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Abstract

The traditional approach to building
Bayesian networks is to build the graphical
structure using a graphical editor and
then add probabilities using a separate
spreadsheet for each node. This can make
it difficult for a design team to get an
impression of the total evidence provided
by an assessment, especially if the Bayesian
network is split into many fragments to
make it more manageable. Using the design
patterns commonly used to build Bayesian
networks for educational assessments, the
collection of networks necessary can be
specified using two matrixes. An inverse
covariance matrix among the proficiency
variables (the variables which are the target
of interest) specifies the graphical structure
and relation strength of the proficiency
model. A Q-matrix — an incidence matrix
whose rows represent observable outcomes
from assessment tasks and whose columns
represent proficiency variables — provides
the graphical structure of the evidence
models (graph fragments linking proficiency
variables to observable outcomes). The
Q-matrix can be augmented to provide
details of relationship strengths and provide
a high level overview of the kind of evidence
available in the assessment. The representa-
tion of the model using matrixes means that
the bulk of the specification work can be
done using a desktop spreadsheet program
and does not require specialized software,
facilitating collaboration with external
experts. The design idea is illustrated with
some examples from prior assessment design
projects.
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1 Problem

Bayesian networks are an attractive modeling
paradigm because they can capture a wide variety of
complex interactions among variables. However, they
require a fairly intensive amount of knowledge engi-
neering to build the models. This is especially true if
the models contain a large number of latent variables,
as is true in many psychological measurement applica-
tions, because the expert knowledge may be required
to identify latent variables and their states, even if the
model parameters are later refined through data.

Evidence–centered assessment design (ECD; Mislevy,
Steinberg, & Almond, 2003) is a knowledge engineer-
ing method for building Bayesian network models for
educational assessment. It starts by factoring the com-
plete network for the assessment into a central core
student proficiency model and a collection of evidence
models corresponding to the tasks (Almond & Mislevy,
1999). However, when there are multiple forms of an
assessment, there can be a large number of tasks and
evidence models to manage. The library of fragments
metaphor does not provide a convenient overview of
the properties of the entire assessment or any partic-
ular form. Section 2 describes our first ECD design
repository and its limitations.

Note that a graph may also be expressed through an
incidence matrix, a matrix whose rows and columns
correspond to nodes in the graph and where a posi-
tive value indicates an edge between the corresponding
nodes. The original ECD method split the complete
Bayesian network for an assessment into a central pro-
ficiency model and a collection of evidence model frag-
ments for each task. The revised ECD method shown
here will similarly use two matrixes to express the de-
sign. The first is called the Q-Matrix (Section 3) and
describes the relationship between proficiency vari-



ables and observable outcome variables. The second is
a correlation matrix among observable variables (Sec-
tion 4). These two matrixes not only provide a good
overview of the model, but they also can be specified
using common spreadsheet programs available on the
experts desktop, and hence do not require specialized
software. This suggests a lighter weight, more nimble
procedure for knowledge engineering (Section 5).

2 The Evidence-Centered Design
Data Repository

In ECD, a complete design for an educational assess-
ment consists of a number of design objects called
models (Mislevy et al., 2003). The four central models
for the assessment lay out the basic evidentiary basis
for the assessment as follows:

1. Student Proficiency Model. Identify the aspects of
student knowledge, skill and ability about which
the assessment will make claims.

2. Evidence Model. Identify observable evidence for
the student having (not having) the targeted pro-
ficiencies.

3. Task Model. Design situations which provide the
student with opportunities to provide that evi-
dence.

4. Assembly Model. Describe rules for how many of
what kinds of tasks will constitute a valid form of
the assessment.

The last explicitly recognizes that the space of all pos-
sible tasks the student could encounter is usually so
large that administering all possible tasks to the stu-
dent is logistically impossible. Often for reasons of re-
peated testing or security, all students do not receive
the same form (collection of tasks). It is common in
high stakes assessments for several forms of a test to
be printed. In the extreme case of computer adap-
tive testing, the computer selects a potentially unique
sequence of tasks for each student taking the assess-
ment. In all cases, the assembly model controls what
constitutes a valid form of the assessment.

