
Workshop Proceedings

Workshop on

Algorithms & Theories for the
Analysis of Event Data (ATAED’2019)

Aachen, Germany, June 25, 2019

Satellite event of the conferences

19th International Conference on Application of
Concurrency to System Design (ACSD 2019)

40th International Conference on Application and Theory
of Petri Nets and Concurrency (PN 2019)

Edited by
Wil van der Aalst, Robin Bergenthum, and Josep Carmona

.

Copyright c© 2019 for the individual papers is held by the papers’ authors.
Copying is permitted only for private and academic purposes.
This volume is published and copyrighted by its editors.

Preface

Ehrenfeucht and Rozenberg defined regions more than 25 years ago as sets
of nodes of a finite transition system. Every region relates to potential condi-
tions that enable or disable transition occurrences in an associated elementary
net system. Later, similar concepts were used to define regions for Petri nets
from languages as well. Both state-based and language-based approaches aim to
constrain a Petri net by adding places deduced from the set of regions. By now,
many variations have been proposed, e.g., approaches dealing with multiple to-
kens in a place, region definitions for Petri nets with inhibitor arcs, extensions
to partial languages, regions for infinite languages, etc.

Initially, region theory focused on synthesis. We require the input and the
behavior of the resulting Petri net to be equivalent. Recently, region-based re-
search started to focus on process mining as well where the goal is not to create
an equivalent model but to infer new knowledge from the input. Process min-
ing examines observed behavior rather than assuming a complete description
in terms of a transition system or prefix-closed language. For this reason, one
needs to deal with new problems such as noise and incompleteness. Equivalence
notions are replaced by trade-offs between fitness, simplicity, precision, and gen-
eralization. A model with good fitness allows for most of the behavior seen in
the event log. A model that does not generalize is “overfitting”. Overfitting is the
problem that a very specific model is generated whereas it is obvious that the log
only holds example behavior. A model that allows for “too much behavior” lacks
precision. Simplicity is related to Occam’s Razor which states that “one should
not increase, beyond what is necessary, the number of entities required to explain
anything”. Following this principle, we look for the simplest process model that
can explain what was observed in the event log. Process discovery from event
logs is very challenging because of these and many other trade-offs. Clearly, there
are many theoretical process-mining challenges with a high practical relevance
that need to be addressed urgently.

All these challenges and opportunities are the motivation for organizing the
Algorithms & Theories for the Analysis of Event Data (ATAED) workshop. The
workshop first took place in Brussels in 2015 as a succession of the Applications
of Region Theory (ART) workshop series. From there on, the workshop moved
to Toruń (2016), Zaragoza (2017) and Bratislava (2018). After the success of
these workshops, it is only natural to bring together researchers working on
region-based synthesis and process mining again.

The ATAED’2019 workshop took place in Aachen on June 25, 2019 and was a
satellite event of both the 40th International Conference on Application and The-
ory of Petri Nets and Concurrency (Petri Nets 2019) and the 19th International
Conference on Application of Concurrency to System Design (ACSD 2019). This
year, the workshop is also co-located with the 1st International Conference on
Process Mining (ICPM 2019).

Papers related to process mining, region theory and other synthesis tech-
niques were presented at ATAED’2019. These techniques have in common that
“lower level” behavioral descriptions (event logs, partial languages, transition sys-

tems, etc.) are used to create “higher level” process models (e.g., various classes
of Petri nets, BPMN, or UML activity diagrams). In fact, all techniques that
aim at learning or checking concurrent behavior from transition systems, runs,
or event logs were welcomed. The workshop was supported by the IEEE Task
Force on Process Mining (www.win.tue.nl/ieeetfpm/).

After a careful reviewing process, six papers were accepted for the workshop.
We thank the reviewers for providing the authors with valuable and constructive
feedback. Moreover, we were honored that Wolfgang Reisig was willing to give
an invited talk on “How to analyze BIG systems?”. We thank Wolfgang, the
authors, and the presenters for their wonderful contributions.

Enjoy reading the proceedings!

Wil van der Aalst, Robin Bergenthum, and Josep Carmona
June 2019

Program committee of ATAED’2019

Wil van der Aalst, RWTH Aachen, Germany (co-chair)
Abel Armas Cervantes, QUT, Australia
Eric Badouel, INRIA Rennes, France
Robin Bergenthum, FernUni Hagen, Germany (co-chair)
Luca Bernardinello, Universitá degli studi di Milano-Bicocca, Italy
Andrea Burattin, University of Innsbruck, Austria
Josep Carmona, UPC Barcelona, Spain (co-chair)
Paolo Ceravolo, University of Milan, Italy
Claudio Di Ciccio, Vienna University of Economics and Business, Austria
Benoît Depaire, Hasselt University, Belgium
Jörg Desel, FernUni Hagen, Germany
Dirk Fahland, TU Eindhoven, The Netherlands
Chiara Di Francescomarino, FBK-IRST, Italy
Stefan Haar, LSV CNRS & ENS de Cachan, France
Gabriel Juhás, Slovak University of Technology, Slovak Republic
Anna Kalenkova, Higher School of Economics NRU, Russia
Jetty Kleijn, Leiden University, The Netherlands
Robert Lorenz, Uni Augsburg, Germany
Manuel Mucientes, University of Santiago de Compostela, Spain
Marta Pietkiewicz-Koutny, Newcastle University, GB
Uli Schlachter, Uni Oldenburg, Germany
Arik Senderovich, Technion, Israel
Jochen De Weerdt, KU Leuven, Belgium
Lijie Wen, Tsinghua University, China
Moe Wynn, Queensland University of Technology, Australia
Alex Yakovlev, Newcastle University, GB

Table of Contents

Raymond Devillers, Evgeny Erofeev, Thomas Hujsa
Synthesis of Weighted Marked Graphs from
Circular Labelled Transition Systems 6 - 22

Jörg Desel
Can a Single Transition Stop an Entire Net? 23 - 35

Federica Adobbati, Carlo Ferigato,
Stefano Gandelli, Adrián Puerto Aubel
Two Operations for Stable Structures of Elementary Regions 36 - 53

Nassim Laga, Marwa Elleuch,
Walid Gaaloul, Oumaima Alaoui Ismaili
Emails Analysis for Business Process Discovery 54 - 70

Ronny Tredup, Christian Rosenke
On the Hardness of Synthesizing Boolean Nets 71 - 86

Alessandro Berti, Wil van der Aalst
Reviving Token-based Replay: Increasing Speed
While Improving Diagnostics 87 - 103

Synthesis of Weighted Marked Graphs from
Circular Labelled Transition Systems

Raymond Devillers1, Evgeny Erofeev(�)?2, and Thomas Hujsa??3

1 Département d’Informatique, Université Libre de Bruxelles,
B-1050 Brussels, Belgium (rdevil@ulb.ac.be)

2 Department of Computing Science, Carl von Ossietzky Universität Oldenburg,
D-26111 Oldenburg, Germany (evgeny.erofeev@informatik.uni-oldenburg.de)

3 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France (thujsa@laas.fr)

Abstract. Several works have proposed methods for the analysis and
synthesis of Petri net subclasses from labelled transition systems (LTS).
In this paper, we focus on Choice-Free (CF) Petri nets, in which each
place has at most one output, and their subclass of Weighted Marked
Graphs (WMGs). We provide new conditions for the WMG-synthesis
from a circular LTS, i.e. forming a single circuit, and discuss the difficul-
ties in extending these new results to the CF case.

Keywords: Weighted Petri net, choice-free net, synthesis, labelled transition
system, cycles, cyclic words, circular solvability.

1 Introduction

Petri nets form a highly expressive and intuitive operational model of discrete
event systems, capturing the mechanisms of synchronisation, conflict and concur-
rency. Many of their fundamental behavioural properties are decidable, allowing
to model and analyse numerous artificial and natural systems. However, most in-
teresting model checking problems are worst-case intractable, and the efficiency
of synthesis algorithms varies widely depending on the constraints imposed on
the desired solution. In this study, we focus on the Petri net synthesis problem
from a labelled transition system (LTS), which consists in determining the ex-
istence of a Petri net whose reachability graph is isomorphic to the given LTS,
and building such a Petri net solution when it exists.

In previous studies on analysis or synthesis, structural restrictions on nets en-
compassed plain nets (each weight equals 1; also called ordinary nets) [25], ho-
mogeneous nets (i.e. for each place p, all the output weights of p are equal) [28,
23], free-choice nets (the net is plain, hence also homogeneous, and any two

? Supported by DFG through grant Be 1267/16-1 ASYST.
?? Supported by the STAE foundation/project DAEDALUS, Toulouse, France.

6

transitions sharing an input place have the same set of input places) [12, 28],
join-free nets (each transition has at most one input place) [28, 11, 22, 23], etc.

More recently, another kind of restriction has been considered, limiting the num-
ber of different transition labels of the LTS [2, 3, 18, 19].

In this paper, we study the problem of solvability of LTS with weighted marked
graphs (each place has at most one output transition and one input transition)
and choice-free nets (each place has at most one output transition). Both these
classes are important for real-world applications, and they are widely studied
in the literature [27, 21, 15, 9, 26, 8, 16, 7]. In this work, we focus mainly on finite
circular LTS, meaning strongly connected LTS that contain a unique cycle4.
In this context, we investigate the cyclic solvability of a word w, meaning the
existence of a Petri net solution to the finite circular LTS induced by the infinite
cyclic word w∞.

An important purpose of studying such constrained LTS is to better understand
the relationship between LTS decompositions and their solvability by Petri nets.
Indeed, the unsolvability of simple subgraphs of the given LTS, typically ele-
mentary paths (i.e. not containing any node twice) and cycles (i.e. closed paths,
whose start and end states are equal), often induces simple conditions of un-
solvability for the entire LTS, as highlighted in other works [2, 18, 4]. Moreover,
cycles appear systematically in the reachability graph of live and/or reversible
Petri nets [27], which are used to model various real-world applications, such as
embedded systems [20].

Contributions. In this work, we study further the links between simple LTS
structures and the reachability graph of WMGs and CF nets, as follows. First, we
show that a binary LTS is CF-solvable if and only if it is WMG-solvable. Then,
we provide new general conditions for the WMG-solvability of a cyclic word
over an arbitrary alphabet, together with an algorithm synthesizing a cyclical
WMG-solution for a given word. We also discuss the difficulties of extending
these results to the CF class.

Organisation of the paper. After recalling classical definitions, notations and
properties in Section 2, we present the equivalence of CF- and WMG-solvability
for 2-letter words in Section 3. Then, in Section 4, we focus on circular LTS: we
develop a new characterisation of WMG-solvability and a dedicated synthesis
algorithm. We also provide a number of examples, which demonstrate that some
of the presented results cannot be applied to the class of CF-nets. Finally, Section
5 presents our conclusions and perspectives.

4 A set A of k arcs in a LTS G defines a cycle of G if the elements of A can be ordered
as a sequence a1 . . . ak such that, for each i ∈ {1, . . . , k}, ai = (ni, `i, ni+1) and
nk+1 = n1, i.e. the i-th arc ai goes from node ni to node ni+1 until the first node
n1 is reached, closing the path.

7

2 Classical Definitions, Notations and Properties

LTS, sequences and reachability. A labelled transition system with initial
state, LTS for short, is a quadruple TS = (S,→, T, ι) where S is the set of states,
T is the set of labels, →⊆ (S×T ×S) is the transition relation, and ι ∈ S is the
initial state. A label t is enabled at s ∈ S, written s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈→,
in which case s′ is said to be reachable from s by the firing of t, and we write
s[t〉s′. Generalising to any (firing) sequences σ ∈ T ∗, s[ε〉 and s[ε〉s are always
true, with ε being an empty sequence; and s[σt〉s′, i.e., σt is enabled from state
s and leads to s′ if there is some s′′ with s[σ〉s′′ and s′′[t〉s′. For clarity, in
case of long formulas we write |rσ|sτ |q instead of r[σ〉s[τ〉q, thus fixing some
intermediate states along a firing sequence. A state s′ is reachable from state s if
∃σ ∈ T ∗ : s[σ〉s′. The set of states reachable from s is noted [s〉. TS = (S,→, T, ι)
is fully reachable if S = [ι〉.

Petri nets and reachability graphs. A (finite, place-transition) weighted
Petri net, or weighted net, is a tuple N = (P, T,W) where P is a finite set
of places, T is a finite set of transitions, with P ∩ T = ∅ and W is a weight
function W : ((P ×T)∪ (T ×P))→ N giving the weight of each arc. A Petri net
system, or system, is a tuple S = (N,M0) where N is a net and M0 is the initial
marking, which is a mapping M0 : P → N (hence a member of NP) indicating
the initial number of tokens in each place. The incidence matrix C of the net is
the integer P × T -matrix with components C(p, t) =W (t, p)−W (p, t).
A place p ∈ P is enabled by a markingM ifM(p) ≥W (p, t) for every output tran-
sition t of p. A transition t ∈ T is enabled by a markingM , denoted byM [t〉, if for
all places p ∈ P , M(p) ≥W (p, t). If t is enabled at M , then t can occur (or fire)
in M , leading to the marking M ′ defined by M ′(p) =M(p)−W (p, t) +W (t, p);
we note M [t〉M ′. A marking M ′ is reachable from M if there is a sequence of
firings leading from M to M ′. The set of markings reachable from M is denoted
by [M〉. The reachability graph of S is the labelled transition system RG(S)
with the set of vertices [M0〉, the set of labels T , initial state M0 and transitions
{(M, t,M ′) |M,M ′ ∈ [M0〉∧M [t〉M ′}. A system S is bounded if RG(S) is finite.

Vectors. The support of a vector is the set of the indices of its non-null compo-
nents. Consider any net N = (P, T,W) with its incidence matrix C. A T-vector
is an element of NT ; it is called prime if the greatest common divisor of its com-
ponents is one (i.e., its components do not have a common non-unit factor). A
T-semiflow ν of the net is a non-null T-vector such that C · ν = 0. A T-semiflow
is called minimal when it is prime and its support is not a proper superset of
the support of any other T-semiflow [27].
The Parikh vector P(σ) of a finite sequence σ of transitions is a T-vector count-
ing the number of occurrences of each transition in σ, and the support of σ is the
support of its Parikh vector, i.e., supp(σ) = supp(P(σ)) = {t ∈ T | P(σ)(t) > 0}.

Strong connectedness and cycles in LTS. The LTS is said reversible if,
∀s ∈ [ι〉, we have ι ∈ [s〉, i.e., it is always possible to go back to the initial state;

8

reversibility implies the strong connectedness of the LTS.
A sequence s[σ〉s′ is called a cycle, or more precisely a cycle at (or around)
state s, if s = s′. A non-empty cycle s[σ〉s is called small if there is no non-
empty cycle s′[σ′〉s′ in TS with P(σ′) � P(σ) (the definition of Parikh vectors
extending readily to sequences over the set of labels T of the LTS). A cycle s[σ〉s
is prime if P(σ) is prime. TS has the prime cycle property if every small cycle
has a prime Parikh vector.
A circular LTS is a finite, strongly connected LTS that contains a unique cycle;
hence, it has the shape of an oriented circle. The circular LTS induced by a word
w=w1 . . . wk is the LTS with initial state s0 defined as s0[w1〉s1[w2〉s2 . . . [wk〉s0.
All notions defined for labelled transition systems apply to Petri nets through
their reachability graphs.

Petri net subclasses. A net N is plain if no arc weight exceeds 1; pure if
∀p ∈ P : (p•∩•p) = ∅, where p• = {t ∈ T | W (p, t)>0} and •p = {t ∈ T |
W (t, p)>0}; CF (choice-free [10, 27]) or ON (place-output-nonbranching [4]) if
∀p ∈ P : |p•| ≤ 1; a WMG (weighted marked graph [26]) if |p•| ≤ 1 and |•p| ≤ 1
for all places p ∈ P . The latter form a subclass of the choice-free nets; other
subclasses are marked graphs [9], which are plain with |p•| = 1 and |•p| = 1 for
each place p ∈ P , and T-systems [12], which are plain with |p•| ≤ 1 and |•p| ≤ 1
for each place p ∈ P .

Isomorphism and solvability. Two LTS TS 1 = (S1,→1, T, s01) and TS 2 =
(S2,→2, T, s02) are isomorphic if there is a bijection ζ : S1 → S2 with ζ(s01) =
s02 and (s, t, s′) ∈→1⇔ (ζ(s), t, ζ(s′)) ∈→2, for all s, s′ ∈ S1.
If an LTS TS is isomorphic to RG(S), where S is a system, we say that S solves
TS . Solving a word w = `1 . . . `k amounts to solve the acyclic LTS defined by the
single path ι[`1〉s1 . . . [`k〉sk. A finite word w is cyclically solvable if the circular
LTS induced by w is solvable. An LTS is WMG-solvable if a WMG solves it.

Separation problems. Let TS = (S,→, T, s0) be a given labelled transition
system. The theory of regions [1] characterises the solvability of an LTS through
the solvability of a set of separation problems. In case the LTS is finite, we have
to solve 1

2 ·|S|·(|S|−1) states separation problems and up to |S|·|T | event/state
separation problems, as follows:

• A region of (S,→, T, s0) is a triple (R,B,F) ∈ (S → N, T → N, T → N) such
that for all s[t〉s′, R(s) ≥ B(t) and R(s′) = R(s)−B(t)+F(t). A region models
a place p, in the sense that B(t) models W (p, t), F(t) models W (t, p), and
R(s) models the token count of p at the marking corresponding to s.
• A states separation problem (SSP for short) consists of a set of states {s, s′}

with s 6= s′, and it can be solved by a place distinguishing them, i.e., has a
different number of tokens in the markings corresponding to the two states.
• An event/state separation problem (ESSP for short) consists of a pair (s, t) ∈
S×T with ¬s[t〉. For every such problem, one needs a place p such that
M(p) < W (p, t) for the marking M corresponding to state s, where W

9

refers to the arcs of the hoped-for net. On the other hand, for every edge
(s′, t, s′′) ∈→ we must guarantee M ′(p) ≥ W (p, t), M ′ being the marking
corresponding to state s′.

If the LTS is infinite, also the number of separation problems (of each kind)
becomes infinite.

A synthesis procedure does not necessarily lead to a connected solution. However,
the technique of decomposition into prime factors described in [13, 14] can always
be applied first, so as to handle connected partial solutions and recombine them
afterwards. Hence, in the sequel, we focus on connected nets, without loss of
generality. In the next section, we consider the synthesis problem of CF nets
with exactly two different labels.

3 Reversible Binary CF Synthesis

In this section, we link the CF-solvability of a reversible LTS with 2 letters to
the WMG-solvability.

Lemma 1 (Pure CF-solvability).
If a reversible LTS has a CF-solution, it has a pure CF-solution.

Proof. Let TS = (S,→, T, ι) be a reversible LTS. First, we observe that, if t ∈ T
does not occur in →, TS is solvable iff TS ′ = (S,→, T \ {t}, ι) is solvable and a
possible solution of TS is obtained by adding to any solution of TS ′ a transition
t and a fresh place p, initially empty, with an arc from p to t (e.g. with weight
1), so that t is pure. We may thus assume that each label of T occurs in →.

µ0

p

x

a1

a2

...
am

k+h

h
k1

k2

km

Fig. 1. A general pure (h = 0) or non-pure (h > 0) choice-free place p with initial
marking µ0. Place p has at most one outgoing transition named x. The set {a1, . . . , am}
comprises all other transitions, i.e., T = {x, a1, . . . , am}, and kj denotes the weight of
the arc from aj to p (which could be zero).

The general form of a place in a CF-solution is exhibited in Figure 1. If h = 0,
we are done, so that we shall assume h > 0. If −h ≤ k < 0, the marking of p
cannot decrease, and since x occurs in →, the system cannot be reversible. If
k = 0, for the same reason all the ki’s must be null too, µ0 ≥ h, and we may
drop p. Hence we assume that k > 0 and ∃i : ki > 0.

10

Once x occurs, the marking of p is at least h, remains so, and since the system
is reversible, all the reachable markings have at least h tokens in p. But then, if
we replace p by a place p′ with initially µ0 − h tokens, the same ki’s and h = 0,
we shall get exactly the same reachability graph, but with h tokens less in p′

than in p. This will wipe out the side condition5 for p, and repeating this for
each side condition, we shall get an equivalent pure and choice-free solution. ut

Theorem 1 (Reversible binary CF-solvability).
A binary reversible LTS is CF-solvable iff it is WMG-solvable.

Proof. If we have two labels, from Lemma 1, if there is a CF-solution, there will
be one with places of the form exhibited in Figure 2, hence a WMG-solution. ut

i

pa,b

a b
m n

Fig. 2. A generic pure CF-place with two labels.

In the next section, the number of letters is no more restricted.

4 Cyclic WMG- and CF-solvablity

In this section, we recall and extend the conditions for WMG-solvability of some
restricted classes of LTS formed by a single circuit, which were suggested in [15].
We gradually study the separation problems (SSPs in Subsection 4.1 and ESSPs
in Subsection 4.2) for cyclical solvability with WMGs, and develop a language-
theoretical characterisation of WMG-cyclically solvable sequences. The charac-
terisation gives rise to a synthesis algorithm which is presented later. Unfortu-
nately, most of these results cannot be directly extended to the more general
class of CF-nets, which is demonstrated by examples in Subsection 4.3.

In the following, two distinct labels a and b are called (circularly) adjacent in
a word w if w = (w1abw2) or w = (bw3a) for some w1, w2, w3 ∈ T ∗. We denote
by pa,∗ any place pa,b where b is adjacent to a. Also, since |T | > 1, at least one
label is adjacent to t0, and at least one is adjacent to the ones we exhibited, etc.,
until we get the whole set T , and we may start from any label ti instead of t0.

Theorem 2 (Sufficient condition for cyclic WMG-solvability [15]).
Consider any word w over any finite alphabet T such that P(w) is prime. Sup-
pose the following: ∀u = w t1t2 (i.e., the projection6 of w on {t1, t2}) for some
5 A place p is a side-condition if •p ∩ p• 6= ∅.
6 The projection of a word w ∈ A∗ on a set A′ ⊆ A of labels is the maximum subword
of w whose labels belong to A′, noted w A′ . For example, the projection of the word
w = `1 `2 `3 `2 on the set {`1, `2} is the word `1 `2 `2.

11

circularly adjacent labels t1, t2 in w, u = v` for some positive integer `, P(v) is
prime, and v is cyclically solvable by a circuit (i.e. a circular net as in Fig. 3).
Then, w is cyclically solvable with a WMG.

i

pa,b

j

pb,a
a b

m n

m n

Fig. 3. A generic WMG solving a finite circular LTS induced by a word w over the
alphabet {a, b}.

Theorem 3 (Cyclic WMG-solvability of ternary words [15]).
Consider a ternary word w over the alphabet T with Parikh vector (x, x, y) such
that gcd(x, y) = 1. Then, w is cyclically solvable with a WMG if and only if
∀u = w t1t2 such that t1 6= t2 ∈ T , and w = (w1t1t2w2) or w = (t2w3t1), u = v`

for some positive integer `, P(v) is prime, and v is cyclically solvable by a circuit.

a

2
b

2

c
3 3

d
33

a b

c
3 3

d
33

e
3 3

a

2
b

2

c
3 3

d
33

Fig. 4. The WMG on the left solves aacbbdabd cyclically, and the WMG in the middle
solves aacbbeabd cyclically. On the right, the WMG solves abcabdabd cyclically.

For a circular LTS, the solvability of its binary projections by circuits is a suf-
ficient condition, as specified by Theorem 2, but it turns out not to be a nec-
essary one. Indeed, for the cyclically solvable sequence w1 = aacbbdabd (cf.
left of Fig. 4), its binary projection on {a, b} is w1 a,b = aabbab which is not
cyclically solvable with a WMG (neither generally solvable). Looking only at
the Parikh vector of the sequence is also not enough to establish its cyclical
(un)solvability. For instance, sequences w2 = abcabdabd and w3 = abcbadabd are
Parikh-equivalent: P(w2) = P(w3) = (3, 3, 1, 2) (and also Parikh-equivalent to
w1), but w2 is cyclically solvable with a WMG (e.g. with the WMG on the right
of Fig. 4) and w3 is not WMG-cyclically solvable.

All the binary projections of w1 and w3 are cyclically WMG-solvable, except
wi a,b. But only the unsolvability of w3 a,b implies the unsolvability of w3. Since
all the wi are Parikh-equivalent, then so are their binary projections. So, to find
the difference we have to look at the sequences themselves, without abstracting

12

to Parikh-vectors. Since the projections w1 a,b and w3 a,b are equivalent (up to
cyclical rotation and swapping a and b), it is also not enough to look only at the
‘problematic’ binary projections. We then look at the conditions for solvability
of separation problems.

4.1 SSPs for Prime Cycles

µ0

pa,b

a b
m n

Fig. 5. A place of general form in a WMG.

Lemma 2 (SSPs are solvable for prime cycles). If for the cyclical tran-
sition system TS = (S,→, T, s0) defined by some word w = t0 . . . tk, where
S = {s0, . . . , sk}, →= {(si−1, ti−1, si) | 1 ≤ i ≤ k} ∪ {(sk, tk, s0)} with ti ∈ T ,
P(w) is prime, then all the SSPs are solvable.

Proof. If |T | = 1, then k = 0 (otherwise P(t0 . . . tk) is not prime) and |S| = 1,
so that there is no SSP to solve. We may thus assume |T | > 1.

For 0 ≤ i, j ≤ k such that si 6= sj (so that i 6= j), we note Pij = P(titi+1 . . . tj−1)
if i < j and Pij = P(titi+1 . . . tk−1tkt0t1 . . . tj−1) if i > j. For each pair of
distinct labels a, b ∈ T that are adjacent in TS, construct places pa,b (and pb,a
since adjacency is commutative) as in Fig. 5 with

m =
P(w)(b)

gcd(P(w)(a),P(w)(b))
, n =

P(w)(a)

gcd(P(w)(a),P(w)(b))
, (1)

and µ0 = n ·P(w)(b). Clearly, the markings of pa,b reachable by repeatedly firing
u = w ab are always non-negative, and the initial marking is reproduced after
each repetition of the sequence u. Consider two distinct states si, sj ∈ S (w.l.o.g.
i < j). We now demonstrate that there is at least one place of the form pa,b such
that Mi(pa,b) 6=Mj(pa,b), where Ml denotes the marking corresponding to state
sl for 0 ≤ l ≤ k. If j − i = 1, then any place of the form pti,∗ distinguishes
states si and sj . The same is true if j − i > 1 but ∀l ∈ [i, j − 1] : tl = ti.
Otherwise, choose some letter a from ti . . . tj−1 and an adjacent letter b. Then
Mj(pa,b) =Mi(pa,b) +m ·Pij(a)− n ·Pij(b). If Mi(pa,b) 6=Mj(pa,b), place pa,b
distinguishes si and sj . Otherwise we have m ·Pij(a) = n ·Pij(b), hence, due to
the choice of m and n:

Pij(a)

P(w)(a)
=

Pij(b)

P(w)(b)

(so that b also belongs to ti . . . tj−1). Consider some other letter c which is
adjacent to a or b. If place pa,c distinguishes si and sj , we are done. Otherwise,

13

due to the choice of the arc weights for these places, we have

Pij(a)

P(w)(a)
=

Pij(c)

P(w)(c)
=

Pij(b)

P(w)(b)
.

Since ti . . . tj−1 is finite, by progressing along the adjacency relation, either
we find a place which has different markings at si and sj , or for all a, b ∈
supp(ti . . . tj−1) we have

Pij(a)

P(w)(a)
=

Pij(b)

P(w)(b)
.

If supp(ti . . . tj−1) = supp(w), P(w) is proportional to P(ti . . . tj−1), but since
ti . . . tj−1 is smaller than w (otherwise si = sj) this contradicts the primality of
P(w). Hence, there exist adjacent c and d such that c ∈ supp(w)\supp(ti . . . tj−1)
and d ∈ supp(ti . . . tj−1). For the place pc,d we have Mj(pc,d) 6=Mi(pc,d). ut

This property has some similarities with Theorem 4.1 in [17], but the precondi-
tions are different.

The reachability graph of any CF net, hence of any WMG, satisfies the prime
cycle property [5, 6]. Thus, primeness of a sequence allows us skip checking of
SSPs when looking at solvability within these two classes of Petri nets.

4.2 ESSPs in Cyclical Solvability with WMGs

Now, consider further conditions for the cyclical WMG-solvability of a sequence
w = t0 . . . tk, whereP(w) is prime. Let us assume that the system ((P, T,W),M0)
is a WMG solving w cyclically. Due to the definition of WMGs, all the places
that we have to consider are of the form schematised in Fig. 6. The arc weights
may differ due to the integer parameter l ≥ 1, but the ratio W (a,pa,b)

W (pa,b,b)
= m

n is
determined by the Parikh vector of w and its cyclical solvability (let us notice
that the initial marking is to be defined). Moreover, we have to consider only
these places, which are connected to the pairs of adjacent transitions in w. In-
deed, if w = u1 |si a |si+1 b u2, where si is the state reached after performing u1
and si+1 is the state reached after performing u1a, then any place that solves
the ESSP7 ¬Mi[b〉 is an input place for b. On the other hand, any place whose
marking at Msi differs from its marking at Msi+1

is connected to a. Hence, a
place p ∈ P solving ¬Mi[b〉 is of the form pa,b. Since p is only affected by a and
b, it also disables b at all the states between sl and si in w when it is of the form
w = u3 |sj tj |sj+1 b

+ |sl u4 |si abu2 with P(u4)(b) = 0 (in the case there is no b
in the prefix between s0 and abu2, sl = s0). Analogously, if tj 6= b, there must be
a place q ∈ P of the form ptj ,b that solves ¬Msj [b〉. Doing so, we ascertain that
the places of the form schematised in Fig. 6 for the adjacent pairs of transitions
are sufficient to handle all the ESSPs.
7 Assuming b 6= a.

14

pa,b

a b
l ·m l · n

Fig. 6. A general place from a to b of a WMG solution (l may be any multiple of
1/ gcd(m,n)).

In fact, for every pair of adjacent transitions a and b in w, a single place of
the form pa,b is sufficient. Indeed, assume there are p1, p2 ∈ P of the form pa,b.
If M0(p1)

gcd(W (a,p1),W (p1,b))
≥ M0(p2)

gcd(W (a,p2),W (p2,b))
then for any M ∈ [M0〉, M(p1) <

W (p1, b) implies M(p2) < W (p2, b). Hence, p1 is redundant in the system, and
the following is true.

Lemma 3. If w ∈ T ∗ is cyclically solvable by a WMG, there exists a WMG
S = ((P, T,W),M0), where P consists of places pa,b, for each pair of distinct
circularly adjacent a and b (i.e., either w = u1abu2 or w = bu3a).

Let w be cyclically solvable with a WMG S = ((P, T,W),M0) as in Lemma 3,
and place p ∈ P be of the form pa,b (as in Fig. 6, with l = 1) for an adjacent pair
ab. Choose two successive ab’s in w = u1 |sra |sr+1

b |sr+2
. . . |sq a |sq+1

b u2 with
possibly other letters between sr+2 and sq (if there is only one ab, apply the
argumentation while wrapping around w circularly, i.e., with sr = sq). Since p
solves ESSPs ¬sr[b〉 and ¬sq[b〉, the next inequalities hold true, where µr denotes
the marking of pa,b at state sr:

¬sr[b〉 : µr < n

sr+1[b〉 : µr +m ≥ n
∀j : r ≤ j ≤ q : µr +Prj(a) ·m−Prj(b) · n ≥ 0

¬sq[b〉 : µr +Prq(a) ·m−Prq(b) · n < n

(2)

From the first and the third line of (2) we get Prj(a) ·m−Prj(b) ·n > −n. This
implies:

Prj(b)− 1

Prj(a)
<
m

n
, r < j ≤ q. (3)

From the third and the fourth line of (2) we obtain

(Prq(a)−Prj(a)) ·m− (Prq(b)−Prj(b)) · n < n.

