
Accessing Con�guration-Databases by means of

Description Logics

T. Kessel and M. Schlick and O. Stern

ERIC { ENSAIS, Strasbourg, France

email: hkessel, schlick, sterni@steinway.u-strasbg.fr

1 Introduction

Description Logics (DL) has become one of the most

interesting formalisms in the Knowledge Representa-

tion �eld

[

Woods and Schmolze, 1992

]

. There exists

now a wide range of implemented systems (for exam-

ple C3L, CLASSIC, KRIS, LOOM, BACK), a well

studied theory with respect to expressive power (for

instance the representation of time or uncertainty),

inferential services and enhancements based on other

paradigms (rules, constraints).

Until now, less attention has been paid to an inte-

gration of Knowledge Representation and Data Base

Management Systems (DBMS) technology. The re-

search in the �rst area was focused on the interpreta-

tion of the semantic links between data which trans-

form them into knowledge, whereas the latter was

in charge of handling large amount of data. In our

point of view, both �elds can be considered as com-

plementary.

The interfacing between DBMS and Knowledge

Representation systems may cover two topics:

1. The interface is exclusively focused on the ex-

change and transformation of data. For in-

stance, information about a mechanical piece

is retrieved from a CAD data base system and

converted into the internal format of the DL

system.

2. The DL system constitues a kind of applica-

tion layer that is built on top of a DBMS. This

top layer provides a maximum of inferential ser-

vices and expressive power. Furthermore it al-

lows the conception, optimisation or distribu-

tion of queries that are mapped to the underly-

ing DBMS.

We propose to elaborate the second scenario be-

cause it combines the best of both worlds. Thanks

to the embedded DL system, the application layer

may use domain knowledge to optimise queries or to

send it to one of the distributed DBMS, whereas the

DBMS itself handles the storage, retrieval and recov-

ery of data. For instance, our major application will

be the con�guration of modular bus systems from

various, available modules for the electronic bus sys-

tem of a vehicle, as described in

[

Keith et al., 1995

]

.

This research project requires a semantic integra-

tion of heterogeneous knowledge sources. They de-

note for instance, constraints which specify possible

combinations of bus modules, rules which guide the

con�guration process by means of heuristics, con-

cepts which describe the functional composition of

electromechanical components within a motor and

individuals that represent variants of the bus mod-

ules. The DL system we would like to employ in this

context is the C3L system

[

Kessel et al., 1995

]

which

is implemented within a frame-based structure and

smoothly integrated in an object-oriented program-

ming and development environment.

At the moment we have no experience in the spe-

ci�c research �eld of combining DL and DBMS yet,

although it seems to be very promising with respect

to the above mentioned research project . The in-

ferential services of a DL system, in particular the

classi�cation of concepts and the realization of indi-

viduals, are indispensable to structure such a large

model as the description of a modular bus system

in a vehicle. Open world reasoning seems appropri-

ate to us, because we have to deal with incomplete

knowledge which may evolve continually during the

con�guration process. Furthermore, an important

feature of DL is the deduction of implicit information

by means of propagation of recently added knowl-

edge in the ABox. The implementation of a multi-

layered typology of user-programmed inferences, at-

tached to concepts, which reason about individuals,

like in classical knowledge-based system shells, for

instance KAPPA or Nexpert Object, would be help-

ful to include procedural knowledge. A substantial

contribution of DL comes from the power of its in-

telligent retrieval queries that allow, �rst to normal-

ize completely di�erent retrieval descriptions (which

need not necessairly make use of the inheritance in-

formation), and second the generation of abstract

concepts which are deduced from role resp. attribute

values.

