
Increasing the Power of Structured Objects

Diego Calvanese and Giuseppe De Giacomo and Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica

Universit�a di Roma \La Sapienza"

Via Salaria 113, I-00198 Roma, Italy

fcalvanese,degiacomo,lenzerinig@dis.uniroma1.it

1 Introduction

We have recently proposed a new object-oriented

data model, called CVL (for Classes, Views, and

Links), that extends the expressive power of known

formalisms in several directions by o�ering the fol-

lowing possibilities:

� To specify both necessary and su�cient conditions

for an object to belong to a class; necessary con-

ditions are generally used when de�ning the classes

that constitute the schema, whereas the speci�cation

of views requires to state conditions that are both

necessary and su�cient [1]. With this feature, sup-

ported in CVL through class and view de�nitions,

views are part of the schema and can be reasoned

upon exactly like any class.

� To specify complex relations that exist between

classes, such as disjointness of their instances or the

fact that one class equals the union of other classes.

� To refer to navigations of the schema while de�ning

classes and views; in particular, both forward and

backward navigations along relations and attributes

are allowed, with the additional possibility of impos-

ing complex conditions on the objects encountered

in the navigations.

� To specify relations that exist between the objects

reached following di�erent links; in particular, to

specify that the set of objects reached through an

attribute A is included in the set of objects reached

through another attribute B, thus imposing that A

is a subset of B.

� To use (n-ary) relations with complex properties

and to declare keys on them.

� To impose cardinality ratio constraints on at-

tributes.

� To model complex, recursive structures, simultane-

ously imposing several kinds of constraints on them.

This feature allows the designer to de�ne inductive

structures such as lists, sequences, trees, DAGs, etc..

One of the most important aspects of the model

we propose is that it supports several forms of rea-

soning at the schema level. Indeed, the question

of enhancing the expressive power of object-oriented

schemas is not addressed in CVL by simply adding

more and more constructs to a basic object-oriented

model, but by equipping the model with reasoning

procedures which are able to make inference on the

new constructs. Notably, we have shown that the

main reasoning task in CVL, namely checking if a

schema is consistent, is decidable, by providing a

sound and complete algorithm that works in worst-

case deterministic exponential time in the size of the

schema. Such worst-case complexity is inherent to

the problem, proving that consistency checking in

CVL is EXPTIME-complete.

2 The CVL data model

In this section we formally de�ne the object-oriented

model CVL, by specifying its syntax and its seman-

tics.

2.1 Syntax

A CVL schema is a collection of class and view def-

initions over an alphabet B, where B is partitioned

into a set C of class symbols, a set A of attribute

symbols, a set U of role symbols, and a set M of

method symbols. We assume that C contains the

distinguished elements Any and Empty

1

. In the fol-

lowing C, A, U and M range over elements of C, A,

U and M respectively.

As we mentioned before, for de�ning classes and

views we refer to complex links which are built start-

ing from attributes and roles. An atomic link, for

which we use the symbol l, is either an attribute, a

role, or the special symbol 3 (used in the context

of set structures). A basic link b is constructed ac-

cording to the following syntax rule, starting from

atomic links:

b ::= l j b

1

[b

2

j b

1

\ b

2

j b

1

n b

2

:

Two objects are connected by b

1

[b

2

if they are linked

through b

1

or b

2

, whereas two objects are connected

by b

1

\ b

2

(b

1

n b

2

) if they are linked through b

1

and

(but not) by b

2

. Finally, a generic complex link L is

obtained from basic links according to:

L ::= b j L

1

[L

2

j L

1

� L

2

j L

�

j L

�

j identity(C):

Here, L

1

�L

2

means the concatenation of link L

1

with

link L

2

, L

�

the concatenation of link L an arbitrary

�nite number of times, and L

�

corresponds to link

L taken in reverse direction. The use of identity(C)

is to verify if along a certain path we have reached

an object that is an instance of class C.

1

We may also assume that C contains some additional

symbols such as Integer, String, etc., that are inter-

preted as usual, with the constraint that no de�nition of

such symbols appears in the schema.

