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Abstract

The problem of calculating the derivatives of a function with large gra-
dients in the region of an exponential boundary layer is considered. To
do this, it is proposed to construct a cubic spline on the Bakhvalov grid,
which thickens in the boundary layer. We study the convergence of the
derivatives of the constructed spline to the derivatives of the function
given at the grid nodes. Error estimates are obtained taking into ac-
count uniformity in a small parameter. The obtained error estimates
are confirmed by the results of computational experiments.

1 Introduction

Various convective-diffusion processes with prevailing convection are modeled on the basis of boundary value
problems for equations with a small parameter ε before the highest derivative. Solutions to such problems have
large gradients, which leads to the loss of accuracy of classical difference schemes, interpolation formulas, and
numerical differentiation formulas.

Difference schemes that have the property of convergence uniform in the parameter ε are constructed in some
papers. Difference schemes on Shishkin mesh [1] and on Bakhvalov mesh [2] are widely used. Of interest is the
development of formulas for numerical differentiation in the presence of a boundary layer. The problem is that
the application of classical polynomial formulas to functions with large gradients leads to significant errors [3].

In [4], [5], a cubic spline was studied on the Shishkin mesh. Error estimates are obtained that are uniform
with respect to the parameter ε. In [6], the cubic spline on the Shishkin mesh is used to calculate derivatives
with respect to the function values at the mesh nodes. Relative error estimates are obtained uniformly in ε. In
[7] an analog of a cubic spline is constructed on a uniform grid. This spline is exact on the singular component of
the interpolated function. An interpolation error estimate is obtained that is uniform with respect to the small
parameter ε.

In this paper, we study the possibility of using a cubic spline on a Bakhvalov mesh for the approximate
calculation of derivatives of functions with large gradients in the boundary layer.

Let the function u(x) be representable in the form:

u(x) = p(x) + Φ(x), x ∈ [0, 1], (1)

where

|p(j)(x)| ≤ C1, |Φ(j)(x)| ≤ C1

εj
e−αx/ε, 0 ≤ j ≤ 4, (2)
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where the functions p(x) and Φ(x) are not explicitly defined, α > 0, ε ∈ (0, 1], constant C1 is independent of ε.
According to (2), the regular component p(x) has bounded derivatives to the fourth order, and the boundary-layer
component Φ(x) has derivatives that are not uniformly bounded with the respect to the parameter ε. According
to [1], the representation (1) with constraints (2) is valid for the solution of the boundary value problem for a
second-order differential equation with a small parameter ε with the highest derivative.

Let us show the relevance of developing difference formulas for calculating derivatives with respect to function
values at mesh nodes if the function has the representation (1). The classical difference formula with two nodes
for the derivative has the form:

u′(x) ≈ L′
2(u, x) =

un − un−1

h
, xn−1 ≤ x ≤ xn. (3)

Let u(x) = e−x/ε. Then with ε = h it will be ε|(u1 − u0)/h − u′(0)| = e−1. The relative error of the formula
(3) does not decrease with mesh step decreasing. We need to develop formulas for numerical differentiation with
accuracy that is uniform with respect to the parameter ε.

By C and Cj we mean positive constants independent of the parameter ε and the number of mesh nodes N.

2 Setting of the non-uniform mesh

Let Ωh be a mesh on the interval [0, 1] :

Ωh = {xn : xn = xn−1 + hn, n = 1, . . . , N, x0 = 0, xN = 1}.

We assume that the function u(x) of the form (1) is defined at the nodes of the mesh, un = u(xn), n =
0, 1, 2, . . . , N.

Set Ωh as a Bakhvalov mesh [2] with the nodes xn = g(n/N), n = 0, 1, . . . , N, where the function g(t) is
defined as follows:

g(t) = −4ε

α
ln
[
1− 2(1− ε)t

]
, 0 ≤ t ≤ 1

2
, ε ≤ e−1, (4)

g(t) = σ + (2t− 1)(1− σ), 1/2 ≤ t ≤ 1. (5)

For ε ≤ e−1 we set the parameter σ

σ = min
{1

2
,−4ε

α
ln ε

}
. (6)

With this setting of σ derivative Φ(4)(x) is ε-uniformly bounded for x ≥ σ.
For ε > e−1 we set σ = 1/2. For σ = 1/2 we set the mesh Ωh uniform.
So let the conditions be met: ε ≤ e−1 and σ < 1/2. In accordance with the relations (4)– (6) define a mesh

Ωh with nodes xn = g(n/N). Given (4), (5), we obtain

xn = −4ε

α
ln
[
1− 2(1− ε)n/N

]
, n = 0, 1, . . . ,

N

2
, (7)

xn = σ + (2n/N − 1)(1− σ), n = N/2, . . . , N.

