CEUR-WS.org/Vol-2361/short3.pdf

PRABHAB: Change Impact Analysis for Package
Management Systems

Joseph Hejderup
Delft University of Technology
The Netherlands
j-i.hejderup @tudelft.nl

Abstract—Package management systems such as NPM, MAVEN,
or CARGO facilitate large collections of modular FOSS libraries,
called packages, that act as reusable building blocks for software
systems. While packages have a small code footprint, they have
dependencies on other remotely-developed packages, making
package repositories highly interconnected. As a side effect,
ill-thought or inevitable changes in new releases on existing
packages can negatively impact inter-dependent packages in a
repository, creating problems such as cascading build breakages.
In this position paper, we propose Prabhab, a novel approach
to aid package maintainers in estimating the impact of code
changes against a package repository using PRAZI, a fine-grained
dependency network. Further, we discuss potential applications
that Prabhab can aid in quality assurance of package releases
and package repositories. Finally, we present a set of challenges
in realizing this approach.

I. INTRODUCTION

Package managers provide a central mechanism to make the
rich diversity of community-developed OSS libraries, hosted in
centralized code repositories, available into the workspace of
software projects. Central to package managers are packages;
these are archives of bundled library functionality with a
declared manifest, providing a standardized format to compose
and build upon library functionality from remotely-developed
libraries (known as a dependency). Inspired by the Unix
philosophy [1]], a package should ideally be small, do one
thing well and act as a building block for other packages [?2].
By making libraries small, modular and distributable through
a packing system has amplified the development towards vivid
and large code repositories.

A side-effect of this fast-paced development is the formation
of strongly interconnected packages as a result of depending
on many small remotely-developed packages [3[l, [4]. As
many software systems and packages within a repository also
subscribe for automatic updates of their package dependen-
cies [5]-[7], an update of a dependency can trigger an adverse
impact to connected packages within a package repository.
Upon publication of a new release, new changes do not
undergo external testing nor code reviewing, making it prone
to break update compatibility (e.g., breaking API changes) and
introducing bugs (e.g., memory leaks). As a result, a mistake
will affect dependents but also spread to other connected
dependents, creating a domino effect in the package repository.
The risk is real; a study suggests that certain packages have
the power to impact 30% of a package repository [8]].

rgwozdz commented on Jun 21

We have a dependency on the workerCleanup function that was removed in release 5.3.0. Since the
removal of this function causes a breaking change | think this release has incorrect semver. Shouldn't it
have been 6.0.0?

evantahler commented on Jun 22 Collaborator

At the time we didn't make it a /major/ change because:

o worker#workerCleanup was always listed as an optional method, and we learned that very few
people actually used it

® the community was asking for "automatic" cleanup, so we /moved/ the work
worker#workerCleanup was doing to the scheduler

* we were focused on the new worker.ping APl above everything else, which was developed to be
transparent (no api changes)

Fig. 1: Breaking change for taskrabbit/node-resque,
#252.

With a growing number of dependencies in projects [8]],
localizing and dealing with such changes is both daunting
and a time sink for development teams [9] as exemplified
in Figure [I] As a consequence, good intentioned package
maintainers may risk losing its active user-base due to ill-
thought changes. To mitigate this risk, package reposito-
ries recommend the use of semantic versioning to label the
degree and character of the changeset [[10]-[12]. However,
misclassification and misinterpretations of changes are com-
mon [7]. Another compelling method is the use of regression
testing tools such as NoRegrets [6], dont-break [13]]
and cargo—crusador [14] which are capable of detecting
breaking changes in dependent packages. While useful, these
tools are limited to detection of breaking changes on directly
depending users, making it incomplete by leaving out non-
breaking changes such as bugs and how changes impact indi-
rect dependent packages. Thus, impeding the comprehension
of understanding the complete impact of a set of code changes
in a package repository.

In this paper, we propose a novel method for change impact
analysis of package management systems by emulating the
effect of package release roll outs using a dependency network
to obtain a more complete and precise impact set. Instead
of using conventional dependency networks, our technique
performs analysis on PRAZI [15], a scalable versioned call-
based dependency network to identify impacted repository
paths of inter-package function calls. The resulting impact
set constitutes of impacted call paths which are ranked and

1= N S SO .

classified according to the popularity of the package and also
its centrality in the package repository. The impact set enables
package maintainer to understand to what extent changes affect
a package repository, and whether those entities are important
to the package repository.

