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Preface

This volume contains the papers presented at IPS 2022, (10th Italian Workshop on Planning
and Scheduling http://ips2022.istc.cnr.it), RiCeRcA 2022 (RCRA Incontri E Confronti https:
//ricerca2022.wordpress.com) and SPIRIT 2022 (Workshop on Strategies, Prediction, Interaction,
and Reasoning in Italy https://gatti.faculty.polimi.it/spirit22/) Workshops, held within the XXI
Conference of the Italian Association for Artificial Intelligence (AI*IA 2022), from November 28
to December 2, 2022.

The aim of the IPS series of workshop is to bring together researchers interested in different
aspects of planning and scheduling, and to introduce new researchers to the community. Al-
though the primary target of IPS workshops is the Italian community of planning and scheduling,
the aim is also to attract an international gathering, fostering contributions and participation
from around the world. In particular, this year, 9 papers were accepted for presentation at
the workshop, involving different authors from Italy and other European countries. Moreover,
this year in conjunction with SPIRIT 2022, we also had an invited talk by Prof. Giuseppe De
Giacomo, a leader in several aspects of AI Planning, from theory to their applications.
The IPS accepted papers mainly focus on Hybrid Systems [1], Symbol Grounding Problem

in Neuro-Symbolic Planning [2], Timeline-based Planning [3], Planning with Qualitative Con-
straints [4], Epistemic Planning [5], online grounding in Unknown Environments [6], on the
use of the Unified Planning Framework [7], on the use of Transformers for Automated Planning
[8] and Real-Time Urban Traffic Routing [9].
The scope of the RiCeRcA workshop is, instead, fostering the cross-fertilisation of ideas

stemming from different areas, proposing benchmarks for new challenging problems, comparing
models and algorithms from an experimental viewpoint, and, in general, comparing different
approaches with respect to efficiency, problemmodelling, and ease of development. In particular,
this year 9 papers were accepted for presentation at the workshop, involving different authors
from Italy and other European countries.
The 2022 edition of RiCeRcA accepted papers considering a wide range of combinatorial

problems. In particular, the workshop included works leveraging on ASP techniques to perform
urban traffic optimisation andmaster surgical scheduling [10, 11]; approaches for the verification
of neural networks [12, 13] and on the projectivity of Markov logic networks [14]; approaches
for model learning [15] and supervisions [16], and exciting discussions around divagrafie [17]
and the importance of declarative AI methods in videogames [18].
The scope of the SPIRIT workshop is gathering the scientific communities on artificial

intelligence, machine learning, theoretical computer science, multi-agent systems, and mi-
croeconomics to promote their integration and contamination. Over the past fifteen years,
researchers in artificial intelligence, machine learning, theoretical computer science, multi-
agent systems, and microeconomics have joined forces to tackle problems involving incentives
and computation. Interestingly, while microeconomics provides computer science with the
basic models, computer science raises crucial questions related to computation and learning
that suggest the study of new models. The result is a synergic integration of all these fields.
Interestingly, the final goal is the provision of rigorous, theoretically-proved methods to deal

http://ips2022.istc.cnr.it
https://ricerca2022.wordpress.com
https://ricerca2022.wordpress.com
https://gatti.faculty.polimi.it/spirit22/
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with multiple strategic players. In the last years, these topics have been central in the Artificial
and Machine Learning venues.

The SPIRIT 2022 accepted papersmainly focused algorithmic game theory, coalition formation,
swap equilibria, price of anarchy and stability [19], influence maximization, stochastic probing,
approximation algorithms, online learning [20], formal methods for multi-agent strategic
reasoning [21, 22, 23, 24], including formal methods for the automated mechanism design
and synthesis of strategies [25], formal aspects of attack graphs [26], model checking and
runtime verification for multi-agent systems [27], and tools for the strategic reasoning [28, 27].

Riccardo De Benedictis, Nicola Gatti, Marco Maratea, Andrea Micheli, Aniello Murano, Enrico
Scala, Luciano Serafini, Ivan Serina, Alessandro Umbrico, Mauro Vallati.
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Explaining the Behaviour of Hybrid Systems with
PDDL+ Planning (Extended Abstract)
Diego Aineto1, Eva Onaindia2, Miquel Ramirez3, Enrico Scala1 and Ivan Serina1

1Università degli Studi di Brescia
2Universitat Politècnica de València
3University of Melbourne

Keywords
Hybrid system, hybrid automata, model checking, automated planning, explanation

1. The Hybrid System Explanation Problem

A hybrid system (HS) is a dynamical system that exhibits a discrete and continuous behaviour,
and captures the control of continuously evolving physical activities typical in automated
manufacturing, chemical engineering and robotics systems. A hybrid trajectory is a particular
execution of the HS that interleaves discrete and continuous behaviour. We aim to solve the
problem of finding a hybrid trajectory that matches a sequence of observations of an HS. This
problem, which we name the HS Explanation (HSE hereinafter) problem [1], is related to the
Decoding [2] and Plan Recognition problems [3] studied in purely symbolic settings and enables
the extension of such theories to hybrid settings [4, 5, 6, 7]. Figure 1 illustrates the HSE problem
in a motion domain in planar space where observations are circular regions parameterized by a
radius 𝑟 ∈ {5, 10, 20, 40}. The black line represents the true trajectory while colored lines are
explanations that match the observations for different values of 𝑟.

Figure 1: Original trajectory (black) and explanations (colored).

Our proposal is to leverage the formalism of hybrid automata (HA) [8] to formulate the
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Thermostat Platoon Flight
Size HC dR HSE_P HSE_P𝑒 dR HSE_P HSE_P𝑒 dR HSE_P HSE_P𝑒
2 10 (0.1) 10 (0.2) 10 (0.5) 10 (0.5) 0 10 (1.1) 10 (0.6) 10 (0.3) 10 (0.6) 10 (0.5)
4 10 (0.5) 10 (0.5) 10 (0.6) 10 (0.6) 0 10 (1.0) 10 (0.6) 1 (14) 10 (2.8) 10 (0.7)
6 10 (0.7) 8 (44) 10 (0.6) 10 (0.6) 0 10 (0.7) 10 (0.6) 0 10 (1.3) 10 (0.8)
8 10 (1.3) 3 (15) 10 (0.6) 10 (0.6) 0 10 (0.8) 10 (0.6) 0 10 (1.6) 10 (0.8)
10 10 (1.6) 0 10 (0.7) 10 (0.6) 0 10 (4.3) 10 (0.7) 0 10 (17) 10 (0.8)
20 10 (11) 0 10 (1.4) 10 (0.7) 0 10 (3.9) 10 (0.9) 0 7 (74) 10 (1.3)
30 10 (60) 0 10 (3.1) 10 (1.0) 0 8 (67) 10 (1.1) 0 1 (127) 10 (1.6)
40 10 (118) 0 10 (5.2) 10 (1.1) 0 1 (191) 10 (1.4) 0 0 10 (1.9)
50 5 (261) 0 10 (8.2) 10 (1.3) 0 0 10 (1.5) 0 0 10 (2.3)
60 0 0 10 (14) 10 (1.6) 0 0 10 (1.9) 0 0 10 (3.5)
70 0 0 10 (20) 10 (1.8) 0 0 10 (2.2) 0 0 10 (4.3)
80 0 0 10 (27) 10 (1.9) 0 0 10 (2.4) 0 0 10 (5.8)
90 0 0 10 (38) 10 (2.2) 0 0 10 (2.8) 0 0 10 (9.4)
100 0 0 10 (49) 10 (2.5) 0 0 10 (3.1) 0 0 10 (14)

Table 1
Coverage and run-time results. Each entry reports the number of solved problems, and the median time
in seconds for each system. dR stands for dReach, HC for HyComp.

problem and to use the planning technology to solve it. We formulate the HSE problem through
two HA: one automaton models the behaviour of the HS, and the other one tracks the run of
the HS and checks when the produced trajectory matches the observations. The composition
of both HA effectively restricts the trajectories of the HS to those that are consistent with the
observations, that is, to the language of explanations. We then formalize the HSE problem as an
optimization problem that looks over the language of explanations to find the most suitable
one. In principle, this problem can be solved as a model checking (MC) problem but MC tools
struggle to find concrete trajectories, assume limited knowledge of the systems dynamics, or
only handle simple dynamics. To overcome this limitation, we further provide a formal mapping
from HA to PDDL+ [9], which enables the use of off-the-shelf automated planners and powerful
AI Planning heuristics that have in the past proven very effective for finding trajectories [10].

2. Empirical Analysis

We evaluate our approach on three domains with different types of dynamics: Thermostat (piece-
wise constant), Platoon (linear) and Flight (nonlinear) and with problem sizes ranging from 2 to
100 observations. As baselines we use dReach [11] and HyComp1 [12], two MC tools that are
able to generate counter-examples (explanations in our setting). We used the ENHSP planner
[13, 14, 15] for the 2 configurations of our planning approach: a basic translation (HSE_P)
and an optimisation (HSE_P𝑒) supported by [1, Theorem 3.7]. Table 1 reports the number of
problems solved (out of 10) and the median time over successful runs (shown in parentheses)
using a time budget of 300s per problem. We observe that HyComp and dReach scale up poorly
and were only able to solve the smaller instances. HSE_P shows better performance than the
MC tools, but is still unable to solve the full suite of problems as computation times quickly
ramp up for the linear and nonlinear domains. HSE_P𝑒, however, solves all the problems while
keeping run-time low, hinting that it would be able to scale up to larger instances.

1No results for Platoon and Flight are shown for HyComp as it only supports the piece-wise constant dynamics.
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Abstract
In this paper, we address the Symbol Grounding Problem (SGP) in the context of neuro-symbolic planning,
where the categorical vectors learned to represent high dimensional inputs suffer from instability, which
poses a problem of efficiency during the planning phase. One way to alleviate the SGP is to enforce
constraints— among the latent variables— by expressing them in the loss function during the learning
process. Combining an existing tool for invariant search and ideas from Logic Tensor Networks (fuzzy
logic), we propose to automatize the process of finding and enforcing relevant constraints. We apply our
idea to LatPlan, a domain independent, image-based classical planner.

Keywords
Neuro-Symbolic Planning, Symbol Grounding Problem, Action Model Learning

1. Introduction

The core interest of Domain-Independent Planning [1] is developing general-purpose algorithms
and systems that can solve planning problems independently of any specific knowledge of the
latter. A planning problem can be specified using the Planning Domain Description Language
(PDDL) [2] in terms of a symbolic description of the states and actions composing the domain,
and initial state, and a goal.

When the states of the problem are only available as sub-symbolic data (e.g., images), generat-
ing a PDDL description necessarily needs to address the Symbol Grounding Problem (SGP) [3]
which refers to the case where two different inputs (e.g., images) grounding the same symbol
(e.g., digit "1") have different vector representations, revealing a lack of generalisation power.

LatPlan [4] is a neuro-symbolic architecture for planning proposed to address the bottleneck
of PDDL construction from raw input data. It leverages Deep Learning to learn the PDDL
description from a set of unlabeled pairs of transition images. More specifically, it uses variational
autoencoders (VAE) [5] to learn and generate categorical vector representations of the images
(states) and of the transitions between them (actions), which are then used to generate the
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PDDL. LatPlan is also endowed with tools that alleviate the SGP of these representations, which
can be assessed by measuring their variance on perturbed input.

Another way to address the SGP is to enforce constraints on the categorical vectors. If we
consider a vector 𝑣 as an ideally grounded symbol and its unstable version 𝑣′, then 𝑣′ contains
some noise, i.e. variables with undesired values. If we know appropriate constraints to apply
during training, the noisy representation corresponding to 𝑣′ should converge to 𝑣.

In this paper, we propose to use an automatic tool to look for invariants in the PDDL generated
by LatPlan and to test their incidence on the learning by expressing them as an auxiliary loss
term. To do so, we borrow ideas from Logic Tensor Networks (LTN) [6], where this additional
loss is created using the t-norm fuzzy logic [7]. In Section 2, we provide background on LatPlan,
invariants, and fuzzy logic, then, in Section 3, we discuss our proposed solution to integrate the
search for constraints into the training loop.

2. Background

2.1. LatPlan

LatPlan is a neuro-symbolic architecture that receives pairs of images representing transitions
and learns categorical vector representations from them. Once trained, it can generate a PDDL
representation of the states and actions of the problem, which can be input to a planner.

For our work, we are interested in improving the learning of two components of LatPlan, the
State AutoEncoder network (SAE), which learns to represent images as categorical vectors, and
the Action Model Acquisition network (AMA), which learns to represent actions as categorical
vectors representing preconditions and effects. These two models are learned end-to-end from a
dataset of pairs of images, each pair representing a valid transition occurring in the sub-symbolic
world (e.g. the switching of a tile in the case of 8-puzzle).

The SAE learns a bi-directionnal mapping between sub-symbolic raw data 𝑥 and propositional
states 𝑧 ∈ {0, 1}𝐹 (with 𝐹 being the number of variables in the categorical vector). Concretely,
it consists of the encoder and the decoder of a VAE that learns DECODE(ENCODE(𝑥)) = 𝑥.

The AMA model consists of three networks: ACTION, APPLY and REGRESS. ACTION
learns to associate two consecutive states (returned by the SAE) to an action (expressed as a
one-hot vector). APPLY learns to predict the next categorical state from the previous one and
an action. REGRESS is symmetric of APPLY and learns to predict backwards the previous
state from the next one and from the action.

The SAE, APPLY and REGRESS networks all output binary categorical vectors of the same
size as the SAE’s output. Each element of these vectors is interpreted as a binary variable and is
represented by a unary predicate in the PDDL files generated by LatPlan. This representation is
negatively affected by the SGP, as it can break the identity assumption inherent to symbolic
reasoning algorithms— in which a state must not change— and can cause disconnections during
the search process, i.e. if two states exist that should represent the same state, an action might
lead to one of them but not to the other, the latter would then be a dead end.

To address this issue, the authors of LatPlan propose two solutions. First, at test time,
they replace the sampling of the categorical vector with an argmax layer, therefore removing
stochasticity. Second, during training, they select a version of the prior distribution for the
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sampling (of the categorical vector) that favours sparsity of truthiness among the binary variables.
This leads to more stable latent state vectors, and showed improved performances of the model
in terms of next-state prediction accuracy (APPLY network) and planning performances. In
our work, we are mainly interested in stabilizing the latent states vectors, generated by the SAE
network; to assess it, we use the same metric as in LatPlan paper, i.e. the State Variance. To
compute it, we use the state variance for noisy input, i.e., the variance of the latent vectors :

𝑧𝑖,0 = 𝐸𝑁𝐶𝑂𝐷𝐸(𝑥𝑖,0 + 𝑛)

where:

• 𝑛 ∼ 𝑁(𝜇 = 0, 𝜎 = 0.3)

• 𝑥𝑖,0 : 1𝑠𝑡 image of the 𝑖𝑡ℎ transition pair of the dataset

The State Variance is computed by iterating over 10 random vectors, then averaged over F
bits in the latent space and over the dataset indexed by i. Formally:

E𝑓∈0...𝐹 E𝑖Var 𝑗∈0..10[ENCODE(𝑥
𝑖,0, 𝑛𝑗)𝑓 ] (1)

2.2. Invariants and constraints in planning

In classical planning, an invariant is defined as a logical formula over variables of the domain
which is true in any reachable state [8]. Invariants can be seen as hidden but logical properties
of the domain, and can also be termed as state constraints. In LatPlan, we can enforce them in
learning the SAE and AMA networks.

An important part of the research in classical planning focuses on discovering invariants
in planning domains. Today, automatic tools [9] [10] already exist that can find a variety of
invariants, such as predicate domain invariants (i.e., in the effect of an action), static invariants
on predicates (ones that are unaffected by any operator), simple implicative invariants (e.g., if
𝑧1 → 𝑧2), mutually exclusive invariant (e.g., ¬𝑧1 ∨ ¬𝑧2), etc.

2.3. Logic Tensor Networks and Fuzzy logic

Extensive work on integrating logical constraints during the training of neural networks have
been conducted in the last few years. Notably, one can express constraints among neural
networks outputs taken as predicates thanks to t-norm operations and the fuzzy generalisation
of First Order Logic (FOL) [11] [7].

For example, if we want to express the truth value of ¬𝑧1 ∨ ¬𝑧2, we can compute it by its
average over the dataset, i.e.,

1

|𝑍|
∑︁

𝑧1,𝑧2∈𝑍
(1− 𝑃 (𝑧1)) + (1− 𝑃 (𝑧2)) (2)

where 𝑃 (𝑧1) is the (continuous) value of truth of one grounding of “𝑧1 is true”, and 𝑍 is the set
of all the groundings. The inverse of this value can be directly appended as a penalty to the loss
function, which eventually forces the network to re-adapt its weights to this new constraint.
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3. Automatically finding and enforcing relevant invariant
candidates

We first discuss how we intend to search for invariants of interest among LatPlan binary
variables with the help of an automatic tool; then, we discuss how to enforce these invariants
during training and we give details about integrating the search in the training loop.

3.1. Searching for invariants of interest

Automatic tools, like Fast Downward (FD) [10] and DISCOPLAN [9], can find invariants in the
PDDL representation outputted by LatPlan using invariant synthesis . But, since LatPlan learns
the PDDL by statistical inference, there is no guarantee that any of the invariants found in the
PDDL maps to the ground truth invariants, i.e., to invariants of the (unknown) ground truth
PDDL domain. For example if 𝑧1 → 𝑧2 is returned by FD as an invariant, but 𝑧1 is true only
once in the whole dataset, it’s possible that 𝑧1 → 𝑧2 would be false if we had more data with 𝑧1
being true. Thus, in our work we consider the invariants computed by an invariants generation
tool (on LatPlan PDDL) as a set of probable invariants that we intend to test.

3.2. Applying the constraints

In Latplan, internal categorical representations are continuous vectors from which elements
converge to binary values during training. At each batch, we can compute the truth value—
thanks to fuzzy logic— of any constraint, expressed as a logical forumula, over these binary
variables, for instance “𝑧1 is true.” Then, by taking the inverse of this value and multiplying it by
a normalizing factor, we obtain an additional loss that we can append to the total loss. This way,
the network will adapt its weights through backpropagation to comply with the constraint.

3.3. Augmenting the training loop with a search over invariants

Our idea is to integrate an automatic invariant finder in the learning process of LatPlan. More
precisely, we want to perform a search— similar to a hyperparameter search— on the invariants.
Further details can be find in Appendix A. The implementation of this loop builds upon the
t-norm like functions that already exist in Tensorflow [12] and the possibility to customize the
training loop in Keras [13], LatPlan being coded with both of them.

4. Conclusions and Future Work

We discussed the idea of combining an automatic invariants finder with fuzzy logic to progress
in solving the SGP that affects the latent representations of a neuro-symbolic architecture
(LatPlan). More precisely, the invariants found by the automatic tool are probable invariants -
since the PDDL they are issued from is learned by statistical inference - and we want to enforce
them during training. If they bring a lower state variance, it is probable that they correspond
to ground true invariants. The goal is to automatically find invariants that are responsible for
more state stability. We are now implementing the search loop introduced in Section 3.
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A. The proposed augmented training loop

This augmented training loop, GreedyConstraintTraining, is illustrated in Algorithm 1, which
uses the following auxiliary functions:

• LatPlan, which is a function that embeds the training process of LatPlan: it receives as
input a training set, a set of propositional formulae to embed in the loss function, and
outputs the learned functions and action descriptions as binary vectors;

• Vecs2Pddl transforms the action descriptions learned by LatPlan into PDDL format;
• Pddl2Inv is a function that returns a set of invariants of a planning problem in the PDDL

format provided in the input. An example is the invariant finder of Fast Downward;
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• MetricEval receives as input the learned functions and action descriptions of LatPlan and
outputs a score value: the higher the score value, the better. In our case, it is the inverse
of the State Variance given in Formula 1 (in this case only the SAE function of LatPlan is
needed).

• PickAnInvariant is a heuristic that identifies the most promising invariant in a set; for
instance an invariant with the less number of variables (because it has a higher probability
to be a ground true invariant compared to one with more variables).

Algorithm 1 Our proposed GreedyConstraintTraining approach, which receives as input a
training set tSet , and returns Ω, the invariants which improve on a chosen metric

1: Ω← ∅
2: LPModel ← LatPlan(tSet , ∅)
3: Φ← Pddl2Inv(Vecs2Pddl(LPModel))
4: score ← MetricEval(LPModel)
5: while Φ ̸= ∅ do
6: 𝜑← PickAnInvariant(Φ)
7: Φ← Φ ∖ {𝜑}
8: LPModel ′ ← LatPlan(tSet ,Ω ∪ {𝜑})
9: if MetricEval(LPModel ′) > score then

10: Ω← Ω ∪ {𝜑}
11: Φ← Φ ∪ Pddl2Inv(Vecs2Pddl(LPModel ′))
12: score ← MetricEval(LPModel ′)
13: end if
14: end while
15: return Ω
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Abstract
One of the features that allowed classical planners to efficiently solve large problems is the ability their
heuristics to prune large portions of the search space. These heuristics, however, by addressing classical
approaches, do little to support the resolution of problems in which the temporal components are relevant
and, even more so, they are not directly suitable for timeline-based approaches to automated planning.
This paper takes advantage of some pruning techniques to increase the efficiency of timeline-based
planning problems resolution. The elimination of some choices estimated as not very advantageous, in
particular, allows the use of inference techniques to reduce the number of decisions to be made, reducing
the risk of running into dead ends and, consequently, increasing the resolution efficiency of the solvers.

Keywords
Automated Planning, Timeline-based Planning, Heuristic search, Scheduling

1. Introduction

The introduction of domain independent heuristics within the Automated Planning [1] commu-
nity immediately allowed solvers to efficiently solve large instances of complex problems. The
different approaches that make up a solver’s paraphernalia, range from the seminal ℎ𝑎𝑑𝑑 and
ℎ𝑚𝑎𝑥 [2] to the more recent developments relying on delete-relaxation, like the ℎ𝐹𝐹 heuristic [3]
and the causal graph heuristics [4], on landmarks, like in [5, 6], on the critical path, like the ℎ𝑚
heuristic [7, 8] or, lastly, on abstraction, like in [9] or in [10, 11]. The salient aspects of such
heuristics can be divided into the ability to direct the search process towards promising areas
of the search space (branching) as well as the ability to avoid dead-ends that would require
potentially expensive backtracking operations (pruning)[12].

While the above heuristics are significantly heterogeneous among them (although, often,
they share some commonalities), they have in common the fact that they have been developed
specifically for the resolution of a particular type of problem, characterized by a specificmodeling
language called PDDL [13], representing a natural evolution of the most long-lived STRIPS [14]
formalism. Despite the PDDL, over the years, has been extended through different directions by
introducing durative-actions and numeric fluents [15], derived predicates and timed initial literals
[16], continuous changes [17], state-trajectory constraints and preferences [18] and object-fluents1,

IPS-2022: 10th Italian Workshop on Planning and Scheduling, November 29, 2022, Udine, Italy
Envelope-Open riccardo.debenedictis@istc.cnr.it (R. De Benedictis); gloria.beraldo@istc.cnr.it (G. Beraldo);
amedeo.cesta@istc.cnr.it (A. Cesta); gabriella.cortellessa@istc.cnr.it (G. Cortellessa)
Orcid 0000-0003-2344-4088 (R. De Benedictis); 0000-0001-8937-9739 (G. Beraldo); 0000-0002-0703-9122 (A. Cesta);
0000-0002-9835-1575 (G. Cortellessa)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)
1http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/kovacs-pddl-3.1-2011.pdf

10



the development of heuristics for reasoning with these more expressive formal systems has
remained relatively limited to a few cases (e.g., [19, 20]).

