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Abstract. Modern tomographic imaging devices enable the acquisition
of temporal image sequences. In our project, we study cine MRI se-
quences of patients with myocardial infarction. Because the sequences
are acquired with different temporal resolutions, a temporal interpola-
tion is necessary to compare images at predefined phases of the cardiac
cycle.

This paper presents an interpolation method for temporal image se-
quences. We derive our interpolation scheme from the optical flow equa-
tion. The spatiotemporal velocity field between the images is determined
using an optical flow based registration method. Here, an iterative algo-
rithm is applied, using the spatial and temporal image derivatives and a
spatiotemporal smoothing step. Afterwards, the calculated velocity field
is used to generate an interpolated image at the desired time by averaging
intensities between corresponding points.

The behavior and capability of the algorithm is demonstrated on syn-
thetic image examples. Furthermore, quantitative measures are calcu-
lated to compare this optical flow based interpolation method to linear
interpolation and shape—based interpolation in 5 cine MRI data sets. Re-
sults indicate that the presented method statistically significantly out-
performs both linear and shape—based interpolation.

1 Introduction

The study of organ motion becomes more and more important, e.g. in cardiac
imaging or in radiotherapy treatment planning. But in general, the spatial and
temporal resolution of imaging devices is limited and a compromise between
spatial resolution, temporal resolution, acquisition time and signal-to—noise ratio
must be found. Therefore, in a number of image processing tasks a spatial and
temporal interpolation of data sets is necessary to calculate dense motion models
for instance. In our project, we compare cardiac cine MRI sequences of different
patients, acquired with different temporal resolutions. A temporal interpolation
of the image data is necessary to generate images at predefined phases of the
cardiac cycle.

This paper describes an optical flow based interpolation method for temporal
image sequences. Five cine MRI data sets were used to perform a quantitative
analysis. Statistical measures were calculated to compare our interpolation al-
gorithm to linear and shape—based interpolation.
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2 Method

The theoretical motivation of our interpolation method is the optical flow equa-
tion. Other registration—based interpolation methods for 3D image volumes were
presented for example in [1] and [2]. But no theoretical background was provided
and the methods are limited to consecutive slices. Tn contrast, the optical flow
equation makes the use of more than two consecutive slices for the calculation
of the velocity field possible.

Determining the optical flow. The initial hypothesis of optical flow based me-
thods is that the pixel intensities of time varying image regions remain constant:
dI(x(t),t)/dt = 0. From the optical flow equation we obtain

Ol

v=-VI———,
V1|2

(1)
where v is the spatiotemporal velocity field and VI the spatial image gradient.
Equation (1) is ill-posed and additional constrains are necessary [3]. Tn our im-
plementation the regularization is done by a spatiotemporal Gaussian smoothing
of the velocity field. The temporal derivative 9;1 can be simply computed by fi-
nite differences or by a convolution with a Gaussian derivative in time direction
to take more than two consecutive slices into account.

Optical flow based interpolation. From the intensity conservation assumption
follows for the image I(x,t) at time ¢t = to + t:

I(z(t),t) = I(z(t) — 6t v, to). (2)

Thus, if the velocity field » is known, we can interpolate the image at time ¢
from an image at time #5. But in general the intensity conservation assumption
might not be fulfilled and structures may appear or disappear between two time
steps. Therefore, we use a weighted average between corresponding voxels in the
adjacent time frames I(x, ;) and I(@,t;y1):

Hz(t),t) = (1—6t)- I (x(t) — Stv, ;) + 6t 1 (x(t) — (1= dt)v~ " ti11) . (3)

with ¢; < t < t;,1, 8t = t—t; and a normalized time step t; 1 —f; = 1. In general,
the inverse velocity field »~! can’t be computed directly. In our interpolation
scheme an iterative Newton—Raphson method is used to calculate the inverse
velocity for each grid point [4].

Ewaluation methods. Our interpolation method relies on two assumptions: the
intensity conservation assumption and that the algorithm is capable to calculate
the correct velocity field v.

Tn a first evaluation we generated a synthetic phantom (see fig. 1). For this
image sequence the intensity conservation assumption is violated. The aim was
to evaluate the behavior of the algorithm in this case.
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Fig. 1. Top row: Two slices of the phantom. Bottom row: Interpolations between the
phantom slices with varying time step. Each row shows one line in the interpolated
image for a given time step. The position of the line is indicated by the dotted line
in the top images. Bottom left: linear interpolation, bottom middle: optical flow based
interpolation and bottom right: shape-based interpolation.

