
Querying Databases from Description Logics

Paolo Bresciani

IRST, I-38050 Trento Povo, TN, Italy

bresciani@irst.itc.it

Abstract

Two di�erent aspects of data management

are addressed by description logics (DL)

and databases (DB): the semantic orga-

nization of data and powerful reasoning

services (by DL) and their e�cient man-

agement and access (by DB). It is re-

cently emerging that experiences from both

DL and DB should pro�tably cross-fertilize

each other, and a great interest is rising

about this topic.

In the present paper our technique, that

allows uniform access { by means of a

DL-based query language { to informa-

tion distributed over knowledge bases and

databases, is brie
y reviewed. Our ex-

tended paradigm integrates the separately

existing retrieving functions of description

logics management systems (DLMS) and

of database management systems (DBMS)

in order to allow, via a query language

grounded on a DL-based schema knowl-

edge, uniformly formulating and answer-

ing queries, so that uniform retrieval from

mixed knowledge/data bases is possible.

In particular, some new developments ex-

tending those presented in

[

Bresciani, 1994

]

are introduced. By means of them the

mapping between DL concepts and DB

views is not more limited to primitive con-

cepts, but also to some non-primitively de-

�ned ones.

1 Introduction

The main di�erence between knowledge representa-

tion (KR) and database (DB) systems is that the

latter are oriented to the e�cient management of

large amount of data while the former seek to give a

more structured representation of the universe of dis-

course in which data are placed. More precisely, in

a KR system the universe of discourse is described

by means of a collection of terms { or concepts {

that are placed into a taxonomy. The capability of

classifying concepts to form taxonomies is given by

an appropriate calculus, whose �rst goal is to pro-

vide a subsumption algorithm. Concept Languages

together with appropriate subsumption calculi are

called Description Logics (DL). Databases, instead,

are suited to manage data e�ciently, with little con-

cern about their dimension, but their formalism for

organizing them in a structured way is quite absent,

as well as the capability to infer new information

from the existing ones. Thus, two di�erent aspects of

data management are addressed by description log-

ics management systems (DLMS) and by database

management systems (DBMS): the semantic organi-

zation of data (by DLMS), and their e�cient man-

agement and access (by DBMS).

The importance of KR has been regarded as fun-

damental for the construction of good Intelligent In-

formation Systems for more than ten years (see, e.g.,

[

Tou et al., 1982

]

), but only recently the theoretical

foundations of a DL approach to DB have been es-

tablished

[

Buchheit et al., 1994

]

.

From another point of view, KR-based applica-

tions and, more generally, AI-based applications can

be widely enhanced by AI/DB interfaces

[

Pastor et

al., 1992, McKay et al., 1990

]

.

In particular, for the task of implementing DL-

based applications, several reasons can be argued in

favor of the use of external DB:

� because, in realistic applications, knowledge

bases (KB) not only can be complex, but can

also involve a large number of individuals, that

are di�cult { when not impossible { to manage

with the existing DLMS ABoxes, due to their

lack of e�ciency in dealing with large amounts

data, often it is better to manage large portions

of data by means of a DBMS;

� as

[

Borgida and Brachman, 1993

]

mentions, KB

based on DL are often used in applications

where they need access to large amounts of data

stored in already existing databases;

� as observed in

[

Bresciani, 1994, Bresciani, 1992

]

,

the task of acquiring knowledge for a real knowl-

edge based application often includes a great

amount of raw data collecting; for this subtask

instead of using an ABox often it is better to

use databases.

In particular we faced these problems when we

were developing a large natural language system pro-

totype

[

Bresciani, 1992

]

, whose domain and linguis-

tic model were represented using LOOM

[

MacGre-

gor, 1991

]

. A �rst implementation of the ideas here

presented is currently used in an enhanced version

of this prototype, capable of dealing with thousands

of individuals.



In such applications it is very important that the

database can be queried from the DLMS in a way

completely transparent to the user. This call for a

semantically well founded linking between the DL

knowledge base and the database. This can be ob-

tained by coupling DLMS and DBMS

[

Borgida and

Brachman, 1993

]

: primitive concepts and relations

in a KB are made to correspond respectively to

unary and binary tables in a DB. In

[

Borgida and

Brachman, 1993

]

two possible way to couple DLMS

and DBMS are proposed:

� loose coupling, that requires a pre-loading of the

data from the DB into the KB;

� tight coupling, that implements a on demand

access to the DB;

but in the system there presented only the loose

coupling paradigm is implemented

[

Devanbu, 1993,

Borgida and Brachman, 1993

]

.

Instead, our system is based on tight coupling,

allowing the following advantages:

� complex compound conjunctive queries involv-

ing unary and binary predicates can be done;

� no memory space is wasted in the DLMS in or-

der to keep descriptions of DBMS data;

� answers are given on the basis of the current

state of the KB and the DB, without needing

periodical updating of the KB with new or mod-

i�ed data from the DB.

