
Packaging Knowledge into Metaobjects

David Edmond, Mike Papazoglou, Nick Russell and Zahir Tari

School of Information Systems, Queensland University of Technology

GPO Box 2434 Brisbane Queensland 4001 Australia

email: fdavee,mikep,nickr,zahirtg@icis.qut.edu.au

Abstract

The use of re
ection

[

Mae87, HY88, Pae90

]

is partic-

ularly applicable to multi-database systems and to

cooperating systems in general. We view such sys-

tems as (1) being distributed over a common com-

munication network, and (2) working towards some

common goal. Cooperation is achieved by coordinat-

ing and exchanging information and expertise. Con-

ventional database systems are not cooperative: the

knowledge they contain is inaccessibly buried within

application code.

In

[

EPT95

]

, we discuss the R-OK Model and sug-

gest that this problem may be overcome by sur-

rounding each local database system with a layer of

special re
ective metaobjects. The term meta object

is used only to indicate the relation of such an ob-

ject to the object it describes. A metaobject is

just another object, with structure and behaviour.

These objects are used to capture domain and oper-

ational knowledge, and to describe, at least in part,

remote systems and to monitor task-oriented activ-

ities. In this way, we can turn interconnected con-

ventional database systems into a set of cooperating

knowledge-based systems. In the R-OK model, every

object has access to four metaobjects:

1. A state metaobject knows the structure of any

associated object, naming each attribute and spec-

ifying its type. For example, if the application do-

main was a simple savings bank, then a savings ob-

ject might be described by a state metaobject as

having an account Id, a balance and a minimum-

balance-this-month attributes. By its nature, such a

metaobject provides only a static picture of an ob-

ject.

2. A can metaobject knows about the behaviour of

any associated object { it knows what an object can

do. This object may also be associated with a num-

ber of domain objects, all of which share the same

(outward) behaviour. In this metaobject, activities

are described in terms of pre- and post-conditions.

In the bank example, the post-condition of theWith-

draw methods might require that if the new balance

is less than the previous minimum, then the mini-

mum is reset. Such a metaobject allows a system to

consider possible behaviour and its consequences to

the object(s) concerned. It also allows a system to

investigate alternative ways of achieving some goal.

Should it be necessary, for example, to increase the

balance of an account, it may be that there are two

ways of accomplishing this { either through a con-

ventional deposit or by applying interest to the ac-

count.

3. A loc metaobject knows how to locate attributes

and execute the methods of an object. This metaob-

ject contains:

� A Lookup table which indicates how each at-

tribute of the associated domain object is ma-

terialised. This rei�cation is accomplished by

surrogate objects. These metalevel objects have

speci�c knowledge of the location of data.

� A Do table which contains, for each method,

procedural descriptions of how that method is

e�ected. Should an interpreter be used to exe-

cute such code, it will use the Lookup table to

resolve symbols that it does not recognise.

4. An act metaobject knows about the activity in

which some group of objects is involved. It is a task-

oriented object that monitors the activities of the

collection of objects that constitute its domain.

Re
ection, by means of these four metaobjects, not

only allows descriptions of the capabilities of exist-

ing information systems and their inter-relationships

but also facilitates the speci�cation and implementa-

tion of a new system by means of composition, that

is, by drawing upon the functionality of existing sys-

tems.

Because a metaobject is just another object, with

structure and behaviour, we may ask whether it too

has access to descriptions of itself. In

[

EPT94

]

, we

use these constructs to penetrate aspects of informa-

tion systems that are usually closed to us; on par-

ticular, we look at two examples of how knowledge

of behind-the-scene actions may be used to enable

cooperation.

In this presentation, we will discuss how the model

may be used to provide translations from an object-

oriented model into a relational database.

References

[

EPT94

]

Edmond D., Papzoglou M. and Tari Z.

(1994) \Using Re
ection as a Means

of Achieving Cooperation", Procs of

FGCS'94 Workshop on Heterogeneous

Cooperative Knowledge-Bases, Tokyo.

[

EPT95

]

Edmond D., Papzoglou M. and Tari Z.

(1995) \R-OK: A Re
ective Model for



Distributed Object Management", Procs

of RIDE'95 (Research Issues in Data En-

gineering), Taiwan.

[

HY88

]

Y. Honda and A. Yonezawa, \Debug-

ging Concurrent Systems Based on Ob-

ject Groups", Procs of ECOOP'88: Euro-

pean Conference on Object-oriented Pro-

gramming, Oslo, Norway.

[

Mae87

]

Maes P. (1987). \Concepts and Ex-

periments in Computational Re
ection",

OOPSLA'87.

[

Pae90

]

Paepcke A. (1990). \PCLOS: Stress Test-

ing CLOS", OOPSLA'90.