Timeline-based planning [21, 22] is an approach to automated planning which, by relying
on partial-order planning [23], allows to generate plans which, during their execution, are,
compared to the total order plans produced by classical planners, more easily adaptable. Analo-
gously to the solvers reasoning upon the previous mentioned PDDL extensions, timeline-based
planners have to cope with the high expressiveness of the formalisms which, despite making
them particularly suited at addressing real-world applications, unavoidably leads to perfor-
mance issues. In a recent work about timeline-based planning it has been shown that, thanks
to the introduction of some domain-independent heuristics, the computation time could be
effectively reduced [24]. The presented heuristics aim at directing the search process towards
the most promising areas of the search space. As it will be shown in more detail in the following
sections, however, the same data structures can also be used to partially avoid dead-ends and,
consequently, potentially expensive backtracking operations.

2. Timeline-based planning

Timeline-based planning constitutes a form of deliberative reasoningwhich, in an integratedway,
allows to carry out different forms of semantic and causal reasoning. Although this approach
to planning has mostly been relegated to forms of causal reasoning in the space domain, many
solvers have been proposed over the time like, for example, IXTET [25], Europa [26], Aspen
[27], the Trf [28, 29] on which the APSI framework [30] relies and, more recently, PLATINUm
[31]. Some theoretical works on timeline-based planning like [32, 26] were mostly dedicated
to identifying connections with classical planning a-la PDDL [15]. The work on IXTET and Trf
has tried to clarify some keys underlying principles but mostly succeeded in underscoring the
role of time and resource reasoning [33, 34]. The planner CHIMP [35] follows a Meta-CSP
approach having meta-Constraints which heavily resembles timelines. The Flexible Acting and
Planning Environment (FAPE) [36, 37] tightly integrates structures similar to timelines with
acting. The Action Notation Modeling Language (ANML) [38] is an interesting development
which combines the Hierarchical Task Network (HTN) [39, 40, 41] decomposition methods
with the expressiveness of the timeline representation. Finally, it is worth mentioning that the
timeline-based approaches have been often associated to resource managing capabilities. By
leveraging on constraint-based approaches, most of the above approaches like IXTET [42, 34],
[43], [44] or [45] integrate planning and scheduling capabilities. Finally, [46] proposes a recent
formalization of timeline-based planning.

Given the mentioned link with the heuristics we will refer, in this paper, to the timeline-based
planning formalization as defined in [24]. According to this formalization, specifically, the basic
building block of timeline-based planning is the token which, intuitively, is used to represent
the single unit of information. Through their introduction and their constraining during the
planning process, in particular, tokens allow to represent the different components of the
high-level plans. In its most general form, a token is formally described by an expression like
𝑛 (𝑥0, … , 𝑥𝑖)𝜒. In particular, 𝑛 is a predicate symbol, 𝑥0, … , 𝑥𝑖 are its parameters (i.e., constants,
numeric variables or object variables) and 𝜒 ∈ {𝑓 , 𝑔} is a constant representing the class of the
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(a) An inconsistent state-variable timeline. The
first 𝐴𝑡 token and the 𝐺𝑜𝑖𝑛𝑔𝑇 𝑜 token are tem-
porally overlapping. The inconsistency can be
removed, for example, by introducing a 𝑒1 ≤ 𝑠2
constraint.

(b) A consistent reusable-resource timeline. The
overlap of tokens is allowed as long as the
simultaneous use of the resource is less than
its capacity.

Figure 1: Different timelines extracted by their associated tokens.

token (i.e., either a fact or a goal).
The token’s parameters are constituted, in general, by the variables of a constraint network 𝒩

(refer to [47] for further details) and can be used, among other things, to represent temporal
information such as the start or the end of some tasks. The semantics of the 𝜒 constant, on
the contrary, is borrowed from Constraint Logic Programming (CLP) [48]. Specifically, while
the facts are considered inherently true, the goals must be achieved as defined by a set of
rules. Rules, in particular, are expressions of the form 𝑛 (𝑥0, … , 𝑥𝑘) ← r where 𝑛 (𝑥0, … , 𝑥𝑘) is the
head of the rule and r is the body of the rule. In particular, r represents the requirement for
achieving any goal having the “form” of the head of the rule. Such requirements can be either
a token, a constraint among tokens (possibly including the 𝑥0, … , 𝑥𝑘 variables), a conjunction
of requirements or a disjunction of requirements. It is worth noting the recursive definition of
requirement, which allows the definition of the body of a rule as any logical combination of
tokens and constraints.

Similarly to CLP, through the application of the rules it is hence possible to establish and
generate relationships among tokens. Compared to CLP, however, timelines introduce an added
value: some tokens may be equipped with a special object variable 𝜏 that identifies the timeline
affected by the token. Different tokens with the same value for the 𝜏 parameter, in particular,
affect the same timeline and, depending on the nature of the timeline, might interact with each
other. There can, indeed, be different types of timelines. In case of state-variable timelines (see
Figure 1a), for example, different tokens on the same state-variable cannot temporally overlap.
In case of reusable-resource timelines (see Figure 1b), on the contrary, tokens represent resource
usages and can, hence, overlap as long as the concurrent uses remain below the resource’s
capacity.

Given the ingredientsmentioned abovewe can now formally introduce the addressed planning
problem. A timeline-based planning problem, specifically, is a triple 𝒫 = (O,ℛ, r), where O is
a set of typed objects, needed for instantiating the initial domains of the constraint network
variables and, consequently, the tokens’ parameters, ℛ is a set of rules and r is a requirement.
Intuitively, a solution to such a problem should be described by a set of tokens whose parameters
assume values so as to guarantee the satisfaction of all the constraints imposed by the problem’s
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requirement, by the application of the rules, as well as by the cumulative constraints imposed by
the timelines. Unfortunately, the previous definition, although intuitive, is not easily translatable
into a reasoning process which guarantees its achievement starting from the definition of the
planning problem. For this reason, just like common partial-order planners, timeline-based
planners often rely on the concepts of flaw and resolver. The planner, in particular, internally
maintains a data structure, called token network, which represents a partial plan 𝜋 = (𝒯 ,𝒩),
where 𝒯 is a set of tokens whose parameters are constrained by the constraint network 𝒩.
During the resolution process, the reasoner incrementally refines the current token network
𝜋 by identifying its flaws and by solving them through the application of resolvers, while
maintaining consistent the constraints of 𝒩.

There can be, in general, different types of flaws, each resolvable by applying the corre-
sponding resolvers. The achievement of a goal, for example, can take place either through the
application of a rule or through a unification with either a fact or another already achieved goal
with the same predicate (i.e., the parameters of the current goal and the token with which is
unifying are constrained to be pairwise equal). In case of disjunctions, introduced either in the
initial problem or by the application of a rule, a disjunct must be chosen. The domain of all
the variables that make up the token parameters must be reduced to a single allowed value.
Finally, timelines must be consistent, possibly requiring the introduction of constraints which
prevent not allowed overlaps. Thanks to the introduction of the flaw and resolver concepts, it is
therefore possible to provide an implementable definition of solution. Specifically, a solution to
a timeline-based planning problem is a flawless token network whose constraint network is
consistent.

2.1. A Lifted Heuristic for Timeline-based Planning

Finding a solution to a timeline-based planning problem is far from simple. Choosing the
right flaw and the right resolver, in particular, constitutes a crucial aspect for coping with
the computational complexity and hence efficiently generating solutions. Taking a cue from
classical planning heuristics, [24] describes how, by building a causal graph and by analyzing its
topology, it is possible to estimate the costs for the resolution of the flaws and for the application
of the resolvers. Flaws and resolvers, in particular, are seen as if they are, respectively, classical
planning propositions and actions. Similarly to a proposition added by the positive effect of an
action, in particular, the effect of applying a resolver is the resolution of a flaw. Additionally,
just like the preconditions in a classical action, further flaws can be introduced in the case of
the application of a rule or the choice of a disjunct in a disjunction. Starting from the initial
facts, with a zero estimated resolution cost, the cost of applying a resolver can be estimated as
an intrinsic cost of the resolver plus the maximum cost (ℎ𝑚𝑎𝑥 heuristic). The cost of resolving
a flaw, on the other hand, is given by the minimum cost of its resolvers. Starting from the
top-level goals present in the planning problem, initially estimated with infinite cost, a graph is
constructed by proceeding backwards, considering all the possible resolvers for all the possible
flaws. The estimated costs are updated every time a unification is found or in those cases in
which the resolver does not introduce further flaws. Finally, the graph building procedure
proceeds until a finite estimate cost for the top-level goals is reached.

Compared to other state-of-the-art timeline-based solvers, the above heuristics allow solving

R. De Benedictis, G. Beraldo, A. Cesta, and G. Cortellessa Branching and Pruning for
Timeline-based Planning 13



problems up to one order of magnitude faster [24]. The most interesting aspect for the current
topic, however, concerns the management of the causal constraints in the causal graph. Similar
to planning models based on satisfability [49], indeed, a set of propositional variables is assigned
to flaws and to resolvers. For the sake of brevity we will use subscripts to indicate flaws (e.g.,
𝜑0, 𝜑1, etc.), resolvers (e.g., 𝜌0, 𝜌1, etc.) as well as their associated propositional variables.
Additionally, given a flaw 𝜑, we refer to the set of its possible resolvers by means of 𝑟𝑒𝑠 (𝜑) and,
by means of 𝑐𝑎𝑢𝑠𝑒 (𝜑), to the set of resolvers (possibly empty, in case of the flaws of the problem’s
requirement) which are responsible for introducing it. Moreover, given a resolver 𝜌, we refer to
the set of its preconditions (e.g., the set of tokens introduced by the application of a rule) by
means of 𝑝𝑟𝑒𝑐𝑠 (𝜌) and to the flaw solved through its application by means of 𝑒𝑓 𝑓 (𝜌). Using the
above notation we can estimate the cost of a generic flaw 𝜑 as 𝐺 (𝜑) = 𝑚𝑖𝑛𝜌∈𝑟𝑒𝑠(𝜑)𝐺 (𝜌) (1) and
the cost of a generic resolver 𝜌 as 𝐺 (𝜌) = 𝑐 (𝜌) + 𝑚𝑎𝑥𝜑∈𝑝𝑟𝑒𝑐𝑠(𝜌)𝐺 (𝜑) (2), in which 𝑐 (𝜌) represents
the intrinsic cost of the resolver 𝜌.

The introduction of such variables allows to constrain them so as to guarantee the satisfaction
of the causal relations. Specifically, for each flaw 𝜑𝑖, we guarantee that the preconditions of
all the applied resolvers are satisfied (𝜑𝑖 = ⋀𝜌𝑘∈𝑐𝑎𝑢𝑠𝑒(𝜑𝑖) 𝜌𝑘 (3)) and that at least one resolver
is active whenever the flaw becomes active (𝜑𝑖 ⇒ ⋁𝜌𝑙∈𝑟𝑒𝑠(𝜑𝑖) 𝜌𝑙 (4)). Additionally, we need a
gimmick to link the presence of the tokens with the causality constraint. A further variable
𝜎 ∈ {𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒, 𝑎𝑐𝑡𝑖𝑣𝑒, 𝑢𝑛𝑖𝑓 𝑖𝑒𝑑}, in this regard, is associated to each token. A partial solution will
hence consist solely of those tokens of the token network which are active. Moreover, in case
such tokens are goals, the bodies of the associated rules must also be present within the solution.
Later on, we refer to tokens by means of the 𝜎 variables (we will use subscripts to describe
specific tokens, e.g., 𝜎0, 𝜎1, etc.) and to the flaws introduced by tokens by means of the 𝜑 (𝜎)
function.

The last aspect to consider concerns the update of such variables as a consequence of the
activation of a rule application resolver and of a unification resolver. Specifically, each rule
application resolver 𝜌𝑎 binds the 𝜎𝑎 variable of the goal token, whose rule has been applied, to
assume the 𝑎𝑐𝑡𝑖𝑣𝑒 value (formally, 𝜌𝑎 = [𝜑 (𝜎𝑎) = 𝑎𝑐𝑡𝑖𝑣𝑒]). Finally, for each unification resolver
𝜌𝑢 representing the unification of a token 𝜎𝑢 with a target token 𝜎𝑡, the constraints 𝜌𝑢 =
[𝜎𝑢 = 𝑢𝑛𝑖𝑓 𝑖𝑒𝑑] and 𝜌𝑢 ⇒ [𝜎𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑒] guarantee the update of the 𝜎 variables while adding 𝜑 (𝜎𝑡)
to the preconditions of 𝜌𝑢 guarantees the operation of the heuristic.

2.2. An explanatory example

In order to better understand how the heuristics and the causality constraints work, we intro-
duce in this section a running example of an explanatory planning problem, whose objective
is to plan a physical rehabilitation session for an hypothetical user. Figure 2 shows the causal
graph which is generated for the problem, whose problem requirement is constituted by the sole
goal 𝜎0. Estimated costs for flaws (boxes) and resolvers (circles) are on their upper right. The
propositional variables that participate in the causal constraints are on their upper left. Solid
(True) and dashed (Unassigned) contour lines are used to distinguish flaws’ and resolvers’ as-
sociated propositional variables’ values. In the figure, in particular, the 𝜑0 variable, representing
a flaw which is present in the problem requirement and therefore must necessarily be solved,
assumes the True value.
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It is worth noting that, in the example, the 𝜑0 flaw, for achieving the 𝜎0 goal, can only be
solved through the 𝜌0 resolver, which is hence directly applied (notice the solid line) as a
consequence of the propagation of the causal constraints. Since 𝑟𝑒𝑠 (𝜑0) = {𝜌0}, indeed, the
expression (4) translates into 𝜑0 ⇒ 𝜌0. This, in turn, forces the 𝜎0 goal to assume the 𝑎𝑐𝑡𝑖𝑣𝑒
value as a consequence of 𝜌0 = [𝜑 (𝜎0) = 𝑎𝑐𝑡𝑖𝑣𝑒]. The 𝜌0 resolver, furthermore, represents the
application of a rule having a 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 () in the head and, in the body, a conjunction of
the two 𝜎1 and 𝜎2 goals. The application of this resolver, in particular, introduces the 𝜑1 = 𝜑 (𝜎1)
and the 𝜑2 = 𝜑 (𝜎2) flaws, each of which must necessarily be resolved as a consequence of the
𝜑1 = 𝜌0 and 𝜑2 = 𝜌0 causal constraints, from the expression (3). These flaws, in turn, can be
solved through the application of the 𝜌1 and of the 𝜌2 resolvers which introduce, respectively,
the disjunctions represented by the 𝜑3 and 𝜑4 flaws.

Figure 2: An example of causal graph for the planning of a
physical rehabilitation session. Tokens’ parame-
ters are omitted to avoid burdening the notation.

Proceeding backwards, the prop-
agation of the causal constraints
no longer allows to infer what is
present in the current partial plan
(notice the dashed lines). The resolu-
tion of the 𝜑3 and 𝜑4 flaws, in partic-
ular, constitute two choices that the
planner must make during the res-
olution process. The 𝜑3 flaw, for ex-
ample, can be solved either by apply-
ing the 𝐷𝑖𝑠𝑗0 disjunct, represented
by the 𝜌3 resolver, or by applying
the 𝐷𝑖𝑠𝑗1 disjunct, represented by
the 𝜌4 resolver. The graph construc-
tion process, however, which pro-
ceeds following a breadth-first approach, has identified, in the example, a possible solution for
the 𝜑3 flaw by applying first the 𝜌3 resolver and then the 𝜌7 resolver (the latter corresponding, in
this simple example, to a rule with an empty body). The heuristics’ estimated costs propagation
procedure, hence, makes the 𝜌3 resolver, with an estimated cost of 2, much more attractive
than the 𝜌4 resolver, with an estimated cost of ∞. For a similar reason, the 𝜌5 resolver will be
preferred over the 𝜌6 resolver, leading to a (possible) solution of the planning problem.

It is worth noting that, for the sake of simplicity, the tokens’ parameters are not represented
in the example figure. All tokens, however, are endowed with numerical variables that represent
the start and the end of the associated activities, appropriately constrained according to common
sense. Upper and lower body exercises, for example, represented respectively by the 𝜎1 and by
the 𝜎2 tokens, will take place as part of the more general physical exercise represented by the
𝜎0 token. The 𝜎3 and by the 𝜎5 tokens, additionally, are endowed with their 𝜏 variables which
will avoid their temporal overlapping if they will assume the same value.
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3. Pruning the causal graph

The construction of the causal graph is, inevitably, a partial task that cannot be carried out in
an exhaustive manner. Consider, for example, the case of a not so smart robotic arm which,
in order to move an object from one point to another, considers an infinite number of tasks in
which it takes the object and puts it back where it initially was. The graph building procedure,
in particular, starts by queuing the high-level flaws, defined in the planning problem, in an
expansion queue. At each step, a flaw is extracted from the queue and expanded, possibly
queuing further sub-flaws, proceeding backwards in a breadth-first manner until the high-level
flaws do assume a finite estimated cost. It is worth noticing that, exception made for very simple
cases, when the graph building procedure halts, the queue might still contain some flaws. These
flaws, however, have an estimated infinite cost. Once given way to the resolution algorithm, in
particular, these flaws would be avoided as much as possible by the search algorithm. In other
words, for these flaws, the graph is not able to provide any indication for their resolution.

Can we, before the resolution process starts, remove them from the graph or, somehow, forbid
their choice? As we will see, the answer is yes, but we can do even more. Some of the flaws in
the graph expansion queue, indeed, might constitute the preconditions for the resolution of
already expanded flaws which, within the causal graph, do already have a finite estimated cost.
Such flaws, which we call deferrable, can easily be identified by traversing the causal graph
following the direction of the arrows, until a flaw with a finite estimated cost is found (hence
the flaw is classified as deferrable) or a sink node is reached (hence the flaw is classified as
non-deferrable). Once removed from the graph’s expansion queue, in particular, these flaws
can immediately be re-queued for subsequent further processing.

When the graph expansion procedure halts, in particular, there will be, in the graph’s expan-
sion queue, a set of flaws, either deferrable or not expanded yet. Instead of discouraging the
search algorithm from choosing such flaws, we can forcibly prevent it by imposing constraints
on the corresponding causal variables (the causal variables are forced to false). It is worth
noting that these flaws, having an infinite estimated cost, would not be chosen by the search
anyway. The introduction of the constraints, however, causally propagates within the causal
graph leading to some benefits in terms of performance.

Consider, for example, the graph presented in Figure 2. Before the expansion of the 𝜑5 flaw all
the estimated costs are infinite. The expansion of the 𝜑5 flaw, however, introduces a resolver, 𝜌7,
that has no preconditions. The cost of such a resolver, in line with the ℎ𝑚𝑎𝑥 heuristic, can easily
be estimated as the sole intrinsic cost of the resolver (Eq. 2). By applying the cost estimation
formula, the cost update is propagated forward by assigning an estimated cost of 1 to the 𝜑5
flaw (Eq. 1), an estimated cost of 2 to the 𝜌3 resolver, an estimated cost of 2 to the 𝜑3 flaw, an
estimated cost of 3 to the 𝜌1 resolver and an estimated cost of 3 to the 𝜑1 flaw. All the other
flaws and resolvers maintain, at this point, an infinite estimated cost.

The 𝜑6 flaw is then removed from the graph’s expansion queue and checked for deferrability.
Since the 𝜑3 flaw has a finite estimated cost, the flow is recognized as deferrable and is re-queued
into the graph expansion queue. It’s now the turn of the 𝜑7 flaw, having a term similar to that
of the 𝜑5 flaw. The cost update propagation, however, reaches, this time, the updating the cost
of the high-level 𝜑0 flaw, determining the halting of the graph building procedure with the 𝜑6
and the 𝜑8 flaws in the graph expansion queue.
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Figure 3: Different timelines extracted by their associated tokens.

The resulting graph, depicted in Figure 2, shows that the only two choices that the resolution
algorithm should eventually make are the resolution of the 𝜑3 and of the 𝜑4 flaws. In solving
such flaws, specifically, the heuristic-driven algorithm would choose the resolvers with the
lowest estimated cost, respectively the 𝜌3 and of the 𝜌5 resolvers, strictly avoiding the choice of
the 𝜌4 and of the 𝜌6 resolvers, whose estimated cost is infinite. If, however, the causal variables
of the queued flaws (i.e., the 𝜑6 and the 𝜑8 flaws) are forced to false, the causal constraints (i.e.,
(4) and (3)) force the 𝜌4 and of the 𝜌6 resolvers at false false and, consequently, the 𝜌3 and of the
𝜌5 resolvers at true, together with the 𝜑5 and the 𝜑7 flaws and the 𝜌7 and of the 𝜌8 resolvers,
solving the problem without the slightest need, at least from a causal point of view (a search
may in fact still be required for scheduling the activities), to do any search.

4. Experimental results

In order to test the effectiveness of the proposed pruning techniques we have implemented
both the procedures for pruning and for recognizing the deferrable flaws within the oRatio2

planner, testing its performance on different instances of increasing complexity on the Goac
domain. Specifically, the Goal Oriented Autonomous Controller (Goac) was an ESA initiative
aimed at defining a new generation of software autonomous controllers to support increasing
levels of autonomy for robotic task achievement. In particular, the domain, initially defined in
[30] and more recently cited in [50], aims at controlling a rover to take a set of pictures, store
them on board and dump the pictures when a given communication channel was available. The
interesting aspect of this domain is that communication can only take place within specific
visibility windows that take into account the astronomical motions of the planets/satellites
which, in some cases, may stand between the transmitting and receiving stations. The presence
of these visibility windows, in particular, requires an explicit modeling of temporal aspects
in order to adequately plan the transmission of information and can hence easily be modeled
through, and solved by, timeline-based planners. The problem is made more interesting by the
presence of constraints which include the available resources (e.g., memory and battery) as well
as by having a distance matrix, among the possible locations, which might be not completely
connected.

Figure 3 shows the execution times of different configurations of the oRatio solver, allowing

2https://github.com/pstlab/oRatio
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the comparison of the base solver, without pruning, pruning without recognizing the deferrable
flaws and pruning with the recognition of the deferrable flaws. From the figure it is possible to
see how, in general, the resolution times significantly benefit from the application of pruning on
the proposed benchmarking problem, reducing by an order of magnitude the computation times
in the case of the instance #9 of the problem with two visibility windows, or allowing resolution
within the two minute timeout in the case of the instance #7 of the 5 visibility windows. Note
how deferrable flaw recognition adds a little overhead in smaller instances, which still leads to
a benefit in larger instances.

5. Conclusions

The efficiency of the planners’ resolution processes is strongly influenced by the heuristics that,
in some cases, guide the solution process while, in other cases, can prune the search space so as
to favor the propagation of causal constraints and avoid possible dead-ends. The use of pruning
techniques is not new in the case of classical planning, however, it is less explored in the case of
partial-order planning and, even more so, in the case of high-expressive timeline-based planning.
For this reason we have presented a pruning technique based on the construction of a lifted
causal graph. The experimental results, although conducted on a single benchmarking problem,
show significant benefits and are, therefore, encouraging. A more detailed experimentation on
a greater number of benchmarking problems could highlight further benefits or weaknesses of
the proposed approach and, therefore, will certainly be carried out in future work.
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Abstract
We study the problem of finding cost-optimal solutions to planning problems that feature qualitative
state trajectory constraints expressed in PDDL3. These constraints are properties that every plan must
satisfy and can be seen as a fragment of LTL over finite traces. The state-of-the-art system for handling
PDDL3 problems is a compilation-based approach. Such a compilation has been tested only using a
satisficing planner, while the case where we require the planner to find optimal solutions is scarcely
studied; with this paper, we want to fill this gap. We propose an experimental analysis that involves
TCORE, the current state-of-the-art compilation approach to handle qualitative PDDL3 constraints,
and two compilation approaches supporting arbitrary LTL formulas. We evaluate each system using
two optimal planners, and we analyze the results using different metrics to explain the behavior of the
considered approaches. Our analysis confirms the result previously obtained with a suboptimal planner;
that is, in the optimal setting TCORE outperforms all other compilations over our benchmark domains.