For Pjq(a) 6= 0, since Prq = Prj +Pjq this inequality can be written as

m

n
<

Pjq(b) + 1

Pjq(a)
. (4)

Thus, from (3) and (4) we have a necessary condition for solvability in the
following sense.

15

Lemma 4 (A necessary condition for cyclical solvability with aWMG).
If w ∈ T ∗ is cyclically solvable by a WMG, then for any adjacent transitions a
and b in w, and any two successive-up-to-rotation occurrences of ab in w =
u1 |sra b . . . |sq a b u2, the inequality

Prj(b)− 1

Prj(a)
<
m

n
<

Pjq(b) + 1

Pjq(a)
(5)

holds true, where m,n are as in (1), r < j ≤ q, and the right inequality is omitted
when Pjq(a) = 0.

In particular, Lemma 4 explains the cyclical unsolvability of the word w3 =
|sr ab c b |sj a d |sq ab d. Indeed, P(w3)(b) = 3 = P(w3)(a), so that m/n = 1 and
1 ≮ 0+1

1 =
Pjq(b)+1
Pjq(a)

.

Lemma 5 (A sufficient condition for cyclical solvability by a WMG).
If w ∈ T ∗ has a prime Parikh vector, and for each pair of circularly adjacent ab
in w = . . . |q a b . . . , the inequality

m

n
<

Pjq(b) + 1

Pjq(a)
, j 6= q (6)

holds true, then w is cyclically solvable by a WMG.

Proof: We have earlier proved (Lemma 2) that all SSPs are solvable for prime
cycles. Let us now consider the ESSPs at states s as in w = . . . |sab . . ., i.e.
¬s[b〉. Since we are looking for a WMG-solution, all the sought places are of the
form pa,b (see Lemma 3 and Fig. 6) with m,n as in (1). To define the initial
marking of pa,b, let us put n ·P(w)(b) tokens on it and fire the sequence w once
completely. Choose some state s′ in w = . . . |s′ a . . . such that the number k of
tokens on pa,b at state s′ is minimal (it may be the case that such an s′ is not
unique; we can choose any such state). Define M0(pa,b) = n ·P(w)(b)− k as the
initial marking of pa,b. By construction, the firing of w reproduces the markings
of pa,b and M0 guarantees their non-negativity. Let us now demonstrate that
the constructed place pa,b solves all the ESSPs ¬s[b〉, where w = . . . |sab
Consider such a state s in w (w.l.o.g. we assume s 6= s′, since s′ certainly
disables b). From w = u1 |s′a . . . |s a b u2, and from inequality (6) for sj = s′ we
get Ps′s(a) ·m − Ps′s(b) · n < n. Since Ms′(pa,b) = 0, Ms(pa,b) = Ms′(pa,b) +
Ps′s(a) ·m−Ps′s(b) · n < n, i.e., pa,b disables b at state s.

Now, we show that places of the form pa,b also solve the other ESSPs against
b, i.e., at the states where b is not the subsequent transition. Sequence w (up
to rotation) can be written as w = u1 b

x1 u2 b
x2 . . . ul b

xl , 1 ≤ l ≤ P(w)(b), and
for 1 ≤ i ≤ l: xi > 0, ui ∈ (T \ {b})+. Transition b has to be deactivated at
all the states between neighbouring b-blocks. Consider an arbitrary pair of such
blocks bxj and bxj+1 in w = . . . bxj uj b

xj+1 . . . = . . . bxj |s u′j |r t bxj+1 . . .,
with uj = u′jt. Place pt,b does not allow b to fire at state r. We have to check

16

that b is not activated at any state between s and r, i.e., it is not activated
‘inside’ u′j . If u′j is empty, then s = r, and we are done. Let u′j 6= ε. Due to
P(u′j)(b) = P(uj)(b) = 0, the marking of place pt,b cannot decrease from s to r,
i.e.,Ms(pt,b) ≤Ms′′(pt,b) ≤Mr(pt,b) for any s′′ ‘inside’ u′j . Since pt,b deactivates
b at r, it then deactivates b at all states between s and r, inclusively. ut
From Lemma 4 and Lemma 5 we can deduce the following characterisation.

Theorem 4 (A characterisation of cyclical solvability with a WMG).
A sequence w ∈ T ∗ is cyclically solvable with a WMG iff P(w) is prime and for
any pair of circularly adjacent labels in w, for instance w = . . . |q ab . . .,

m

n
<

Pjq(b) + 1

Pjq(a)
, j 6= q

holds true with m, n as in (1). A WMG-solution can be found with the places of
the form pa,b for every such pair of a and b.

Based on the characterisation from Theorem 4 and the considerations above,
Algorithm 1 below synthesizes a cyclical WMG-solution for a given sequence w ∈
T ∗, if one exists, with a runtime in O(|w|2). For a comparison, the general region-
based synthesis typically uses ILP-solvers, and for Karmarkar’s algorithm [24]
(which is known to be efficient) we may expect a running time of O(|w|3 ·L(|w|)),
with a logarithmic factor L(|w|) = log(|w|) · log(log(|w|)). Note that, with this
general approach, some redundant places may be constructed, but they can be
reduced in a post-processing phase.

4.3 CF-solvability vs WMG-solvability of Cycles

The class of WMGs is clearly a proper subset of the class of CF nets. If we are
only looking at cyclical solvability of sequences, this inclusion remains strict,
i.e., there exist sequences which are cyclically solvable by a CF net but have
no cyclical solution in the form of a WMG. E.g., the sequence w = abcbad
has a cyclical CF-solution (cf. Fig. 7). On the other hand, for a |r b c |q b a d we
have P(w)(a)

P(w)(b) = 2
2 ≮ 0+1

1 =
Prq(a)+1
Prq(b)

which, by Theorem 3, implies the cyclical
unsolvability of w by a WMG.

From Lemma 3, for the cyclical solvability by a WMG it is enough to use only
places between adjacent transitions. For the sequence abcbad in Fig. 7, transition
b follows a and c, and the input place of b in the CF-solution is an output place
for both a and c. The situation is similar for transition a, which follows b and d.
However, this is not always the case when we are looking for a solution in the
class of CF nets. For instance, the sequence cabdaaabeab is cyclically solvable
by a CF net (see Fig. 8). In this sequence, b always follows a. But in order to
solve ESSPs against b, we need a place which is an output place for c and e (in
addition to a).

17

Algorithm 1: WMG-cycles
input : w ∈ T ∗, T = {t0, . . . , tn−1}
output: A WMG N cyclically solving w if it exists
var: T [0 .. |T | − 1] = (t0, . . . , tn−1), v[0 .. |w| − 1], a, b, na, nb, ia, ib, M , Mmin;
compute the Parikh-vector P[0 .. |T | − 1] of w;
if P is not prime then return unsolvable ; // Parikh-primeness
b← w[0];
for j = 0 to |T | − 1 do // index of b

if b = T [j] then ib← j ;

for i = 0 to |w| − 1 do
v ← w[i] . . . w[|w| − 1]w[0] . . . w[i− 1] ; // rotation of w
a← b, b← v[1], ia← ib ; // fix first adjacent pair
for j = 0 to |T | − 1 do

if b = T [j] then ib← j ;

na← 1, nb← 1 ;
if a 6= b then

for k = 2 to |w| − 1 do
if P[ib]

P[ia]
≥ P[ib]−nb+1

P[ia]−na
then

return unsolvable ; // check solvability condition

if v[k] = T [ia] then na← na+ 1 ;
if v[k] = T [ib] then nb← nb+ 1 ;

M ← P[ia] ·P[ib], Mmin←M ;
for k = 0 to |w| − 1 do // find initial marking

if w[k] = a then M ←M +P[ib] ;
if w[k] = b then M ←M −P[ia] ;
if M < Mmin then Mmin←M ;

add new place pT [ia],T [ib] to N with
W (T [ia], p) = P[ib], W (p, T [ib]) = P[ia], M0 = P[ia] ·P[ib]−Mmin;

return N

a

b

c

b

a

d

a
2

3

b

3

2

c
2

2

d

2

2

Fig. 7. Sequence abcbad is cyclically solved by the CF net on the right.

18

c

a
b d

a

a

a

be
a

b a

b

3
2

3

c
3

2
d

3 3

e
3

2

Fig. 8. Sequence cabdaaabeab is cyclically solved by the CF-net on the right.

Indeed, if there is a place pa,b as on the left of Fig. 9 which solves ESSPs against
b, then for ca |s bdaa |q abeab

s[b〉 : µ0 + 3 ≥ 5

¬q[b〉 : µ0 + 3 · 3− 5 < 5

Subtracting the first inequality from the second one, we get 6− 5 < 0, which is
a contradiction. Hence, a place of form pa,b cannot solve all ESSPs against b in
cabdaaabeab.

µ0

pa,b

a b
3 5 µ0

p

b

c

d

e

f

a

kbkc

kd

ke

kf

k

Fig. 9. A place from a to b (left); a place of a CF net with 6 transitions (right).

In a WMG, a place can have at most one input transition. This restriction
is relaxed for choice-free nets and multiple inputs are allowed. Nevertheless,
this does not imply that a single input place for each transition will always
be sufficient. As an instance, consider the sequence bcafdeaaabcdaafdcaaa (see
Fig. 10) which is cyclically solvable with a CF net.

Assume that we can solve all ESSPs against transition a with a single place p as
on the right of Fig. 9 (we know that we do not need any side-conditions). Then,
for p and w = |s0 b c a f d |s5 e |s6 a a a b c |s11 d |s12 a a f d |s16 c |s17 a a a, the

19

b

c
a

f d e a
a
a

b

c

d

a
a

fd
c

a
a

a

7

10

a
2

2

4

b

3

3

9

c2

5

9

3
d

25

3

3
e

3

9

9

f

9

3
3

Fig. 10. w = bcafdeaaabcdaafdcaaa is cyclically solved by the CF net on the right.

following system of inequalities must hold true:

cycle : 2 · kb + 3 · kc + 3 · kd + ke + 2 · kf = 9 · k (0)

¬s5[a〉 : µ0 + kb + kc + kd + kf − k < k (1)

s6[aaa〉 : µ0 + kb + kc + kd + ke + kf − k ≥ 3 · k (2)

¬s11[a〉 : µ0 + 2 · kb + 2 · kc + kd + ke + kf − 4 · k < k (3)

s12[aa〉 : µ0 + 2 · kb + 2 · kc + 2 · kd + ke + kf − 4 · k ≥ 2 · k (4)

¬s16[a〉 : µ0 + 2 · kb + 2 · kc + 3 · kd + ke + 2 · kf − 6 · k < k (5)

s17[aaa〉 : µ0 + 2 · kb + 3 · kc + 3 · kd + ke + 2 · kf − 6 · k ≥ 3 · k (6)

From the system above we obtain:

(2)− (1) : ke > 2 · k
(4)− (3) : kd > k

(6)− (5) : kc > 2 · k

which implies 3 · kc + 3 · kd + ke > 13 · k, contradicting the equality (0). Hence,
the ESSPs against a cannot be solved by a single place.

5 Conclusions and Perspectives

In this work, we specialised previous methods of analysis and synthesis to the
CF nets and their WMG subclass, two useful subclasses of weighted Petri nets
allowing to model various real-world applications.

20

We highlighted the correspondance between CF-solvability andWMG-solvability
for binary alphabets. We also tackled the case of an LTS formed of a single circuit
with an arbitrary number of letters, for which we developed a characterisation
of WMG-solvability together with a dedicated and efficient synthesis algorithm.
Finally, we discussed the applicability of our conditions to CF synthesis.

As a natural continuation of the work, we expect extensions of our results in
two directions: generalising the class of goal-nets (e.g. to choice-free or fork-
attribution nets), and relaxing the restrictions for the LTS under consideration.

Acknowledgements

We would like to thank the anonymous referees for their useful suggestions.

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Springer-Verlag
(2015)

2. Barylska, K., Best, E., Erofeev, E., Mikulski, L., Piatkowski, M.: On binary words
being Petri net solvable. In: Proceedings of the International Workshop on Algo-
rithms & Theories for the Analysis of Event Data, ATAED 2015, Brussels, Belgium.
pp. 1–15 (2015)

3. Barylska, K., Best, E., Erofeev, E., Mikulski, L., Piatkowski, M.: Conditions for
Petri net solvable binary words. T. Petri Nets and Other Models of Concurrency
11, 137–159 (2016). https://doi.org/10.1007/978-3-662-53401-4_7

4. Best, E., Devillers, R.: Synthesis and reengineering of persistent systems. Acta Inf.
52(1), 35–60 (2015). https://doi.org/10.1007/s00236-014-0209-7

5. Best, E., Devillers, R.: Characterisation of the state spaces of marked graph Petri
nets. Information and Computation 253(3), 399–410 (2017)

6. Best, E., Devillers, R., Schlachter, U.: Bounded choice-free Petri net synthesis:
Algorithmic issues. Acta Informatica (2017)

7. Best, E., Devillers, R., Schlachter, U., Wimmel, H.: Simultaneous petri net syn-
thesis. Sci. Ann. Comp. Sci. 28(2), 199–236 (2018)

8. Best, E., Hujsa, T., Wimmel, H.: Sufficient conditions for the marked graph real-
isability of labelled transition systems. Theoretical Computer Science (2017)

9. Commoner, F., Holt, A., Even, S., Pnueli, A.: Marked directed graphs. J. Comput.
Syst. Sci 5(5), 511–523 (1971)

10. Crespi-Reghizzi, S., Mandrioli, D.: A decidability theorem for a class
of vector-addition systems. Inf. Process. Lett. 3(3), 78–80 (1975).
https://doi.org/10.1016/0020-0190(75)90020-4

11. Delosme, J.M., Hujsa, T., Munier-Kordon, A.: Polynomial sufficient conditions of
well-behavedness for weighted join-free and choice-free systems. In: 13th Interna-
tional Conference on Application of Concurrency to System Design. pp. 90–99
(July 2013). https://doi.org/10.1109/ACSD.2013.12

12. Desel, J., Esparza, J.: Free Choice Petri Nets, Cambridge Tracts in Theoretical
Computer Science, vol. 40. Cambridge University Press, New York, USA (1995)

21

13. Devillers, R.: Products of Transition Systems and Additions of Petri Nets. In: Proc.
16th International Conference on Application of Concurrency to System Design
(ACSD 2016) J. Desel and A. Yakovlev (eds). pp. 65–73 (2016)

14. Devillers, R.: Factorisation of transition systems. Acta Informatica (2017)
15. Devillers, R., Erofeev, E., Hujsa, T.: Synthesis of weighted marked graphs from con-

strained labelled transition systems. In: Proceedings of the International Workshop
on Algorithms & Theories for the Analysis of Event Data 2018 Satellite event of
the conferences: Petri Nets 2018 and ACSD 2018, Bratislava, Slovakia, June 25,
2018. pp. 75–90 (2018)

16. Devillers, R., Hujsa, T.: Analysis and synthesis of weighted marked graph Petri
nets. In: Khomenko, V., Roux, O.H. (eds.) Application and Theory of Petri Nets
and Concurrency: 39th International Conference, PETRI NETS 2018, Bratislava,
Slovakia, 2018, Proceedings. pp. 1–21. Springer (2018)

17. Devillers, R., Hujsa, T.: Analysis and synthesis of weighted marked graph Petri
nets: Exact and approximate methods. Fundamenta Informaticae (2019)

18. Erofeev, E., Barylska, K., Mikulski, L., Piatkowski, M.: Generating all minimal
Petri net unsolvable binary words. In: Proceedings of the Prague Stringology Con-
ference 2016, Prague, Czech Republic. pp. 33–46 (2016)

19. Erofeev, E., Wimmel, H.: Reachability graphs of two-transition Petri nets. In: Pro-
ceedings of the International Workshop on Algorithms & Theories for the Analysis
of Event Data 2017, Zaragoza, Spain. pp. 39–54 (2017)

20. Hujsa, T.: Contribution to the study of weighted Petri nets. Ph.D. thesis, Pierre
and Marie Curie University, Paris, France (2014)

21. Hujsa, T., Delosme, J.M., Munier-Kordon, A.: On the reversibility of well-behaved
weighted choice-free systems. In: Ciardo, G., Kindler, E. (eds.) Application and
Theory of Petri Nets and Concurrency. pp. 334–353. Springer (2014)

22. Hujsa, T., Delosme, J.M., Munier-Kordon, A.: Polynomial sufficient condi-
tions of well-behavedness and home markings in subclasses of weighted Petri
nets. ACM Trans. Embed. Comput. Syst. 13(4s), 141:1–141:25 (Jul 2014).
https://doi.org/10.1145/2627349

23. Hujsa, T., Devillers, R.: On liveness and deadlockability in subclasses of weighted
Petri nets. In: van der Aalst, W., Best, E. (eds.) Application and Theory of
Petri Nets and Concurrency: 38th International Conference, PETRI NETS 2017,
Zaragoza, Spain, June 25–30, 2017, Proceedings. pp. 267–287. Springer (2017).
https://doi.org/10.1007/978-3-319-57861-3_16

24. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Com-
binatorica 4(4), 373–395 (Dec 1984). https://doi.org/10.1007/BF02579150

25. Murata, T.: Petri nets: properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (April 1989)

26. Teruel, E., Chrzastowski-Wachtel, P., Colom, J.M., Silva, M.: On weighted T-
systems. In: Jensen, K. (ed.) 13th International Conference on Application and
Theory of Petri Nets and Concurrency (ICATPN), LNCS. vol. 616, pp. 348–367.
Springer, Berlin, Heidelberg (1992)

27. Teruel, E., Colom, J.M., Silva, M.: Choice-Free Petri Nets: a Model for De-
terministic Concurrent Systems with Bulk Services and Arrivals. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part A 27(1), 73–83 (1997).
https://doi.org/10.1109/3468.553226

28. Teruel, E., Silva, M.: Structure theory of Equal Conflict systems. Theoretical Com-
puter Science 153(1&2), 271–300 (1996)

22

Can a Single Transition
Stop an Entire Petri Net?

Jörg Desel

FernUniversität in Hagen, Germany
joerg.desel@fernuni-hagen.de

Abstract. A transition t eventually stops a place/transition Petri net
if each reachable marking of the net enables only finite occurrence se-
quences without occurrences of t (i.e., every infinite occurrence sequence
enabled at this marking contains occurrences of t). Roughly speaking,
when t is stopped then all transitions of the net stop eventually. This
contribution shows how to identify stopping transitions of bounded nets
using the reachability graph and of unbounded nets using the coverability
graph.

1 Introduction

We consider the following problem in this paper: Assume a place/transition Petri
net and a transition t of this net. Can we eventually stop the behavior of the net
by forbidding occurrences of t in occurrence sequences enabled at an arbitrary
reachable marking m, or, equivalently, does no reachable marking m enable an
infinite occurrence sequence without occurrences of t? If this is the case then we
say that transition t eventually stops the Petri net. If t does not stop the net
eventually, then some reachable marking enables an infinite occurrence sequence
without occurrences of t. However, even if t does not stop the net eventually,
there might be occurrence sequences (with or without occurrences of t) leading
to a deadlock.

Apparently, this question is relevant for several applications of Petri nets. For
example, given a robot (or any kind of machine) modeled by a Petri net, can some
component modeled by a particular transition be used as an off switch? As we
know from our computers, immediate stops are not always desirable, but rather
forced shut down processes. A transition t stops a Petri net model eventually if
it enforces a shutdown process which will eventually lead to a marking which
enables no transition, except possibly transition t.

The problem tackled in this article could be solved by any standard mech-
anism involving temporal logics, for example the temporal logic LTL. In [5] it
is shown that the model checking problem for Petri nets and LTL formulas is
decidable, although according algorithms applied to unbounded Petri nets have
a huge complexity. Instead, this article provides a solution which is purely based
on Petri net analysis techniques. A typical advantage of these techniques is that
the user gets more insight to the actual behavior of the net. Often, analysis

23

methods tailored for Petri nets are more efficient as analysis techniques based
on a translation to other languages, at least for certain classes of inputs. This
might also be the case for the approach presented in this paper; a detailed study
to identify such classes is, however, still missing and a topic for further research.

Throughout this paper we consider place/transition Petri nets without arc
weights, capacity restrictions or inhibitor arcs. We call these place/transition
Petri nets just nets. For definitions and notations, see any textbook on Petri nets,
e.g. [7] or [4]. As usual, we assume that the sets of places and transitions of a net
are finite. We do, however, consider unbounded nets, i.e., nets with unbounded
places (a place is unbouded if, for any number b, some reachable marking assigns
more than b tokens to the place). We assume the concepts of reachability graph
and tree to be known, and also the concept of coverability graph for unbounded
nets (this concept goes back to [6]). The coverability graph represents aspects
of infinite behavior by finite means, and thus abstracts heavily from behavioral
details. However, it can be used to identify unbounded places. Notice that often
the coverability graph is defined as a result of a non-deterministic algorithm and
is hence not unique. The algorithm constructs the finite reachability graph for
bounded nets and a finite coverability graph otherwise.

Recall that a (reachability or coverability) graph is a directed graph with ini-
tial vertex and arcs labeled by transition names. Vertices of reachability graphs
represent reachable markings of the considered net, whereas vertices of cover-
ability graphs represent so-called ω-markings, which assign to each place either
a non-negative integer, representing its actual token count, or the symbol ω,
representing arbitrarily many tokens.

Notice that every two vertices of a (reachability or coverability) graph can
be connected by two distinct arcs, labeled by two different transition names,
whenever both transitions lead from the same source vertex to the same target
vertex. Recall also that the source vertex and the target vertex of an arc can be
identical.

A path of a graph is a finite nonempty sequence of arcs such that the target
vertex of each (except the last) arc coincides with the source vertex of its sub-
sequent arc. A path is a closed path if the target vertex of its last arc coincides
with the source vertex of its first arc. A closed path is a cycle if moreover no
vertex is source of more than one arc of the path, i.e., the path does not pass
through any vertex more than once.

Let us finally recall some important properties of reachability and coverability
graphs:

– The reachability graph of a net is finite if and only if the net is bounded.

– A coverability graph of a net is always finite.

– Reachability and coverability graphs are deterministic, i.e., no vertex is
source of two distinct arcs with the same label.

– For each finite occurrence sequence of a net enabled at the initial marking,
there is a unique path of the reachabilty / coverability graph starting at the
initial vertex.

24

2 Terminating Petri nets

To warm up, we first consider the question whether a net terminates eventually,
i.e., whether all its occurrence sequences are finite.

Obviously, a bounded net terminates if and only if its reachability graph has
no cycles. In fact, if the reachability graph has a cycle, then each occurrence
sequence from the initial marking to any marking represented by a vertex of
the cycle can be extended infinitely, following the arcs of the cycle (remember
that each vertex of the reachability graph represents a reachable marking). Con-
versely, a bounded net has only finitely many reachable markings, because the
set of places of the net is finite. If the net does not terminate, it has an infi-
nite occurrence sequence and therefore finite occurrence sequences of arbitrary
length. Since each finite occurrence sequence corresponds to a directed path
of the reachability graph, each occurrence sequence of sufficient length (choose
the number of reachable markings) corresponds to a directed path that passes
through at least one vertex more than once; thus the reachability graph has a
closed path, and therefore it has a cycle.

Unbounded nets do not terminate anyway. To see this, consider the construc-
tion of the reachability tree. Since the set of transitions is finite, each vertex of
this tree has finitely many immediate successors. By König’s Lemma, the tree
has an infinite path, corresponding to an infinite occurrence sequence.

Hence, an obvious algorithm to check termination of a net first checks bound-
edness, for example by the coverability graph construction. In case the consid-
ered net is bounded, the algorithm constructs the reachabilty graph and checks
whether this graph has a cycle. Actually, this two-step approach is not neces-
sary, because the coverability graph of a bounded net equals its reachability
graph, and cyclicity of this graph is implicitly checked during the coverability
graph construction. A perhaps more elegant algorithm1 first adds a place to the
net which has all transitions of the net in its pre-set and no transition in its
post-set, and then checks boundedness of this place, again by construction of
the coverability graph. Obviously, this additional place is bounded if and only if
the length of all occurrence sequences is bounded. Since the set of transitions is
finite, this is the case if and only if there is no infinite occurrence sequence.

3 Termination After Stopping a Transition –
The Bounded Case

We now come back to the question asked initially: Does a transition t of a net
stop the net eventually? This is the converse of the question: Is there an infinite
occurrence sequence, enabled at some reachable marking, without occurrences
of t? An even simpler formulation of the same property is: Is there an initially
enabled infinite occurrence sequence with only finitely many occurrences of t? In
fact, an infinite occurrence sequence enabled at a reachable marking m is suffix

1 communicated by Karsten Wolf

25

of an infinite sequence enabled initially, and the finite prefix up to m can contain
only finitely many occurrences of t. Conversely, assume an infinite occurrence
sequence containing only finitely many occurrences of t. Then the minimal prefix
containing all these t-occurrences leads to a reachable marking which enables the
according infinite suffix without occurrences of t.

For bounded nets, there is thus a very simple algorithmic solution to the
problem whether a transition t eventually stops its net, based on the following
proposition.

Proposition 1. A transition t of a bounded net eventually stops the net if and
only if the reachability graph of the net has no cycle without an arc labeled by t.

Proof. Assume that the reachability graph has a cycle without a t-labeled arc.
Then some initially enabled infinite occurrence sequence starts with a finite
sequence leading to some marking represented by a vertex of this cycle (which
might include occurrences of t) and then runs along the cycle infinitely. Hence
this infinite occurrence sequence has only finitely many occurrences of t.

Conversely, assume that each cycle of the reachability graph has at least one
t-labeled arc. Let m be an arbitrary reachable marking. Each sufficiently long
occurrence sequence enabled at m passes through some marking at least twice,
because the net is bounded. Hence the according path of the reachability graph
passes through some vertex at least twice. The subsequence starting and ending
with that vertex corresponds to a closed path. Each closed path contains all arcs
of at least one cycle, and thus by assumption also an arc labeled by t. Therefore,
the subsequence contains an occurrence of t, and so does the infinite occurrence
sequence. ut

So a very simple algorithm constructs the reachability graph and checks
whether every cycle of this graph contains at least one arc labeled by t. A more
elegant solution is to first delete all t-labeled arcs of the reachability graph (which
does not necessarily lead to a connected graph) and then check for cycles.

4 Termination After Stopping a Transition –
The Unbounded Case

Now we consider the case that the considered net is unbounded. Does it even-
tually terminate, provided a given transition t occurs only finitely often? For
unbounded nets, the reachability graph is infinite, but the coverability graph is
finite. However, unfortunately the coverability graph does not bring immediate
help. Consider the simple example of a net with only one initially unmarked
place, a single input transition i, and a single output transition o, as shown in
Figure 1.

In this example, transition i eventually stops the net, whereas transition o
does not. However, both transitions occur in the coverability graph in quite the
same way, namely as labels of arcs leading from and to the vertex labeled by
[ω]. These are the only cycles of this coverability graph. While the coverability

26

Fig. 1. A simple net and its coverability graph

graph does thus not lead to an algorithmic solution, we can solve the problem
considering additional information, as shown below.

Remember that, during the (nondeterministic) construction of the coverabil-
ity graph, we compare new ω-markings with already constructed ω-markings.
When a new vertex of the coverability graph is constructed, the algorithm com-
pares the ω-marking m corresponding to this new vertex with the ω-markings m′

corresponding to vertices which are on paths from the initial vertex (representing
the initial marking) to the new one, according to the graph constructed so far.
If, for all places, the new ω-marking m is identical to m′, then the new vertex is
identified with the vertex corresponding to m′. Otherwise, if m(s) ≥ m′(s) for
each place s (where ω > n for every integer n), then m is modified as follows: For
each place s with m(s) > m′(s), we set m(s) := ω, because the sequence from
the vertex corresponding to m′ to the newly constructed vertex can be repeated
arbitrarily often, leading to an unbounded token growth on the place s. For all
other places s, m(s) remains unchanged.

In the example of Figure 1, the marking reached by the occurrence of transi-
tion i is greater than the initial marking for the only place of the net. Hence, this
place receives an ω-entry for the corresponding ω-marking [ω], represented by
the vertex [ω] of the coverability graph. Further occurrences of transition i are
possible, leading to the same ω-marking, because ω already means “arbitrarily
many”. Observe that transition i of the net can occur infinitely often, no matter
if transition o occurs, whereas o cannot occur arbitrarily often without i, and
in particular there is no infinite occurrence sequence o o o . . . enabled at any
marking, a fact which is not reflected by the coverability graph.

In general, we are looking for infinite occurrence sequences, enabled by some
reachable marking, without occurrences of t. Since occurrence sequences cor-
respond to paths of the coverability graph and sufficiently long occurrence se-
quences have to pass through some vertex more than once, we have a closer look
to closed paths of coverability graphs in the sequel.

Since ω-entries are only added during the construction of the coverability
graph, and are never removed, all ω-markings appearing as vertices in a closed
path of the coverability graph agree on the set of ω-marked places, whereas
the non-negative integers assigned to the other places still represent the token
game. Therefore, cycles and closed paths of coverability graphs do not necessarily
correspond to cyclic behavior, because according occurrence sequences might
increase or decrease the token count of places which have ω-entries in ω-markings
of the path. If the token count of each place is not decreased, then the path can

27

be repeated arbitrarily, leading to an infinite occurrence sequence. Otherwise, it
can not.

Consider a path π of the coverability graph of a net and let σπ be the sequence
of labels of arcs of π. We call the path π non-decreasing, if, for each place s, the
number of occurrences of transitions in the pre-set of s in σπ is not smaller than
the number of occurrences of transitions in the post-set of s in σπ, i.e., if at
least as many tokens are added as are removed, and hence the effect of σπ is
non-negative for each place. Otherwise, the effect of transition occurrences in σπ
is negative for some place, and then we call π decreasing.

Proposition 2. Given an unbounded net N and a coverability graph of N , a
transition t stops N eventually if and only if there is no non-decreasing closed
path of the coverability graph without an arc labeled by t.

Proof. Assume that the coverability graph has a non-decreasing closed path π
without an arc labeled by t. Let mπ be the ω-marking corresponding to the
source vertex of the first arc of π. It is well-known that all ω-marked places of
mπ are simultaneously unbounded, i.e., for each number b there is a reachable
marking mb of N satisfying mb(s) ≥ b if mπ(s) = ω and mb(s) = mπ(s) if
mπ(s) 6= ω. Now, choosing b as the length of π, the sequence of labels of π is
an occurrence sequence σπ enabled at mb. This follows from the construction
rule of the coverability graph, which considers places not marked by ω as in
the reachability graph construction. Places marked by ω carry sufficiently many
tokens to allow the occurrences of all transitions in the sequence σπ. Since π is
assumed to be non-decreasing, the marking m′ reached by σπ satisfies m′(s) ≥
mb(s) for each place s. Therefore, σπ can be repeated arbitrarily. Thus, there is
an infinite sequence without occurrences of t, enabled at the reachable marking
mb.

For the converse direction, consider an infinite occurrence sequence σ enabled
at the initial marking of N with only finitely many occurrences of transition t.
Let σ = σ1 σ2 such that σ2 contains no occurrences of t and σ1 is minimal with
this property (i.e., σ1 is empty or ends with t). Let σ2 = t1 t2 t3 . . . and let,
for i ≥ 0, mi be the marking reached by the sequence σ1 t1 . . . ti. By repeated
application of Dickson’s Lemma, we find indices k1, k2, k3, . . . such that, for j > i,
mkj (s) ≥ mki(s) for each place s. By the construction of the coverability graph,
for each finite occurrence sequence enabled at the inital marking, there is unique
path from the initial vertex such that the sequence of labels of its arcs equals the
occurrence sequence. Since the coverability graph is finite, the vertices reached by
the paths corresponding to the sequences σ1 t1 . . . tki (i > 0) cannot be pairwise
different, whence some vertex is visited at least twice. Assume this is the case for
the sequences σ1 t1 . . . tkn and σ1 t1 . . . tkm , where n < m. Then the subsequence
tkn+1 . . . tkm corresponds to a closed path of the coverability graph, which does
not contain an arc labeled by t. By construction, this path is non-decreasing. ut

28

Fig. 2. Another simple net and its coverability graph

Figure 2 illustrates that the proposition does not hold when cycles instead of
closed paths are considered.2 The net in this figure is not stopped eventually by
transition i. The only cycles without occurrences of i are the short cycles labeled
by a and b, respectively. Both cycles are decreasing paths, whereas the closed
path with arc labels a and b is non-decreasing (and so are all closed paths starting
at the vertex [ω, ω] with the same number of a-occurrences and b-occurrences).

