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Abstract

DNA analysis by microarrays is a powerful tool that al-
lows replication of the RNA of hundreds of thousands of
genes at the same time, generating a large amount of data
in multidimensional space that must be analyzed using in-
formatics tools. Various techniques have been applied to
analyze the microarrays, but they do not offer a systematic
form of analysis. This paper proposes the use of the Self-
Organizing Maps (SOM) in an iterative way to �nd patterns
of expressed genes. The new method proposed (Iterative
Self-Organizing Maps, ISOM) has been evaluated with up-
regulated genes of the Escherichia Coli bacterium and is
compared with the Self-Organizing Map (SOM) technique
and a method which uses iteratively Gorban's Elastic Neu-
ral Net. In a comparative analysis of the three methods the
ISOM shows the best results.

1. Introduction

Application of pattern research methods to the determi-
nation of global gene expressions in microarrays is today an
important task. One of the most widely used method to de-
termine groupings and select patterns in microarrays is the
SOM (Self Organization Map) [1], [2]. The SOM de�nes
a low dimensional manifold in the high dimensional data
space of the gene expressions, in many cases a bidimen-
sional net with nodes. Then this net will be deformed by a
heuristical local optimization method and the high dimen-
sional data is projected on the nearest nodes. Correlations
between the data will be seen as data clusters on the nodes
of the net which may be visualized and analized by statisti-
cal means.

The disadvantage of projecting the data only on the near-
est nodes have been overcome by the Elastic Net algorithm

(ENA) of Gorban [3],[4], where a low dimensional man-
ifold is inserted into the multidimensional dataspace and
then deformed by minimization of an energy functional
which connects the data and the nodes by elastic forces. The
projection of the data on the deformed net is not only on
the nearest nodes but on the nearest points of the net. This
leads to a better data and cluster distribution on the net. For
the global gene expression of Escherichia coli growing on
six different carbon sources [5], the ENA was used itera-
tively by the authors (Iterative Elastic Neural Net, IENN)
[6], where the algorithm was applied multiple times to the
resulting clusters. In this way a hierarchical structure of
clusters were obtained and correlations between genes were
found which were not present in the initial clusters. In or-
der to �nd the optimal number of clusters in every iterative
step, the k-Means method was used on the bidimensional
data together with a quality index.

In this contribution an iterative SOM algorithm is pro-
posed where the data is treated by a net with a large number
of nodes so that the SOM applied to this net gives not too
much projected data on one node but a good enough dis-
tribution of the data over the nodes. A k-Means method,
adapted to data on nodes, together with quality indices is
used to �nd an optimal number of clusters of nodes with
their corresponding data. Then the SOM is applied again on
every found cluster with a net of a large number of nodes
and so on until the found clusters have well de�ned char-
acteristics. This method is different from the hierarchical
SOM [7] which repeats the SOM algorithm for the data on
the nodes.

In order to compare the results of the iterative SOM with
the iterative Elastic Neural Net and the SOM applied only
once on a net with a small number of nodes, the Escherichia
coli gene expressions on different carbon sources was anal-
ized. Receiver Operating Characteristic (ROC) [8] curves
for the different cases were compared.



2. Methods

2.1. Self Organizing Maps

The Self Organizing Maps (SOM) technique is a neural
net model capable to represent the topological structure of
the initial data space in a discrete or continues form. It con-
sists of a net made by a group of prototypes (weight vectors)
which are associated to the neurons of the net.

The net is generated by establishing a correspondence
between the input signals x = [x1, ..., xn]T , x ∈ <n and the
neurons which are represented by a weight vector. The input
vectors, which come from a multidimensional space of the
problem in question, are nonlinearely mapped and ordered
on a regular array of neurons. The correspondence is ob-
tained by a learning algorithm of competence which consist
in a sequence of training steps that modify the weights of
the neurons mi = [m(i)

1 ,m
(i)
2 , ..., m

(i)
n ]T ,mi ∈ <n, where

i is the localization of the neuron in the net. A neuron,
whose prototype is the nearest to the data x is called the
Best Matching Unit (BMU) mc and is obtained by the rela-
tion ||x−mc|| = mini||x−mi||, where ||..|| is the distance
measure.

