
Using schema information for querying databases

Iztok Savnik

a

, Zahir Tari

b

, Toma�z Mohori�c

c

a

Computer Systems Department, Jo�zef Stefan Institute, Slovenia

b

School of Information Systems, Queensland University of Technology, Australia

c

Faculty of Electrical Eng. and Computer Science, University of Ljubljana, Slovenia

Abstract

We propose the set of operations for query-

ing the conceptual schema of an object-

oriented database. The operations form

the basis of an algebra for objects called

OVAL. They are de�ned using the con-

structs introduced for our formalization of

the object-oriented database model. The

operations allow a user to query: (i) asso-

ciations among individual objects, (ii) re-

lationships between individual objects and

class objects, and (iii) relationships among

class objects themselves.

1 Introduction

Object-oriented database model provides a rich set

of modeling constructs that make the conceptual

schema of an object-oriented database more expres-

sive than relational schemas. We observe that, com-

paring a relational database to an object-oriented

one, some information about the modeling environ-

ment has been moved from the data part to the

schema part of the database. Hence, some aspects of

the modeling environment can be, using an object-

oriented database model, represented and stored in

a database by means of a database schema. Con-

sequently, the schema part of an object-oriented

database should be treated in a similar manner as

the data part of the database: it is, like ordinary

data, the subject of the user's inquiry and modi�ca-

tion.

In general, there are two types of queries which

relate to the conceptual schema. Firstly, the user

should be able to query the relationships between the

instances and the conceptual schema of a database.

Secondly, due to the frequently very complex con-

ceptual schema, a user should be able to query it in

order to obtain a precise mental image of the struc-

ture and the behavior of stored information

[

10

]

.

In this paper we present the operations of the al-

gebra for objects called OVAL, which are used for

querying conceptual schema. The following section

brie
y overviews the work related to OVAL. Next,

the basic constructs used for the formalization of the

OVAL's data model are de�ned in Section 3. The ba-

sic operations of the algebra OVAL are presented in

Section 4. Finally, the concluding remarks are given

in Section 5.

2 Related work

The constructs that recent query languages provide

for querying database schema are brie
y presented

in this section. To our knowledge, recently proposed

database algebras (e.g., Query algebra

[

13

]

, Excess

[

14

]

or Complex Object Algebra

[

1

]

) do not include

such facilities.

Firstly, most recent query languages (e.g., query

languages of ORION

[

9

]

or O

2

DBMS

[

4

]

) provide

the constructs for using the class extensions

[

5

]

in

queries. In

[

5

]

Bertino proposes the use of operator

CLASS OF , which returns the class of an object at

run-time. The resulting class can be further used

in a query. Next, ORION

[

9

]

provides a set of op-

erations for modifying database schema at di�erent

levels: modi�cation of inheritance, class properties,

methods and inheritance hierarchy of classes.

In

[

8

]

Kifer and Lausen propose a declarative lan-

guage based on logic, called F-Logic, which includes

the capabilities for querying database schema. The

relationships between instances and classes, which

are based on the isa hierarchy of database objects,

can be in F-Logic queried using the prede�ned pred-

icates for testing class membership and subclass re-

lationship. Further, F-Logic provides the capabili-

ties to explore the properties of individual and class

objects by treating attributes and methods as ob-

jects that can be manipulated in a similar manner

to other database objects. In this way, some types

of non-trivial relationships among objects such as

the analogy and the similarity relationships can be

expressed in F-Logic.

Next, the query language XSQL

[

7

]

includes a set

of constructs for querying database schema. XSQL

queries can include variables that range over class

objects. Therefore, classes can be queried on the

basis of their properties and the properties of their

instances. The XSQL operation subclassOf can be

in this context used to inquire about the relation-

ships among classes which are based on the inher-

itance hierarchy of classes. In a similar manner to

F-Logic, XSQL also treats attributes and methods

as objects that can be queried; hence, a user can

inquire about the properties of individual and class

objects.

Finally, in

[

10

]

Papazoglou suggests a set of high-

level operations for expressing intensional queries

which aid a user to understand the meaning of stored

data. The proposed operations can express the fol-

lowing types of queries: relate individual objects to

classes, browse the isa hierarchy of classes, inquire

about the class properties described using attributes,

compute associations among classes which are not

related by isa relationship, locate objects on the sim-

ilarity basis and inquire about the dynamic evolution

of objects represented by roles.

3 Data Model of OVAL

The algebra for objects OVAL is tightly related to its

data model which provides, in addition to the basic

constructs of the object-oriented database model

[

3

]

,

an uniform view of the database by treating classes

as abstract objects.