Proposition 2 provides a characterization of stopping transitions based on
the coverability graph. Unfortunately, this characterization is based on closed
paths of a coverability graph, but there are infinitely many closed paths in gen-
eral. Therefore, this characterization does not immediately lead to a deciding
algorithm.

5 An Algorithm Deciding Whether a Transition Stops an
Unbounded Net Eventually

Throughout this section, let N be an unbounded net and let t be a transition of
N . We refer to the characterization given in Proposition 2 and collect properties
of a non-decreasing closed path π without an arc labeled by t of a coverability
graph of N .

(1) The subgraph of the coverability graph constituted by the arcs of π and the
vertices occurring as sources or targets in these arcs is strongly connected.

Connectedness of the subgraph is obvious. The subgraph is even strongly
connected because π is a closed path.

(2) For each vertex v of the coverability graph, the number of arcs occurring in
π which have v as the source vertex equals the number of arcs in π which
have v as the target vertex (the same arc can occur more than once in π,

2 This was pointed out by an anonymous reviewer, thanks a lot!

29

and is in this case also counted more than once).

A simple observation, because π is a closed path.

(3) All ω-markings appearing in the path π (as sources or targets of arcs) have
the same set of places marked by ω. In particular, this holds for the source
and target vertices of each arc in π.

If a place is marked by ω in an ω-marking, then this place is also marked
by ω in a subsequent marking in the coverability graph, by the construction
rule of coverability graphs. The claim follows because π is a closed path.

(4) For each place s marked by ω in the ω-markings of the path π, the number
of occurrences of transitions in arcs of π that belong to the pre-set of s is
not smaller than the number of occurrences of transitions in arcs of π that
belong to the post-set of s.

For places s of N which are not marked by ω, the number of occurrences of
transitions in arcs of π that belong to the pre-set of s equals the number of
occurrences of transitions in arcs of π that belong to the post-set of s by the
construction rule of coverability graphs. For places marked by ω, the claim
follows because π is non-decreasing by assumption.

(5) No arc in π is labeled by t.

This is part of the assumption.

So we obtain as an immediate consequence of Proposition 2:

Proposition 3. If t does not stop the net N eventually, then conditions (1) to
(5) are fulfilled for some path π of a coverability graph of N . ut

All the above conditions (1) to (5) can be viewed as properties of a multi-set
of arcs of the coverability graph, which tells how often (and if at all) an arc
occurs in a suitable path. The following proposition states that the properties
are not only necessary but also sufficient for the existence of a non-decreasing
closed path without occurrences of t.

Proposition 4. Assume a coverability graph of N with arcs {a1, . . . , ak}, and a
mapping f : {a1, . . . , ak} → {0, 1, 2, . . .} (a multiset of arcs) satisfying f(ai) > 0
for at least one arc and moreover the following conditions:

(1) The subgraph of the coverability graph constituted by the arcs ai satisfying
f(ai) > 0 and by the vertices occurring as sources or targets in these arcs is
strongly connected.

30

(2) For each vertex v of the coverability graph, the sum of all f(ai) with v being
the source vertex of ai equals the sum of all f(aj) with v being the target
vertex of aj.

(3) For each arc ai with the property that source and target ω-markings of ai
have different sets of ω-marked places, we have f(ai) = 0.

(4) For each place s, the sum of all f(ai) where ai is labeled by a transition in
the pre-set of s is not smaller than the sum of all f(aj) where aj is labeled
by a transition in the post-set of s.

(5) If f(ai) > 0 then ai is not labeled by t.

Then there is a non-decreasing closed path π without arcs labaled by t.

Proof. We show that there exists such a path π such that, for each arc ai, this
arc occurs f(ai) times in π.

First, we construct the following sub-graph of the considered coverabiliy
graph: We delete all arcs ai of the coverablitiy graph satisfying f(ai) = 0, and
then delete all isolated vertices. Since at least one arc ai satisfies f(ai) > 0, this
subgraph has at least one arc and hence at least one vertex. By condition (1), it
is strongly connected.

It is a well-known theorem that a directed multigraph has an Euler Circuit
(which is a closed path in our terminology), if it is connected and every vertex
has the same in- and out-degree. If the multiplicity of arcs of the subgraph is
given by the mapping f , we obtain a directed multigraph. Then the in-degree of
a vertex v of the subgraph is the sum of all f(ai) for arcs ai with target vertex
v, and its out-degree is the sum of all f(ai) for arcs ai with source vertex v. So,
by condition (2), the above theorem can be applied to the subgraph. It proves
that there exists a closed path π such that, for each arc ai, f(ai) provides the
number of occurrences of ai in π. By conditions (3) and (4), π is non-decreasing.
By condition (5), no arc of π is labeled by t. ut
Hence, for deciding if transition t eventually stops the net N , it suffices to con-
struct a coverability graph of N and check whether there exists no non-empty
multiset of arcs satisfying the above conditions.

All conditions of the previous proposition except the first can be expressed
in terms of inequalities. Let again a1, . . . , ak denote the arcs of a coverability
graph of N . Given a path π of this coverability graph, the variables x1, . . . , xk
indicate how often a particular arc appears in the path π. Using this notation,
we rewrite the above conditions (the additional condition (6’) just states that
all xi are non-negative):

(2’) For a vertex v of the coverability graph, let in(v) be the set of arcs with
target v and let out(v) be the set of arcs with source v.
For each vertex v, ∑

ai∈in(v)
xi =

∑

ai∈out(v)
xi .

31

(3’) For each arc ai connecting two vertices representing ω-markings with differ-
ent sets of ω-marked places, we have xi = 0.

(4’) For each place s with pre-set •s and post-set s• satisfying m(s) = ω in the
ω-markings appearing in π, we have

∑

u∈•s

∑

λ(ai)=u

xi ≥
∑

u∈s•

∑

λ(ai)=u

xi ,

where λ(a) denotes the label of arc a, i.e., the occurring transition.

(5’) For each arc ai labeled by t, we have xi = 0.

(6’) For i = 1, . . . , k, we have xi ≥ 0 .

It remains to find a solution x1, . . . , xk of the according homogeneous system
of linear inequalities such that not all xi are zero, which additionally satisfies
condition (1), i.e., the multiset of arcs ai constitutes a strongly connected sub-
graph of the coverability graph. Since the inequality system is homogeneous, we
do not have to care about integral solutions, because for any (rational) solution
there is a solution in the integers, derived by multiplication with the common
denominator. However, since the number of solutions of the system of linear
inequalities is potentially infinite, this still does not lead to a feasible algorithm.

Fortunately, all solutions of the inequality system can be represented as linear
combinations (with non-negative coefficients) of a finite basis. See e.g. [1] for an
algorithm to compute such a basis. Let B = {b1,b2, . . . ,bl} be a basis, with
bi = [bi,1, bi,2, . . . , bi,k] for 1 ≤ i ≤ l. Then each solution to the system of
inequalities can be represented as

µ1 · b1 + µ2 · b2 + · · ·µl · bl ,

where all µi are non-negative integers.

The following simple proposition shows that we do not have to consider
all these (infinitely many) solutions, but may restrict on solutions where all
coefficients belong to the set {0, 1}.

Proposition 5. Let µ1 ·b1+· · ·+µl ·bl be a solution of the system of inequalities
(2’) to (6’). Define, for 1 ≤ i ≤ l, µ′i by µ′i := 0 if µi = 0, and µ′i := 1 if µi > 0.

Then µ′1 ·+b1 + µ′2 ·b2 + · · ·µ′l ·bl is a solution of the system of inequalities
(2’) to (6’), too, and the subgraphs generated by both solutions conincide. In
particular, the subgraph generated by the first solution is strongly connected if
and only if the subgraph generated by the second solution is strongly connected.

ut

32

Combining Propositions 2,3,4 and 5 yields the main result of this contribu-
tion:

Theorem 1. Transition t does not stop the net N eventually if and only if, for
any coverability graph of N and for any basis B of the solutions of the system
of inequalities (2’) to (6’), the sum of all solutions of a nonempty subset of B
generates a connected subgraph of the coverability graph. ut

An algorithm can directly be derived from this theorem. The worst case
complexity of this algorithm is apparently quite poor, because it requires the
construction of the coverability graph, the construction of a basis of the derived
system of inequalities, and finally it requires to consider all (exponentially many)
subsets of these basis solutions.

6 A Faster Algorithm for Finding Suitable Subsets of
Basis Solutions

Instead of considering all subsets of basis solutions to find a set of solutions
generating a strongly connected subgraph of the coverability graph, such a set
can be found by means of the following efficient divide-and-conquer algorithm:

We define an algorithmic function which, given a set S of solutions of the
system of inequalities, first constructs the generated subgraph of the coverability
graph, i.e., this graph has all arcs ai of the coverability graph which have positive
coefficients in any solution of S. If this subgraph is strongly connected, we are
finished and conclude that the considered transition t eventually stops the net.
Otherwise this subgraph has more than one strongly connected component. For
each strongly connected component, we consider the subset of solutions S′ ⊂ S
with the property that all its positive coefficients refer to arcs of this compo-
nent. If this set S′ is not empty for a strongly connected component, it again
generates a subgraph of the coverability graph. This subgraph is entirely located
within the considered strongly connected component, but it is not necessarily
strongly connected itself. We recursively apply this function, for each strongly
connected component with nonempty according set S′, to this set S′. If the set S′

is empty for all strongly connected components, the algorithm returns to its call-
ing instance. If the algorithm terminates without finding a strongly connected
subgraph generated by a set of solutions, it concludes that no such set exists and
that therefore transition t eventually stops the net.

Initially, the function is applied to a basis B of solutions to the system of
inequalities.

Proposition 6. The algorithm terminates and outputs the correct answer. It
runs in linear time with respect to the size of the basis B.

Proof. The algorithm terminates because the function is only called recursively
for a set S′ if the current set S does not generate a strongly connected graph
and S′ generates a smaller strongly connected subgraph.

33

The algorithm only stops before proper termination if it found a stronly con-
nected subgraph generated by a solution, and hence the output that transition
t eventually stops the net is correct.

It remains to show that, if the algorithm reaches its proper end and hence did
not find a set generating a strongly connected subgraph, then no such set exists.
So assume a set S ⊆ B of solutions exists such that the generated subgraph
is strongly connected. Now assume that S ⊂ S′. Then, obviously the subgraph
generated by S is still in one strongly connected component of the subgraph gen-
erated by S′. Therefore, whenever the function is called for some set S′ satisfying
S ⊂ S′, and from this instance it is called for subsets S1,S2, . . ., then the set S
is included in one of the sets Si. Since S is included in B, it will eventually be
found by the algorithm (unless another suitable set of solutions is found before).

Finally, the algorithm runs in linear time with respect to the size of the basis
B because each function call performs a proper split of the set B, and B can be
splitted at most |B| − 1 times. ut

7 Conclusion

We have shown how to decide if a single transition is able to stop an entire
net eventually, i.e., if no infinite occurrence sequences has only finitely many
occurrences of t. The approach can easily be generalized to sets of transitions
(if we stop all transitions of this set at some marking, will the net eventually
terminate?). Another generalization refers to arc weights; the procedure works
for nets with arc weights with only small changes. The usual complement place
construction makes the approach also available for nets with capacity restric-
tions.

Experimental results and comparisons to other approaches, in particular to
model checking algorithms for temporal logics, will be topics of further research.

Another tool for identifying transitions that stop a net is given by transition
invariants, which are closely related to cyclic occurrence sequences, and by tran-
sition sur-invariants, which are related to occurrence sequence with non-negative
effect to all places. Both types of invariants can be derived by linear algebraic
means, see e.g. [2]. These techniques lead to much more efficient algorithms, but
unfortunately provide only sufficient criteria for termination problems.

Yet another approach to solve the problem is to consider cycles in coverability
graphs (see [3]), representing cyclic behavior. The calculation of such cycles
requires, however, by far more effort than the algorithms suggested in the present
contribution.

References

1. Dimitri Chubarov and Andrei Voronkov. Basis of solutions for a system of linear
inequalities in integers: Computation and applications. In Joanna Jedrzejowicz
and Andrzej Szepietowski, editors, Mathematical Foundations of Computer Science
2005, 30th International Symposium, MFCS 2005, Gdansk, Poland, August 29 -

34

September 2, 2005, Proceedings, volume 3618 of Lecture Notes in Computer Science,
pages 260–270. Springer, 2005.

2. Jörg Desel. Basic linear algebraic techniques for place/transition nets. In Reisig
and Rozenberg [8], pages 257–308.

3. Jörg Desel. On cyclic behaviour of unbounded Petri nets. In Josep Carmona, Mi-
hai T. Lazarescu, and Marta Pietkiewicz-Koutny, editors, 13th International Con-
ference on Application of Concurrency to System Design, ACSD 2013, Barcelona,
Spain, 8-10 July, 2013, pages 110–119. IEEE Computer Society, 2013.

4. Jörg Desel and Wolfgang Reisig. Place/transition Petri nets. In Reisig and Rozen-
berg [8], pages 122–173.

5. Javier Esparza. Decidability of model checking for infinite-state concurrent systems.
Acta Inf., 34(2):85–107, 1997.

6. Richard M. Karp and Raymond E. Miller. Parallel program schemata. J. Comput.
Syst. Sci., 3(2):147–195, 1969.

7. Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs on
Theoretical Computer Science. Springer, 1985.

8. Wolfgang Reisig and Grzegorz Rozenberg, editors. Lectures on Petri Nets I: Ba-
sic Models, Advances in Petri Nets, based on the Advanced Course on Petri Nets,
Dagstuhl, September 1996, volume 1491 of Lecture Notes in Computer Science.
Springer, 1998.

35

Two Operations for Stable Structures of
Elementary Regions

Federica Adobbati1, Carlo Ferigato3, Stefano Gandelli1, and Adrián Puerto
Aubel2

1 DISCo — Università degli Studi di Milano-Bicocca
2 INRIA - Rennes Bretagne-Atlantique, IRISA, Université de Rennes I

3 JRC — Joint Research Centre of the European Commission

Abstract. The set of regions of a condition/event transition system rep-
resents all the possible local states of a net system the behaviour of which
is specified by the transition system. This set can be endowed with a
structure, so as to form an orthomodular partial order. Given such a
structure, one can then define another condition/event transition sys-
tem. We study cases in which this second transition system has the same
collection of regions as the first one. When it is so, the structure of re-
gions is called stable. We propose, to this aim, a composition operation,
and a refinement operation for stable orthomodular partial orders, the
results of which are stable.

1 Introduction

This work studies the interrelations between local states, locally observable prop-
erties, and events of distributed systems. To this aim, its framework is set in the
relation between elementary Petri net systems, and the labelled transition sys-
tems expressing their behaviour, their case graphs. Indeed, labelled transition
systems are commonly used models for verification of properties of the specified
system [8].

We focus on the particular case in which local states act like Boolean vari-
ables, forbidding executions by carrying true or false values. Thus, the framework
is narrowed down to elementary and condition/event models, and their close re-
lation to the theory of regions. In [10, 11], regions were shown to be the key
to solving the synthesis problem: Given a labelled transition system, determine
whether it is the case graph of some elementary net system. The extension of a
local state of a net system in its case graph is the set of global states at which
it holds the value true. In a labelled transition system, a region is a set of global
states having a consistent incidence with respect to the actions, so as to be the
extension of a local state. Given an elementary, or condition/event transition
system, a net system can be constructed with regions as local states, such that
its case graph will be precisely the specified transition system. It was further
shown [9] that given an elementary (condition/event) system, it suffices to con-
sider the sub-collection of regions that is minimal with respect to set inclusion

36

[1]. The remaining regions correspond to local states which are redundant in the
net system.

Regions, as subsets of global states of a system, carry an algebraic structure
[2]. They can be ordered by set inclusion, in a relation that expresses implication.
Negation, disjunction, and conjunction can be defined as set operations, only
partially in the latter two cases. The resulting structure was shown to be a
prime and coherent orthomodular partial order [2], omp for short.

Orthomodular partial orders typically represent, in an algebraic fashion, sys-
tems about which the acquisition of information depends on the point of view,
or experiment. They were first introduced by Birkhoff and Von Neumann [6] in
order to formalise the logic of properties of quantum systems. Foulis and Randall
[12, 18] extended their approach to provide a generalized model.

In the view that omp’s are a suitable specification for the observable prop-
erties of a system, we are concerned with a second synthesis problem: Given an
omp determine whether it is the regional structure of some elementary transition
system. This problem was first posed in [2], and a solution was pointed at. When
an omp is prime, one can make use of a representation theorem to find a set
of states such that the elements of the omp are subsets of it. By considering a
complete graph whose vertices are these states, one can label each edge so that
all elements of the omp can be found as regions of this new transition system.
When the structure of regions of this new system is isomorphic to the specified
omp, then the latter is called stable.

Not every omp is stable, and the full characterization of the class of stable
omp’s is an open problem which represents a long term objective. It is con-
jectured that every regional omp, the structured collection of regions of some
elementary transition system, is stable. The present work includes itself in a
series of papers [2–5] the scope of which is to study this stability of omp’s, in
an attempt to prove the conjecture.

The present work extends [4], in which some classes of stable omp’s were
presented. Here, composition and refinement operations are defined, which pre-
serve stability, thus proving the stability of regional omp’s for a wide range of
systems.

2 Background

This work implicitly deals with elementary net systems (ENS for short) [15].
Even though these models will not be formalised here, they underlie the main
ideas in the presented results. ENS are a class of pure, and simple Petri net
systems with a particular firing rule which ensures that the system remains 1-safe
in case of contact. Conditions of ENS can only be in one of two states, marked
or un-marked, and as such they can be seen as Boolean variables. Moreover, out
of Petri’s extensionality principle, two events having the same incidence on the
set of conditions, and viceversa for conditions in relation to events, should be
considered the same [17].

37

Condition/Event net systems (CENS for short) are structurally identical to
ENS with the addition of a backward firing rule which provides symmetry to
the reachability relation amongst markings; reachability becomes an equivalence
relation, and reachability classes substitute the initial marking required for ENS.

b1

b2

b4

b5

b3
e1 e2

e3

e4

q1

q2

q3

q4

q5

e2

e1
e2

e1

e3e4

Fig. 1. To the left, a CENS. To the right, its sequential case graph. The state q1
corresponds to the marking {b1, b4}, at which e1 and e2 are concurrently enabled. To
the right, the subset of states {q1, q2} is in evidence; it corresponds to the extension of
b1, namely the set of markings containing b1.

2.1 Transition Systems and Regions

The behaviour of CENS can be expressed by means of a labelled transition
system. In such a model, states correspond to the reachable markings of the net
system. A marking enabling an event will correspond to a state from which an
arrow, labelled with this event, points to the state which is reached when the
event is fired. Such a labelled transition system is the sequential case graph of
the underlying net system.

Definition 1 (Transition System). A transition system is a structure A =
(Q,E, T), where Q is a set of states, E is a set of events and T ⊆ Q × E ×Q
is a set of transitions carrying labels in E, such that:

1. the underlying graph of the transition system is connected;
2. ∀(q1, e, q2) ∈ T q1 6= q2;
3. ∀(q, e1, q1)(q, e2, q2) ∈ T q1 = q2 ⇒ e1 = e2;
4. ∀e ∈ E ∃ (q1, e, q2) ∈ T .

All the structures we consider are finite. A fundamental notion used in this
contribution is the one of region. Regions were introduced in [10, 11] as the
fundamental tool for solving the so called synthesis problem for Petri Nets.

Definition 2 (Region). A region of a transition system A = (Q,E, T) is a
subset r of Q such that: ∀e ∈ E,∀(q1, e, q2), (q3, e, q4) ∈ T :

38

1. (q1 ∈ r and q2 /∈ r) implies (q3 ∈ r and q4 /∈ r) and
2. (q1 /∈ r and q2 ∈ r) implies (q3 /∈ r and q4 ∈ r).

Regions are subsets of states which have a consistent orientation with the
labelling of transitions. As such, they can be assigned an incidence with respect
to each event, and interpreted as Boolean conditions which hold at the states
composing them.

Example 1. With reference to Figure 1, the extension of b1 is a region. As a
subset of states, all occurrences of e1 exit it and e4 enters it. All occurrences of
the remaining events do not cross the border of b1.

The set of regions of a transition system A will be denoted by R(A) and,
given a state q of A, Rq will denote the subset of the regions in R(A) which
contains the state q. Given a transition system A and its set of regions R(A),
the pre-set and post-set operators can be defined:

Definition 3 (Pre- and Post-sets). •(.), the pre-set operator, and (.)•, the
post-set operator, are defined on the events E and on the regions R(A) of the
transition system A as follows. Let r be a region in R(A)

1. •r = {e ∈ E | ∃ (q1, e, q2) ∈ T such that q1 /∈ r and q2 ∈ r};
2. r• = {e ∈ E | ∃ (q1, e, q2) ∈ T such that q1 ∈ r and q2 6∈ r};
3. •e = {r ∈ R(A) | e ∈ r•};
4. e• = {r ∈ R(A) | e ∈ •r}.

We are concerned with a specific class of transition systems, the condition/event
transition systems (cets for short). cets can be defined as those labelled transi-
tion systems which are the sequential case graph of some CENS. An alternative
definition, in terms of regions and the separation axioms, follows from the results
of [10, 11].

Definition 4 (CETS – Condition/Event Transition System). A cets is
a transition system in which the following conditions hold:

1. ∀ q1, q2 ∈ Q Rq1 = Rq2 ⇒ q1 = q2;
2. ∀ q1 ∈ Q ∀ e ∈ E •e ⊆ Rq1 ⇒ ∃ q2 ∈ Q such that (q1, e, q2) ∈ T ;
3. ∀ q1 ∈ Q ∀ e ∈ E e• ⊆ Rq1 ⇒ ∃ q2 ∈ Q such that (q2, e, q1) ∈ T .

This definition requires of a transition system, that its set of regions is suf-
ficient to fully determine the incidence of each event with respect to each state.
Under these conditions, a CENS can be constructed, which has the set of re-
gions for conditions, and the transition labels as events, and such that its case
graph is isomorphic to the given transition system. This tight relation between
CENS and cets was thoroughly formalised in [15], in the equivalent framework
of elementary systems.

The following basic properties of the regions R(A) of a cets A are proven
in [1]:

1. ∅, Q ∈ R(A);
2. r ∈ R(A) ⇒ Q \ r ∈ R(A);
3. r1, r2 ∈ R(A) ⇒ (r1 ∩ r2 ∈ R(A)⇔ r1 ∪ r2 ∈ R(A)).

39

2.2 Orthomodular Partially Ordered Sets

Orthomodular partially ordered sets, indicated as omp in what follows, are well
known algebraic structures in the literature on Quantum Logics. The following
definition can be found as the finite version of Definition 1.1.1 in [16]. Note that
∧ and ∨ are the usual meet and join operations on a partial order, denoting,
respectively, the greatest lower bound, and the least upper bound.

Definition 5 (OMP - Orthomodular Partially Ordered Set). An ortho-
modular partially ordered set 〈L,≤, (.)′, 0, 1〉 is a set L endowed with a partial
order ≤ and a unary operation (.)′ (called orthocomplement), such that the fol-
lowing conditions are satisfied:

1. L has a least and a greatest element (respectively 0 and 1) and 0 6= 1;
2. ∀x, y ∈ L x ≤ y ⇒ y′ ≤ x′;
3. ∀x ∈ L (x′)′ = x;
4. for any finite sequence {xi | i ∈ I} of elements of L such that i 6= j ⇒ xi ≤

x′j, then
∨

i∈I xi exists in L;
5. ∀x, y ∈ L x ≤ y ⇒ y = x ∨ (x′ ∧ y).

This latter condition is sometimes referred to as orthomodular law.

We will often denote 〈L,≤, (.)′, 0, 1〉 simply by L, and assume that an omp Li

has underlying structure 〈Li,≤i, (.)′, 0i, 1i〉.
In general, ∧ and ∨ operations can be undefined for some pairs of elements

of L. Two elements x and y in L are said to be orthogonal, noted by x ⊥ y, when
x ≤ y′. As a consequence of their basic properties, as listed at the end of Section
2.1 above, the set of regions of a cets is an omp. 0 and 1 are, respectively,
∅ and Q, the order is given by set containment and orthocomplement by set
complement; moreover, two regions are orthogonal whenever their intersection
is empty.

Since all the structures we consider are finite, an omp can be equivalently
specified by its collection of atoms A(L) := {x ∈ L \ {0} | ∀y ∈ L : (y ≤ x) →
(y = x or y = 0)} together with their orthogonality relation. Each element of L
can then be retrieved as the join of a collection of pairwise orthogonal atoms. The
reader is referred to [5] for the details, and to [12, 18] for a full characterisation
of this representation of omp’s. A subset M of an omp L with the order relation
and the orthocomplement operation inherited from L is a sub-omp of L in case
M is an omp ([16], definition 1.2.2).

Definition 6 (OMP-morphism). ([16], finite case of definition 1.2.7) Let L1

and L2 be omp. A mapping f : L1 → L2 is a morphism of omp’s if the following
conditions are satisfied:

1. f(0) = 0;
2. ∀x ∈ L1 f(x′) = f(x)′;
3. for any finite sequence {xi | i ∈ I} of mutually orthogonal elements in L1,

f(
∨

i∈I
xi) =

∨

i∈I
f(xi)

40

∅

b1 b2 b3 b4 b5

b′1 b′2 b′3 b′4 b′5

Q

b3

b4

b5

b2

b1

Fig. 2. Two representations of the omp obtained by ordering the regions of the tran-
sition system in Figure 1. To the left, all regions are represented in a Hasse diagram.
To the right, only the atoms are represented; each of the two solid lines is a maximal
clique of orthogonality. This last representation is called Greechie diagram.

A morphism f : L1 → L2 is an isomorphism if f is injective, maps L1 onto L2

and f−1 is a morphism. An isomorphism f : L1 →M , when M is a sub-omp of
L2, is called embedding.

Morphisms of omp’s preserve compatibility, order and orthogonality [2]. Two
elements x, y of an omp L are said to be compatible if they admit a common
orthogonal base. Formally, x $ y ⇔ ∃a, b, c ∈ L : (a ⊥ b ⊥ c ⊥ a) and (x = a ∨ b
and y = b ∨ c) ([16], definition 1.2.1). This orthogonal base generates a Boolean
algebra which contains both elements, and is a sub-omp of L. When considered
as conditions of a net system, two compatible elements will induce sequential
behaviour of their neighbouring events, imposed by the orthogonal base. Indeed,
orthogonality is to be interpreted as mutual exclusion of the corresponding con-
ditions, and in fact, when restricted to atoms, the compatibility relation reduces
to orthogonality [5]. We say two elements are incompatible, denoted x 6 $ y,
when they are not compatible. Compatible elements x and y will be denoted by
x $ y. An embedding that preserves and reflects compatibility is called strong
([4], Definition 15).

A two-valued state of an omp is a well-known concept in the literature on
Quantum Logics ([16], Chapter 2). We will use here a specific definition of two-
valued state, state for short, apt to the omp’s of the regions of CETS.

Definition 7 (State of an OMP). ([2], theorem 41) Let A(L) be the set of
atoms of an omp L. Let E be the set of the maximal cliques of ⊥ in L restricted
to A(L); let C be the set of the maximal cliques of 6 $ in L restricted to A(L); let
S = {s ∈ C | ∀e ∈ E |s ∩ e| = 1}, then the up-closure of s, ↑(s), in L is a state
in L.

Since states of L are uniquely defined by means of up-closures of maximal
cliques of 6 $, we will frequently refer to these maximal cliques as the states of
the omp L when clear from the context.

41

The collection of all states of an omp L will be denoted by S(L). It will
also be useful to consider the collection of states which contain a given element.
Given an element x ∈ L, let us define the notation Sx := {s ∈ S(L) | x ∈ s}.

The following section is concerned with the representation of an omp as a
collection of subsets of its states. The order in L will then be set inclusion, and
the orthocomplement will simply be given by set complement. When this is the
case, the omp is said to admit a concrete representation.

2.3 Properties of Regional OMP’s

As explained in more detail in section 2.4 below, omps can be constructed from
the regions of a cets. These omps will, from now on, be referred to as regional
omps. They have been shown, in [2], to satisfy the following properties. We shall
not get in the details, and the reader is referred to [2] for a full explanation of
these, and the implications they provide in the interpretation of omps for system
specification.

– Regularity: L is regular whenever every set of pairwise compatible elements
is a compatible set [16]

– Richness: L is rich whenever it admits a concrete representation [16]

There is some inconsistency in the terminology referring to these concepts
in the literature, and it has led to some confusion in the axiomatic definition of
these properties. Indeed regularity is the term used in [16], whereas [14] refers
to this property as coherence. The concept of coherence is however slightly more
general in [12, 18].

Richness is axiomatically defined in [16], and assumed through [2–5] to be
equivalent to the notion of primeness defined in [14]. The two definitions how-
ever, differ enough to raise a doubt, as their equivalence might not seem straight-
forward. This equivalence is, in what follows, proven, for the sake of mathemat-
ical rigour.

An omp L is called unital when for every element x ∈ L\{0} there is a state
s ∈ S(L) such that x ∈ s.

Definition 8 (Rich OMP). [16] An omp L is rich iff
∀x, y ∈ L : Sx ⊆ Sy ⇒ x ≤ y

In Chapter 2 of [16], a few equivalent characterisations of richness are shown.
In particular we are interested in the following:

Theorem 1. [16] An omp L is rich iff it is unital and
∀x, y ∈ L : x 6 $ y ⇒ ∃s ∈ S(L) : x ∈ s and y ∈ s

Rich omp’s where shown in Chapter 2 of [16] to also be unital.

Definition 9 (Prime OMP). [14] An omp L is prime iff
∀x, y ∈ L : x 6= y ⇒ ∃s ∈ S(L) : x ∈ s⇔ y /∈ s

42

We now prove two lemmas that will be used in the proof of Theorem 2 below:

Lemma 1. In an omp L we have that:
∀x, y ∈ L : x 6 $ y ⇒ ∃s ∈ S(L) : x /∈ s and y /∈ s if and only if:
∀x, y ∈ L : x 6 $ y ⇒ ∃s ∈ S(L) : x ∈ s and y ∈ s

Proof. Suppose that L is an omp such that ∀x, y ∈ L : x 6 $ y ⇒ ∃s ∈ S(L) : x ∈ s
and y ∈ s and consider two elements x, y ∈ L : x 6 $ y; then it is also true that
x′ 6 $ y′. By hypothesis we have that ∃s ∈ S(L) : x′ ∈ s and y′ ∈ s and neither x
nor y belong to s, which means that ∃s ∈ S(L) : x /∈ s and y /∈ s for every pair
of incompatible elements in L.

Conversely, suppose that L is an omp such that ∀x, y ∈ L : x 6 $ y ⇒ ∃s ∈
S(L) : x /∈ s and y /∈ s and consider two elements x, y ∈ L : x 6 $ y; again it is
true that x′ 6 $ y′. By hypothesis we have that ∃s ∈ S(L) : x′ /∈ s and y′ /∈ s and
both x and y belong to s, which means that ∃s ∈ S(L) : x ∈ s and y ∈ s for
every pair of incompatible elements in L.