During the learning proces a BMU is the winner and the
net is changed in such a way that the BMU is desplaced in
the direction of the input data vector x after the following
adaption rule (1),

mi(t+1) = mi(t)+α(t)hci(t)[x−mi(t)], i = 1..M (1)

where M is the number of changed prototypes. α(t) ∈
[0, 1] is the training parameter which decreases with t.

Equation (2) gives the neighbourhood function which is
in most cases a Gauss function,

hci(t) = exp

(
−||mc −mi||2

2σ2(t)

)
(2)

that de�nes the neighbourhood in which the neurons are dis-
placed to the input data vector x. mc and mi denotes the
coordenates of the neurons c and i on the net.

The manipulation of the functions hci(t) and α(t) deter-
min the speed to reach the �nal state of the arrangemente of
the neurons on the net in which the prototypes do not change
their values anymore and the net is converged. More details
and other properties of the SOM can be obtained in [1].

2.2. Iterative Elastic Neural Net

The Iterative Elastic Neural Net [6], is a method which
repeats the Elastic Neural Net algorithm of Gorban for ev-
ery found clusters mutiple times. It may be formulated in 4
phases.
In the �rst phase the data of the multidimensional space is

preprocessed by cleaning and normalizing and preparing the
data for the algorithm.

The phase of the Elastic Neural Net (ENN) [3], creates a
net of nodes and de�nes an energy functional,

U = U (Y ) + U (E) + U (R) (3)

which will be globally minimized with respect to the po-
sition of the nodes. U (Y ) is the interaction energy of the
data with their nearest nodes. U (E)(λ) is the elastic energy
between neigbouring nodes. It depends on the constant λ
which controls the elasticity of the net. Finally, U (R)(µ) is
the deformation energy between the nodes and their neigh-
nours and is controlled by the deformability parameter µ.
Details on the formulation and minimization of the func-
tional U are found in Gorban et.al. [3], [4].

In the phase for the pattern identi�cation the clusters on
the bidimensional net are analyzed by the k-Means method
together with a quality index and an optimal number of clus-
ters is found [6].

Finally, the phase of cluster ananlysis, for the optimal
number of clusters the centroid curves are calculated and
analyzed, classifying them by their separation, high and low
values of the mean expression level and their up-or down-
regulation respect to the different carbon sources. In this
step the good clusters (expression values higher than 5.5 in a
logarithmic scale and with a clear upregulation) are checked
for the 345 upregulated genes found experimentally. More
details of the IENN method may be consulted in [6].

3. Iterative Self Organizing Maps (ISOM)

In the ISOM method the SOM is applied to a �rst net
with a large number of nodes (3,600) and clusters of nodes
are found by a slightly modi�ed k-Means method. The fol-
lowing matrix represents the number of data projected on
the nearest node (hits). There are n*n (n=60) nodes (i, j)
with h(i, j) hits on the corresponding node.

X =

h(1, 1) h(1, 2) . . . h(1, n)
h(2, 1) h(2, 2) . . . h(2, n)

...
... . . . ...

h(n, 1) h(n, 2) . . . h(n, n)

One chooses now a trial number of clusters nclust, go-
ing from 2 to 10, for the decomposition with arbitrary clus-
ter centers cx(k), cy(k); k = 1, ..., nclust Then one pro-
ceeds in two steps:
(i) One calculates the distances between the cluster cen-
ters and the nodes in order to de�ne which node belongs
to which cluster by taking the nearest nodes with respect to
the cluster center.
(ii) The calculation of the new cluster centers is now done in



the �ollowing way: Let nc(k) be the number of nodes with
coordinates x(i, k), y(j, k) and hits h(i, j, k) which belong
to the cluster k, then the new cluster centers cx(k), cy(k)
are de�ned by:

cx(k) =
∑

(i,j)∈nc(k)

h(i, j, k) ∗ x(i, k); (4)

cy(k) =
∑

(i,j)∈nc(k)

h(i, j, k) ∗ y(j, k), (5)