In a second evaluation procedure we calculated quantitative measures to com-
pare our interpolation method with two other methods: linear and shape-based
interpolation [5]. Linear interpolation is the most frequently used interpolation
technique and was chosen as a baseline reference. The shape-based interpola-
tion algorithm was chosen since it was shown to have the best performance in a
comparison of interpolation methods [6].

For the quantitative evaluation five cardiac MRI datasets (ECG-triggered
true FISP sequences, between 13 and 21 time frames, 224 x 256 pixels) were
used. For evaluation each slice of the temporal image sequence (apart from the
first and the last slice) was removed one at a time and the three interpolation
methods were used to interpolate the missing slice. Finally, the interpolated slices
were compared to the original removed slices. Tn conformity with the paradigm
proposed by Grevera and Udupa three error measures were used: the mean differ-
ence (MD), the number of sites of disagreement (NSD) and the largest difference
per slice (LDS) (see [6] for an exact definition). To compare two interpolation
methods a measure called statistical relevance was used. This measure expresses
the degree of importance of the observed difference between the methods, e.g.
the statistical relevance between the linear MT) and the optical flow based MD
is given by:

PMD +100 - (I—MDflow/MDlm),if M Dy, > MDflow (4)
flow/lin —100- (1 — M D100/ M Dy, , otherwise :
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Fig. 2. Top row: A sample slice estimated by linear (left) optical flow based (middle)
and shape-based (right) interpolation. Bottom row: Corresponding difference image
I () — I°"" (x) between the interpolated and original slice.

3 Results

In the first qualitative evaluation we interpolated 20 slices between the images
of the phantom at varying time steps §t € [0, 1]. The bottom row of fig. 1 gives
a comprehensive sketch of the behavior of the different interpolation methods.
Each row of the images show one line of the interpolated image for a given time
step. Although the intensity constrain is violated the optical flow based method
produced satisfactory results. In this case a compromise between intensity—based
and shape—based interpolation was found.

In a second evaluation five cardiac MRI datasets were used. Table 1 shows
the statistical relevance of the error measures MD and NSD and the mean sta-
tistical relevance of LSD (averaged over the slices) to compare the interpolation
methods. Positive values indicate that the optical low based method performed
better.

The results in table 1 show that the optical flow based interpolation out-
performed linear and shape-based interpolation in most cases significantly. In
contrast to NSD and LDS only a slight improvement of the mean difference
(MD) is indicated. Since a large part of the displayed structures doesn’t change
over the cardiac cycle the mean difference is strongly influenced by noise.

If the image structures change considerably between adjacent slices, the most
noticeable improvements by our method were observed. In fig. 2 sample slices es-
timated by the three interpolation methods and corresponding difference images
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Table 1. Statistical relevance values of mean difference (MD), number of sites of
disagreement (NSD) and largest difference per slice (LDS) to compare the optical flow
based with linear and shape-based interpolation. Positive values indicate the optical
flow method performed better. A dash in the table indicates that the difference between
the two methods was not statistically significant (paired student’s t—test, p < 0.05).

statistical relevance

data set flow/lin flow/shape

JMD  NSD [TDHS | ,.MD ,.NSD LIPS
MRIO1| 3.35 1211 1446 | 3.4 19.91 20.72
MRI 02 — 13.33 21.95 | 1.47 24.65 26.3
MRIO3| 5.49 9.35 997 | 3.065 819 16.07
MRIO4| 3.69 8.63 - 2.84 9.18 17.68
MRI 05 — 3.07 7.12 | 3.02 14.24 12.75

were shown. The linear interpolated image appears blurred and large differences
can be observed. The shape-based interpolation conserves edges of image struc-
tures but small details are lost. The optical flow based interpolation performs
more accurately and only few differences are shown in the difference image.

4 Conclusion

The quantitative results show that the optical flow based method clearly outper-
forms the linear and shape—based interpolation. Furthermore, in our experiments
the optical flow based method was computational less expensive than the shape—
based interpolation. But our interpolation method relies on two assumptions: the
intensity conservation assumption and that the algorithm described is capable
to calculate the correct velocity field. Therefore, further evaluation is necessary
to study the robustness of the algorithm.
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