Usually, in object-oriented models to every class

there is an associated type which speci�es the struc-

ture of the value associated to each instance of the

class. In CVL, objects are not required to be of only

one speci�ed type. Instead, we allow for polymor-

phic entities, which can be viewed as having di�er-

ent structures corresponding to the di�erent roles

they can play in the modeled reality. Therefore we

admit rather rich expressions for de�ning structural

properties. A structure expression, denoted with the

symbol T , is constructed as follows, starting from

class symbols:

T ::= C j :T j T

1

^ T

2

j T

1

_ T

2

j

[A

1

:T

1

; : : : ; A

n

:T

n

] j fTg:

The structure [A

1

:T

1

; : : : ; A

n

:T

n

] represents all tu-

ples which have at least components A

1

; : : : ; A

n

hav-

ing structure T

1

; : : : ; T

n

, respectively, while fTg rep-

resents sets of elements having structure T . Addi-

tionally, by means of ^, _, and :, we are allowed not

only to include intersection and union in structure

expressions (as in [2]), but also to refer to all enti-

ties that do not have a certain structure. Note that,

since we allow for entities having multiple structure,

intersection cannot be eliminated from the de�nition

of structure expressions (contrast this property with

the model presented in [2]).

Class and view de�nitions are built out of struc-

ture expressions by asserting constraints on the al-

lowed links and by specifying the methods that can

be invoked on the instances of the class. A class

de�nition expresses necessary conditions for an en-

tity to be an instance of the de�ned class, whereas a

view de�nition characterizes exactly (through neces-

sary and su�cient conditions) the entities belonging

to the de�ned view. Our concept of view bears sim-

ilarity to the concept of query class of [14].

Class and view de�nitions have the following

forms (C is the name of the class or of the view):

class C view C

structure-declaration structure-declaration

link-declarations link-declarations

method-declarations method-declarations

endclass endview

We now explain the di�erent parts of a class (view)

de�nition.

(i) A structure-declaration has the form

is a kind of T

and can actually be regarded as both a type decla-

ration in the usual sense, and an extended ISA dec-

laration introducing (possibly multiple) inheritance.

(ii) link-declarations stands for a possibly empty

set of link-declarations, which can further be distin-

guished as follows:

{ Universal- and existential-link-declarations have

the form

all L in T and exists L in T:

The �rst declaration states that each entity reached

through link L from an instance of C has structure T

and the second one states that for each instance of C

there is at least one entity of structure T reachable

through link L. Therefore such link-declarations rep-

resent a generalization of existence and typing dec-

larations for attributes (and roles).

{ A well-foundedness-declaration has the form:

well founded L:

It states that by repeatedly following link L starting

from any instance of C, after a �nite number of steps

one always reaches an entity from which L cannot

be followed anymore. Such a condition allows for

example to avoid such pathological cases as a set

that has itself as a member. This aspect will be

discussed in more detail in section 4.

{ A cardinality-declaration has the form:

exists (u; v) b in T or exists (u; v) b

�

in T;

where u is a nonnegative integer and v is a nonneg-

ative integer or the special value1. Such a declara-

tion states for each instance of C the existence of at

least u and most v di�erent entities of structure T

reachable through the basic link b (b

�

)

2

. Existence

and functional dependencies can be seen as special

cases of this type of constraint.

{ A meeting-declaration has the form:

each b

1

is b

2

or each b

�

1

is b

�

2

:

It states that each entity reachable through a link b

1

(b

�

1

) from an instance o of C is also reachable from o

through a di�erent link b

2

(b

�

2

). Such a declaration

allows for representing inclusions between attributes,

and is a restricted form of role-value map, a type of

constraint commonly used in knowledge representa-

tion formalisms [15].

3

{ A key-declaration has the form:

key A

1

; : : : ; A

m

; A

0�

1

; : : : ; A

0�

m

0

;

U

1

; : : : ; U

n

; U

0�

1

; : : : ; U

0�

n

0

:

It is allowed only in class de�nitions and states that

each entity o in C is linked to at least one other

entity through each link that appears in the decla-

ration, and moreover the entities reached through

these links uniquely determine o, in the sense that

C contains no other entity o

0

linked to exactly the

same entities as o (for all links in the declaration).

(iii) method-declarations stands for a possibly

empty set of method-declarations, each having the

form:

method M (C

1

; : : : ; C

m

) returns (C

0

1

; : : : ; C

0

n

):

It states that for each instance of C, method M can

be invoked, where the type of the input parameters

(besides the invoking object) that are passed to, out-

put parameters that are returned from the method

are as speci�ed in the declaration.