With this new cluster centers the steps (i) and (ii) are re-
peated until the cluster centers do not change anymore. In
order to �nd the optimal number of clusters, the quality in-
dices Davis-Bouldin [9] and I [9] are calculated for every
cluster decomposition. Figure 1 shows a diagram for the
ISOM method.

Figure 1. Flux diagram ISOM.

4. Data Collection

The data correspond to the level of gene expression of
7,312 genes obtained by the microarray technique of E.Coli
[5]. These data are found in the GEO database1 (Gene Ex-
pression Omnibus) of the National Center for Biotechnol-
ogy Information [10]. The work of Liu et. al.[5] provides
the 345 up-regulated genes that were tested experimentally.
Each gene is described by 15 different experiments (which
correspond to the dimensions for the representation of each
gene) whose gene expression response is measured [5] on
glucose sources. Spece�cally there are 5 sources of glucose,
2 sources of glycerol, 2 sources of succinate, 2 sources of
alanine, 2 sources of acetate and 2 sources of proline. The
de�nition of up-regulated genes according to [5] is given
in relation to their response to the series of sources of glu-
cose considering two factors: that its level of expression is
greater then 8.5 on a log2 scale (or 5.9 on a ln scale), and
that its level of expression increases at least 3 times from the

1http://www.ncbi.nlm.nih.gov/projects/GEO/goes

�rst to the last experiment on the same scale. In this evalua-
tion a less restrictive de�nition was considered that includes
the genes that have only an increasing activity of the level of
expression with the experiments; since the de�nition given
in [5] for up-regulated genes contain very elaborate biolog-
ical information which requires a precise identi�cation of
the kind of gene to be detected.

The original data have expression level values between
zero and hundreds of thousends. Such extensive scale does
not offer an adequate resolution to compare expression lev-
els; therefore a logarithmic normalization is carried out. In
this case the use of the natural logarithm [11] was preferred
instead of the base 2 logarithm used by Liu, because it is
a more standard measure and it was used in the application
of the Iterative Elastic Neural Net method [6] with that we
compare our results. A limiting value of 5 in the natural
logarithmic scale for the expression level was estimated by
determining the threshold as the value that best separates
the initial clusters. This expression level allows discarding
groups of genes that have an average level lower than this
value.

5. Application of ISOM and Results

The application of the new method ISOM will be done
like the IENN method in four phases: data preprocessing,
SOM application, pattern identi�cation, and �nally a stop-
ping criterion and cluster selection based on the expression
level and inspection of the pattern that is being sought.

In the phase of data preprocessing the set of N data to be
analized is chosen, xj = [xj

1, ..., x
j
M ]T , j = 1...N , where

N corresponds to the 7,312 genes of the E.coli bacterium,
M to the 15 different experiments carried out on the genes
and xj is the gene expression level. The data are normalized
in the form θj = ln(xj −min(xj) + 1).

In the second phase the package SOM Toolbox 2.0 for
MATLAB 5 is applied to the data, using a two-dimensional
net with 60*60 nodes (neurons). With such a large and more
�exible net one would expect to �nd a good enough data
distribution on the nodes and see hopefully clustering.

In the phase of pattern identi�cation the data are ana-
lyzed by projecting them on internal coordinates for the pos-
sible formation of clusters or other patterns such as accumu-
lation of clusters in certain regions of the net. As a typical
dependence of the data in a cluster on the dimensions of the
multidimensional space, the mean expression level of the
data for each dimension, the clusters centroid, is calculated.
For the formation of possible clusters the k-Means method
is used together with the quality indices Davies-Bouldin
[9]and I [9], which gives information on the best number
of clusters. The centroids of each cluster are graphed and
analyzed to �nd possible patterns.