Lemma 2. A prime omp L is also unital.

Proof. For every element x ∈ L distinct from 0 we have that ∃s ∈ S(L) : x ∈
s⇔ 0 /∈ s and since 0 doesn’t belong to any state of L then x belongs to s.

Theorem 2. An omp L is rich iff it is prime.

Proof. Suppose that L is rich and consider two elements x, y ∈ L : x 6= y. There
are two cases:

x $ y : in this case there exists a Boolean subalgebra of L that contains
both x and y. For both of them we calculate the set of atoms below them,
A↓(x) = {a ∈ A(L) | a ≤ x} and A↓(y) = {a ∈ A(L) | a ≤ y}. Such sets differs
in at least an element z, because otherwise it would mean, out of Axiom 4 in
Definition 5, that x = y. If we consider a state s ∈ S(L) such that z ∈ s then s
will contain only one element between x and y because z belongs to to only one
of the two sets A↓(x) and A↓(y). The existence of s is ensured by the fact that
L is unital, which means that ∃s ∈ S(L) : x ∈ s⇔ y /∈ s.

x 6 $ y : if x 6 $ y then we also have that x 6 $ y′. From the hypothesis we have
that ∃s ∈ S(L) : x ∈ s and y′ ∈ s which means that ∃s ∈ S(L) : x ∈ s⇔ y /∈ s.

Now, suppose that L is prime, for Lemma 2 L is also unital. Consider two
elements x, y ∈ L : x 6 $ y. That means that x 6 $ y′ and in particular x 6= y′. By
Definition 9 of prime omp we have that ∃s ∈ S(L) : x ∈ s⇔ y′ /∈ s which means
that ∃s ∈ S(L) : x ∈ s⇔ y ∈ s. Again, we consider two cases:

x ∈ s : then ∃s ∈ S(L) : x ∈ s and y ∈ s
x /∈ s : then ∃s ∈ S(L) : x /∈ s and y /∈ s
which, as shown in Lemma 1, is equivalent to ∃s′ ∈ S(L) : x ∈ s′ and y ∈ s′.

ut

43

2.4 Saturated Transition System and the Stability Problem

As anticipated in section 2.3 above, we know that, given a cets A = (S,E, T),
H(A) = (R(A),⊆, ∅, S, (.)′) with (.)′ the set complement operation, is an omp.
Moreover, this regional omp is regular and rich.

We know as well that, given a regular and rich omp L, J(L) = (S(L), E(L),
T (L)) is a cets; where E(L) and T (L), the sets of, respectively, events and
transitions, are constructed by exploiting symmetric differences between states
as defined in [2] and [5]. Formally, a state is a collection of elements of L, and
each event e ∈ E(L) will be of the form e = [s, s′] = (s \ s′, s′ \ s), as such, it is
characterised by its sets of pre-conditions, and post-conditions seen as elements of
L. The underlying graph of J(L) is complete, presenting a transition (s, [s, s′], s′)
between each ordered pair of distinct states (s, s′), and is therefore called the
saturated transition system of L.

In [5] it is shown how the construction of J(L) can be done by considering
exclusively the atoms of L. In particular, states are determined by their atoms,
and so are events, as symmetric differences of the atoms of states. A natural
question concerns the full axiomatic definition of the regional omps. We know
that, in the general case, given a rich and regular logic L, L embeds in H(J(L)).
We consequently define as stable an omp L isomorphic to H(J(L)).

It is our long-term goal to fully characterise the class of stable omp’s, and
it is conjectured that it coincides with the class of regional omp’s. In the next
section, we will present a compositional approach which will allow us to prove
the stability of a wide class of regional omps.

3 Composition of OMPs and their Stability

This section will start introducing a rather general composition operation for
omp’s. The result of this composition will not always be an omp but we show
that it is the case in particular instances.

3.1 Composition of OMP’s

We here present a composition operation for omp’s, in the fashion of those
presented in [7] for modular ortholattices and orthomodular lattices. We focus on
the class of orthomodular posets, of which orthomodular lattices are a subclass.
Note that, whereas the cases treated in [7] are classes of algebras, our class is
not, since in omp’s joins and meets are only partially defined.

Definition 10 (V-formation). A V-formation of omp’s is a tuple
(I, L1, L2, φ1, φ2), such that I, L1, and L2 are omp’s, and φi : I → Li(i = 1, 2)
are morphisms of omp’s.

A V-formation serves as specification for composing L1 and L2 on the com-
mon interface I. In categorical terms, it is simply a diagram in the category of
omp’s. Strictly speaking, the interface would only be φ−11 (L1) ∩ φ−12 (L2), so in

44

order to simplify notation, we here consider V-formations in which φi(i = 1, 2)
are embeddings, and so for each i = 1, 2, φi(I) is a sub-omp of Li isomorphic to
I.

0I

1I

x x′

I

01 = φ1(0I)

11 = φ1(1I)

a1 b1 c1 = φ1(x)

a′1 b′1 c′1 = φ1(x′)

L1

02 = φ2(0I)

12 = φ2(1I)

a2b2φ2(x′) = c2

a′2b′2φ2(x) = c′2

φ1 φ2

L2

Fig. 3. A V-formation

Given a V-formation of omp’embeddingss, we propose a straightforward com-
position operation. This construction is inspired by co-equalisers [13], however,
universality of the construction remains an open problem. As a matter of fact,
the nature of the proposed composition interprets the interface I as a sub-omp
of each component, so as to identify the two copies element-wise. In this sense,
it requires the morphisms of the V-formation to be actual embeddings.

Definition 11 (Equivalence induced by a V-formation).
Let V = (I, L1, L2, φ1, φ2) be a V-formation of omp’s. Consider L̃, the disjoint
union of L1 and L2 such that φi : I → L̃ (i = 1, 2), with φ1(I) ∩ φ2(I) = ∅. The
equivalence relation induced by V is the binary relation ∼V := {(x, x) ∈ L̃2 | x ∈
L̃} ∪ {(φ1(x), φ2(x)) ∈ L̃2 | x ∈ I} ∪ {(φ2(x), φ1(x)) ∈ L̃2 | x ∈ I}.

It is straightforward to verify that ∼V is an equivalence relation. It is re-
flexive, and symmetric by construction. If x, y, z ∈ L̃ are such that x ∼V y and
y ∼V z then it must be either z = x or z = y, so ∼V is transitive. We will de-
note the equivalence class of an element x ∈ L̃ by [x]. This equivalence relation
satisfies these additional properties:

Proposition 1. Let V = (I, L1, L2, φ1, φ2) be a V-formation of omp’s, and ∼V

as in Definition 11. Then:

45

1. ∀i ∈ {1, 2} : ∀x ∈ Li : [x] ∩ Li = {x}
2. ∀x, y ∈ L̃ : x ∼v y ⇔ x′ ∼V y′

3. [01] = [02] = {01, 02} and [11] = [12] = {11, 12}
4. ∀x, y ∈ L̃ : (x ≤ y)⇒ ¬(∃x̃ ∈ [x], ỹ ∈ [y] : ỹ < x̃).

Proof. 1. By construction.
2. Let x, y ∈ L̃ be two distinct elements such that x ∼ y. From the definition

of ∼V , it follows that ∃z ∈ I : φ1(z) = x and φ2(z) = y (up to swapping
of x and y). Since φ1 and φ2 are omp-morphisms, it follows that φ1(z′) =
x′ and φ2(z′) = y′, hence x′ ∼ y′.

3. It is a direct consequence of Axioms 1 and 2 in Definition 6.
4. Let x ≤ y then ∃i ∈ {1, 2} : x, y ∈ Li, and x ≤i y. Analogously, ∃j ∈ {1, 2} :
x̃, ỹ ∈ Lj , and ỹ <j x̃. Clearly it must be that i 6= j. Now, x ∼V x̃, and
y ∼V ỹ ⇒ ∃a, b ∈ I : φi(a) = x, φj(a) = x̃, φi(a) = y, and φj(b) = ỹ. Since
φi is an omp-embedding, it must reflect the order, yielding a ≤ b, but φj
preserves the order, and so x̃ ≤ ỹ.

ut

These results allow for endowing the quotient L̃/ ∼V with a structure.

Definition 12 (I-pasting of OMP’s). Consider the setting of Definition 11,
and define:

1. L = L̃/ ∼V ,
2. 0 = [01] = [02] and 1 = [11] = [12],
3. ∀[x] ∈ L : [x]′ = [x′],
4. [x] ≺ [y]⇔ ∃x ∈ [x] : ∃y ∈ [y] : x ≤ y in L̃, and
5. ≤ ⊆ L× L as the transitive closure of ≺.

Then the I-pasting of L1 and L2 induced by V is the structure L1|I|L2 = 〈L,≤
, (·)′, 0, 1〉.

It follows immediately from Proposition 1 (4.) that ≤ is an order relation.
Proposition 1 (2.), states that ∼V is congruence for complementation, and so
(·)′ is well-defined on L. It is furthermore trivial to verify that 0 and 1 are
respectively the minimal and maximal elements in L. Note that whenever x ⊥ y,
then [x] ⊥ [y]. So defined, the composition of two omp’s over an interface is
simply obtained by identifying the elements whose pre-images through φ1 and
φ2 coincide. In general, such an I-pasting will be an orthocomplemented partial
order [14]. This is, however, not sufficient to guarantee that it is in fact an omp.
The following example shows that it can fail to be.

Example 2. With reference to Figure 3. Let I = {0, 1, x, x′} be an omp with
0 ≤ x, x′ ≤ 1. For i = 1, 2, let Li be Boolean algebras with three atoms
each {ai, bi, ci}. Since φi are omp-morphisms, φi(0) = 0i, and φi(1) = 1i.
Now let φ1(x) = c1, so that φ1(x′) = c′1 = a1 ∨ b1; and φ2(x′) = c2 so that
φ2(x) = c′2 = a2 ∨ b2. In this case, ∼ is the reflexive and symmetric closure
of {(01, 02), (11, 12), (c1, c

′
2), (c′1, c2)}, let [x] denote its equivalence classes. In

46

L1|I|L2, we have that [a1] ≤ [c′1] = [c2] ≤ [a′2]. Hence, [a1] and [a2] are or-
thogonal, but they have no least upper bound. Indeed, [a1], [a2] ≤ [b′1], [b′2] and
[b′1] ∧ [b′2] = [0].

In what follows, we will study cases in which this composition is actually an
omp.

3.2 Extending a system with a sequential component

It is a known result [16] that whenever L1 and L2 are omp’s, and I = {0, 1} is
the trivial Boolean algebra, then L1|I|L2, as defined in the last subsection, is
an omp. It was further shown in [4] that in this case, if L1 and L2 are stable,
then so must be L1|I|L2. This composition operation corresponds to the parallel
composition of the corresponding operand systems. Indeed, the two systems are
simply considered as a whole, although they remain independent, they do not
synchronise or exchange information. Since the result of L1|I|L2 is stable, it can
be itself an operand for a further composition, and so this composition can be
iterated, in order to generate a wide class of stable systems. As an operation, it
is associative and commutative.

We consider now the case in which the interface is a non-trivial Boolean
algebra I = {0, 1, y, y′} whose atoms are: A(I) = {y, y′}. With such an inter-
face, we impose that the corresponding saturated transition systems synchronise
according to the specified embeddings. One of the components will be a finite
Boolean algebra, and will be denoted B. Boolean algebras considered as omp’s
were shown to be stable in [4]. The proof of stability will require the notion of
free atom. An atom is free in an omp if it belongs to just one maximal Boolean
subalgebra. When seen as the region of a cets, a free atom is a minimal region
belonging to a single regional partition.

Example 3. With reference to Figure 2, b1, b2, b4, b5 and b3 are all atoms, however
b1, b2, b4, b5 are free, but b3 is not. Indeed, b3 belongs to two maximal Boolean
algebras.

The considered embeddings will then identify a free atom of an omp with an
atom of B.

Theorem 3. Let L be an omp, and x ∈ A(L) be an atom. Let B be a finite
Boolean algebra, and a ∈ A(B). Let I = {0, 1, y, y′}, and define φL : I → L, and
φB : I → B such that φL(y) = x, and φB(y) = a. Then L|I|B induced by the
V-formation (I, L,B, φL, φB) is an omp.

Proof. After Proposition 1, it suffices to show that orthogonal joins are well
defined, and that the orthomodular law holds. First note that in this case, the
only identifications are [0] = {0L, 0B}, [1] = {1L, 1B}, [x] = {x, a} and [x′] =
{x′, a′}, all other equivalence classes being singletons. Since both x and a are
atoms, we have that ≤=≺, in the setting of Definition 12. Furthermore, for each
pair of orthogonal elements [c] ⊥ [d], there must be c ∈ L′ ∩ [c] and d ∈ L′ ∩ [d],
where L′ ∈ {L,B} such that c ⊥ d in L′. If this holds for both L′ = L and

47

L′ = B, then the only possibility is [c] = [x] and [d] = [x′], for which the join
must be [1], and is well defined. Now, from the Definition 12 (4.) of ≺, it follows
that for every pair of ordered elements [c] ≤ [f], there must be one L′ ∈ {L,B}
such that c ∈ L′∩[c] and f ∈ L′∩[f], with c ≤ f . Now, this ensures, on one hand,
that orthogonal joins (and meets) are well defined in the I − pasting, whenever
they are well-defined on L and B. Indeed if c ∈ L′ ∩ [c] and f ∈ L′ ∩ [f], with
c ≤ f holds for both L′ = L and L′ = B, φ′L preserving order, it must be either
c = 0L′ or f = 1L′ .

On the other hand, since L′ is an omp, then c ≤ f implies that f = c∨(f∧c′),
hence [f] = [c] ∨ ([f] ∧ [c]′). ut

In the following, L|I|B will refer to this particular construction, and L will be
assumed to be stable. Furthermore, we will suppose that φL(y) = x is a free
atom, and show that L|I|B is stable whenever L is.

We start defining J ′(L) = (Q′L, E
′
L, T

′
L) in the following way:

Q′L = Sy ∪ {s ∪ {vi}|s ∈ Sy′ , φB(y) 6= vi ∈ A(B)}
E′L = {[s, s′]|s, s′ ∈ Q′L, s 6= s′}
T ′L = {(s, [s, s′], s′)|s, s′ ∈ Q′L, [s, s′] ∈ E′L, s 6= s′}.

s0 s1

s2

s3 s4

φL(y)

J(L) J ′(L) ∼= J(L|I|B)

s1

s4

[φL(y)]

sv10

sv12

sv13

sv20

sv22

sv23

Fig. 4. Construction of J ′(L), where L is the omp of Figure 2, I is as in Theorem 3,
and B is a Boolean algebra with three atoms: A(B) = {φB(y), v1, v2}. Lines represent
transitions in both directions. Dashed lines have an incidence with respect to φL(y) or
[φL(y)], whereas solid lines are independent from them.

Lemma 3. J ′(L) is isomorphic to J(L|I|B). Furthermore, for every vi ∈ A(B)
such that φB(y) 6= vi, the subgraph of J ′(L) induced by S(y)∪S(vi) is isomorphic
to J(L).

48

Proof. Every state q ∈ Q′L contains one, and only one, atom of B and since
φL(y) is a free atom, it has one, and only one, atom for every Boolean algebra
of L. Hence the elements of Q′L coincide with the elements of S(L|I|B). Since
the construction of J ′(L) is completely determined by the set of states as in the
construction of J(L|I|B), the two transition systems J(L|I|B) and J ′(L) are
isomorphic.

We also observe that for every atom vi ∈ A(B) distinct from φB(y) the
elements in S(y) ∪ S(vi) coincide with the elements of S(y) ∪ S(y′), which is
the set of states of J(L). From this observation it is easy to see that there is an
isomorphism between J(L) and any subgraph of J ′(L) induced by a set of states
in the form S(y) ∪ S(vi). ut

This last lemma will permit to consider J ′(L) instead of J(L|I|B).

Lemma 4. If a region H ∈ R(J ′(L)) contains a state s∪{vi} ∈ Q′L and Svi 6⊆ H
then ∀s ∪ {vj} ∈ Q′L : s ∪ {vj} ∈ H.

Proof. Since Svi 6⊆ H there must be a state s′ ∪ {vi} /∈ H, which means that
the event [s, s′] is an event labeling a transition exiting H. Now suppose that
there is a state s ∪ {vj} ∈ Q′L that doesn’t belong to H. This means that the
transition from s∪{vj} to s′ ∪{vj} ∈ Q′L does not exit H, but such a transition
is also labeled [s, s′], which is not possible since that would mean that H is not
a region. ut

Lemma 5. Every atomic region of J ′(L) is in the form Sx for x ∈ A(L|I|B).

Proof. Assume that there is an atomic region H 6∈ {Sx | x ∈ A(L|I|B)}. Con-
sider the subgraphs induced by Sy ∪ Svi for all the φB(y) 6= vi ∈ B and call
Hvi ⊂ H the sets H∩(Sy∪Svi). All the Hvi are atomic regions in every subgraph
of J ′(L) induced by Sy ∪Svi , since they are all isomorphic to J(L). The regions
Hvi can be atomic or not. If they are atomic, then they must coincide with an
atomic region Sx, with y 6= x ∈ Ln. Hence, after Lemma 4, H ∈ {Sx}x∈Ln+1

. If
they are not atomic, then there are H ′v1 ⊂ Hv1 ,...,H ′vk ⊂ Hvk from which we can
make the region

⋃
i∈{1,..,k}H

′
vi ⊂ H, hence H is not atomic. ut

Theorem 4. Let L be a stable omp, and x ∈ A(L) be a free atom. Let B
be a finite Boolean algebra, and a ∈ A(B). Let I = {0, 1, y, y′}, and define
φL : I → L, and φB : I → B such that φL(y) = x, and φB(y) = a. Then L|I|B
induced by the V-formation (I, L,B, φL, φB) is stable.

Proof. We wish to show that H(J(L|I|B)) ' L|I|B. With Lemma 3, we reduce
it to showing that H(J ′(L)) ' L|I|B. Since H(J ′(L)) is a finite omp, it is
characterised by the orthogonality relation among its atoms. Now, Lemma 5
states that each atom of H(J ′(L)) corresponds to an atom of L|I|B, and it was
shown in [4] that every atom of L|I|B must be an atom of H(J ′(L)).

For each pair of elements x ∈ A(L), y ∈ A(B), there is a state in s ∈ J(L|I|B)
such that [x] ∈ s and [y] ∈ s. Hence, the pasting must preserve incompatibil-
ity. Since the pasting also preserves orthogonality, we have that L|I|B, and

49

H(J(L|I|B)) have same collection of atoms, with identical orthogonality rela-
tions. As it was shown in [5], this is sufficient to state that H(J(L|I|B)) ' L|I|B

ut

3.3 Stability of Atom Refinement

The operation of refining an atom of an omp into two new atoms preserves
stability.

Theorem 5. Let L be a stable omp. Let x ∈ A(L). Consider Ma = (A(L) \
{x})∪ {y, z}, in which all orthogonal atoms of L remain orthogonal in Ma, and
all atoms orthogonal to x in L are orthogonal to both y and z in Ma. Then the
omp M generated by Ma is stable.

Proof. We will consider only the atoms of L and M , and states as represented
by maximal cliques of 6 $ as in Definition 7. Let Sx′ be the set of states of L not
containing x. By construction of Ma, for each state s ∈ Sx of L there are two
states of M , in Sy and Sz respectively. Furthermore, the states of Sx′ all contain
an atom orthogonal to x in L, and it will be orthogonal to both y and z in M .
Thus, Sx′ , Sy and Sz constitute a partition of the states of M .

Starting from the states of M as partitioned above, it is possible to de-
fine the following sets of events: Ex′ = {[s, s′] | s, s′ ∈ Sx′ , s 6= s′}, Ey,z =
{[s, s′]|s ∈ Sy, s

′ ∈ Sz}, Ey = {[s, s′]|s, s′ ∈ Sy}, Ez = {[s, s′]|s, s′ ∈ Sz},
Ex′,y = {[s, s′] | s ∈ Sx′ , s′ ∈ Sy} and Ex′,z = {[s, s′] | s ∈ Sx′ , s′ ∈ Sz}.

Let Ay be the transition system with the following sets of states and events:
Sx′∪Sy and Ex′∪Ey∪Ex′,y, let, symmetrically,Az be the transition system whose
states are Sx′∪Sz and whose events are Ex′∪Ez∪Ex′,z. We note that bothR(Ay)
and R(Az) are isomorphic to the regions of the saturated system J(L) since in
both cases of R(Ay) and R(Az), atoms y and z replace uniformly x. Moreover,
since states Sy and Sz are disjoint, it is possible to construct the cets A =
Ay∪Az endowed by all the new events in Ey,z. We note that R(A) must contain
R(J(M)) since cets A, having less events than J(M), can have less constraints
in the construction of its regions. We want to show that R(A) = R(J(M)). Let,
by contradiction, r be a region in R(A) not belonging to R(J(M)).

If r ⊆ Sx′ , then r ∈ R(J(M)) since all the labels in Ex′ belong to both cets
A and J(M) and the new events in Ex′,y and Ex′,z are distinct copies of the
original events Ex′,x in J(L), so they do not create new regions. If r ⊆ Sy and,
symmetrically, for r ⊆ Sz then r must be a region in R(J(M)) since all the
labels in Ey and Ex′,y, and symmetrically Ez and Ex′,z are, by construction,
isomorphic to the labels Ex′,x in J(L) and all the new labels Ey,z are exiting
from or, respectively, entering in r. The only remaining case could be for r being
a minimal region in R(A) and a non minimal region in R(J(M)) but this would
be in contradiction with y and z being atoms in M . ut

Example 4. Consider three Boolean algebras B1, B2 and B3 with three atoms
each, A(Bi) = {ai, bi, ci} for i = 1, 2, 3. Let I = {0, x, x′, 1} and consider the two
omp-morphisms φi : I → Bi (i = 1, 2), such that φi(x) = ci. B1 is a stable logic,

50

and c1 is clearly a free atom, so after Theorem 4, L = B1|I|B2 is a stable omp. L
is isomorphic to the omp in Figure 2, by considering b3 = [φ1(x)] = [φ2(x)]. Since
L is stable, and b5 is a free atom, we can compose it with B3, by means of the
morphisms φL and φ3, provided by φL(x) = b5 and φ3(x) = c3. The Greechie
diagram of L|I|B3 is depicted at the top of Figure 5. Thanks to Theorem 5,
we can now split any atom of L|I|B3, obtaining, for example, the stable omp
depicted at the bottom of Figure 5.

[b3] [b4] [b5]

[b3] [b4] [b5]

Fig. 5. Greechie diagrams of two omps. The omp depicted below, is obtained from the
one depicted above, by refining the atoms as shown. Since the omp above is stable, so
is the one below.

A free atom of the operands can be refined both after and before the composi-
tion operation, in this second way, only one of the two refining atoms will be used
as interface with the appended sequential component, the other one remaining
free for further composition. With this method, one can iterate the composi-
tion operation without worrying about exhaustion of available free atoms of the
original system.

Example 5. Consider a system made of two sequential components each of which
can get to a state for which they require the same resource. If each of these com-
ponents can be in two additional states, the regional omp for this system is
represented as L1 in Figure 6. B1 and B2 represent the two sequential compo-
nents, and x1, x2 correspond to their mutually exclusive states. Bc represents
the state of the resource c, it can be in state xi, indicating that Bi holds c, or in
state y1, indicating that c is available. When c is available, no other component
is involved in the coresponding local state of Bc, and so y1 is a free atom. L1

is isomorphic to the omp at the top of Figure 5, and was shown to be stable in
Example 4. We may want to make the resource c available for a third sequential
component B3, so we can use Theorem 4 to compose L1 and B3 on y1, obtaining
the stable L2 = L1|I|B3 a shown in Figure 6. However, in this new compound
system, the resource must be held by one of the three components Bi, as Bc has
no more free atoms. No additional component can be added to the system, to
compete for c. Instead of performing the composition L1|I|B3 directly, we can
first make use of Theorem 5, and refine y1 in L1 into two new free atoms x3, y2,
thus obtaining the omp L3 of Figure 6. We can now compose it with B3 on x3,
thus obtaining L4 = L3|I|B3, which is stable. One can see that y2 remains a free

51

atom, a local state representing that the resource is available. This process can
be iterated, to obtain a system with n sequential components competing for the
same resource.

L1

x1 x2 y1
Bc

B1 B2

L2

x1 x2 y1
Bc

B1 B2 B3

L3

x1 x2 x3 y2
Bc

B1 B2

y1 L4

x1 x2 x3 y2
Bc

B1 B2 B3

Fig. 6. Refining a free atom

4 Conclusion

In [4], a collection of regional omps were shown to be stable. Furthermore, the
parallel composition operation was shown to preserve stability. In the present
work, we have formalised two additional operations which preserve stability. One
corresponds to the refinement of a local state into two. The second corresponds
to the extension of a system with a sequential component which synchronises
with it over a local state which is not already a synchronisation. With these
elements, we can define an algebra of system omps, such that all its elements
are stable.

However, not every regional omp can be obtained with the defined operations.
For instance, a strong limitation is the restriction of the composition operation to
interfacing on free atoms. Another limitation of this operation is that it does not
allow for extending a system with a sequential component that would synchronise
with the system at more than one state. A clear goal in our approach is to
extend the composition operation so as to generate every regional omp. In this
way, by showing that we can generate all regional omps with stability preserving
operations, we would prove the conjecture that all regional omps are stable.

Acknowledgements

We wish to thank Lucia Pomello, and Luca Bernardinello for the fruitful dis-
cussions. Thanks to the three anonymous reviewers for the useful remarks and
suggestions. This work is partially supported by MIUR.

52

References

1. Luca Bernardinello. Synthesis of net systems. In Marco Ajmone Marsan, ed-
itor, Application and Theory of Petri Nets 1993, 14th International Conference,
Chicago, Illinois, USA, June 21-25, 1993, Proceedings, volume 691 of Lecture Notes
in Computer Science, pages 89–105. Springer, 1993.

2. Luca Bernardinello, Carlo Ferigato, and Lucia Pomello. An algebraic model
of observable properties in distributed systems. Theoretical Computer Science,
290(1):637–668, 2003.

3. Luca Bernardinello, Carlo Ferigato, Lucia Pomello, and Adrián Puerto Aubel. Syn-
thesis of transition systems from quantum logics. Fundamenta Informaticae, 154(1-
4):25–36, 2017.

4. Luca Bernardinello, Carlo Ferigato, Lucia Pomello, and Adrián Puerto Aubel. On
stability of regional orthomodular posets. Transactions on Petri Nets and Other
Models of Concurrency, 13:52–72, 2018.

5. Luca Bernardinello, Carlo Ferigato, Lucia Pomello, and Adrián Puerto Aubel. On
the decomposition of regional events in elementary systems. In Wil M. P. van der
Aalst, Robin Bergenthum, and Josep Carmona, editors, Proceedings of the In-
ternational Workshop ATAED 2018 Satellite event of the conferences: ICATPN
2018 and ACSD 2018, Bratislava, Slovakia, June 25, 2018., volume 2115 of CEUR
Workshop Proceedings, pages 39–55. CEUR-WS.org, 2018.

6. Garrett Birkhoff and John Von Neumann. The logic of quantum mechanics. Annals
of Mathematics, 37(4):823–843, 1936.

7. Gunter Bruns and John Harding. Amalgamation of ortholattices. Order, 14(3):193–
209, Sep 1997.

8. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. MIT
Press, 2001.

9. Jörg Desel and Wolfgang Reisig. The synthesis problem of Petri nets. Acta Infor-
matica, 33(4):297–315, Jun 1996.

10. Andrzej Ehrenfeucht and Grzegorz Rozenberg. Partial (set) 2-structures. part I:
basic notions and the representation problem. Acta Informatica, 27(4):315–342,
1990.

11. Andrzej Ehrenfeucht and Grzegorz Rozenberg. Partial (set) 2-structures. part II:
state spaces of concurrent systems. Acta Informatica, 27(4):343–368, 1990.

12. D. J. Foulis and C. H. Randall. Operational Statistics. I. Basic Concepts. Journal
of Mathematical Physics, 13(11):1667–1675, 1972.

13. Robert Goldblatt. Topoi: the categorial analysis of logic. Dover books on mathe-
matics. Dover Publ., New York, NY, 2013.

14. R.I.G. Hughes. The Structure and Interpretation of Quantum Mechanics. Harvard
University Press, 1989.

15. Mogens Nielsen, Grzegorz Rozenberg, and P. S. Thiagarajan. Elementary transi-
tion systems. Theoretical Computer Science, 96(1):3–33, 1992.

16. Pavel Pták and Sylvia Pulmannová. Orthomodular Structures as Quantum Logics.
Kluwer Academic Publishers, 1991.

17. C. A. Petri. General net theory. computing system design. In Joint IBM-University
of Newcastle upon Tyne Seminar, Sept. 1976, Proceedings, 1977.

18. C. H. Randall and D. J. Foulis. Operational statistics. II. Manuals of operations
and their logics. Journal of Mathematical Physics, 14(10):1472–1480, 1973.

53

Emails Analysis for Business Process Discovery

Nassim LAGA1, Marwa ELLEUCH1,2, Walid GAALOUL2, and Oumaima
ALAOUI ISMAILI1

1 Orange Labs, France, {FirstName}.{LastName}@orange.com
2 Telecom SudParis, France, {FirstName}.{LastName}@telecom-sudparis.eu

Abstract. Most often, process mining consists of discovering models
of actual processes from structured event logs. However, some business
processes (BP), or at least some parts of them, are not necessary sup-
ported by an information system (IS), and consequently do not leave
any structured events log. Therefore, applying traditional process min-
ing techniques would generate a partial view of such processes. Process
actors often rely on communication tools to collaboratively execute their
business processes in such situations. However, given the unstructured
nature of communication tools traces, process mining techniques could
not be applied directly; thus it is necessary to generate structured event
logs by recognizing the process-related items (activities, actors, instances,
etc.). In this paper, we address this challenge in order to mine business
processes from email exchange traces. We introduce an approach that
minimizes users’ efforts to manage the growing amounts of exchanged
emails: It enables to collaboratively, and gradually build an annotated
corpus of messages, and to automatically classify these ones into process,
instance and activity IDs using machine learning techniques. Compared
to related works, we facilitate the task of obtaining annotated datasets
and we investigate the use of email exchange histories, correspondent,
references and named entities for building clustering and classification
features. The proposed approach is evaluated through a proof of concept
and successfully experimented on an email dataset.

Keywords: Process mining · Business process management · Clustering
· Supervised learning · Named entities.

1 Introduction

Process mining consists in extracting useful knowledge from event logs gener-
ated by a variety of software tools hosted in Information Systems (IS) [21,23].
It enables business experts to discover new processes, new practices, as well
as BP limitations. However, most of them assume that: (1) Event logs have a
structured format, and (2) the business process is totally executed in IS,
and consequently event logs contain the trace of all executed business tasks.
However, several business activities could be achieved using informal methods,
such as communication tools (e.g. email exchange, IM, etc.). As a consequence,
the traces of these activities are not present in traditional event logs. In addi-
tion, they are often not structured. One of the important tasks to be handled

54

when starting from unstructured log data to mine processes is how to convert it
into structured event logs, which is compatible with the available process mining
techniques. The task of constructing structured event log starting from unstruc-
tured log data of a given trace of communication consists mainly in recognizing
the process-related items (name, activity and instance).