Keywords
Automated Planning, PDDL3, Compilation, State-Trajectory Constraints

1. Introduction

The aim of this paper is to study the behavior of different state-of-the-art systems for handling
trajectory constraints in the context of finding optimal solutions. In particular, we focus
on planning problems that feature qualitative constraints defined by the PDDL3 language
[1]. PDDL3 is a popular and standard planning formalism that provides primitives for the
specification of such constraints through a subclass of LTL formulas [2]. State-of-the-art
approaches deal with such problems either by directly modifying the search engines [3, 4, 5, 6]
or by compiling temporal constraints away [7, 8, 9, 10, 11, 12, 13]. Compilation is a technique
that works by reformulating a planning problemwith temporal constraints into a new equivalent
problemwithout them. Bonassi et al. [13] presents a novel compilation approach, named TCORE,
for solving planning tasks with PDDL3 qualitative state-trajectory constraints. TCORE extends
a planning task with atomic variables whose role is to maintain the truth of the temporal
properties; then it exploits the concept of regression [14] to determine how actions would
need to be modified to correctly evaluate the formula over time. Problems compiled through
TCORE can be handled by any classical planner that supports conditional effects, making this
approach highly modular. It has been shown that [13], when using a suboptimal planner,
TCORE performs better than other state-of-the-art compilation approaches over the considered
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benchmarks. Although the results obtained with a suboptimal planner provide a clear picture of
the strengths and weaknesses of the tested compilations, the effectiveness of such approaches
in the context of finding optimal solutions is still unknown. To understand how the optimal
setting influences the performance of different compilations, we present additional experiments
involving TCORE and other compilation approaches for handling arbitrary LTL formulas using
optimal planners. The rest of the paper is structured as follows: Section 2 provides some
background on planning problems with PDDL3 qualitative constraints; Section 3 summarizes
the compilation schema of TCORE; Section 4 presents our experimental analysis; Section 5
gives the conclusions.

2. Background on Planning with PDDL3 constraints

We borrow standard notions and notations from propositional logic and the work by Gerevini
et al. [1] on PDDL3; the reader is referred to this work for more details.

A classical planning problem is a tuple Π = ⟨𝐹 , 𝐴, 𝐼 , 𝐺⟩ where 𝐹 is a set of atoms, 𝐼 ⊆ 𝐹 is the
initial state, 𝐺 is a propositional formula over 𝐹, and 𝐴 is a set of actions. An action 𝑎 ∈ 𝐴 is
a pair ⟨Pre(𝑎), Eff(𝑎)⟩, where Pre(𝑎) is a formula over 𝐹 expressing the preconditions of 𝑎, and
Eff(𝑎) is a set of conditional effects, each of which is a pair 𝑐 ▷ 𝑒 where: 𝑐 is a formula and 𝑒
is a set of literals, both over 𝐹. With 𝑒− and 𝑒+ we indicate the partition of 𝑒 featuring only
negative and positive literals, respectively. A state 𝑠 is a subset of 𝐹, with the meaning that if
𝑝 ∈ 𝑠, then 𝑝 is true in 𝑠, and if 𝑝 ∉ 𝑠, 𝑝 is false in 𝑠. An action is applicable in 𝑠 if 𝑠 ⊧ Pre(𝑎), and
the application of an action 𝑎 in 𝑠 yields the state 𝑠′ = (𝑠 ⧵ ⋃

𝑐▷𝑒∈Eff(𝑎)
with 𝑠⊧𝑐

𝑒−) ∪ ⋃
𝑐▷𝑒∈Eff(𝑎)
with 𝑠⊧𝑐

𝑒+. We indicate

with 𝑠′ = 𝑠[𝑎] the state resulting from applying action 𝑎 in 𝑠, and assume conflicting effects (𝑝
and ¬𝑝) are only yield by conditional effects having their conditions mutually exclusive in 𝑠.
A plan 𝜋 for a problem Π = ⟨𝐹 , 𝐴, 𝐼 , 𝐺⟩ is a sequence of actions ⟨𝑎0, 𝑎1, ..., 𝑎𝑛−1⟩ in Π; plan 𝜋

is valid for Π iff there exists a sequence of states (state trajectory) ⟨𝑠0, 𝑠1, ..., 𝑠𝑛⟩ such that 𝑠0 = 𝐼,
∀ 𝑖 ∈ [0, … , 𝑛 − 1] we have that 𝑠𝑖 ⊧ Pre(𝑎𝑖) and 𝑠𝑖+1 = 𝑠𝑖[𝑎𝑖], and 𝑠𝑛 ⊧ 𝐺. The cost of a plan 𝑐(𝜋), is
given by the sum of the cost 𝑐(𝑎) of each action 𝑎 in 𝜋. A plan 𝜋 is said to be optimal iff no plan
𝜋 ′ with 𝑐(𝜋 ′) < 𝑐(𝜋) exists. PDDL3 state-trajectory constraints are a class of temporal formulae
over trajectory of states, and they involve necessary conditions that the state trajectory of
a valid plan must satisfy. In this work, we consider planning tasks with constraints that in
PDDL3 are called “qualitative” [1], because involving only non-numeric terms. In addition to
the standard problem goals, a trajectory constraint can be of the following types: always 𝜙 (A𝜙),
which requires that every state traversed by the plan satisfies formula 𝜙; at-most-once 𝜙 (AO𝜙),
which requires that formula 𝜙 is true in at most one continuous subsequence of traversed states;
sometime-before 𝜙 𝜓 (SB𝜙,𝜓), which requires that if 𝜙 is true in a state traversed by the plan,
then also 𝜓 is true in a previously traversed state; sometime 𝜙 (ST𝜙), which requires that there
is at least one state traversed by the plan where 𝜙 is true; sometime-after 𝜙 𝜓 (SA𝜙,𝜓), which
requires that if 𝜙 is true in a traversed state, then also 𝜓 is true in that state or in a later traversed
state.
A PDDL3 planning problem is a tuple ⟨Π, 𝐶⟩ where Π is a classical planning problem and 𝐶

is a set of trajectory constraints; the valid plans of ⟨Π, 𝐶⟩ are all valid plans of Π whose state
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trajectories satisfy all constraints in 𝐶.

3. TCORE: Trajectory Constraints COmpilation via Regression

This section briefly describes how TCORE translates a PDDL3 problem into an equivalent
planning problem without constraints. TCORE identifies two classes of constraints: invariant
trajectory constraints (ITCs) and landmark trajectory constraints (LTCs). Intuitively, ITCs can
be checked along any plan prefix and if they are violated, there is no way the planner can
ever re-establish them; they are invariant conditions that must be maintained over the state
trajectory of the plan. LTCs are constraints that require certain conditions true at some state
over the state trajectory of the plan. TCORE works by extending the action preconditions and
conditional effects in order to (i) block the violation of ITCs during planning, and (ii) keep track
of the truth of relevant (w.r.t. trajectory constraints) formulae in the states generated by the plan
prefix. This is achieved by making use of the effect regression operator 𝑅, and by introducing a
set of monitoring atoms. The effect regression is a formula manipulation technique: given a
propositional formula 𝜙 and an action 𝑎, 𝑅(𝜙, 𝑎) is a propositional formula such that, for any
state 𝑠, 𝑠 ⊧ 𝑅(𝜙, 𝑎) iff 𝑠[𝑎] ⊧ 𝜙. The regression makes it possible to identify what actual influence
the action has over the trajectory constraint of interest. Monitoring atoms serve the purpose of
collecting relevant facts on the plan state trajectory and asserting their truth/falsity. The ITCs
are: A𝜙, AO𝜙, SB𝜙,𝜓. For each AO𝜙 and SB𝜙,𝜓, TCORE adds the fresh predicates 𝑠𝑒𝑒𝑛𝜙 and 𝑠𝑒𝑒𝑛𝜓
to record whether 𝜙 and 𝜓 have ever held. The LTCs are: ST𝜙 and SA𝜙,𝜓. For each LTC, the
compilation adds a predicate ℎ𝑜𝑙𝑑𝑐. Such a predicate is meant to record whether the constraint
is already satisfied or not according to the current plan prefix.

Algorithm 1 describes the full compilation. As a very first step, TCORE creates the necessary
atoms (line 3) and sets up the initial state so as to reflect the current status of the trajectory
constraints; in particular, the algorithm captures if a LTC is already achieved in 𝐼, or if a formula
(𝜙 or 𝜓) that is necessary for the evaluation of an ITC is already true in 𝐼. Then TCORE checks
whether any ITC is already unsatisfied; if so, the problem is unsolvable.

After the initialization phase, the algorithm iterates over all actions and constraints to modify
each original action model (preconditions and effects) by considering the interactions between
the constraints and the action model. If the constraint is an ITC, the algorithm determines,
by regression, a condition 𝜌 such that, if 𝜌 holds in the state where the action is applied, the
execution of such an action will violate the constraint. For example, in the case of A𝜙, 𝜌 models
whether the action makes formula 𝜙 false (line 10). The regressed condition 𝜌 is negated and
then conjoined with the precondition of the action. In this way, if the action will violate the
constraint in a given state, such an action is deemed inapplicable by the planner. In the case
of ITCs, conditional effects are added to keep track of whether relevant formulae have ever
held in the state trajectory of the plan prefix. For instance, SB𝜙,𝜓 requires to deal with the truth
of 𝑠𝑒𝑒𝑛𝜓: if an action makes 𝜓 true, then the action must make 𝑠𝑒𝑒𝑛𝜓 true too. In this way, the
compilation prevents applying an action 𝑎 when it makes 𝜙 true and 𝜓 has not held before in
current plan state trajectory (lines 14–17).

For each LTC 𝑐 ∈ 𝐶, the algorithm yields a formula 𝜌 that is true only in those states where the
action achieves the targeted formula expressed in 𝑐. Note here the slightly different treatment
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Algorithm 1: TCORE
Input :A PDDL3 Planning Problem ⟨⟨𝐹 , 𝐴, 𝐼 , 𝐺⟩, 𝐶⟩

1 𝐴′ = {}
2 𝐺′ = ⊤
3 𝐹 ′ = 𝑚𝑜𝑛𝑖𝑡𝑜𝑟 𝑖𝑛𝑔𝐴𝑡𝑜𝑚𝑠(𝐶)
4 𝐼 ′ = ⋃

𝑐∶ST𝜙∈𝐶
{ℎ𝑜𝑙𝑑𝑐 ∣ 𝐼 ⊧ 𝜙} ∪ ⋃

𝑐∶SA𝜙,𝜓∈𝐶
{ℎ𝑜𝑙𝑑𝑐 ∣ 𝐼 ⊧ 𝜓 ∨ ¬𝜙}∪ ⋃

SB𝜙,𝜓∈𝐶
{𝑠𝑒𝑒𝑛𝜓 ∣ 𝐼 ⊧ 𝜓 } ∪ ⋃

AO𝜙∈𝐶
{𝑠𝑒𝑒𝑛𝜙 ∣ 𝐼 ⊧ 𝜙}

5 if ∃SB𝜙,𝜓 ∈ 𝐶.𝐼 ⊧ 𝜙 ∨ ∃A𝜙 ∈ 𝐶.𝐼 ⊧ ¬𝜙 then
6 return Unsolvable Problem
7 foreach 𝑎 ∈ 𝐴 do
8 𝐸 = {}
9 foreach ITC 𝑐 ∈ 𝐶 do
10 if 𝑐 is A𝜙 then 𝜌 = 𝑅(¬𝜙, 𝑎) ;
11 else if 𝑐 is AO𝜙 then
12 𝜌 = 𝑅(𝜙, 𝑎) ∧ 𝑠𝑒𝑒𝑛𝜙 ∧ ¬𝜙
13 𝐸 = 𝐸 ∪ {𝑅(𝜙, 𝑎) ▷ {𝑠𝑒𝑒𝑛𝜙}}
14 else if 𝑐 is SB𝜙,𝜓 then
15 𝜌 = 𝑅(𝜙, 𝑎) ∧ ¬𝑠𝑒𝑒𝑛𝜓
16 𝐸 = 𝐸 ∪ {𝑅(𝜓 , 𝑎) ▷ {𝑠𝑒𝑒𝑛𝜓}}
17 Pre(𝑎) = Pre(𝑎) ∧ ¬𝜌
18 foreach LTC 𝑐 ∈ 𝐶 do
19 if 𝑐 is ST𝜙 then 𝜌 = 𝑅(𝜙, 𝑎) ;
20 else if 𝑐 is SA𝜙,𝜓 then
21 𝐸 = 𝐸 ∪ {𝑅(𝜙, 𝑎) ∧ ¬𝑅(𝜓 , 𝑎) ▷ {¬ℎ𝑜𝑙𝑑𝑐}}
22 𝜌 = 𝑅(𝜓 , 𝑎)
23 𝐸 = 𝐸 ∪ {𝜌 ▷ {ℎ𝑜𝑙𝑑𝑐}}
24 Eff(𝑎) = Eff(𝑎) ∪ 𝐸
25 𝐴′ = 𝐴′ ∪ {⟨Pre(𝑎), Eff(𝑎)⟩}
26 foreach LTC 𝑐 ∈ 𝐶 do
27 𝐺′ = 𝐺′ ∧ ℎ𝑜𝑙𝑑𝑐
28 return Classical Planning Problem ⟨𝐹 ∪ 𝐹 ′, 𝐴′, 𝐼 ∪ 𝐼 ′, 𝐺 ∧ 𝐺′⟩

for the two types of LTCs. While ST𝜙 only requires 𝜙 to be true, for SA𝜙,𝜓 the compilation
needs to signal the necessity of 𝜓 only when 𝜙 becomes satisfied; this is done by introducing
two conditional effects (lines 21 and 22) affecting the additional goal ℎ𝑜𝑙𝑑𝑐 of 𝐺′ (line 27). Also
observe that 𝜙 can become true multiple times, and each state satisfying 𝜙 needs to be followed
by a state such that 𝜓 is true again; this state can also be the same state in which 𝜙 holds, as
prescribed by the semantics of PDDL3.
Note that Algorithm 1 can add irrelevant preconditions and conditional effects that can

easily be omitted by looking at whether regression leaves a formula unaltered. E.g., for A𝜙, if
𝜌 = 𝑅(¬𝜙, 𝑎) = ¬𝜙, there is no need to extend Pre(𝑎) with ¬𝜌 = 𝜙 at line 17. Such optimizations
are implemented but omitted here for clarity and compactness.

As trajectory constraints are monitored along the entire plan, and regression through effects
provides sufficient conditions for ensuring that no ITC is violated by an action and no LTC
remains unsatisfied at the plan end, it is easy to see that the compiled problem always finds
a solution that conforms with the trajectory constraints of the problem. Moreover, since the
exploited regression establishes necessary conditions too, the existence of a solution in the
compiled problem implies that the original problem is solvable.
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Figure 1: Constraints grouped by type across all domains.

4. Experimental Results

Our experimental analysis studies the behavior of TCORE and two state-of-the-art compilation
approaches dealing with LTL constraints in the context of finding optimal solutions. Specifically,
we considered the exponential compilation by Baier and McIlraith [8], in short EXP, and the
polynomial compilation by Torres and Baier [11], in short POLY1. To evaluate the compilations,
we considered two optimal planners: 𝐴∗ with the ℎ𝑚𝑎𝑥 heuristic (implemented in FastDownward
[15]) and SYM-K [16]. The former performs a classical 𝐴∗ search guided by the admissible ℎ𝑚𝑎𝑥
heuristic, while the latter is a top-𝑘 planner2. Such planners are cost-optimal and support axioms,
a feature that is necessary to solve problems compiled through EXP. In total, we tested six
different compiler-planner combinations: the three compilations paired with𝐴∗(ℎ𝑚𝑎𝑥) ({TCORE,
EXP, POLY}𝑚𝑎𝑥 in short) and with SYM-K ({TCORE, EXP, POLY}𝑠𝑦𝑚𝑘 in short).
The performance of each system is evaluated in terms of the number of solved instances

(coverage), the time spent to find a solution (computed as the compilation time plus planning
time), the number of nodes expanded by 𝐴∗(ℎ𝑚𝑎𝑥), and dimension of the compiled problems. All
experiments were performed on a Xeon Gold 6140M 2.3 GHz, with time and memory limits of
1800s and 8GB, respectively. We tested the systems using the benchmark by Bonassi et al. [13].
The suite involves domains from the fifth IPC (https://lpg.unibs.it/ipc-5/), and has a total of 416
instances: 79 for Trucks , 90 for Openstack , 55 for Storage , 94 for Rover , and 98 for TPP . In such
domains, each action 𝑎 has cost 𝑐(𝑎) = 1, i.e., the optimal plan is the shortest. Figure 1 gives a
general overview on how each type of constraint is partitioned between the considered domains.
Overall, the predominant constraint type is always , followed by at-most-once , sometime-before
and sometime .

4.1. Results analysis

Problem dimensions. Table 1 presents the dimensions of the compiled instances in terms
of average number of fluents and average number of effects. Such metrics are computed only

1POLY extends a planning problem with many additional synchronization actions that are necessary to update the
automaton representing a LTL formula. In this experimental analysis, we set the cost of synchronization actions to
zero, as this guarantees that optimal plans correspond to optimal plans of the original problem.

2The objective of top-𝑘 planning is to determine a set of 𝑘 different plans with the lowest cost for a problem [16]. In
our experimental analysis we used a symbolic bidirectional search obtained from the top-𝑘 planner with 𝑘 = 1.
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Domain
Fluents Effects

TCORE EXP POLY TCORE EXP POLY

Openstack 251.5 571.2 883.6 3906.4 452635.8 12815.8
Rover 116.8 346.5 614.1 875.8 155595.9 3238.0
Storage 87.6 184.9 315.2 961.8 18000.6 1666.7
TPP 27.7 98.7 268.3 226.0 3181.3 1014.7
Trucks 374.6 522.5 754.9 8667.6 497196.0 15225.9

Table 1
Average number of fluents and effects in the instances resulting from each compilation. For the sake of
a fair comparison, the reported statics refer to the ground instances. For EXP, the number of fluents
include the number of derived fluents. Averages are computed on instances compiled by all systems.

Domain
𝐴∗ with ℎ𝑚𝑎𝑥 SYM-K

EXP POLY TCORE EXP POLY TCORE

Openstack (90) 10 3 10 1 0 88
Rover (94) 19 0 34 12 0 89
Storage (55) 19 9 33 15 3 31
TPP (98) 18 1 24 14 0 25
Trucks (79) 17 0 39 13 0 44
Total (416) 83 13 140 55 3 277

Table 2
Coverage achieved by all systems across all domains. In parenthesis, the number of instances for a given
domain.

for instances compiled by each system. EXP and POLY work on the lifted representation of
a planning task, while TCORE has to instantiate the planning problem before performing
the actual compilation. For the sake of a fair comparison, the averages reported in Table 1
were calculated by grounding the instances resulting from the two LTL systems using the
FastDownward translator.
We can observe that the tasks compiled by TCORE contain on average less effects and less

fluents compared to the instances compiled with EXP/POLY. This is due to the fact that EXP and
POLY are capable of handling arbitrary nested LTL formulas (unsupported by PDDL3); to deal
with such expressive power, these two compilations rely on automata theory to compile the
LTL formulas away. Integrating the resulting automatons into the domain model requires many
additional fluents and effects as shown by Table 1. On the other hand, TCORE is tailored at
handling PDDL3 qualitative constraints and this allows for a more efficient compilation. Indeed,
TCORE introduces up to one fluent for each trajectory constraint (zero in the case of an always)
and takes advantage of the regression computation to minimize the number of additional effects.

Coverage. Table 2 shows an overall picture of the coverage achieved by each system across
all domains. TCORE𝑠𝑦𝑚𝑘 achieves the highest coverage in four out of five domains, solving a
total of 277 instances. Remarkable are the performances in Rover and Openstack ; TCORE𝑠𝑦𝑚𝑘

solves 95% and 98% of the instances in these domains, respectively. The performances of TCORE
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(a) (b)

(c) (d)

Figure 2: Coverage versus planning time (a). Comparison between TCORE𝑚𝑎𝑥 and EXP𝑚𝑎𝑥 in terms of
expanded nodes (b). CPU-time comparison of TCORE with EXP when planning with 𝐴∗(ℎ𝑚𝑎𝑥) (c) and
with SYM-K (d).

with an optimal planner are close to those of TCORE with a satisficing planner: in the same
instances, TCORE with LAMA [17] solves only 34 more instances [13]. This may indicate that,
in many instances, the challenge is to effectively deal with the given set of constraints, rather
than finding the optimal solution.
As expected, TCORE𝑚𝑎𝑥 cannot solve many problems, achieving roughly half the coverage

of TCORE𝑠𝑦𝑚𝑘. We attribute this behavior to the fact that 𝐴∗ with ℎ𝑚𝑎𝑥 is less sophisticated
compared to SYM-K. Interestingly, though, 𝐴∗ with ℎ𝑚𝑎𝑥 is more effective at solving instances
compiled with EXP and POLY; with both compilations, such a system outperforms SYM-K in all
domains. We believe that this is due to the fact that SYM-K does not scale well when problems
have many atoms and effects, and this is the case for the instances compiled through EXP and
POLY, as shown in Table 1.

Coverage-wise, Bonassi et al. [13] observed that with a suboptimal planner EXP outperforms
TCORE in TPP . This is caused by the fact that TCORE fails to ground most instances in this
domain, while EXP directly works on the first-order representation. Our experimental results
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show that the two optimal planners cannot exploit this advantage of EXP; this indicates that
finding optimal solutions to problems compiled with EXP in TPP is a challenging task for the
considered planners.
Analogously to the results presented by Bonassi et al. [13], EXP dominates POLY across all

domains. One could expect that the polynomial compilation performs better than the exponential
compilation. This is not the case, as the LTL formulas deriving from PDDL3 constrains do not
lead to an exponential blow-up of the compilation performed by EXP.

CPU time analysis. Figure 2a reports how systems increase their coverage over time.
TCORE𝑠𝑦𝑚𝑘 surpasses EXP𝑠𝑦𝑚𝑘 right from the start, and achieves 90% of its maximum cov-
erage after 333 seconds. TCORE𝑚𝑎𝑥 increases its coverage at a slower rate, achieving 90% of its
maximum coverage in about 474 seconds. Differently, 𝐴∗ with ℎ𝑚𝑎𝑥 is faster than SYM-K with
EXP, as EXP𝑚𝑎𝑥 dominates EXP𝑠𝑦𝑚𝑘.

Figures 2c and 2d show a pairwise comparison of the runtimes of TCORE with the runtimes of
EXP, while Figure 2b compares TCORE𝑚𝑎𝑥 with EXP𝑚𝑎𝑥 in terms of expanded nodes. Most of the
PDDL3 instances are solved generally faster than the instances compiled with EXP. From Figure
2b, we can observe that TCORE𝑚𝑎𝑥 expands less nodes than EXP𝑚𝑎𝑥, and this indicates that the
ℎ𝑚𝑎𝑥 heuristic is more informed when tasks are compiled with TCORE; the EXP compilation
introduces axioms, a feature that seems to be not fully supported by the heuristic. There is an
exception for a small set of Storage problems; in such instances EXP performs more efficiently
than TCORE regardless of the planner. We attribute this to the fact that TCORE has to spend
time to ground the instances before performing the actual compilation, while EXP directly
works on the first-order representation.

5. Conclusions

We have presented an experimental analysis that compares three different compilation-based
systems to handle PDDL3 qualitative constraints with optimal planners. Results shows that
TCORE remains the state-of-the-art approach to handle the considered class of problems.
Recently, Bonassi et al. [18] has shown that, by expressing control knowledge in PDDL3,
TCORE can be used as a tool to improve the coverage of a satisficing planner. In the future, we
intend to test TCORE with new benchmarks featuring control knowledge in PDDL3 to improve
the coverage of an optimal planner. Finally, we plan to extend TCORE for handling quantitative
state-trajectory constraints and to study a compilation that works on the lifted representation
of a planning task.
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Abstract
Epistemic planning is a branch of Artificial Intelligence that stems from the combination of automated
planning and Dynamic Epistemic Logic (DEL). While DEL provides a very expressive framework—which
comes at the cost of undecidability—to guarantee the feasibility of the planning process, various frag-
ments have been studied in the literature, that rely on very specific syntax for representing domains. As
a result, a comprehensive language that is able to capture the general DEL framework is currently not
present in the literature. In this paper, we propose a new language called EPDDL (Epistemic Planning
Domain Definition Language), through which we can capture the full DEL semantics, thus allowing for
a general and unified syntax for representing epistemic planning domains.