This section overviews the basic features of our

formalization of the object-oriented database model

which serve as the platform for the development of

the algebra OVAL. More details about the formal-

ization can be found in

[

11

]

.

3.1 Objects and Classes

An object is de�ned as a couple < i; v >, where i is

the object identi�er and v its corresponding value.

An object identi�er (oid) is a reference to an object,

and an object value represents the state of the object,

called an o-value

[

2

]

. The o-value is either: (i) a con-

stant, (ii) an oid, (iii) a set of objects fo

1

; : : : ; o

n

g,

where o

i

-s represent o-values, or (iv) a tuple object

de�ned as [A

1

: o

1

; : : : ; A

n

: o

n

], where o

i

-s represent

o-values and A

i

-s are attribute names.

The data model supports two types of objects:

class objects and individual objects. The class object

represents an abstract concept and acts as a rep-

resentation of a set of objects which share similar

static structure and behavior. The interpretation of

a class object is the set of objects that are called the

members of a given class object. The interpretation

of class c is denoted by I(c). Furthermore, the in-

terpretations of two classes are non-overlapping sets

of object identi�ers. Therefore, an individual object

has exactly one parent class object.

The set of classes from a given database is or-

ganized according to the partial ordering relation-

ship is a subclass, which we denote �

i

. The par-

tially ordered set of classes is extended to include

individual objects. The member of a given class is

related to this class by the relationship�

i

. Formally,

o 2 I(c) =) o �

i

c, where o represents an individual

object and c is a class object.

The inherited interpretation

[

2, 14

]

of class c, de-

noted by I

�

(c), includes all instances of class c, i.e.

the members of class c and the members of its sub-

classes. Formally, I

�

(C) =

S

C

j

�

i

C^C

j

2V

C

I(C

j

),

where V

C

denotes the set of all classes from a given

database.

3.2 O-Values and Types

A type is a pair in the form of (S;P), where S rep-

resents the structure of a set of objects and P de-

scribes their behavior. This sub-section includes the

description of the structural part of a type, which we

call static type. The behavioral part of a type is not

presented in this paper; its description can be found

in

[

11

]

. The static type can be: (i) a primitive type,

(ii) a reference type, (iii) a set-structured type and

(iv) a tuple-structured type.

The primitive types are: int, real and string. A

reference type is speci�ed by a class object. The

object identi�er of the class person, for instance,

denotes a reference type whose instances are refer-

ences, i.e. object identi�ers that are the elements

of the class person interpretation. A set-structured

type is de�ned as S = fS

1

g, where S

1

is again a

static type. A tuple-structured type is in the form

of S = [a

1

: S

1

; : : : ; a

n

: S

n

], where a

i

-s represent

attribute names and S

i

-s are again static types.

The interpretation of a static type is the set of o-

values, the structure of which is de�ned by a given

type. The interpretation of the primitive type is

the set of constants of that type. The interpreta-

tion of a reference type is de�ned using the inher-

ited class interpretation. The interpretation of a tu-

ple structured type is I([a

1

: T

1

; : : : ; a : n : T

n

]) =

f[a

1

: o

1

; : : : ; a

n

: o

n

]; o

i

2 I(T

i

); i 2 [1::n]g. Fi-

nally, the interpretation of a set-structured type is

I(fSg) = fs; s � I(S)g.

In addition to the partial ordering relationship �

i

,

a partial ordering relationship among o-values, de-

noted by �

o

, is de�ned. We call it the relationship

more speci�c. First, the partial ordering of static

types is introduced. The partial ordering relation-

ship de�ned among types is usually called a subtype

relationship

[

14

]

. Intuitively, if type S is the sub-

type of type T , then the type S is more speci�c than

(or re�nes) the type T . The reference type T

1

is the

subtype of T

2

whenever there exists the subclass rela-

tionship between T

1

and T

2

, i.e. T

1

�

i

T

2

. Next, the

type fS

1

g is the subtype of fS

2

g, if S

1

is the subtype

of S

2

. Finally, [A

1

: T

1

: : : ; A

k

: T

k

] is the subtype of

[A

1

: S

1

: : : ; A

n

: S

n

], if k � n and T

i

is the subtype

of S

i

, where i 2 [1::n]. Again, as with the partially

ordered set of oids, the partially ordered set of types

is extended to include the instances of types. For-

mally, v 2 I(T) =) v �

o

T , where T is a static type

and v is an o-value. The obtained partially ordered

set includes all o-values from a given database.