Up until recently, only few studies have properly addressed the recognition
of all these related information. Most of them focus on the unstructured email
exchange traces to mine business processes by using learning [8,4,17,10,7,9] or
pattern matching [11,1] techniques. These proposals suffer from the following
limitations. Firstly, they require a considerable human intervention with time
consuming tasks. In the case of pattern matching based approaches, patterns are
defined manually. As for the supervised learning based approaches, a huge hu-
man effort is required for building a training dataset: In most cases, a big amount
of unorganized and unlabeled data has to be manually annotated. Even if unsu-
pervised learning techniques can be introduced as a possible alternative to avoid
preparing such a corpora [8,9], some manual tasks are still needed; they consist in
labeling or modifying (correcting) the generated clusters and tuning the param-
eters of some parametric algorithms such as kmean and hierarchical algorithms.
Second, they tend to generate unreliable business process models. This can
be the result of: (1) Relying only on clustering techniques, which is error prone
[8,9], and (2) using features that are not discriminative enough to recognize some
business process related information [4,17,10,7]. Discriminative features are the
most relevant variables for clustering. These latter depend on the type of the
knowledge that we want to extract. In the case of process mining, existing works
mostly exploit the entire content of the unstructured email related data (subject
or email body) to build some of their learning features [12,8,9]. These features
are used then for all kind of BP knowledge extraction tasks. Typically, the tex-
tual data of emails may contain key terms which can help to separate emails
according to their BP for example. However, given emails belonging to the same
BP but to different instances, their textual data are likely to share the same BP
key terms, which means that using them entirely probably increases the confu-
sion between instance clusters. On the other hand, named entities (e.g. person,
company names) and references (e.g. customer reference, product reference) dif-
fer probably from one instance to another even if they belong to the same BP,
which means that they can have a considerable contribution in separating emails
into instances.

In this paper, we address these challenges in order to mine business processes
from email logs. We consider that human intervention is often required to gener-
ate reliable business process models but we aim to minimize it. We propose then
an approach that enables users to collaboratively and gradually build an anno-
tated corpus of messages and to automatically classify these ones into process,
instance and activity IDs using machine learning techniques. Our proposal differs
from existing works by: (1) Reducing the human effort required for obtaining an
annotated dataset through a collaborative and progressively learning approach
(2) Investigating the use of email exchange histories, its participant correspon-

55

dent entities, references and named entities existing in its body for building
clustering and classification features (3) Applying a fast and non-parametric
clustering algorithm for process instance detection.

The rest of the paper is organized as follows. First, we introduce in section II
an overview of our contributions, the overall algorithm, and functional entities.
Then, we detail them in section III. In section IV, we validate the proposals by a
proof of concept and its application to detect some processes (e.g. hiring process
and patent application process) taken from real data. We discuss the related
work in section V and conclude with a summary and perspectives in section VI.

2 Overview

Our proposal combines classification and clustering techniques for mining pro-
cess models from email exchange traces. To achieve this task, a structured event
log which contains process, activity and process instance labels must be gener-
ated. In this paper, we assume that each email is related to one activity, one
process, and one instance. Our approach is summarized in Figure 1 and is a
sequential combination of the following steps:
Step 1: Process and activity labels generation: This step is initially done
manually and collaboratively by users. Then, a predictive model is trained grad-
ually with the obtained annotated data for recognizing process and activity
names. The classification features, which are used in the training phase, are
built from the following email parts: subject, content, historical exchange and
correspondent entities of email participants. Once reaching reliable prediction
performances, the task of process and activity labels generation will be auto-
matically performed by the obtained predictive models.
Step 2: Process instance detection: The purpose of this step is to detect
the process instance related to each email. A clustering algorithm is applied at
this step. The used distance matrix is defined as a weighted sum of sub-distances
related to the following email parts: (1) time, (2) correspondent entities of email
participants, and (3) content and subject reduced into references and named
entities.
Step 3: Event log generation: The goal is to generate time-ordered per-
process event sets. Each event presents an email with its timestamp and its
activity, process and instance ID labels.
Step 4: Process model discovery: Any process discovery algorithm can be
applied here to mine the business process models.

3 Approach

3.1 Step1: Process and activiy labels generation

The goal of this step is to associate process and activity labels to new incoming
emails. More formally, it is a function F : EM → P ×A where EM denotes a set
of emails e, P presents a set of process names and A presents a set of activities.

56

Fig. 1. Process Mining From Email logs: Main Steps

Algorithm 1 Process and activity labeling of one incoming email
1: procedure tagEmail(

e, aEL, pEL, pET, emC, erC, clfs,minBatch)

.
. e: the email to be annotated
. aEL: the list of annotated emails
. pEL: the pseudo event log
. pET: the error rate threshold
. emC: the email count since model train (It is initialized outside the procedure)
. erC: the errors count since model train (It is initialized outside the procedure)
. clfs: the classifiers
. minB: the minimum size of the new data to train new models

2: p← False . will contain the predicted process
3: a← False . will contain the predicted activity
4: uP ← False . will contain the user given process
5: uA← False . will contain the user given activity
6: emC ← emC + 1
7: if clfs then
8: p, a← PredictLabels(e, clfs)

9: uP, uA←ManualTagging(e)
10: if uP AND uA then
11: erC ← erC + 1
12: p← uP
13: a← uA
14: aEL← aEL ∪ {(e, uP, uA)}
15: if erC/emC > pET AND emC > minBatch then
16: clfs← TrainPredictiveModels(aEL)
17: emC ← 0
18: erC ← 0
19: if p AND a then
20: pEL← newEvent(pEL, e, p, a)

21: return p, a, erC, emC, aEL, clfs, pEL

Each email e in EM is defined as 7-uplet : FROM (email sender), TOs (email
recipients), CCs (emails addresses that are in copy of the email), SUB (email
subject), CONT (email content), Timestamp, HistExch (The content of histor-
ical exchange of an email). This task is done manually and collaboratively by
users until reaching reliable predictive models. Then, it will be performed auto-
matically by these models which are trained using Mini-batch learning approach.
This approach consists on waiting until obtaining a batch of new observations
and then train the already existing models on this whole batch. The pseudo code
of this step is described in Algorithm 1.

57

First, the associated process and activity names for each email e are pre-
dicted using existing models (line 8). Then, if manual annotations (process and
activity names) are given by the user (this could happen if the annotations are
not, or wrongly, predicted) errors rate is checked, if it is higher than a thresh-
old (pET) and a minimum size of data is collected (minB), we train again the
models (process and activity classifiers) (lines 10→16). Finally, the predicted, or
corrected, process and activity names, associated to the email, are saved in the
pseudo event log (pEL) dataset (line 20).

For learning or updating predictive models, we have to dispose a training
dataset that must be converted into a (X,Y) couple, where X is a matrix having
in each row the feature values of each sample and Y is a vector representing the
corresponding targets. We further detail in the following sections our classifica-
tion features and preprocessing steps applied to generate this matrix X.

a) Defining classification features: We split here the task of selecting
the efficient attributes for building our classification features according to the
prediction task type. To predict activities, we use the correspondent entities of
email participants (FROM, TOs, and CCs) and the email subjects (SUB) and we
add the content parts because correspondent and subject parts are not sufficient
enough to recognize activities since they lack precision about them. We have
handled also the case where the email contains one short sentence. This type
of email can be sent, for example, to confirm or deny what has been said in
previous emails. In this case, we use also the email exchange history (HistExch)
because it is not obvious to understand the business goal of sending such emails
without analyzing the history of the concerned discussions. To recognize Business
processes, we use only the correspondent entities and the subject parts because
we noticed that content parts degrade the recognition accuracy when they are
introduced with the same preprocessing steps as in the activity prediction phase.

b) Defining preprocessing steps: We summarize these steps as follows:
Replace Particular Expressions: We detect, using regular expressions, spe-
cial expression within the subject (and the body in the case of activity pre-
diction) (e.g. HTTP links, phone numbers, special references if known, and file
names and their extension), and replace these expressions with a special tag (e.g.
HTTP LINK, PHONE NUMBER, IS REF, and PPT FILENAME etc.).
Remove Person Names: We detect all the correspondents’ first names and
last names, and then remove them from the textual data.
Lemmatize The Text: This method reduces the dimension of the resulting
matrix (Eq (2)). It consists in reducing the different forms of word to a single
form (e.g. words “thinks”, and “thinking” into one single form “think”).
Remove Stop Words: This function is useful to remove the most common
words in the emails that can be distracting and non-informative. We used the
nltk3 library, enriched with additional words detected during the data explo-
ration step (e.g. regards, hello, outlook prefixes, etc.).
Generate 1-gram,2-gram Vocabulary: We first split the remaining text into
a list of words and detect the different sequential combinations where each item

3 https://www.nltk.org

58

has the size of 1 to 2 words (1-gram, 2-gram). Then, we remove the most and the
less frequent terms to improve generalization of our predictive models. In fact,
sparse terms can generate wrong associations and overly common words don’t
present relevant information to differentiate between email intents.
Generate TFIDF (Term frequency-inverse document frequency): This function
generates a TFIDF matrix which encodes the frequency of 1-gram and 2-gram
terms in an email with respect to the rest of the corpus. The size of this matrix is
equal to (N, T) where N is the total number of emails and T is the total number
of different 1-gram and 2-gram terms.
Generate Interaction Matrix: In order to emphasize the contribution of the
email correspondent entities in defining process and activity names, we build a
presence matrix (PM) reflecting for each email the interlocutors’ entities (sender
entity, recipient entity, and copied entity).

Definition 1 Let E be the set of emails of length N, L be the list of different
entities of length M, C be a list where each element corresponds to the list of
participant correspondents’ entities of each email, PM be a matrix whose columns
represent L and rows represent E. PM can be defined as follows:

PM(i, j)i,j∈[0,N−1]×[0,M−1] =

{
1 if L[j] ∈ C[i]

0 otherwise
(1)

GenerateTheFinalMatrix: This function generates the X matrix which is a
weighted concatenation of PM and TFIDF matrices.

X =
[
β1TFIDF(N×T) β2PM(N×M)

]
(2)

Where the weights β1 and β2 will be defined empirically.

3.2 Step2: Process Instance Detection

The goal of this step is to detect a specific occurrence or execution of the same
business process, which is known as process instance. We use the pseudoEventLog
dataset (pEL) generated as an output of step 1 which contains the list of emails
correctly annotated with corresponding process and activity names. We first di-
vide it into per-process groups. Then, we apply a clustering technique on each
obtained group to detect clusters corresponding to process instances.

Clustering is the task of grouping a set of objects in such a way that objects
in the same group (called a cluster) should have similar properties or features,
while objects in different groups should have highly dissimilar ones. A cluster-
ing algorithm takes as input a similarity matrix M which defines the similarity
between each couple of emails. This matrix is formally specified in Definition 2

Definition 2 Let N be the total number of emails, E be the set of emails in our
corpus and f : E ×E → R be the similarity function that calculates a similarity
value between two emails. The similarity matrix M can be defined as a square
matrix of size N ×N where M [i, j]i,j∈[1,N] = f(E[i], E[j])

59

In our case, the similarity function f is a distance function defined by Eq(3).

Our clustering phase goes mainly through the following sub-steps: (1) Identify
clustering features. (2) Generate the similarity matrix. (3)Apply a clustering
algorithm.

a) Identify clustering features For building our clustering features, we
focus the analysis on: (1) Subject and content reduced to references and named
entities (2) Time (3) Correspondent entities. In fact, we believe that emails be-
longing to the same process instance are likely to have close reception dates and
to share the same named entities, the same references and the same correspon-
dents entities (from, dest, and CC).

A named entity is a real-world object, such as persons, locations, organiza-
tions, products. . . etc that can be denoted with a proper name. The references
are the information generated by business applications used for executing some
process tasks (e.g. customer number, purchase request ID etc.,). The purpose
of reducing the email into references and named entities is to conserve only the
significant contextual data in relation with the business process instances. In
fact, the entire content of these email parts often contain additional vocabulary,
which degrades instance detection accuracy.

The named entities are detected through two methods which are comple-
mentary in our case: We first use the Polygot NER method [2]. Named-entity
recognition (NER) is a subtask of information extraction. It seeks to locate and
classify named entity mentions in unstructured text into pre-defined categories
such as the person names, organization, time expression, monetary values, per-
centage etc.Unlike the other existing pipelines (NLTK, standford, OpenNLP)
where most languages are unsupported, Polygot NER is a multilingual named
entity recognition tool that supports 40 major languages. It is also automatic but
not complete (some named entities are not detected). To overcome this limita-
tion, we express explicitly the non-detected patterns. As for reference detection,
we inject specific regular expressions.

b) Similarity function Our similarity function is a distance function which
is defined as a weighted sum of sub-distances related to our clustering features.
It has the following formula:

f(x, y) = w0DC(x, y) + w1DT (x, y) + w2DNE(x, y) (3)

Where the weights w0, w1 and w2 are defined empirically according to each
process type and DC(x,y), DT(x,y) and DNE(x,y) are defined as follows:
- DC(x, y) is the correspondent distance between two emails x and y. We
define it as a Jaccard distance between the correspondent entity sets of their in-
terlocutors which is equal to the cardinality of their intersection divided by the
cardinality of their union. More formally, let C(x) be the list of correspondents
of the email x, and C(y) be the list of correspondents of the email y. DC(x,y) is
then defined as follows:

DC(x, y) =
|C(x) ∩ C(y)|
|C(x) ∪ C(y)| (4)

60

- DT(x, y) is the time distance between emails x and y. The emails belonging
to the same process instance are likely to have close reception dates. We assume
that the inter-arrival duration follows an exponential law and is expressed in
number of days. Consequently, we define the distance through the following for-
mula:

DT (x, y) = 1− e−λ(ts(x)−ts(y)) (5)

ts(x) and ts(y) refer to the timestamp of x and y and λ is the time, expressed in
the number of days, which separates two emails arrivals. We estimate this value
by:

λ =
date max− date min
number of emails

(6)

- DNE(x,y) is the distance related to the named entities and the references
present in the subject and the content of the email x and those present in email
y. Emails belonging to the same process instance are likely to share the same
named entities and references. We define the distance DNE as a Jaccard distance:

DNE(x, y) =
|NE(x) ∩NE(y)|
|NE(x) ∪NE(y)| (7)

NE(x) is the set of named entities and references present in email x, and
NE(y) is the set of named entities and references present in email y.

3.3 Step 3: Event Logs Generation

Algorithm 2 Event logs generation
1: procedure GenerateEventLog(pEL)

.
. pEL: The pseudo event log

2: pEL ordered← TimeBasedOrdering(pEL)
3: EM P ← PerProcessSplitting(pEL ordered)
4: EM P I ← InstanceDetection(EM P)
5: InstanceIdentifierGeneration(EM P I)
6: EventLogs = PerProcessGrouping(EM P I)
7: return EventLogs

Once the process and activity names are identified and the emails belonging
to different process instances are grouped, a dataset labelled with process, activ-
ity, timestamp and instance ID labels can be obtained. The event logs generation
function aims to construct, from this new dataset, time-ordered per-process event
sets. Algorithm 2 summarizes our steps to generate it. From the pseudo event
logs obtained from step 1, we generate a time-ordered event logs using the email

61

timestamp variable (line 2). Then, we split it into several subsets, each one con-
taining a single process emails list (line 3). For each process subset, we apply
a clustering algorithm in order to detect instance groups and we associate to
each group a unique identifier (line 4, 5). Finally, all these groups are regrouped
into a per process dataset (line 6) so that a process mining algorithm could be
applied.

4 Validation

We validate our contribution through a proof of concept and experimentations
carried on our dataset composed of 1026 emails and on the email environment of
two employees (Microsoft Outlook as an email client, and Microsoft Exchange as
an email server). In these experimentations we succeed to discover two processes:
(1) a hiring process and (2) a patent application process. In this section we detail
only the hiring process discovery.

4.1 Proof Of Concept

Our tool is implemented through three components:
a) Frontend component: This component is a Microsoft Outlook 2010 plu-

gin developed using C# programming language. It has four main functionalities.
First, it enables the user to manually annotate his emails. Thus, it provides the
GUI that enables the user to select the email and the related process and activ-
ity names. This association is sent to the backend (SetTag interface) as a JSON
object containing the email parameters and the associated process and activity
names. Second, it captures incoming and outgoing messages, constructs a JSON
object for each email, sends it to the backend for analysis (GetTag interface),
retrieves the results (JSON object representing the detected process name and
activity name) and associates the tags to the email. Third, it enables the display
of the process and activity related to each email along with the email. Finally,
the plugin provides users with advanced functionalities such as email search by
related business process and activity.

b) Backend component: The backend component is implemented through
three HTTP interfaces (SetTag, GetTag, and GetAllProcesses), with a MySQL
database containing two tables: training dataset table and event logs table. The
training dataset contains the following columns (id, source, destination, cc, sub-
ject, content, received date, process name, activity name). The event log dataset
contains the following columns (id, source, destination, cc, subject, content, re-
ceived date, process name, activity name, instance id).
- SetTag Interface: This interface is used to enrich the learning database from
one hand. It is invoked by the frontend when the user annotates manually an
email. It receives the JSON object representing the email and the associated pro-
cess and activity names. This information is inserted into the training dataset
table as well as into the event log table, in which we set the instance id column
to NULL value, as we don’t know yet to which instance the email belongs to.

62

- GetTag Interface: This interface is invoked by the Microsoft Outlook Plugin
each time the user sends or receives an email. It receives a JSON object repre-
senting an email, analyzes it using the trained predictive models, and returns as
a result the predicted process and activity name IDs. The result is also inserted
into the event log table.
To build the machine learning models, a multinomial version of the logistic re-
gression (LR) classifier is employed. It estimates the parameters of a logistic
model for multiclass prediction task. The stochastic Gradient Descent (SGD) is
used as an optimizer in the training phase. In fact, it can converge faster than
batch training because it performs updates more frequently. Therefore, it has
been successfully applied to large-scale and sparse machine learning problems
often encountered in text classification and natural language processing fields.
- GetProcesses Interface: This interface enables the email client user to dis-
play existing tags (process names and activity names). It supports him in the
process of enriching the learning database. Basically, this interface is invoked
when the user is about to manually annotate an email. It enables to retrieve the
list of available annotation in the training dataset table. For each process name,
we also retrieve the list of associated activities.

c) Instance separation component: To detect instances, we applied the
clustering algorithm HDBSCAN (Hierarchical Density-Based Spatial Clustering
of Applications with Noise). It extends DBSCAN by converting it into a hierar-
chical clustering algorithm, and then using a technique to extract a flat clustering
based on the stability of clusters. The choice of HDBSCAN is justified by two
reasons: (1) HDBSCAN does not require human intervention. In fact, it is a fast
and non-parametric algorithm that does not require setting any parameters even
the number of clusters. (2) HDBSCAN can generate clusters of different sizes,
shapes and densities, which can enhance clustering accuracy.

4.2 Experimentations

We carried here experimentations to justify our choices in each step and then to
evaluate their performances and to present the obtained results.

a) Validation of process and activity prediction: We manually anno-
tated 1026 emails to obtain a correctly annotated email corpus with process and
activity IDs. There are 13 processes (e.g. Hiring, PatentApplication, Command,
ConferenceParticipation, travel expense refund, etc.) and 116 activities. Taking
the example of hiring process, we identified the hiring steps achieved through
emails: “describe the position”, “publish the position”, “receive applications”,
“setting the interviews”, “asking for documents”, and “notifying the decision”.

The performances of process and activity prediction phase highly depend on
the choice of the machine learning algorithms and the data preprocessing actions.
To select these latter, we have tested different techniques until good prediction
performances are reached. Better performances are noticed when:
- Using only the subject and the correspondent entities for process prediction.
- Applying the preprocessing steps detailed in II.B.2.b when we consider that
the most frequent terms in the documents have a frequency greater than 5% and

63

the less frequent ones have a frequency less than 0.1%.
- Assuming that short emails contain less than 40 words and that email exchange
history is constructed from the four previous emails.
- Setting the weights of Eq (2) as follows: β1 = 0.8 and β2 = 0.2.
- Using the LR with SGD optimizer for training predictive models. This result
is obtained after testing two other prediction algorithms (Random Forest (RF)
and Support Vector Machine (SVM)). The performances of each one were esti-
mated by using 5-fold cross-validation method and by calculating the F1 Score.
This score is a measure that combines precision and recall. Precision is known
as positive predictive value while recall is called the sensitivity of the classifier.
Mathematically, the F1 score is defined as:

F1Score =
2× precision× recall
precision+ recall

(8)

The obtained F1 scores are summarized as follows: 0.8072 for Random Forest,
0.8626 for LR with SGD and 0.8094 for SVM.

b) Validation of Process Instance Detection: In this subsection, we
evaluate the performances of our selected clustering technique HDBSCAN on
our data set composed of 180 emails related to a hiring process.

We manually generated the emails clusters related to the process instances
where we obtained 11 clusters. To compare this manual clustering with the
results of HDBSCAN, we computed the Adjusted Mutual Information4 (AMI)
metric [22]. We tested different values of the weights related to distance matrix
computation (Eq (3)), and we obtained an optimal configuration (using these
values w0 = 1

2 , w1 = 1
4 , and w2 = 1

4). The AMI value obtained with this
configuration is 0.86.

c) Validation of Process Model Discovery: S05cm To validate this step,

Fig. 2. Hiring process models: Real model VS Captured model

we applied the heuristic miner algorithm [23] on the automatically generated

4 AMI computes the metric to evaluate the similarity between two hdbscan partition
and real partition. It returns a value between 0 and 1. This value is closed to 1 when
the two partitions are strongly matched and closed to 0 when the two partitions are
weakly matched

64

event log of the hiring process. Figure 2 shows the theoretical and the detected
model. We can notice that the behavior captured in the event log is almost in
conformity with the theoretical one. Nevertheless, two discrepancy types can be
detected at low frequency: (1) Unfitting model behavior which refers to behav-
iors observed in the theoretical model that are not allowed by the captured one
(e.g.“Welcome procedure” is performed after “Decision Notification”). (2) Ad-
ditional model behavior which refers to behaviors allowed in the captured model
but does not exist in the theoretical one such as: “Welcome Procedure” is done
initially and asking for“Hiring Documents” or “Decision Notifying” are done be-
fore “Interview Setting”. Actually, these discrepancy types can be caused either
by errors accumulated through our log building system, or by the log miner tech-
nique that we have used or by a real difference between the process as observed
in the emails and the related theoretical BP.

5 Related Works

Up until recently, only few studies have considered business process mining from
email exchange. They have been mainly interested in: Activity and process names
recognition, process instances detection and process discovery. They do require
human intervention and may generate unreliable business process models. In this
section, we discuss them according to three categories:

5.1 Non-learning based methods

One of the first proposals for mining business processes from emails assumes
that the associated business process is explicitly included in the email subject
[1]. Such an approach requires a significant human intervention and involvement.
Indeed, email interlocutors must include the business process name and related
attributes in the email subject, which is not realistic.

Another proposal [11] assumes that the manual task is an association of (1)
classical manual task of the BPMN2.0 specification [13] and (2) a set of semantic
patterns that enable to validate whether a given communication content is part of
a business process, activity and a given business process instance. The limitation
of such system is the necessity of anticipating and manually defining all semantic
patterns related to each task which is time consuming and not scalable.

E-Mail Mining [20] is a method for semi-automatic discovery of knowledge-
intensive process. From a set of emails belonging to a BP, e-Mail Mining aims
to discover the amount of knowledge embedded in the execution of its activities.
This knowledge consists of : (1) BP participants and their social interactions (2)
Relevant terms that are related to the BP domain (3) BP activities defined by
three elements : Actors, candidate actions and parameters. Relevant BP activ-
ities are selected manually from a list of candidate activities. These latter are
generated after splitting emails into sentences and by assuming that each sen-
tence is composed of : (1) a noun phrase object which can describes the agent

65

performing an action or the resource that receives the effect of the executed ac-
tion (2) a verb phrase that describes the activity performed by the agent. This
approach has an interesting contribution in the field of process mining from
emails. In fact, it allows the detection of multiple activities in one email as well
as the metadata embedded in the execution of a given BP. However, it requires
manual tasks during its execution (e.g for selecting relevant activities or sample
of emails related to one BP). Moreover, it considers emails as storytelling textual
data to mine the candidate activities. Actually , emails do not have the same
structure as narrative textual data (which generally describes activities in a more
formal way than e-mails). For instance, the proposal does not seem to handle
passive-voice sentences where actors do not appear or where their positions are
switched with those of resources.

5.2 Act theory based methods

This category deals with activity name recognition by using act theory based
methods: The idea behind this theory is to classify emails according to the
sender’s intent [19,18]. Thus, two possible classifications of speech acts are pro-
posed: (1) Illocutionary act classes; Assertive, Commissive, Directive, Expres-
sive, declarations. (2) Speech act verbs: Propose, Request, Deliver, Commit, etc.
Some proposals set email speech acts in advance. Then, they apply a supervised
learning algorithm to classify emails as containing or not containing the specific
acts [4,17]. Other works treat the problem of process detection as a problem of
conversation finder such as [12]: It suggests firstly classifying emails into business
and non-business process related. The business-oriented email messages are then
grouped into threads to detect conversations using a refined version of Vector
Space Model and a semantic similarity measure. Finally, the interactions in each
conversation are labeled by applying the classification of illocutionary acts [19].

An iterative relational learning approach for email task management was
also suggested [10]. It exploits the mutual performance improvement between
the extraction of speech acts and the identification of related emails. In fact,
after initializing both of them using automatic methods, a supervised learning
algorithm (SMO implementation of SVM [16]) is applied on incoming emails:
It takes into account related emails as a feature to recognize the correspondent
speech acts. Then, a relational learning terminology [14] is exploited: It similarly
uses speech act as a feature to predict relations between the incoming and the
existing messages.

Obviously, all of these works require labeled data for training statistical
speech acts recognizers which leads to a huge human intervention. Furthermore,
business process tasks differ from one process to another. Thus, setting a unique
list of activities in advance, degrades the performances of generating the right
business process models.

66

5.3 Unsupervised learning based methods

In order to minimize the human intervention and to avoid preparing a labeled
dataset, there exist propositions that have integrated unsupervised learning tech-
niques in their approaches to mine business processes from emails [8,9,6,5]. One
of these propositions identify the process and the instance clusters by apply-
ing a hierarchical clustering method (Bottom up) [8]. In order to find process
groups, the distance used combines the subject and body attributes. Then, to
detect instances, the timestamp attribute is added. As for the process activities
identification phase, the K-mean algorithm is adopted. The approach proposes
a customization method to set the number (K) and the initial centers, on the
basis of the instance clusters obtained from the previous step. Then, it applies
a distance formula that takes into consideration the meanings similarity of the
words present in the subjects and the bodies.

Another approach proposes a two step algorithm to discover the processes and
activities from emails [9]. A hierarchical clustering is sequentially applied: first to
deduce process clusters and then to deduce sub-clusters corresponding to activity
types. The similarity measurement is based on word2vect method: It aims to
exploit the hidden semantic relations between words existing in email contents
and subjects. An activity labeling technique is also proposed: It recommends to
the user the most frequent contiguous sequence of n items existing in an activity
type cluster.

These studies aim to minimize the human intervention. However, they have
some limitations: First, the hierarchical clustering requires a human effort in
tuning its parameters. Additionally, its quality highly depends on how these pa-
rameters are set [15,3]. Second, it is computational hard. Hence, applying the
same algorithm twice in the same method increases the computational complex-
ity and the execution time [8]. Third, the activity identification quality highly
depends on the instance clustering phase [8]. In fact, as the K-mean algorithm
is sensitive to the initial start centers, poor instance detection quality can cer-
tainly lead to a bad convergence. Finally, the automatic generation of labels
considerably increases the risk of error and interpretation [9].

MailOfMine [6,5] proposes to mine artful business processes and to define
them with a “declarative” approach. It suggests to start from some assumptions
which map email and BP structures: (1) Each conversation presents an activity
trace (2) Each activity presents a set of elementary tasks deduced from conver-
sation key parts (3) Each process is composed by a set of activities. MailOfMine
approach consists basically of: (1) Applying three times a similarity clustering
algorithm: to cluster emails into conversation threads, to cluster these threads
into activity types and finally, to cluster each activity key parts into task types.
During the clustering process, email body, the names of attached files and some
email header fields are taken into consideration.(3) Applying supervised learn-
ing process to assign activities to different processes (4) Automatically labeling
activity tasks with the possibility of customizing them and manually assign-
ing activity and process names (5) Mining constraints between tasks (activities)
among each activity (process) . The proposed work has the advantage of dis-

67

covering BP with different level of granularity (Process, subprocess or activity,
task) and describing them with declarative approach, which is more flexible than
the classical imperative approach. Nevertheless, this work suffers from some lim-
itations: (1) Its execution time can diverge when applying it on large number
of traces containing various tasks and activity types, e.g; it is linear (quadratic)
time with respect to the number, size of traces. (2) A considerable human in-
tervention is required to manually assigning activity and process names and to
initiate activity classification step.

6 Conclusion & Discussion

In this paper, a solution for mining business processes from email logs was pro-
posed and evaluated through a proof of concept implementation and successful
experimentations on our dataset.

To build a training dataset from existing corpus of emails, we proposed a
collaborative and iterative approach which is implemented through graphical
interfaces and automatic prediction functionalities. This has the advantage of
encouraging users to be involved in building an annotated dataset since it fa-
cilitates the tagging task and minimizes the required effort. Consequently, the
training dataset will be built gradually and will be available instantly without
the need to dispose a lot of time and human resources. However, this approach
still relies on human involvement. Moreover, tagging collaboratively the same
dataset can lead to dispose samples belonging to the same cluster but with
different annotations. Therefore, tag normalization step is required.

The prediction entity is based on a supervised learning technique. For build-
ing classification features, we have investigated, according to the prediction goal,
some or all of these variables: email participant correspondent entities, subject,
content and exchange history. Our experiments revealed that email contents de-
grade the performances of process name recognition. Even if this assumption
seems contradictory to existing works [8,9], it can be justified by the nature of
our dataset and our preprocessing steps.

Our instance detection approach differs from related works by using a fast
and non parametric clustering algorithm which is non sensitive to the noise and
which can generate clusters with different shapes, sizes and densities. Moreover,
we have reduced the body and the subject into references and named entities for
clustering emails into BP instances. To improve the detection quality of named
entities and references, we have defined explicitly the non-detected patterns. This
action has the advantage of having good performances, however, it is manual and
by consequence costly. We have assumed that three variables (timestamp, corre-
spondent entities and named entities) can contribute to separate BP instances.
Actually, the contribution of each variable depends on the nature of the BP. This
is why we have introduced weights correlated to each variable to be tuned by
users according to their expertise. For instance, the timestamp variable can help
to separate instances in the case of BP with time constraints (e.g; the accounting
closing process that is carried out regularly on scheduled dates) while in the case

68

of BP whose instances are independent of time, the same variable seems to have
no effect.

In our approach, we have handled some research questions related to BP
mining from emails by supposing that one email can be affected to one process,
one activity and one instance. Actually, messaging systems such as emails allows
users to discuss BP issues with informal way without respecting such constraints;
in one email, user can discuss more than one activity and more than one instance.
This kind of challenges was addressed in previous works such as [20] by assuming
that activities are expressed and generally correlated with their metadata at
sentence level. In future works, we plan to study these challenges. We plan also
to more automate the BP discovery pipeline since the current approach still
requires human involvement. Finally, we suggest to employ similarity meaning
measures for constructing learning features based on email contents.