1. Introduction

Epistemic planning [1] is an enrichment of automated planning, where the notions of knowledge
and belief [2] are introduced. In this field, we take into account the perspective of one or
more agents: epistemic states contain both factual information about the world and epistemic
information concerning the knowledge/beliefs of agents. Similarly, epistemic actions describe
how their knowledge/beliefs change. For instance, imagine that Anne received a letter from an
university she applied for. She then starts reading it in front of Bob, who can not directly take a
look at it. Once Anne has finished reading, her perspective will differ from Bob’s: while she now
knows whether she was admitted or not, Bob still considers both options to be possible. Thus,
the epistemic action describing this situation has to consider the points of view of both agents.

Epistemic planning has been frequently built on the formalism of Dynamic Epistemic Logic
(DEL) [3]. Since the general framework is undecidable, various epistemic planners implement
fragments of DEL [4, 5, 6, 7, 8, 9]. One of the main issues is that, to represent planning domains,
either solvers rely on languages tailored for a specific fragment [6, 10, 11], or they adopt no
language at all, making the comparison of existing solvers more difficult.

In this paper, we introduce the Epistemic Planning Domain Definition Language (EPDDL).
The language stems from the combination of the syntax of PDDL and the DEL semantics and it
aims at overcoming the specificity of existing languages. Namely, EPDDL is able to handle the
full DEL framework, which in turn supports an unified representation. The paper is organized
as follows. In Section 2, we recall the semantics of DEL. In Section 3, we describe EPDDL and
its main features. We conclude with a brief discussion and some future works.
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2. Dynamic Epistemic Logic

Epistemic Models. Let 𝒫 be a countable set of propositional atoms and 𝒜𝒢 = {1, . . . , 𝑛} be
a finite set of agents. The language ℒ𝐶

𝒫,𝒜𝒢 of multi-agent epistemic logic is defined by the BNF:
𝜙 ::= 𝑝 | ¬𝜙 | 𝜙 ∧ 𝜙 | □𝑖𝜙 | 𝐶𝐺𝜙, where 𝑝 ∈ 𝒫 , 𝑖 ∈ 𝒜𝒢 and 𝐺 ⊆ 𝒜𝒢. We read the formulae
□𝑖𝜙 and 𝐶𝐺𝜙 as “agent 𝑖 knows/believes that 𝜙” and “group 𝐺 has common knowledge/belief
that 𝜙”, respectively. In the possible world semantics of DEL, a Kripke model [12] represents an
epistemic model. Epistemic models contain both factual information on multiple possible worlds
and epistemic information, i.e., which worlds are considered possible by agents.

Definition 1 (Kripke Model). A Kripke model is a triple 𝑀 = (𝑊,𝑅, 𝑉 ) where: 1) 𝑊 ̸= ∅
is the set of possible worlds, 2) 𝑅 : 𝒜𝒢→2𝑊×𝑊 assigns to each agent 𝑖 an accessibility relation
𝑅(𝑖) (abbreviated as 𝑅𝑖), 3) 𝑉 : 𝒫→2𝑊 assigns to each atom a set of worlds.

An epistemic state is a pair (𝑀,𝑊𝑑), where 𝑊𝑑 ⊆ 𝑊 is a non-empty set of desig-
nated worlds denoting the real state of affairs. Truth of formulae is defined as follows:
i. (𝑀,𝑤) |= 𝑝 iff 𝑤 ∈ 𝑉 (𝑝); ii. (𝑀,𝑤) |= ¬𝜙 iff (𝑀,𝑤) ̸|= 𝜙; iii. (𝑀,𝑤) |= 𝜙 ∧ 𝜓 iff
(𝑀,𝑤) |= 𝜙 and (𝑀,𝑤) |= 𝜓; iv. (𝑀,𝑤) |= □𝑖𝜙 iff ∀𝑣 if (𝑤, 𝑣) ∈ 𝑅𝑖 then (𝑀, 𝑣) |= 𝜙; and
v. (𝑀,𝑤) |= 𝐶𝐺𝜙 iff ∀𝑣 if (𝑤, 𝑣) ∈ 𝑅*

𝐺 then (𝑀, 𝑣) |= 𝜙 (where 𝑅𝐺 = ∪𝑖∈𝐺𝑅𝑖 and 𝑅*
𝐺

denotes its transitive closure). Finally, (𝑀,𝑊𝑑) |= 𝜙 iff (𝑀,𝑣) |= 𝜙, for all 𝑣 ∈𝑊𝑑.
Event Models. In DEL, actions are modeled by event models [13, 14], that represent how new
information changes the perspectives of agents. Here, events can be seen as possible actions and
the accessibility relation 𝑄𝑖 describes which events are considered possible by agent 𝑖.

Definition 2 (Event Model). An event model is a quadruple ℰ = (𝐸,𝑄, 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡) where:
1) 𝐸 ̸= ∅ is the set of events, 2) 𝑄 : 𝒜𝒢→2𝐸×𝐸 assigns to each agent 𝑖 an accessibility
relation 𝑄(𝑖) (abbreviated as 𝑄𝑖), 3) 𝑝𝑟𝑒 : 𝐸→ℒ𝐶

𝒫,𝒜𝒢 assigns to each event a precondition,
4) 𝑝𝑜𝑠𝑡 : 𝐸→(𝒫→ℒ𝐶

𝒫,𝒜𝒢) assigns to each event a postcondition for each atom.

Informally, preconditions capture the applicability of events, whereas postconditions determine
whether an atom is true after the event is applied. A (multi-)pointed event model is a pair (ℰ , 𝐸𝑑),
where 𝐸𝑑 ⊆ 𝐸 is a non-empty set of designated events, and it represents an action in DEL.
Product Update. The product update formalizes how actions bring about information change
in epistemic states in DEL. An action (ℰ , 𝐸𝑑) is applicable in (𝑀,𝑊𝑑) if and only if for each
world 𝑤 ∈𝑊𝑑 there exists an event 𝑒 ∈ 𝐸𝑑 such that (𝑀,𝑤) |= 𝑝𝑟𝑒(𝑒).

Definition 3 (Product Update). Given an action (ℰ , 𝐸𝑑) applicable in an epistemic state
(𝑀,𝑊𝑑), where 𝑀 = (𝑊,𝑅, 𝑉 ) and ℰ = (𝐸,𝑄, 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡), the product update of (𝑀,𝑊𝑑)
with (ℰ , 𝐸𝑑) is the multi-pointed Kripke model (𝑀,𝑊𝑑)⊗(ℰ , 𝐸𝑑) = ((𝑊 ′, 𝑅′, 𝑉 ′),𝑊 ′

𝑑), where:
1. 𝑊 ′ = {(𝑤, 𝑒) ∈𝑊 × 𝐸 | (𝑀,𝑤) |= 𝑝𝑟𝑒(𝑒)},
2. 𝑅′

𝑖 = {((𝑤, 𝑒), (𝑣, 𝑓)) ∈𝑊 ′ ×𝑊 ′ | (𝑤, 𝑣) ∈ 𝑅𝑖 and (𝑒, 𝑓) ∈ 𝑄𝑖},
3. 𝑉 ′(𝑝) = {(𝑤, 𝑒) ∈𝑊 ′ | (𝑀,𝑤) |= 𝑝𝑜𝑠𝑡(𝑒)(𝑝)},
4. 𝑊 ′

𝑑 = {(𝑤, 𝑒) ∈𝑊 ′ | 𝑤 ∈𝑊𝑑 and 𝑒 ∈ 𝐸𝑑}.

Example 1 (DEL). Consider the above situation with Anne (𝐴) and Bob (𝐵). Before Anne reads
the letter, both agents consider possible two options: either she was admitted in the university
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(𝑢), or not. Thus, we need two worlds to represent this uncertainty (𝑤1 and 𝑤2, respectively).
As we are universal observers, we assume that we know that 𝑤1 is the designated world (circled
dot). This is modeled by the epistemic state on the left. When Anne reads the letter, Bob can not
read its content. In the center of the picture, events 𝑒1 (Anne learns that 𝑢) and 𝑒2 (Anne learns
that ¬𝑢) are needed to represent Bob’s uncertainty about the outcomes of the action (we use the
notation ⟨𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡⟩ for events). In this way, Anne learns that she was admitted, while Bob remains
uncertain. Moreover, both Anne and Bob are reciprocally aware of their perspective. The epistemic
state 𝑀 ′ that results from this action is on the right. Notice that now Anne knows that she was
admitted, i.e., (𝑀 ′, (𝑤1, 𝑒1)) |= □𝑎𝑢, while Bob does not change his perspective.

𝑤1:𝑢 𝑤2:¬𝑢
⊗

𝑒1:⟨𝑢,𝑖𝑑⟩ 𝑒2:⟨¬𝑢,𝑖𝑑⟩
=

(𝑤1, 𝑒1):𝑢 (𝑤2, 𝑒2):¬𝑢

𝐴,𝐵𝐴,𝐵 𝐴,𝐵 𝐵𝐴,𝐵 𝐴,𝐵 𝐵𝐴,𝐵 𝐴,𝐵

3. EPDDL

The development of the syntax of EPDDL was driven by three design principles: (1) to maintain
the style of PDDL syntax, (2) to capture the entire DEL semantics (i.e., to be able to represent all
possible event models), and (3) to obtain an intuitive and usable language, even for researchers
that are less familiar with epistemic planning and DEL. The main structure of EPDDL includes
three main components: problem (specific part), domain and action type library (universal parts).
Due to space limits, we do not provide the full BNF and we base our exposition on Example 1.
Problem. The problem defines “specific” aspects of a planning task. In EPDDL, in addition to
objects, initial state and goal, we also list which agents are present in the particular instance.
Goals in EPDDL are expressed by a generic formula 𝜙𝑔 ∈ ℒ𝐶

𝒫,𝒜𝒢 . The syntax of propositional
formulae is the same as in PDDL. Modal formulae such as □𝑖𝜙 and 𝐶𝐺𝜙 (with |𝐺| ≥ 2) are
represented as [i]𝜙 and [G]𝜙, respectively. Finally, initial states can be represented in two
ways: either explicitly (specifying worlds, relations and valuation), or by means of a finitary S5-
theory [15], i.e., a set of formulae of a particular form that admits a finite number of (equivalent)
finite models (computable in polynomial time). In our example, we use a finitary S5-theory to
state that: 1) Anne was admitted to the university (line 4), and 2) Anne and Bob have common
knowledge that they both do not know whether she was admitted (lines 5-6).

1 (define (problem p1)
2 (:domain example1)
3 (:agents Anne Bob)

4 (:init (u)
5 [Anne Bob](and (not [Anne](u)) (not [Anne](not (u))))
6 [Anne Bob](and (not [Bob](u)) (not [Bob](not (u)))))
7 (:goal [Anne](u)))

Domain and Action Type Library. In EPDDL, the universal aspects of a problem (types, pred-
icates, actions) are jointly described by a domain and an action type library. Moreover, actions
are defined on three separated levels of abstraction: events, action types and actions. Domains
define types, predicates and actions, whereas action type libraries contain the description of
events and action types. We now analyze more in depth these elements. Events constitute the
atomic components, where preconditions and postconditions (if any) are defined. Events are
then combined within action types to represent event models (Definition 2). Finally, each action
must include its type in its specification. Actions and their type are described separately, since
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it is common for different actions to share the same underlying structure. This allows for a
more concise and readable representation (design principle (3)).

Since a library is intended to describe universal aspects, action types should not refer to
specific entities of a problem. To this end, we implemented two important design choices:
1) parametrized events and action types, and 2) observability groups. First, parameters allow
to abstract from particular predicates and agents. Importantly, in EPDDL, apart from objects,
parameters can also refer to agents, formulae and postconditions. This aspect is crucial to
maintain the universality of action types: for instance, if we pass the preconditions of events as
parameters, we can simply refer to them as variables within an action type. As a result, action
type libraries can be used transversally across different domains. Second, observability groups
generalize accessibility relations. Each group represents the perspective of one or more agents.
For instance, when Anne reads the letter, she is fully observant, since she learns its content,
while Bob is partially observant, since he remains uncertain about Anne’s knowledge. Action
types only refer to observability groups (lines 13-15). Then, in each action we assign each agent
to a group (lines 29-33). We now show the EPDDL representation of the action of Example 1.

1 (define (library lib)
2 (:event e1
3 :parameters (?sensed - predicate)
4 :precondition (?sensed))
5 (:event e2
6 :parameters (?sensed - predicate)
7 :precondition (not (?sensed)))
8 (:action-type sensing
9 :parameters (?p - predicate)

10 :observability-groups (Fully Partially)
11 :events (e1 (?sensed :: ?p) )
12 (e2 (?sensed :: ?p) )
13 :relations (Fully (e1 e1) (e2 e2))
14 (Partially (e1 e1) (e2 e2)
15 (e1 e2) (e2 e1))
16 :designated (e1)))

17 (define (domain example1)
18 (:action-type-libraries lib)
19 (:requirements :del :typing :equality
20 :universal-conditions)
21 (:predicates (u)
22 (has_letter ?ag - agent))
23 (:action read_letter
24 :parameters (?ag - agent)
25 :action-type (sensing (?p :: (u)) )
26 :precondition (has_letter ?ag)
27 :observability-conditions
28 (?ag Fully)
29 (forall (?ag2 - agent)
30 (if (not (= ?ag2 ?ag))
31 (Partially)
32 ))))

4. Discussion

In this paper, we have introduced a new language for describing epistemic planning domains,
called EPDDL. Importantly, this language is able to capture the full DEL semantics. Intuitively,
this follows from the fact that each component of an event model (events, relations, preconditions,
postconditions) is captured by a corresponding syntactical element of EPDDL. Thus, we obtain
a syntax through which we can represent the existing fragments of epistemic planning in an
unified way. Due to space limits, we could not address all features of the language. As future
work, we plan on finalizing the syntax of EPDDL and to implement a full-fledged parser (also
including a type checker). Moreover, we intend to use EPDDL to create a public repository of
epistemic planning domains to be used as benchmarks for epistemic planners.
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Abstract
This paper reports the ambitions of an ongoing work intended to exploit the Unified Planning Framework
(UPF) to enhance and extend a flight path planning system we developed using an automated planner to
compute flight trajectories in non-nominal situations. We identify i) multiple benefits to draw using UPF,
specifically to overcome the shortcomings of our previous implementation and ii) possible extensions of
the flight path planning system thanks to the functions the UPF offers.

Keywords
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1. Introduction

For more sustainable mobility solutions, the next generation aircraft is expected to reduce
emissions significantly during flights while providing a better overall aircraft performance and
safety [1]. In line with this, future intelligent flight systems are required to adapt to varying
conditions, to the system’s dynamics, and to handle faults while keeping the pilot informed.
A fault-tolerant flight path planning system is an essential part of an intelligent flight system.
In addition to increasing fuel efficiency, it is also expected to reduce damage and casualties in
emergency situations caused by unforeseen events, e.g. faulty mechanics or human errors 1.

In the previous work [4], an automated flight path planning system was developed to assist
the pilot in a single-pilot ultralight aircraft. The system was implemented using a PDDL+
compatible automated planner [5], which uses a forward state-space search and heuristics
capable of coping with non-linear mathematical operations. In this paper, we report an ongoing
work aimed at extending the previous work, by exploring the benefits of the UPF [6]. We first
provide a brief summary of the previous work, followed by an overview of the adapted system
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architecture and underline the expected benefits of exploiting the UPF. Subsequently, we discuss
the ongoing progress and challenges faced, alongside with the future work considered.

2. Exploring the UPF for the Flight Path Planning System

(a) Automated fault-tolerant flight path
planning with ENHSP.

(b) A more flexible flight path planning system with
the UPF

Figure 1: Comparing the flight path planning system architectures.

The aim of the automated fault-tolerant flight path planning system is to determine a flight
trajectory meant to guide an aircraft (e.g. a single-pilot ultralight in [4]) from its current position
to a goal position placed within the vicinity of a safe landing area. This is helpful especially
when the pilot is overwhelmed, typically when an emergency landing is required due to low-fuel
level, or to a mechanical fault. Figure 1a illustrates the architecture adopted in the previous
work [4], in which the automated flight-path planning system considers weather information
known at planning time2, the current state (i.e. position and fault detection state variables) of
the aircraft, and the goal position, all encoded as part of the (PDDL+) problem instance. The
aircraft’s physical model is encoded as a problem domain adapted from [8]. The ENHSP planner
solver [5] is exploited to compute an executable temporal plan 𝜋 =< 𝑎0(𝑡0), 𝑎1(𝑡1), ⋯ , 𝑎𝑛(𝑡𝑛) >,
with each 𝑎∗ representing a set of control parameters, namely the turn rate and the climb rate,
which will be used to predict the sequence of waypoints < 𝑥0(𝑡0), 𝑥1(𝑡1), ⋯ , 𝑥𝑛(𝑡𝑛) >, setting
therefore a feasible reference trajectory for the autopilot to guide the airplane, in case the pilot
is incapable of steering the aircraft. A learning module built on k-means clustering is part of the
planning system to determine the optimal planning parameters for non-nominal situations (i.e.
emergency landing with low fuel or maneuvering a faulty aircraft) using flight data generated
from flight simulations, for tuning the ENHSP planner solver, as well as for selecting the ranges
of the state variables in the planning problem, in order to simplify the search [9].

Nevertheless, there are several shortcomings worth mentioning in the previous works [4, 9].
To call the ENHSP planner solver, another bash instance is created within the flight path
planning system, and run as an external process, limiting therefore the interaction with the
planner solver. Furthermore, minimum changes in the problem instance, due to either a new

2The weather information used is from the National Oceanic and Atmospheric Administration (NOAA) [7].
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goal condition, e.g. if a better landing area is detected, or to minimal changes in the weather
information, the problem domain and instance have to be parsed and grounded entirely, which
can be time-consuming for a more complex problem model. Therefore, we have identified the
UPF as a more compact and efficient framework that can overcome these shortcomings, and
offer more meaningful extensions to the fault-tolerant flight path planning system.

2.1. The Unified Planning Framework (UPF)

The UPF [6] is a collaborative effort under development within the AIPlan4EU project, with the
purpose of providing flexibility in the planning problem definition (similar to Tarski [10]) and
making a wide range of planning technologies accessible (similar to Planutils [11]), via their
integration as Python libraries within a single framework.

2.2. Benefits of using UPF for the Flight Path Planning System

Based on the published information and objectives of the UPF in [6] and [12], we identified
some features of the UPF that can be exploited to develop a more flexible and integrated flight
path planning system, of which the architecture is as depicted in Figure 1b. The benefits drawn
from the UPF-based flight path planning system architecture are described below.
Overcoming the shortcomings of the previous work: Without having to invoke an external
bash process, it is more flexible to interact with the planning engines within the same Python
framework, which is particularly useful whenwe consider a human-in-the-loop planning system,
in which the pilot can modify a solution plan, for example by adding an intermediate waypoint.
In this case, the PlanValidator can be called programmatically.
A more prominent improvement the UPF will bring forth is the coping with a dynamic

environment, as it allows to change state variables programmatically without having to parse
the entire problem instance completely, reducing thereby the overall computational time. With
this flexible parsing, a partial planning problem containing typically weather data and airspace
constraints can be pre-encoded, later completed by the pilot (with goals or additional constraints),
who interacts with the flight path planning system via a cockpit user interface. Domain-specific
validator can check the pilot’s inputs for conflicts (with the constraints of the existing partial
problem) before including them into the planning problem. Having this implemented, the flight
path planning system will conform with the EASA Roadmap for the use of AI in a cockpit: the
system is pilot-centered, with AI playing an assisting role [13].
Other potential extensions: To date, the only planner solver used for the (kinodynamic) flight
path planning problem at hand is ENHSP. The main hindrance in using other planners is the
lack of support for non-linear mathematical operations encoded in the problem domain. With
the parser of UPF supporting the encoding of non-linear mathematical operations, it is likely
that more planner solvers capable of solving this class of problem will be included in the UPF,
leading to the possibility of creating multiple planning instances in parallel for different planners
or for different heuristics of the same planner, emulating thereby “diverse planning” to obtain
multiple solutions that can be presented to the pilot for assisting him/her in decision-making.

Since the current implementation relies only on one solver (ENHSP), plan repair, although can
be considered, can only be done externally to the AI planning module, and in a “programmatic”
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and domain-specific manner, as in [8], where partial plans are “stitched” together by adding an
artificial “bridge” to ensure continuity between them. With the UPF, even if the planner solver
does not include plan repair capabilities, another planning engine can be used for repairing a
plan, which is relevant to our use case, given the dynamic environment, e.g. a no-fly-zone is
determined during flight due to detected moving objects nearby (such as drones, cranes, etc.).
The learning module in the previous work was based on an unsupervised learning method,

with the aim to select the set of planning and control parameters to optimize the likelihood of a
safe landing in non-nominal situations. This learning module can be extended to include inverse
reinforcement learning to learn aircraft maneuvers from an experienced pilot in emergency
landing, and use these “pre-learned” maneuvers as actions in the planning problem. Having
planning libraries implemented in Python enables the exploitation of Python libraries such as
scikit-learn [14] or OpenAI Gym [15] within the same Python-based system.

3. Discussion and Future Work

Having identified the benefits of the UPF for our current flight path planning system that was
developed in Matlab in [4] and in C++ in [8], we are currently working towards porting the
parser for weather data, the automated encoding of problem models, and the learning module
into Python3. As soon as the integration of PDDL+ syntax and global constraints, which have
been proven to be extremely handy in defining no-fly zones in a compact manner, is realized in
the UPF, the architecture shown in Figure 1b can be fully implemented without much adaptation
and its performance can be compared to the previous work. Subsequently, the improvements
and extension described in Section 2.2 can also be included.

3.1. Future Work to Include Hierarchical Task Network Planning

As pointed out in the “Future Work” of [6], hierarchical structures will be added into the UPF,
enabling thereby the solving of Hierarchical Task Network (HTN) planning problems. This will
further benefit the extension of the flight path planning system to an even more versatile flight
management system capable of assisting the pilot with tasks of higher abstraction levels3 while
simultaneously communicating a flight path plan to reach the desired goal location. With this
extension, not only that (high-level) task and motion planning can be supported by the same
framework and communicated to the pilot in a hierarchical manner (that is more comprehensible
for human cognition), plan and goal recognition can also be performed in an automated fashion
using HTN planning engines [17], resulting in a close-loop assisting system.

4. Acknowledgments

This work is done within the research group ”Intelligent Control of Highly Over-Actuated
Flight Systems” funded by Munich Aerospace and within the MOREALIS project funded by the
German Federal Ministry of Economic Affairs and Climate Action.

3Pilots are in general instructed with tasks that are hierarchical in nature, and abstract away minute details, as
domain-level knowledge is assumed [16].
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Abstract
Despite some similarities that have been pointed out in the literature, the parallelism between auto-

mated planning and natural language processing has not been fully analysed yet. However, the success

of Transformer-based models and, more generally, deep learning techniques for NLP, could open inter-

esting research lines also for automated planning. Therefore, in this work, we investigate whether these

impressive results could be transferred to planning. In particular, we study how a BERT model trained

on plans computed for three well-known planning domains is able to understand how a domain works,

its actions and how they are related to each other. In order to do that, we designed a variation of the

typical masked language modeling task which is used for the training of BERT, and two additional ex-

periments into which, given a sequence of consecutive actions, the model has to predict what the agent

did previously (Previous Action Prediction) and what it is going to do next (Next Action Prediction).

Keywords
Automated Planning and Natural Language Processing, Deep Learning, BERT

1. Introduction

In 2007, the work in [1] drew an interesting parallel between automated planning and natural

language processing (NLP), presenting a new formulation for plan recognition (i.e. the task

of inferring an agent’s plan observing some of its actions) based on grammars. The authors

claimed that the two disciplines could share some of the research results, but they stated that

much of the recent work in both fields had gone unnoticed by the researchers in the other field.