The ECD design tool Portal (Steinberg, Mislevy,
& Almond, Pending) represented each design object
(model) as an electronic entity in a database. The de-
sign team, usually through a designated design librar-
ian, entered the design through a series of on-screen
forms corresponding to the models described above.
The forms were complex, requiring multiple tabs for
each model to represent various ways the information
could be used in different contexts. The models could

be created in any order; the true design process is iter-
ative. At the end of the process the design team selects
a set of models which work together to make a coher-
ent assessment design, called a conceptual assessment
framework (CAF).

The ECD process recognizes the fact that designs go
through several phases. In the first phase, called
Domain Analysis, the design team organizes require-
ments for the assessment, and existing bodies of knowl-
edge about the domain to be tested (cognitive theo-
ries about the domain, information gleaned from sim-
ilar assessments). In the second phase, called Do-
main Modeling, the design team builds a preliminary
sketch of the assessment argument. Similar in con-
cept to knowledge maps (Howard, 1989), this part of
the modeling process is designed to help the design
team with trade-off decisions, and selecting the vari-
ables and grain size appropriate to the purpose of the
assessment. The third phase is the CAF where the fi-
nal specifications would be determined for a particular
assessment. The design tool included support for in-
formation pedigree, linking representations of concepts
in the later design phases to the prototypes in ear-
lier phases (Bradshaw, Holm, Kipersztok, & Nguyen,
1992). The final model produced in the CAF could
be exported as XML data to be sent to StatShop (Al-
mond, Yan, Matukhin, & Chang, 2006), our tool for
Bayes net scoring and calibration (parameter estima-
tion).

The CAF editing tool offered three different modes:
a database editing tool for defining and document-
ing variables and models, a graphical drawing tool for
drawing graphical structures for student and evidence
models, and a spreadsheet tool for entering conditional
probability tables. To speed implementation, the lat-
ter two views used linked external programs (Microsoft
Visio and Excel, respectively) to handle graphical data
and conditional probability tables. This ultimately
proved to be Portal’s downfall, as when upgrades to
the linked software broke the Portal interface, the de-
cision was made not to continue supporting Portal.

While it was generally agreed that the ECD process
was capturing valuable information for assessment de-
sign, Portal as a tool had many problems. First, as it
was designed to cover all cases, it had a large number of
fields that were not used in any given project. Second,
the view of the data was not always the most natural
or convenient. In particular, drawing a separate graph
fragment for each evidence model could be a daunt-
ing task. For the NetPASS project (Behrens, Mislevy,
Bauer, Williamson, & Levy, 2004), there were a to-
tal of nine tasks from three task models, so building a
custom evidence model for each was manageable. For
the ACED project (Shute, Hansen, & Almond, 2006),



there were around six hundred potential tasks in the
design from about 100 task models, each of which had
a single observable outcome variable. Switching back
and forth between the three views took a heavy load
on the computer (constantly launching helper appli-
cations, which was tediously slow) and the operator
(constantly switching interfaces provided ample oppor-
tunity for confusion and mistakes). Another problem
with the Portal view of assessment design as a col-
lection of models is that it did not provide a clear
overview of what the assessment was about.

The ACED project is an interesting study in model
design. The design team handled the design manage-
ment problem by creating a big spreadsheet of tasks
and models. The rows were labeled with tasks, and
the first several columns indicated which proficiency
variables were relevant for each task. Other columns
indicated the difficulty target or tracked the person
responsible for the task and its current status. The
team librarian then laboriously transferred the design
information from the spreadsheet into Portal.

Upon reflection, it appears that 80% of cases will look
more like ACED than NetPASS. In particular, even
if an assessment contains large, complex simulation
tasks, it usually contains a supporting collection of
small discrete tasks as well. Furthermore, the spread-
sheet view used by the ACED design team provides
a good overview of the entire assessment. Thus, in
designing a replacement for Portal we looked to this
spreadsheet view of the graph.

