
Is an object layer on a relational database

more attractive than an object database ?

Franck Lebastard

CERMICS/INRIA - BP 93

F-06902 Sophia-Antipolis Cedex, France

Voice +33 93 65 77 42

E-mail : Franck.Lebastard@sophia.inria.fr

1 Introduction

As researchers in Arti�cial Intelligence, our �rst aim

was to allow our expert system shell Smeci [Sme90]

the access to relational databases during reasoning.

We also needed to save in a database complex ob-

jects that seemed interesting for further utilization,

in particular the knowledge bases and the results of

reasoning.

To this end, we have de�ned generic correspon-

dences [Leb93] between relational concepts and some

of the object concepts that are common to most ob-

ject models. These correspondences allow to trans-

late relational data into complex objects and con-

versely. They generalize the mapping proposals that

we found in the literature [Lee90, WBL+91, KJA93].

An implementation of these de�nitions has been

realized. This is the Driver system [Leb92] whose

speci�city is to de�ne an object oriented dbms

(oodbms) on a relational dbms (rdbms).

In Driver, a correspondence scheme must de-

scribe how to use a particular relational database

that is, the object representation and the relational

representation to bring together and the concrete

mapping between them. It can be given by the user

or automatically generated. The database is then

available as an object oriented database.

Driver can be used with many object models.

The system performs all operations on the objects

through a functional interface that must be instan-

ciated for the chosen model. In particular, it creates

objects in memory and reads and writes their slots

through this interface. This way to handle objects

ensures that persistency is a property e�ectively or-

thogonal to the model. Of course, only selected

object concepts can become persistent. The other

properties are simply ignored.

Driver is operational and is used by several in-

dustrial partners.

2 Our generic correspondences

Let us see now the generic correspondences we have

de�ned. They make possible to manage relational

data in the form of complex objects and to express

objects as relational data.

2.1 Classes and relational tables

We have associated the concept of relational table

with the concept of class. More precisely, we have

associated tables with class hierarchies because we

enforce all subclasses of a class to be mapped on the

same table. The most general class mapped to a

table is called a main class. Its associated table is

its main table.

We also allow to associate more than one table to

a class. The extra tables are called the secondary ta-

bles of the class. The main table and the secondary

tables are the elementary tables of the class. They

must imperatively be linked all together with joins

which are also called elementary, that means in our

de�nition that each one binds one tuple of a table

with one tuple of another. The elementary tables

of a class are utilized to map its �elds. In a hier-

archy, any class may use one or several additional

elementary tables to store speci�c data.

The �gure 1 shows a possible mapping for the

Employee class. emp is its main table and person

is a secondary table, both are its elementary tables.

fname ...pname ssnum car

person

jones eric B7C123 1975 ...

pitscott A435C 1928 ...

emp

empno ename fname mgr ...deptn

jones eric7566 7839 ...20

scott pit 75667788 ...20

Figure 1: The elementary tables of the Employee

class

We can notice that there is always a path, a join

chain linking any elementary table to the main table.

2.2 Objects and tuples

As we have brought together both notions of rela-

tional table and class we also associate the concept

of relational tuple with the concept of object. Both

are data, occurrences of their own structures. In

driver, the correspondence of an object is a set of

tuples, one for each elementary table of the class the

object is instance of. We have chosen to compose

its unique reference, its �oid� using the name of its

class main table and its tuple key in this table. This

way, every tuple in the main table is candidate to

be the correspondence of an object of the associated

main class.

The object candidate is an object when :

� all the elementary tables of the main class con-

tain a tuple for it. These tuples are found by

joining the main table.

� its value is compatible with the constraints that

any instance of this class must check.

These constraints can be set on the atomic �elds of

the class or on the attributes of the associated ele-

mentary tables. They de�ne a kind of �lter that tells

which tuples correspond to objects. Those which are

not selected are simply ignored and everything works

at the object level as if they don't exist. The poten-

tial objects that corresponds to the selected tuples

are calles the relational objects.

In �gure 1, both tuples �jones� and �scott� of

the emp table are object candidates for the class

Employee. Since the attribute emp.empno is the

key of the table emp, their �oids� are for example

emp/7566 and emp/7788. Let us assume that a con-

straint �emp.empno > 7000� is enforced to any tu-

ple of emp to be considered as a relational object of

the class Employee. Since our both tuples comply

this constraint and since it exists for each of them in

the table person a tuple found back by the elemen-

tary join, they are considered as Employee relational

objects, liable to be �ltered by an object request in-

volving Employees.

When an elementary table set is associated with a

class hierarchy and when a main table tuple has been

selected as an object of the associated main class,

one infers the precise class it is instance of from its

implementation in the elementary tables and from

the constraints de�ned for each class it complies or

not. Indeed, a class is di�erent from its superclass,

over and above its possible own �elds that complete

those it inherits from the superclass :

� by the possible use of new elementary tables

in its correspondence. If the object is at least

instance of this class, there must be a tuple for

it in each of the elementary tables of the class.