What may be the impact of such a project on our

research about DL systems ? We suggest to focus on

the study of retrieval functionalities provided by DL

systems. This issue concerns essentially all kinds of

ABox services, for instance the retrieval or realiza-

tion of instances. Within this framework it is worth

to examine the ABox's performance with respect to

its architecture in order to reduce the average re-

trieval costs. What are the possible drawbacks of

our approach ? The coupling between the DL sys-

tem and the DBMS may induce some performance

losses, due to the intensive communication exchange

between two di�erent systems. Another aspect con-



cerns the mapping of the complex concept or indi-

vidual structures to a relational or object-oriented

database scheme which has been undertaken yet.

The rest of the paper is structured as follows. A

brief C3L system description is presented in the sec-

ond section. The following chapter tackles the in-

tegration of procedural knowledge in a DL system,

notably C3L. How to integrate an object-oriented

DBMS within such a system, exempli�ed at C3L, is

discussed in the fourth section. Afterwards the sig-

ni�cance of the retrieval inference and related topics

are studied. Applying a DL system for con�guration

purposes constitutes the principal issue of the sixth

chapter. Last, but not least, we conclude our work.

2 C3L - a system description

At the moment, two di�erent C3L versions exist: one

academic research prototype, built in Common Lisp,

and another version including an object-oriented

data base management system and written in C++,

but which is at the current state limited to the TBox.

The later system is called C3L++ (for obvious rea-

sons) and will serve as the implementation base for

future development and enhancements. The port-

ing of C3L from Common Lisp to C++ is motivated

by the idea to scale small knowledge bases up to

large ones, which require more sophisticated means

for handling huge amounts of knowledge.

The C3L system may be characterized in some

terms as follows:

� it is a descendant of the description logics (or

KL-ONE) family

� it provides reasonable expressive power (e.g.

conjunction, all, one-of, �lls, at-least, at-most)

� it incorporates useful inferential services (e.g.

subsumption, classi�cation, recognition)

� it is implemented in a frame-based based system

� it contains declarative as well as procedural

knowledge

� it is concieved in the perspective to serve as a

knowledge representation module for a hybrid

development environment (the term IKME, in-

telligent knowledge management environment,

describes it best)

Special features of C3L which distinguish it from

other description logics systems are:

� a re
exive object-oriented, frame-based archi-

tecture

� the integration of methods

The initial design philosophy of C3L was to com-

bine ideas coming from the communities of frame

languages and description logics

[

Carr�e et al., 1995

]

.

Having (partially) achieved this goal, we realized

that it seems necessary to include the database com-

munity as well, in order to be able to handle large

quantities of data without signi�cant performance

losses and keeping powerful reasoning mechanisms.

Anyway, the description logics system C3L can be

considered as a kind of application layer which hides

the underlying database system and allows a com-

pletely transparent management of data for the user.

Two inhouse research projects constitute the test-

bed for the C3L system. The �rst is the domain

modeling of a con�guration system for a modular

electronic bus system in vehicles, whereas the second

addresses the representation of features in CAD and

their links to technological information which are

needed e.g. for production purposes. Both projects

are rather small-scale research projects and still in

progress, but they already provided us with very

helpful feedback.

After having tested our system in the above

mentioned two application scenarios, we identi�ed

two major requirements for the improved successor

C3L++ of the academic research prototype C3L:

� high performance: the currently used data

structures are not optimized for high perfor-

mance, because it is an exploratory implemen-

tation

� large scale knowledge bases: due to memory re-

strictions the number of de�ned concepts, roles

and individuals has been quite restricted so far

C3L enabled us to acquire a lot of valuable ex-

perience about description logics system design and

building such architectures for information systems.

A complete redesign of the C3L system is now in

progress, a port of the TBox to C++ is the very �rst

result of this e�ort. We think of testing it by means

of a huge random knowledge base which will be auto-

matically generated. Such an approach might allow

to obtain reliable, empirical data of the systems per-

formance and behaviour. A pre-version of C3L++

has showed a considerable increase of performance

which will be studied in more detail in the near fu-

ture.