3 Q-Matrix

If we restrict our attention to tasks which yield a sin-
gle binary observable outcome variable, then we can
use the Q-matrix (Fischer, 1973; Tatsuoka, 1984) to
represent the relationship between observable and pro-
ficiency variables. The Q-matrix is a simple incidence
matrix in which the columns represent proficiency vari-
ables and the rows represent tasks (items). There is
a one in a cell if the skill is relevant to solving the
task represented in the row, and a zero if it is irrel-
evant. Following the (Almond & Mislevy, 1999) no-
tation, each row of the Q-matrix corresponds to an
evidence model Bayes net fragment, when the one en-
tries indicate that the indicated proficiency variable is
a parent of the observable variable for that task.

Although the Q-matrix gives the general shape of the
graphical model, it does not tell us how to parame-
terize that model. (Almond et al., 2001) introduced
the idea of providing a small vocabulary of possible
parameterizations that the domain expert could pick
from. The following four parameterizations for condi-
tional probability tables were the most useful:

Conjunctive. All skills are necessary to solve the
problem. This model tends to look like a noisy-
and or noisy-min model.

Disjunctive. The skills represent alternative solution
paths, and only one is necessary to solve the prob-
lem. This model tends to look like a noisy-or or
noisy-max.

Compensatory. Having more of one skill will com-
pensate for having less of another. This is an ad-
ditive model, where the probability of success de-
pends on a (weighted) sum of the skill levels.

Inhibitor. Success in the problem is primarily depen-
dent on one skill, but unless the student has a
minimal level of another skill, then they are un-
likely to be able to solve the problem at all. An
example of this is a mathematics word problem
where part of the challenge is extracting the rele-
vant data from a natural language description of
the problem. Students with insufficient familiar-
ity with the language of the test will be unable
to solve the problem, but once the minimum lan-
guage threshold has been reached, additional lan-
guage skill will not help solve the problem.

A second key idea introduced by Lou DiBello (Almond
et al., 2001) is that if we can map the categorical lev-
els of the Bayesian network to values on a unit normal
distribution, then we can press well understood mod-
els from item response theory (IRT) into service. As
this trick was frequently used with Samejima’s graded
response model, this class of models became known as
DiBello–Samejima models.

3.1 Translating between discrete and
continuous variables

Assume that we have a discrete variable Sm which can
take on values {sm,1, . . . , sm,K} and a continuous mir-
ror variable Ym. We consider the states of Sm to be
ordered, so that sm,k � sm,k′ if and only if k > k′.
Let pm,k = P(Sm = sm,k) and Pm,k = P(Sm � sm,k)
and as a special case define Pm,0 = 0. Furthermore,
let µYm and σYm be the mean and standard deviation
of Ym (which will be zero and one if Ym is scaled to a
unit normal distribution).

We can think of the variable Y as partitioning the dis-
tribution of Ym into a number of bins (Figure 1). The
widths of the bins are determined by the probabilities
pm,k. Thus, we need to set the cutpoints between the
bins, cm,k at the point so that the area under the curve
for that bin equals pm,k. This can be done using the
formula:

cm,k = µYm + σYm ∗ Φ−1(Pm,k) for k < Km, (1)



Figure 1: Cutpoints for a normal distribution

where Φ−1(·) is a function that produces quantiles of
the normal distribution (the inverse normal c.d.f.).

To convert from the discrete variable Sm to the contin-
uous variable Ym we can represent each interval with
its midpoint. Note that the first and last intervals
actually stretch to infinity, that is cm,0 = −∞ and
cm,K = +∞. We can work around this problem by
taking midpoints with respect to the normal density.
Thus, we define:

y∗m,k = µYm
+ σYm

∗ Φ−1(Pm,k − pm,k/2) . (2)

Reversing the procedure is also straightforward. Sup-
pose that we learn (through building a regression
model, Section 4.1) that E[Ym|X = x] = µYm|x and
var[Ym|X = x] = σ2

Ym|x. We can then calculate the
conditional probability of Sm given X = x as follows:

P(Sm = sm,k|X = x) = P(cm,k−1 ≤ Ym ≤ cm,k|X = x)

= Φ
(

cm,k − µYm|x

σYm|x

)
(3)

− Φ
(

cm,k−1 − µYm|x

σYm|x

)
where Φ(·) is the cumulative normal distribution func-
tion.