II. IMPACT TRANSFER IN PACKAGE MANAGEMENT
SYSTEMS

A. Impact transfer of a new package release

To make a package available in a software project, de-
velopers need to specify the name and version constraint
of the package. A version constraint denotes the anticipated
set of compatible package releases within a project. Package
managers support forward-compatibility in version constraints,
enabling automatic updates to the latest compatible release. As
an example, installing a package with CARGO generates a de-
pendency descriptor with forward-compatibility by default, as
shown in Listing[] In Listing[I] my-project is compatible
with lodash "4.17.11, where the caret (") symbol instructs
the package manager to fetch the latest non-major version up
to the next major release (e.g., if x is a version, the compat-
ibility range is x > 4.17.11 Nz < 5.0.0). In addition to only
updating to the latest non-major version, a tilde (~) symbol
prepended to a version (e.g., ~4.17.11 or 4.17.x) updates to
the latest non-minor version (e.g., z > 4.17.11 Nz < 4.18.0).

"name": "my-project"
"dependencies": {
"lodash": ""4.17.11"

}

Listing 1: cargo install lodash

While forward-compatible version constraints provide a
mechanism for staying up-to-date with bug fixes of a package
dependency, it is also a source of introducing build failures and
new untested code to software projects. In relation with many
other dependencies in a project, localization, and troubleshoot-
ing of failing dependencies become challenging. Figure [2a]
depicts the dependency tree with inter-procedural function
calls of a ToDo App, which uses a package to upload new
tasks to three online services, trello, evernote and wiinderlist.
Building the ToDo App at ¢t/ results in an operational appli-
cation. However, rebuilding the ToDo App at a later point
in time ¢2, leads to a build failure as shown in Figure @
Here, the validator dependency is automatically updated
(e.g., see 0.2.x) from version 0.2.3 to 0.2.4 with a semver-
incompatible change by renaming the method validate ()
to isvValid(). As a result, restler depending on the
validate () method from version 0.2.3 will result in a
breakage which in turn propagates up to the ToDo App. On
the other hand, despite the semver-incompatibility, reqwest
does not call validate () and continues to be operational.

Given the current tooling for regression testing of de-
pendent clients [6], the hypothetical library maintainers of
validator would have limited insights about the impact
of the changes made in the release of version 0.2.4 for the
following reasons: (1) the impact set leave out transitive
clients (In Figure 2] a library maintainer may not be aware
that a potentially popular ToDo App will break because of
breaking changes in a less insignificant package, restler),
(2) the impact does not treat dependency information as a first-
class citizen, in particular, forward-compatibility of clients
(In Figure 2] had we excluded restler or perhaps used
a development version, the library maintainer would assume
that no one is affected).

The event of automatically updating a dependency of an
existing package from a previous version v to a new version v’
can have an adverse impact to connected dependent packages
without directly visible relations in a package management
system. We consider two classes of code changes to be im-
portant for impact transfer in a package management system,
structural and implementation changes of a package’s public
API interface.

a) Impact of structural changes: Structural changes,
commonly known as breaking changes arise when an updated
version is not backward compatible with a previous version of
a dependency. This includes changes such as function removal,
modified argument list or return type of an API function, and
access visibility. An immediate impact of structural differences
between two versions of the same package dependency is a
build error, which further propagates to depending packages
that will also fail to build.

b) Impact of implementation changes: Implementation
changes in relation to a public API can be a source for
bug introduction which can destabilize a subset of a package
repository. While identification of such bugs can be hard to
catch, implementation changes that impact a large subset of
package repository should receive external testing and code
reviewing before being released.

B. PRAZIL: call-based dependency network

Package-based dependency networks can by its nature not
provide a fine-grained resolution to perform change impact
analysis. To realize PRABHAB, we build on-top of PRAZI,
a call-based dependency network that derives its dependency
relationships from function calls in packages instead of con-
ventional metadata [15]. With PRAZI, we can track control
flow changes across a package repository.