Our technique

[

Bresciani, 1994

]

will be in the fol-

lowing brie
y reviewed. This approach is here ex-

tended with the possibility of mapping a wider set

of DL concepts into DB views: in this way less re-

strictions about the form of the KB are necessary.

2 TBox, ABox and DBox

The basic idea of our approach is to extend the

traditional DL ABox with a DBox,

1

by which the

standard TBox/ABox architecture is coupled with

one or more, possibly heterogeneous and distributed,

databases, so that the user can make queries to this

extended system without any concern on which DB

or the KB has to be accessed.

A mapping { called PM (see section 3) { be-

tween the TBox and the DBox is needed. Therefore,

a knowledge base KB = hT ;W ;D; PMi

[

Bresciani,

1994

]

is formed by a terminology T and a world de-

scription W as usual

[

Nebel, 1990

]

, plus a data base

D and the mapping function PM . A uniform query

answering function to KB, based on the two dis-

tinct complete query answering functions (one for

the ABox and one for the DBox), can be imple-

mented. For the sake of simplicity, it will be assumed

here that D is represented by means of a relational

database, and queries to the DBox can be done in

SQL.

3 Coupling

Coupling the terminology T with the data base D

corresponds to associating some terms (concepts and

1

D for data.

roles) of T with tables or views in the DB. The cou-

pling of T with D is performed in two steps. First,

a partial mapping PM between primitively de�ned

terms and the tables in the DB must be given. Giv-

ing a mapping of a primitively de�ned term into a

DB-table corresponds to giving its extension in the

DB. Let the terms for which PM is de�ned be called

D-terms. Then, using PM , also non-primitively de-

�ned concepts can be recursively mapped into views

of the DB. If the (expanded) de�nition of a non-

primitively de�ned concept contains both D-terms

and non-D-terms, the view in which the concept is

mapped does not contain all the instances of the con-

cept. Therefore, non-primitively de�ned concepts

with (expanded) de�nition containing both D-terms

and non-D-terms cannot be completely managed in

our system. Thus, the following constraints must be

imposed on KB:

1. Every table in D must correspond to one

primitively de�ned term in T , called D-term;

D-terms cannot be used in the (expanded) def-

inition of any primitively de�ned term in T .

2. The (expanded) de�nitions of non-primitively

de�ned concepts of T must contain only

D-terms or no D-term at all.

The aim of the constraint 1 is to avoid any need

of consistency checking in case of con
icts between

de�ning and de�ned concepts. If, to ensure the

avoidance of such con
icts, an exhaustive checking

{ that could involve also the extensional analysis of

DBox-tables { were provided, this constraint could

be released.

As mentioned, all the information needed to cor-

rectly drive the query mechanism is the association

of D-terms with the corresponding tables in the DB.

Thus, de�ned the partial mapping:

PM : PT ! DBtable

where PT is the set of primitive terms in T , and

DBtable is the set of tables in the DB, the views

corresponding to non-primitive concepts can be built

via a recursive partial mapping:

RM : T ! DBtable [DBview

where DBview is the (virtual) set of views in the

DB. RM maps DL-expressions into corresponding

SQL-expressions.

In the following, to simplify the description, it is

assumed that concepts are mapped into unary ta-

bles with one column called lft, and roles into bi-

nary tables with two columns called lft and rgt.

As an example, assume that non-primitively de�ned

concepts that contain D-terms in their (expanded)

de�nition are constrained to use the sub-language

with the only AND and SOME operators; in this case

RM can be de�ned as follows:

2

2

Note that R stands for a role name, i.e., for an atomic

role in T , while C and D stand for concept names or

expressions. In general, the TYPEWRITER font will be used

for atomic terms.



RM((AND C D)) =

SELECT DISTINCT lft

FROM RM(C); RM(D)

WHERE RM(C):lft =RM(D):lft

if both RM(C) and RM(D) are de�ned;

RM((SOME R D)) =

SELECT DISTINCT lft

FROM RM(R)

WHERE RM(R):rgt IN RM(D)

if both RM(R) and RM(D) are de�ned;

RM(T) = PM(T)

if PM(T) is de�ned;

and

RM(T) = SELECT DISTINCT �

FROM T

1

UNION

.

.

.

SELECT DISTINCT �

FROM T

n

if M(T) = fT

1

; : : : ; T

n

g, and n > 0.

Note that the last part of the above de�nition (see

below for the de�nition of M) allows to take into

account also all the tables and views corresponding

to terms subsumed by T, whatever T is.