Once the best number of clusters is obtained, the cen-
troids' curves are used to detect and extract possible pat-
terns with respect to the activity of the genes such as in-
creasing, decreasing or �uctuating activity of the expression
level with respect to the 15 dimensions. Clusters found with
an average expression level below 5 in the natural logarith-
mic scale and clusters with a decreasing activity of the aver-
age expression level were discarded. For the other clusters
phases 2 and 3 are repeated and the analysis of phase 4 is
carried out again, repeating the process until the remaining
clusters have well de�ned increasing activity levels.

Figure 2 (a) Data distribution on the 3,600 nodes of the
net after the application of the SOM on the initial data

set. The darker spots indicate a higher data
concentration.
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Figure 2 (b) Centroids of the 3 clusters found by the
division of the initial cluster with the k-Means method

as a function of the 15 experiments.

Figure 2 (a) shows the cluster distribution of the �rst ap-
plication of the SOM whith 2 accumulations of data at the
corners of net and an equal data distribution in the rest of

the net. With the k-Means method and the quality index, 3
clusters were found.

In �gure 2 (b) the centroids for the 3 clusters are shown
and table 1 shows a list of these clusters, their number of
genes, their number of up-regulated genes of the list of 345
genes found by Liu et.al. [5] and their tendency in the ac-
tivity of the genes with respect to the 15 experiments.

cluster np(k) nup(k) tendency
cluster 1 2,451 4 �uctuating
cluster 2 2,393 301 up
cluster 3 2,468 40 slightly down

Table 1. Division of the initial data cluster0 in
3 clusters with the number of genes np(k), the
number of up-regulated genes nup(k) and the
tendency in the activity of the genes with re-
spect to the 15 dimensions

The centroid of cluster 1 has very low expression lev-
els. As the interest lies in clusters with an expression level
higher than 5.5, cluster 1 is not treated anymore. To the
remaining two clusters the SOM is again applied with a
net of 60*60 nodes. The result is given in �gures 3 and
4. The k-Means method with the quality indices applied to
the two clusters give for cluster 2 the 4 subclusters, cluster2-
1, cluster2-2 and so on, and for cluster 3 the 3 subclusters
cluster3-1, cluster3-2 and cluster3-3. Their centroids are
given in �gure 3 (b), 4( b) and table 2 shows their num-
ber of genes, their number of up-regulated genes and their
tendency with respect to the 15 experiments.

For some of these clusters another division in subclusters
with SOM was performed in order to get better results in the
concentration of up-regulated genes in smaller clusters.

cluster np(k) nup(k) tendency
cluster2-1 645 24 up
cluster2-2 539 7 up
cluster2-3 540 41 up
cluster2-4 669 229 up
cluster3-1 761 18 slightly up
cluster3-2 889 1 down
cluster3-3 818 21 down

Table 2. Division of the cluster2 and clus-
ter3 in sub clusters with the number of genes
np(k), the number of up-regulated genes
nup(k) and the tendency in the activity of the
genes with respect to the 15 dimensions

For the comparison of the results with the simple SOM
technique and the IENN method, the results of the publica-
tion of Chacón et.al. [6] were used. With the IENN method
9 clusters with high expression level and increasing activ-
ity with the 15 experiments were found, with 1,579 genes
from which 299 correspond tu up-regulated genes. This



corresponds to a concentration of 18.9% in these 9 clus-
ters. The simple SOM technique gave for a net of 5*6 nodes
225 up-regulated genes with a total of 1,653 genes in the 9
clusters with the highest percentage of up-regulated genes
which corresponds to a concentration of 13.6%. )

Figure 3 (a) Data distribution on the 3,600 nodes of the
net after the application of the SOM on the data set of

cluster 2. The darker spots indicate a higher data
concentration.
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Figure 3 (b) Centroids of the 4 clusters found by the
division of cluster 2 with the k-Means method as a

function of the 15 experiments.