III. IMPACT ANALYSIS OF PACKAGE CHANGES

PRABHAB detects propagation of changes in a package
repository in a four-phase process as shown in Figure |3| In
the first phase (1), PRABHAB emulates a rollout of a proposed
release to identify dependents packages that would update to
the new release. For each identified dependent (2), PRABHAB
generates a diff between its current version and the proposed
release to identify a list of changes. Once all changes are
identified (3), PRABHAB performs a reachability analysis on

TODO APP

createTask()

0.8.0

\1.2.0
¥ ¥
Evernote —— trello [addcard() 1 ddTask() wiinderlist
createNote -|.ZD a as
]

~2.34

~0.5.0

/
3.4.8 3.4.x

validator

escape()

validate()

(a) Working tree at ¢/

0.2.x

TODO APP

createTask()

todo-service

upload()
J ~0.1.0

\1.2.0

¥ A
y I inderlist
Ee[createNote() ﬂ [[addCard() }] ﬁ addTask() } m;;ns}

1\]

~0.5.0

~2.3.4

reqwes
0.2.x
_——— -
.

3.4.x

restler

postISON()

(b) Failing tree at 12

Fig. 2: Dependency tree of a modern todo application

PRAZI to discover impacted inter-package call chains in the
repository. Finally (4), the impact set is ranked according to
package importance such as active development, popularity
and centrality in a dependency network.

A. Emulating a new release

By emulating a rollout of a new release, we extract the sub-
set of packages in a package repository that would be impacted
by an update. To calculate this subset, we construct a versioned
dependecy network by resolving all package constraints, and
add the emulated release as an available package to resolve
to. Then, we do a query on the dependency network to find
all connected dependent packages. The resulting set should
contain dependents that will resolve to the new version along
with the version it currently resolves to.

B. Identifying changed entities

After obtaining the package version each potentially af-
fected dependent resolves to, we perform a diff to identify
the source code changes. From the source code changes, we
use a diff analyzer to identify whether a change is structural
or implementation and which API endpoints are affected.
Then, we use PRAZI to perform a reachability analysis to
retrieve affected inter-package call chains in the package
repository. The result of running the reachability analysis for
the changeset of each dependent is the impact set.

C. Ranking the change set

To aid package maintainers with additional information
about the change set, we extract information such as centrality
in the package repository, download popularity and active
development of affected packages.

IV. RELATED WORK

Change Impact analysis is a widely studied problem in
program analysis research [[16]], [[L7]. Propagation of changes
in package repositories has become an important research
area in light of incidents such as the left-pad incident, and
recent moves to emulate these problems on package-based
networks [2f], [8], [[18]].

a) Regression testing: Regression testing, i.e., a form
of testing that aims to confirm that a proposed code change
has not adversely affected existing features, is a close area
to our work. Closest to our work is NoRegrets [6], a tool
that detects breaking changes in test suites of dependent NPM
packages before releasing an update of the library. On similar
lines, the work of Raemaekers et al. [7] studies the impact
of semver incompatibilities of Maven packages, suggesting
that one-third of the releases introduces a semver-incompatible
change. In contrast to their work, our technique also considers
the impact of transitive dependents and aims to calculate the
impact against the entire package repository. Moreover, we
also consider forward-compatibility of dependent clients - a
new release may not necessarily result in dependent clients
updating and, thus yielding a more accurate representation.

b) Change Impact Analysis: We perform change impact
analysis on a call graph representation to compute the impact
set. Several techniques [[19]-[23[] use call graphs as an inter-
mediate representation for change impact analysis. Alternative
techniques to call graphs are static and dynamic slicing [24],
[25]], profiling [26], [27]] and execution traces [28]]. Due to cost-
precision trade-offs, several proposed approaches use a com-
bination of these techniques. One such example is Alimadadi
et al’s work on Tochal, that leverages both runtime data and
call graphs to more accurately represent changes to dynamic
features such as the DOM. While the RustPrazi representation
could benefit from dynamic information, the gain is substan-

(1) Emulate release

o, CBee
TR &r

(2) Package API Diff analyzer

(4) Ranking

1_0_2::pad_str()

%/_/
@

1_0_2::escape()

e ¥
(2 o
9 @def parse(int x) e
edef escape() e def escape() W_/
w edef pad_str(int x) 9 def pad_str(int lhs,int rhs)
et

