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Abstract. The information content of large collections of histopatho-
logical images can be explored utilizing computer-based techniques that
can help the user to explore the similarity between different brain tumor
types. To visually inspect the degree of similarity between different tn-
mors, we propose a combined approach based on the Discrete Wavelet
Transform (DWT) and Locally Linear Embedding (LLE). The former is
employed as a preprocessing utility, the latter achieves the dimensional
reduction required for visualization.

1 Introduction

The automatic exploration of large collections of histopathological images is an
actual field of research in computer science applied to medicine. Computer-based
techniques can allow the user to find relations and similarities in the data. In
particular the visual exploration of a dataset containing different types of tumor
can provide valuable information concerning classification.

Techniques for dimensional data reduction offer appealing characteristics for
the visual exploration of collections of histopathological images and of high-
dimensional data in general. These techniques compute a projection of the data
into a lower-dimensional space while best preserving the information content.
The visualization of the low-dimensional space can reveal hidden structures in
the data, e. g. the presence of meaningful patterns. A recently proposed algo-
rithm for dimensional data reduction is Locally Linear Embedding (LLE) [1].
It attempts to reduce the dimension of the data while preserving the relation-
ships between neighboring data points. i. e. neighboring data points in the high-
dimensional space are projected by LLE into neighboring data points in the
dimensional reduced space. Tn other words, the closeness of two data points in
the dimensional reduced space reflects the similarity of the two respective data
points in the high-dimensional space.

This property of neighborhood preservation in LLE can be useful for the
visual exploration of a collection of histopathological images. Specifically, the



67

image space T = RV, where N is the number of pixels of an image and each
image represents a data point belonging to this space, can be reduced down
to two or three dimensions in order to visualize the total information content.
Images with similar structural characteristics represent neighboring data points
in the image space that are expected to be mapped onto nearby points in the
dimensional reduced space. Tn this way the similarity between several different
images can be visualized at once in a customized display.

On the other hand, the image space is extremely high-dimensional (10* —10°)
while the number of images, i. e. the number of points, is typically limited
(102 — 10%). This means the image space is actually very sparse and it may
probe problematic for LLE to compute a faithful projection of such space. In-
deed, for this purpose I.ILE must find a global hidden structure in the data and
this in turn requires the data to be sufficiently dense. Ideally, the number of data
points should grow exponentially with the dimension of the data space and this
fact is known as ”curse of dimensionality”in the machine learning literature [2].
To reduce the sparsity of the image space there are typically two possibilities,
either to increase the number of data points (i. e. images) or to reduce the dimen-
sion of the image space itself. While the first possibility is often not achievable
because of practical reasons, e. g. the limited number of patients and images,
the second possibility can be done by appropriate techniques of signal process-
ing such as the Discrete Wavelet Transformation (DWT). This is a technique for
signal processing used to access the localized and scale-dependent information
in signals or images. By computing wavelet based image features we are able to
generate a lower-dimensional feature vector that encodes the image information.

In this work we present the visual exploration of a dataset of histopathological
images of different brain tumors based on a combination of DWT and LLE. Each
image is preprocessed by DWT and transformed into a feature vector. This DWT
pre-processing step is used to reduce the dimension of the image space, thereby
reducing its sparsity. These sets of feature vectors represent the T.ILE input that
is reduced down to two dimensions. The dimensionally reduced dataset is finally
visualized with customized colors encoding the type of tumor. This allows the
user to explore the similarity among the images of the dataset.

2 Methods

2.1 Locally Linear Embedding

Given V' D-dimensional vectors {X;} as input, the L.LE algorithm comprises
three steps:

Step 1: it consists in assigning each data point X; a predetermined number n
of neighbors, typically according to the Euclidean distance.
Step 2: by minimizing the following error function
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one computes the weights {W;;} that combined with the neighbors best
approximate each data point X;.

Step 3: the weights are used to map each data point X; into a d-dimensional
vector Y; with d < D, such that the following error function is minimized:
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2.2 Discrete Wavelet Transform (DWT)

The DWT analysis enables the assessment of localized and scale-dependent in-
formation in signals and images [3]. A signal f is decomposed into a basis of
shifted and dilated versions of a mother wavelet ¢ [4]

Fl@) = D diiele),  with () = 272927z —k).  (3)

(4,k)

The index j indicates the dilation or scaling step while k refers to transla-
tion or shifting. The wavelet coeflicients d;; are given by the scalar product
dix = (f(2),; 1 (2)) or dj & = (f(x),4;.4(x)) in the case of biorthogonal wavelets
with the dual wavelet ¢ [4]. An efficient calculation of these coefficients is ac-
complished by the Fast Wavelet Transform (FWT), an algorithm allowing the
coeflicients to be calculated in a stepwise manner. To perform a FWT a scaling
function ¢(z) is required such that [4]