3 Integrating procedural knowledge

Motivated by the requirements of studied applica-

tions and the need for an e�cient manipulation of

knowledge, we are actually working on the integra-

tion of C3L in an object-oriented programming envi-

ronment. Obviously it is not satisfactory to provide

simply methods, but to o�er a formalism which en-

ables the experienced user on the one hand to ful�ll

his particular needs and on the other hand to control

the side e�ects of the methods. The objective is to

support a multi-layered typology of methods whose

consequences can be easily supervised and tested.

Suggestions for formalizing the notion of meth-

ods come from the area of speci�cation languages for

the development of knowledge-based systems in the

�eld of knowledge engineering

[

Fensel and Harmelen,

1994

]

. The SCARP system

[

Willamowski, 1994

]

, set

on top of SHIRKA, in
uences as well our decision

to include methods in form of tasks. Anyway the

employed approach cannot deny the impact of clas-

sical ideas coming from the �eld of hierarchical and

sceletal planning.

Tasks are on the one hand su�ciently complex,

declarative means to abstract from simple methods

and on the other hand they are close to the im-

plementation level by incorporating source code of



the underlying programming language or by calling

other subtasks. A task is de�ned by numerous prop-

erties or attributes which allow better validation and

coherence tests of the task.

At the moment, three complementary categories

of procedural attachments which are listed below are

in work:

� methods: they represent general purpose at-

tachments and are linked to concepts

� demons: they are triggered by value changes

of roles, for instance if-added, if-deleted, if-

changed, if-needed, are classical demons

� events: they survey the concepts instances and

are launched if one instance ful�lls the events

conditional part

One major problem of procedural attachments are

the consequences on the recognition and retraction

inferences provided by the ABox. One possible so-

lution is to execute demons �rst, list the concerned

objects and pass them to the recognition service af-

terwards, in order to avoid costly recomputation of

the individuals status during the chained manipu-

lation of data. A more interactive approach may

suppose that the user has to demand explicitly the

(re-)recognition of an individual which was modi�ed

in the past.

Summarizing the bene�ts of embedding the under-

lying programming language in a description logics

system may result in the following advantages:

� increased 
exibility and maintenance of the

complete system

� high performance for complex (mathematical)

computations

� use of the programming languages high expres-

sive power and performance

O�ering an almost exhaustive library of primitive

tasks (or methods) is the consequent next step of the

evolution of our development environment. In most

cases the user may only select the appropriate exist-

ing task or use pre-de�ned tasks which have to be

instantiated. The programming e�ort would be re-

duced to calling tasks or pro�ting of the hierarchical

task structure. Basic tasks are elementary retrieval

or manipulation methods which constitute the prin-

cipal task layer and which can be completed step by

step.

One important feature we are working on is the

automatic classi�cation of tasks with respect to cer-

tain properties, for instance parameters or agents.

The principal underlying idea is to map a task

scheme to a normalized concept and to call the usual

classi�cation service. Afterwards you may reason

about tasks like about normal individuals. This may

be particular useful to support programmers who

look for special properties of an incompletely speci-

�ed task.

4 Integrating an object-oriented

DBMS

The current C3L++ system which is ported to C++

is particulary optimized for performance issues and

synthesizes the design experience we obtained in

building the former Common Lisp version. One ma-

jor system requirement is to get an almost platform

independent description logics system.

After having evaluated the possibility to concieve

a special DBMS interface for C3L++ within the sys-

tems architecture, which provides its own storage

and caching strategies, we opted for a more com-

mercial solution by building C3L++ on top of the

POET

[

POE, 1995

]

database. POET is in fact a

pre-compiler which generates (documented) C++

code and it takes the complete memory handling in

charge. Therefore the system programmer can con-

cieve the system as whether he had a large, but �nite

(virtual) memory space, persistent objects only have

to be marked in their class de�nitions.