Geowo) O
G) &
(o) #

[validate_json()

] [encode_json()

(3) Prazi Analysis

'Y O

search_api()

Fig. 3: Our approach to perform change impact analysis of a package repository

tial to the completeness, making dynamic instrumenation an
expensive trade-off. For a comprehensive overview of impact
analysis techniques and change estimations, we refer the reader
to Li et al’s [|16] survey on code-based change impact analysis
techniques.

c) API studies: While change impact analysis promi-
nently proposes techniques with respect to enhancing com-
pleteness and precision of results, several papers investigate
decisions behind API changes. Sawant et al [29] studied the
reaction of deprecation of more than 25,000 clients from four
libraries. Overwhelmingly, clients do not react to deprecation
features. In a follow-up study [30]], a missing aspect in the
decision making of deprecating features is that there is no well-
defined protocol on how to do it. PRABHAB could aid package
managers with information about use of deprecated functions
to make more informed decisions. Bogart ef al. [9]] conducted
interviews with API developers in 3 software ecosystems:
Eclipse, npm, and R/CRAN. The three ecosystems have dif-
ferent polices and values with respect to breaking changes.
A key insight is that developers monitor changes in depen-
dencies actively, however, current tooling are burdensome
due to noise. Moreover, developers are increasingly avoiding
the use of forward-compatibility and reducing the number of
dependencies to avoid dealing with upstream changes. Package
managers can use PRABHAB as part of the publication process;
if a set of changes will affect a large part of the repository, the
release will be put on hold with need for additional external
validation. This way, clients can take advantage of forward-
compatibility without being disrupted by breaking changes.

d) Dependency networks: The aftermath of the left-
pad incident has led to a surge of studies around package
repositories. Researchers have constructed dependency net-
works of package repositories to trace the impact of security
problems [8]], [18]], [31]], to study the evolution of language
ecosystems [3[, [4], [8], or health [2], [32] In the area of
security, notably, Kikas et al. [8] have shown there exist
packages that can break up to 30% of packages in both
NPM and RUBYGEMS. With PRABHAB, our technique can
complement such analyses to include propagation of risky
code changes in package repositories.

REFERENCES

[1] Malcolm D Mcllroy, EN Pinson, and BA Tague. Unix time-sharing
system: Foreword. Bell System Technical Journal, 57(6):1899-1904,
1978.

[2] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid,
and Emad Shihab. Why do developers use trivial packages? an empirical
case study on npm. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 385-395. ACM, 2017.

[3] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. A look at the
dynamics of the JavaScript package ecosystem. In Mining Software
Repositories (MSR), 2016 IEEE/ACM 13th Working Conference on,
pages 351-361. IEEE, 2016.

[4] Alexandre Decan, Tom Mens, and Philippe Grosjean. An empirical com-
parison of dependency network evolution in seven software packaging
ecosystems. Empirical Software Engineering, Feb 2018.

[5] Samim Mirhosseini and Chris Parnin. Can automated pull requests
encourage software developers to upgrade out-of-date dependencies?
In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, pages 84-94. IEEE Press, 2017.

[6] Gianluca Mezzetti, Anders Mgller, and Martin Toldam Torp. Type
regression testing to detect breaking changes in node. js libraries. In
32nd European Conference on Object-Oriented Programming (ECOOP
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[7]

[8]

[9]

[10]
(11]
[12]
[13]
[14]

[15]

[16]

[17

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

Steven Raemaekers, Arie van Deursen, and Joost Visser. Semantic
versioning and impact of breaking changes in the maven repository.
Journal of Systems and Software, 129:140-158, 2017.

Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl.
Structure and evolution of package dependency networks. In Pro-
ceedings of the 14th International Conference on Mining Software
Repositories, pages 102—112. IEEE press, 2017.

Christopher Bogart, Christian Kistner, James Herbsleb, and Ferdian
Thung. How to break an api: cost negotiation and community values
in three software ecosystems. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, pages 109—-120. ACM, 2016.

Common practices to make your gem users and other developers lives
easier. .| (Accessed on 21/10/2018).

Alex Crichton. Api evolution. |, May 2015. (Accessed on 21/10/2018).
How to use semantic versioning. . (Accessed on 21/10/2018).

