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Abstract

The paper starts by giving concise intro-

ductions into the terminological logic FRM

and the object data model COCOON. It

then brie
y outlines a semantic-preserving

mapping from FRM class descriptions to

COCOON types and classes and shows how

the terminological inference of classi�ca-

tion is mapped to a set of equivalent CO-

COON queries. Since these queries can

(mostly) be submitted as a whole to the un-

derlying database system we can take full

advantage of all the results on query op-

timisation, on providing e�cient physical

access structures, as well as on parallelisa-

tion that are available in the database area

to make terminological inferences more ef-

�cient. This will play a crucial role in re-

alising knowledge base systems capable of

dealing with very large knowledge bases.

1 Introduction

The �elds of knowledge representation

and databases are converging: The former is more

and more concerned with e�ciency for supporting

large knowledge bases, while the latter is increas-

ingly interested in providing higher representation

constructs that better serve the construction of a do-

main model. Consequently, it seems to be a fruitful

endeavour to combine the approaches of both areas.

Our approach to combining the strengths of knowl-

edge representation and database approaches takes

advantage of the conceptual similarity of termino-

logical logics and object data models. We realise a

knowledge base system by mapping a terminological

logic to an object data model which has an e�cient

implementation on top of a relational storage system

[

NRL+94

]

. To ensure that the potential for optimi-

sation provided by the database system will really be

available for the terminological system, the mapping

from terminological structures to object structures

preserves as much of the semantics of the termino-

logical logic as possible.

�

The work reported here was supported by the Swiss

Priority Programme for Computer Science (Schwerpunk-

tprogramm Informatik) under grant No. 5003-034347.

There are a few former approaches to mapping

terminological logics (or frame models) to data mod-

els. In the mappings to the relational data model

described in

[

HMM87

]

and

[

SB89

]

, one frame struc-

ture corresponds to several database structures. As

a consequence, there is little correspondence between

the representation structures the database system

manages and the original frame structures. There-

fore, the database system is deprived of most of its

optimisation capabilities.

Another former approach to mapping a frame

model to a data model is described in

[

RS89

]

. It

preserves the frame structure as a complex object

structure in the nested relational model to which

it is mapped. The major drawback with that ap-

proach results from the lack of type polymorphism

in the nested relational model because this makes it

di�cult to host the concept hierarchy of the frame

model.

Some of the existing data models that support

complex objects provide constructs that are similar

to constructs of a terminological logic (e.g.

[

KL89,

BGL+91

]

). Their main di�erence is that they do not

provide terminological reasoning services (besides in-

heritance), although o�ering deductive question an-

swering.

Sections 2 and 3 introduce the basic concepts of

the terminological logic FRM and the object data

model COCOON used in our approach. Section 4

describes the mapping of the terminological infer-

ence of classi�cation to COCOON queries and illus-

trates the mapping of class descriptions of FRM to

type and class constructs of COCOON. Section 5

concludes the paper.

2 Basic Constructs of the

Terminological Logic FRM

The syntactic constructs and the model-theoretic se-

mantics of FRM

[

RL95, Rei85

]

are given in Figure 1.

We distinguish two kinds of relations, namely prop-

erties and semantic relationships. A property de-

notes a relation between individuals and string or

integer values (see the constructs all-p and exist-v).

A semantic relationship denotes a relation between

individuals (see the constructs all-r, exist-c and

exist-i).

Unlike other terminological logics, FRM only al-
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Figure 1: Syntax and Semantics of FRM

lows class descriptions that refer to other classes

by their name and not by including their structure.

This restriction does not have any e�ect on the ex-

pressiveness. It only requires that every concept

class being used must independently be introduced

and assigned a name. However, FRM provides an

extended syntax for class descriptions that may oc-

cur as queries to a knowledge base (see

[

RLN+95

]

).

Terminological logics have evolved from frames

and semantic networks. One di�erence is that termi-

nological logics o�er a greater 
exibility for formu-

lating class descriptions. This syntactic 
exibility

makes it di�cult to de�ne a mapping of a termi-

nological logic to any data model because there is

no �xed concept structure. However, any class de-

scription formulated in FRM can be interpreted as

a frame structure, i.e., as consisting of slots and slot

entries. Thus, the FRM constructs all-p and all-r

correspond to slots. We call all-p property slots and

all-r relationship slots. The construct exist-c spec-

i�es a concept class as a slot entry and exist-i an

individual as a slot entry. exist-v sets a value as a

slot entry in a property slot.