� by stronger constraints enforced on its in-

stances. These constraints must also de�ne an

object set that is disjoint from the sets de�ned

by the other subclasses of the same superclass.

Since the constraint sets are organized in a tree,

to be instance of a class depends on their satis-

faction along the considered hierarchy.

While a �ltering in the database, driver auto-

matically classi�es the chosen relational objects and

gives them the most precise class depending on their

values and implementation in the base.

Before ending the description of our correspon-

dences at the class and object level, let us point out

that the term �table� we have used up to here actu-

ally represents more a logical table than the �table

as a structure in the database�. In other words, in

driver, for our correspondences, we can de�ne as

many logical tables as we need on a same user table

of the base. These logical tables allow us for example

to map an object in di�erent tuples of the same user

table. They also allow to map independent class hi-

erarchies on logically di�erent main tables that actu-

ally represent the same user table in the base. There

are indeed applications where one wants to supply

independent classes with persistency in a unique ta-

ble.

824 7566 employee
825 7566 1 jones
826 7566 2 eric
827 7566 3 7839
828 7566 4 20
...
841 7788 employee
842 7788 1 scott
843 7788 2 pit
844 7788 3 7566
844 7788 4 20
...

tnum objnum fnum fval1 fval2
file

Figure 2: The �le table

For example, let us consider the table file pre-

sented �gure 2. In driver, we can associate our

class Employee with this table file as easily as we

did with emp et person. To have access to the dif-

ferent tuples that make up the relational object, one

only has to de�ne elementary joins between for ex-

ample mainfile(file), the main table of Employee,

and file1(file), file2(file), etc, de�ned as sec-

ondary tables. Here is an example of an elementary

join that allows to have access to the names of the

Employees :

mainfile.objnum=file1.objnum

and file1.fnum=1

We must also set a constraint that precises which

tuples of mainfile correspond to objects. In our

example, this constraint can be :

mainfile.fnum is null

and mainfile.fval2='employee'

With this correspondence of the class Employee,

the �oids� of our two relational objects jones

and scott are this time mainfile/824 and

mainfile/841.

This way to store all the objects in a unique table

is not so odd since it is e�ectively used, for example

in the OODBMS MATISSE [Int92].

2.3 Relational correspondences of the

�eld types

Correspondence of the atomic types

We have associated atomic type �elds with at-

tributes. This way, any attribute of a class elemen-

tary table can be used as the correspondence of any

of the atomic �elds of this class and vice versa.

If we consider our association Employee - (emp,

person) again, and if the class has an atomic

�eld social-security-number, its mapping can be

person.ssnum.

Correspondence of the object type

An object �eld represents an oriented link from an

object to another. We associate this link between

classes with a relational link, more precisely with a

join between one of the elementary tables of the �rst

class and the main table of the second class. This

join that we call an object join must be an equi-

join that compares elementary attributes of the �rst

�attributes called referential attributes� and the

attributes composing the key of the second.

This restriction allows to know the value of an

object �eld just by knowing the values of the cor-

responding referential attributes. An object �eld is

empty if any of the referential attributes is contain-

ing a NULL.

emp

empno ename fname mgr ...deptn

jones eric7566 7839 ...20

scott pit 75667788 ...20

...7521 ward peter 7698 30

dept

deptno dname loc
20 research Boston

30 sales Chicago

Figure 3: The mapping of the �eld dpt

Let us consider an object �eld dpt of the class

Employee. It makes each Employee referring the

Department it belongs to. This �eld can be mapped

on the join shown �gure 3 that links emp to the main

table of the class Department. Then the referential

attribute associated with the �eld is emp.deptn.

We can point out that this object �eld correspon-

dence o�ers a way to modelize more or less strong

links between objects : if any referential attribute is

constrained by a clause unique, not null or both, the

possible values for the corresponding object �eld are

restricted. The stronger link is set when the refer-

ential attributes are also the key of their table. In

that case :

� they must be valued : the associated object �eld

cannot be empty.

� once the containing object or the contained ob-

ject is persistent, its key value is �xed. As the

key value of the other is settled at the same

time (because of the join), and both objects are

linked together for their life (!).

Correspondence of the set type

The correspondence of this �eld type is a set join. A

set join is an equijoin between one of the elementary

tables of the class the �eld belongs to and a set table.

For a given object, the set table contains as many

tuples as there are members in its set �eld value.

When the set is an atom set, the set join is com-

pleted with an attribute (of the set table) which con-

tains the set members in the base.

When the set is an object set, the set join is gener-

ally completed with another join, this time between

the set table and the main table of the referenced

objects class. This second join must be an an equi-

join that compares referential attributes and the key

attributes of the joined main table.

Table emproj Table project

projno empno projno pname budget

101 7566 101 alpha 250000.

103 7566 102 beta 175000.

101 7788 103 gamma 95000.

...

Figure 4: Tables emproj and project

For example, let us consider the table emproj

shown �gure 4. It is the representation in the

base of the participation of every Employees to

some Projects. If our class Employee owns

a �eld projects (object set type), its map-

ping can be the join sequence (J[emp, emproj]

J[emproj, project]) where the join expressions

are respectively emp.empno=emproj.empno and

emproj.projno=project.projno. In this example,

the set table is of course the table emproj.