References

1. van der Aalst, W.M., Nikolov, A.: Emailanalyzer: an e-mail mining plug-in for the
prom framework. BPM Center Report BPM-07-16, BPMCenter. org (2007)

2. Al-Rfou, R., et al.: Polyglot-ner: Massive multilingual named entity recognition.
In: SIAM International Conference on Data Mining. pp. 586–594. SIAM (2015)

3. Ciosici, M.R.: Improving quality of hierarchical clustering for large data series.
arXiv preprint arXiv:1608.01238 (2016)

4. Cohen, W.W., et al.: Learning to classify email into“speech acts”. In: Empirical
Methods in Natural Language Processing (2004)

5. Di Ciccio, C., Mecella, M.: Minerful, a mining algorithm for declarative process
constraints in mailofmine. Department of Computer and System Sciences Antonio
Ruberti Technical Reports 4(3) (2012)

6. Di Ciccio, C., Mecella, M., Scannapieco, M., Zardetto, D., Catarci, T.: Mailofmine–
analyzing mail messages for mining artful collaborative processes. In: International
Symposium on Data-Driven Process Discovery and Analysis. pp. 55–81. Springer
(2011)

7. Jeong, M., et al.: Semi-supervised speech act recognition in emails and forums.
In: Empirical Methods in Natural Language Processing. vol. 3, pp. 1250–1259.
Association for Computational Linguistics (2009)

8. Jlailaty, D., et al.: A framework for mining process models from emails logs. arXiv
preprint arXiv:1609.06127 (2016)

9. Jlailaty, D., et al.: Mining business process activities from email logs. In: Cognitive
Computing (ICCC). pp. 112–119. IEEE (2017)

10. Khoussainov, R., Kushmerick, N.: Email task management: An iterative relational
learning approach. In: CEAS (2005)

11. Laga, N., et al.: Communication-based business process task detection-application
in the crm context. In: Enterprise Distributed Object Computing Workshop
(EDOCW). pp. 1–8. IEEE (2016)

12. Mavaddat, M., et al.: Facilitating business process discovery using email analysis.
In: The First International Conference on Business Intelligence and Technology.
Citeseer (2011)

13. Model, B.P.: Notation (bpmn) version 2.0. OMG Specification, Object Manage-
ment Group pp. 22–31 (2011)

69

14. Neville, J., Jensen, D.: Iterative classification in relational data. In: Learning Sta-
tistical Models from Relational Data. pp. 13–20 (2000)

15. Oyang, Y.J., et al.: Characteristics of a hierarchical data clustering algorithm based
on gravity theory. Tech. rep., Technical Report of NTUCSIE 02-01.(Available at
http://mars. csie. ntu. edu . . . (2001)

16. Platt, J.C.: 12 fast training of support vector machines using sequential minimal
optimization. Advances in kernel methods pp. 185–208 (1999)

17. Qadir, A., Riloff, E.: Classifying sentences as speech acts in message board posts.
In: Empirical Methods in Natural Language Processing. pp. 748–758. Association
for Computational Linguistics (2011)

18. Searle, J.R.: A taxonomy of illocutionary acts (1975)
19. Searle, J.R., Searle, J.R.: Speech acts: An essay in the philosophy of language,

vol. 626. Cambridge university press (1969)
20. Soares, D.C., Santoro, F.M., Baião, F.A.: Discovering collaborative knowledge-

intensive processes through e-mail mining. Journal of Network and Computer Ap-
plications 36(6), 1451–1465 (2013)

21. Van Der Aalst, W., et al.: Process mining manifesto. In: International Conference
on Business Process Management. pp. 169–194. Springer (2011)

22. Vinh, N., et al.: Information theoretic measures for clusterings comparison: Vari-
ants, properties, normalization and correction for chance. Journal of Machine
Learning Research 11(Oct), 2837–2854 (2010)

23. Weijters, A., et al.: Process mining with the heuristics miner-algorithm. Technische
Universiteit Eindhoven, Tech. Rep. WP 166, 1–34 (2006)

70

On the Hardness of Synthesizing Boolean Nets

Ronny Tredup and Christian Rosenke

Universität Rostock, Institut für Informatik, Theoretische Informatik,
Albert-Einstein-Straße 22, 18059, Rostock

Abstract. Boolean Petri nets are differentiated by types of nets based on
which of the interactions nop, inp, out, set, res, swap, used, and free they
apply or spare. From the 256 thinkable types only a few have yet been
explicitly defined, as for instance contextual nets {nop, inp, out, used, free}
and trace nets {nop, inp, out, set, res, used, free}. The synthesis problem
relative to a specific type of nets τ is to find, for a given transition system
A, a boolean τ -net with state graph isomorphic to A. It is known to be
NP-hard for elementary nets systems {nop, inp, out} and tractable for
flip-flop nets {nop, inp, out, swap}. This paper presents a general reduction
scheme for the NP-hardness of boolean net synthesis and identifies 67
new types with a hard synthesis problem.

1 Introduction

Boolean Petri nets have been widely regarded as a fundamental model for
concurrent systems. These Petri nets allow at most one token per place in every
reachable marking. Accordingly, a place p can be regarded as a boolean condition
which is true if p contains a token and is false if p is empty, respectively. A place
p and a transition t of a boolean Petri net are connected by one of the following
(boolean) interactions: no operation (nop), input (inp), output (out), set, reset
(res), inverting (swap), test if true (used), and test if false (free). An interaction
defines which pre-condition p has to satisfy to activate t and it determines p’s
post-condition after t has fired: inp (out) mean that p has to be true (false) to
allow t’s firing and if t fires then p become false (true). The interaction free (used)
says that if t is activated then p is false (true) and t’s firing as no impact on p.
The other interactions nop, set, res, swap are pre-condition free, that is, neither
true nor false prevent t’s firing. Moreover, nop means that the firing of t has no
impact and leaves p’s boolean value unchanged. By res (set), t’s firing determine
p to be false (true). Finally, swap says that if t fires then it inverts p’s boolean
value.

Boolean Petri nets are differentiated by types of nets τ accordingly to the
boolean interactions they allow. Since we have eight interactions to choose
from, this results in a total of 256 different types. Yet, research has explicitly
defined seven of them: Elementary net systems {nop, inp, out} [10], Contextual
nets {nop, inp, out, used, free} [7], event/condition nets {nop, inp, out, used} [2],
inhibitor nets {nop, inp, out, free} [9], set nets {nop, inp, set, used} [6], trace nets
{nop, inp, out, set, res, used, free} [3], and flip flop nets {nop, inp, out, swap} [11].

71

Type of net τ Complexity status Quantity
τ = {nop, res} ∪ ω, ω ⊆ {inp, used, free} polynomial time 8
τ = {nop, set} ∪ ω, ω ⊆ {out, used, free} polynomial time 8
τ = {nop, swap} ∪ ω, ω ⊆ {inp, out, used, free} polynomial time 16
τ = {nop} ∪ ω, ω ⊆ {used, free} polynomial time 4
τ = {nop, inp, free} or τ = {nop, inp, used, free} NP-complete 2
τ = {nop, out, used} or τ = {nop, out, used, free} NP-complete 2
τ = {nop, set, res} ∪ ω, ∅ 6= ω ⊆ {used, free} NP-complete 3
τ = {nop, inp, out} ∪ ω, ω ⊆ {used, free} NP-complete 4
τ = {nop, inp, res, swap} ∪ ω, ω ⊆ {used, free} NP-complete 4
τ = {nop, out, set, swap} ∪ ω, ω ⊆ {used, free} NP-complete 4
τ = {nop, inp, set} ∪ ω, ω ⊆ {out, res, swap, used, free} NP-complete 24+8
τ = {nop, outres} ∪ ω, ω ⊆ {inp, set, swap, used, free} NP-complete 24+8

Fig. 1. Summary of the complexity results for boolean net synthesis. Grey colored area:
Results of [14] reestablishing the result for flip flop nets [11]. Green colored area: Results
of this paper. The last two rows intersect in eight supersets of {nop, inp, out, set, res} and
the eighth row includes the already investigated elementary net systems [1]. Altogether,
this paper discovers 67 new types with an NP-hard synthesis problem.

This paper is devoted to a computational complexity analysis of the boolean
net synthesis problem subject to a target type of nets. Synthesis relative to a
specific type of nets τ is the challenge to find for a given transition system (TSs,
for short) A, a boolean τ -net N whose state graph is isomorphic to A if it exists.
The complexity of boolean net synthesis has originally been investigated for
elementary net systems [1], where it is NP-complete to decide if general TSs can
be synthesized. In [15, 12] this has been confirmed even for strongly restricted
input TSs. On the contrary, [11] shows for flip flop nets, simply extending
elementary net systems by swap, synthesis is doable in polynomial time. Inspired
by these results, it is the (global) goal of our research to obtain a dichotomy
result that fully characterizes which synergies of interactions make synthesis
intractable or tractable, respectively. After resolving the complexity of synthesis
for elementary nets [1, 15, 12] and flip flop nets [11], the next big step towards a
complete characterization of boolean net synthesis is taken in [14]. Here, besides
the already investigated flip flop nets, 42 further boolean types of nets are covered
at one blow, cf. Figure 1. Besides the 128 practically less relevant types without
nop, there are 84 nop-afflicted boolean types of nets left where the synthesis’
complexity has not been settled, yet.

In this paper, we tackle 67 of them with a common NP-hardness proof scheme
and, additionally, reestablish the result for elementary net systems [1]. Except flip
flop nets, our result covers all types of nets previously considered in the literature.
In particular, we show that synthesis is hard for all types that are a superset
of {nop, inp, out} that excludes swap and for all supersets of {nop, inp, set} and
{nop, out, res}, cf. Figure 1.

Aside from the actual identification of 67 new types with hard net synthesis,
this paper’s contribution is also a very generic reduction scheme for NP-hardness

72

proofs of boolean net synthesis. This methodology significantly generalizes prelim-
inary methods that we developed in [15, 12] to derive the hardness of synthesizing
elementary net systems from strongly restricted TSs. Unlike those premature
approaches, the present solution abstracts from individual types of nets and
bases on the throughout analysis of properties gained by available interactions.
Moreover, the approach from [14], although again slightly similar, is incompatible
with the generic scheme in this paper.

To develop the generic reduction scheme, we deal with the synthesis problem’s
decision version, called feasibility. The reason is that complexity analysis rather
works with decision problems than search problems. Instead of really finding a net
N with state graph isomorphic to a given TS, it is sufficient for feasibility to just
decide if the target type contains N . If feasibility is NP-complete, then synthesis
is an NP-hard computational problem with no obvious efficient solutions.

To simplify our argumentation is it meaningful to detach our notions from
Petri nets and focus on TSs. For this purpose, we use the well known equality
between feasibility and the conjunction of the state separation property (SSP)
and the event state separation property (ESSP) [2], which are solely defined on
the input TSs. The presented polynomial time reduction scheme translates the
NP-complete cubic monotone one-in-three 3-SAT problem [8] into the ESSP of
the considered 68 boolean net types. As we also make sure that given boolean
expressions ϕ are transformed to TSs A(ϕ) where the ESSP relative to the
considered type implies the SSP, we always show the NP-completeness of the
ESSP and feasibility at the same time. Instead of 68 individual proofs, our scheme
covers all cases by just three reductions following a common pattern.

Due to space limitation, we are not able to present all proofs. However, all
omitted proofs are given in the technical report [13].

2 Preliminary Notions

This section provides short formal definitions of all preliminary notions used in
the paper. A transition system (TS, for short), A = (S,E, δ) is a directed labeled
graph with nodes S, events E and partial transition function δ : S × E −→ S,
where δ(s, e) = s′ is interpreted as s e s′. An event e occurs at a state s, denoted
by s e , if δ(s, e) is defined. An initialized TS A = (S,E, δ, s0) is a TS with
a distinct state s0 ∈ S. TSs in this paper are deterministic by design as their
state transition behavior is given by a (partial) function. Initialized TSs are also
required to make every state reachable from s0 by a directed path.

x nop(x) inp(x) out(x) set(x) res(x) swap(x) used(x) free(x)
0 0 1 1 0 1 0
1 1 0 1 0 0 1

Fig. 2. All interactions in I. An empty cell means that the column’s function is undefined
on the respective x. The entirely undefined function is missing in I.

73

A (boolean) type of net τ = ({0, 1}, Eτ , δτ) is a TS such that Eτ is a subset
of the boolean interactions: Eτ ⊆ I = {nop, inp, out, set, res, swap, used, free}. The
interactions i ∈ I are binary partial functions i : {0, 1} → {0, 1} as defined in the
listing of Figure 2. For all x ∈ {0, 1} and all i ∈ Eτ the transition function of τ
is defined by δτ (x, i) = i(x). Notice that I contains all possible binary partial
functions {0, 1} → {0, 1} except for the entirely undefined function ⊥. Even if a
type τ includes ⊥, this event can never occur, so it would be useless. Thus, I is
complete for deterministic boolean types of nets, and that means there are a total
of 256 of them. By definition, a (boolean) type τ is completely determined by
its event set Eτ . Hence, in the following we will identify τ with Eτ , cf. Figure 3.
Moreover, for readability, we group interactions by enter = {out, set, swap},
exit = {inp, res, swap}, keep+ = {nop, set, used}, and keep− = {nop, res, free}.

0 1
nop
free
res

nop

res, swap

out, swap

0 1nop
nop
used
set

inp, swap

set, swap

Fig. 3. Left: τ = {nop, out, res, swap, free}. Right: τ̃ = {nop, inp, set, swap, used}. τ and
τ̃ are isomorphic. The isomorphism φ : τ → τ̃ is given by φ(s) = 1− s for s ∈ {0, 1},
φ(i) = i for i ∈ {nop, swap}, φ(out) = inp, φ(res) = set and φ(free) = used.

A boolean Petri net N = (P, T,M0, f) of type τ , (τ -net, for short) is given
by finite and disjoint sets P of places and T of transitions, an initial marking
M0 : P −→ {0, 1}, and a (total) flow function f : P × T → τ . The meaning of
a boolean net is to realize a certain behavior by firing sequences of transitions.
In particular, a transition t ∈ T can fire in a marking M : P −→ {0, 1} if
δτ (M(p), f(p, t)) is defined for all p ∈ P . By firing, t produces the next marking
M ′ : P −→ {0, 1} where M ′(p) = δτ (M(p), f(p, t)) for all p ∈ P . This is denoted
by M t M ′. Given a τ -net N = (P, T,M0, f), its behavior is captured by a
transition system A(N), called the state graph ofN . The state set of A(N) consists
of all markings that, starting from initial state M0, can be reached by firing a
sequence of transitions. For every reachable marking M and transition t ∈ T
with M t M ′ the state transition function δ of A is defined as δ(M, t) = M ′.

Boolean net synthesis for a type τ is going backwards from input TS A =
(S,E, δ, s0) to the computation of a τ -net N with A(N) isomorphic to A, if such
a net exists. In contrast to A(N), the abstract states S of A miss any information
about markings they stand for. Accordingly, the events E are an abstraction of
N ’s transitions T as they relate to state changes only globally without giving the
information about the local changes to places. After all, the transition function
δ : S × E → S still tells us how states are affected by events.

To prove net synthesis of τ -nets NP-hard, we show the NP-completeness of the
corresponding decision version: τ -feasibility is the problem to decide the existence
of a τ -net N with A(N) isomorphic to the given TS A. To describe feasibility

74

without referencing the searched τ -net N , in the sequel, we introduce the τ -state
separation property (τ -SSP, for short) and the τ -event state separation property
(τ -ESSP, for short) for TSs. In conjunction, they are equivalent to τ -feasibility.
The following notion of τ -regions allows us to define the announced properties.

A τ -region of a given A = (S,E, δ, s0) is a pair (sup, sig) of support sup : S →
Sτ = {0, 1} and signature sig : E → Eτ = τ where every transition s e s′ of A
leads to a transition sup(s) sig(e) sup(s′) of τ . While a region divides S into the
two sets sup−1(b) = {s ∈ S | sup(s) = b} for b ∈ {0, 1}, the events are cumulated
by sig−1(i) = {e ∈ E | sig(e) = i} for all available interactions i ∈ τ . We also
use sig−1(τ ′) = {e ∈ E | sig(e) ∈ τ ′} for τ ′ ⊆ τ .

For a TS A = (S,E, δ, s0) and a type of nets τ , a pair of states s 6= s′ ∈ S is τ -
separable if there is a τ -region (sup, sig) such that sup(s) 6= sup(s′). Accordingly,
A has the τ -SSP if all pairs of distinct states from A are τ -separable. Secondly, an
event e ∈ E is called τ -inhibitable at a state s ∈ S if there is a τ -region (sup, sig)
where sup(s) sig(e) does not hold, that is, the interaction sig(e) ∈ τ is not defined
on input sup(s) ∈ {0, 1}. A has the τ -ESSP if for all states s ∈ S it is true that
all events e ∈ E that do not occur at s, meaning ¬s e , are τ -inhibitable at s.
It is well known from [2] that a TS A is τ -feasible, that is, there exists a τ -net N
with A(N) isomorphic to A, if and only if A has τ -SSP and the τ -ESSP. Types
of nets τ and τ̃ have an isomorphism φ if s i s′ is a transition in τ if and only if
φ(s) φ(i) φ(s′) is one in TS τ̃ . By the following lemma, we benefit from the eight
isomorphisms that map nop to nop, swap to swap, inp to out, set to res, used to
free, and vice versa:

Lemma 1 (Without proof). If τ and τ̃ are isomorphic types of nets then a
TS A has the (E)SSP for τ if and only if A has the (E)SSP for τ̃ .

3 Main Result

Theorem 1 (Main result). Let τ1 = {nop, inp, out}, τ2 = {nop, inp, res, swap},
τ̃2 = {nop, out, set, swap}, τ3 = {nop, inp, set} and τ̃3 = {nop, out, res}. If τ =
τ ′ ∪ ω for τ ′ ∈ {τ1, τ2, τ̃2} with ω ⊆ {used, free} or τ ⊇ τ3 or τ ⊇ τ̃3 then
τ -feasibility is NP-complete.

In total, Theorem 1 covers 68 types, cf. Figure 1, including the elementary
net systems [1]. It is straight forward that τ -feasibility is a member of NP for all
considered type of nets τ : By definition, there are at most |S|2 pairs of states
(s, s′) to separate and at most |E| · |S| pairs (e, s) of event and state where e
has to be inhibited at s. In a non-deterministic computation, one can simply
guess and check in polynomial time for all pairs the region that separates s
and s′, respectively inhibits e at s, or reject the input if such a region does not
exist. Hence, for the proof of Theorem 1 it remains to prove τ -feasibility to be
NP-hard for all types of nets. Although this demands for 68 NP-hardness proofs,
we manage to reduce it to three. Every reduction bases on one scheme using the

75

cubic monotone one-in-three-3-SAT problem, (P1, for short), which has been
shown to be NP-hard in [8]:

cubic monotone one-in-three-3-sat (P1)
Instance: negation-free boolean expression ϕ = {ζ0, . . . , ζm−1}
of three-clauses ζ0, . . . , ζm−1 with variable set V (ϕ), every vari-
able occurs in exactly three clauses
Question: Is there a subset M ⊆ V (ϕ) such that |M ∩ ζi| = 1
for i ∈ {0, . . . ,m− 1}?

Starting from a common construction principle, we choose one of our three reduc-
tions by a turn-switch σ. In every switch position σ1, σ2, σ3, the chosen reduction
works for multiple boolean types based on mutually shared interactions and
isomorphisms. Before we set out the details, the following subsection introduces
our way of easily combining gadget TSs for our NP-completeness proofs.

3.1 Unions of Transition Systems

If A0 = (S0, E0, δ0, s
0
0), . . . , An = (Sn, En, δn, sn0) are (initialized) TSs with pair-

wise disjoint states (but not necessarily disjoint events) we say that U(A0, . . . , An)
is their union. By S(U), we denote the entirety of all states in A0, . . . , An and
E(U) summarizes all events. For a flexible formalism, we allow to build unions
recursively: Firstly, we allow empty unions and identify every TS A with the union
containing only A, that is, A = U(A). Next, if U1 = U(A1

0, . . . , A
1
n1), . . . , Um =

(Am0 , . . . , Annm
) are unions (possibly with Ui = U() or Ui = Ai) then U(U1, . . . , Um)

is the union U(A1
0, . . . , A

1
n1 , . . . , A

m
0 , . . . , A

n
nm

).
We lift the concepts of regions, SSP, and ESSP to unions U = U(A0, . . . , An) as

follows: A τ -region (sup, sig) of U consists of sup : S(U)→ Sτ and sig : E(U)→
Eτ such that, for all i ∈ {0, . . . , n}, the projections supi(s) = sup(s), s ∈ Si
and sigi(e) = sig(e), e ∈ Ei provide a region (supi, sigi) of Ai. U has the τ -SSP
if for all different states s, s′ ∈ S(U) of the same TS Ai there is a τ -region
(sup, sig) of U with sup(s) 6= sup(s′). Moreover, U has the τ -ESSP if for all
events e ∈ E(U) and all states s ∈ S(U) with ¬s e there is a τ -region (sup, sig)
of U such that ¬sup(s) sig(e) . Naturally, U is called τ -feasible if it has the
τ -SSP and τ -ESSP. To merge a union U = U(A0, . . . , An) into a single TS,
we define the joining A(U): If s0

0, . . . , s
n
0 are the initial states of U ’s TSs then

A(U) = (S(U)∪⊥, E(U)∪�∪	, δ,⊥0) is a TS with additional connector states
⊥ = {⊥0, . . . ,⊥n} and fresh events � = {�0, . . . ,�n}, 	 = {	1, . . . ,	n} joining
the individual TSs of U by δ as defined in Figure 4.

δ(s, e) =





si
0, if s = ⊥i and e = �i,

⊥i+1, if s = ⊥i and e = 	i+1,

δi(s, e), if s ∈ Si and e ∈ Ei,

⊥0 ⊥1 . . . ⊥n

A0 A1 An

	1 	2 	n

�0 �1 �n

Fig. 4. Left: A(U)’s transition function δ. Right: An abstract representation of A(U).

76

Hence, A(U) puts the connector states into a chain of the events from 	 and
links the initial states of TSs from U to this chain using events from �. The
following lemma certifies the validity of the joining operation for the unions and
the types of nets that occur in our reduction scheme.

Lemma 2. Let τ be a type of nets such that nop, inp ∈ τ and τ ∩ enter 6= ∅. If
U = U(A0, . . . , An) is a union of TSs A0, . . . , An where, for every event e in
E(U), there is at least one state s in S(U) with ¬s e then U has the τ -(E)SSP
if and only if A(U) has the τ -(E)SSP.

Notice that Lemma 2 does not cover all types mentioned in Theorem 1.
However, this is not necessary as every type τ from Theorem 1 missed by
Lemma 2 is indirectly covered in the Lemma by an isomorphic type τ̃ .

3.2 The General Reduction Scheme

Our general scheme can be set up to a specific reduction by the turn switch σ.
In each of its three positions, σ covers a whole collection of net types. Therefore,
we simply understand the positions σ1, σ2, σ3 as the type sets managed by the
respective reductions:

σ1 = {τ1 ∪ ω | ω ⊆ {used, free}} ∪ {τ3 ∪ ω | ω ⊆ {out, res, used, free}
σ2 = {τ3 ∪ {swap} ∪ ω | ω ⊆ {out, res, used, free}}
σ3 = {τ2 ∪ ω | ω ⊆ {used, free}}

The input of our scheme is the switch position σ ∈ {σ1, σ2, σ3} and an instance
ϕ of P1. The result is a union Uσϕ of gadget TSs satisfying the conditions of
Lemma 2, that is, Uσϕ is τ -feasible if and only if A(Uσϕ) is τ -feasible for all τ ∈ σ.
Moreover, the union Uσϕ satisfies the following properties:

1. The variables V (ϕ) are a subset of E(Uσϕ), the union events.
2. Event k ∈ E(Uσϕ) is to inhibit at state h0,6 ∈ S(Uσϕ) and there are events
V = {v0, . . . , v3m−1} ⊆ E(Uσϕ) and W = {w0, . . . , w3m−1} ⊆ E(Uσϕ).

3. If τ ∈ σ and (sup, sig) a τ -region inhibiting k at h0,6 then one of the
following conditions is true:
(a) sig(k) = inp and V ⊆ sig−1(enter) and W ⊆ sig−1(keep−),
(b) sig(k) = out and V ⊆ sig−1(exit) and W ⊆ sig−1(keep+).

4. If (sup, sig) is a region of Uσϕ satisfying Condition 3.a or Condition 3.b
then M = {X ∈ V (ϕ) | sig(X) 6= nop} is a one-in-three model of ϕ.

5. If ϕ has a one-in-three model M and τ ∈ σ then there is a τ -region
(sup, sig) with sig(k) = inp and sup(h0,6) = 0. Especially, (sup, sig)
inhibits k at h0,6 and satisfies Condition 3.a.

6. If τ ∈ σ and k is τ -inhibitable at h0,6 then Uσϕ has the τ -ESSP and the
τ -SSP.

A polynomial time reduction scheme with these properties proves Theorem 1 as
the following implications are justified:

77

ϕ is one-in-three satisfiable 5.=⇒ k is τ -inhibitable at h0,6 in Uσϕ
6.=⇒ Uσϕ

has the τ -ESSP & τ -SSP def.=⇒ Uσϕ is τ -feasible def.=⇒ Uσϕ has the τ -ESSP
def.=⇒ k is τ -inhibitable at h0,6 in Uσϕ

3./4.=⇒ ϕ is one-in-three satisfiable.

Especially, ϕ is one-in-three satisfiable if and only if Uσϕ is τ -feasible. By Lemma 2,
this proves NP-hardness of τ -feasibility for all τ in the positions σ1, σ2, σ3.
Secondly, every remaining type τ̃ of Theorem 1 is isomorphic to one of the
already covered cases τ . Hence, by Lemma 1, this also proves NP-hardness of
τ̃ -feasibility which, by feasibility being in NP, justifies Theorem 1.

In the sequel, we develop the reduction of Uσϕ and show that it satisfies
Condition 1-Condition 5. Notice that this proves ϕ is one-in-three satisfiable if
and only if k is inhibitable at h0,6. Due to space limitation, the proof that Uσϕ
also has Condition 6 is moved to the technical report [13].

3.3 Details for Condition 2 and Condition 3

To satisfy Condition 2, every union Uσϕ implements the following transition system
H that provides the event k, the state h0,6, where ¬h0,6

k , and the events
of Z = {z0, . . . , z3m−1}, V = {v0, . . . , v3m−1} and W = {w0, . . . , w3m−1} (the
colored areas are to be explained later):
h0,0 h0,1 h0,2 h0,3 h0,4 h0,5 h0,6

h3m−1,0 h3m−1,1 h3m−1,2 h3m−1,3 h3m−1,4 h3m−1,5 h3m−1,6

h3m,0 h3m,1 h3m,2 h3m,3 h3m,4 h3m,5 h3m,6

h6m−1,0 h6m−1,1 h6m−1,2 h6m−1,3 h6m−1,4 h6m−1,5 h6m−1,6

...
...

r0

r3m−2

r3m−1

...
...

r3m

r6m−2

k z0 v0 k q0 z0

k z3m−1 v3m−1 k q3m−1 z3m−1

k w0 p0 k y0 w0

k w3m−1 p3m−1 k y3m−1 w3m−1

c0

c3m−2

c3m−1

c3m

c6m−2

So far Condition 2 is already satisfied. For Condition 3 we observe that,
by definition, there are basically four interactions possibly useful for sig(k):
inp, out, used, free. The other interactions res, set, swap, nop are defined on both
0 and 1 and, hence, not suitable to inhibit events. H alone generally does not
guarantee that a region (sup, sig) inhibiting k at h0,6 satisfies Condition 3. Thus,
to achieve this goal other gadgets are necessary. By theirs different types (having

78

different interactions), it depends on σ which gadgets are necessary. We proceed
step by step and develop the construction for σ1, σ2 and σ3 in the given order. In
the sequel, if not explicitly stated otherwise, by (sup, sig) we refer to a τ -region
of Uσϕ , τ ∈ σ, that inhibits k at h0,6. The union Uσ1

ϕ implements additionally the
following two TSs F0, F1:

F0 = f0,0 f0,1 f0,2 f0,3 f0,4
k n0 z0 k

F1 = f1,0 f1,1 f1,2
q0 k

We argue that every region (sup, sig) of Uσ1
ϕ satisfies Condition 3: If sig(k) =

used then, by definition of used we get sup(s) = sup(s′) = 1 for every transition
s k s′. Hence, we have sup(f0,3) = sup(f1,1) = sup(h0,4) = 1. By definition
of inp, res we have that e s and sig(e) ∈ {inp, res} implies sup(s) = 0. Hence,
by z0 f0,3 and q0 f1,1 we have that sig(z0), sig(q0) 6∈ {inp, res}. Moreover, we
observe that swap 6∈ τ for all τ ∈ σ1. Thus, sig(z0), sig(q0) ∈ keep+ such that
sup(h0,4) = sup(h0,5) = sup(h0,6) = 1 which contradicts ¬sup(h0,6) sig(k) . Hence,
sig(k) 6= used. Similarly, one argues that sig(k) 6= free implies that sup(h0,6) = 0,
again a contradiction. Hence, we have that sig(k) = inp and sup(h0,6) = 0 or
sig(k) = out and sup(h0,6) = 1.

As a next step, we show that sig(k) = inp and sup(h0,6) = 0 implies sig(v0) ∈
enter and sig(z0) ∈ keep−: By sig(k) = inp and k h0,1 and h0,3

k we have
that sup(h0,1) = 0 and sup(h0,3) = 1. By z0 h0,6, sup(h0,6) = 0 and swap 6∈ τ
we have that sig(z0) ∈ keep−. Moreover, by sup(h0,1) = 0 and sig(z0) ∈ keep− it
is sup(h0,2) = 0 which, by h0,2

v0 h0,3 and sup(h0,3) = 1, implies sig(v0) ∈ enter.
Notice, that this reasoning purely bases on sig(k) = inp and sup(h0,6) = 0.
Similarly, one argues that sig(k) = out and sup(h0,6) = 1 implies sig(v0) ∈ exit
and sig(z0) ∈ keep+. Uσ1

ϕ uses for every i ∈ {0, . . . , 6m − 2} the following TS
Gc,ci to transfer the support-value sup(h0,6) to the states h1,6, . . . , h6m−1,6:

Gc,ci = gc,ci,0 gc,ci,1

gc,ci,2 gc,ci,3

ci

k

ci

k

By doing so, it transfers the outcome of the latter observation to the events
v1, . . . , v3m−1 and w0, . . . , w3m−1: If sig(k) = inp, then we have sup(gc,ci,0) =
sup(gc,ci,0) = 1 and sup(gc,ci,2) = sup(gc,ci,3) = 0, that is, sig(ci) = nop. Symmetrically,
if sig(k) = out then sig(ci) = nop. Hence, if sig(k) = inp and sup(h0,6) = 0 then
sup(hi,6) = 0 for all i ∈ {0, . . . , 6m− 1}. Perfectly similar to the discussion for
z0 and v0 we obtain that V ⊆ sig−1(enter) and W ⊆ sig−1(keep−), respectively.
Symmetrically, sig(k) = out and sup(h0,6) = 1 imply V ⊆ sig−1(exit) and
W ⊆ sig−1(keep+). Hence, Uσ1

ϕ satisfies Condition 3.
Unfortunately, if σ ∈ {σ2, σ3} then the introduced gadgets F0, F1 (alone) are

not powerful enough to ensure Condition 3. This is mainly due to the interaction
swap. However, we tackle this problem by the application of other gadgets. While,
due to theirs different interaction sets, σ2 and σ3 have different requirements,

79

both of Uσ2
ϕ and Uσ3

ϕ implement for every i ∈ {0, . . . , 6m − 2} the gadget Gc,ci
and for i ∈ {0, . . . , 3m− 1} following gadget TSs G ,q

i and G ,y
i :

G ,q
i = g ,qi,0 g ,qi,1

g ,qi,2 g ,qi,3

k

qi

k

G ,y
i = g ,yi,0 g ,yi,1

g ,yi,2 g ,yi,3

k

yi

k

Here and in the sequel, the purpose of underscore-labeled edges is essentially to
ensure reachability of the TSs. Every underscore represents an arbitrary unique
event occurring only at this edge. For the sake of readability we do not define
these events explicitly. Again for readability, we define Q = {q0, . . . , q3m−1} and
Y = {y0, . . . , y3m−1}. Moreover, Uσ2

ϕ adds the TS F0 (originally introduced for
σ1) and the next TS Gn,0 while Uσ3

ϕ uses also F0 and the following TS F2:

Gn,0 = gn,0,0 gn,0,1

gn,0,2 gn,0,3

n0

k k

F2 = f2,0 f2,1

f2,2 f2,3

n0

k k

That Uσ2
ϕ and Uσ3

ϕ differ in Gn,0 and F2, respectively, is mainly due to
the fact that the interactions of theirs types have different requirements to
satisfy Condition 5 and Condition 6. To argue for Uσ3

ϕ ’s and Uσ4
ϕ ’s functionality,

respectively, we firstly show that sig(k) ∈ {inp, out} for (sup, sig): If sig(k) = used
then s k s′ implies sup(s) = sup(s′) = 1. Applying this to F2, G

n,
0 and G ,q

0 we
obtain that sig(n0), sig(q0) ∈ keep+. By sig(n0) ∈ keep+ and sup(f0,1) = 1 we
obtain sup(f0,2) = 1 which, by sup(f0,3) = 1, implies sig(z0) ∈ keep+. Finally,
by sup(h0,3) = 4 and sig(z0), sig(q0) ∈ keep+, we get sup(h0,6) = 1 which
contradicts ¬ sup(h0,6) sig(k) . Similarly, the assumption sig(k) = free yields the
same contradiction. Thus, sig(k) ∈ {inp, out}.