These procedures assume that the modeler has a fixed
marginal distribution for Sm in mind. In some situa-
tions, it may be more natural to think of a fixed set
of cut points, cm,k (for example, if the cut scores were
set by a standard setting committee). In this case, in-
verting Equation 1 produces values for Pm,k and the
rest of the calculations follow.

3.2 Augmenting the Q-matrix to support
DiBello-Samejima models.

The DiBello–Samejima framework (Almond et al.,
2001) goes on to use item response theory (IRT) mod-
els to calculate the actual probability. Each level
of each proficiency variable is assigned an “effective
theta” value, a number on a Normal (0,1) scale repre-
senting the average skill level of people in that group.

The skill levels are combined using a combination func-
tion based on the type of model (e.g., sum, min, max).
This is fed into a latent variable logistic regression
model. For the compensatory distribution, the model
looks like:

P(Yij = Correct|θi) =

logit−1

 ∑
k∈pa(j)

ajkθik/
√
|pa(j)| − bj

 ,
(4)

where θik represents Person i’s effective theta value on
Skill k, and pa(j) is the set of skills which are parents
of the observable outcome variable Yij . Here |pa(j)|
represents the number of parents of the observable and
1/

√
|pa(j)| is a variance stabilization constant.

The parameters bj and ajk are known as the diffi-
culty and discrimination parameters in item response
theory. As assessment tasks can behave unexpect-
edly, domain experts will not be able to supply ex-
act values for these parameters before an assessment
is pretested. However, it is not unreasonable for the
expert to place these values into broad categories, say
“Easy”, “Medium” and “Hard” tasks. The analyst
could then map these linguistic categories onto prior
distributions. For example, the term “Easy” might
map onto a normal prior with mean -1 and variance 1,
while the “Hard” prior would have a mean of 1 and the
same variance. In addition, to changing the mean, one
could also change the variance, so that a classification
of “Unknown” would translate into a prior with mean
zero and variance of 2. If pretest data becomes avail-
able, then the model can later be refined with data.

We can specify all of this information in matrix form,
by augmenting the Q-matrix representation. First, we
add an additional column to indicate the parameteri-
zation for the conditional probability table. Next, we
add a column to represent the difficulty. As with the
original Q-matrix, zeros are used to indicate parent
variables (skills) which are irrelevant to the task at
hand. However, the entry in the relevant cells is now
a numeric or linguistic value giving the strength of the
relationship. Table 1 shows an example.

We note in passing that it is possible to add extra
columns to this representation whose use is purely for
the benefit of the analysts. In Table 1 the “Item” col-
umn gives the sequence number of the item on the
form; information which is useful to the developers
reviewing the form but is not used in constructing a
Bayes net model for the assessment. Also, we can use
additional columns to represent additional kinds of in-
formation. In the excerpt, we can see two values for
the “ObsName” column, isCorrect (for binary ob-
servables) and pc4 (for four level partial credit mod-



Table 1: An augmented Q-Matrix from an experimental Reading test.
EvidenceModel TaskName ObsName Form Item CPTType Diff S1 S2 S3 S4
EM8Word VB533037 isCorrect ReadA 1 Comp. 0 1 0 0 0
EM2ConnectInfo VB533038 isCorrect ReadA 2 Comp. 0 0 0 1 0
EM8Word VB533039 isCorrect ReadA 3 Comp. 0 1 0 0 0
EM4SpecInfo VB533041 isCorrect ReadA 4 Comp. 0 0 1 0 0. . .
EM3ConnectSynthPC4 VB533431 pc4 ReadA 12 Comp. 0 0 0 1 1

els1). No inhibitor relationships are used in this ex-
ample, but the additional information needed for the
inhibitor model could again be represented as addi-
tional columns.

The information necessary to fill out each row of the
augmented Q-matrix could be collected through a
structured interview technique, however, just as the
earlier Portal method of specifying the graph and the
CPT separately, a separate interview for each row
would not provide the designer with an overview of
the assessment. In the matrix view, if two tasks are
very similar, the designer can copy and paste informa-
tion about an earlier row to construct the new row.

Furthermore, the Q-matrix provides a visual summary
of the design of the assessment. Certain kinds of prob-
lems can be identified from the assessment. For exam-
ple, if two skills always (or almost always) appear to-
gether as parents of observables, then the assessment
will have difficulty distinguishing between them. In
many cases, the principles of assessment form design
are like experimental design.