Since the syntax of FRM as introduced above al-

lows to introduce a slot entry without (explicitly)

de�ning a corresponding slot, we must consider the

implications shown in Figure 2 to properly inter-

pret an FRM class descriptions as a frame with slots

and entries. For example, the �rst implication given

there states that the introduction of a slot entry (by

the exist-c construct) implicitly introduces a slot

(as expressed by the all-r construct). Thus, the fol-

lowing two class de�nitions would be semantically

equivalent:

g _= (exist-c manufactured-by big-company)

h _= (and (all-r manufactured-by thing)

(exist-cmanufactured-by big-company))

In Section 4 we assume the existence of a normali-

sation function norm that augments a class descrip-

tion with all implied features. For example, with

respect to the class descriptions g and h above we

get the equivalence "[norm(g)] = "[norm(h)]. The

normalisation function covers many further implica-

tions not shown in Figure 2.

3 Basic Constructs of the Object

Model COCOON

The constructs of the terminological logic FRM are

mapped to the object data model COCOON and its

associated language COOL

[

SLR+94

]

. COCOON

resembles a functional data model in that object

properties are modelled as single- and multi-valued

functions. However, it also supports the dynamic

grouping of objects into a class hierarchy based on

predicates over object properties (cf. Fig.3).

The COOL query and update language is based on

an algebra of operations over classes and can be con-

sidered as an extension of the nested relational alge-

bra

[

ScS91

]

. The basic operations are select, project,

extend (provides object type extension) and the set-

based operations of union, intersection and di�er-

ence (cf. Fig.6). The language also supports type

guards for dynamic type checking.

Update operations may change the properties,

class memberships and even the structure of

database objects during their lifetime. Since CO-

COON allows objects to be grouped into classes

based on their properties, objects are automatically

reclassi�ed within the class hierarchy after updates.

4 Mapping The Classi�cation

Inference

Figure 3 gives an example of our mapping of FRM

concept descriptions to COCOON types and classes.

Due to the limited space, the mapping is not

described in this paper but we provide remarks

where appropriate (for a detailed des cription see

[

RLN+95

]

). In the following, we give a brief de-

scription of how the classi�cation inference of FRM

is mapped to appropriate COCOON queries.

Let � denote the subsumption relation and let

< be its transitive reduction. The concept hierar-

chy can then be conceived of as an undirected graph

where the nodes represent all introduced concepts

(C) and the edges represent the relation < . Thus,

classifying a concept c means to determine the fol-

lowing two sets:

L

c

= fl 2 C j l < cg U

c

= fu 2 C j c < ug



(exist-c r c) implies (all-r r thing)

(exist-i r i) implies (all-r r thing)

(exist-v p v) implies (all-p p �)

(at-least rp n) implies (all-r rp thing) if rp is a relation, (all-p rp �) else

(at-most rp n) implies (all-r rp thing) if rp is a relation, (all-p rp �) else

Figure 2: Some of the Implications being Considered by a Normalisation Function for Class Descriptions

Sun-Del

_

� (and (all-p costs [0; 100000]) de�ne type sun-del =

(at-most costs 1) costs : integer;

(all-r receives Company Person) receives : objects;

(at-most receives 1) goods : set of objects;

(all-r goods Workstation) delivers : set of objects;

(all-r delivers Company)

(exist-i delivers Sun)) de�ne class Sun-Del : sun-del where

costs � 0 and costs � 100000 and

receives � (Person \ Company) and

delivers � Company and

Sun 2 delivers and

goods �Workstation;

Figure 3: A Concept Class Introduction (left) and its corresponding type and class de�nitions (right)

The elements of L

c

are called the most general

subconcepts of c, and the elements of U

c

the most

speci�c superconcepts of c. As the computation of

the two sets L

c

and U

c

is symmetric we only discuss

the ca se of L

c

. It can be computed by traversing

the concept hierarchy bottom-up and determing all

subconcepts of c that have no superconcept which

is a subconcept of c. This traversal can be done

by di�erent variations of the common �t depth-�rst

search algorithm

[

BHN+92

]

. Apart from such mod-

i�cations, the main algorithm used in existing sys-

tems is always the same: Classi�cation is done by

traversing the concept hierarchy while testing sub-

sumption relations.

In our approach, we compute the set L

c

com-

pletely di�erently. Instead of searching the concept

hierarchy for the appropriate position we obtain L

c

as the result of two COCOON queries:

1. The �rst query Q

1

yields all subconcepts of c:

L

+

c

= fl 2 C j l � cg

2. The second query Q

2

yields the most general

concepts from L

+

c

: L

c

= fl 2 L

+

c

j l < cg

To formulate Q

1

we �rst have a closer look at

the subsumption relation of FRM. There is a well-

de�ned set of update operations that, when applied

to a concept c, lead to a more speci�c concept ~c,

i.e. ~c � c:

I: Concept Level (applicable to any concept):

� Add a new slot to the concept.

II: Slot Level (applicable to any slot of a given con-

cept):

� In case of a property slot: Restrict the set

of permitted entries to a subset. In case of a

relationship slot (all-r r c

1

: : : c

n

): Remov

e one or more of the range classes c

1

; : : : ; c

n

and/or specialise a range class.

� Add further slot entries.