2

Note that requiring the link to be basic (and not

generic) is essential for preserving the decidability of in-

ference on the schema.

3

Note that the restricted form of role-value map

adopted here does not lead to undecidability of infer-

ence, which results if this construct is used in its most

general form.

2.2 Semantics

We specify the formal semantics of a CVL schema

through the notion of interpretation I = (O

I

; �

I

),

where O

I

is a nonempty set constituting the uni-

verse of the interpretation and �

I

is the interpreta-

tion function over the universe. Note that an in-

terpretation corresponds to the usual notion of da-

tabase state. Di�erently from traditional object-

oriented models, we do not distinguish between ob-

jects (characterized through their object identi�er)

and values associated to objects. Instead, we re-

gardO

I

as being a set of polymorphic entities, which

means that every element of O

I

can be seen as hav-

ing one or both of the following structures (entities

having none of these structures are called pure ob-

jects):

(1) The structure of tuple: when an entity o has

this structure, it can be considered as a property

aggregation, which is formally de�ned as a partial

function from A to O

I

with the proviso that o

is uniquely determined by the set of attributes on

which it is de�ned and by their values. In the se-

quel the term tuple is used to denote an element of

O

I

that has the structure of tuple, and we write

[A

1

: o

1

; : : : ; A

n

: o

n

] to denote any tuple t such that,

for each i 2 f1; : : : ; ng, t(A

i

) is de�ned and equal

to o

i

(which is called the A

i

-component of t). Note

that the tuple t may have other components as well,

besides the A

i

-components.

(2) The structure of set: when an entity o has this

structure, it can be considered as an instance aggre-

gation, which is formally de�ned as a �nite collection

of entities in O

I

, with the following provisos: (i) the

view of o as a set is unique (except for the empty

set fg), in the sense that there is at most one �nite

collection of entities of which o can be considered

an aggregation, and (ii) no other entity o

0

is the ag-

gregation of the same collection. In the sequel the

term set is used to denote an element of O

I

that

has the structure of set, and we write fjo

1

; : : : ; o

n

jg

to denote the collection whose members are exactly

o

1

; : : : ; o

n

.

The interpretation function �

I

is de�ned over

classes, structure expressions and links, and assigns

them an extension as follows:

� It assigns to 3 a subset of O

I

� O

I

such

that for each fj : : : ; o; : : : jg 2 O

I

, we have that

(fj : : : ; o; : : : jg; o) 23

I

.

� It assigns to every role U a subset of O

I

�O

I

.

� It assigns to every attribute A a subset of O

I

�

O

I

such that, for each tuple [: : : ; A: o; : : :] 2 O

I

,

([: : : ; A: o; : : :]; o) 2 A

I

, and there is no o

0

2 O

I

di�erent from o such that ([: : : ; A: o; : : :]; o

0

) 2 A

I

.

Note that this implies that every attribute in a tuple

is functional for the tuple.

� It assigns to every link a subset of O

I

� O

I

such

that the following conditions are satis�ed:

(b

1

\ b

2

)

I

= b

I

1

\ b

I

2

(b

1

n b

2

)

I

= b

I

1

n b

I

2

(L

1

[L

2

)

I

= L

I

1

[L

I

2

(L

1

� L

2

)

I

= L

I

1

� L

I

2

(L

�

)

I

= (L

I

)

�

(L

�

)

I

= f(o; o

0

) j (o

0

; o) 2 L

I

g

(identity(C))

I

= f(o; o) 2 O

I

�O

I

j o 2 C

I

g:

� It assigns to every class and to every structure

expression a subset of O

I

such that the following

conditions are satis�ed:

Any

I

= O

I

Empty

I

= ;

C

I

� O

I

(:T)

I

= O

I

n T

I

(T

1

^ T

2

)

I

= T

I

1

\ T

I

2

(T

1

_ T

2

)

I

= T

I

1

[T

I

2

[A

1

:T

1

; : : : ; A

n

:T

n

]

I

= f[A

1

: o

1

; : : : ; A

n

: o

n

] 2 O

I

j

o

1

2 T

I

1

; : : : ; o

n

2 T

I

n

g

fTg

I

= ffjo

1

; : : : ; o

n

jg 2 O

I

j

o

1

; : : : ; o

n

2 T

I

g:

The elements of C

I

are called instances of C.