The chosen solution implies several bene�ts:

� the object-oriented DBMS system does what it

can the best, e.g. memory caching strategies,

even if they are not optimized for a description

logics system and its speci�c inferences and data

structures

� using such a DBMS simpli�es the design, main-

tenance and documentation of source code with

respect for data storage, enabling the system

designer to focus on the essential system prop-

erties

� the solution is easy to implement and fast

thanks to the employment of available classes

and methods; we hope also to obtain a real gain

of programming e�ciency

The principal disadvantage of the solution is that

there does not exist anymore a clear distinction be-

tween source code of the POET DBMS and of the

description logics system. Both parts become very

closely intertwined and inseparable.

Nevertheless we are convinced that the above

mentioned solution lets us enough space for improv-

ing and adapting the C3L++ system for speci�c ap-

plications. Another aspect that was not discussed so

far is the mapping from queries of the retrieval lan-

guage to the underlying DBMS. All topics concern-

ing this issue are studied in the appropriate retrieval

section.

5 Signi�cance of retrieval

In industrial applications databases are more often

queried than updated. To ful�ll this condition, e�-

cient retrieval mechanisms have to be provided. In

this context SQL-like query languages are often too

di�cult to learn for the average employee. As is

known from di�erent investigations, three out of four

query attempts are non-successful, resulting in an

immense loss of time and money. A possible solu-

tion to this problem is the usage of DL as a front-end

to the database system. Here the user can commu-

nicate with the knowledge base by means of simple

operators and intuitively understandable object de-

scriptions. The DL system can then optimize the

queries and transform them into terms of the un-

derlying database language. This step is completely

transparent for the employee, resulting in an increas-

ing acceptance of database applications.



To meet all requirements of database users, we

have to provide two di�erent classes of query opera-

tors. First, it must be possible to access the descrip-

tions of database objects, for example to receive in-

formation on a speci�c mechanical component. Sec-

ond, we need dedicated retrieval facilities to �nd ob-

jects by means of arbitrary descriptions. For ex-

ample an engineer could be interested in �nding all

bus components transferring high data rates on a

speci�c bus segment. In these cases an intuitive de-

scription of such a component is easily constructed,

in comparison to the joining of several relations in a

relational database system employing SQL.

In C3L the �rst class is represented by the opera-

tors showall, show and ask. Each of them occurs

in three di�erent contexts: for roles, concepts and

individuals. A showall-operation returns a list of

the elements of the speci�ed type which are known

in the database. The show-operator provides the

most important properties of the object in question,

for example the dependencies from other objects or

the values of all its attributes. The ask-operator �-

nally allows to specify the properties and attributes

of interest for an object, for example if we are curious

to know the data transfer rates of a special bus com-

ponent. All these operations can be easily mapped

to database queries without the need for dedicated

reasoning mechanisms. In contrast, the operator for

the second class, search, uses the inferential capa-

bilities of the DL system. It is tightly connected to

the retrieval inferences for roles, concepts and indi-

viduals. This operator takes an arbitrary object de-

scription and returns all database elements matching

it.

The retrieval algorithms for roles and concepts

can be constructed from the basic TBox inferences

for subsumption and classi�cation. The retrieval of

ABox individuals is far more complex. In the follow-

ing we will therefore concentrate on this mechanism.

The processing of a query involves �ve steps

[

Stern,

1995

]

:

1. Analysis of the query.

2. Optimization of the query.

3. Choice of the appropriate resolution strategy.

4. Execution of a number of retrieval primitives

following the chosen strategy.

5. Veri�cation of the results.

Step four involves real database access, for exam-

ple by means of SQL. But this is absolutely trans-

parent for the user, the DL system is in charge of

the whole transformation process.

The optimization phase �rst detects inconsisten-

cies in the query. It then tries to simplify the de-

scription to accelerate the further processing. Nu-

merical intervals, for example, are normalized and

subsuming roles are eliminated.