Gleb Bahmutov. Do not break dependant modules. || Nov 2014.
(Accessed on 09/11/2018).

Test the downstream impact of rust crate changes before publishing. |.
(Accessed on 09/11/2018).

Joseph Hejderup, Moritz Beller, and Georgios Gousios. Przi: From
package-based to precise call-based dependency network analyses.
Workingpaper, 2018.

Bixin Li, Xiaobing Sun, Hareton Leung, and Sai Zhang. A survey
of code-based change impact analysis techniques. Software Testing,
Verification and Reliability, 23(8):613-646, 2013.

Steffen Lehnert. A taxonomy for software change impact analysis.
In Proceedings of the 12th International Workshop on Principles of
Software Evolution and the 7th annual ERCIM Workshop on Software
Evolution, pages 41-50. ACM, 2011.

Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio,
and Katsuro Inoue. Do developers update their library dependencies?
Empirical Software Engineering, 23(1):384-417, 2018.

Barbara G Ryder and Frank Tip. Change impact analysis for object-
oriented programs. In Proceedings of the 2001 ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and en-
gineering, pages 46-53. ACM, 2001.

Linda Badri, Mourad Badri, and Daniel St-Yves. Supporting predictive
change impact analysis: a control call graph based technique. In Software
Engineering Conference, 2005. APSEC’05. 12th Asia-Pacific, pages 9—
pp. IEEE, 2005.

Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G Ryder, and Ophelia
Chesley. Chianti: a tool for change impact analysis of java programs.
In ACM Sigplan Notices, volume 39, pages 432-448. ACM, 2004.
Daniel M German, Ahmed E Hassan, and Gregorio Robles. Change im-
pact graphs: Determining the impact of prior codechanges. Information
and Software Technology, 51(10):1394-1408, 2009.

Bixin Li, Xiaobing Sun, and Hareton Leung. Combining concept lattice
with call graph for impact analysis. Advances in Engineering Software,
53:1-13, 2012.

Frank Tip. A survey of program slicing techniques.
Wiskunde en Informatica, 1994.

Robert S Arnold. Software change impact analysis. ITEEE Computer
Society Press, 1996.

James Law and Gregg Rothermel. Whole program path-based dynamic
impact analysis. In Proceedings of the 25th International Conference on
Software Engineering, pages 308-318. IEEE Computer Society, 2003.
Alessandro Orso, Taweesup Apiwattanapong, and Mary Jean Harrold.
Leveraging field data for impact analysis and regression testing. In
ACM SIGSOFT Software Engineering Notes, volume 28, pages 128—
137. ACM, 2003.

Alessandro Orso, Taweesup Apiwattanapong, James Law, Gregg Rother-
mel, and Mary Jean Harrold. An empirical comparison of dynamic
impact analysis algorithms. In Proceedings of the 26th International
Conference on Software Engineering, pages 491-500. IEEE Computer
Society, 2004.

Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. On the
reaction to deprecation of clients of 4+ 1 popular java apis and the jdk.
Empirical Software Engineering, 23(4):2158-2197, 2018.

Anand Ashok Sawant, Mauricio Aniche, Arie van Deursen, and Alberto
Bacchelli. Understanding developers needs on deprecation as a language
feature. In Proceedings of the 40th ACM/IEEE International Conference
on Software Engineering (ICSE 2018). forthcoming, 2018.

Centrum voor

(31]

(32]

Alexandre Decan, Tom Mens, and Eleni Constantinou. On the impact
of security vulnerabilities in the npm package dependency network. In
International Conference on Mining Software Repositories, 2018.
Marat Valiev, Bogdan Vasilescu, and James Herbsleb. Ecosystem-
level determinants of sustained activity in open-source projects: A case
study of the pypi ecosystem. In Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE. ACM, 2018.

https://guides.rubygems.org/patterns/#semantic-versioning
https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md
https://docs.npmjs.com/getting-started/semantic-versioning
https://glebbahmutov.com/blog/do-not-break-dependant-modules/
https://github.com/brson/cargo-crusader

	Introduction
	Impact transfer in package management systems
	Impact transfer of a new package release
	Präzi: call-based dependency network

	Impact analysis of package changes
	Emulating a new release
	Identifying changed entities
	Ranking the change set

	Related Work
	References