Given (7), we obtain that in the boundary layer region

hn =
4ε

α
ln
[
1 +

2(1− ε)/N

1− 2(1− ε)n/N

]
, n = 1, 2, . . . , N/2. (8)

It is easy to verify that the sequence of steps hn, n = 1, 2, . . . , N/2 – is strictly increasing. From (8) it follows
that

hN/2 =
4ε

α
ln

[
1 +

2(1− ε)

Nε

]
.

Therefore, for some constant C2 there is an estimate:

hn ≤ C2

N
, n = 1, 2, . . . , N. (9)
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3 Cubic spline on the Bakhvalov mesh

On the constructed mesh Ωh we define a cubic spline S(u, x) ∈ C2[0, 1] [8]

S(u, x) =
(xn − x)3

6hn
Mn−1 +

(x− xn−1)
3

6hn
Mn+

+
(un

hn
− Mnhn

6

)
(x− xn−1) +

(un−1

hn
− Mn−1hn

6

)
(xn − x),

where Mn = S′′(u, xn) and these coefficients are found from the system of equations:

hn

6
Mn−1 +

hn + hn+1

3
Mn +

hn+1

6
Mn+1 =

un+1 − un

hn+1
− un − un−1

hn
,

n = 1, 2, . . . , N − 1, M0 = u′′(0), MN = u′′(1). (10)

Theorem 1. For some constant C for all x ∈ [0, 1] following error estimates are valid:

ε2|S′′(u, x)− u′′(x)| ≤ min
{ C

N2
(Nε+ 2) ln

[
1 +

2

Nε

]
,
C

N

}
, (11)

ε|S′(u, x)− u′(x)| ≤ C

N2
(Nε+ 2) ln2

[
1 +

2

Nε

]
. (12)

Proof. First, we estimate the error zn = Mn − u′′(xn). Given (10), we get that {zn} is a solution of the
system:

hn

6
zn−1 +

hn + hn+1

3
zn +

hn+1

6
zn+1 = Fn, n = 1, 2, . . . , N − 1, z0 = 0, zN = 0, (13)

where

Fn =
un+1 − un

hn+1
− un − un−1

hn
− hn

6
u′′
n−1 −

hn + hn+1

3
u′′
n − hn+1

6
u′′
n+1.

Given the Taylor series expansion with a remainder term in integral form, we obtain

Fn =

xn+1∫
xn

[ 1

2hn+1
(xn+1 − s)2 − hn+1

6

]
u′′′(s) ds−

xn∫
xn−1

[ 1

2hn
(s− xn−1)

2 − hn

6

]
u′′′(s) ds. (14)

Represent Fn in the form

Fn = F 1
n − F 2

n , F 2
n =

xn∫
xn−1

[ 1

2hn
(s− xn−1)

2 − hn

6

]
u′′′(s) ds.

Given that with u′′′(s) = const F 1
n = F 2

n = 0, we get

F 2
n =

xn∫
xn−1

[ 1

2hn
(s− xn−1)

2 − hn

6

] s∫
xn−1

u(4)(t) dt ds. (15)

From (15) we obtain

|F 2
n | <

2

3
h2
n

xn∫
xn−1

|u(4)(t)| dt. (16)

From (16) we get

|F 2
n |

hn+1
<

2

3
hn

xn∫
xn−1

|u(4)(s)| ds. (17)
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Case n ≤ N/2. Given the representation (1) with constraints (2), for some constant C we get

|F 2
n |

hn+1
≤ C

hn

ε3

(
e−αxn−1/ε − e−αxn/ε

)
+ Ch2

n. (18)

Let’s set K = 2(1− ε). From (18), (7), (9) we obtain

ε2
|F 2

n |
hn+1

≤ C2

N

(
1− K(n− 1)

N

)
ln
[
1 +

K

N −Kn

]
+

C

N2
. (19)

Given (19) and the boundedness of the derivatives of the function u(x) outside the boundary layer region, for
some constant C0 we get:

ε2
|F 2

n |
hn+1

≤ C0

N2
, n <

N

2
. (20)

ε2
|F 2

n |
hn+1

≤ C0

N2
(Nε+ 2) ln

[
1 +

2

Nε

]
, n =

N

2
. (21)

|F 2
n |

hn+1
≤ C0

N2
, n >

N

2
. (22)

Given the estimates (20)–(22) and the fact that ε2|F 1
n |/hn+1 satisfies the same estimates, we obtain

ε2 max
n

|Fn|
hn+1

≤ C

N2
(Nε+ 2) ln

[
1 +

2

Nε

]
.