The choice of the resolution strategy depends on

a rather large number of properties of the query. If

we are confronted with distributed databases, for ex-

ample, we have to decide which ones are relevant for

the query and when and how to access these knowl-

edge sources. The strategy is also di�erent for var-

ious formats of the query. Short ones are processed

in another way then queries with lots of roles and

attributes, and the treatment is distinct for queries

comprising a conceptual description or lacking this.

Furthermore, various types of conceptual parts are

processed di�erently. By means of such distinctions

we are able to reuse a maximum of already derived

facts (recognition inference) to guarantee high per-

formance of the retrieval inference.

To gain a maximum of speed there exists a huge

number of retrieval primitives, implemented as in-

dependent methods. They can be freely combined

or used as single mini-inferences. We have also pro-

vided primitives for the most frequent combinations

of these basic methods. There are methods to ac-

cess the di�erent precomputed facts of the ABox

and TBox, for example by evaluating the semantic

indexing structure or the information inside the role

hierarchy. We can classify the conceptual parts of a

query or even generate appropriate concept descrip-

tions from role lists if the given description seems not

clear enough. And, what is self-evident, there are

primitives to access the database interface of C3L

which performs the transformation of basic queries

into the database language.

As a result of step four we receive a set of individu-

als that possibly match the query. Due to limitations

in the optimization and calculation steps, mainly to

minimize the number of real database accesses, this

set may contain elements that do not exactly match

all role restrictions of the query. This makes a �-

nal veri�cation step necessary. There we match the

candidate instances with the possibly o�ended role

restrictions by means of a dedicated subsumption

algorithm for individuals. The veri�ed objects are

�nally returned to the user.

The entire retrieval algorithm is correct and nearly

complete. It is even more complete than the recog-

nition inference of C3L. This could be achieved by

deducing further implicit facts during step four of

the algorithm. In all test cases so far, the retrieval

inference was capable of calculating all the instances

matching a query. Hopefully, there will be only very

few cases where some implicit dependencies can not

be detected.

The coupling between C3L and the database sys-

tem can be described by employing a meta-model.

This model comprises all the di�erent aspects of the

integration of a DL system with a database, like the

construction of queries in terms of the database lan-

guage, the distribution of queries in distributed en-

vironments, and the access methods of the database

interface of C3L. By means of this model the in-

terface to the database management system can be

easily adopted to any commercial product. We can

entirely avoid changements to the inference mecha-

nisms. Only the mapping of basic queries of C3L to

the database language has to be modi�ed. In the

future we will also try to make use of already ex-

isting databases. To perform this di�cult task, it

will be necessary to extract generic concept descrip-

tions and individual de�nitions from the database

contents to use them for the queries. An automatic

transformation seems, at the current state of our re-

search, rather di�cult if not impossible. But even



an extraction by hand could be worth the trouble,

compared to the bene�ts of using DL as a query

component.

When we have a closer look on the meta-model,

we can distinguish the di�erent tasks of the DL sys-

tem and the DBMS in our application scenario. The

database system is only concerned with the storage

of large amounts of data, whereas C3L is in charge

of all problems involving some reasoning:

� Construction and veri�cation of queries.

� Detection of inconsistencies.

� Optimization and distribution of queries.

� Generalization of queries.

The last point in this list is worth some more ex-

planations. In the analysis step of the retrieval infer-

ence we can detect sub-queries that occur very often.

A considerable speed-up for such queries can now be

achieved be generalizing the sub-query, resolving it

and caching the results. In subsequent queries these

parts have not to be processed, it is su�cient to use

the stored answers.

Concerned with industrial applications, for exam-

ple in the domain of the con�guration of bus systems

for vehicles, we have learned that it is not su�cient

to provide only system de�ned retrieval capabilities.

Most applications show a need for dedicated facili-

ties specially adopted to the domain in question. To

meet this requirement, C3L can be extended by pro-

cedural knowledge. Within a syntactically and se-

mantically regulated framework, the user can add re-

trieval inferences implemented in the host language.