In the following years, the separation between these two fields has not diminished. For NLP,

deep learning techniques such as word embedding [2], recurrent neural networks, the attention

mechanism [3] and pre-trained Transformer-based architectures [4, 5] have revolutionised

the field, reaching a completely new state of the art in many different tasks [6, 7]. Although

automated planning is a key and current research field in artificial intelligence [8, 9, 10], deep

learning had a limited impact on it. In fact, it is mostly used for predicting heuristics [11],

processing sensor data in order to create a symbolic representation of a planning problem [12]

and for goal recognition tasks [13, 14] or in specific applications [15].

In this work, we focus on one of the most recent deep learning architectures for NLP: BERT

[5]. Processing a huge quantity of sentences and documents, BERT is able to learn how the

language works and its capabilities can be exploited for text classification [16], sentiment
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analysis [17], question answering [18] and other NLP tasks. This is done by training the model

to perform the so-called masked language modeling task. Basically, the input of the BERT model

is an incomplete sentence, into which some words are replaced by a special marker, and the

model has to reconstruct the complete sentence, predicting the missing words from context.

Inspired by the parallelism pointed out in [1], in this work we aim to transfer these techniques

in the automated planning field. We claim that plans and actions can be seen similarly to

sentences and words, and we have designed a planning language modeling task into which

the model has to reconstruct an incomplete sequence of actions to train the model. With

this technique, we train a single BERT model using actions from three well-known planning

domains: Logistics, Satellite and Blocksworld. Next, we evaluate the performance of the

model in this task and in two additional experiments: Next Action Prediction, into which the

model has to predict the action that follows a sequence of actions (which are the input of the

model) extracted from a complete plan, and Previous Action Prediction, into which the predicted

action is the one that precedes the input sequence. These tasks were made to demonstrate

how well the model understands about how a planning domain works, its rules, its actions

and their effects. Moreover, in this work, we present a detailed report of the main difficulties

in the training process, the necessary choices the user has to make in order to train a similar

model, the dimension of the datasets required to obtain good results, etc. Finally, we discuss the

positive and negative aspects of applying these techniques to the planning domain.

2. Background on BERT

BERT (Bidirectional Encoder Representations from Transformer) [5] is a deep learning archi-

tecture based on Transformer [4] composed by several layers which progressively analyse a

sequence of elements, named tokens, in order to understand how they relate to each other, their

meaning and the overall properties of the entire sequence. Although BERT is a model typically

used for Natural Language Processing, recently the same techniques have been applied in other

contexts such as the analysis of programming languages [19], graphs [20] and images [21].

At first, each token is associated to an index. Next, an embedding layer calculates a vector of

real numbers for each token, as in initial representation of its meaning. Considering a sequence

of tokens 𝑆 of length 𝑁 , each token 𝑡 ∈ 𝑆 is represented by a vector 𝑥𝑡 ∈ R𝑑
. We denote as

𝑋 ∈ R𝑁×𝑑
the overall matrix of token embeddings.

After calculating this representation, these vectors are processed by several encoding layers.

Each layer applies in parallel multiple self-attention mechanisms, called heads, into which the

relation between each possible pair of tokens is computed. This mechanism produces a matrix

𝐴𝑖,𝑗 ∈ R𝑁×𝑁
, into which 𝑖 is the number of the encoding layer and 𝑗 is the head number. For

each token 𝑤 ∈ 𝑆, the vector 𝑎𝑤 ∈ 𝐴𝑖,𝑗 contains the attention weights that represent how much

𝑤 is related to the other tokens in 𝑆. In order to calculate these weights, in each head the input

representation of the token sequence 𝑋 ∈ R𝑁×𝑑
is projected into three new representations

called key (𝐾), query (𝑄) and value (𝑉 ) with three weight matrices 𝑊𝑘, 𝑊𝑞 and 𝑊𝑣 :

𝐾 = 𝑋 ×𝑊𝑘, 𝑄 = 𝑋 ×𝑊𝑞, 𝑉 = 𝑋 ×𝑊𝑣

Then, the self-attention weights are calculated using the softmax function on the scaled dot-

product between 𝑄 and 𝐾 . Finally, this mechanism computes a new vector representation of
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the input tokens (𝑍) by multiplying the attention weights for 𝑉 .

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(︂
𝑄×𝐾⊺

√
𝑑

)︂
, 𝑍 = 𝐴× 𝑉

Given that in each encoding layer there are several heads (typically 8, 12, 16 or 24), in order

to create a single representation provided by the multi-head attention mechanism the result of

each head is concatenated and then passed to a feed-forward layer.

As described in [4], the multi-head attention mechanism is followed by a residual connection

which adds the input representation with the one calculated by the multi-head attention. Next,

the results is fed to a feed-forward layer and another residual connection. The output of the

encoding layer is also the input of the next encoder. Typically, a BERT model is composed by 8,

12 or 16 encoding layers. A schematic representation of an encoding layer is shown in Figure

1b.

In the original model, designed for NLP tasks, the training was performed using 16GB of

documents for a total of more than 3 billions of words [5]. However, more recent implementa-

tions exploit even larger datasets (for instance, RoBERTa [22] uses about 165GB of data). The

training task is called masked language modeling and works as follows. Given a sequence of

words (typically the maximum length is 512 tokens), a certain percentage of them is replaced

with a special token called [MASK]. The encoding layers process this sequence and learns

how to predict the masked words from the context formed by the remaining ones. In order to

perform this operation, the output of the last encoding (i.e. the final representation of each token

produced by the architecture) is connected to a fully-connected layer with softmax activation,

into which each neuron represents a word from the vocabulary. Supposing that the overall

corpus of documents contains 100𝐾 different words, this layer will be formed by 100𝐾 neurons.

3. Planning Language Modeling with BERT

In order to perform PLM, we approach the planning domains as a NLP task. In fact, our

BERT model is trained using a slight variation of the typical language modeling task that we

call Planning Language Modeling. In this technique, given a sequence of contiguous actions 𝑝̄
composed of 𝑛 actions 𝑎𝑖, with 𝑖 ∈ [1, 𝑛], we consider each action as a separated token, like

words in a sentence. First, we divide the action sequence into separated tokens, using the

WordPiece tokenizer [23]. Next, we substitute a certain percentage of actions with the special

token [MASK] and give this incomplete sequence as input. The BERT model has the task of

predicting the missing actions from the overall context of the action sequence. If the model

is capable of performing this operation, we claim that it has the ability to understand how

the planning domain works, the impact of the actions, when they are performed by an agent,

and which effects they have. In order to perform the planning language modeling, the BERT

model needs processing a large quantity of these training instances, progressively adjusting the

training weights of the model with the backpropagation algorithm until it reaches a satisfying

level of accuracy.

Our model architecture is very similar to the one proposed in [5]. We use a total of 12

encoding layers, each one of them with 12 heads, and we use 768 as the embedding size, i.e.

actions are represented as vectors of 768 real numbers across the model.
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(a) (b)

Figure 1: On the left (a) , schematic representation of a BERT model performing the PLM task. On the

right (b), a simplified view of the structure of an encoder block.

Our choice is to develop a multi-domain model, considering Logistics, Blocksworld and

Satellite. With a single model, following the current trend of multi-language models, we

want to verify whether BERT could understand different domains at the same time. Next, we

aim to study the training process for a model which was already trained on a different domain.

The model was first trained on Logistics. It took 40 epochs to understand the domain and

reach a good accuracy. Then we trained the model on Blocksworld and Satellite and it took

less than 10 epochs to achieve good performance. Therefore, we verified that adding another

domain to a pre-trained model does not require another, full training procedure. Instead, the

model can easily adapt to the new domain as in fine-tuning operations, requiring only a few

epochs to achieve a good accuracy on the new domain.

3.1. A Blocksworld Example

In this section, we present a simple example of how we structure our planning language

modeling task. For simplicity’s sake, let us assume that our BERT works only for this domain.

We use a very simple plan instance in the well-known Blocksworld domain. In this domain,

the agent has the goal of building one or more stacks of blocks, and only one block may be

moved at a time. The agent can perform four types of actions: Pick-Up a block from the table,
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Put-Down a block on the table, both these operations take only one argument, Stack which puts

a block on top of another one and Unstack which removes a block that is on another one, both

have two arguments. We assume that our plans involve at most 22 blocks, therefore we have

22 possible Pick-Up action, 22 Put-Down actions, 22 * 21 Stack actions and 22 * 21 Unstack

actions, for a total number of 968 actions.

Let’s consider the plan formed by the following 6 actions: (Unstack Block_R Block_G),

(PutDown Block_R), (Unstack Block_M Block_O), (Stack Block_M Block_R),

(Unstack Block_G Block_L), (Stack Block_G Block_M) with ids corresponding to

indices 59, 462, 121, 703, 309 and 240. Next, we mask 1 action (17%) chosen randomly.

Assuming that the special token [MASK] has index 0, the input of our BERT model will be the

following sequence: [59, 462, 121, 0, 309, 240].

This sequence is then processed by the embedding layer and by all the encoding layers,

producing a final representation of each element as a vector of 768 real numbers. Given that

the fourth element of the sequence is masked, its embedding vector is passed to a feed-forward

ƒlayer composed of 968 neurons (one for each possible action of the domain) with the softmax

activation function. Given that the original action had index 703, we want in output a vector

formed by all zeroes except for a 1 at index 703. Therefore, the result produced by the feed-

forward layer is compared with the desired output. This procedure is repeated for every training

instance, evaluating the overall error made by the architecture and calculating a loss function,

which will be used by the backpropagation algorithm to adjust the model weights.

In Figure 1a we show a simplified representation of the model architecture performing the

planning language modeling task. The actions are encoded into vectors by several encoding

blocks and, in the last step, the vectorial representation of [MASK] is passed to a feed-forward

layer with softmax activation function that predicts a 1 at the index 703 and 0 for all the other

indexes.

3.2. Training Technique

In order to properly train the model, there are some necessary choices that the user must make.

Although typically BERT models treat a specific language, there are several multi-language

models. Given that a planning domain has its own set of actions, predicates, and rules, we can

consider it as a sort of an independent language. Therefore, the user should evaluate whether

training a BERT model for each domain, perhaps specialising and improving its predictive

capabilities, or building a multi-domain model, selecting which domains to consider and their

quantity.

Next, an important constraint of the BERT model is that it must have a predefined vocabulary

of actions. Therefore, during the training process the user has to define a predefined set of

objects for each domain and generate all the possible actions that an agent could perform with

them. Although the predefined vocabulary is sensitive to the object names, this operation

only requires to set a maximum number of objects. In fact, a mapping algorithm can be easily

implemented for translating new names into predefined ones.

As with all deep learning techniques, a crucial aspect for obtaining good performance is the

number of training instances, i.e. the number of plans necessary to train the BERT model. The

choices of how many domains to consider for training and how many objects to include have a
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Domains Objects Vocab. size Plans Mean length Max length Augmented instances

Logistics 52 15154 200k 29 382 360k

Blocksworld 22 968 180k 39 338 430k

Satellite 65 33225 140k 17 33 140k

Table 1
Characteristics of the dataset we used to train the BERT model in terms of overall number of objects

considered, number of actions in the vocabulary, number of generated plans and their mean and maxi-

mum length. In the column Augmented instances we report the dimension of the dataset after the data

augmentation process.

serious impact on the number of plans which have to be collected or generated for the training

of the model, the amount of time required to this process, and its difficulty.

In our model, we have selected three well-known planning domains: Logistics,

Blocksworld and Satellite. In Table 1 we report the characteristics of our dataset. Please

note that while in Blocksworld the only objects present in the domain are the blocks, in the

other two domains there are several types of objects (for instance, Logistics includes airplanes,

airports, locations, cities, trucks and packages) and we report the overall sum of them for

simplicity’s sake.

In order to train the multi-domain model, the typical approach is simply considering a

single training set composed by the plans for all the three domains. However, we have also

experimentally verified that it is possible to add a domain to a pre-trained model extending

its vocabulary and continuing its training with additional epochs using the plans generated

from the new domain. In this phase, however, we have noticed that it is useful to include also a

percentage (such as 25%) of plans belonging to the already processed domains.

The overall dimension of our data set is about 350 MB of data; therefore, it is definitively

smaller than standard BERT architectures [5, 22].

3.3. Data Augmentation

Another technique that can be useful in training a BERT model is data augmentation. In this

procedure, we divide the longest plans in several subsequences with random dimension and

add them to the dataset. With this technique, the training set can contain not only entire

plans but also smaller sequences of actions. In order to avoid including a large number of

very similar instances, which could create overfitting issues to the model, we assure that plans

which are too similar to the ones already present in the dataset are not added. In our context,

for Logistics and Blocksworld we divided the plans with more than 20 actions, randomly

selecting a subsequence of the plan. The subsequence is added to the training set if the similarity

calculated by the Ratcliff-Obershelp algorithm [24] with the other plans is lower than 0.4,

otherwise it isn’t. While this operation increases the predictive performance of the model for

these two domains, in Satellite data augmentation did not improve the results. We claim that

this is due to the smaller size of the Satellite plans, with respect to the other two domains. In

Table 1 we report the dimension of the original dataset (with complete plans) and the augmented

dataset, with the smaller subsequences generated by the data augmentation process.
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4. Experiments and Results

In this section, we present the set of learning tasks we designed for our model. The model was

trained on 2 NVIDIA V100, for 120 epochs, with a training time of almost 130 hours.

4.1. Designed Tasks and Evaluation Metrics

First of all, we test the capabilities of our model to perform the planning language modeling

using a test set composed by plans which were not used during the training of the algorithm. In

this experiment, we check if the predictions of the masked input actions are correct. Given that

the softmax activation function of the output layers actually predicts a score between 0 and 1

for all the possible actions of our three domains, we evaluate the planning language masked in

two configurations. In the first one (Top-1 accuracy), we consider only the action predicted with

the highest score. Given the very high number of possible classes in output (one for each action,

i.e. more than 40 thousands in our multidomain model), we also use as an evaluation metric

the Top-5 accuracy [25] into which we consider the set of the 5 actions with the highest score,

and, if the original action belongs to the set, we consider that the model correctly predicts the

masked action. The planning language modeling is evaluated using the following percentages

of masked actions: 10%, 15%, 25% and 50%.

We also design two additional tasks to test the capabilities of the model to handle sequences

of actions and to infer some of the domain knowledge such as actions’ preconditions and effects.

For both of these tasks, we use the same plans used for the planning language modeling. In

the first task, called Next Action Prediction, we ask our model to predict the action that follows

an input action sequence. In the second, called Previous Action Prediction, we ask our model to

predict the action that precedes an input action sequence. In detail, given an action sequence of

length 𝑙, for Next Action Prediction, we pass the first 𝑙−1 actions to the model and ask the model

to predict the 𝑙-th action. Similarly, for Previous Action Prediction the model should predict the

first action of the sequence while the remaining actions are passed in input. We evaluate Next
Action Prediction and Previous Action Prediction using different input sequence lengths (i.e. 3, 5,

10, 20) and with the entire plan without the last and first action, respectively (Tot).

For the evaluation of these tasks, in our opinion, verifying whether the predicted action

matches the one in the input plan is not enough. In fact, the input action sequence filled with

the predicted action might be valid even though the predicted action does not match the one in

the label. Moreover, we are not providing the model the initial state or the goal (see Section

5), therefore the model cannot always predict the best action based only on an incomplete set

of actions. For this reason we use VAL [26] to check if, starting from the initial state of the

problem, the action sequence, which also comprehends the action predicted by the model, can

be executed or not, providing insight into how the model is able to learn the inner or working

of a planning domain
1
.

1

Please note that VAL does not always validate our plan as the goal of the problem is often not reached; nonetheless,

we use VAL errors to determine whether the sequence is valid or not
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Task 10 % 15% 25% 50%

Top 1 0.710 0.671 0.574 0.333

Top 5 0.821 0.802 0.725 0.486

Table 2
Results for the Planning Language Modeling task in terms of Top-1 and Top-5 accuracy. On the columns,

we report the percentage of masked actions in the test sequences.

Length 3 5 10 20 Tot

Top 1 0.234 0.291 0.200 0.333 0.596

Top 1 (V) 0.650 0.675 0.454 0.664 0.759

Top 5 (V) 0.885 0.906 0.755 0.928 0.929

Table 3
Results for the Next Action Prediction task. Length stands for the number of input actions (column tot

means that we pass an entire plan to the model except for the last action). On the rows, we report the

Top-1 accuracy considering only the correct actions and Top-1 and Top-5 accuracy considering also the

valid actions (V).

4.2. Experimental Results

Considering all three domains, in Table 2 we show the results, in terms of Top-1 and Top-5, of

the planning language modeling task, using 3000 plans, 1000 for each domain, as a test set.

In this experiment, we masked different percentages of actions: 10%, 15%, 25% and 50%. As it

should be expected, the accuracy decreases proportionally to the increasing of the percentage

of masked actions (i.e. less input data). The overall performances are more than acceptable,

in particular for the 50% in Top-5, where the model, analyzing just half of the plan, is able to

correctly predict almost half of the actions, highlighting a deep comprehension of the context.

With less masked actions, the accuracy is very high, with more than 80% in Top-5 for 10% and

15% and good performance also in terms of Top-1.

The results for the Next Action Prediction task in terms of Top-1, Top-5 are shown in Table

3. In each column, we consider a different length for the input sequence. For instance, if the

length is 5 we have 5 consecutive actions in input and we want to predict the 6-th.

In each row we can notice the same trend: the accuracy increases with the length of the

plan, except for the plans with length 10, where there is a drop of the performances. However,

in terms of Top-5 we have very good results even with small action sequences, underlining

a deep understanding of the inner workings of the planning domain. Focusing only on the

Top-1 correct, the results are much lower. That could be due to the fact that our model does

not receive any information about the agent’s goal and therefore it can only predict a set of

executable actions, into which it is possible to find the right one.

To better understand these results, we study the performance for each considered domain for

the prediction of valid actions. In Figure 2, we analyze the accuracy in terms of Top-1 and Top-5
accuracy. On the left, we can see how Top-1 accuracy increases proportionally to the length of

the plans in the Logistics domain, from 51% to 92%, while it’s almost constant in Satellite
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Figure 2: Results for the Next Action Prediction task in terms of Top-1 (left) and Top-5 (right) for each

domain. In this experiment we considered the 5 most probable predictions of the model. On the x-axis

we found the length of the action sequence and on the y-axis we found the accuracy of the predictions,

computed as validated answers on total instances in the specific domain.

Length 3 5 10 20 Tot

Top 1 0.287 0.385 0.511 0.545 0.566

Top 1 (V) 0.423 0.510 0.594 0.600 0.602

Top 5 (V) 0.637 0.740 0.834 0.843 0.854

Table 4
Results for the Previous Action Prediction task. Length stands for the number of input actions (column

tot means that we pass an entire plan to the model except for the first action). On the rows, we report

the Top-1 accuracy considering only the correct actions and Top-1 and Top-5 accuracy (V) considering

also the valid actions.

domain. In the Blocksworld domain the results are excellent with shorter plans, with 95%,

while they drop with length equals to 10, to 22%. Then they recover with longer plans, arriving

to 84%. As it can be seen in Figure 2, the performance drop for length 10 regards almost only

the Blocksworld domain. We will address this issue in Section 5. In terms of Top-5 accuracy,

on the right of Figure 2 we can see the same trend as the previous task on the performances,

with good results in predictions, on Logistics up to to 99% and on Satellite up to 92% .

In Table 4 we report the results for the Previous Action Prediction task using the same metrics

and format used in the evaluation of the Next Action Prediction task. Similarly to the Next
Action Prediction results, we can notice that, for each row, the accuracy increases as the input

length increases. These results are very promising, even if they are slightly lower than the ones

obtained in Next Action Prediction. The performances increase with the length of the plan and

the collapse on length 10, seen in the previous task, is not present.

As we did previously, in Figure 3 we show the results for each domain in terms of Top-1 and

Top-5 accuracy (considering also the valid actions) on the Previous Action Prediction task. In

terms of Top-1, we can notice that the performances on the Logistics and the Blocksworld

domains remains quite constant, (with a maximum of 47% and 57% respectively), while on the

Satellite domain they increase proportionally with the length of the plans, from 33% to 84%. In

L. Serina, M. Chiari, A. E. Gerevini, L. Putelli, and I. Serina A Preliminary Study on BERT
applied to Automated Planning 50



Figure 3: Results for the Previous Action Prediction task in Top-1 (left) and Top-5 (right) for each domain.

In this experiment we considered the 5 most probable predictions of the model. On the x-axis we found

the length of the action sequence and on the y-axis we found the accuracy of the predictions, computed

as validated answers on total instances in the specific domain.

terms of Top-5, we have higher results for all three domains. Howevever, while the performance

in the Logistics domain remains almost the same for all lengths, we can notice a small increase

in Blocksworld and a strong increase in Satellite. This domain in particular has some issues

with actions sequences of length 3 (36%) but reaches 86% at length 10, showing that for this

domain we need an adequate number of actions in order to have significant predictive results.

5. Discussion

The results presented in Section 4.2 show that a deep learning model such as BERT, trained

on a set of action sequences from well-known planning domains, can effectively accomplish

three predictive tasks: the planning language modeling, i.e. predicting actions from context, the

prediction of the next action given sequences of different length and, in the same conditions,

the prediction of the previous action.

In our opinion, this demonstrates that BERT is able to understand how a planning domain

works and which rules are followed by the action sequences. Despite a great number of possible

actions to predict (especially for the Satellite domain, which has more than 33k actions in our

configuration), our results in terms of Top-1 and Top-5 accuracy show that the model is able to

identify which are the most probable ones. Although we have relatively bad results in terms of

Top-1 for the Next Action Prediction and Previous Action Prediction tasks considering only if the

action belonged to the original plan, the performance are much higher considering the valid

actions. This can be also an indicator that our model does not simply memorize a lot of action

sequences, but it is really capable to adapt its knowledge with new plans, avoiding overfitting

issues.

A problem of this first implementation is that we do not provide any data on the initial state

and the goal to our model. This could be the reason for the performance drop in Blocksworld

with sequences of length 10 in the Next Action Prediction task. In fact, while the model seems

capable of predicting the next action with smaller sequences, when the complexity increases
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it could be necessary to provide more data in order to direct its reasoning. However, it is

interesting to note that for Logistics this does not happen. This may be due to the fact that

information about initial state could be indirectly contained in the action sequences. While we

will conduct a further analysis of these results, considering also other domains, we think that

including the initial state and the goal in the model could improve the results and avoid this

performance drop.

While we have verified that a BERT model has this learning capability, we are also conscious

of several limits. For instance, as we show in Table 1, the number of plans necessary to train

such a model is very high. In a real-world application, this can be a huge problem because it

would require a long time to collect the necessary data to exploit this kind of model. While

our data augmentation technique shows interesting results, perhaps similar results could be

obtained with simpler models, which could require less training data. Another related problem

with this kind of architectures is the training time and the computational resources required. An

interesting line of research could be apply knowledge distillation techniques and build smaller

versions of our model [27].

Moreover, the original BERT for natural language processing [5] is a pre-trained model and

adapted for other tasks such as document classification. To do that, the authors introduced

a special token called [CLS] for representing the entire document. In our context, we could

have the same token for obtaining a vector representation of the entire plan or action sequence

and use it for several tasks such as heuristic prediction or plan and goal recognition. However,

training [CLS] in BERT required another task, called Next Sentence Prediction, into which

the model learns the ability to predict whether two sentences are consecutive in a document.

Although this is a very intuitive operation in NLP, the same concept is not present in automated

planning. Thus, there is the need to design a completely new task which could lead the model

to learn an informative representation of a sequence of actions.

6. Related work

In the last few years, deep learning techniques started to surface across several contexts and

tasks related with automated planning.

For instance, the work in [12] exploits variational autoencoders based on neural networks

to create latent and symbolic representations of actions starting from pairs of images which

describe a transition between two states. This representation can be further exploited for other

purposes, such as Goal Recognition, which is defined as the task of recognising the goal that an

agent is trying to achieve from observations about the agent’s behaviour in the environment

[28]. Using only image-based domains such as MNIST or 8-Puzzle, the work [13] first computes

a latent representation using the tool proposed by [12] and then analyses the sequence of actions

using an LSTM Neural Network [29] for predicting the goal.

