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Abstract  
The inverse problem of reconstructing the real permittivity of a plane-parallel layer in a 

perfectly conducting rectangular waveguide from experimental data using an explicit 

expression for the scattering matrix is considered. This problem is ill-posed due to the 

presence of self-intersection points on the curves of the complex scattering coefficients. It is 

shown that the traditional multi-frequency measurement method used in vector network 

analyzers can be justified by the fact that the algorithm for processing the measurement 

results by the least squares method becomes stable if the number of frequencies is large 

enough. 
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1. Introduction 

Application of materials in various fields of science and technology such as material science, 

microwave engineering, aerospace, microelectronics, and communication industries requires the exact 

knowledge of material parameters such as permittivity and permeability. The most widely used 

methods for measuring dielectric materials parameters are cavity perturbation techniques and free-

space and transmission line of waveguide methods. Each approach has its own advantages and 

limitations.  

To implement the free-space methods it is necessary to have sufficiently large sheets of the studied 

material. The accuracy of this method is low due to mismatch between the experimental setup and the 

simple mathematical model having an exact solution. The cavity perturbation techniques are more 

accurate, but they are applicable only over a narrow frequency band in which the resonance effect is 

observed. 

In our work we study the widely used method based on transmission line in the form of a 

rectangular metal (perfectly conducting) waveguide. If the material sample used in these 

measurements is a plane-parallel layer, then the mathematical model of the experiment is the simplest. 

In this case the exact explicit expression for the permittivity and permeability as a function of the S-

parameters (the coefficient of transmission of the electromagnetic field through the inclusion and the 

reflection coefficient) is known. This procedure named Nicolson-Ross-Weir method (NRW) [1, 2]. Its 

disadvantage is the solution phase ambiguity for low-loss materials, except for those samples which 

width is less than one-half wavelength. 

In the general case of inclusion of an arbitrary shape numerical simulation of the experiment is 

necessary. The desired value of the dielectric constant of the material can be found as a solution to the 

inverse problem by comparing the experimental data and theoretical values of the transmission 

coefficient. 
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We study the well-posedness condition for the inverse problem of determining the layer 

parameters from experimental data; namely, the existence and uniqueness of solution and its 

continuous dependence on the input data. Unfortunately this algorithm is improperly posed. In fact, 

(a) the range of the function specifying the transmission coefficient is a curve on the complex plane; 

therefore the probability that the experimental data belongs this curve is equal to zero; and (b) the 

parametric curve of the function on the complex plane has self-intersection points which means that 

the solution may not be unique. 

 It is shown that the traditional multi-frequency method of measurements applied in vector 

network analyzers can be used to formulate a well-posed problem. For a noiseless experiment that 

perfectly matches the mathematical model the non-uniqueness of the solution can be eliminated if we 

consider the vector formulation of the problem determined by a set of frequencies in the range of 

single-mode waveguide. The vector function of the transmission coefficient becomes a one-to-one 

function of the inclusion dielectric constant if the frequency resolution is sufficiently small.  

For an actual physical experiment, the least squares method (LSM) can be applied for the solution 

of the inverse problem under study. The LSM solution converges to the desired value of the layer 

permittivity if the quality of the experiment (determined both by noise and defects of the 

measurement setup and material samples) is improved. The convergence rate is enhanced if the 

number of frequencies used in experiment is taken large enough. 

2. The transmission coefficient of the principal mode 

The waveguide of rectangular cross section and perfectly conducting walls shown in Fig. 1 

contains a dielectric parallel-plane diaphragm (layer). ( ) ( )

1 (0, ) (0, ) ( , )layer layera b z z− + =    with a 

dielectric inclusion 2 , 2 1 .     

The relative permittivity in the waveguide 
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where 2.04,teflon  3.8cube  (quartz), 10.0 (ruby), and 0  is permittivity of vacuum.  

 

 
Figure 1: Waveguide with a diaphragm and inclusion. 
 