For this purpose, most of the retrieval primitives and

optimization methods are accessible through a pro-

grammers interface. They can now be used to imple-

ment domain-speci�c retrieval functions and strate-

gies. A little drawback of this approach is that these

user programmed methods can lead to inconsisten-

cies in the user de�ned query answering process. But

the necessity of a careful implementation style seems

to be a little inconvenience compared to the possibil-

ity to adopt the system to the special requirements of

a real world application. Furthermore, this is a fea-

ture heavily missing in database-only systems that

use, for example, SQL.

As already mentioned, the actual coupling of C3L

with a database system is performed by means of a

dedicated interface. The only purpose of this mod-

ule is to perform the transformation between basic

DL queries and queries in terms of the database lan-

guage. We could identify a small number of such ba-

sic queries that are su�cient to provide C3L with all

necessary information from the underlying database.

A realization of this interface exists for relational

databases that use SQL as their query language.

Actual work is in progress for the integration of

the object oriented database system POET. This

OODBMS will function as the back-end data store

in the C++ version of C3L. In our experience so far,

the presented approach is well suited for relational

DBMS as well as OODBMS.

6 Con�guration as an application

Con�guration can be de�ned as the design of a tech-

nical system, according to a speci�cation, by choos-

ing and assembling di�erent modules taken from a

module catalogue. If this is done by hand, especially

for more complex problems, it often results in errors

like inconsistency or missing parts. Therefore the

aim is to develop a system to support the con�gu-

ration process or to do con�guration automatically.

We propose a system based on Description Logics.

The problem of solving the con�guration task by

means of DL was already studied by the AT&T re-

search group in the framework of the PROSE project

[

Wright et al., 1993

]

. We want to focus on the advan-

tages that Description Logics o�ers for the treatment

of large amounts of data needed for the con�guration

process.

Databases are necessary to store the large module

catalogues. It is important for the economic suc-

cess of a con�guration system that module descrip-

tions of newly developed modules can be integrated

in the DBMS as fast as possible. Using a normal

DBMS, a domain specialist and a DBMS specialist

are only together capable to formalize the informa-

tion about a module and to add the resulting de-

scription to the DBMS. This results in a loss of time

and money. Furthermore, consistency checking be-

tween the module descriptions is indispensable for

the con�guration process. Ordinary databases are

not capable of performing this task.

The use of a Description Logics system as an ap-

plication layer that is built on top of the DBMS

can solve these problems. Domain and knowledge

engineering experts have to work together to build

the terminological part of the knowledge. In this

part, the domain vocabulary and principles are de-

scribed. Once done, this part only has to be changed

if the description is no longer su�cient. In contrast

to rare updates of the terminological knowledge the

assertional knowledge has to be modi�ed rather fre-

quently, because all descriptions of the new modules

are integrated as individuals. Because of the eas-

ier access methods of DL and the possibility to use

the domain vocabulary, we expect that this could

be done directly by the domain expert. This would

make it possible to integrate the updating of the DB

in the module development process. Additionally,

the DL system automatically guarantees a maximum

of consistency of the knowledge base.

A DL system does not only improve the manage-

ment of a knowledge base. As described above, the

use of retrieval and classi�cation o�ers possibilities

to accelerate the access to the di�erent facts. For

example a common problem during the con�gura-

tion process is, to �nd a module which combines the

properties of two or more other di�erent modules.

We could for example be interested in �nding an in-

tegrated automobile motor management unit which

integrates the ignition and injection management.

The problem is to retrieve a module description that

�ts to a list of various properties. With a normal

DBMS such a search would be very expensive. With

a DL system, the query strategy can be individually

optimized which results in a higher performance and



a better acceptance of the con�guration system.

The use of a DL system also poses one problem: Is

it possible to change between an open and a closed

world assumption? The open world is convenient for

the knowledge acquisition step, to enable the user to

integrate new facts easily into the knowledge base.