In order to characterize which interpretations are

legal according to a speci�ed schema we �rst de�ne

what it means if in an interpretation I an entity

o 2 O

I

satis�es a declaration which is part of a

class or view de�nition:

� o satis�es a type-declaration \is a kind of T" if

o 2 T

I

;

� o satis�es a universal-link-declaration \all L in T"

if for all o

0

2 O

I

, (o; o

0

) 2 L

I

implies o

0

2 T

I

;

� o satis�es an existential-link-declaration

\exists L in T" if there is o

0

2 O

I

such that

(o; o

0

) 2 L

I

and o

0

2 T

I

;

� o satis�es a well-foundedness-declaration

\well founded L" if there is no in�nite chain

(o

1

; o

2

; : : :) of entities o

1

; o

2

; : : : 2 O

I

such that

o = o

1

and (o

i

; o

i+1

) 2 L

I

, for i 2 f1; 2; : : :g.

� o satis�es a cardinality-declaration

\exists (u; v) b in T" if there are at least u and at

most v entities o

0

2 O

I

such that (o; o

0

) 2 b

I

and

o

0

2 T

I

; a similar de�nition holds for a cardinality-

declaration involving b

�

;

� o satis�es a meeting-declaration \each b

1

is b

2

" if

fo

0

j (o; o

0

) 2 b

I

1

g � fo

0

j (o; o

0

) 2 b

I

2

g;

a similar de�nition holds for a meeting-declaration

involving b

�

1

and b

�

2

.

Finally, a class C satis�es a key-declaration

\key L

1

; : : : ; L

m

", if for every instance o of C in

I there are entities o

1

; : : : ; o

m

2 O

I

such that

(o; o

i

) 2 L

I

i

, for i 2 f1; : : : ;mg, and there is no other

entity o

0

6= o in C

I

for which these conditions hold.

Note that the method-declarations do not partic-

ipate in the set-theoretic semantics of classes and

views. For an example on the use of method dec-

larations in the de�nition of a schema we refer to

Section 4.

An interpretation I satis�es a class de�nition �,

say for class C, if every instance of C in I satis-

�es all declarations in �, and if C satis�es all key-

declarations in �. I satis�es a view de�nition �, say

for view C, if the set of entities that satisfy all dec-

larations in � is exactly the set of instances of C. In

other words, there are no other entities in O

I

besides

those in C

I

that satisfy all declarations in �.

If I satis�es all class and view de�nitions in a

schema S it is called a model of S. A schema is

said to be consistent if it admits a model. A class

(view) C is said to be consistent in S, if there is a

model I of S such that C

I

is nonempty. The notion

of consistency is then extended in a natural way to

structure expressions.

3 Reasoning in CVL

One of the main features of CVL is that it sup-

ports several forms of reasoning at the schema level.

The basic reasoning task we consider is consistency

checking: given a schema S and a structure expres-

sion T , verify if T is consistent in S. This reason-

ing task is indeed the basis for the typical kinds

of schema level deductions supported by object-

oriented systems, such as checking schema consis-

tency and class subsumption, and computing the

class lattice of the schema. All these inferences can

be pro�tably exploited in both schema design and

analysis (for example in schema integration) and also

provide the basis for type checking and type infer-

ence.

In general, schema level reasoning in object-

oriented data models can be performed by means of

relatively simple algorithms (see for example [13]).

The richness of CVL makes reasoning much more

di�cult with respect to usual data models. Indeed

the question arises if consistency checking in CVL is

decidable at all. One of our main results is a sound,

complete, and terminating reasoning procedure to

perform consistency checking. The reasoning proce-

dure works in worst-case deterministic exponential

time in the size of the schema. Notably, we have

shown that such worst-case complexity is inherent

to the problem, proving that consistency checking

in CVL is EXPTIME-complete.

Space limitations prevent us from exposing our in-

ference method, which is based on previous work re-

lating formalisms used in knowledge representation

and databases to modal logics developed for mod-

eling properties of programs [5, 9, 10]. For more

details we refer to [4].

4 Expressivity of CVL

In this section we discuss by means of examples the

main distinguished features of CVL with the goal of

illustrating its expressivity.