We argue that sig(k) = inp and sup(h0,6) = 0 implies V ⊆ sig−1(enter)
and W ⊆ sig−1(keep−): By sig(k) = inp we get again sig(ci) = nop and, thus,
sup(hi,6) = 0 for all i in question. Moreover, by sig(k) = inp we get sup(s) = 0
for all k s. Applying this to G ,q

i and G ,y
i yields Q,Y ⊆ sig−1(keep−). By

Q,Y ⊆ sig−1(keep−) and sup(hi,4) = 0 (for all i ∈ {0, . . . , 6m − 1}) we get
sup(hi,5) = 0 which, by sup(hi,6) = 0, implies W,Z ⊆ sig−1(keep−). Finally, by
Z ⊆ sig−1(keep−) and sup(hi,1) = 0 we conclude sup(hi,2) = 0 implying with
sup(hi,3) = 1 that sig(vi) ∈ enter for every i ∈ {0, . . . , 3m−1}: V ⊆ sig−1(enter).
Symmetrically, sig(k) = out and sup(h0,6) = 1 implies W ⊆ sig−1(keep+) and
V ⊆ sig−1(exit). Hence, Uσ2

ϕ and Uσ3
ϕ satisfy Condition 3.

3.4 Details for Condition 1 and Condition 4

Essential for the realization of Condition 1 and Condition 4 is the observation
that for every τ -region R = (sup, sig) and path P = s e1 . . . en s′ the image
R(P) = sup(s) sig(e1) . . . sig(en) sup(s′) is a path in τ . Moreover, if sup(s) 6=
sup(s′) = 0 then there has to be an event ei mapped to an interaction of
τ that allows a state change in τ : sig(ei) 6∈ {nop, used, free}. Our target is

80

to exploit this observation in the following way: Firstly, represent every clause
ζi = {Xi,0, Xi,1, Xi,2} by a path Pi,0 = ti,0,2

Xi,0 ti,0,3
Xi,1 ti,0,4

Xi,2 ti,0,5. Secondly,
ensure that region (sup, sig) (inhibiting k at h0,6) requires sup(ti,0,2) 6= sup(ti,0,5)
for every i ∈ {0, . . . ,m−1}. Thirdly, ensure that there is exactly one variable event
X ∈ {Xi,0, Xi,1, Xi,2} whose image sig(X) allows the necessary state change in
τ and that both of the others are mapped to nop. Such a region implies that
M = {X ∈ V (ϕ) | sig(X) 6= nop} is a one-in-three model of ϕ as two different
clauses ζi, ζj are represented by different paths Pi,0, Pj,0. Let’s discuss the case
that region (sup, sig) satisfies sup(ti,0,2) = 1 and sup(ti,0,5) = 0. Unfortunately,
generally there are many possibilities for the signature of the variable events
Xi,0, Xi,1, Xi,2 and not even one of them need to be mapped to nop. For example,
sig(X) = res or sig(X) = swap for X ∈ {Xi,0, Xi,1, Xi,2} would be possible, too.

We attack this problem as follows: Firstly, instead of one path for ζi we
apply the following three forward-backward paths Pi,0, Pi,1, Pi,2 which for every
variable event X ∈ {Xi,0, Xi,1, Xi,2} use an additional mirror event x:

Pi,0 = ti,0,2 ti,0,3 ti,0,4 ti,0,5

Xi,0 Xi,1 Xi,2

xi,0 xi,1 xi,2

Pi,1 = ti,1,2 ti,1,3 ti,1,4 ti,1,5

Xi,1 Xi,2 Xi,0

xi,1 xi,2 xi,0

Pi,2 = ti,2,2 ti,2,3 ti,2,4 ti,2,5

Xi,2 Xi,0 Xi,1

xi,2 xi,0 xi,1

Notice that, by the arbitrariness of i, we have for everyX ∈ {X0, . . . , Xm−1} =
V (ϕ) its unique mirror event x ∈ {x0, . . . , xm−1}. Moreover, by definition, if
s X s′ is a an edge (of any forward-backward path) then s x s′ is too. The
paths Pi,0, Pi,1, Pi,2 are similar but the variable events are once and twice left-
shifted, respectively. Secondly, we ensure that (sup, sig) also satisfies sup(ti,1,2) =
sup(ti,2,2) = 1 and sup(ti,1,5) = sup(ti,2,5) = 0, that is, sup synchronizes the
states ti,0,2, ti,1,2, ti,2,2 and the states ti,0,5, ti,1,5, ti,2,5, respectively. As a result,
we have for every variable event X ∈ {Xi,0, Xi,1, Xi,2} an edge X s such that
sup(s) = 0. Consequently, we have that sig(X) 6∈ {out, set, used}, as i x and
i ∈ {out, set, used} requires x = 1. Moreover, we also have for every variable
event an edge s X such that sup(s) = 1, such that sig(X) 6= free. This leaves
nop, inp, res, swap as remaining candidates for sig(X).

As a matter of fact, the construction already ensures that a variable event
X ∈ {Xi,0, Xi,1, Xi,2} with sig(X) ∈ {inp, res} implies that sig(Y) = nop for
Y ∈ {Xi,0, Xi,1, Xi,2}\{Y }. We explicitly justify this claim only for X = Xi,0 as,
by symmetry, the cases X = Xi,1 and X = Xi,2 are quite similar: By sig(Xi,0) ∈
{inp, res} we have sup(ti,0,3) = 0 which by sup(ti,0,2) = 1 and ti,0,2

xi,0 ti,0,3
implies sig(xi,0) ∈ {out, set, swap}. Again by sig(Xi,0) ∈ {inp, res} we have
sup(ti,2,4) = 0 implying with sig(xi,0) ∈ {out, set, swap} that sup(ti,2,3) = 1. By
ti,2,2

Xi,2 ti,2,3, sup(ti,2,2) = sup(ti,2,3) = 1 and sig(Xi,2) ∈ {nop, inp, res, swap}
we conclude sig(Xi,2) = nop. Furthermore, by sup(ti,1,5) = 0 and sig(xi,0) ∈
{out, set, swap} we have sup(ti,1,4) = 1. By sig(Xi,2) = nop, ti,1,3 Xi,2 ti,1,4

81

and sup(ti,1,4) = 1 we obtain that sup(ti,1,3) = 1. Finally, by sup(ti,1,2) =
sup(ti,1,3) = 1, ti,1,2 Xi,1 ti,1,3 and sig(Xi,1) ∈ {nop, inp, res, swap} we obtain
sig(Xi,1) = nop.

So far, we have already argued that for types τ with swap 6∈ τ the following
is true: A τ -region that synchronizes ti,0,2, ti,1,2, ti,2,2 and ti,0,5, ti,1,5, ti,2,5 as
announced ensures that there is exactly one variable event of Xi,0, Xi,1, Xi,2 with
a signature different from nop. This concerns the types which are covered by σ1.

For the types τ with swap ∈ τ , covered by σ2 and σ3, it remains to ensure
the following: If X ∈ {Xi,0, Xi,1, Xi,2} and sig(X) = swap then sig(Y) = nop
for Y ∈ {Xi,0, Xi,1, Xi,2} \ {X}. Unfortunately, the previous construction (alone)
can not afford this. However, we overcome this problem by another enhancement
which we develop in the sequel.

Notice that, by the former discussion, sig(X) = swap already implies sig(Y) 6∈
{inp, res} for Y ∈ {Xi,0, Xi,1, Xi,2}\{X}. Hence, its simple maths that if sig(X) =
swap then either all variable events are mapped to swap or exactly one of
them: Either we have three changes in τ to get from 1 to 0 or exactly one.
Moreover, it is easy to see that if sig(X) = swap for all X ∈ {Xi,0, Xi,1, Xi,2}
then sig(x) = swap for all x ∈ {xi,0, xi,1, xi,2}. Thus, it is sufficient to prevent
that any x is mapped to swap. To do so, the union Uσ2

ϕ installs for every mirror
event xi ∈ {x0, . . . , xm−1}, that is, especially for xi,0, xi,1, xi,2, the gadget TS
Gx,i which is defined in Figure 5.4. As (sup, sig) satisfies sig(k) ∈ {inp, out} we
have sup(gx,i,0) = sup(gx,i,1) which implies sig(xi) 6= swap for i ∈ {0, . . . ,m− 1}.
Similarly, the union Uσ3

ϕ installs for every i ∈ {0, . . . ,m− 1} the gadget TS G ,x
i

which is defined in Figure 5.8. The reason for these differences between Uσ2
ϕ and

Uσ3
ϕ is again due to theirs different types and the target to satisfy Condition 5

and Condition 6. We will give a detailed explanation later.
Altogether, we have argued that a reduction with these features ensures, that

the existence of (sup, sig) implies that M = {X ∈ V (ϕ) | sig(X) 6= nop} is a one-
in-three model of ϕ. Moreover, an analogous argument shows that sup(ti,0,2) =
sup(ti,1,2) = sup(ti,2,2) = 0 and sup(ti,0,5) = sup(ti,1,5) = sup(ti,2,5) = 1 also
implies that exactly one variable event (per clause) has a signature different
from nop. But how can we ensure that the states ti,0,2, ti,1,2, ti,2,2 and the states
ti,0,5, ti,1,5, ti,2,5 become synchronized? To achieve this, we enhance Pi,0, Pi,1, Pi,2
as follows: If σ ∈ {σ1, σ2} then we enhance Pi,0, Pi,1, Pi,2 to Ti,0, Ti,1, Ti,2 in
accordance to Figure 5.1- Figure 5.3, respectively. Ti,0, Ti,1 and Ti,2 apply the
event k and the events v3i, v3i+1, v3i+2 and w3i, w3i+1, w3i+2. To make it clear:
Besides the corresponding gadgets introduced in Section 3.3, Uσ1

ϕ and Uσ2
ϕ

(additionally) implement the TSs Ti,0, Ti,1 and Ti,2 for every i ∈ {0, . . . ,m− 1}.
Moreover, Uσ2

ϕ implements also Gx,i for every i ∈ {0, . . . ,m− 1}.
The region (sup, sig) uses the latest enhancement as follows: As already dis-

cussed in the former section, sig(k) = inp (and sup(h0,6) = 0) imply V ⊆
sig−1(enter) and W ⊆ sig−1(keep−). Moreover, by sig(K) = inp, we have
sup(ti,0,1) = sup(ti,1,1) = sup(ti,2,1) = 0. Altogether, this implies sup(ti,0,2) =
sup(ti,1,2) = sup(ti,2,2) = 1 and sup(ti,0,5) = sup(ti,1,5) = sup(ti,2,5) = 0.

82

Moreover, if sig(k) = out then V ⊆ sig−1(exit), implying sup(ti,0,2) =
sup(ti,1,2) = sup(ti,2,2) = 0, and W ⊆ sig−1(keep+), implying sup(ti,0,5) =
sup(ti,1,5) = sup(ti,2,5) = 1. As discussed, this implies a one-in-three model of ϕ.

For Uσ3
ϕ we need a slightly different construction: The union Uσ3

ϕ imple-
ments for every i ∈ {0, . . . ,m − 1} instead of Ti,0, Ti,1, Ti,2 the transition sys-
tem T ′i,0, T

′
i,1, T

′
i,2 defined in Figure 5.4-Figure 5.6, respectively. T ′i,0, T ′i,1, T ′i,2

also implement Pi,0, Pi,1, Pi,2 but switch the position of v3i, v3i+1, v3i+2 with
w3i, w3i+1, w3i+2, respectively. By symmetry, the arguments that Uσ3

ϕ satisfies
Condition 4 are similar to the ones for Uσ1

ϕ and Uσ2
ϕ .

Altogether, we have argued that Uσϕ satisfies Condition 1 and Condition 4
for σ ∈ {σ1, σ2, σ3}. In the next section we talk about the fifth condition. By
doing so, we also justify for why Uσ3

ϕ ’s construction different to Uσ2
ϕ . An essential

reason for this is that we have to fulfill both: Condition 4 and Condition 5.

1) ti,0,0

ti,0,1

ti,0,2 ti,0,3 ti,0,4 ti,0,5

k

v3i w3i

Xi,0 Xi,1 Xi,2

xi,0 xi,1 xi,2

2) ti,1,0

ti,1,1

ti,1,2 ti,1,3 ti,1,4 ti,1,5

k

v3i+1 w3i+1

Xi,1 Xi,2 Xi,0

xi,1 xi,2 xi,0

3) ti,2,0

ti,2,1

ti,2,2 ti,2,3 ti,2,4 ti,2,5

k

v3i+2 w3i+2

Xi,2 Xi,0 Xi,1

xi,2 xi,0 xi,1

4) gx,
i,0 gx,

i,1

gx,
i,2 gx,

i,3

xi

k k

5) ti,0,0

ti,0,1

ti,0,2 ti,0,3 ti,0,4 ti,0,5

k

w3i v3i

Xi,0 Xi,1 Xi,2

xi,0 xi,1 xi,2

6) ti,1,0

ti,1,1

ti,1,2 ti,1,3 ti,1,4 ti,1,5

k

w3i+1 v3i+1

Xi,1 Xi,2 Xi,0

xi,1 xi,2 xi,0

7) ti,2,0

ti,2,1

ti,2,2 ti,2,3 ti,2,4 ti,2,5

k

w3i+2 v3i+2

Xi,2 Xi,0 Xi,1

xi,2 xi,0 xi,1

8) g ,x
i,0 g ,x

i,1

g ,x
i,2 g ,x

i,3

k

xi

k

Fig. 5. (1-3) Ti,0, Ti,1, Ti,2, (4) Gx,
i , (5-7) T ′

i,0, T
′
i,1, T

′
i,2, (8) G ,x

i . (1-3,5-7): The colored
areas mark the supports of the three possible regions for Condition 5 as described in
Section 3.5: red: Xi,0 ∈ M , green: Xi,1 ∈ M and blue: Xi,2 ∈ M . The (initial) states
ti,0,0, ti,1,0 and ti,2,0 are mapped to 1 for all cases. (4,8): The colored areas define the
support of (sup, sig) for Condition 5 as given in Section 3.5.

83

3.5 Details for Condition 5

For Condition 5, we start from a given one-in-three model M of ϕ and show
that Uσϕ allows a region (sup, sig) such that sig(k) = inp and sup(h0,6) = 0 and
V ⊆ sig−1(enter) and W ⊆ sig−1(keep−).

For a start, let’s restrict to σ1, σ2 and the TSs Ti,0, Ti,1Ti,2 implemented by
Uσ1
ϕ , Uσ2

ϕ and Gx,i used by Uσ2
ϕ where i ∈ {0, . . . ,m − 1}: We define sig(k) =

inp, sig(v3i), sig(v3i+1), sig(v3i+2) ∈ enter and sig(w3i), sig(w3i+1), sig(w3i+2) ∈
keep−, i ∈ {0, . . . ,m− 1}. This requires sup(ti,0,2) = sup(ti,1,2) = sup(ti,2,2) = 1
and sup(ti,0,5) = sup(ti,1,5) = sup(ti,2,5) = 0. That is, for every Ti,0, Ti,1, Ti,2
we have a path from 1 to 0 labeled by Xi,0, Xi,1, Xi,2 and a path from 0 to 1
labelled by xi,0, xi,1, xi,2. For the former path, we define sig(X) = inp if X ∈M
and sig(X) = nop if Y ∈ V (ϕ) \M . Accordingly, for the latter path we let
sig(x) ∈ enter if sig(X) = inp and, otherwise sig(x) = nop, cf. Figure 5.1-
Figure 5.3: The red area sketches the case sig(Xi,0) = inp, the green area
sig(Xi,1) = inp and the blue area sig(Xi,2) = inp. States within the corresponding
colored area are mapped to 1 the others to 0, respectively. If σ = σ1 then, by
Figure 5.1-Figure 5.3 and by recalling that every variable occurs exactly three
times in exactly three clauses, it is easy to see that this yields a well defined
region. Considering Ti,0, Ti,1, Ti,2 alone, this is also true for σ2. However, for σ2
we also need to take the TSs Gx,0 , . . . , Gx,m−1 into account. Here, by sig(k) = inp
we have that sup(gx,i,0) = sup(gx,i,1) = 1 such that sig(xi) ∈ keep+. Hence, we need
that sig(xi) ∈ enter ∩ keep+, that is, sig(xi) = set. Fortunately, all types τ ∈ σ2
has the property set ∈ τ . We argue that (sup, sig) is extendable to Uσ1

ϕ and Uσ2
ϕ

and their other TSs: With the help of the colored areas of the introduced TSs we
extend (sup, sig) as follows. For every implemented gadget TS, the red colored
area refers to states s such that sup(s) = 1, otherwise, sup(s) = 0. If s e s′

where s is in a red colored area and s′ is not, define sig(e) = inp. Similarly, if s′
is in a red colored area and s is not, define sig(e) ∈ enter. Finally, if either both
of s, s′ are red or both not then define sig(e) = nop. One easily verifies that this
yields a well defined region such such that Uσ1

ϕ , Uσ2
ϕ satisfy Condition 5.

Unfortunately, as set 6∈ τ for τ ∈ σ3 this region can not exist for σ3 which
is one reason why σ3 needs another construction. For Uσ3

ϕ we obtain a corre-
sponding region as follows: We define sig(k) = inp and V ⊆ sig−1(enter) and
W ⊆ sig−1(keep−) which requires sup(ti,0,2) = sup(ti,1,2) = sup(ti,2,2) = 0 and
sup(ti,0,5) = sup(ti,1,5) = sup(ti,2,5) = 1. That is, for every T ′i,0, T

′
i,1, T

′
i,2 we

have a path from 0 to 1 which is labeled by Xi,0, Xi,1, Xi,2 and a path from 1
to 0 labelled by xi,0, xi,1, xi,2. For the former path, we define sig(X) = swap if
X ∈ M and sig(X) = nop if Y ∈ V (ϕ) \M , cf. Figure 5.4-Figure 5.7. Accord-
ingly, for the latter path we let sig(x) = res if sig(X) = swap and, otherwise
sig(x) = nop. We take the TSs G ,x

0 , . . . , G ,x
m−1 into account and, by sig(k) = inp

we have sup(g ,xi,2) = sup(g ,xi,3) = 0 which is compatible with sig(xi) = res. The
extension of (sup, sig) to the remaining gadgets of Uσ3

ϕ works analogously to Uσ2
ϕ ,

where border-crossing events from 0 to 1 are mapped to swap (instead of set).
Altogether, we have proven that Uσϕ satisfies Condition 5 for σ ∈ {σ1, σ2, σ3}.

84

4 Concluding Remarks

In this paper we present a proof scheme to show the NP-hardness of synthesis,
for 68 boolean Petri net types. Together with our previous work from [14], this
already makes 111 out of 256 boolean net types where the complexity of synthesis
has been figured out. In fact, with respect to the practically more relevant nop-
afflicted types of nets, there are only 17 cases left open. However, in view of our
main target (dichotomy result) it remains for future work to characterize the
synthesis complexity for all the remaining 145 types.

The NP-hardness results of the investigated synthesis problems motivates the
search for (fixed-parameter) tractable special cases. There are at least two ways
to (possibly) obtain such cases: Firstly, one can put (structural) restrictions on
the τ -net N to be synthesized (the output) and require, for example, that N
has to be free-choice or a marked graph [4]. To investigate the impact of such
output-restrictions on the complexity of boolean net synthesis is certainly an
interesting direction for further research.

Secondly, one can put restrictions on the TS from which N is to synthesize
(the input). One of the most obvious parameters here is the TS’s state degree g,
that is, the maximum number of ingoing and outgoing edges at a state. Actually,
TSs of benchmarks of the digital hardware design community often have a low
state degree [5]. However, our result show that it is very unlikely that feasibility
is (fixed-parameter) tractable for parameter g: All gadget TSs have at most two
ingoing and at most two outgoing edges per state, that is g ≤ 2, and this property
is preserved by the joining-operation for A(Uσϕ). Clearly, this leaves us with the
question if synthesis becomes tractable if g ≤ 1. On the one hand, that this can
not generally be true has been shown in [15]. On the other hand, one observes
that our reduction’s functionality heavily bases on the ability to prevent a res-,
set- and swap-signature of certain events. The core gadgets here are Ti,0, Ti,1, Ti,2
(implementing the paths Pi,0, Pi,1, Pi,2) and the TSs Gx,i and G ,x

i . These gadgets
are reliant on the possibility to have two ingoing and outgoing edges per state.
Hence, the case g ≤ 1 is an object worth to study in future work, at least for the
discussed types satisfying τ ∩ {set, res, swap} 6= ∅.

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elemen-
tary net systems is np-complete. Theor. Comput. Sci. 186(1-2), 107–134 (1997).
https://doi.org/10.1016/S0304-3975(96)00219-8

2. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts
in Theoretical Computer Science. An EATCS Series, Springer (2015).
https://doi.org/10.1007/978-3-662-47967-4

3. Badouel, E., Darondeau, P.: Trace nets and process automata. Acta Inf. 32(7),
647–679 (1995). https://doi.org/10.1007/BF01186645

4. Best, E.: Structure theory of petri nets: the free choice hiatus. In: Advances in Petri
Nets. Lecture Notes in Computer Science, vol. 254, pp. 168–205. Springer (1986).
https://doi.org/10.1007/BFb0046840

85

5. Cortadella, J.: Private correspondance (2017)
6. Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Step semantics of

boolean nets. Acta Inf. 50(1), 15–39 (2013). https://doi.org/10.1007/s00236-012-
0170-2

7. Montanari, U., Rossi, F.: Contextual nets. Acta Inf. 32(6), 545–596 (1995).
https://doi.org/10.1007/BF01178907

8. Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discrete &
Computational Geometry 26(4), 573–590 (2001). https://doi.org/10.1007/s00454-
001-0047-6

9. Pietkiewicz-Koutny, M.: Transition systems of elementary net systems with inhibitor
arcs. In: ICATPN. Lecture Notes in Computer Science, vol. 1248, pp. 310–327.
Springer (1997). https://doi.org/10.1007/3-540-63139-9 43

10. Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Petri Nets. Lec-
ture Notes in Computer Science, vol. 1491, pp. 12–121. Springer (1996).
https://doi.org/10.1007/3-540-65306-6 14

11. Schmitt, V.: Flip-flop nets. In: STACS. Lecture Notes in Computer Science, vol. 1046,
pp. 517–528. Springer (1996). https://doi.org/10.1007/3-540-60922-9 42

12. Tredup, R., Rosenke, C.: Narrowing down the hardness barrier of syn-
thesizing elementary net systems. In: CONCUR. LIPIcs, vol. 118, pp.
16:1–16:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018).
https://doi.org/10.4230/LIPIcs.CONCUR.2018.16

13. Tredup, R., Rosenke, C.: Towards completely characterizing the com-
plexity of boolean nets synthesis. CoRR abs/1806.03703 (2018),
http://arxiv.org/abs/1806.03703

14. Tredup, R., Rosenke, C.: The complexity of synthesis for 43 boolean petri net types.
In: Theory and Applications of Models of Computation. Theoretical Computer
Science and General Issues, vol. 11436. Springer International Publishing (2019).
https://doi.org/10.1007/978-3-030-14812-6

15. Tredup, R., Rosenke, C., Wolf, K.: Elementary net synthesis remains np-complete
even for extremely simple inputs. In: Petri Nets. Lecture Notes in Computer Science,
vol. 10877, pp. 40–59. Springer (2018). https://doi.org/10.1007/978-3-319-91268-4 3

86

Reviving Token-based Replay: Increasing Speed
While Improving Diagnostics

Alessandro Berti[0000−0003−1830−4013] and Wil van der Aalst[0000−0002−0955−6940]

Process and Data Science group, Lehrstuhl für Informatik 9 52074 Aachen, RWTH
Aachen University, Germany

Abstract. Token-based replay used to be the standard way to conduct
conformance checking. With the uptake of more advanced techniques
(e.g., alignment based), token-based replay got abandoned. However,
despite decomposition approaches and heuristics to speed-up computa-
tion, the more advanced conformance checking techniques have limited
scalability, especially when traces get longer and process models more
complex. This paper presents an improved token-based replay approach
that is much faster and scalable. Moreover, the approach provides more
accurate diagnostics that avoid known problems (e.g., “token flooding”)
and help to pinpoint compliance problems. The novel token-based replay
technique has been implemented in the PM4Py process mining library.
We will show that the replay technique outperforms state-of-the-art tech-
niques in terms of speed and/or diagnostics.

Keywords: Log-Model Replay · Process Diagnostics · Localized Con-
formance Checking

1 Introduction

The importance of conformance checking is growing as is illustrated by the new
book on conformance checking [8] and the Gartner report which states “we see
a significant trend toward more focus on conformance and enhancement process
mining types” [9]. Conformance checking aims to compare an event log and a
process model in order to discover deviations and obtain diagnostics information
[15]. Deviations are related to process executions not following the process model
(for example, the execution of some activities may be missing, or the activities
are not happening in the correct order), and are usually associated with higher
throughput times and lower quality levels. Hence, it is important to detect them,
understand their causes and re-engineer the process in order to avoid such devi-
ations. A prerequisite for both conformance checking and performance analysis
is a replay technique, that relates and compares the behavior observed in the
log with the behavior observed in the model. Different replay techniques have
been proposed, like token-based replay [17] and alignments [8, 6]. In recent years,
alignments have become the standard-de-facto technique since they are able to
find an optimal match between the process model and a process execution con-
tained in the event log. Unfortunately, their performance on complex process
models and large event logs is poor.

87

Token-based replay used to be the default technique, but has been almost
abandoned in recent years, because the handling of invisible transitions, that
are contained in the output models of algorithms like the heuristics miner or
the inductive miner, is based on heuristics and the technique suffer of several
know drawbacks. For example, models may get flooded with tokens in highly
non-conforming executions, enabling unwanted parts of the process model and
hampering the overall fitness evaluation. Moreover, detailed diagnostics have
been introduced only for alignments.

In this paper, a revival of token-based replay is proposed by addressing some
of the weaknesses of traditional token-based replay techniques. The new ap-
proach is supported by the PM4Py process mining library1.

The remainder of the paper is organized as follows: in Section 2 an introduc-
tion to token-based replay and alignments is provided. Section 3 presents the
novel approach which modifies the original technique and uses a different im-
plementation strategy. Section 4 proposes different ways to localize conformance
checking both prior (simplifying the model, reducing the complexity and the
time required to do token-based replay) and after the replay (evaluating which
elements of the Petri net are used and/or have encountered problems during the
replay operation). In Section 5, additional diagnostics are introduced based on
the localized replay output. Section 6 concludes the paper.

2 Background and Related Work

Petri nets are the most widely used process model in process mining frame-
works: popular discovery algorithms like the alpha miner and the inductive miner
(through conversion of the resulting process tree) can produce Petri nets. An ac-
cepting Petri net is a Petri net along with a final marking.

Definition 1 (Accepting Petri nets). A (labeled, marked) accepting Petri net
is a net of the form PN = (P, T, F,W,M0,MF , l), which extends the elementary
net so that:

– (P, T, F) is a net (P and T are disjoint finite sets of places and transitions;
F ⊆ (P × T) ∪ (T × P) is a set of arcs).

– W : F → N is an arc multiset, so that the count (or weight) for each arc is
a measure of the arc multiplicity.

– M0 : P → N is the initial marking2.
– MF : P → N is the final marking.
– l : T → ∑∪{τ} is a labeling function that assigns to each transition t ∈ T

either a symbol from
∑

(the set of labels) or the empty string τ .

The preset of a place, •p, is the set of all transitions t ∈ T such that (t, p) ∈ F .
The postset of a place, p•, is the set of all transitions t ∈ T such that (p, t) ∈ F .
The preset and postset of a transition could be defined in a similar way. A

1 The official website of the library is http://www.pm4py.org
2 A marking M : P → N is a place multiset.

88

transition t is said to be visible if l(t) ∈ ∑; is said to be hidden if l(t) = τ . If
for all t ∈ T such that l(t) 6= τ , |{t′ ∈ T |l(t′) = l(t)}| = 1, then the Petri net
contains unique visible transitions; otherwise, it contains duplicate transitions.
The initial marking is corresponding the initial state of a process execution.
Process discovery algorithms may associate also a final marking to the Petri
net, that is the state in which the process execution should end. The execution
semantics of a Petri net is the following:

– A transition t ∈ T is enabled (it may fire) in M if there are enough tokens in
its input places for the consumptions to be possible, i.e. iff ∀s ∈ •t : M(s) ≥
W (s, t).

– Firing a transition t ∈ T in marking M consumes W (s, t) tokens from each
of its input places s, and produces W (t, s) tokens in each of its output places
s.

For a process supported by an information system, an event log is a set of
cases, each one corresponding to a different execution of the process. A case
contains the list of events that are executed (in the information system) in order
to complete the case. To each case and event, some attributes can be assigned
(e.g. the activity and the timestamp at the event level). A classification of the
event is a string describing the event (e.g. the activity is a classification of the
event). For each case, given a classification function, the corresponding trace is
the list of classifications associated with the events of the case.

The application of token-based replay is done on a trace of an event log and
an accepting Petri net. The output of the replay operation is a list of transi-
tions enabled during the replay, along with some numbers: c is the number of
consumed tokens (during the replay), p is the number of produced tokens, m is
the number of missing tokens, r is the number of remaining tokens. At the start
of the replay, it is assumed that the tokens in the initial marking are inserted
by the environment, increasing p accordingly (for example, if the initial marking
consists of one token in one place, then the replay starts with p = 1). The replay
operation considers, in order, the activities of the trace. In each step, the set of
enabled transitions in the current marking is retrieved. If there is a transition
corresponding to the current activity, then it is fired, a number of tokens equal
to the sum of the weight of input arcs is added to c, and a number of tokens
equal to the sum of the weight of output arcs is added to p. If there is not a
transition corresponding to the current activity enabled in the current mark-
ing, then a transition in the model corresponding to the activity is searched (if
there are duplicate corresponding transitions, then [17] provides an algorithm to
choose between them). Since the transition could not fire in the current marking,
the marking is modified by inserting the token(s) needed to enable it, and m is
increased accordingly. At the end of the replay, if the final marking is reached,
it is assumed that the environment consumes the tokens from the final marking,
and c is increased accordingly. If the marking reached after the replay of the
trace is different from the final marking, then missing tokens are inserted and
remaining tokens r are set accordingly.

