-

ing and replication transparency. Additional design

phases for information systems are mandatory to

control the transparency aspects of distribution, and

thus serve the availability requirements by a mini-

mum of data replication. Results of these additional

design phases are the initial location including parti-

tioning of object classes and the initial location and

replication of objects.

We propose the following phases of design (�g-

ure 2) to develop highly available information sys-

tems:

1. Requirements acquisition: Informal description

of the universe of discourse.

2. Autonomy requirements acquisition (based on

requirements acquisition): Informal description

of availability requirements within the organi-

zation structure.

3. Conceptual modeling (based on requirements

acquisition): Formal speci�cation of a global ob-

ject model.

4. Autonomy modularization (based on autonomy

requirements acquisition and conceptual model-

ing): Formal speci�cation of a set of autonomy

modules which represent autonomously main-

tainable areas of organization structures. Each

autonomy module consists of a set of object

classes, and a set of related nodes, on which

this classes have to be at least located.

5. Implementation (based on conceptual model-

ing): Due to the abstraction level of the data

de�nition interface, the conceptual model could

be directly implemented. The replicated global

location schema (RGLS) of the distributed sche-

ma catalog o�ers a \virtual global schema" to

each node, independently from the initial loca-

tion of the implementation.

6. Autonomy distribution (based on conceptual

modeling and autonomy modularization): Au-

tonomy con
icts arise through autonomy mo-

dule overlapping relations between abstractions

of the object model, i.e. speci�ed by integrity

constraints, component and specialization rela-

tions. Thus, an algorithm, which cannot be pre-

sented here in detail, automatically generates a

set of locations for each object class (as horizon-

tal partitioning), which is the base of manda-

tory object replication. Additionally a set of

birth events for objects classes is generated to

control location and replication of created ob-

jects. Altogether, a distribution structure is

generated, which achieves execution autonomy

by a minimum of object replication.

7. Distribution tuning (based on implementation

and autonomy distribution): Dependent on

later data access, the distribution structure

within the autonomy modules could be opti-

mized.

Phases 1, 3, 5 and 7 (�gure 2) enable an evolutionary

development strategy, likewise the phases 2, 4 and

6. Due to the di�erent evolution requirements of

the conceptual model and the distribution structure,

the phases of autonomy design could be performed

independently.

5 Outlook

The presented speci�cation language independent

work depicts fundamentals for the development of

highly available and scalable information systems.

Object-oriented speci�cation integrates structural

and behavioral aspects of modeling. Thus one im-

portant enhancement of our approach is the consid-

eration of object behavior with the view of autonomy

and parallelism. Here, transactions and commit pro-

tocols within distributed systems have to be taken

into account. To support implicit parallelism, we

propose asynchronous communication with implicit

synchronization. This could be performed by data-


ow driven data evaluation

[

Lee and Hurson, 1994

]

via pipelining.

The disadvantages of optimization within our ap-

proach, which are evoked by transparent distribu-

tion, could be improved by dynamic query optimiza-

tion. Query objects

[

Kusch, 1994; Jungclaus et al.,

1991

]

with internal knowledge of the state of the in-

frastructure are a �rst approach for this problem.

References

[

Ahmed et al., 1991

]

S. Ahmed, A. Wong, D. Sri-

ram, and R. Logcher. A Comparison of Object-

Oriented Database Management Systems for En-

gineering Applications. Technical report, Mas-

sachusets Institute of Technology, Department of

Civil Engineering, 1991.



[

Atkinson et al., 1990

]

M. Atkinson, F. Bancilhon,

D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik.

The Object-Oriented Database System Manifesto.

In W. Kim, J.-M. Nicolas, and S. Nishio, editors,

Deductive and Object-Oriented Databases, pages

223{240. North Holland, 1990.

[

Bell and Grimson, 1992

]

D. Bell and J. Grimson.

Distributed Database Systems. Addison-Wesley,

1992.

[

Cattel, 1994

]

R. G. G. Cattel. The Object Database

Standard: ODMG-93. Morgan Kaufmann, 1994.