Of course RM could be extended to more general

concepts, but in some cases the mapping would have

to be carefully handled, due to the di�erent seman-

tics of DL and DB (see, e.g., the ALL and the NOT

operators).

Note that, due to limitations of SQL in using sub-

queries, the SELECT used in the de�nition of RM

are non exactly legal, due to the recursive applica-

tion of RM . This problem can be easily overcome

if a CREATE VIEW corresponds to each application of

RM , and the names of the corresponding views are

placed in lieu of the recursive applications of RM .

3

The function:

M : T ! 2

DBtable[DBview

used in the de�nition of RM returns the (possibly

empty) set of tables/views necessary to retrieve all

the instances (pairs) of a given concept (role) from

the DB, that is:

M(T) = fRM(x) j x 2 subs(T) ^ RM(x) is de�nedg

where subs(T) is the set of the terms classi�ed under

T in T . Observe that RM and M are built starting

from PM ; this justi�es the use of the only PM in

the de�nition of KB given in section 2.

4 Query Answering

A query to KB is an expression:

�x:(P

1

^ : : : ^ P

n

)

3

Of course, this requires a pre-compilation step of the

DB with respect to the KB, but this is not a real overload

of the presented query mechanism.

where P

1

; : : : ; P

n

are predicates of the form C(x) or

R(x; y), where C and R are concepts and roles in T ,

respectively, and each of x and y appears in the tu-

ple of variables x = hx

1

; : : : ; x

m

i or is an individual

constant inW[D. Answering a query in KB means

�nding a set fx

1

; : : : ; x

m

g of tuples of instances such

that, for each tuple x

i

, �x:(P

1

^ : : : ^ P

n

)[x

i

] holds

{ either explicitly or implicitly { in KB. Let such

tuples be called answers to the query and the set of

all of them the answer set.

From the de�nition of answer to a query, it is obvi-

ous that, to avoid the generation of huge answer sets,

free variables must not be used, that is, each vari-

able appearing in x must appear also in the query

body. Indeed, even stronger restrictions are adopted

(see

[

Bresciani, 1994

]

).

To be answered, a query must be split into sub-

queries that can be answered by the two special-

ized query answering functions of the DLMS and

the DBMS. To this end, a marking of all the possi-

ble atomic predicates, corresponding to the terms in

T , is needed; a term P is said to be:

- KB-marked i� RM(P ) is unde�ned;

- Mixed-marked otherwise.

These two markings re
ect the fact that the in-

stances (pairs) of P are all in W , or part in W and

part in D, respectively. The case of queries in which

the predicates are all KB-marked terms is trivial (it

is enough to submit it to the DLMS answering func-

tion). The case of queries with also Mixed-marked

predicates is more di�cult.

Let a generic query be written as:

�x:(P

KB

1

^ : : : ^ P

KB

m

^ P

M

1

^ : : : ^ P

M

n

)

where the P

KB

i

correspond to the KB-marked terms,

and the P

M

i

to the Mixed-marked terms. The query

can be split in the two sub-queries:

q

KB

= �x

KB

:(P

KB

1

^ : : : ^ P

KB

m

);

q

M

= �x

M

:(P

M

1

^ : : : ^ P

M

n

):

Because each predicate in q

M

corresponds to a

view in the DB { where the answers have to be

searched in addition to those in the ABox { a trans-

lation of them into equivalent SQL queries can be

provided. Of course, the views can easily be found

via the recursive mapping RM . For each of the P

M

i

in q

M

the translation into an equivalent view is sim-

ply given by RM(P

M

i

). Thus, the SQL query corre-

sponding to q

M

i

= �y:P

M

i

{ where y is the sub-tuple

of x containing the only one or two variables used in

P

M

i

{ is:

SELECT DISTINCT select-body

FROM RM(P

M

i

)

WHERE where-body

where the select-body contains RM(P

M

i

):lft,

RM(P

M

i

):rgt, or both, according to the fact that

P

M

i

is of the kind C(x) or R(x; a), R(a; y), or R(x; y),

respectively { with x and y variables, and a con-

stant. The WHERE clause is present only in the case

of P

M

i

= R(x; a) or P

M

i

= R(a; y); in this case the

where-body is RM(R):lft = a or RM(R):rgt = a,

respectively.



In this way n partial answer sets (one for each

P

M

i

) are obtained. Of course, the queries have to be

submitted also to the DLMS, in case there are also

W-individuals satisfying them.

Now, it is, ideally, enough to get the intersection of

all the partial answer sets obtained by processing the

sub-queries of q

M

and q

KB

, but, due to the scope of

the variables of the queries, this cannot be performed

in a direct way: a merging of the results is needed.