Goal Recognition has seen several other applications of deep learning techniques. For instance,

the work [15] presents an LSTM network to infer player goals from the observation of their

low-level actions in the context of digital games. However, more general works such as [30] and

[31] used the classical domains of automated planning and, starting from partial observations of

states or actions represented symbolically, trained neural networks or other machine learning
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algorithms in order to predict the agent’s goal.

Deep learning techniques are also used in many path planning applications with robots [32].

For example, in [33] a neural network is used to process data from robot’s sensor in order to

get an approximate direction. This approximation is then used to build a navigation system.

Furthermore, the controller for an autonomous mobile robot presented in [34] implements a

feed forward neural network which predicts the steering angle given the obstacles distances

from the left, right and front directions.

Another problem which has been addressed by deep learning techniques is the learning of

heuristic functions for classical planning. For instance, the authors of [11] trained a neural

network to compute the distance between two states and used the output measure as a heuristic.

However, one of the drawbacks of their approach is the need to train a neural network for each

planning task. The work in [35] solves this issue for a subset of planning domains by learning a

strong heuristic function for PDDL domains with an underlying grid structure. The authors

implement a convolutional neural network structure that takes the current state and the goal

state as input and predicts both the next action and the heuristic value.

To the best of our knowledge, ours is the first implementation of a Transformer-based

architecture such as BERT in the context of automated planning. While most of the works show

slight variations or improvements [22, 36], versions for some specific contexts [37] or jargons

[38], the work in [19] shows how these techniques can be useful even for artificial languages

such as programming languages, proposing a BERT model for evaluating the semantic similarity

between two portions of code. Their model is trained using publicly available open source code

repositories from GitHub. In [39], a similar model for code summarization and generation is

proposed. An interesting study about the capabilities of such models is shown in [40].

7. Conclusions and Future work

In this work, we trained a BERT model in the context of automated planning. While this type

of deep learning architecture has completely changed the state-of-the art for several NLP tasks

[5, 22], at the best of our knowledge this is the first implementation of such technique in the

planning context. We designed an adaption of the masked language modeling task, called

planning language modeling into which, using plans generated from three well-known planning

domains (Logistics, Satellite and Blocksworld), this multi-domain model receives in input

an action sequence with a percentage of missing actions and learns how to identify them from

context. We have also presented a detailed account of the operations necessary to train such a

model, in terms of pre-processing choices, vocabulary definition, data augmentation, etc.

In our experimental evaluation, we designed two tasks in order to verify if the model has the

capability of understanding the inner working a planning domain: Next Action Prediction and

Previous Action Prediction, into which given a sequence of actions the model has to predict the

action that immediately follows or precedes the sequence. Our models obtains very promising

results and we show that it has a high accuracy in predicting action that can be actually executed

by an agent, before or after an action sequence.

However, our research is still preliminary. As future work, we will further investigate the

capabilities of our model, including new domains and more complex configurations, with more
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objects and longer plans. Moreover, we will study how this pre-trained model can be exploited

and adapted for other tasks such as goal recognition or heuristic prediction.
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Abstract
Videogames and research in artificial intelligence (AI) techniques share a fruitful past of reciprocal
knowledge exchange. On the one hand, videogames offer unsolved challenges to the academy: these
challenges are as hard as those offered by what we can call “serious” applications, yet they can be faced
in a controlled and reproducible setting. This characteristic makes videogames a kind of advanced
“drosophila” for the researcher in AI: they are the ideal controlled ground in which to invent, experiment,
and test new AI paradigms, methodologies and techniques. It is not uncommon to resort to simulated
game environments as lesser expensive, yet comparably complex, digital twins. On the other hand, the
videogame industry (VI) itself is exemplary of typical demands that AI research cannot meet yet. The
VI looks for reduced development costs, better integration with AI tools and real-time performance.
Especially, knowledge transfer between developers and AI tools must be as fast and smooth as possible:
this is one of the reasons why the machine learning (ML) revolution had so far a controversial reception
in the VI, in that ML provides black-box AI modules which are not easily “tunable” and configurable at
will, and have non-negligible design-time costs. In order to overcome the above limits, one can consider
declarative knowledge representation techniques (DKR). However, some of the shortcomings of DKR
methods are fairly challenging to be addressed: performance, ease of use, integration, mining of reusable
deductive knowledge are not up to the par yet. All these limitations prevent the real adoption of declarative
paradigms in many highly-demanding applicative settings of which the videogame development field is
an exemplary generalized testbed. Narrowing the above gaps is nontrivial challenge. In this paper we
identify some of the key issues which we deem important for the research community and outline our
current research progress.

Keywords
Declarative logic, Answer Set Programming, Knowledge Representation, Games and Videogames, Stream
Reasoning,

1. Context and motivation

Videogames and the AI research. Many examples of the usage of declarative languages
in the industrial videogame realm exists, starting from the pioneer F.E.A.R. game [1], which
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used STRIPS-based planning [2]. Other remarkable examples are the games Halo [3] and Black
& White [4]. If we look at videogames from the basic research perspective, it must be noted
the longstanding interest in using (video-)games as a controllable and reproducible setting in
which to face open issues: one might cite the GDL [5], VGDL [6] and Ludocore [7] languages
adopted for declaratively describing General Game Playing [8]. The Planning Domain Definition
Language (PDDL) found natural usage in the videogame realm [9, 10, 11]; among its sister
languages, we will herein focus particularly on Answer Set Programming (ASP), the known
declarative paradigm with a tradition in modeling planning problems, robotics, computational
biology as well as other industrial applications [12]. ASP does not come last in its experimental
usage in videogames: it has been used to various extents, e.g., for declaratively generating
level maps [13] and artificial architectural buildings [14]; it has been used as an alternative for
specifying general game playing [15], for defining artificial players [16] in the Angry Birds AI
competition [17], and for modelling resource production in real-time strategy games [18], to
cite a few.

ASP specifications are composed of set of rules, hard and soft constraints, by means of which
it is fairly easy to express qualitative and quantitative statements. In general, a set of input
values 𝐹 (called facts), describing the current state of the world, are fed together with an ASP
specification 𝑆 to a solver. Solvers in turn produce sets of outputs 𝐴𝑆(𝑆 ∪𝐹 ) called answer sets.
Answer sets contain the result of a decision-making process in terms of logical assertions which,
depending on the application domain at hand, might encode actions to be made, employee shifts
to be scheduled, protein sequences, and so on.

When evaluating 𝑆 and 𝐹 a traditional solver performs two consecutive steps: grounding
(also called instantiation) and solving (also called answer set search). Instantiating a program
consists in generating, rule by rule, substitutions of variables with constants, thus obtaining an
equivalent propositional program.

Despite their potential advantages, the widespread adoption of methods like ASP in games is
still prevented by a number of shortcomings, which one roughly categorize in i) integration
issues and ii) performance issues.

Concerning the first, ASP-based solutions have been coupled with industrial applications
using many schemes which were proposed in the last decade. These differ on how the so-called
“procedural” side and “declarative” side are coupled, and on which of the sides is at the center
of the development picture [19, 20, 21, 22].

However, during a videogame, decision-making processes are continuously repeated within
the so called game loop. The game loop is, in a way, a sense-think-act cycle in disguise, where
the think step might be occupied by a logic-based reasoner. This context makes the integration
of reasoners/ASP solvers non-obvious: how to cope with fast changing sensor readings? how
to accommodate long running reasoning tasks? What if a reasoning task is no longer needed
because of a sudden change in the game scene? How to reuse at least part of the wasted
computational effort?

The ThinkEngine [23], developed by our team, allows programmers to deal with AI modules
inside the popular Unity game and industrial development engine [24] and is a good starting
point for getting closer to the above goals. As for performance, ASP solvers greatly improved
in the last years [25]. Effort has been made on incremental, online and stream computing
of ASP inputs [26, 27, 28]. Fast, repeated reasoning tasks required by real-time applications
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seem, however, out of reach unless manual tuning and optimizations are introduced on a per
application basis [29]. The ASP-based player appearing in the Angry Birds AI Competition [16]
and other benchmarks on games show that the performance gap can be reduced with more
research [30].

In this paper, we overview the key issues that prevent declarative paradigms being adopted
in the VI. In section 2 we briefly illustrate our current research progress, introducing the
ThinkEngine Asset; in section 3 we outline some selected open issues in the context of AI and
videogames that we deem relevant; in section 4 we discuss the general advantages of videogames
and declarative paradigms being coupled together; in section 5 we overview how this line of
research could bridge videogames to academic research and to society in general.

When evaluating 𝑆 and 𝐹 a traditional solver performs two consecutive steps: grounding
(also called instantiation) and solving (also called answer set search). Instantiating a program
consists in generating, rule by rule, substitutions of variables with constants, thus obtaining an
equivalent propositional program.

2. The ThinkEngine Asset

Figure 1, adapted from the description of our ThinkEngine tool [23] shows our proposal of an
integration scheme between a reasoner based on declarative specifications and a game engine.
A number of so-called brains are able to interact with a videogame scene.

An AI developer can use the ThinkEngine by first identifying objects and/or parts of the
game logic that are to be connected to brains; sensor readers are wired from the game scene to
brains, and actuators from brains to the game scene. A brain consists of a simple high-level
specification that describes decision criteria: one can add rules, constraints, soft constraints
and other declarative statement types. A brain reasoning task can be then triggered on specific
events or on a cyclic basis. Reactive brains produce immediate modifications on the game,
while Planning brains can be used to synthesize complex execution plans or, in principles, even
arbitrarily reprogram reactive behaviors of artificial players.

In the case of our ThinkEngine tool, reasoning modules are implemented using declarative
specifications written using ASP; an ASP solver executes such specifications, then its outputs are
converted into actions or plans to be executed on the game world. Thinkengine is implemented
respecting a paradigm-agnostic stance: a wiring infrastructure for connecting other solvers
based on other declarative paradigms (PDDL, SMT or others) is provided. In the specific
setting of Thinkengine, most of the interoperability burden is implemented within the EmbASP
library [31].

The tool is available as a plugin for the known game development engine Unity [24]. Unity
owns 45% of the market share as a game development engine: it is not however limited to the
development of ludic products as it is appreciated also for the development of simulations and
industrial applications.

From the software development perspective, the presence of brains based on declarative tools
implies several potential benefits, like:

• declarative tools can be used for defining, in a very short time, different aspects of game
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Figure 1: General run-time architecture of the ThinkEngine framework

AI, like: modelling of non-player characters (NPC) with spatio-temporal reasoning based
AIs, automated game resource management, path planning, declarative (and not more
“procedural”) content generation, automated narrative generation based on qualitative
descriptions, dynamic dialogue systems, etc.

• non programmers can participate in the implementation of decision making modules;
• the strong decoupling between declarative decision making and action execution makes

much easier to separate and parallelize the development of both;
• the decoupling from the game engine itself allows standalone testing, isolated debugging

and optimization.

However, the above advantages pair up with the known barriers to the adoption of declarative
tools in demanding applications and in the videogame application settings in particular. Such
barriers are mostly related to the actual declarativity of the formalism at hand, its evaluation
efficiency, and the integration methodology with applications.
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Figure 2: Hybrid Deliberative/Reactive (HDR) schema.

3. Some selected open issues

Integration. When one aims to integrate reasoning modules in industrial applications, and
especially videogames, two main technical obstacles arise. One concerns the information flow
and the coordination between reasoning tasks and other parts of the software; the second
obstacle is related to the symbol grounding, i.e. the longstanding issue of abstracting raw data to
a symbolic synthesis thereof (not to be confused with the close technical concept of “grounding”
meant in the sense of “instantiation” of an ASP program).

Concerning the coordination of the reasoning tasks, recall that a videogame is typically
executed by running the so called game-loop routine [32]. The game loop consists in a single-
threaded repeated execution of update operations to the current game scene: within each step
of this cycle, user input is processed, AI decision-making operations are made, and the game
scene is modified accordingly. A physics simulation of the world and the general game logic
is also taken into account when changing the game environment. The operations performed
within the game loop strictly mimic the reactive sense-think-act cycle typical of agents and
robotic systems [33], in which sensing, thinking and acting steps are repeatedly performed.

Similarly to real life applications, in videogames reactive AI modules coexist with non-reactive
portions of the game logic: reactive modules are usually implemented using relatively fast
techniques, such as behavior trees, finite state automata, rule sets or combinations thereof [34],
and can run in the main game-loop. This type of module comes into play when quick “instinctive”
decisions need to be taken by artificial characters: think, e.g., at programmed fight-or-flight
responses when an artificial opponent is attacked.

On the other hand, strategic decision-making processes are likewise necessary. They are
realized using long term, goal-oriented techniques, which often involve utility-based, planning,
and simulation techniques. Longer running reasoning tasks are for instance required for
common videogame AI modules such as path-planning, hierarchical task planning and resource
management. As these require longer processing time, their execution within the default game-
loop is troublesome. It is thus natural to generalize this reactive/non-reactive duality to the
so-called hybrid deliberative/reactive paradigm [33] (HDR, Figure 2), in which fast “instinctive”
behaviors are combined in a proper way with long term reasoning tasks such as plan generation.

This model has in turn been recently generalized both in economics and social science [35]
and in the wider AI community [36], by proposing to model rational agents in terms of two
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interacting sides: System 1, the fast, instinctive, reactive, often non-symbolic subsystem; and
System 2, a subsystem capable of better strategic decisions, yet requiring longer reasoning
times and a proper symbolic preprocessing and abstraction layer. Both System 1 and System 2
decision-making activities can be deemed important and need to co-exist.

The interaction between both types of reasoning calls for the introduction of a scheme similar
to the general HDR one, in which long-running reasoning tasks are made possible, but do not
enforce heavy computational loads on the main game loop. The outcome of non-reactive tasks
can be used to act directly on the game logic, or to re-program reactive behaviors of game
characters. Although prototypical systems, like the ThinkEngine developed by our research
group, offer a form of HDR scheme in which ASP reasoning tasks can be run asynchronously,
many aspects are not properly systematized yet. Especially, there is no clear semantics on how
deliberate modules can re-program reactive modules and execute plans. A good starting point
in this respect can be hybrid ASP languages like ActHEX [21] that are meant to synthesize
actions to be executed in an external environment.

Abstraction. Concerning the second integration issue, abstraction has been studied in
ASP [37] especially aiming at reducing the number of symbols processed by solvers, thus
reducing computing times yet preserving some form of semantic equivalence. An exploration
of how fine-grained knowledge, such as raw spatial and temporal floating point data, can be
systematically abstracted to a symbolic layer suitable for ASP reasoning has not been done yet.
In this respect interval reasoning technique[38] look promising and could be beneficial on at
least two aspects: performance-wise, abstraction can often make the difference in reaching the
desired performance cutoff threshold. Abstraction is common practice in the videogame realm,
such as when pixel-grained game maps are abstracted to a few strategic waypoints. As a second
advantage, the availability of an automated abstraction layer can cut down design times, as this
operation usually requires time-consuming manual design decisions.

Performance. Automated decision making in dynamic environments, where the world
description is continuously and fastly changing, enforces strict reasoning time limits. Let us
consider a decision-making reasoning task 𝑇 , which can be either reactive or nonreactive.
Specifically, if 𝑇 is represented using ASP syntax, it is fed to an ASP solver composed of two
separate computational steps: instantiation (also called “grounding”, not to be confused with
the related notion of symbol grounding), and resolution (also called “solving” in the proper
sense). Both steps have their impact in performance, and especially grounding is crucial when
big data flows and reactive tasks come into play. Rapid environment changes are typical of
videogames, which are thus an ideal controlled environment for introducing stop & restart
techniques capable of stopping no more valid reasoning tasks and resuming them under updated
input data: this is needed, e.g., in case of events that trigger replanning. Also, no matter whether
reactive or not, a time consuming “think” step may constitute a great performance bottleneck.
The execution times of reasoning tasks can be greatly improved if incremental techniques are
introduced. An incremental solver makes only quick differential updates to its internal state
when some of the input data are changed. Videogames are exemplary also in this respect
and could greatly benefit from AIs implemented using fast incremental solving techniques.
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Whenever it is not desirable or possible to execute long, offline, reasoning tasks like in hybrid
reactive/deliberative models, the introduction of incremental reasoning techniques becomes
even more strategic. Much effort has been done recently in this direction: some ASP systems
allow full incrementality, at the price of manually programming which and how parts of an ASP
specifications should be (re-)evaluated [27], thus loosing some declarativity; other contributions
enable a form of incrementality which is transparently performed “under-the-hood” from the
perspective of the application designer, but are limited on the language expressivity [26]; the
recent work of our group, based on the notion of “overgrounding” is also fully transparent
to specification designers, yet it limits differential computations to the so called “grounding”
stage only [30, 28, 39]. This choice limits performance improvements mostly to reactive tasks.
None of the above work addressed so far the issue of computation restarts triggered by external
input changes. We nonetheless foresee that our recently developed overgrounding techniques
could be lifted to all the stages of the ASP solving pipeline, and can be generalized to introduce
forms of computation restart techniques. New extensions should inherit the support of all the
linguistic features of ASP, and keep the incremental evaluation out of the necessity of manual
programming.

Whitebox AI procedures for content generation. Machine learning techniques are often
used in the videogames industry for content generation of videogame levels that are aestheti-
cally like human-authored examples (see, e.g., [40]). For this purpose, Generative Adversarial
Networks (GANs) have been shown particularly effective on this task because they enable
the creation of levels that are stylistically like human examples [41, 42]. However, it has been
recently shown that GANs can often fail to produce videogame levels with playability cri-
teria [43], making tiresome human intervention necessary to “repair” a machine-generated
level. In order to automate this process, several techniques have been proposed, most of them
focused on a generate-then-repair approach for first generating levels from models trained on
human-authored examples and then repairing them with minimum cost edits to render them
playable. Such techniques leverage on Mixed Integer Linear Programming (MILP) to encode the
playability constraints for the repair procedure (see, e.g., [44]). It is appealing to investigate
the effectiveness of symbolic methods, namely ASP, Pseudo-Boolean, and Satisfiability Mod-
ulo Theory (SMT), in combination with subsymbolic methods (GANs), to encode playability
constraints for automated repair of generated content.

Declarative pattern mining. The detection of changes in the scenes or in the game char-
acters is relevant e.g. for triggering NPC behavior changes, or for simply proposing different
background music or elements. Pattern mining traditionally provides a bunch of techniques
for the discovery of regularities in a data set, e.g. so-called frequent patterns are statistically
significant regularities in a set of transactions. The classic problem of frequent pattern min-
ing [45] concerns indeed the enumeration of all the patterns whose absolute support exceeds a
user-defined minimum support threshold minSup.

A complementary problem is the discovery of statistically significant differences (or contrast)
between two disjoint sets of transactions [46]. This requires the enumeration of all the patterns
whose absolute support difference exceeds the user-defined minimum support threshold. The
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discovery of the pattern types such as contrast/difference patterns, as well as emerging patterns
and change patterns, can be viewed as special cases of the same pattern mining problem, whose
aim is to detect patterns relating two or more given datasets. These patterns have been shown
to be a powerful method for constructing accurate classifiers, since they can describe emerging
behavior with respect to a property of interest. One such feature is desirable also for the
modeling of non-player characters.

An interesting direction of work is the investigation of some of these variants of the frequent
pattern mining problem within a declarative framework, notably ASP. A driving feature of ASP
solvers is indeed the possibility of enumerating all solutions, in the form of answer sets. This
appears particularly suitable for pattern mining problems. Both contrast, emerging and change
pattern mining fall into the broader category of constraint-based pattern mining [47], and can
therefore be effectively encoded in declarative formalisms such as ASP, like in [48]. The problem
specifications will naturally combine different constraints without having to devise new solving
algorithms for specific mining tasks, thanks to the declarative nature of ASP. The challenges
here are the identification of the most appropriate level of abstraction in the representation of a
scene or a player, and the definition of change underlying the discovery process.

A second direction to pursue concerns the use of background knowledge related to the
specific domain for the videogame in hand. Such prior domain knowledge might cover some
aspects deemed of interest from either the methodological viewpoint or the applicative one.
Particularly relevant in the videogame context is the spatial dimension. So, the background
knowledge might come in the form of hierarchies of spatial objects, and patterns could then
highlight spatial relations among the entities and offer descriptions of the scenes at multiple
levels of granularity, as done in [49]. This direction of research would bridge the gap between
the declarative approach and the object-based representations that are typical in the videogame
context. Hybrid knowledge representation formalisms could be considered to the purpose,
notably those formalisms which integrate ASP and DLs [50].

4. Impact for applicative research

The Videogame industry is an emblematic representative of a real-world application field where
practical barriers prevent the wide adoption of AI methodologies, both symbolic/deductive and
sub-symbolic/inductive. Elevated standards of efficiency and ease of use set a hard to reach
cutoff threshold for the introduction of promising paradigms such as ASP in the above contexts.
Today, ASP applications can be made performant, yet at the price of much “under-the-hood”
optimization burden of which only ASP specialists are capable. This compromises ease of use
and declarativity and is not welcome from the industrial perspective.

One might thus look at redefined adherence to declarativity and a transparent efficiency,
confining back under-the-hood the technicalities of the ASP semantics yet ensuring efficient
evaluation. Besides the widely accepted interest in explainability, a general goal for the AI
community would be to regain the ability of knowledge transfer and elaboration tolerance: the first,
not to be confused with transfer learning, is intended as achieving rapid transfer of knowledge
from AI designers to AI modules. Elaboration tolerance [51] represents the capability of easily
configuring and modifying the behavior of an AI module whenever new desiderata need to be
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added. It is thus important to offer whitebox AI components featuring “visible knobs” which can
be used for instant tuning and configuration. This is in contrast with subsymbolic techniques
that, although very useful in several respects, currently lack explainability, a fundamental
requirement for achieving knowledge transfer and elaboration tolerance.

Besides these general goals, progress in videogames AI broadly overlaps with many applica-
tive research fields. A punctual, yet incomplete list of possible technological applications of
videogames AI includes:

Virtual environments and augmented reality. Serious games and virtual environment
exploration tools are customarily built with game development tools, and share many require-
ments with videogames. In this respect declarative path-planning and declarative content
generation are naturally appealing. Early research lines are moving in this direction [52].

Simulation and predictive maintenance. When realizing a simulation task in the auto-
motive field, controlled content generation of images is of paramount importance in order to
train ML algorithms. Concerning predictive maintenance, advances in integrating declarative
AI in games could offer new digital twin-based solutions in order to test predictive maintenance
techniques.

Robot guidance and robotic surgery. Among many industrial and research usages of the
Unity engine it is worth mentioning robotic surgery [53], a field in which automated motion
planning and spatial reasoning are seen with keen interest. In the same direction goes the
research investigating the relationship between fine-grained motion planning and declarative
methods [54].

5. Bridging videogames to research: a Drosophila for AI

There are countless research application fields where it is very expensive or difficult to let
researchers access real data or physical resources and for which videogames represent the
natural digital twin: traffic control, smart cities, autonomous driving, robotic surgery, digital
forensics, are only a few examples. Basic KR research areas such as spatio-temporal reasoning,
deontic and legal reasoning, qualitative physics, planning, to cite a few, can potentially have
strong beneficial fall-out on applicative research like the above. This impact can be boosted
if reproducible controlled environments were available and made of the same complexity of
real contexts. Enabling easy-to-wire declarative modules in one of the most used game and
simulation engines goes in this direction, also considering the role of ASP as a middle-ware for
implementing many of the abovementioned KR formalisms.