[

Date, 1990

]

C. J. Date. An Introduction to

Database Systems, 5th Edition. Addison-Wesley,

1990.

[

Fasnacht, 1993

]

D. Fasnacht. Koordination verteil-

ter und heterogener Datenbanksysteme. Verlag

Josef Eul, 1993.

[

Gray, 1995

]

J. Gray. Super-Servers: Commodity

Computer Clusters Pose a Software Challenge.

In G. Lausen, editor, Datenbanksysteme in B�uro,

Technik und Wissenschaft, pages 30{47. Springer-

Verlag, 1995.

[

Herbert, 1989

]

A. Herbert. The ANSA reference

manual. Cambridge, U.K.: Architecture Projects

Management Limited, 1989.

[

Hwang and Briggs, 1989

]

K. Hwang and F. A.

Briggs. Computer Architecture and Parallel Pro-

cessing. McGraw-Hill, 1989.

[

Jungclaus et al., 1991

]

R. Jungclaus, G. Saake, and

C. Sernadas. Using Active Objects for Query

Processing. In R. Meersman, W. Kent, and S.

Khosla, editors, Object-Oriented Databases: Anal-

ysis, Design and Construction (Proc. of the 4th

IFIP WG 2.6 Working Conf. DS-4, Windermere

(UK), 1990), pages 285{304. North-Holland, Am-

sterdam, 1991.

[

Jungclaus et al., 1995

]

R. Jungclaus, G. Saake, T.

Hartmann, and C. Sernadas. Troll { A Lan-

guage for Object-Oriented Speci�cation of Infor-

mation Systems. ACM Transactions on Informa-

tion Systems, 1995. To appear.

[

Kalathil and Belford, 1994

]

B. J. Kalathil and G.

G. Belford. Supporting Local Autonomy in

a Distributed Object-Oriented Database. In

T.

�

Ozsu, U. Dayal, and P. Valduriez, editors, Dis-

tributed Object Management, pages 347{352. Mor-

gan Kaufmann Publishers, 1994.

[

Kusch, 1994

]

J. Kusch.

Ein Ansatz zur Operationalisierung deskriptiver

Anfragen durch Anfrageobjekte. In S. Conrad,

P. L�ohr, and G. Saake, editors, \Grundlagen von

Datenbanken", pages 92{96. Otto-von-Guericke-

Universit�at Magdeburg, Institut f�ur Technische

Informationssysteme, Bericht 94-01, 1994.

[

Lee and Hurson, 1994

]

B. Lee and A. R. Hur-

son. Data
ow Architectures and Multithreading.

IEEE Computer, 27(8):27{39, 8 1994.

[

Maes, 1988

]

P. Maes. Meta-Level Architectures and

Re
ection. Elsevier Science Publishers B. V.,

1988.

[

�

Ozsu and Valduriez, 1991

]

M. T.

�

Ozsu and P. Val-

duriez. Principles of Distributed Database Sy-

stems. Prentice Hall, 1991.

[

Rahm, 1994

]

E. Rahm. Mehrrechner-Datenbanksy-

steme. Addison-Wesley, 1994.

[

Rumbaugh et al., 1991

]

J. Rumbaugh, M. Blaha,

W. Premerlani, F. Eddy, and W. Lorensen. Ob-

ject-oriented modeling and design. Prentice-Hall,

1991.

[

Saake, 1993

]

G. Saake. Objektorientierte Spezi�ka-

tion von Informationssystemen. Teubner, Stutt-

gart/Leipzig, 1993.

[

Simon, 1995

]

A. R. Simon. Strategic Database

Technology: Management for the year 2000. Mor-

gan Kaufmann Publishers, Inc., 1995.

[

Veijaleinen and Popescu-Zeletin, 1988

]

J. Veijalei-

nen and R. Popescu-Zeletin. Multidatabase sys-

tems in ISO/OSI environments. In N. Malagardis

and T. Williams, editors, Standards in Informa-

tion Technology and Industrial Control, pages 83{

97. North-Holland, 1988.