4.1 Object polymorphism

In CVL, entities can be seen as having di�erent struc-

tures simultaneously. In this way we make a step

further with respect to traditional object models,

where the usual distinction between objects (without

structure) and their unique value may constitute a

limitation in modeling complex application domains.

As an example, Condominium in the schema of Fig-

ure 1 is regarded as a set of apartments, as a record

structure collecting all its relevant attributes and as

an object that can be referred to by other objects

through roles (in our example manages).

4.2 Well founded structures

In CVL, the designer can de�ne a large variety of �-

nite recursive structures, such as lists, binary trees,

class Condominium

is a kind of fApartmentg^

[loc: Address;budget: Integer]

key loc

exists (1; 1) manages

�

in Manager

endclass

class CondominiumManager

is a kind of [ssn: String; loc: Address]

key ssn

exists manages in Condominium

endclass

Figure 1: Schema of a condominium

trees, directed acyclic graphs, arrays, depending on

the application need. The schema in Figure 2 shows

an example of de�nitions of several variants of lists.

Observe the importance of the well-foundedness-

declaration in the de�nition of List.

Notably, recursively de�ned classes are taken into

account like any other class de�nition when reason-

ing about the schema. We argue that the ability

to de�ne �nite recursive structures in our model is

an important enhancement with respect to tradi-

tional object-oriented models, where such structures,

if present at all, are ad hoc additions requiring a spe-

cial treatment by the reasoning procedures [6, 3].

Well-foundedness-declarations also allow us to

represent well-founded binary relations. An inter-

esting example of such possibility is the de�nition of

the part-of relation, which has a special importance

in modeling complex applications [8]. This relation

is characterized by being �nite, antisymmetric, ir-

re
exive, and transitive. The �rst three properties

are captured by imposing well-foundedness, while

transitivity is handled by a careful use of the � op-

erator. More precisely, in order to model the part-of

relation in CVL, we can introduce a basic part of

role, assert its well-foundedness for the class Any,

and then use the link basic part of � basic part of

�

as part-of. Notice that by the virtue of meeting-

declarations, we can also distinguish between di�er-

ent specializations of the part-of relation.

4.3 Classi�cation

We show an example of computation of the class

lattice in which the reasoning procedure needs to

exploit its ability to deal with recursive de�nitions.

Figure 3 shows the de�nitions of classes and views

concerning various kinds of (directed) graphs. Our

reasoning method can be used to compute the cor-

responding class lattice shown in Figure 4. Observe

view List

is a kind of Nil _

[�rst: Any; rest: List]

exists (0; 1) rest

�

in Any

well founded �rst _ rest

endview

class ListOfPersons

is a kind of List

all rest

�

� �rst in Person

endclass

class Nil

is a kind of Any

all �rst _ rest in Empty

endclass

class ListOfThreePersons

is a kind of ListOfPersons

exists rest � rest in Any

all rest � rest � rest in Empty

endclass

Figure 2: Schema de�ning lists

class Graph

is a kind of [label: String]

all edge in Graph

endclass

view FiniteDAG

is a kind of Graph

well founded edge

endview

view FiniteTree

is a kind of Graph

all edge in FiniteTree

well founded edge

exists (0; 1) edge

�

in Any

endview

view BinGraph

is a kind of Graph

all edge in BinGraph

exists (0,2) edge in Any

endview

view FiniteBinTree

is a kind of Graph

all edge in FiniteBinTree

well founded edge

exists (0; 1) edge

�

in Any

exists (0,1) left in Any

exists (0,1) right in Any

each left [right is edge

each edge is left [right

each left is edge n right

endview

Figure 3: Schema de�ning graphs

that several deductions involved in the computation

of the lattice are not trivial at all. For example, in

computing subsumption between FiniteBinTree and

BinGraph, a sophisticated reasoning must be carried

out in order to infer that every instance of FiniteBin-

Tree satis�es exists (0,2) edge in Any.