Finally, note that the augmented Q-matrix can be
stored in a spreadsheet. This means that members
of the design team (including off-site consultants) can
edit the the data using standard office tools and do not
need specialized software on their computers to access
the data. Our strategy for building evidence models
is now to elicit the necessary information from the ex-
perts using a spreadsheet like Table 1 customized for
the project. We then use a package of functions writ-
ten in R (R Development Core Team, 2005) to trans-
late this spreadsheet into the XML model descriptions
needed to drive the StatShop calibration and scoring
system. Standard R programming style breaks the
translation process into many small pieces, most of
which are re-usable in new contexts. Thus, a minimal
amount of custom coding is needed to support each
project.

Even when using the individual models, the Q-matrix
view has proved beneficial when checking our work.
In development of ETS’s ICT Literacy assessment, we

1(Almond et al., 2001) describes the extension of this
type of model to observables with more than two levels

took the XML models exported by our Portal tool and
ran them through a series of inverse functions, build-
ing the Q-matrix from the XML. We then used this
to make sure that all parameters had been correctly
specified.

4 Correlation Matrix

The augmented Q-matrix solves a substantial fraction
of the problem. However, in order to specify a com-
plete Bayes net scoring model for an assessment, the
design team must also specify a proficiency model.
This is a complete Bayesian network and not just a
fragment (the evidence models borrow nodes from the
proficiency model, and hence are incomplete without
the proficiency models). So in principle, any Bayesian
network tool could be used for the job, although in
practice there is still the difficulty of translating from
the format of the Bayes net tool to StatShop’s XML
format.

In my experience with design teams, they have lit-
tle difficulty identifying the relevant proficiency vari-
ables. The issues of how many variables to include in
the model, and how many levels each variable should
have always produces a lively debate, but the design
team usually understands the issues when explained to
them. In ECD practice, levels of the proficiency vari-
ables are defined through claims (statements about
what students at a given proficiency level can and can-
not do) that give the variables clarity and help to re-
solve some of the grain size issues. Showing a draft
Q-matrix can help the design team resolve trade-offs
of assessment scope versus length (and cost).

When it comes to the issue of creating graphical struc-
ture, however, the design team needs firm guidance.
Without input from statistically sophisticated team
members, the structure of the proficiency model tends
to be a hierarchical breakdown of the domain rather
than a statement of dependence and independence
conditions among the variables.

The situation is even worse when it comes to the num-
bers. The proficiency variables are abstract and latent,
and hence they provide little real world experience for
which the expert can provide a judgment. In the pro-



cess of designing ACED, the expert charged with de-
veloping the proficiency model had a great deal of diffi-
culty with the numbers. Although she understood the
Bayesian networks and what was required, she simply
did not have confidence in her numerical judgments.

4.1 Regression Models

For the ACED project, a simple spreadsheet based on
linear regression models provided our expert with a
coherent framework for elicitation of these conditional
probability tables. The “effective theta” mapping de-
scribed in Section 3.1 mapped the levels of the parent
variable (the proficiency model was tree shaped and all
nodes had at most one parent) to continuous variables.
The expert then specified a correlation and intercept
for a regression model. This was used to create a new
mean and variance for the output variable on the con-
tinuous scale. This was mapped back into continuous
probabilities using the inverse mapping technique de-
scribed in Section 3.1.

This was highly successful from the standpoint of inter-
action with the expert. She now only needed to specify
two parameters: the correlation with the parent vari-
able and the intercept, which could be interpreted as
a difference in level between the parent and child vari-
able. Although there was still one source of difficulty
for the expert, both the parent and child variables were
latent constructs. The expert seldom sees the latent
variables, but rather sees the manifestation of those
variables as performance on tasks. Consequently, the
correlations were lower than perhaps appropriate in
order to account for measurement error.

Using the spreadsheet, the expert was able to fill
in the conditional probability tables in the ACED
model. This method of generating conditional prob-
ability tables was later incorporated into StatShop as
the DiBello-Normal model.