In a similar way to the inherited interpretation

of classes, we de�ne the inherited interpretation of

types. Given the type T , the inherited interpretation

of the type T includes the union of interpretations of

the type T and all its subtypes. Formally, I

�

(T) =

S

T

j

�

o

T^T

j

2V

T

I(T

j

), where V

T

denotes the set of all

types from a given database.

Finally, the extended interpretation of structural

types is de�ned. The extended interpretation of the

type T , denoted by I

�

(T), includes all o-values that

are more speci�c than T . Formally, I

�

(T) = fo; o �

o

Tg. The extended interpretation is used to de�ne the

semantics of OVAL variables.

4 Algebra for Objects

The algebra OVAL includes two types of operations:

model-based and declarative operations. The for-

mer are used for the manipulation of object prop-

erties that are de�ned by the use of the database

model constructs. The later are de�ned for express-

ing declarative queries on a database.

4.1 Model-based operations

The model-based operations are closely related to

the constructs of the previously presented formaliza-

tion of the object-oriented database model. They are

intended to inquire about: (i) associations among in-

dividual objects, (ii) relationships between individ-

ual objects and class objects, and (iii) relationships

among class object themselves. The use of opera-

tions is described by examples that are expressed in

a predicate calculus notation.

Valuation operator

Given an object, the information describing the

static properties of this object can be derived by

means of the valuation operator val. Let us present

an example of using the valuation operator. In the

following expression the operator val is used to ob-

tain the static properties of the class object student.

student:val = [name : string; age : int; (1)

friends : fpersong;

lives at : string; attends : fcourseg]

If the valuation function is followed by the at-

tribute name, the expression can be abbreviated us-

ing the operator denoted by \->" as it is common in

procedural programming languages.

Extension operators

Two types of extension operators are de�ned.

Firstly, the extension operator denoted by ext cor-

responds to the ordinary class interpretation which

maps a class to the set of its members. Secondly, the

extension operator denoted by exts realizes the in-

herited interpretation of the class that maps a class

to the set of its instances.

The following query illustrates the use of exten-

sion operators. It computes the set of persons who

are either employees younger than 22, or student as-

sistants.

fo; o 2 person:exts ^ (o� > age < 22 ^ (2)

o 2 employee:ext _ o 2 student assistant:ext)g

Poset comparison operations

The simplest and most natural way to express ob-

ject properties that relate to the partial ordering of

objects and o-values is by using the partial ordering

relationship �

o

which is introduced in Sub-section

3.1. The comparison operations that are related to

the relationship �

o

are �

o

;�

o

;�

o

. Their semantics

is de�ned in a usual manner, e.g. a �

o

b () a �

o

b^a 6= b. We call these operations poset comparison

operations.

Before illustrating the use of the poset compari-

son operations by some examples, the function that

maps an instance object to its parent class object is

de�ned. We name this function class of. It is de�ned

as follows: x:class of = c () x 2 I(c), where I(c)

denotes class c interpretation. Note that an instance

belongs to the exactly one class interpretation.

The following query speci�es objects that are

more speci�c than the class lecturer and, in

the same time, the elements of either the class

student assistant or some more general class.

fo; o 2 person:exts ^ o �

o

lecturer ^ (3)

student assistant �

o

o:class ofg

In the above example the poset comparison oper-

ations are used to relate objects. In the following ex-

ample we present the use of poset comparison oper-

ations for relating o-values. The query (4) �lters the

values of objects of the class person. The selected

tuples have to include the values for the attributes

manager, friends and lives at. The value of the at-

tribute lives at has to be "Brisbane", and the value

of attribute manager is required to be more spe-

ci�c than the class lecturer. In the similar way, the

value of the attribute friends is required to be more

speci�c than the type fstudentg. The query is for-

mulated as follows.

fv; o 2 person:exts ^ v = o:val ^ (4)

v �

o

[manager : lecturer;

friends : fstudentg;

lives at : "Brisbane"]g

Closure operations

The closure operations subcl and supcl are de�ned

on class objects. Given an argument class c, the

operation subcl returns all subclasses of c including

the class c itself. The operation supcl returns all

superclasses of the argument class c including the

class c.

The closure operations can express similar rela-

tionships among objects to those that can be ex-

pressed using the poset comparison operations. The

expression x �

o

y, where x and y are classes, for in-

stance, can be expressed as x 2 y:subcl. The query

(3) can be restated as follows.

fo; o 2 person:exts ^ (5)

o:class of 2 lecturer:subcl ^

o:class of 6= lecturer ^

o:class of 2 student assistant:supclg

While the poset comparison operations can serve

only for expressing relationships among objects, the

result of the closure operation is a set of classes that

can be further queried.