From (14) implies

ε2 max
n

|Fn| ≤
C

N2
.

Therefore,

ε2 max
n

|Fn|
hn+1

≤ γ = min
{ C

N2
(Nε+ 2) ln

[
1 +

2

Nε

]
,
C

N

}
. (23)

We proceed to estimation of zn from (13). Divide the ratio (13) by hn+1 and get

hn

6hn+1
zn−1 +

[1
3
+

hn

3hn+1

]
zn +

1

6
zn+1 =

Fn

hn+1
, n = 1, . . . , N − 1, z0 = 0, zN = 0. (24)

The matrix of the system (24) has a strict diagonal predominance in rows with the prevalence index 1/6, therefore,
by the estimate (23) we get

ε2 max
n

|Mn − u′′(xn)| ≤ 6γ. (25)

Let’s estimate the error in calculating of the second derivative at an arbitrary point x ∈ [xn−1, xn]. It is easy
to get

S′′(u, x)− u′′(x) = zn−1 + (zn − zn−1)
x− xn−1

hn
+ u′′

n−1 + (u′′
n − u′′

n−1)
x− xn−1

hn
− u′′(x). (26)

Given an estimate (25) in (26) for ε2zn and an estimate of the error of the linear interpolation formula for the
function u′′(x) ∣∣∣u′′

n−1 + (u′′
n − u′′

n−1)
x− xn−1

hn
− u′′(x)

∣∣∣ ≤ hn

xn∫
xn−1

|u(4)(s)| ds

of the form (17), for some constant C we obtain

ε2|S′′(u, x)− u′′(x)| ≤ Cγ, x ∈ [xn−1, xn], n ≤ N/2.

It proves the estimate (11) for x ∈ [xn−1, xn], n ≤ N/2.
When x ∈ [xn−1, xn], n > N/2 an estimate (11) is correct, because the derivatives of the function u(x) to the

fourth order are ε-uniformly bounded.
Now let’s get the estimate of error in the calculation of the first derivative.
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Let z(x) = S(u, x) − u(x), x ∈ [xn−1, xn]. Due to the interpolation condition, there is s ∈ (xn−1, xn) :
z′(s) = 0. Then, by the mean value theorem, there is s0 : z′(x) − z′(s) = z′′(s0)(x − s). Given (8), (11) we
obtain the estimate (12). The theorem is proved.

Remark. For ε ≥ C/N from (11), (12) follows

ε|S′(u, x)− u′(x)| ≤ C

N2
, ε2|S′′(u, x)− u′′(x)| ≤ C

N2
,

for ε = 1 error estimates coincide with known estimates in the regular case.

4 Results of numerical experiments

Let us compare the accuracy in the calculation of derivatives based on spline interpolation when constructing a
cubic spline on a uniform grid, Shishkin and Bakhvalov meshes.

Set the Shishkin mesh [1]:

σ = min
{1

2
,
4ε

α
lnN

}
, hn =

2σ

N
, n ≤ N

2
; hn =

2(1− σ)

N
, n >

N

2
.

According to [6], in the case of a function of the form (1) and the Shishkin mesh for some constant C the following
error estimates hold

εj |u(j)(x)− S(j)(x, u)| ≤ C
ln4−j N

N4−j
, x ∈ [0, 1], j = 1, 2. (27)

Table 1: The error in calculating the first derivative on a uniform grid

ε N
16 32 64 128 256 512

1 3.84e− 5 4.81e− 6 6.01e− 7 7.52e− 8 9.40e− 9 1.17e− 9
10−1 4.61e− 3 6.29e− 4 8.18e− 5 1.04e− 5 1.32e− 6 1.65e− 7
10−2 8.85e− 1 2.59e− 1 5.36e− 2 8.59e− 3 1.20e− 3 1.58e− 4
10−3 1.22e+ 1 6.09 2.92 1.23 4.00e− 1 9.21e− 2
10−4 1.22e+ 2 6.09e+ 1 3.05e+ 1 1.53e+ 1 7.63 3.73

Table 2: The error in calculating the first derivative on the Shishkin mesh

ε N
16 32 64 128 256 512

1 3.84e− 5 4.81e− 6 6.01e− 7 7.52e− 8 9.40e− 9 1.17e− 9
10−1 4.61e− 3 6.29e− 4 8.18e− 5 1.04e− 5 1.32e− 6 1.65e− 7
10−2 1.35e− 1 2.45e− 2 3.65e− 3 4.94e− 4 6.41e− 5 8.15e− 6
10−3 3.16e− 1 6.86e− 2 1.13e− 2 1.60e− 3 2.12e− 4 2.73e− 5
10−4 5.37e− 1 1.35e− 1 2.45e− 2 3.65e− 3 4.94e− 4 6.41e− 5
10−5 7.78e− 1 2.19e− 1 4.36e− 2 6.83e− 3 9.46e− 4 1.24e− 4

We define a function of the form (1)

u(x) = cos
πx

2
+ e−x/ε, x ∈ [0, 1], ε ∈ (0, 1].