Figure 4 (a) Data distribution on the 3,600 nodes of the
net after the application of the SOM on the data set of

cluster 3. The darker spots indicate a higher data
concentration.
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Figure 4 (b) Centroids of the 3 clusters found by the
division of cluster 3 with the k-Means method as a

function of the 15 experiments.



6. Discussion and Conclusion

In order to see a good distribution of the data on the
nodes of the net with the SOM, it is necessary to use a
large number of nodes. With a good distribution of the data
on the nodes it is possible to visualize and de�ne possibles
clusters of nodes. The selection of a large number of nodes
produces additionally a more adjustable net. With more ef-
�cient computers it is now possible to use large numbers of
nodes. We used a net with 3,600 nodes which seems to be
enough to see a good data distribution (see �g.2 (a)) of the
initial data.

The large number of nodes leads not only to a clear for-
mation and visualization of clusters, but these clusters can
then be analized again for further structures, applying SOM
again to every cluster. The hierarchical application of SOM
shows a better resolution than the simple SOM.

From �gures 3(b) and 4(b) one notes a clear separa-
tion of the centroids of nearly all 7 clusters. Some of the
clusters have similar expression values but a different ten-
dency in the activity. All subclusters of cluster 2 show a
clear increasing tendency over the 15 experiments in their
centroides but cluster2-1 and cluster2-2 have low expres-
sion values. They contain only a few up-regulated genes.
Cluster2-4 with the clearest increasing tendency and the
highest expression values contains 229 up-regulated genes.
That is 2/3 of all up-regulated genes.

The three subclusters of cluster 3 have high expression
values, but cluster3-2 and cluster3-3 show a decreasing ten-
dency over 15 dimensions and cluster3-1 a slight increasing
tendency, all with only few up-regulated genes.

One notes in table 2 that 2 clusters with 1,209 genes
contain 270 up-regulated genes. That is a concentration of
22.3% of up-regulated genes in these 2 clusters. In a further
division of the subclusters 2 and 3 one �nds for the 5 clus-
ters with the highest concentration of up-regulated genes
267 up-regulated genes with a total of 768 genes, that is
a concentration of 35%. This is a good result and it will
be compared to the application of a simple SOM or of the
IENN.

Since in this application to the genes of E.Coli one ac-
counts on the 345 upregulated genes [5] identi�ed in the
laboratory, it is possible to carry out an evaluation consid-
ering the three methods (ISOM, IENN and SOM) as clas-
si�ers. Moreover, if the number of clusters which contain
the up-regulated genes is considered a classi�cation param-
eter, it is possible to make an analysis by means of Receiver
Operating Charactersitic (ROC), varying this number ac-
cording the concentration of upregulated genes. The ROC
analysis will be given for the three cases. One calculates
the confusion matrix for different numbers of clusters. The
clusters are ordered after the concentration of up-regulated
genes. The ROC analysis for the simple SOM and the IENN

method are given in [6]. Figure 5 shows the 3 ROC curves.

Figure 5 Curves ROC for ISOM, IENN and SOM.

When considering an overall analysis of the classi�er us-
ing the expression level as a parameter, it is important to
consider the area under the ROC curve. One notes clearly
from these classi�cation curves that the area beneath the
ISOM curve gives the highest value and a best optimum de-
cision level.

The results of the application to the discovery of up-
regulated genes of E.Coli show a clear advantage of the
proposel over the traditional use of the SOM method or the
new IENN method. We chose to carry out a comparison
with these two methods where the SOM is frequently used
in the �eld of bioinformatics and the IENN recently estab-
lished in this �eld, but it is also necessary to evaluate other
alternatives which consider the robustnes of the methods.
One of the recent methods, consensus clustering [12], uses
new resampling techniques which should give information
about the stability of the found clusters and con�dence that
they represent real structure.
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