An incomplete list of hot research topics can include:

Digital Forensics. Evidence Analysis, a crucial phase in Digital Forensics, ranges from
the analysis of fragmented incomplete knowledge, to the reconstruction and aggregation
of complex scenarios involving time, uncertainty, causality and alternate possibilities. The
Scientific Investigation experts usually proceed by relying on their experience and intuition as no
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established methodology exists today. Games can be useful and powerful means for supporting
digital forensics. They can provide digital twins where hypotheses, made using temporal
reasoning and qualitative physics, can be evaluated in a comparative way. The automated
discovery of regularities in crime scenes provides precious hints to investigators [55, 56, 57]:
when empowered with reasoning modules, games show an added value with respect to other
simulation environments. In this respect it is worth mentioning the COST Action “Digital
forensics: evidence analysis via intelligent systems and practices” (DigForASP). DigForASP has
set up an international network for exploring the potential of AI techniques (in particular, KR
and Automated Reasoning) in the Digital Forensics field, and for creating synergies between
these two fields.

Agent interaction, machine ethics. Among AI research areas possibly benefitting from
the availability of a tool like ThinkEngine playing the role of a controlled environment for
experimentation, one may consider using games for simulating the interaction between agents,
e.g., in order to study their compliance with the ethical guidelines for a Trustworthy AI. In this
context, a major obstacle to the operationalization and implementation of these requirements
in AI systems is just the lack of datasets and benchmarks. Games might compensate for this
lack, might help to get better insights into the dynamics of a corresponding real-world system,
and can assess the practical challenges of building such a system. ASP, and more generally
non-monotonic reasoning, is particularly suitable for dealing with ethical principles as testified
by several proposals [58].

Stream reasoning. Besides the technical and scientific interest of connecting videogames
to research, it is worth mentioning the very close connection with stream reasoning. The
potential impact on applications like smart cities, power grid management, urban traffic control,
where fast decision-making on big and dynamic data flows has immediate implications on the
green economy, is fairly straightforward. All these applications fall under the stream reasoning
umbrella where declarative techniques find a natural application. Stream reasoning also shares
with videogames the need of performing AI reasoning under fast-paced input event flows.

Intrinsic value of videogames. The videogame market, the highest selling category in the
entertainment industry [59], has seen a high increase in demand in the COVID-19 era, with
new job openings and an even larger portfolio of games. Videogames, no matter if played with
family, with friends, online in massive groups, or alone, were the place in which many of us
found a form of sociality and consolation in the difficult times of COVID-19. One should recall
that videogames are not just the place many scientists dream to leverage their ideas on, but
also a way of living engaging stories, worlds and atmospheres. The realization of these latter
necessitates innovative AI tools.
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Abstract
Neural networks are increasingly being used for dealing with complex real-world applications. Despite
their success, there are still important open issues such as their limited application in safety and security-
critical contexts, wherein assurance about networks’ behavior must be provided. The development of
reliable neural networks for safety-critical contexts is one of the topics investigated in the AIDOaRt
Project, a 3 years long H2020-ECSEL European project focusing on Artificial Intelligence augmented
automation supporting modeling, coding, testing, monitoring, and continuous development of Cyber-
Physical Systems. In this paper, we present an interesting safety-critical use case – related to the
automotive domain – from the AIDOaRt project. In addition, we outline the challenges we are facing in
bridging the gap between the scalability of state-of-the-art verification methodologies and the complexity
of the neural networks best suited for the task of interest.
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1. Introduction

Neural networks (NNs) are one of the most investigated and widely used techniques in Machine
Learning (ML) and have found successful application in many different domains across computer
science [1, 2]. However, despite their success, they still find limited application in safety and
security-critical contexts, wherein assurance about networks’ behavior must be provided. As
an example, a specific concern about the reliability of NNs is their vulnerability to adversarial
attacks [3], which are small variations of the inputs which cause unforeseeable changes in the
behavior of the neural network. This kind of vulnerability is both a safety (e.g., rain droplets on
the cameras causing a misclassification of a vehicle) and a security issue (e.g., minor modification
applied to a vehicle or road sign by a malevolent actor [4]) as we show in Figure 1. Automated
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Figure 1: Example of a real-life adversarial attack from [4]: small graffiti on a stop signal can easily
mislead a neural network to misclassify it as a speed limit.

formal verification — see, e.g., [5] for a survey — provides an effective answer to the problem of
establishing the correctness of the behavior of a NN and opens the path to their adoption in
safety and security-critical applications [6].
Indeed, the development of reliable NNs for safety-critical contexts is one of the topics

investigated by the team of the University of Sassari in the AIDOaRt1 Project [7, 8], a Key
Digital Technologies Joint Undertaking (KTD JU) project started on April 2021, involving 32
organizations grouped in national clusters from 7 different countries. The overall idea of
the project is to efficiently support the system engineering life-cycle, from requirements to
testing and deployment, including software design, coding, and verification. In particular,
AIDOaRt focuses on supporting the continuous development of Cyber-Physical Systems (CPSs)
via Artificial Intelligence (AI)-augmented automation. The AIDOaRt framework will enable
the observation and analysis of collected data from both runtime and design-time in order to
provide dedicated AI-augmented solutions, that will then be validated in concrete industrial
cases involving complex CPSs in domains such as railway, automotive, restaurants, etc.

The use of AI in general, andML in particular, is a key aspect of the AIDOaRt project. Different
AI-augmented capabilities will be provided, and to this intent, the AIDOaRt AI-augmented
Toolkit will be designed and developed in the context of the project in order to support additional
capabilities related to different CPS development tasks. The dissemination of such techniques in
a regulated industry can rapidly enable systems to decide and act in a more and more automated
manner, sometimes even without direct human control. As a consequence, this demands for a
responsible approach to ensure a safe and beneficial use of AI technologies. This approach has
to consider both the implications of (co)decision making by machines and related ethical issues.
Within AIDOaRt, one of the main challenges is ensuring that systems are designed responsibly.
The integrated core framework and AI-based solutions will be applied and validated in practice
in the context of the different AIDOaRt project use cases. At the end of the project, an industrial

1AI-augmented automation supporting modelling, coding, testing, monitoring and continuous development in
Cyber-Physical Systems
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uptake of AIDOaRt results via developing real complex and large-scale CPSs is expected.
In this paper, we briefly present an interesting safety-critical use case from the automotive

domain and the challenges we are facing in bridging the gap between the scalability of state-of-
the-art verification methodologies and the complexity of the NNs best suited for the task of
interest. Section 2 briefly presents the relevant background and state of the art. In Section 3 we
present the Abinsula Use Case and, finally, in Section 4 we present the challenges we are facing
and our ideas on how to overcome them.

2. Background

2.1. Neural Networks

Neural Networks are machine learning models composed of interconnected computing units
called neurons. In a feed-forward network, the neurons are arranged in disjointed layers and
each layer is connected only with the following ones forming a direct acyclic graph (DAG).
Every layer of a NN performs specific computations on the inputs it receives from the previous
layers or, for the first layer of the network, from the outside. The number of neurons in a layer
or, more in general, in a network is directly correlated with the complexity of the computations
carried out by it and it is often used to formally define such complexity. As an example, two
of the most commonly used kind of layers are linear and activation layers: linear layers apply
an affine transformation 𝑓 (𝑥) = 𝐴𝑥 + 𝑏 to their input tensor 𝑥, whereas activation layers
apply element-wise a specific (usually non-linear) function 𝑓 (𝑥) = 𝜎(𝑥) to it. Another kind of
frequently used layer is the convolutional one, which has been especially successful when used
in architectures applied in computer vision tasks. The idea behind the convolutional layer is to
analyze the input images using a set of perception filters (also known as feature maps) which
can be learned from the data.

2.2. Verification

Formal verification aims to guarantee that NNs satisfy stated input-output relations and in the
last decade several verification methodologies have been proposed for different specifications
and architectures [9, 10, 11, 12, 5]. In general, verification methodologies can be divided into
two categories: complete and incomplete. Complete verification algorithms [13, 14, 15, 16, 17]
leverage technologies like Satisfiability Modulo Theories (SMT) and Mixed Integer Linear
Programming (MILP) solvers or methods like branch and bound (BnB) to provide a definitive
answer on the compliance of the NN to the property of interest, at the price of a greatly increased
computational complexity. Conversely, incomplete verification algorithms [18, 19, 20, 21, 22]
leverage methods like abstract interpretation and bound propagation to provide an answer
subject to a degree of uncertainty: in particular, when an incomplete method is unable to certify
that a network satisfies the property of interest it is in doubt if the property is violated or if the
precision of the verification methodology was not good enough. Whereas when an incomplete
algorithm produces a positive result regarding the satisfaction of the property, it is certain that
the network behavior is compliant with it. This degree of uncertainty is in exchange for a greatly
reduced computational complexity. It should be noted that, in recent times, many verification
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tools began to combine complete and incomplete algorithms to enhance the scalability of the
firsts and the precision of the seconds.

3. Safety critical systems in the automotive domain using
disruption technology

The technologies developed within the AIDOaRt project will be applied and evaluated on
different 15 industrial use cases (UCs), including the one related to the automotive domain
proposed byAbinsula Srl, a company based in Sassari (Italy) that provides innovative Information
and Communication Technology (ICT) solutions worldwide 2.

Modern cars are connected systems that acquire inputs from the environment, thus they can
be considered as CPSs. With the increment of sources of information and data, safety represents
even more a critical objective and new challenges in the development process are arising. This
is especially true where several stakeholders, such as hardware specialists, software developers
and system designers have to work together with safety engineers to ensure a reliable and
safe system. In this context, the emergence of standards, such as ISO 26262 and ISO 16505,
has helped the automotive industry to focus on practice to address safety in a systematic and
consistent way.
This opened the path to new research for guaranteeing safety in the automotive context.

The use of AI and ML is on the rise in order to enhance the automated verification of systems
applied in real safety-critical applications. However, if it is true that AI is now recognized as
innovative technology, it is far from being applied in real safety-critical applications due to the
lack of methodologies, for example for the predictability of the system in domains such as the
automotive one.
The use case brought by Abinsula aims at enhancing the human interaction and driving

experience, proposing an electronic rear-view mirror that gets data from a set of cameras and
provides the rear image on a screen. Image processing and sensor fusion, more in general the AI
application to sensors data processing, allow for increasing the informative content of the rear
environment image providing alerts or suggestions for a safer and effective drive. The use case
involves the usage of four cameras that capture 1920x1080 images. Data related to the camera
include an up to 60 FPS stream and the camera ID. The exploitation of NNs in image processing
is meant to replace what the human brain does in terms of recognition and processing while
driving. Therefore, a fundamental step to implement a virtual rear mirror able to perform as
the human brain, while guaranteeing safety, is the formal verification of the adopted NNs to
ensure the predictability of the system.

The main expected improvements are related to the introduction of AI techniques both in the
modeling and testing phase of the system development life-cycle. In particular, in the modeling
and implementation phase, the use of AI techniques will be employed for the verification of
Deep Neural Network (DNN) models/implementations.

2https://abinsula.com/
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4. Challenges and Perspectives

Taking into account the scope of the Abinsula UC, we analyzed the state of the art regarding
NNs applied in computer vision and we identified a first set of architectures that could be near
to optimal for the applications of interest. In particular, we identified the YOLO [23] network
architecture, which is one of the most popular learning models used for object detection. This
architecture is able to process videos at 45 frames per second (fps), whereas a more optimized
version manages to reach 150 fps. Moreover, it greatly outperforms the contemporary models
leveraging classification and learns better generalizable representations of objects.

Regarding the verification tools, we considered thewinner of the 2nd International Verification
of Neural Networks Competition [24] (VNN-COMP’21) alpha-beta-crown [25], which is a NN
verifier based on an efficient bound propagation algorithm and a branch and bound methodology.
It also leverages dedicated hardware (i.e., GPUs) in order to scale to relatively large convolutional
networks and supports a wide range of architectures. Naturally, we also considered the runner-
ups of the same competition, which present comparable performances to alpha-beta-crown.
However, through a first comparison between the benchmarks used during the VNN-COMP’21
(11 convolutional layers) and the YOLO architecture (109 convolutional layers in its last version),
it immediately appears clear that the scalability of the current state-of-the-art verification tools
is far from being enough to support our ideal architecture.

Therefore we identified different strategies to bridge the gap between our ideal architecture
and the effective scalability of the state-of-the-art verification tools. In particular, we intend to
investigate pruning and/or quantization as means to produce smaller network models which
should enable verification without a significant loss in performances [26]. Furthermore, we
believe that it could be possible to focus on subsets of the network architecture which are of
particular interest for the task at hand and, at the same time, small enough to be feasible to ver-
ify [27]. Finally, we are evaluating how to enhance existing verification tools and methodologies
to support network architectures similar to YOLO.
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Abstract
In recent times, machine learning has gained incredible traction in the artificial intelligence community,
and neural networks in particular have been leveraged in many successful applications originating from
various domains. However, it is hard to provide any formal guarantee on the behavior of this kind of
models, and therefore their reliability is still in doubt, especially concerning their deployment in safety
and security-critical applications. In this work, we will present our contributions on the topic of formal
verification, which recently emerged as a promising solution to address some of these problems. We will
also present two novel use cases originating from real-world applications we are working on and the
related challenges and perspectives.
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1. Introduction

In the last few decades, artificial intelligence (AI) has become increasingly popular as it has been
employed in many different applications with a great degree of success [1, 2]. Among those
domains, safety and security-critical ones are often of particular interest both to the research and
industry communities. As an example, the automotive domain has seen increasingly substantial
investments in financial and time resources from both. However, industrial applications in this
kind of domain require formal guarantees on the behavior of the algorithms and models used,
since thorough regulations have been established by national and international authorities
regarding the employment of AI in these areas. Unfortunately, the currently most popular
AI technologies, that is, machine learning (ML) and neural networks, provide only statistical
guarantees on their behavior which, while may be enough for many applications of interests,
still fall short when human lives, or large amounts of money, are at stake. Furthermore, neural
networks have been proven to be subject to reliability issues like adversarial attacks, which
are small variations of the inputs which cause unforeseeable changes in their behavior. It is
easy to see how this kind of vulnerability can be both a safety and a security issue with a
couple of examples from the automotive domain: burned pixels in the cameras may cause the
misclassification of a curve as a straight road [3], or small graffiti written by amalevolent actor on
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Figure 1: Example of an adversarial attack in the automotive domain from [3]: a few burned pixels in a
camera can easily mislead a neural network to misclassify a left turn as a right one.

a stop sign may make the model recognize it as a speed limit [4]. As a consequence, part of the AI
research community focused on developing methodologies to formally evaluate the correctness
of the behavior of neural networks and, as witnessed in [5] automated formal verification seems
to provide a path to their adoption in safety and security-critical applications [6]. In this paper,
we will present some of our contributions to this last topic, their prospective applications, and
the open challenges we are facing in the scope of some new use cases originating from realistic
domains. Section 2 present the relevant background and state of the art for verification of
neural networks. In Section 3 we briefly explain our contribution in the domain of verification
of neural networks, whereas in Section 4 we present the new use cases which are guiding our
recent research efforts. Finally, in Section 5 we summarize the challenges we are facing with
the new use cases and our perspectives on how to overcome them.

2. Background

2.1. Neural Networks

Neural networks are machine learning models inspired by the structure of biological neural
networks: more specifically they can be seen as directed graphs composed of interconnected
computing units called neurons. In a feed-forward network, the neurons are arranged in
disjointed layers and each layer is connected only with the following ones forming a direct
acyclic graph (DAG). Every layer of a neural network performs specific computations on the
inputs it receives from the previous layers or, for the first layer of the network, from the outside.
The computational complexity of a layer is directly correlated with both the number of neurons
in such layer and the specific operation carried out by them. It clearly follows that the same
quantities can be used to estimate the complexity of a whole network and, indeed, they are
often used to formally define such complexity.
Some examples of particularly important layers are the linear and activation layers, which

are normally the building blocks used to assemble even the most basic neural networks. In
particular, linear layers apply an affine transformation to their input tensor, whereas activation
layers apply a specific (usually non-linear) function element-wise. Even with only these two
kinds of layers, it is possible to build neural networks which can, in principle, approximate any

Dario Guidotti Verification of Neural Networks for Safety and Security-critical Domains 80



continuous function for inputs within a specific range [7].
Finally, another significant layer is the convolutional one, which has been especially successful

when used in architectures applied to computer vision tasks. The idea behind the convolutional
layer is to analyze the input images using a set of perception filters (also known as feature
maps) which can be learned from the data.

2.2. Verification

The aim of formal verification is to provide guarantees regarding the behavior of neural networks:
more specifically verificationmethodologies try to prove if specific neural networks satisfy stated
input-output relations. For this purpose, in the last decade, several verification methodologies
have been proposed for different specifications and architectures [8, 9, 10, 11, 5].

A common distinction between verification methodologies is the one between complete and
incomplete algorithms: complete verification algorithms [12, 13, 14, 15, 16] leverage techniques
like Branch and Bound, Satisfiability Modulo Theories (SMT) and Mixed Integer Linear Pro-
gramming (MILP) to provide a final answer on the compliance of the neural network to the
property of interest, at the price of a greatly increased computational complexity. On the other
hand, incomplete verification methodologies [17, 18, 19, 20, 21] are typically based on methods
like abstract interpretation and bound propagation and, as consequence, they provide an answer
subject to a degree of uncertainty. That is, when an incomplete method is unable to certify that
a network satisfies the property of interest, it is still unsure if the property is truly violated or if
the precision of the approximation used was not good enough. However, when an incomplete
algorithm certifies that the network of interest satisfies a certain property, it is certain that
the network behavior is compliant with it. While the use of over-approximate methods causes
this kind of uncertainty it also produces algorithms whose computational complexity is greatly
reduced.
While this categorization is still commonly used, it should be noted that, in recent times,

many verification tools began to combine complete and incomplete algorithms to get, as much
as possible, the best of both worlds.

3. Contributions

In [22] we investigated if pruning, a methodology developed by the learning community whose
main application until now has been to reduce the dimension of neural networks so that they
can be deployed on hardware with low memory resources, could be leveraged to produce a
training pipeline providing networks easier to verify for the existing verification methodologies.
In our experiments, we considered two different pruning methodologies: one based on the
reduction of the number of connections between the neurons of a neural network, called weight
pruning, and the other based on the removal of whole neurons, called neuron pruning. By
leveraging these two pruning algorithms to reduce different networks, we managed to produce
models with performances comparable to the original ones but, at the same time, much easier to
verify for existing verification tools. In particular, the networks on which neuron pruning was
applied were the easiest to verify: we believe this is because the elimination of whole neurons
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from the networks eliminates a corresponding number of non-linearities, which are, in general,
the main culprit behind the high computational complexity of verification algorithms.
In [17] we developed the first version of our tool pyNeVer which provides capabilities for

the training, pruning, and verification of neural networks. The main contribution of this work
was a novel algorithm based on over-approximation for the verification of neural networks:
in particular, the novelty of this algorithm is in the mechanism to dynamically control the
coarseness of the over-approximation down to the single neuron level and a specific eager
heuristic for choosing the neurons on which to apply the more precise abstraction. The resulting
algorithm resulted to be comparable with the state of the art and even outperforms a similar
one on some of our experimental benchmarks. Further experiments were done in [6] on models
generated from an automotive case study.

Finally, in [23] we focused on trying to repair neural networks subject to adversarial examples
so that they became more robust to particular adversarial examples. To do so we leveraged a
MILP solver to find a configuration of the network parameters which made it resistant to the
adversarials of interest. However, most of the networks were too complex to be directly modified
with such a methodology. Therefore, we selected a specific subset of the network architecture
and replaced it with a less complex model which then was repaired. In our experimental
evaluation we confirmed that, while this methodology did not manage to make the model
resistant to adversarial attack in general, it did make it more robust to specific adversarial
examples.

4. Use Cases

Currently, we are working on two new use cases (UCs) from safety and security-critical domains.
In the first one, the task is developing reliable neural controllers for self-piloting a drone during
the course of different activities. The second one consists in developing reliable neural networks
for object detection and recognition tasks in the automotive domain. This second use case is
part of the effort to develop reliable neural networks for safety-critical contexts in the scope
of the AIDOaRt Project, a 3 years long H2020-ECSEL European project focusing on Artificial
Intelligence augmented automation supporting modeling, coding, testing, monitoring, and
continuous development of Cyber-Physical Systems.

4.1. Drone Control

Since the scope of the project was to develop various neural controllers for different tasks,
we focused on building a modular setup for the training of neural controllers in simulated
environments using well-maintained and stable resources. In particular, we leveraged:

• Gym1: an open-source python library providing a standard API for communication
between reinforcement learning algorithms and environments.

• Stable Baseline32: an open source training framework providing scripts for training and
evaluating RL agents using standard state-of-the-art algorithms.

1https://github.com/openai/gym
2https://github.com/DLR-RM/stable-baselines3
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Figure 2: The Bitcraze Crazyflie 2.1 drone considered in our first use case.

• PyBullet3: an open source physics simulator for robotics and reinforcement learning.
• gym-pybullet-drones4: an open source Gym-stile environment supporting the definition
of various learning tasks on the control of one or more quadcopters.

Using these open-source resources we greatly simplified the complexity of our setup and we
were able to directly train the network of interest in the environment corresponding to our case
study with the chosen state-of-the-art RL algorithm. In Figure 2 we show the quadcopter model
of choice, which was the default one proposed in gym-pybullet-drones and which we intend to
use to test our neural controllers in real environments.
Beyond the scope of the project, we also intend to leverage the presented setup to produce

novel benchmarks for the verification of neural networks. The motivation for doing so is that,
while the verification community has been prolific in developing novel methodologies, very
few general benchmarks have been proposed, among which the most popular is still the ACAS
XU benchmark [24], released in 2017. Furthermore, drone control is a task relevant to modern
applications and, at the same time, the neural networks used in this kind of control task are
usually small enough for the existing verification methodologies to be successfully applied.

4.2. Automotive

One of the use cases on which the technologies developed within the AIDOaRt project will be
evaluated is the one related to the automotive domain proposed by Abinsula Srl, a company
based in Sassari (Italy) that provides innovative ICT solutions worldwide 5.

Given the wealth of interconnected sensors and software supports modern cars can be easily
seen as cyber-physical systems. This implies that the various stakeholders in the development

3https://pybullet.org/
4https://github.com/utiasDSL/gym-pybullet-drones
5https://abinsula.com/
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process of such systems have to work together to ensure that the corresponding product is safe
and reliable. While the methodologies to guarantee the safety and reliability of the hardware
and much of the software are quite well established, the same cannot be said for the components
based on artificial intelligence and machine learning, whose formal certification is still an open
challenge for both the industrial and research communities.
The use case brought by Abinsula aims at enhancing the human interaction and driving

experience, proposing an electronic rear-view mirror that gets data from a set of cameras and
provides the rear image on a screen. The application of AI and ML to sensor data processing
allows for increasing the informative content of the rear environment image providing, for
example, alerts or suggestions for a safer and more effective drive. The use case involves the
usage of four cameras that capture 1920x1080 images in an up to 60 fps stream and also provide
the relevant camera ID. The idea behind the usage of neural networks in this kind of image
processing is to reduce the effort the human user needs to apply for recognizing and processing
the relevant objects in the image they are seeing. As consequence, a fundamental step to
implement a virtual rear mirror able to reliably assist the human user is the formal verification
of the adopted neural networks to ensure the predictability of the system.

5. Challenges and Perspectives

Given the scope of the drone control UC we first analyzed the state of the art regarding the
learning of neural controllers for the kind of tasks we had in mind and we selected a promising
reinforcement learning algorithm, that is, the Soft Actor-Critic. The main advantage of this
algorithm is that it uses two different neural networks: the actor one models the controller,
whereas the critic is used to provide an estimation of how good the actor is. At high level this
allows us to keep down the complexity of the controller (i.e., the actor) that therefore will be
easier to verify. Even so, clearly more complex tasks will require more complex architectures
and therefore we will need to enhance both the scalability and the generality of pyNeVer.
Furthermore, we are interested in developing methodologies which would allow to leverage
the results obtained by an unsuccessful verification of the neural controllers to enhance their
training process so that they became compliant with the property of interest.