4.4 Methods

Consider a schema S in which the de�nition

of a class C contains the method declaration

\method M (D

1

; D

2

) returns (D

3

)". Suppose now

that in specifying manipulations of the correspond-

ing database we use three objects x in class C, y

1

in class D

0

1

and y

2

in class D

0

2

, respectively. Let us

analyze the behavior of the type checker in process-

ing the expression x:M(y

1

; y

2

). If the type checker

follows a strong type checking policy, then the ex-

pression would be considered well typed if and only

if D

0

1

is subsumed by D

1

and D

0

2

is subsumed by D

2

in S. On the other hand, if a weaker type checking

policy is adopted, in order to guarantee well typed-

ness, it is su�cient that both D

1

^D

0

1

and D

2

^D

0

2

are consistent in S. Moreover, in both cases it can

be easily inferred that the type of the expression is

in D

3

. All these inferences can be carried out by re-

lying on the basic reasoning task introduced in the

previous section.

5 Concluding remarks

The combination of constructs of the CVL data

model makes it powerful enough to capture most

common object-oriented and semantic data models

presented in the literature [12, 11], such as O

2

[3],

ODMG [6], and the entity-relationship model [7]. In

fact, by adding suitable de�nitions to a schema we

can impose conditions that re
ect the assumptions

FiniteTree

FiniteBinTree

FiniteDAG

Graph

BinGraph

Figure 4: A lattice of graphs

made in the various models, forcing such a schema

to be interpreted exactly in the way required by each

model.

References

[1] S. Abiteboul and A. Bonner. Objects and views.

In J. Cli�ord and R. King, editors, Proc. of ACM

SIGMOD, pages 238{247, New York (NY, USA),

1991.

[2] S. Abiteboul and P. Kanellakis. Object identity as

a query language primitive. In Proc. of ACM SIG-

MOD, pages 159{173, 1989.

[3] F. Bancilhon, C. Delobel, and P. Kanellakis. Build-

ing an Object-Oriented Database System { The story

of O

2

. Morgan Kaufmann, Los Altos, 1992.

[4] D. Calvanese, G. De Giacomo, and M. Lenzerini.

Structured objects: Modeling and reasoning, 1995.

To appear in Proc. of DOOD-95.

[5] D. Calvanese, M. Lenzerini, and D. Nardi. A uni-

�ed framework for class based representation for-

malisms. In J. Doyle, E. Sandewall, and P. Torasso,

editors, Proc. of KR-94, pages 109{120, Bonn, 1994.

Morgan Kaufmann, Los Altos.

[6] R. G. G. Cattell, editor. The Object Database Stan-

dard: ODMG-93. Morgan Kaufmann, Los Altos,

1994. Release 1.1.

[7] P. P. Chen. The Entity-Relationship model: Toward

a uni�ed view of data. ACM Trans. on Database

Systems, 1(1):9{36, Mar. 1976.

[8] V. Christophides, S. Abiteboul, S. Cluet, and

M. Scholl. From structured documents to novel

query facilities. In R. T. Snodgrass and M. Winslett,

editors, Proc. of ACM SIGMOD, pages 313{324,

Minneapolis (Minnesota, USA), 1994.

[9] G. De Giacomo and M. Lenzerini. Boosting the cor-

respondence between description logics and propo-

sitional dynamic logics. In Proc. of AAAI-94, pages

205{212. AAAI Press/The MIT Press, 1994.

[10] G. De Giacomo and M. Lenzerini. What's in an

aggregate: Foundations for description logics with

tuples and sets. In Proc. of IJCAI-95, 1995. To

appear.

[11] R. Hull. A survey of theoretical research on typed

complex database objects. In J. Paredaens, editor,

Databases, pages 193{256. Academic Press, 1988.

[12] R. B. Hull and R. King. Semantic database

modelling: Survey, applications and research is-

sues. ACM Computing Surveys, 19(3):201{260,

Sept. 1987.

[13] C. Lecluse and P. Richard. Modeling complex struc-

tures in object-oriented databases. In Proc. of

PODS-89, pages 362{369, 1989.

[14] M. Staudt, M. Nissen, and M. Jeusfeld. Query by

class, rule and concept. J. of Applied Intelligence,

4(2):133{157, 1994.

[15] W. A. Woods and J. G. Schmolze. The KL-

ONE family. In F. W. Lehmann, editor, Semantic

Networks in Arti�cial Intelligence, pages 133{178.

Pergamon Press, 1992. Published as a special is-

sue of Computers & Mathematics with Applications,

Volume 23, Number 2{9.