We develop algorithms of reconstructing permittivity of the diaphragm (a test problem) and of a 

small inclusion inside the diaphragm by comparing the results of multi-frequency series of the field 

measurements on the waveguide flanges and the data obtained from the mathematical model 

corresponding to the experimental setup. The scheme of measurements using Vector Network 

Analyzer (VNA) are performed at the points (ports) shown in Fig. 1. 

Define ( )(1,0) / 2 ,f c a=  (2,0) (1,0)2 ,f f=  (1,0)f , (2,0)f  are the cutoff frequency for (1,0)TE , (2,0)TE  

modes, (1,0) 6.52f   (GHz).  

It is known that in the empty parts of the waveguide the steady-state solution ˆ( , ) ( ) i tt e −=E r E r  of 

Maxwell's equations is represented as a sum of harmonic and evanescent waves. If calculations are 

performed at the frequency f : (1,0) (2,0) ,f f f   when only one (principal) waveguide mode 



propagates in empty parts of the waveguide; the higher-order modes are evanescent (standing) waves 

decaying exponentially on both sides of the diaphragm. 

At the output (for ( )wgz z+= ) of the waveguide with inclusions in the diaphragm, the transmitted 

field has the form 

 ( ) ( ) ( ) ( ) ( ) ( )

,(1,0) ( ,1) ( ,0) ,( , )

0 1

ˆ ˆ ˆ( , , ) ( , , ) (1 ) ( , , ),trans wg trans wg trans wg

y y n m y n m

m n

E x y z E x y z E x y z 
 

+ + +

= =

= + −  (1) 
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,(1,0)
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yE x y z+ =
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0,(1,0)
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R e ++ , ( ) ( )

,( , )
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( , ) ( ) ( )( ) ( )
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If the waveguide is long enough then we can assume that 
( ) ( ) ( ) ( )

,(1,0)
ˆ ˆ( , , ) ( , , )trans wg trans wg

y yE x y z E x y z+ + . 

Here 
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0 0

ˆ( ) ( ) ( , , ) ,
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1/2 ( )

( ) ( )( ) (2 / ) sin( )x

n nX x a k x= , 1/2 ( )

( ) ( ,0) ( )( ) ((2 ) / ) cos( )y

m m mY y b k y= −  are the basis functions, 

( )

( ) /x

nk n a= , ( )

( ) /y

mk m b= , ( ) 2 ( ) 2 ( ) 2 1/2

0,( , ) 0 ( ) ( )( ( ) ( ) ) ,z x y

n m n mk k k k= − −  2 2

0 0 0k   = , n , m 0 , and 

( , ) sgn | | .n m n m = −  

For the sample under test situated between two antennas (ports) the measured quantities are the 

complex scattering S -matrix coefficients (transmission and reflection), where 
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12S  is the transmission coefficient from port 2 to port 1, calculated as the ratio of the field measured at 

the exit port in the presence of an inclusion to the source field measured at the input port.  

The input and the output (at the ports with z= ( )wgz− , z= ( )wgz+  correspondingly) measurement data 

give the following elements of the scattering matrix describing the transmitted wave for the empty 

waveguide and the waveguide containing the diaphragm, respectively: 
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If measurements are taken at the layer boundary, then 
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( ) ( ) ( )wg wg wgd z z+ −= −  is the waveguide length, ( ) ( ) ( )layer layer layerd z z+ −= −  is the layer width. 

Define the transmission coefficient of the principal waveguide mode as  

 ( ) ( )
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The waveguide transmission coefficient 
1,0F  defined according to (1), (2), and (3) can be 

represented as 
( ) ( )

(1,0) ( ) ( )

ˆ ( , , )

ˆ ( , , )

trans wg

y

inc wg

y

E x y z
F

E x y z

+

+

 =
( , )

12

( )

12

wg layer

wg

S

S
. 