We also make possible to de�ne the correspon-

dence of an object set �eld in the form of a unique

join between an elementary table of the class it owns

to and the main table of the referenced objects class.

In that case, the set table and the joined main table

may be the same table. It happens when the join

represents a N:1 relation. Then adding or removing

members (objects) in a set �nds expression in the

database in updating the corresponding main tuples

whereas it usually causes insertions or deletions of

tuples in the set table.

An example of such a correspondence can be

proposed for the �eld employees of the class

Department. Indeed we can associate it with the

join shown �gure 3. Then, the new assignment

of an Employee to a Department causes an up-

date of the object tuple in the table emp : in this

database, an Employee cannot work for more than

one Department.

Correspondence of the list type

The correspondence of this type is quite similar to

the one of the set type. It is made up by one or

several attributes of the set table which values allow

to arrange the list members and to di�erenciate the

tuples corresponding to doubles. The �rst attribute

de�nes the primary order, the second the secondary

order, etc. For each of them, the sorting out can be

in an ascending order or in a descending order.

Table emproj2

projno empno order

101 7566 237

103 7566 121

101 7788 310

...

Figure 5: The emproj2 table

We show an example of list correspondence with

the emproj2 table of �gure 5. Here the arrange-

ment of members is determined by the attribute

emproj2.order.

In the case of the object list, doubles are allowed

only if the set table is not the main table of the

referred objects and if the order attributes are not

chosen in their elementary tables.

3 Bene�ts of the Driver approach

Let us now present the bene�ts of the Driver ap-

proach.

Firstly, the user chooses the object model to be

handled. Thus, the accessed databases are directly

viewed in his own object model, even if it is really a

very own ad hoc model. More, he can easily supply

volatile objects with persistency, at his convenience.

Here, the oodbms (i.e. Driver) doesn't impose

which object model the application must work with.

Thereby the oodbms is not the main piece of the

system any more. The dbms is just a partner that

simply o�ers a service to the application. Indeed

that should be the only role of a persistency service

for many applications.

Secondly, Driver gives an object access to very

big amounts of data since the relational model is

by now the most used dbms standard. All rela-

tional databases are immediately available as ob-

ject databases and conversely, all object databases

built with Driver are of course immediately avail-

able and accessible to the numerous rdbms users.

Industry has invested a lot in relational databases

owing to the maturity of this technology. A lot of

people aspire now to pass on to the object technol-

ogy without giving up existing applications soon.

To propose an oodbms on top of a rdbms lives

up to this expectation. This solution does not up-

set the usual rdbms users and allows the new users

who need the object technology to access the same

databases in the suitable form. Generally speak-

ing, the Driver philosophy is a good solution to

share data with many users. Data are expressed

in a relational form �the simplest� in the database

but they are used by everyone in another model, his

own model with his own representation, an optimal

choice of classes, relevant to his application.

Lastly, we believe that it is necessary to com-

pletely separate the object level, i.e. the knowl-

edge representation level, from the physical level,

i.e. the �le manager level, to be able to make easily

evolve the persistent object model. This separation

is not complete in �classical� oodbms. Driver uses

rdbms as intelligent �le managers and proposes ob-

ject models on top of them. Here the level separa-

tion is actual and the models should easily evolve

with time.

References

[KJA93] A.M. Keller, R. Jensen, and S. Agar-

wal. Persistence software : Bridg-

ing object-oriented programming and rela-

tional databases. In Proceedings of Interna-

tional Conference on Management of Data.

ACM SIGACT-SIGMOD, May 1993.

[Leb92] F. Lebastard. DRIVER v1.34, Reference

manual. Technical Report 92-7 (in french),

CERMICS-INRIA, Sophia-Antipolis

(France), October 1992. 119 pages.

[Leb93] F. Lebastard. DRIVER : A persis-

tent virtual object layer for reasoning

on relational databases. Ph.D.Thesis

(in french), CERMICS-INRIA Sophia-

Antipolis (France), March 1993. 380 pages.

[Lee90] B.S. Lee. E�ciency in Instanciating Ob-

jects from Relational Databases through

views. PhD thesis, Stanford University,

Stanford (California), 1990. STAN-CS-90-

1346.

[Int92] Intellitic International. MATISSE : Open

semantic database - product

overview. Technical report, Saint-Quentin-

en-Yvelines (France), 1992. 16 pages.

[Sme90] Ilog, Gentilly (France). SMECI Ver-

sion 1.65, Reference manual, May 1990.

470 pages.

[WBL+91] G. Wiederhold, T. Barsalou, B.S. Lee,

N. Siambela, and W. Sujansky. Use of re-

lational storage and a semantic model to

generate objects : the PENGUIN project.

In Database'91 : Merging policy, standards

and technology. The armed forces communi-

cations and electronics association, Fairfax

(VA), June 1991.