In fact, in each sub-query some of the variables in

x may be unbound { that is, the proper tuple of

variables y of the sub-query may be a sub-tuple of

x. Therefore, the corresponding answer set has to

be completed, that is, each unbound variable in x

must be made to correspond to each instance in KB,

for all the found answers, considering all the possible

combinations. However, in this way huge answer sets

would be generated.

To solve this problem a compact representation

for the answer sets is needed. If AS

y

is a generic

partial answer set of a sub-query, and the variables

of the original complete variable tuple x missing in y

are x

p

1

; : : : ; x

p

k

, the completion of AS

y

can be rep-

resented in a compact way as AS

x

= fI

?

j I 2 AS

y

g,

where each I

?

is equal to I except that it is length-

ened by �lling the k missing positions p

1

; : : : ; p

k

with

any marker, e.g., a star `?', that stands for any indi-

vidual in KB. Using this representation it is possible

to formulate an algorithm to e�ciently cope with the

merging of answers sets, as described in

[

Bresciani,

1994

]

.

5 Conclusions

Our approach to deal with the task of integrating

DLMS and DBMS, so that KB and DB can be uni-

formly queried from a DLMS, has been presented.

With our technique, a third component { a DBox, al-

lowing spreading extensional data among the ABox

and databases { can be added to the traditional

TBox/ABox architecture of DLMS. By means of the

DBox it is possible to couple the DLMS with sev-

eral, possibly distributed and heterogeneous, DBMS,

and to use all the systems for uniformly answering

queries to knowledge bases realized with this ex-

tended paradigm.

In our �rst implementation of the system

4

the

DLMS is LOOM

[

MacGregor, 1991

]

, and the

database query language is SQL, but also other sys-

tems could be easily used.

At present our tool is used in a natural language

dialogue system prototype

[

Bresciani, 1992

]

, whose

domain and linguistic knowledge is represented in a

LOOM KB and, for some large amount of raw data,

in an INGRES DB. Currently, our system support

a more expressive query language than the one pre-

viously presented: existentially quanti�ed conjunc-

tions of atomic formul� can also be used. The study

4

Indeed, the answering algorithm has been imple-

mented in a more sophisticated way than the one pre-

sented in section 4, including also optimizations for re-

ducing the number of accesses to the DB (see

[

Bresciani,

1994

]

). The pre-compilation part of the method shown

in section 3 { that allows dealing with non primitive con-

cepts { is presently not yet fully implemented.

of the use of even more complex query-languages is

part of our future plans.

References

[

Borgida and Brachman, 1993

]

Alex Borgida and

Ronald J. Brachman. Loading data into descrip-

tion reasoners. In Proceeding of ACM SIGMOD

'93, 1993.

[

Bresciani, 1992

]

Paolo Bresciani. Use of loom for

domain representation in a natural language di-

alogue system. Technical Report 9203-01, IRST,

Povo TN, March 1992. presented at LOOM Users

Workshop, Los Angeles, March 23-24, 1992.

[

Bresciani, 1994

]

Paolo Bresciani. Uniformly query-

ing knowledge bases and data bases. In F. Baader,

M. Buchheit, M. A. Jeusfeld, and W. Nutt, ed-

itors, Working Notes of the KI'94 Workshop:

KRDB'94, number D-94-11 in DFKI Documents,

pages 58{62, Saarbr�ucken, Germany, September

1994.

[

Buchheit et al., 1994

]

Martin

Buchheit, Manfred A. Jeusfeld, Werner Nutt, and

Martin Staudt. Subsumption between queries to

object-oriented databases. Information Systems,

19(1):33{54, 1994.

[

Devanbu, 1993

]

Premkumar T. Devanbu. Trans-

lating description logics to information server

queries. In Proceedings of Second Conference on

Information and Knowledge Management (CIKM

'93), 1993.

[

MacGregor, 1991

]

R. MacGregor. Inside the

LOOM description classi�er. SIGART Bulletin,

2(3):88{92, 1991.

[

McKay et al., 1990

]

Don P. McKay, Tim W. Finin,

and Anthony O'Hare. The intelligent database

interface. In Proc. of AAAI-90, pages 677{684,

Boston, MA, 1990.

[

Nebel, 1990

]

B. Nebel. Reasoning and Revision in

Hybrid Representation Systems, volume 422 of

Lecture Notes in Arti�cial Intelligence. Springer-

Verlag, Berlin, Heidelberg, New York, 1990.

[

Pastor et al., 1992

]

Jon A. Pastor, Donald P.

McKay, and Timothy W. Finin. View-concepts:

Knowledge-based access to databases. In Pro-

ceedings of Second Conference on Information and

Knowledge Management (CIKM '93), Baltimore,

1992.

[

Tou et al., 1982

]

F. Tou, M. Williams, R. Fikes,

A. Henderson, and T. Malone. Rabbit: An in-

telligent database assistant. In Proc. AAAI'82,

1982.