Thus the transmission coefficient of the principal mode through a layer in a waveguide is 

calculated as the ratio of the field measured at the output port far enough from inclusion to the field 



measured at the output port in the empty waveguide.  

Problem for the Maxwell's equations in the unbounded waveguide containing a dielectric layer 

with permittivity  admits the closed-form solution for transmission coefficient of the principal 

mode (1,0)TE : 
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or in another form [3] 
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where 

 ( )( , ) ( ) ( ) ( )g f c f iH t f s f   = − , (5) 

 ( )( ) ( )( ) sin ( ) ,z layers f k f d = ( )( ) ( )( ) cos ( )z layerc f k f d = , (6) 
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with 0.x   

3. Algorithms of experimental data processing 

Let us assume that the relative dielectric constant of the sample is real and does not depend on the 

frequency of oscillations of the electromagnetic field in a certain range within the single-mode range 

of the waveguide. If the material properties are a priori unknown, we will look for the effective 

dielectric constant of the inclusion for the selected bandwidth. 

Introduce the vectors 

(exp)1( ,..., )
N

f f= f ℝ
(exp)N , (exp)

(exp) (exp) (exp)

1( ,..., )
N

F F= F ℂ
(exp)N  

of the frequency and complex-valued measurement data of (exp)N  experiments. Consider the equation 

 ( )( ) (exp), ,layer =g f g  (7) 

for the (unknown) dielectric constant of the layer ( ) 1layer  , where 

( )(exp)1( , ) ( , ),..., ( , )
N

g f g f  = g f ℂ
(exp)N  

with g  defined in (5), (6),  

exp

(exp) (exp) (exp)

1( ,..., )Ng g=g ℂ
(exp)N , 

(exp)

( ) (exp)

0

1 1
,

( )
n layer

n n

g
Z f F

=  

(exp)1,...,n N= . 

We formulate inverse problems that constitute different permittivity reconstruction scenarios of the 

layer in the waveguide. To this end, let 
( ) { : 1},   =  ( ) { :1 },   =    

1  , and by 

( ) ( ), ( , )G   = f g f ℂ 
(exp) ( ),N    



denote the set of values of function ( , )g f  for the fixed frequency vector f  (it is a curve in    (exp)N -

dimensional complex space). 

Formulate two inverse problems considered in the study. 

Problem 1 

Find a real ( ) ( )layer    satisfying relation (7) for a given complex vector ( )(exp) ( ),G  g f  with 

the fixed frequency vector f . 

Problem 2 

Find a real ( ) ( )layer    satisfying relation (7) for a given complex vector (exp)g ℂ
(exp)N  with the 

fixed frequency vector f . 

Check the fulfillment of the well-posedness condition for these problems; namely, the existence 

and uniqueness of solution and its continuous dependence on the input data.  

Problem 1 describes a perfect experiment exactly corresponding to the mathematical model, it is 

solvable by the definition of the set ( )( ), .G f  However, its uniqueness may be violated. In fact, if 

(exp) 1N =  for any chosen frequency the solution is not unique due to the existence of a countable set 

1,...{ } ,m m =
 satisfying the relation ( )sin( ( ) ) 0

m

layerk f d =  that specifies self-intersections points of 

curve ( )( , )G f   (Fig. 2). 

Using a priori information about ( )layer  we can achieve the uniqueness by adjusting domain ( )

  

and a frequency range (exp)1[ , ].
N

f f  However, the formally well-posed problem may be ill-conditioned 

in the vicinity of the intersection points mentioned above where the parameter values are such that the 

quantity ( )sin( ( ) )layerk f d  in the denominator virtually vanishes. 

Proposition 1 below demonstrates that for (exp) 1N   the solution to Problem 1 is unique if the 

frequency resolution is sufficiently small. In fact, ( , )g f  becomes a one-to-one vector function of 

real variable   for a fixed set of frequency values f . 