89

The following relations hold during the replay: c ≤ p + m and m ≤ c. The
relation p + m = c + r holds at the end of the replay. A fitness value could be
calculated for the trace as:

fσ =
1

2

(
1− m

c

)
+

1

2

(
1− r

p

)

For each case Li of the event log L, let ci be the number of consumed tokens,
pi the number of produced tokens, mi the number of missing tokens and ri the
number of remaining tokens. Then, the following formula calculates the fitness
at the log level

fL =
1

2

(
1−

∑
Li∈Lmi∑
Li∈L ci

)
+

1

2

(
1−

∑
Li∈L ri∑
Li∈L pi

)

This quantity is different from the average of fitness values at trace level. When,
during the replay, a transition corresponding to the activity could not be enabled,
and invisible transitions are present in the model, a technique is deployed to
traverse the state space (see [17]) and possibly reach a marking in which the
given transition is enabled. A heuristic (see [17]) that uses the shortest sequence
of invisible that enables a visible task is proposed. This heuristic tries to minimize
the possibility that the execution of an invisible transition interferes with the
future firing of another activity.

A well-known problem for token-based replay is the token flooding problem [8].
Indeed, when the case differs much from the model, and a lot of missing tokens
are inserted during the replay, it happens that also a lot of tokens remain unused
and many transitions are enabled. This leads to misleading diagnostics because
unwanted parts of the model may be activated, and so the fitness value for
highly problematic executions may be too high. To illustrate the token-flooding
problem consider a process model without concurrency (only loops, sequences,
and choices) represented as a Petri net. At any stage, there should be at most
one token in the Petri net. However, each time there is a deviation, a token may
be added resulting in a state which was never reachable from the initial state.

The original token-based replay implementation [17] was only implemented
in earlier versions of the ProM framework (ProM4 and ProM5) and proposes
localized metrics on places of the Petri net that help to understand which parts
of the model are more problematic. To improve performance in the original
implementation, a preprocessing step could be used to group cases having the
same trace. In this way, the replay of a unique trace is done once by the token-
based replay. Alternatively, more ad-hoc token-based replay approaches were
used by the heuristic miner and the genetic miner. In the latter approach, the
qualities of candidate models are derived. These techniques tend to put multiple
dimensions (replay fitness, precision, etc.) into a single fitness measure.

Currently, the standard replay technique on Petri nets is the computation
of alignments. There are different approaches on alignments [8, 6]. In the as-
sessment, we are considering the approach described in [6]. Execution speed of

90

alignments on process models containing a lot of different states may be prob-
lematic, although some techniques have been proposed, such as decomposing
alignments [2] and recomposing them [10]. Moreover, the approach described in
[18] is also helping to handle bigger instances, making the user decide about the
granularity of the alignment steps.

3 Improved Token-Based Replay

3.1 Changes to the Approach

The approach proposed in [17] is relatively fast when there are no duplicate or
silent transitions. However, in comparison to the alignments, managing invisible
transitions may be time-consuming due to the necessary state-space explorations.

The idea proposed in this paper is to perform a pre-processing step in order
to store a map of the shortest paths between places, and then use this map
when hidden transitions need to be traversed. This saves the time necessary to
perform the state-space explorations. Therefore, the proposed approach works
with accepting Petri nets that have no invisible transitions with empty preset or
postset, since they would not belong to any shortest path between places.

3.2 Preprocessing Step: Shortest Paths Between Places

Given an accepting Petri net PN = (P, T, F,W,M0,MF , l), it is possible to
define a directed graph G = (V,A) such that the vertices V are the places P of
the Petri net, and A ⊆ P ×P is such that (p1, p2) ∈ A if and only if at least one
invisible transition connects p1 to p2. Then, to each arc (p1, p2) ∈ A, a transition
τ(p1, p2) could be associated picking one of the invisible transitions connecting
p1 to p2.

Using an informed search algorithm for traversing the graph G, the shortest
paths between nodes are found. These are a sequence of edges 〈a1, . . . an〉 of
minimal length, that correspond to a sequence of transitions 〈t1, . . . , tn〉 using
the mapping provided by τ.

Given a marking M such that M(p1) > 0 and M(p2) = 0, a marking M ′

where M ′(p2) > 0 could be reached by firing the sequence 〈t1, . . . , tn〉 that is the
shortest path in G between p1 and p2. The following subsection will explain how
to apply the shortest paths to traverse invisible transitions and reach a marking
where a transition is enabled.

3.3 Enabling Transitions

The approach described in this subsection helps to enable a transition t through
the traversal of invisible transitions. This helps in avoiding the insertion of miss-
ing tokens when an activity needs to be replayed on the model, but no corre-
sponding transition is enabled in the current marking M . Moreover, it helps to
avoid time-consuming state-space explorations that are required by the approach
proposed in [17].

For a marking M and a transition t, it is possible to define the following sets:

91

– ∆(M, t) = {p ∈ •t | M(p) < W (p, t)} is the set of places that miss some
tokens to enable transition t. If the set ∆(M, t) is not empty, then the tran-
sition t could not be enabled in the marking M .

– Λ(M, t) = {p ∈ P | W (p, t) = 0 ∧M(p) > 0} is the set of places for which
the marking has at least one token and t does not require any of these places
to be enabled.

When t is not enabled, the set ∆(M, t) is not empty. The idea is about using
places in Λ(M, t) (that are not useful to enable t) and, through the shortest
paths, reach a marking M ′ where t is enabled.

Given a place p1 ∈ Λ(M, t) and a place p2 ∈ ∆(M, t), if a path exists
between p1 and p2 in G, then it is useful to see if the corresponding short-
est path 〈t1, . . . , tn〉 could fire in marking M . If that is the case, a marking
M ′ could be reached having at least one token in p2. However, the path may
not be not realizable, or may require a token from one of the input places of
t. So, the set ∆(M ′, t) may be smaller than ∆(M, t), since p2 gets at least
one token. The approach is about considering all the combinations of places
(p1, p2) ∈ Λ(M, t) × ∆(M, t) such that a path exists between p1 and p2 in G.
These combinations, namely {(p1, p2), (p′1, p

′
2), (p′′1 , p

′′
2) . . .}, are corresponding to

some shortest paths S = {〈t1, . . . , tm〉, 〈t′1, . . . , t′n〉, 〈t′′1 , . . . , t′′o〉} in G.
The algorithm to enable transition t through the traversal of invisible tran-

sitions considers the sequences of transitions in S, ordered by length, and tries
to fire them. If the path can be executed, a marking M ′ is reached, and the set
∆(M ′, t) may be smaller than ∆(M, t), since a place in ∆(M, t) gets at least
one token in M ′. However, one of the following situations could happen: 1) no
shortest path between combinations of places (p1, p2) ∈ Λ(M, t)×∆(M, t) could
fire: in that case, we are “stuck” in the marking M , and the token-based replay
is forced to insert the missing tokens; 2) a marking M ′ is reached, but ∆(M ′, t)
is not empty, hence t is still not enabled in marking M ′. In that case, the ap-
proach is iterated on the marking M ′; 3) a marking M ′ is reached, and ∆(M ′, t)
is empty, so t is enabled in marking M ′. When situation (2) happens, the ap-
proach is iterated. A limit on the number of iterations may be set, and if it is
exceeded then the token-based replay proceeds to insert the missing tokens in
marking M .

The approach is straightforward when sound workflow nets without concur-
rency (only loops, sequences, and choices) are considered, since in the considered
setting (M marking where transition t is not enabled) both sets Λ(M, t) and
∆(M, t) have a single element, a single combination (p1, p2) ∈ Λ(M, t)×∆(M, t)
exists and, if a path exists between p1 and p2 in G, and the shortest path could
fire in marking M , a marking M ′ will be reached such that ∆(M ′, t) = ∅ and
transition t is enabled. Moreover, it performs particularly well on models that
are output of popular process discovery algorithms, e.g., inductive miner, heuris-
tics miner, etc., where potentially long chains of invisible (skip, loop) transitions
needs to be traversed in order to enable a transition. The approach described in
this subsection can also manage duplicate transitions corresponding to the activ-
ity that needs to be replayed. In that case, we are looking to enable any one of the

92

transitions belonging to the set TC ⊆ T that contains all the transitions corre-
sponding to the activity in the trace. The approach is then applied on the shortest
paths between places (p1, p2) ∈ ∪t∈TC

Λ(M, t)×∆(M, t). A similar approach can
be applied to reach the final marking when, at the end of the replay of a trace,
a marking M is reached that is not corresponding to the final marking. In that
case, ∆ = {p ∈ P | M(p) < MF (p)} and Λ = {p ∈ P | MF (p) = 0 ∧M(p) > 0}.
This does not cover the case where the reached marking contains the final mark-
ing but has too many tokens.

3.4 Token Flooding Problem

To address the token flooding problem, which is one of the most severe problems
when using token-based replay, we propose several strategies. The final goal
of these strategies is to avoid the activation of transitions that shall not be
enabled, keeping the fitness value low for problematic parts of the model. The
common pattern behind these strategies is to determine superfluous tokens, that
are tokens that cannot be used anymore. During the replay, f (initially set to
0) is an additional variable that stores the number of “frozen” tokens. When
a token is detected as superfluous, it is “frozen”: that means, it is removed
from the marking and f is increased. Frozen tokens, like remaining tokens, are
tokens that are produced in the replay but never consumed. Hence, at the end
of the replay p+m = c+r+f . To each token in the marking, an age (number of
iterations of the replay for which the token has been in the marking without being
consumed) is assigned. The tokens with the highest age are the best candidates
for removal. The techniques to detect superfluous tokens are deployed when a
transition required the insertion of missing tokens to fire, since the marking
would then possibly contain more tokens. One of the following strategies can be
used:

1. Using a decomposition of the Petri net in semi-positive invariants [11] or
S-components [1] to restrict the set of allowed markings. Considering S-
components, each S-component should hold at most 1 token, so it is safe to
remove the oldest tokens if they belong to a common S-component.

2. Using place bounds [12]: if a place is bounded to N tokens and during the
replay operation the marking contains M > N tokens for the place, the
“oldest” tokens according to the age are removed.

3.5 Changes to the Implementation to Improve Performance

The implementation of the approach proposed in [17] has been made more ef-
ficient thanks to ideas adopted from the alignments implementation in ProM6
[5]:

1. Post-fix caching: a post-fix is the final part of a case. During the replay of
a case, the couple marking+post-fix is saved in a dictionary along with the
list of transitions enabled from that point to reach the final marking of the

93

model. For the next replayed cases, if one of them reaches exactly a marking
+ post-fix setting saved in the dictionary, the final part of the replay could
be retrieved from the dictionary.

2. Activity caching: activity caching means saving in a dictionary, during the
replay of a case, the list of hidden transitions enabled from a given marking
to reach a marking where a particular transition is enabled. For the next
replayed cases, if one of them reaches a marking + target transition setting
saved in the dictionary, then the corresponding hidden transitions are fired
accordingly to enable the target transition.

3.6 Evaluation

In this section, the token-based replay (as implemented in the PM4Py library)
is assessed, looking at the speed and the output of the replay, against the align-
ments approach (as implemented in the “Replay a Log on Petri Net for Con-
formance Analysis” plug-in of ProM6). Alignments produce results that differ
from token-based replay, so results are not directly comparable. Both are replay
techniques, so the goal of both techniques is to provide information about how
much a process execution is fit according to the process model (albeit the fit-
ness measures are defined in a different way, and so are intrinsically different).
This is valid in particular for the comparison of execution times: a trace may
be judged fitting according to a process model in a significantly lower amount
of time using token-based replay in comparison to alignments. If an execution is
unfit according to the model, it can also be judged unfit in a significantly lower
amount of time. For a comparison between the two approaches, read Section 8.4
of book [8] or consult [16, 3].

Table 1: Performance of PM4Py token-based replayer on real-life logs in com-
parison to the alignments approach implemented in ProM6 on models extracted
by the inductive miner implementation in PM4Py.

Log Cases Variants T.I.P4Pys A.I.P6s Speedup

repairEx 1104 77 0.06 0.2 3.3
reviewing 100 96 0.10 0.4 4.0
bpic2017 42995 16 0.30 1.5 5.0
receipt 1434 116 0.09 0.8 8.9
roadtraffic 150370 231 1.03 5.5 5.3
Billing 100000 1020 1.36 8.0 5.9

In Table 1, an evaluation of the performance of the token-based replayer on
real-life logs respectively is provided. Tests have been done on a Intel I7-5500U
powered computer with 16 GB DDR4 RAM. The logs can be retrieved from the
4TU log repository3. The T.I.P4Pys column shows the execution time (in sec-
onds) of the token-based replay implementation in PM4Py on a model extracted
by the inductive miner approach on the given log, the A.I.P6s column shows the

3 The logs are available at the URL https://data.4tu.nl/repository/collection:event logs

94

execution time of the alignment-based implementation in ProM6 on the same
log and model. The Speedup column shows how many times the token-based
replay is faster than the alignment-based implementation. For real-life logs and
models extracted by the inductive miner, the token-based replay implementation
in PM4Py is 5 times faster on average. Even for large logs, the replay time is
less than a few seconds.

Fig. 1: Model extracted by the inductive miner implementation in PM4Py on
a filtered version of the ”Receipt phase of an environmental permit application
process” event log. Excluding the activities of the log that are not in the model,
only 53% of cases of the original log are fitting according to this model.

Table 2: Comparison in token-based replay execution times on models extracted
by inductive miner on the given logs with or without postfix and activity caching.

Log No caching(s) PC(s) AC(s) PC + AC(s)

repairEx 0.10 0.08 0.08 0.06
reviewing 0.33 0.42 0.14 0.10
bpic2017 0.37 0.42 0.30 0.30
receipt 0.17 0.15 0.12 0.09
roadtraffic 1.58 2.08 1.18 1.03
Billing 2.23 1.91 1.45 1.36

In Table 2, the effectiveness of the implementation is evaluated in order
to understand how the improvements in the implementation contribute to the
overall efficiency of the approach. Columns in the table represent the execution
time of the replay approach when no caching, only post-fix caching, only activity

95

caching and the sum of post-fix caching and activity caching is deployed. In the
vast majority of logs, the combination of post-fix caching and activity caching
provides the best efficiency.

Table 3: Fitness evaluation comparison between the PM4Py token-based replayer
(without the token flood cleaning procedure), the token-based replayer in ProM5
and the alignments approach implemented in ProM6 on models extracted by the
alpha miner and the inductive miner implementations in PM4Py. Since inductive
miner returns a Petri net with perfect fitness, it is expected that the token-based
replayer is able to replay the log returning fitness 1.0 for all such combinations.
On models extracted by the alpha miner, that do not generally provide perfect
fitness, it is expected that the implementation in PM4Py (without the token
flood cleaning procedure) is equivalent to the token-based replay implementation
in ProM5.

Log F.I.PM4Py F.I.P5 F.I.P6 F.A.PM4Py F.A.P5

repairEx 1.0 1.0 1.0 0.88 0.88
reviewing 1.0 1.0 1.0 1.0 1.0
bpic2017 1.0 1.0 0.72
receipt 1.0 1.0 1.0 0.39 0.39
roadtraffic 1.0 1.0 0.62
Billing 1.0 1.0 0.69

In Table 3, a comparison between the fitness values recorded by the token-
based replay implementation in PM4Py, the token-based replay implementation
in ProM5 and the alignments implementation in ProM6 is provided, for both
alpha miner and inductive miner models. The meaning of the columns is the
following: F.I.PM4Py is the fitness value achieved by the token-based replay
implementation in PM4Py on a model extracted by the inductive miner ap-
proach on the given log, F.I.P5 is the fitness value achieved by the token-based
replay implementation in ProM5 on a model extracted by the inductive miner
approach on the given log, F.I.P6 is the fitness value achieved by the alignments
implementation in ProM6 on a model extracted by the inductive miner approach
on the given log, F.A.PM4Py is the fitness value achieved by the token-based
replay implementation in PM4Py on a model extracted by the alpha miner ap-
proach on the given log, F.A.P5 is the fitness value achieved by the token-based
replay implementation in ProM5 on a model extracted by the alpha miner ap-
proach on the given log. For some real-life logs (bpic2017, roadtraffic, Billing) the
token-based replay implementation in ProM5 did not succeed in the replay in
10 minutes (an empty space has been reported in the corresponding columns).
Alignments have not been evaluated on the models extracted by alpha miner
since it is not assured to have a sound workflow net to start with. The fitness
values obtained in Table 3 show that the token-based replay implementation
in PM4Py (without the token flood cleaning procedure), on these logs and the
models extracted from them by the inductive miner, is as effective in exploring
hidden transitions as the token-based replay implementation in ProM5 and the
alignments implementation in ProM6.

96

Table 4: Comparison between the output of the token-based and alignments
applied on some logs and the models extracted by the inductive miner imple-
mentation in PM4Py on a filtered version of these logs (using the auto filter
method of PM4Py). The set of transitions activated in the model by the token-
based replay and the alignments for each case has been considered (the middle
columns report the overall number of transitions activated in the model by both
approaches). Then, a similarity score has been calculated for each case consid-
ering the size of the intersection between the two sets and the size of the union.
The minimum, maximum, average and median similarity score for the cases in
the log has been reported in the right columns of the table, along with the fitness
values provided by alignments and token-based replay.

Log Tot.T.Al. Tot.T.TR. Min.s. Max.s. Avg.s. Med.s. Fit.al. Fit.tr.

repairEx 18879 18459 0.538 1.0 0.977 1.0 0.977 0.986
reviewing 2658 2621 0.88 1.0 0.935 0.928 0.900 0.946
bpic2017 171980 171980 1.0 1.0 1.0 1.0 1.0 1.0
roadtraffic 1368414 815326 0.333 1.0 0.591 0.667 0.667 0.758

In order to compare token-based replay and alignments, a comparison be-
tween the output of the two approaches has been proposed in Table 4. Some
popular logs, that are taken into account also for previous evaluations, are being
filtered in order to discover a model (using inductive miner) that is not perfectly
fit against the original log. Instead of comparing the fitness values, the compari-
son is done on the similarity between the set of transitions that were activated in
the model during the alignments and the set of transitions that were activated
in the model during the token-based replay. The more similar are the two sets,
the higher should be the value of similarity. The similarity is calculated as the
ratio of the size of the intersection of the two sets and the size of the union of
the two sets. This is a simple approach, with some limitations: 1) transitions are
counted once during the replay 2) the order in which transitions are activated
is not important 3) the number of transitions activated by the alignments is in-
trinsically higher: while token-based replay could just insert missing tokens and
proceed, alignments have to find a path in the model from the initial marking
to the final marking, so a higher number of transitions is expected. In Table 4,
the meaning of the columns is the following: Tot.T.Al. is the number of transi-
tions activated by the alignments approach (a path leading from the initial to
the final marking); Tot.T.TR. is the number of transititions activated by the
token-based replay approach (that is not necessarily a path from the initial to
the final marking); Min.sim. is the minimum similarity score between the align-
ments and the token-based replay approach on a case; Max.sim. is the maximum
similarity score; Avg.sim. is the average similarity score; Med.sim. is the median
similarity score; Fit.al. is the fitness value provided by alignments, Fit.tr. is the
fitness value provided by token-based replay. This comparison, aside fitness val-
ues, confirm that the result of the two replay operations, represented as a set

97

of transitions activated in the model, is very similar, with the exception of the
”Road Traffic Fine Management Process” log. For this log, the auto-filtering
procedure of PM4Py produces an overly simple model, where token-based re-
play could survive by inserting missing tokens, but alignments cannot, hence the
significantly larger number of transitions activated in the model to explain the
behavior observed in the log. Table 4 provides some evidence, aside from fitness
values, that the output of the two replay techniques is comparable.

To illustrate the importance of handling the token flooding problem, we con-
sider the ”Receipt phase of an environmental permit application process” event
log. On this log, a sound workflow net has been extracted which is represented
in Figure 1. For this log and model, token flooding occurs because the order
of activities is interchanged in some variants of the log. As missing tokens are
inserted multiple activities become enabled due to the surplus of tokens. As a
result, token-based replay using the original approach yields diagnostics very
different from the alignment-based approaches. The original values of average
trace fitness and log fitness are 0.92 and 0.93 respectively. Applying the token
flooding cleaning procedure, the values go down to 0.86 and 0.87 respectively,
because the activation of unwanted parts of the process model is avoided. Albeit
the underlying concepts/fitness formula are different (see Section 8.4 of [8]), it
may be useful to see that the fitness value provided by alignments is 0.82, so with
the token flooding cleaning procedure a more similar value of fitness is obtained.

3.7 Problems Not Addressed

The pre-processing step that stores a map of shortest paths between places is
sensible to the presence in the model of implicit/redundant places. Indeed, two
models with the same behavior can give different values. However, implicit places
can be removed as a pre-processing step on the model. Token-based replay can
return a list of transitions that have been activated in the model to replay the
trace. However, this does not imply that a path through the model, from the
initial to the final marking, is provided, since the insertion of missing tokens can
happen if a transition needs to be enabled.

4 Approach: Localization of Conformance Checking
Results

Next to providing an overall measure for conformance, conformance checking
should also provide diagnostics pinpointing compliance problems. Therefore, we
propose two localization approaches:

– The simplification of the original Petri net, in order to make the replay exe-
cution speed faster considering only the most problematic parts of a process
model.

– The localization of problems encountered during the replay, that permits to
understand where deviations happened and their effects.

98

Fig. 2: Petri net, obtained from the ”Running example” log, projected on a spe-
cific place. This kind of simplification helps to reduce the execution time of
the replay operation, and to avoid the token flooding problem. The diagnostics
obtained by applying our improved token-based replay are represented.

4.1 Simplification of the Original Petri Net

Replay operations on large models may take too much time. However, it is pos-
sible to simplify the model, keeping only parts that are problematic, in order to
reduce the execution time of the replay operation.

The decomposition techniques presented in [2, 13, 14, 7] have been used to
decompose a Petri net in several subnets for performance reasons. However, for
diagnostic purposes an automated decomposition driven only by the model’s
structure is undesirable. Therefore, we provide the possibility to specify a list of
activities in the log and corresponding transitions in the model to check. This is
particularly useful when the user knows already which parts of the process are
or could be problematic. We also add the possibility to get detailed information
about a single element (place or transition) of the Petri net. This information is
valuable when comparing fitting executions versus non-fitting executions.

With token-based replay, we propose two simplification approaches to focus
attention:

– Projection on a specific place: when the preset and the postset of the place
are not empty and contain only unique visible transitions, then it is possible
to obtain a Petri net containing only the place and the transitions belonging
to the preset and the postset. This is particularly useful to detect instances
where some tokens are missing / are remaining on the specific place, while
not being affected by problems like token flooding. A representation of a Petri
net projected on a specific place, obtained from the ”Running example” log,
is shown in Figure 2.

– Projection on a set of activities: it is possible to make selected transitions
invisible and retain only the transitions that have a label belonging to a spec-
ified set of activities as visible. Then reduction rules are applied to simplify
the model with respect to the invisible transitions [4]. This guarantees to get

99

a Petri net that, for the specific set of activities, has the same language as
the original Petri net.

from pm4py . ob j e c t s . l og . importer . xes import f a c t o ry as xes impor te r
from pm4py . a lgo . d i s cove ry . i nduc t i v e import f a c t o ry as induct ive mine r
from pm4py . a lgo . conformance . tokenrep lay import f a c t o ry
as token based rep lay
from pm4py . eva lua t i on . r e p l a y f i t n e s s import f a c t o ry
as r e p l a y f i t n e s s f a c t o r y

log = xes impor te r . apply (”C:\\ running−example . xes ”)
net , im , fm = induct ive mine r . apply (l og)
a l i g n e d t r a c e s = token based rep lay . apply (log , net , im , fm)
f i t n e s s = r e p l a y f i t n e s s f a c t o r y . apply (log , net , im , fm)

Fig. 3: Example PM4Py code to apply token-based replay to a log and an ac-
cepting Petri net.

4.2 Localization of the Replay Results

Localizing fitness issues in the process model is an essential step in the provision
of more detailed diagnostics. The approach described in [17] already provided
some diagnostics aimed at localizing the problem:

– Place underfedness: when missing tokens are inserted in the place during
the replay operation of a case, the place is signed as underfed (it has fewer
tokens than needed at some stage) for the specific case.

– Place overfedness: when remaining tokens are in the place after the end of
the replay of a case, the place is signed as overfed (it has more tokens than
needed) for the specific case.

Table 5: Localization of the replay result at place level on the filtered model,
represented in Figure 1, obtained from the ”Receipt phase” log (only places with
problems have been reported).

Place # Cases Underfed # Cases Overfed

p 8 1 0
p 4 35 0
p 7 521 0

To introduce additional localized diagnostics at the transition level, it is
important to notice that, when the transition is fired during the replay of a case,
is possible to register the current case status, for example recording all values of
the attributes of the current and of the previous events of the case. The easiest
option is to keep a single value for each attribute, that is corresponding to the
value of the last occurrence of the given attribute. So, the following localized
information could be introduced at the transition level:

– Transition underfedness: some tokens needed to fire the transition are miss-
ing. It is possible to flag a transition as underfed for the specific case, saving
also the status of the case when the transition has been fired.

100

– Transition fitness: the transition could be fired regularly. In this case, it is
possible to save the status of the case when the transition has been fired.

It is important also the save information for events with an activity that is not
corresponding to any transition in the model. This could be done saving the
current case status when such activities happen.

Table 6: Localization of the replay result at the transition level on the filtered
model, represented in Figure 1, obtained from the ”Receipt phase” log (only
transitions with problems have been reported).

Transition # Cases Underfed # Cases Fit

T05 1 1299
T02 35 1316
T06 521 830

The result of localization on a filtered version of the ”Receipt phase of an
environmental permit application process” event log, and the model represented
in Figure 1, is shown in Table 5 (for places with problems) and Table 6 (for
transitions with problems). Moreover, in Figure 2 the fitness information has
been projected visually on the elements of the Petri net.

5 Advanced Diagnostics

The localized information is useful to compare, for each problematic entity, the
set of cases of the log that are fit according to the given entity and the set of
cases of the log that are not fit according to the given entity (called “unfit”). In
particular, the following questions can be answered:

1. If a given transition is executed in an unfit way, what is the effect on the
throughput time?

2. If a given activity that is not contained in the process model is executed,
what is the effect on the throughput time?

These questions can be answered by throughput time analysis. Essentially,
an aggregation (for example, the median) of the throughput times of fit and
unfit cases is taken into account, and the results compared. Usually, transitions
executed in an unfit way are corresponding to higher throughput times.

The comparison between the throughput time in non-fitting cases and fitting
cases permits to understand, for each kind of deviation, whether it is important
or not important for the throughput time. For evaluating this, the ”Receipt phase
of an environmental permit application process” log is taken. After some filtering
operations, the model represented in Figure 1 is obtained. Several activities that
are in the log are missing according to the model, while some transitions have
fitness issues. After doing the token-based replay enabling the local informa-
tion retrieval, and applying the duration diagnostics.diagnose from trans fitness
function to the log and the transitions fitness object, it can be seen that transition

101

T06 Determine necessity of stop advice is executed in an unfit way in 521 cases.
For the cases where this transition is enabled according to the model the median
throughput time is around 20 minutes, while in the cases where this transition is
executed in an unfit way the median throughput time is 1.2 days. So, the through-
put time of unfit cases is 146 times higher in median than the throughput time of
fit cases. Considering activities of the log that are not in the model, that are likely
to make the throughput time of the process higher since they are executed rarely,
applying the duration diagnostics.diagnose from not existing activities method
it is possible to retrieve the median execution of cases containing these activi-
ties, and compare it with the median execution time of cases that do not contain
them (that is 20 minutes). Taking into account activity T12 Check document X
request unlicensed, it is contained in 44 cases, which median throughput time is
6.9 days (505 times higher than standard).

6 Conclusion

In this paper, an improved token-based replay approach has been proposed and
has been implemented in the Python process mining library PM4Py4. A set of
process discovery, conformance checking and enhancement algorithms are pro-
vided in the library. An example script, that loads a log, calculates a model,
and does conformance checking, is shown in Figure 3. This illustrates that the
conformance checking technique presented in this paper can be combined easily
with many other process mining and machine learning approaches.

The approach has shown to be more scalable than existing approaches. Due
to a better handling of invisible transitions and improved intermediate storage
techniques, the approach outperforms the original token-based approaches, and
proves to be faster than alignment-based approaches also for models with invis-
ible transitions.

Next to an increase is speed, the problem of token flooding is addressed by
“freezing” superfluous tokens (see Section 3.4). This way replay does not lead
to markings with many more tokens than what would be possible according to
the model, avoiding the activation of unwanted parts of the process models and
leading to lower values of fitness for problematic parts of the model.

Localization of conformance checking using token-based replay can be used
to simplify the model prior to replay and help to better diagnose where the
deviation happened. Moreover, we showed that we are able to diagnose the effects
of deviations on the case throughput time.

The approach has been fully implemented in the PM4Py process mining
library. We hope that this will trigger a revival of token-based replay, a technique
that seemed abandoned in recent years. Especially when dealing with large logs,
complex models, and real-time applications, the flexible tradeoff between quality
and speed provided by our implementation is beneficial.

4 It can be installed in Python ≥ 3.6 through the command pip install pm4py. See
http://pm4py.pads.rwth-aachen.de/installation/ for details.

102

References

1. van der Aalst, W.: Structural characterizations of sound workflow nets. Computing
Science Reports 96(23), 18–22 (1996)

2. van der Aalst, W.: Decomposing Petri nets for process mining: A generic approach.
Distributed and Parallel Databases 31(4), 471–507 (2013)

3. van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process
models for conformance checking and performance analysis. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 2(2), 182–192 (2012)

4. van der Aalst, W., van Hee, K.M., ter Hofstede, A.H., Sidorova, N., Verbeek, H.,
Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification, decidabil-
ity, and analysis. Formal Aspects of Computing 23(3), 333–363 (2011)

5. Adriansyah, A.: Aligning observed and modeled behavior (2014)
6. Adriansyah, A., Sidorova, N., van Dongen, B.: Cost-based fitness in conformance

checking. In: Application of Concurrency to System Design (ACSD), 2011 11th
International Conference on. pp. 57–66. IEEE (2011)

7. van den Broucke, S.K., Munoz-Gama, J., Carmona, J., Baesens, B., Vanthienen, J.:
Event-based real-time decomposed conformance analysis. In: OTM Confederated
International Conferences” On the Move to Meaningful Internet Systems”. pp.
345–363. Springer (2014)

8. Carmona, J., Dongen, B., Solti, A., Weidlich, M.: Conformance Checking: Relating
Processes and Models. Springer (2018)

9. Kerremans, M.: Gartner Market Guide for Process Mining, Research Note
G00353970 (2018), www.gartner.com

10. Lee, W.L.J., Verbeek, H., Munoz-Gama, J., van der Aalst, W., Sepúlveda, M.: Re-
composing conformance: Closing the circle on decomposed alignment-based con-
formance checking in process mining. Information Sciences 466, 55–91 (2018)

11. Mart́ınez, J., Silva, M.: A simple and fast algorithm to obtain all invariants of
a generalised Petri net. In: Application and Theory of Petri nets, pp. 301–310.
Springer (1982)

12. Miyamoto, T., Kumagai, S.: Calculating place capacity for Petri nets using unfold-
ings. In: Application of Concurrency to System Design, 1998. Proceedings., 1998
International Conference on. pp. 143–151. IEEE (1998)

13. Munoz-Gama, J., Carmona, J., van der Aalst, W.: Conformance checking in the
large: Partitioning and topology. In: Business Process Management, pp. 130–145.
Springer (2013)

14. Munoz-Gama, J., Carmona, J., van der Aalst, W.: Single-entry single-exit decom-
posed conformance checking. Information Systems 46, 102–122 (2014)

15. Rogge-Solti, A., Senderovich, A., Weidlich, M., Mendling, J., Gal, A.: In log and
model we trust? a generalized conformance checking framework. In: International
Conference on Business Process Management. pp. 179–196. Springer (2016)

16. Rozinat, A., van der Aalst, W.: Conformance testing: measuring the alignment
between event logs and process models. Citeseer (2005)

17. Rozinat, A., van der Aalst, W.: Conformance checking of processes based on mon-
itoring real behavior. Information Systems 33(1), 64–95 (2008)

18. Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior of
large structured process models. In: International Conference on Business Process
Management. pp. 197–214. Springer (2016)

103