4.2 Inverse Covariance Matrix

The final step in this story comes when I was work-
ing with another expert to build a model for reading.
The expert and I had identified five different proficien-
cies involved, however, when I started asking questions
about the relationship among the variables, and the
expert responded by handing me correlations among
observed scores on tests meant to reflect the various
proficiency scales. I began to realize that in general,
expert knowledge about the relationships among psy-
chological variables comes from factor analysis and
structural equation modeling studies involving both
manifest and latent variables. Often these analyses
produce correlation matrixes.

This is all the more interesting as there is a close con-
nection between the inverse of the correlation matrix
and the graphical model (Whittaker, 1990). In partic-
ular, zeros in the inverse covariance matrix represent
conditional independence between variables (Demp-
ster, 1972). Thus, the pattern of zeros in the in-
verse covariance matrix provides an undirected graph-
ical structure for the proficiency model.

Suppose that we are given the following information
about the proficiency model:

1. A collection of categorical variables S which be-
long in our proficiency model. Additionally we as-
sume that for each categorical variable Sm there
is a corresponding continuous factor Ym com-
ing from a factor analysis or structural equation
model for the domain.

2. A collection of marginal distributions, P(Sm),
over the variables in S.

3. The matrix Σ = cov(Y), or at least an estimate
of that matrix.

4. The expected value µY of Y or at least an esti-
mate of that quantity.

The following steps should then produce a proficiency
model.

1. Construct the inverse correlation matrix, W , by
inverting and scaling the covariance matrix.

2. Select a threshold, tmin and construct an undi-
rected graph by adding an edge between Node i
and Node j if |wij | > tmin.

3. Use maximum cardinality search (Tarjan & Yan-
nakakis, 1984) to produce a perfect ordering2 of
the nodes. Direct each edge from the lower to the
higher numbered node.

4. Produce a regression model regressing each vari-
able on its parents in the graph. The intercept and
residual standard deviation in each regression is
set to match the specified marginal distributions
for the parent and child variables.

5. Produce conditional probability tables by dis-
cretizing the regression models.

This procedure above assumes that the covariance ma-
trix expresses the relationships between the latent vari-
ables. Such matrixes are commonly available from

2A perfect ordering exists only if the graph is triangu-
lated. As a normal graphical model exists over the vari-
ables Y over the graph produced in Step 2, that graph
must be triangulated.



Table 2: Covariance Matrix for Math Grade example (Whittaker, 1990).
Mechanics Vectors Algebra Analysis Statistics

Mechanics 302.29 125.78 100.43 105.07 116.07
Vectors 125.78 170.88 84.19 93.60 97.89
Algebra 100.43 84.19 111.60 110.84 120.49
Analysis 105.07 93.60 110.84 217.88 153.77
Statistics 116.07 97.89 120.49 153.77 294.37

Table 3: Partial Correlation Matrix for Math Grade example (Whittaker, 1990).
Mechanics Vectors Algebra Analysis Statistics

Mechanics 1 -0.33 -0.23 0.00 -0.02
Vectors -0.33 1 -0.28 -0.08 -0.02
Algebra -0.23 -0.28 1 -0.43 -0.36
Analysis 0.00 -0.08 -0.43 1 -0.25
Statistics -0.02 -0.02 -0.36 -0.25 1

factor analysis or structural equation model results.
If only observed score correlations are available, then
that correlation matrix can be used instead, however,
these will generally be lower than the latent variable
correlations due to the measurement error in the in-
struments which measure them.

As with the Q-matrix, the covariance matrix and the
supporting information about marginal distributions
(and levels) for proficiency variables can be captured
via any convenient means. A collection of R functions
then translates the matrix into the XML model de-
scriptions needed by StatShop.

4.3 An Example of the Inverse Covariance
Matrix

We illustrate this procedure with using a data set an-
alyzed in Whittaker (1990) originally taken from Mar-
dia, Kent, and Bibby (1979). Table 2 gives the vari-
ance/covariance matrix for scores on five mathematics
tests for a number of college students. Inverting and
scaling the covariance matrix produces the partial cor-
relation matrix shown in Table 3, where off-diagonal
entries greater than 0.1 in absolute value have been
colored gray. These correspond edges we wish to in-
clude in the model. The corresponding graph is given
in Figure 2(a).