Problem 2 simulates the processing of noisy experimental data. This problem is also ill-posed 

since it may be unsolvable: in actual experiments, it is typical that (exp) ( )( , )G  g f  because the set 

(a curve) has the zero measure on the complex plane. We will replace Problem 2 with an LSM 

problem such that its solution approximates the sought solution of perfect Problem 1 when the defects 

of the experimental setup and measurement error decrease. 

4. One-to-one correspondence 

Let us consider the problem of determining the value of the dielectric constant of a plane-parallel 

non-magnetic layer without losses. One can show that the transition from a single-frequency 

experiment to a multi-frequency experiment improves the properties of the inverse problem, ensuring 

its unique solvability. We present without proof the following statement [4]. 
Proposition 1 

Set (exp) 1N = . For any 1   there is one-to-one correspondence between ( )

  and ( )( , )G f 

  for 

the fixed frequency f  if 

 ( )

1
0.5 ( )

layer

E

d

f
 .  (8) 

Assume that (exp) 2N  . For any 1   there is one-to-one correspondence between ( )

  and 
( )( , )G 

f  for the fixed frequency vector f  if the following condition is satisfied in at least one of the 

two equivalent forms: 
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Figure 2: The branches of the curve ( )( ),G f  , 9.25GHz,f =  ( ) { :1.0 9.0}   =   , 

( )

1 (2.05,2.13) = , ( )

2 (3.06,3.12) = , their intersection point 1 2( , ) ( , )g f g f = , ( )

1 12.09 , =   
( )

2 23.12 , =   red point is experimental value (exp).g  

5. Multi-frequency least squares method 

Let us show that the solution of ill-posed Problem 2 can be found approximately with an accuracy 

determined by the quality of the experiment. Here along with the problem for determining the real 

dielectric constant of a low-loss sample we formulate a problem for determining the complex 

parameter of a loss sample without discussing its properties; the results of the numerical solution of 

both problems are shown in Fig. 3. 

Problem 3 (4) (LSM) 

Find ( ,1)LS ℝ
(exp)N ( ( ,2)LS ℂ

(exp)N ) satisfying the condition 

( )( ) (exp) (exp) ( )( , ) min ( , ) ,LS

E

  − = − g f g g f g  

for a given vector (exp)g ℂ
(exp)N  with the fixed frequency vector f . 

We present without proof the following statements [5]. 
Proposition 2 

The Problems 3 is solvable.  

Proposition 3 

If the conditions of Proposition 1 are satisfied and 

 (exp)

( ) (exp)( , ) 0layer − →g f g ,  (11) 

then 

 ( ,1) ( )LS layer → .  (12) 

 



 
 

Figure 3: Application of least squares to the determination of permittivity min max     from 

transmission coefficient experimental data 
exp

(exp)

1,...{ }n n NF =
 for frequency set 

exp

(exp)

1,...{ } ;n n Nf =
  

exp

(exp)

min 1,...( , ) ,n n NF f =
 

exp

(exp)

max 1,...( , )n n NF f =
 are test points;  ,1

exp

( ) (exp)

1,...
( , ,LS

n
n N

F f
=

 

 ,2

exp

( ) (exp)

1,...
( ,LS

n
n N

F f
=

 are theoretical transmission coefficient values for least squares solutions. 

6. Conclusion 

Our findings have demonstrated that conducting an experiment in a multi-frequency mode makes 

it possible to turn a technical possibility into a mathematical achievement. The inverse problem of 

determining the sample parameter for one perfect experiment fully corresponding to the mathematical 

model may have a non-unique solution. Considering the results of several experiments as a vector, we 

arrive at an inverse problem which is well-posed if the frequency step is small enough. For a non-

perfect multi-frequency experiment it is shown that the solution can be found by the least squares 

method. It converges to the solution of the perfect problem if the experimental data approach the 

theoretically predicted values for the unknown dielectric constant of the inclusion. 
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