
Knowledge in Interoperable and Evolutionary Systems

Nacer Boudjlida

CRIN - Bat. LORIA - Universit�e Henri Poincar�e Nancy 1, B.P. 239

54506 - Vand�uvre L�es Nancy Cedex (France)

E-mail: nacer@loria.fr

Databases, Logic Programming and Arti�cial In-

telligence �elds successfully cooperated in the area

of deductive databases. Substantial results were

gained in querying, albeit results on updates and re-

vision are less impressive, especially from a compu-

tational perspective. Cross-fertilisation among the

�elds seems also very promising in the domain of dy-

namic and reactive systems that behavelike systems

that supervise on-going activities: they must exe-

cute actions, reason about these, gather information

about ongoing activities, predict possible illfunc-

tioning, control and coordinate the activities, etc.

New database application domains, like databases

for CAD/CAM or software engineering, require this

kind of functionalities. In particular, Software Engi-

neering Environments (SEE) that support Software

Process Models (SPM) falls in this category of sys-

tems: these are also called Process Centred SEE

(PCSEE). SEEs usually concentrate on the support

for software products development. PCSEEs pro-

vide additional supports for the activities and the

agents that are implicated in to the development

and the management of software projects. In this

framework, SPMs is an abstract speci�cation of how

the software related activities should be carried out.

The speci�cation at least encompasses descriptions

of the object types that are produced by the ac-

tivities together with descriptions of the activities

themselves and policies to be obeyed to. A PCSEE

includes a knowledge base that contains SPMs, an

object base that contains SPMs instances and soft-

ware products. The PCSEE's Software Process En-

gine interprets (enacts) a SPM to drive the devel-

opment of a software project in conformance with

an instantiated SPM . The Process Engine is a set of

mechanisms that controls the ongoing activities and

provides a set of assistance facilities like predicting

future states of the objects, explaining how a given

state has been reached or can be reached, and so on.

The mechanisms that constitute the Process Engine

share and inter-operate on the knowledge base that

contains the speci�cations of the SPMs and the ob-

ject base that contains the products being developed

and the gathered information about the activities

that have been performed.

The environment is viewed as a collection of tools

that cooperate in the support of the activities, that

communicate and exchange objects, messages and

events, and inter-operate on the ob jects in the en-

vironment's bases. Considering the variety of tools

in a PCSEE, their ability to inter-operate on a same

set of objects is crucial for the evolution of the envi-

ronment. Inter-operability may be achieved through

a common representation of the knowledge and the

ob ject bases or through speci�c mechanisms that

restructure objects, i.e that adapt their representa-

tion to the in ter-operable tools. Syntactic-based ap-

proaches to object interchange for inter-operability,

like those based on an Interface De�nition Language,

must be extended by knowledge on the objects con-

tents. We experimented a knowledge-based imple-

mentation of object restructuring and we are cur-

rently investigating the potential mutual contribu-

tions of the works on data interchange (like Com-

mon Data Interchange Format) and knowledge in-

terchange (like KIF and KQML)to incorporate more

knowledge in to object descriptions and to exploit it

in the object restructuring process (this process can

be viewed as a dynamic knowledge-based mechanism

to achieve ad hoc polymorphism with coercion).

Objects in PCSEEs are no more \classical"

database objects as are \
at" relations in relational

databases. Objects, like design documents or source

code, are complex objects with possible nesting (is p

art of relationship) and specialized/generalized ob-

jects (is a relationship). Moreover, the associated

Data Base Management System, called Object Man-

agement System, must be extendible with new ob-

ject types. It must also support cooperative work,

active rules, long- term activities and object version-

ing. Indeed, experimental activities like software en-

gineering often require going back to previous steps

or previous states of objects: versioning is then \a

must" as it is to enable various evolutions in PC-

SEEs. Evolution can take place at di�erent lev-

els: the environment's hosting platform, the SPM

level, as well as the SPMs' instances and the object

base levels. Existing knowledge and objects must

be adapted to the changes, i.e. multiple versions of

the knowledge and the object bases may be main-

tained, every version corresponding to a version of

the knowledge base and the object base speci�ca-

tion, or alternatively, the existing knowledge base

and object base may migrate to meet their respec-

tive new speci�cations. This appeals for mechanisms

to manage knowledge and object schema evolution

and versioning , mechanisms to re-use existing SPMs

and objects, and means to analyse the impacts of



a change, etc. Change impact-analysis and change

side-e�ects propagation meet the frame and the ram-

i�cation problems in knowledge bases revision.

In this position paper, we argue that management

and reasoning on structurally complex objects in the

framework of dynamic systems, like PCSEEs, re-

quire knowledge concerning the knowledge itself, the

objects and the actions that may be performed on

the objects. It also requires a kind of \re
exivity"

to enact (i.e. execute) the knowledge provided by

the Process Models and to manipulate it, notably

to ensure its evolution. Re
exivity is the fact that

Software Process Models are considered as objects:

so they can be updated and revised as any other

object. At any level it occurs, evolution requires im-

pact analysis similar to the resolution of the frame

and rami�cation problems. Further, similarly to

multi-agents systems like blackboard systems, inter-

operability of the tools must be ensured not only to

enable them cooperate in carrying out the activities,

but also to adapt existing knowledge and objects to

possible evolutions. This feature favours knowledge

and object re-use and must be founded on objects'

structure and content.