Next, we need to go from an undirected to a directed
graph. A straightforward method for doing this is to
choose an ordering of the variables. If an edge connects
two variables, the orientation of the edge is set to go
from the variable earlier in the list to the one later in
the list. Although the choice of order is arbitrary, the
subject matter experts should be consulted as some
orderings may be more natural than others.

In going from the undirected to the directed represen-
tations not any ordering is appropriate. The choice
of directions of the arrows must not induce any mor-
alization edges which are not in the original graph.
Consequently, the selected ordering must be a perfect
ordering. As the graph in Figure 2(a) is triangulated, a
perfect ordering exists. Figures 2(a) and 2(b) illustrate
this idea. Because it seems natural that Algebra is
a pre-requisite for the other skills, it is put first in the
list. The chosen ordering is Algebra, Mechanics,
Vectors, Analysis,and Statistics is perfect. This
induces the graph shown in Figure 2(b).

As it turns out, any ordering with Algebra first is
perfect. We get into trouble only if we put alge-
bra after nodes from both the left and right wings of
the butterfly. Thus the order Mechanics, Analy-
sis, Algebra would cause difficulties because then
pa(Algebra) = {Mechanics,Analysis} inducing a
moralization edge between Mechanics and Analysis
not present in the undirected graph Figure 2(a).

This procedure yields for every variable Sm in the
model a set of parents pa(Sm). It also yields a nat-
ural ordering of the variables, so that if we simply
built a regression of each variable Ym on its parents
pa(Ym) then we would get a normal graphical model
for the continuous variables. All we need to do now is
discretize the variables.

We define the categorical mirrors of these variables
by defining three categories High, Medium and Low,
where High corresponds to the upper quartile, Low
corresponds to the lower quartile and the remaining
half of the data are designated Medium. This means
that the marginal distribution for all five variables in
the model should be (0.25, 0.5, 0.25).



(a) Undirected Graph (b) Directed Graph

Figure 2: Graphical models for Five Math Test Scores (Whitakker, 1990)

Table 4: Unconditional probability table for Alge-
bra.

High Med Low
0.25 0.50 0.25

The first variable Algebra has no parents and so it
is any easy case. The CPT for algebra is just the
marginal distribution (Table 4). This same rule applies
for any other variables which have no parents in the
directed graph.

The second variable, Mechanics, has a single par-
ent, Algebra. This requires a regression model for
Mechanics given Algebra. To begin, we calculate
midpoint, x∗, values for the three states of Algebra
these are given in the second column of Table 5. Next,
we solve the regression equations giving a slope of 0.90
(for Algebra), an intercept of -5.59 and a residual
standard deviation of 14.6. Cranking through the cal-
culations using Equation 3 yields the conditional prob-
ability distribution shown in Table 5.

Table 5: Conditional probability table for Mechan-
ics.

Algebra x∗Algebra High Med Low
High 38.45 0.48 0.46 0.06
Med 50.60 0.21 0.58 0.21
Low 62.75 0.06 0.46 0.48

The rest of the calculations proceed in a similar fash-
ion.

One potential issue with this construction is that the
original data presented in Mardia et al. (1979) are
based on observed scores, rather than latent profi-
ciency variables. We expect such observed scores to
be lower due to measurement error, and a better pro-
cedure would take this into account. We could “bump
up” the correlations to compensate, or use the gener-
ate CPTs as priors and learn better parameters for the
proficiency model from data.

5 A New Philosophy of Knowledge
Engineering

The preceding discussion shows how the bulk of the
work of specifying a Bayesian network for an assess-
ment can be expressed as specifying two matrixes: the
augmented Q-matrix which provides the basis for the
evidence models, and the (inverse) covariance matrix
which provides the basis for the proficiency model. Ad-
ditional details are still necessary (such as exact defini-
tions for all the variables), however, these two matrixes
provide the bulk of the elicitation process.

By switching to the matrix view, the design team is
able to see more of the model at once. In particular, is-
sues like insufficient tasks addressing a particular pro-
ficiency variable are difficult to see when mired in the
details of drawing graphs and specifying conditional
probability tables. The Q-matrix provides a high level
view.