Operations lub-set and glb-set

The algebra OVAL includes the operations for com-

puting the nearest common more general and more

speci�c objects for a given set of objects with respect

to the relationship �

i

. Let consider �rst the use of

the operation which computes the nearest common

more general objects. As an example, the nearest

common more general object of the set of classes

fprofessor; student assistantg is the class lecturer.

The class lecturer includes all properties which are

common to the class objects from the argument set.

The operator that computes the nearest common

more general objects of a set of objects with respect

to the relationship �

i

is called lub-set. Next, the

operation glb-set is de�ned to compute the set of

nearest common more speci�c objects for a given set

of objects. Resulting objects include the properties

which relate to all objects from the argument set.

The use of operation lub-set is presented in the fol-

lowing example. The presented expression �rst de-

termines the nearest common more general objects

of objects referenced by object identi�ers: peter,

student assistant and jim. The members of the

resulted classes are selected by the query. Note that

peter and jim are individual objects, while the oid

student assistant refers to the class object.

fo; c 2 fpeter; student assistant; jimg:lub-set ^ (6)

o 2 c:extg

Equality

The algebra OVAL provides two types of equality

operations which re
ect the features of the underly-

ing data model. The �rst operation is the identity

equality

[

13

]

denoted by the symbol "==". Two in-

stances are identical if they have equal object iden-

ti�ers. The second equality operation is the value

equality. It compares objects on the basis of their

values. We distinguish between two types of value

equality: complete equality and local equality.

The complete equality compares two instances by

comparing the values of all operand components.

The operator is denoted by the symbol "=". The

local equality allows the comparison of instances on

the basis of the properties that pertain to the partic-

ular class. This operation is denoted by "=/class".

To be able to compare two instances on the basis

of the properties of the class, say C, these instances

should inherit from the class C. This, of course, does

not imply that they have the same parent classes.

Let us present the use of local value equality by an

example.

Assume that we want to compare two instances

(i1; [name:tone; age:40; works at:ijs; salary:10000])

and (i2; [name:vanja; age:24; works at:ijs; salary:

10000; cour:fc1; c2g]). The �rst instance is derived

from the class employee, whereas the second one is

the member of the class student assistant which is

a subclass of student and employee. These two in-

stances are not value equal if all properties are con-

sidered. However, they are value equal if the local

properties of the class employee are considered, i.e.

works at and salary.

4.2 Declarative operations

The algebra OVAL includes a set of declarative op-

erations which are intended for querying a database.

This set includes operations for: applying a query to

the set of objects, set �ltering, object restructuring,

applying a query to the arbitrary nested component

of object and computing transitive closure of a set

of objects. The operations can be combined using

the composition operator and the higher-order oper-

ations to form more complex queries.

In the following sub-sections we present some of

the basic declarative operations of OVAL. The exam-

ples of using these operations for querying database

schema are given.

The types of variables in queries are de�ned simi-

larly to C++ variable de�nitions. For instance, the

expression "T v;" de�nes the variable v of type T .

The semantics of variables is de�ned using the ex-

tended interpretation of types I

�

.

Apply

The operation apply(f) is used to evaluate a param-

eter function f on the elements of the argument set.

The parameter function f can be an attribute, an

operation or a query.

Let us present an example of using the operation

apply. The query described below maps a set of

students into a set of student names. The identity

function id is used to identify the elements of the set

studs which is an argument of the operation apply.

{student} studs; (7)

{string} str;

str = studs.apply(id->name);

Selection

The operation select(p) is used for �ltering an ar-

gument set of o-values using a parameter predicate.

The parameter predicate p speci�es the properties of

selected o-values. It can be composed of o-values and

variables related by arithmetic operations, previ-

ously presented model-based operations and boolean

operations. Let us illustrate the use of operation

select for querying database schema using some ex-

amples.

The queries (3) and (4) are restated in the follow-

ing two examples to illustrate the use of poset com-

parison operations in the context of OVAL declara-

tive operations.

{person} ps; (8)

ps = person.exts.

select(id < lecturer and

student_assistant =< id.class_of);

{person.val} pvs; (9)

pvs = person.exts.

apply(id->val).

select(id < [manager:lecturer,

friends:{student},

lives_at:"Brisbane"]);

The following query illustrates the use of the op-

eration lub-set. The set of instances of the class

employee is �ltered by selecting the employees who

work for the Computer Systems Department and are

younger than 25. The operation lub-set than com-

putes the closest common more general classes of the

selected set of objects.

