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Abstract. Developing barley grains are to be visualised by a 4-D model,
in which spatiotemporal experimental data can be integrated. The most
crucial task lies in the automation of the extensive segmentation proce-
dure. Because of constraints like incomplete a-priori expert knowledge
and the complexity of this specific segmentation task, learning tech-
niques like Artificial Neural Networks (ANN) yield promising solutions.
In this work we present our first good segmentation results. Two different
supervised trained ANN classifiers were applied, on one hand, the well-
established borderline-learning Multiple-Layer Perceptron (MLP) and on
the other hand, the prototype-based Supervised Relevance Neural Gas
(SRNG). While so far segmentation was mainly achieved using manual
tools, now almost automatic segmentation becomes more feasible.

1 Introduction

The geometric reconstruction of biological structures in 3-D models establishes
new facilities for the analysis of structural and functional interrelationships as
well as developmental processes of these biological objects in a spatial or even
spatiotemporal (4-D) context. The intended purpose of such models often lies
in the generation of standardised anatomical atlases in which various spatial ex-
perimental data can be integrated. We are working on the generation of a 4-D
atlas model of a barley grain with ideally about 25 different time steps, that
allows the integration of experimental data, e.g. gene-expression data. The re-
search of spatiotemporal processes — which yield the accumulation of nutrients
like starch and proteins in the grain — will be significantly promoted. So far
the emphasis lies on the generation of high-resolution, stand-alone models that
ensure the recognisability of even minor components like small sized tissues [1].
Experience gained from a predominantly manual modelling of highly resolved
grain models clearly showed the need for automation and facilitation of many
repetitive, time-consuming and work-intensive steps. This is even more impor-
tant as many geometric models at different time steps have to be created in order
to establish a time-dependent geometric model that represents complex biolog-
ical development processes. The creation of 3-D models comprises a sequence
of nontrivial steps. In contrast to relatively small 3-D models based on direct
3-D image generating methods, such as Nuclear Magnetic Resonance (NMR) or
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confocal microscopy, the creation of high-resolution seed models based on many
hundred up to several thousand of serial cross-sections — as in our case — requires
the solution of additional problems. These are e.g. the handling of an enormous
amount of data and the regeneration of the spatial integrity of the 2-D images
of the cross-sections in the 3-D model according to the original object [2, 3].

However, the most crucial task lies in the automation of the segmentation
procedure. In this step the biologically relevant materials or tissues are identified
or labelled within the raw image material. Strictly speaking, each pixel has to
be assigned to one of about 20 model-specific materials. Since the segmentation
is to be done over all images of a grain it is by far the most work-intensive step
in the workflow. In this work in progress we focus on the automation of the
segmentation procedure. We deal with specifically generated, bluish dyed high-
resolution images of cross-sections of barley grains [1]. Due to the high degree
of complexity available automatic standard methods failed and therefore the
segmentation had to be manually done by drawing the borderlines of each of the
materials over all images. A flexible and easily adaptable segmentation solution
is required since a couple of constraints are to be dealt with:

— Incomplete, partly inconsistent and (even in the modelling process itself)
developing expert knowledge of the histological background,

— Varying appearance of cross-sections in different grain-parts and at different
developmental stages,

— Subjectiveness and hence lack of (exact) reproducibility as well as

— Varying requirements (e.g. the question which materials are relevant?).

The segmentation is also characterised by a very high level of complexity, since
the discrimination of two neighbouring materials often turned out to be Gordian.

2 Methods

Due to the degree of difficulty we decided in favour of a segmentation based on a
prior pixel-wise classification. A very promising attempt to combine the pros of
human-like adaptive and intelligent processing on the one hand and computer-
aided high-throughput processing on the other hand is to utilize soft computing
techniques like Artificial Neural Networks (ANN) [4, 5] which generally offer
intelligent and trainable data processing, particularly within an image processing
framework.