� In case of a relationship slot and a class

occurring as an entry (exist-c construct),

specialise this class, or substitute it by an

instance of it, thus substituting the exist-c

construct with an exist-i construct.

� Restrict the cardinality to a smaller inter-

val.

We are now able to de�ne the subsumption re-

lation syntactically by referring to the concept de-

scriptions (instead of the usual model-theoretic def-

inition). To this end, we require for c

1

� c

2

to hold

that c

1

can be obtained from c

2

by applying one

or more of the above operations. The corresponding

de�nition (in a declarative fashion) is given in Figure

4. It makes use of the notation introduced in Table

1 and of the predicate inst(i; c) which is true if i is

an instance of the class c. The completeness of this

subsumption de�nition very much depends on the

normalisation function discussed in Section 2. i�-

cult to be handled. Since we are still working on the

normalisation function, our subsumption algorithm

is currently not complete.

Based on the syntactic de�nition of the subsump-

tion relation it is now straightforward to formulate

the COCOON query Q

1

that determines L

+

c

for a

given concept description c. It consists of an in-

tersection of mutually independent subqueries that

can be computed concurrently. Each subquery deals

with one of the slots of the concept to be classi�ed.

The resulting query schema for a slot s

i

is shown in

Figure 5

1

. As the whole condition (ISA) is mapped

1

The query is formulated using functions de�ned for

objects in the meta-schema, each object being a descrip-

tion of one object class in the COCOON database. We

do not go into the details of the meta-schema here and

use the function names of Table 1 with a subscript \ms"

so that the correspondence to de�nition (ISA) can be

seen. The functions supc and subc yield all superclasses,
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Figure 4: Syntactic De�nition of the Subsumption Relationship

slots(c) = f rp j c

_

� (and : : : (all-r rp c

1

: : : c

n

) : : :) or c

_

� (and : : : (all-p rp range) : : :) g

rrange(c; s) = f c

1

; : : : ; c

n

j c

_

� (and : : : (all-r s c

1

: : : c

n

) : : :) g

prange(c; s) = r ;where c

_

� (and : : : (all-p s r) : : :)

entries-c(c; s) = f c

e

j c

_

� (and : : : (exist-c s c

e

) : : :) g

entries-i(c; s) = f i j c

_

� (and : : : (exist-i s i) : : :) g

entries-v(c; s) = f v j c

_

� (and : : : (exist-v s v) : : :) g

minCard(c; s) = n ;where c

_

� (and : : : (at-least s n) : : :)

maxCard(c; s) = n ;where c

_

� (and : : : (at-most s n) : : :)

Table 1: Functions for Accessing Parts of a (Normalised) Concept De�nition (analogously for _=)

to a single query we can take full advantage of the

query optimiser in the underlying database system.

Since classi�cation is an inference on the structure

of concept descriptions, this query schema accesses

the meta-schema. As discussed in Section 4, most of

the information about an FRM concept is encoded

in the class predicate of the corresponding object

class. However, the class predicate is just a string-

valued attribute in the meta-schema and can only be

queried as a whole. This means that certain struc-

tures of a concept description cannot be queried di-

rectly. Therefore, we extended the COCOON meta-

schema by an application-speci�c part where we

store the information about the concept classes in

a well-structured way (in a certain sense, we model

FRM in COCOON). While the meta-schema exten-

sion has to be administered by the mapping algo-

rithm the \standard" part of the meta-schema is up-

dated automatically by the COCOON system.

Figure 6 shows part of the COCOON query that

returns the set of all subconcepts of `Sun-Del' (see

Figure 3) in the current knowledge base. This part

completely deals with the slot `delivers'.

As introduced above, queryQ

2

of our classi�cation

inference is concerned with extracting the most gen-

eral subconcepts L

c

from the set of all subconcepts

L

+

c

. Assuming that the variable L holds the result

from Q

1

(i.e., the set L

+

c

), query Q

2

can be formu-

lated in COCOON as: select[; = supc(l)\L](l : L).

5 Conclusions

We proposed to map terminological inferences to

queries of an object data model. The resulting,

complex queries can be split into several subqueries

and evaluated independently. Thus, besides making

or subclasses, resp. The function objects(c) returns all

objects in the class c.

use of more standard database optimisation tech-

niques, like query optimisation and specialised ac-

cess structures, we can also exploit parallelisation.

We expect this implementation of subsumption to be

much more e�cient for large knowledge bases than

a standard implementation, while for small knowl-

edge bases the overhead introduced nd the database

system will be greater than the e�ciency gained by

the optimisations.

We are currently implementing the mappings de-

scribed in this paper. To provide e�cient retrieval

and update services the object model COCOON is

mapped to a relational storage system which makes

use of massive data replication (to minimise retrieval

costs) and parallelisation of update operations (to

minimise update costs). In a subsequent step, we

will set up experiments to evaluate the e�ciency gain

and to pinpoint further possible improvements.
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