{employee} s; (10)

s = employee.exts.

select(id->works_at = csd and

id->age < 25).

lub-set;

The use of local equality is illustrated by the query

(11) which selects student assistants that have the

properties that relate to their role of being employees

equal to the properties of an employee referenced by

the variable peter.

{student_assistant} s; (11)

employee peter;

s = student_assistant.exts.

select(id.val =/employee peter.val);

Tuple

The operation tuple(a

1

: f

1

; : : : ; a

n

: f

n

) is a gen-

eralization of the relational projection. Given a set

of objects as an argument of the operation, a tuple

is generated for each object from the argument set.

Each component of the newly created tuple is spec-

i�ed by the corresponding tuple parameter which

includes the attribute name a

i

and the parameter

query f

i

.

The query in the following example constructs the

tuple for every subclass of the class person. Each

tuple is composed of the class object identi�er and

the value of the class object.

{[pclass: person; (12)

ptype: person.val]} ptypes;

ptypes = person.subcl.

tuple(pclass: id,

ptype: id.val);

The tuple constructed for the class student, for in-

stance, is [pclass:student; ptype:[name:string; age:

int; attends:fcourseg]]. Note that the role of opera-

tor subcl in the above query is similar to the role of

extension operator.

Group

The operation group(a : f; b : g) is used for grouping

of o-values resulted from the query g evaluation with

respect to the result of the "key" query f . Therefore,

the result of evaluating the operation group(a : f; b :

g) on a set of o-values is a two column table, where

the �rst column, labeled a, stores the distinct values

of the query f evaluation, and the second column,

labeled b, includes the corresponding values of the

query g evaluation.

In the following example the operation group is

used for grouping the instances of the class employee

with respect to their parent classes.

{[class: employee, (13)

emps: { employee }]} EmpGroups;

EmpGroups = employee.exts.

group(class:id->class_of,

emps:id);

5 Concluding remarks

The operations of the algebra for objects called

OVAL, which are intended for querying database

conceptual schema, are presented in this paper.

These operations are called model-based operations

since they are based on the concepts introduced

for our formalization of the object-oriented database

model. As the consequence, a tight correlation be-

tween the database model and the algebra for objects

is established. Such correlation allows the algebra

to support all aspects of the underlying database

model.

References

[

1

]

S.Abiteboul, C.Beeri, On the Power of the Lan-

guages For the Manipulation of Complex Ob-

jects, Verso Report No.4, INRIA, 1993

[

2

]

S. Abiteboul, P.C. Kanellakis, Object Identity

as Query Language Primitive, ACM SIGMOD

1989

[

3

]

M. Atkinson et al. The Object-Oriented

Database Systems Manifesto, Proc. First

Int'l Conf Deductive and Object-Oriented

Databases, Elsevier Science Publisher B. V.,

Amsterdam, 1989, pp. 40-57.

[

4

]

F.Banchilion, S.Cluet, C.Deobel, A Query Lan-

guage for the O

2

Object-Oriented Database Sys-

tem, Proc. 2nd Workshop on Database Pro-

gramming Languages, 1989

[

5

]

E.Bertino et al, Object-Oriented Query Lan-

guages: The Notion and Issues, IEEE TKDE,

vol.4, No.3, June 1992

[

6

]

P.Buneman, R.E.Frankel, FQL- A Functional

Query Language, ACM SIGMOD, 1979

[

7

]

M.Kifer et al, Querying Object-Oriented

Databases, ACM SIGMOD 1992

[

8

]

M.Kifer, G.Lausen, J.Wu, Logical Founda-

tions of Object-Oriented and Frame-Based Lan-

guages, Technical Report 93/06, Dept. of Com-

puter Science, SUNY at Stony Brook

[

9

]

W.Kim, et al, Features of the ORION Object-

Oriented Database System, 11th Chapter in

Object-Oriented Concepts, Databases and Ap-

plications, editor W.Kim

[

10

]

M.P. Papazoglou, Unraveling the Semantics of

Conceptual Schemas, to appear in Comm. of

ACM

[

11

]

I.Savnik, A Query Language for Complex

Database Objects, Ph.D. thesis, IJS-DP Tech-

nical Report, Ljubljana 1995

[

12

]

I.Savnik, Z.Tari, T.Mohori�c, A Database Alge-

bra for Objects, Submitted for publication, 1995

[

13

]

G.M.Shaw, S.B.Zdonik, A Query Algebra for

Object-Oriented Databases, Proc. of Data Eng.,

IEEE, 1990

[

14

]

S.L.Vandenberg, Algebras for Object-Oriented

Query Languages, Ph.D. thesis, Technical Re-

port No. 1161, University of Wisconsin, 1993