$(z) =V2Y h(k)p(2z—k)  and  P(z)=v2) g(k)d(2z — k). (4)
k k

The coefficients h(k) and g(k) are termed Filter coefficients. On the first scale
the signal is decomposed into its details and the remaining signal, i.e. the approz-
imation, reflecting the particular scale. The details are described by the wavelet
coeflicients of this scale while the approximation is represented by scaling co-
efficients corresponding to the scaling function. The procedure can be iterated
by a further decomposition of the approximation into details and approximation
of the next coarser scale. In two dimensions the DWT can be applied to each
dimension separately, resulting in wavelet coefficients describing the horizontal,
the vertical and the diagonal details.

3 Data and Experiments

The experimental dataset contains 84 histopathological images from 21 different
cases of meningioma WHOQO grade I, a benign brain tumor. Each case relates
to one of four meningioma subtypes, namely meningotheliomatous, fibroblastic,
psammomatous and transitional, the latter showing intermediate features of the
characteristics of the former classes. Fach pathological image comprises 1300 x
1050 pixels at 400x magnification. Dividing each image into 16 subimages with
256 x 256 pixels, we derive a data set containing 1344 subimages.
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The T.LE is performed on two different input data: the first one is the set
of all subimages where each subimage is treated as a point in a 256 x 256-
dimensional data space; the second one is the set of texture describing features
based on DWT. These features are computed as follows. Firstly, an average
absolute coeflicient is computed for each color channel and each of the finest six
scales:

AG =D ldjolka k), j=1,.,6, and o=o01,00,05. ()

0 ky,ky

Here j is again the scale index, while index o indicates the orientation in the
image. As explained in section 2.2 The indices 01 and 0s indicate coeflicients in
vertical or horizontal direction, while o3 indicates the diagonal details. Secondly,
we introduce a feature set fs describing a preferred orientation in the image.

f2(4) = L( Z |dj,01(kxaky)|_ Z |dj,02(kwaky)| + CZ |d'703(kzaky)|)-(6)
f1(5) ko ky
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with j = 1,..,6. These computations result in two types of features for each
of the finest six scales and each of the three color channels, leading to a set
of 36 features for each subimage. Thus, the input of LLE comprises 1344 36-
dimensional feature vectors.

Both input data are projected into a two-dimensional space and each data
point is colored according to its respective histopathological diagnosis. The over-
lap among the clusters in the two embeddings has been quantified by computing
for each data point the percentage of its nearest neighbors which belong to the
same class. The average value computed over the entire dataset quantifies the
degree of overlap among the various clusters. The value is comprised between O
and 1. The closer to 1, the less the clusters overlap.

4 Results

The LLE projections of the subimages and of the DWL coefficients are shown
in Fig. 1. Direct application of I.LLE to the subimages results in overlapping
clusters lacking a clear structure. On the contrary, the DWT preprocessing of
the images allows L.LLLE to detect the presence of four different clusters. The
meningotheliomatous, fibroblastic and psammomatous data points are clearly
localized and quite well separated in the projected space. This is in agreement
with the histopathological characteristics of the various tissue types. Specifi-
cally, psammomatous tissue is characterized by round calcifications that differ
significantly from the round structures in meningothelomatous tissue and the
elongated structures (cells and cell nuclei) in fibroblastic tissue (see the tissue
samples in Fig. 1. At the same time, the transitional subtype cluster largely over-
laps with meningotheliomatous and fibroblastic, in agreement with the fact that
transitional meningiomas show features incorporating characteristics from the
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Fig. 1. Two-dimensional projections obtained by LLE of the histopathological dataset
without (left) and with (right) DWT processing.

other classes. The matching between the data visualization and the prelabelling
of the data ensures that significant information has been preserved by the DWT
preprocessing approach. The overlap between the clusters has been quantified as
described above and the experimental values are 0.387 for the I.ILE projection
and 0.567 for the LLE projection with the DWT preprocessing.

5 Discussion

Our results clearly show that LLE benefits from the DWT-based preprocessing.
Specifically, applying L.ILE directly to the 256 x 256-dimensional space of the
subimages proves problematic because of the sparsity of the space itself. By
computing wavelet bhased features, the information of each subimage can be
compacted into a lower dimensional feature vector. In this way the dimension
of the data is significantly reduced and, in turn, the resulting feature space is
more dense. This allows LLE to detect clinical relevant data structures in a more
efficient manner.
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