Tables 1–3 show the relative error

∆N,ε = εmax
n,j

∣∣∣S′(u, x̃n,j)− u′(x̃n,j)
∣∣∣

when calculating the first derivative of the function u(x) in cases of a uniform mesh, Shishkin mesh and Bakhvalov
mesh. Here x̃n,j are nodes of the condensed mesh, obtained from the division of each mesh interval [xn−1, xn]
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into 10 equal parts. In tables e − m means 10−m. The results of calculations on the Bakhvalov mesh for all
values ε and N give a third order of accuracy, which is not lower than the order of accuracy by estimate (12).
The results of calculations on the Shishkin mesh are consistent with the estimate (27).

Table 4 shows the relative error

∆N,ε = ε2 max
n,j

∣∣∣S′′(u, x̃n,j)− u′′(x̃n,j)
∣∣∣

for computing the second derivative of the function u(x) in the case of the Bakhvalov mesh. Numerical results
on the Bakhvalov mesh for all values of ε and N give a second order of accuracy,

Table 5 similarly shows the relative error for computing the second derivative of the function u(x) in the case
of the Shishkin mesh.

The calculation results show the unacceptability of using a cubic spline on a uniform mesh to calculate
derivatives. The calculation error on the Bakhvalov mesh is lower than on the Shishkin mesh.

Table 3: The error in calculating the first derivative on the Bakhvalov mesh

ε N
16 32 64 128 256 512

1 3.84e− 5 4.81e− 6 6.01e− 7 7.52e− 8 9.40e− 9 1.17e− 9
10−1 4.61e− 3 6.29e− 4 8.18e− 5 1.04e− 5 1.32e− 6 1.65e− 7
10−2 2.78e− 3 3.42e− 4 4.25e− 5 5.29e− 6 6.60e− 7 8.24e− 8
10−3 2.86e− 3 3.52e− 4 4.36e− 5 5.43e− 6 6.78e− 7 8.47e− 8
10−4 2.87e− 3 3.53e− 4 4.37e− 5 5.45e− 6 6.80e− 7 8.49e− 8

Table 4: The error in calculating the second derivative on the Bakhvalov mesh

ε N
16 32 64 128 256 512

1 2.15e− 3 5.37e− 4 1.34e− 4 3.36e− 5 8.41e− 6 2.10e− 6
10−1 2.50e− 2 6.91e− 3 1.81e− 3 4.64e− 4 1.17e− 4 2.95e− 5
10−2 1.81e− 2 4.64e− 3 1.17e− 3 2.96e− 4 7.42e− 5 1.86e− 5
10−3 1.84e− 2 4.72e− 3 1.20e− 3 3.01e− 4 7.55e− 5 1.89e− 5
10−4 1.84e− 2 4.73e− 3 1.20e− 3 3.02e− 4 7.56e− 5 1.89e− 5

Table 5: The error in calculating the second derivative on the Shishkin mesh

ε N
16 32 64 128 256 512

1 2.15e− 3 5.37e− 4 1.34e− 4 3.36e− 5 8.41e− 6 2.10e− 6
10−1 2.50e− 2 6.91e− 3 1.81e− 3 4.64e− 4 1.17e− 4 2.95e− 5
10−2 1.90e− 1 7.10e− 2 2.15e− 2 5.90e− 3 1.54e− 3 3.94e− 4
10−3 3.02e− 1 1.31e− 1 4.40e− 2 1.27e− 2 3.40e− 3 8.77e− 4
10−4 3.91e− 1 1.90e− 1 7.10e− 2 2.15e− 2 5.90e− 3 1.54e− 3
10−5 4.56e− 1 2.49e− 1 1.00e− 1 3.21e− 2 9.02e− 3 2.38e− 3

5 Conclusion

The problem of calculating the derivatives of a function having large gradients in the region of an exponential
boundary layer is considered. To do this, it is proposed to construct a cubic spline under the values of the function
in the grid nodes. Error estimates are obtained in calculating the derivatives in the case of the Bakhvalov mesh.
A numerical comparison is made of the accuracy of calculating derivatives on a uniform grid, Shishkin and
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Bakhvalov meshes. It is shown that the use of the Bakhvalov mesh gives more accurate results. The use of a
uniform grid is not acceptable.
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