So far two different supervised trained ANN classifiers were applied to exem-
plary image stacks, on the one hand the well-established borderline-learning Mul-
tiple Layer Perceptron (MLP) [6, 7, 8] and on the other hand the prototype-based
Supervised Relevance Neural Gas (SRNG), which is an initialisation-tolerant ver-
sion of Kohonen’s well-established Learning Vector Quantization (LVQ) classi-
fier [9]. Our first good segmentation results are based on an underlying feature
vector with 170 properties concerning colour, geometry and symmetry (such as
Cartesian and polar coordinates, distance to centroid, absolute angle to symme-
try axis) and particularly texture according to varying neighbourhoods (such as
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Fig. 1. Automatic segmentation of an exemplary cross-section of a grain: a) original
colour image of a cross-section, b) according manual segmentation by a biologist, ¢)
results of automatic segmentation based on MLP, d) results of automatic segmentation

by SRNG.

Gaussian filters, histogram based features). For simplification reasons we used
for the proof of concept the same feature vector for both classifiers although
we are aware of the fact, that different classifiers may require slightly different
feature sets to perform optimally. All features were z-score-transformed for the
normalisation of the attributes.

We used 2 stacks of respectively 10 arbitrarily chosen consecutive images from
different grain parts. Respectively 3 typical images were selected to randomly
extract training examples — for the MLP a natural material representation (den-
sity of training samples equals density of data samples) was chosen whereas for
the SRNG a uniform presentation was preferred. In the recall phase both classi-
fiers were applied to the whole image stack. In each image stack 11 respectively
12 materials were to be recognised.

3 Results

We introduce our first good results based on an underlying initial feature vec-
tor. By comparison with formerly completely manually segmented images we
achieved with both methods classification accuracies of about 90% per image. In
Tab. 1 the confusion matrix according to classification results over a full stack of
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Table 1. Confusion matrix of results with MLP / natural distribution of pixels for 10
consecutive images (model 7 Days After Flowering (DAF), style). All model-specific
materials are assigned one-to-one to a specific label index in ascending order. Gaps
in the label numbering are referred to materials being not present in the considered
part of the grain. The entries in the main diagonal are in most cases close to 100%.
Higher numbers at other matrix positions indicate not yet satisfactorily characterised
materials.

Label-No. 0 2 6 8 9 0 11 12 13 14 16
0 98.65 1.32 0 001 O g 001 O 0 0 0.01
2 0.66 98.66 0.02 0.39 0.02 0.02 0 0 0 0.08 0.15

6 0 0.21 73.86 9.42 0.06 2.51 11.18 0.01 1.25 149 O
8 0 5.97 10.36 81.48 0.05 1.33 0.18 0.05 0.06 0.52 0.01
9 0 0 0 0 9043 0 4.15 5.10 032 0 0
10 0 0.08 3.60 5.02 0.19 60.12 0.58 0.42 0.93 29.07 0O
11 0 002 686 0.11 6.8 0.23 81.37 1.12 3.056 039 0
12 0 0 002 0 788 0 20075081502 O 0
13 0 001 030 0 1.72 0.19 1.77 3.15 88.52 433 O
14 0 104 009 O 0 221 O 0 0.09 96.57 0
16 0 2044 0 0 0 0 0 0 0 0 79.57

10 images in relation to the manually segmented reference images is to be seen.
In principle with MLP very reliable borderlines were achieved, smaller materials
sometimes were omitted. With SRNG the single positions of even tiny materials
were detected, but the borders look rather jagged and many misclassified islands
oceur (Fig. 1). Based on the strengths of both antomatic segmentation methods
and a simple postprocessing procedure mainly using structural knowledge, first
model-segments were created with the visualisation software Amira™ (Fig. 2).

Fig. 2. Two perspective views of one 3-D model based on 10 automatically segmented
images of cross-sections of a barley seed (7TDAF, style, 20 fold stretched in height).
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4 Discussion

Our results show that a nearly automatic segmentation of cross-sections of de-
veloping barley seeds is feasible now. The expert can focus on essential modelling
decisions. Only a tiny but representative subset of the images will have to be
manually segmented for the training of the ANN classifiers. Adaptations can be
achieved in the modelling process itself or in response to changed requirements
without much effort. Furthermore an automation of the segmentation step is
an inevitable precondition for the generation of high-resolution 4-D atlas models
based on a considerable number of individual graing at the different developmen-
tal stages. Further research concerns the application and comparison of further
classification methods, the development of a reduced but nevertheless robust
feature vector, and the design of an adequate postprocessing procedure.

We are convinced that our automatic segmentation method does not only
work within different grain parts and different developmental stages of barley
but can be applied to similar species such as wheat as well. From the conceptual
point of view this method is also generally extensible to medical applications.
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