During the con�guration process, a closed world as-

sumption seems to be more adequate. If, for exam-

ple, the con�guration system excludes the �rst of two

possible modules it can choose the second. An open

world assumption would not allow this conclusion.

We have started to model the communication 
ow

among di�erent components linked to the electron-

ical bus system of a vehicle. Modeling the domain

using an object-oriented approach, like Description

Logics, is more appropriate than conceptual model-

ing for DBMS. Domain experts have less problems

to intuitively understand the resulting models.

7 Conclusion

In this paper we tried to motivate the bene�ts of

coupling a DBMS system with a knowledge repre-

sentation system, in particular the description logics

system C3L++. The most important requirements

for such a synergetic combination are:

� the need for large scale knoledge bases

� the potential performance gains

The implementation of C3L++ which incorpo-

rate such features is still in progress. Starting with

a brief presentation of the academic research pro-

totype C3L, we familiarize the reader with its id-

iosyncrasies, for instance the integration of pro-

cedural knowledge by means of methods, demons

and events. Some decision criteria, for choosing an

object-oriented DBMS (in our case: POET) and the

reasons for setting C3L++ on top of it, are studied

in the following section by emphasizing the system

development aspect. Discussing the impact of re-

trieval for our con�guration application and its con-

sequences for the DBMS coupling form the major

topics of the successive part. Finally, some problems

posed by applying description logics to the con�gu-

ration of electronic bus systems are elaborated.

8 Acknowledgments

We would like to thank the anonymous referees for

their valuable hints on earlier versions of this paper,

and our colleagues for very fruitful discussions on the

subject. In particular we owe a lot to the Robert

Bosch company, Germany, with who we cooperate

in the research project on con�guration of modular

bus systems for vehicles.

References

[

Carr�e et al., 1995

]

B. Carr�e, R. Ducournau, et al.

Classi�cation et objets: programmation ou repr�e-

sentation. In PRC-GDR Intelligence Arti�cielle.

TEKNEA, 1995. In French.

[

Fensel and Harmelen, 1994

]

D. Fensel and F. Harmelen. A comparison of lan-

guages which operationalize and formalize KADS

models of expertise. The Knowledge Engineering

Review, 9(2):105{146, 1994.

[

Keith et al., 1995

]

B. Keith, T. Kessel, M. Schlick,

and O. Stern. A description logics based approach

to the con�guration of diagnostic systems. In Pro-

ceedings of the IAR conference on Automatic Con-

trol and Signal Processing, 1995. Forthcoming.

[

Kessel et al., 1995

]

T. Kessel, F. Rousselot, and

O. Stern. From frames to concept: Building a

concept language within a frame-based system. In

Proceedings of the International Description Log-

ics Workshop at Rome, 1995.

[

POE, 1995

]

POET Software Corporation, San Ma-

teo. POET Release 3.0, 1995.

[

Stern, 1995

]

O. Stern. Entwicklung der assertio-

nalen Komponente ERICA f�ur das terminologi-

sche Wissensrepr�asentationssystem C3L. Master's

thesis, Universit�at Karlsruhe (TH), 1995. In Ger-

man.

[

Willamowski, 1994

]

J. Willamowski. Mod�elisation

de tâches pour la r�esolution de probl�emes en

coop�eration syst�eme-utilisateur. PhD thesis, uni-

versit�e Joseph Fourier - Grenoble 1, 1994. In

French.

[

Woods and Schmolze, 1992

]

W. Woods

and J. Schmolze. The kl-one family. In Semantic

Networks in Arti�cial Intelligence, pages 133{177.

Pergamon Press, 1992.

[

Wright et al., 1993

]

J. Wright, E. Weixelbaum,

et al. A knowledge-based con�gurator that sup-

ports sales, engineering and manufacturing at

AT&T Network Systems. In Proceedings of the

Innovative Applications of Arti�cial Intelligence

Conference, 1993.