Another important feature of the new system is that
the universal design database (Portal) has been re-
placed with a series of forms expressed as text doc-
uments and spreadsheets. This has several critically
important consequences. First, the design team is free
to focus on those parts of the ECD model relevant to
their process. The Portal database still serves a use-
ful role in listing issues that the design team needs to
consider; however, the design team can choose from
among those issues and organize them in the way that
they please. This includes important representational
issues. For example, in the NetPASS project the Por-
tal database was designed to accommodate rules of
evidence (instructions for how to set values for the
observable variables) expressed as production rules.
However, the programmer charged with implementing
the rules said that he would rather the requirements
be expressed as natural language constructions.

A second consequence of the custom forms translated
to XML paradigm is that members of the design team
no longer need custom software to edit the specifica-
tions. Design documents which can be edited with
software installed on a typical desktop system sup-
ports collaboration with outside experts via email, as
well as reducing the need for the librarian (although



a librarian still plays a useful role in managing de-
sign changes). Rational RequisitePro R© (IBM, 2007),
a product which supports the requirements analysis
phase of software design, provides a similar paradigm.
In particular, the design team edits word proces-
sor documents (using templates provided by Requi-
sitePro) and then runs a software tool to extract de-
tails into a requirements database.

The new paradigm involves additional effort at the
front end, customizing forms and data collection pro-
cedures, and at the back end, customizing form to
XML translators. However, that effort pays off in more
streamlined operations of the teams. In particular,
much of the irrelevant information for a given project
is stripped away, allowing the design team to focus on
the issues important to that project. The open source
and functional programming nature of the R tools pro-
vides strong support for reusing existing translation
code. It also supports global changes (such as chang-
ing the prior variance for the difficulty parameter from
1 to 2) as a single translation function can be written
rather than tediously enter the same change in a mul-
titude of different distribution editing forms.

Another benefit of the new paradigm for design is ex-
pandability. At the design phase, adding new capabil-
ity is as simple as adding a new column in the spread-
sheet, or a new possible value to a list of values. Ad-
ditional work may be needed in other parts of the pro-
duction apparatus (the task authoring environment;
the scoring and statistical analysis environment, Stat-
Shop; the test delivery infrastructure; the reporting
infrastructure). But that work can take place concur-
rently with the design effort. In contrast working with
a design tool like Portal would require changes in the
design tool to support each new application.

One place where there is room for customization is
in tasks with multiple observable outcome variables.
Here the Q-matrix view can be modified by either as-
signing one row per observable or one row per task (es-
sentially collapsing all of the observables into a single
row). The former view is probably better for speci-
fying models, but the latter for getting an impression
of the total collection of evidence provided by the as-
sessment. Another difficulty is that there is often lo-
cal dependence forcing additional connections between
observables from the same task. Almond, Mulder,
Hemat, and Yan (2006) list a number of possible de-
sign patterns for modeling local dependence. A key
observation is that not all of these need be supported
within the augmented Q-matrix, only the ones which
are needed for the project at hand.

Although the focus of this paper has been on the ed-
ucational application, the two matrixes approach can

be used to represent any Bayesian network which can
be partitioned into a system model and a collection of
evidence models (Almond & Mislevy, 1999). In partic-
ular, many diagnostic applications fall into this cate-
gory. What is called the “proficiency model” above be-
comes a system model describing the state of a patient
(medical diagnosis) or machine (mechanical diagnosis).
The evidence models (the rows of the Q-matrix) rep-
resent potential tests which the diagnostician can per-
form. This technique could be especially valuable if
the test fall into a small number of design patterns;
however, even if each test requires a custom Bayes net
fragment, the Q-matrix can still reveal places where
new kinds of test could provide potentially valuable
evidence.

The biggest advantage using the matrixes rather than
the traditional graph and spreadsheet approach to con-
structing the graphical models is that it brings the
process closer to what experts see in their day-to-day
experience. Kadane (1980) states that the closer the
elicitation procedure gets to “observed data” an ex-
pert might actually see, the better the expert will be
at supplying the numbers. The form customization
procedure allows these two matrix views to be modi-
fied so that they use the organization and language of
the experts.
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