Regarding the Abinsula UC, first we focused on the state of the art regarding neural networks
applied in computer vision tasks and we identified an initial set of architectures that could
be viable for the applications of interest. In particular, we identified the YOLO [25] network
architecture, which is one of the most popular learning models used for object detection. This
architecture is able to process videos at 45 frames per second (fps), whereas a more optimized
version manages to reach 150 fps. Furthermore, it greatly outperforms the contemporary models
leveraging classification and learns better generalizable representations of objects. We also
surveyed the state of the art of the verification tools, and we focused on the winner of the
2nd International Verification of Neural Networks Competition [26] (VNN-COMP’21) alpha-
beta-crown [27], which is a neural network verifier based on an efficient bound propagation
algorithm and a branch and bound methodology. It also leverages dedicated hardware (i.e.,
GPUs) in order to scale to relatively large convolutional networks and supports a wide range of
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architectures. Of course, we also considered the runner-ups of the same competition, which
present comparable performances to alpha-beta-crown. Nevertheless, from a first comparison
between the benchmarks used during the VNN-COMP’21 (11 convolutional layers) and the
YOLO architecture (109 convolutional layers in its last version), it would seem that the current
state-of-the-art verification tools are far from reaching the scalability needed to support our
preferred architectures. As consequence we focused on identifying various strategies to bridge
this gap between our favored architectures and the effective scalability of verification tools. To
do so we believe that it could be possible to focus our verification on subsets of the network
architecture which are of particular interest for the task at hand and, at the same time, small
enough to be feasible to verify, similarly to what was done in [23]. We also intend to investigate
pruning and/or quantization as means to produce smaller network models which should enable
verification without a significant loss in performances, as we managed to do with less complex
models in [22]. Finally, as for the drone control UC, we are evaluating how to enhance existing
verification tools and methodologies to support network architectures similar to YOLO.
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Building the Semantic Portal of Italian Divagrafie
Laura Pandolfo*, Lucia Cardone, Luisa Cutzu, Beatrice Seligardi and Giulia Simi

DUMAS, University of Sassari, via Roma 151, Sassari, Italy

Abstract
In this paper, we present the preliminary research activities on building a semantic digital archive for
publishing heterogeneous data about a literary corpus provided by Italian actresses, known as Divagrafie.
This corpus represents a unique collection of cultural data for scholars in Film and Literature Studies
through which they can analyze the phenomenology, characteristics, and historical evolution of the
writings produced by Italian actresses. In this paper, we present the vision behind the development of the
semantic digital archive and explore the potential applications and its expected impacts in the research
community and society.

Keywords
Semantic Web, Digital Archive, Film and Literature Studies

1. Context and Motivation

The availability of cultural heritage data has rapidly boosted the emerging new research area
in Digital Humanities (DH) [1] where an increasing number of scholars are dealing with
new computational methods developed and applied to literary corpus for solving problems in
humanities and social sciences. Recently, DH research has shifted the focus to providing the
user with integrated tools for solving research problems in interactive ways [2]. One of the
characteristics of this kind of systems is to use computational methods for solving humanities
research questions by using large datasets and applying on them the so-called "distant reading”
approach [3], namely a set of different techniques, such as novel statistical methods, sentiment
analysis, topic modeling and network analysis. The main benefit of using the distant reading
approach comes from the fact that it opens new horizons for computational literary studies,
without the hard effort required by classical humanistic computer research, which often needs
rigorous coding and document annotations. However, this approach has several critical issues, as
identified by Ciotti [4, 5]. One shortcoming lies in the fact that most of the applied computational
methods are independent from the context, while humanities and literary data need to be heavily
contextualized. Another important critical point concerns the interpretation of text, which is
usually an intentional process. Statistical computational methods are hardly able to detect the
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true interpretation since the meaning of a word is usually determined by the attribution of
sense and meaning by the author and by the reader.

Semantic Web (SW) [6] technologies and Linked Data [7] can overcome these issues by
enriching the distant reading approach of new methods able to capture the semantic nature of
literary texts [8]. Therefore, cultural heritage has become an active area of application of SW,
where cultural content and metadata are available openly for research and public use based
on collections in museums, libraries, archives, and media organizations [2, 9]. In the last two
decades, large amount of data has been aggregated in huge national and international portals,
libraries and repositories such as Europeana 1 by forming a significant part of DBpedia 2 and
Wikidata 3. The concept of ontology [10] plays a central role, since it is commonly used as a
sort of schema capturing knowledge about a specific domain via providing relevant concepts
and relations between them. Currently,several examples of ontology-based digital archives and
libraries in the humanities have been reported [11, 12, 13, 14, 15, 16].

This paper introduces our ongoing research work on developing an ontology-based archive
named WOmen Writing around the camera (WOW) which will collect semantic data about rele-
vant writings produced by Italian actresses (“Divagrafie”) focusing on the dynamics of exchange
between writing, acting performance and the construction of the star image. This research idea
builds-on and extends the “Drawing a Map of Italian Actresses in Writing” (DaMA) funded by
PRIN 2017 4 which aims at investigating the extension, phenomenology, characteristics, and
historical evolution of the writings produced by Italian actresses. The main goal is to build a
semantic portal containing different resource materials related to Italian actresses’ visual and
self-representation history able to bring to light and interrogating together different kinds of
documents (mainly photographs and texts) with a defined set of investigation methods with the
help of DH tools, particularly those based on SW technologies and distant reading methods. The
paper is organized as follows. Section 2 describes our current research progress and outlines
the planned phases related to the development of the WOW semantic archive, while Section 3
concludes the paper by discussing the potential applications and expected impacts resulting
from this line of research both for the academic point of view but also society in general.

2. The WOW Semantic Archive

The idea to develop the WOW Semantic Archive stems from the in-progress research project
DaMA which aims at investigating the extension, phenomenology, characteristics, and his-
torical evolution of the writings produced by Italian actresses, focusing in particular on the
dynamics of exchange between writing, acting performance and construction of the star image.
Defined as Divagrafie [17], such writings represent a multifaceted and interesting corpus of
texts traditionally overlooked by the academic community. The important contribution to the
understanding of stardom provided by this kind of self-narratives or fiction writings has been
only partially acknowledged within the field of star studies; similarly, the field is also lacking

1https://www.europeana.eu/en
2https://www.dbpedia.org/
3https://www.wikidata.org/wiki/Wikidata:Main_Page
4https://www.damadivagrafie.org/

L. Pandolfo, L. Cardone, L. Cutzu, B. Seligardi, and G. Simi Building the Semantic Portal of
Italian Divagrafie 90



an in-depth analysis dedicated to the relationship between the writings of a specific actress
and the construction of her own star image. This ongoing project is revealing a still unknown
territory and has so far classified a wide number of texts, including 80 autobiographies written
by 47 actresses. This literary corpus – which we are intended to focus on – represents a unique
testing ground for a convergent methodology that applies DH methods, SW technologies and
the most recent advances in the fields of Film and Media Studies, Literature and Gender Studies.
These volumes have been analyzed so far by the DaMA team with a close reading approach
focusing on paradigmatic examples and eliciting a variety of recurring topics [18, 19, 20], with a
particular focus on the interconnections with the perspective of performing and actors’ studies,
stardom and celebrities studies and by using also the videographic analysis tools.

By following and expanding the multidisciplinary approach already explored by the DaMA
research, our current and future research work focuses on increasing the actual corpus and
applying on it SW standards and DH tools. Below the main phases of our methodological
approach:

1. Recognition of DaMA project’s outcomes and integration of new materials. All
the materials collected and analyzed by the DAMA research project team will be subjected
to a further and extended analysis in order to provide a first taxonomy describing the
corpus. During this phase, new documents and resources will be integrated into the
original corpus, in particular we we will focus on the retrieval of materials preserved
in the Elisabetta Catalano archive (Rome), the Museo di Fotografia Contemporanea -
MuFoCo archive (Cinisello Balsamo, MI), the Museo del Cinema archive (Turin), the
Cinemazero archive, the Luisa Di Gaetano archive (Rome), Archivia - Casa Internazionale
delle Donne (Rome). In addition, we intend to study cinema and cultural periodicals in
order to verify the circulation and the incidence of the work of female photographers in
the national press.

2. Conceptualization and formalization. The main goal of this activity is to formalize the
acquired knowledge in terms of concepts and relations with respect to specific ontological
schema and models detected in this phase. In this domain, the use of ontologies provides
a range of benefits for the users, e.g., in searching and browsing by concept rather than
string-based only. For example, the photographs that Elisabetta Catalano has taken of
a variety of actors and actresses, writers and directors can be put in relationships with
all the excerpts in the Italian actresses’ autobiographies in which the relations with the
cultural field strongly emerge as a symptom of overcoming the stereotype of actresses as
a pure "not thinking" beautiful and fashioned body. As we can see in Figure 1, Elisabetta
Catalano’s photograph of Monica Vitti talking to Andy Warhol can be intertwined with
passages in her autobiographies related to art as a means of self-expression and with
other several entities and concepts in the corpus.

3. Semantic annotations and analysis of the corpus. In this phase, ontological schema
and models will be used to guide the semantic annotations of all the corpus materials (texts
and images). During this phase, the corpus will be enriched with metadata describing,
for example, references that link the content to specific concepts. Moreover, a variety
of literary analysis based on distant reading approaches will be applied to the corpus
materials. In particular, we will explore typical computational linguistics methods based
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Figure 1: Example of entities and relationships in the examined corpus.

on Natural Language Processing techniques in order to identify recursive narrative
patterns as well as similar characteristics of the texts which will allow the recognition of
an attantial typology specifically linked to Divagrafie.

4. Development of the semantic archive. The main goal of this last phase will be the
development of the WOW semantic archive. It will provide the researchers with a set of
powerful and efficient tools that can be used to query, analyze and study the data in order
to make possible intertwine and connect different data. The interdisciplinary approach
will be made visible and easily traceable by a digital user interface able to link different
objects and produce new sets of knowledge. This will be particularly useful for scholars
and researchers of different fields, such as History of Cinema, History of Photography,
Visual Studies, Literature, Contemporary History and so on. The semantic archive will be
the hub through which not only find materials to be linked to other studies and researches,
but also to find new ways to analyze and study them with innovative approaches. In this
phase, we intend to investigate some automatic techniques for ontology population, such
as those presented in [21, 22]. All the features of the semantic archive will be integrated
into an easy-to-use graphical interface which will provide the visualization of the data in
various formats, such as graphs, interactive maps, timelines, facets, etc.

3. Potential Applications and Expected Impacts

The development of the WOW Semantic Archive could have significant potential applications
within the national and international research communities involved in the process. In fact,
the archive will make accessible a wide corpus of materials related to Italian Actresses which
crosses a wide range of studies also in the international academic communities: Film Studies,
Photography Studies, Women’s Studies and Literature Studies, and so on. To our knowledge,
this is the first time that such a corpus is being created following the unambiguous, rigorous,
consistent and well-documented practices provided by the DH approach. Moreover, this is
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the first time that computational methods and SW technologies will be applied to this kind of
document resources. The data integration feature provided by SW technologies will allow the
connection between data contained in the WOW Semantic Archive to data included to other
international archives, such as the European Film Gateway 5, by increasing the international
impact.

The semantic archive will be useful also for upper-secondary teachers and students, curators
of film-related events, film/photography/literature enthusiasts, and in general for whoever needs
to retrieve the data and the researches included in it. In addition to the ambition to fill a gap in
research and reflection on the area of study, namely the analysis of the relationship between
women, photography and cinema from a feminist perspective, which in many Western countries
has already been addressed, this work has another ambition, more complex and therefore even
more important and stimulating: this research work aims at contributing to the debate and
to the cultural framework of Italy, in which gender issues, women’s emancipation, feminist
heritage, women’s art are still not sufficiently considered as a fundamental part of the cultural
heritage of the nation, and therefore as a topic in school and university curriculum. As for its
social impact, it will contribute to the growing interest in those cultural dynamics which are
affected and/or shaped by gender issues as well as promoting a deeper social awareness of the
cultural role of women in Italian society.

As for its methodology, the actual collaboration among different scientific areas, such as
DH, Computer Science, Cinema Studies, Photography, Visual Studies, Gender Studies, Literary
Theory, will constitute an example of an integrated and multi-layered methodology, offering
itself as a possible benchmark for potential future projects. As for its objectives and expected
potential impacts, this work is in line with the research goals and targets defined by the National
Research Program (PNR) 2021-2027 and by the "Cultural Heritage" specific intervention area of
Horizon Europe. In particular, it will mainly impact the cluster “Humanistic culture, creativity,
social transformation, society of inclusion” of the PNR, specifically the sub-category “Digital
preservation and conservation of cultural heritage”. In fact, according to this sub-category
research line, the priority should be given to the implementation of effective semantic modeling
technologies, also through the construction of ontologies wherever necessary, which allow
an effective aggregation of different information levels and types of data, in order to avoid
redundancies or lack of data. The research should also include a shift from traditional databases
to SW databases, in order to achieve interoperability between resources and set up the field for
the transition to Big Data. All these research aspects will be considered within the development
of the WOW Semantic Archive that will have an expected impact in supporting the digital
transformation of the cultural sector, following the suggested focuses by the PNR related to
Digitization and Valorization of the Cultural Heritage, but also strengthening the social inclusion,
by reducing gender inequalities.

5https://www.europeanfilmgateway.eu/it
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Abstract
In this work we consider the problem of Stochastic Submodular Maximization, in which we would like
to maximize the value of a monotone and submodular objective function, subject to the fact that the
values of this function depend on the realization of stochastic events. This problem has applications
in several areas, and in particular it well models basic problems such as influence maximization and
stochastic probing.

In this work, we advocate the necessity to extend the study of this problem in order to include
several different features such as a budget constraint on the number of observations, the chance of
adaptively choosing what we observe or the presence of multiple rounds. We here speculate on the
possible directions that this line of research can take. In particular, we will discuss about interesting
open problems mainly in the settings of robust optimization and online learning.

Keywords
Influence Maximization, Stochastic Probing, Approximation Algorithms, Online Learning

Introduction

Consider the well-known problem of influence maximization: here we are given a (social)
network, with edge probabilities encoding the strength of the relationships among network’s
components; these probabilities describe how easily influence (e.g., an information or an in-
novation) spreads over the network starting from a limited set of nodes, usually termed seeds;
the goal is then to find the set of seeds that maximizes the number of “influenced” nodes. The
non-adaptive version of the problem, in which seeds are chosen before that influence starts, has
been widely studied, with numerous successful algorithms proposed [1, 2, 3] and applications
ranging from viral marketing [1], to election manipulation [4, 5], to infective disease prevention
[6]. Recently, focus moved to the adaptive variant of this problem (in which seeds can be added
even when the influence is spreading from previously placed seeds) [7, 8, 9, 10].
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This variant has strong relationship with some Stochastic Probing problems [11], in which
there are 𝑛 items whose states are stochastically defined according to (not necessarily equal)
independent distributions and the goal is to choose a feasible subset of items maximizing the
value of a non-negative, monotone and submodular set function. Several stochastic probing
settings can be found in expert hiring [12], online dating and kidney exchange [13], Bayesian
mechanism design [14], and sequentially posted pricing [15, 16]. Research both in influence
maximization and stochastic probing mainly focused on the single-round setting. However, in
several cases the optimization is run in a multi-round setting. For example, viral marketing or
electoral campaigns are usually deployed in multiple rounds of (usually adaptive) influence;
similarly, expert hiring sessions and sequentially posted pricing are run in multiple steps.

In this paper, we then advocate the necessity to extend the study of these problems in order to
consider all these properties: budget, adaptivity, and multiple-rounds. Indeed, previous works
only consider them separately.

Indeed, the analysis of optimization advantages of adaptive w.r.t. non-adaptive algorithms
has been recently applied to stochastic maximization problems, including single-round influence
maximization and stochastic probing. In particular, Golovin and Krause [7] showed that when-
ever the objective function satisfies a property, named adaptive submodularity, then a greedy
algorithm achieves a constant approximation of the optimal greedy algorithm. Some results
have been recently presented about (Adaptive) Multi-round Influence Maximization [17, 18]:
these results however do not take into account budget.

Multiple rounds have been considered mainly in the setting of online learning algorithms, aka
bandit algorithms, in which our algorithm are asked to work even if the input is only partially
known, and to improve their performance over multiple round (by essentially learning the input).
This class of algorithms has been introduced by Gittins [19], and it has been applied recently
also to influence maximization and other submodular maximization processes [20, 21, 22, 23, 24].
While these works focus on multi-round settings, they do not consider the chance of adaptively
choose observations, and often they also do not consider budget constraints.

Our contribution

In this work, we introduce the problem of Stochastic Budgeted Multi-round Adaptive Submodular
Maximization. The problem is defined by a number 𝑇 of rounds, a ground set of 𝑛 items, whose
state is drawn at each time step from a (node-specific) set Θ according to some time-dependent
distribution, a time-dependent monotone and submodular state function that assigns a non-
negative real-value to each realization of states upon specific item observations, and a budget
𝐵 on the possible observations done within the time-horizon 𝑇 . The problem is then to choose
which observations to make in each of the 𝑇 rounds, subject to the budget limit, in order to
maximize the expected total value of the state function over the 𝑇 rounds. It is not hard to see
how this problem generalizes both the influence maximization and stochastic probing problems:
in the first case, the state of an item 𝑣 defines which nodes would be influenced whether 𝑣 is
selected as a seed, with the distribution of the state of 𝑣 depending on edges’ probabilities; an
observation consists on choosing a given node as a seed, then running the influence spread, and
finally evaluating the realized state by, for example, counting the number or the total weight of
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influenced nodes. In the second case, the state of an item can be active or inactive, and we can
observe the state of selected items only; then, the value of the submodular set function depends
on the set of selected items which are active. Note that SBMSm not only generalizes influence
maximization and stochastic probing problems by extending them to multiple round settings,
but it also allows to model more realistic settings where states can change over time: e.g., in the
influence maximization setting, we may allow edge probabilities or node weights to change
over time.

Nevertheless the complexity of the problem, we claim that the state of our knowledge is
sufficient to face this kind of problems. In fact, we can prove that, by greedily allocating each
unit of budget to the round in which it is expected to produce the largest expected value of
the score function, given the amount of budget still available, and then running one of the
well-known single-round adaptive budgeted approaches to choose observations to make at each
round, we may achieve a constant approximation of the optimal algorithm (that adaptively
allocates the budget among rounds, and the allocations at each round).

Let us now discuss few directions for the research about Stochastic Budgeted Multi-round
Adaptive Submodular Maximization that we deem as very interesting and promising. In partic-
ular, we will henceforth focus on two main approaches.

Online Learning. Suppose that state distributions are unknown but all rounds share the
same state distribution. Can we define an adaptive policy that maximizes the expected total
value of the state function by “learning” the underlying probability distribution? In particular,
we will consider an agnostic (adaptive multi-round) policy, where the choice of each picked item
𝑣 is based on the observed partial state (both in the current round and the previous ones), on the
initial instance, but not on the distribution of states. As each observation provides samples of
several local states, such samples will be used to determine an estimated distribution of states at
each round 𝑡, that is more accurate as 𝑡 increases and more samples are provided. The estimated
distribution will be used to "simulate" the real one with a good approximation (e.g., when
computing the item maximizing the expected increment).

As benchmark quality metric for the proposed policy 𝜋, we will consider the 𝛼-approximate
regret 𝑅𝑒𝑔𝛼(𝑇 ) = 𝛼 · 𝜎𝜇(𝜋*) − 𝜎𝜇(𝜋), where 𝜋* is an optimal non-agnostic adaptive policy
(based on the knowledge of the distribution of states), and 𝜎𝜇(𝜋) denotes the expected value of
𝜋.

We believe it would be interesting to evaluate whether there is a policy 𝜋 with constant
approximation and sublinear regret. In particular, it has been recently introduced an approach,
named Combinatorial Upper Confidence Bound (CUCB), to design online learning algorithm
with constant approximation and poly-logarithmic regret [20, 21, 22], that has been successfully
used by Gabillon et al. [23] and by Das et al. [24] in setting that are similar but simpler than
the one proposed in this work. Unfortunately, it is not hard to see that a naive application
of CUCB to the model defined above cannot work, since we need not only to estimate which
observations to make at each round, but also how many, and the latter can be largely affected by
an imprecise estimation of states’ distribution. However, this raises other interesting questions:
are there settings in which we can be able to use the CUCB framework to achieve constant
approximation and poly-logarithmic regret? Can we design another framework such that is
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able to return constant approximation and poly-logarithmic regret in our more general setting?
Or, how high is the cost that we have to pay in term of approximation guarantee in order to
achieve poly-logarithmic regret?

While the regret is an useful measure (and the standard de facto) in order to understand the
learning abilities of an algorithm, other measures can be of some interest. For example, one may
be interested in agnostic policies that are able to reach a given goal (e.g., the aggregate state
function is above a given threshold) within a given deadline. Note that learning algorithm with
low regret may fail in achieving this goal: indeed, regret may depend on other time-independent
factors that may be often large. Moreover, low regret does not exclude long exploration phases
in which a lot of “value” has been lost.

Robust Optimization. The second approach is also motivated by partial or imprecise knowl-
edge of state distributions. However, while above we aimed to learn these distributions, we here
are concerned on how and how much this limited knowledge affects our optimization goals.
This approach is receiving large attention very recently, motivated by the necessity to run
optimization algorithms not on real data but on predictions often generated by machine learning
algorithms. The field has blossomed with applications to facility location [25], scheduling [26],
clustering [27], influence maximization [28].

Here, natural interesting questions that we can ask are: how much the known optimization
frameworks are sensible to distortion on input data? Or how much has to be lost in that
framework if one want an algorithm that is robust to distortions within a given threshold?
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Abstract
In hedonic games, a set of 𝑛 agents, having preferences over all possible coalition structures, needs to

agree on a stable outcome. In this work, we initiate the study of hedonic games with fixed-size coalitions,

where the set of possible coalition structures is restricted as follows: there are 𝑘 coalitions, each coalition

has a fixed size, and the sum of the sizes of all coalitions equals 𝑛. We focus on the basic model of

additively separable hedonic games with symmetric valuations, where an agent’s preference is captured

by a utility function which sums up a contribution due to any other agent in the same coalition. In this

setting, an outcome is stable if no pair of agents can exchange coalitions and improve their utilities. We

analyse the fundamental questions of existence, complexity and efficiency of stable outcomes, and that

of complexity of a social optimum.

Keywords
Coalition formation, Swap equilibria, Price of Anarchy and Stability

1. Introduction

We introduce the model of hedonic games with fixed-size coalitions, where 𝑛 agents want to be

assigned to coalitions in order to maximize their utilities. Differently from classical models of

hedonic games [1, 2, 3, 4], both the number and sizes of coalitions are fixed: there are 𝑘 coalitions,

whose sizes sum up to 𝑛. The utility that agent 𝑖 receives when being in the same coalition of

agent 𝑗 is given by a non-negative value 𝑣𝑖𝑗 . We assume that valuations are symmetric, i.e.,

𝑣𝑖𝑗 = 𝑣𝑗𝑖 for every distinct agents 𝑖 and 𝑗. Valuations are dichotomous when they belong to

{0, 1}.

We are interested in the existence and efficiency of outcomes which may be resistant to agents

swaps. In particular, we distinguish among three different types of swap stability, depending on

how we define the happiness of a pair of swapping agents. We say that an outcome is swap stable
under transferable utilities (SSTU), if no pair of swapping agents can improve the sum of their

utilities; it is strictly swap stable (SSS), if no swap can improve the utility of one agent without

decreasing the utility of the other one; it is swap stable (SS), if no pair of swapping agents can

improve both of their utilities simultaneously. It is immediate to see that, by definition, any

outcome which is SSTU is also SSS and that any SSS outcome is also SS. So, positive results
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holding for SSTU outcomes (such as existence and efficient computation) extend to both SSS

and SS ones, while negative results for SS outcomes (such as hardness of computation) apply to

SSS and SSTU outcomes as well.

We prove that the utilitarian social welfare (USW), defined as the sum of the utilities of all

agents, is a potential function which shows that, starting from any outcome, every sequence

of swaps in which the sum of the utilities of the swapping agents increases converges to a

SSTU outcome after a finite number of swaps. For dichotomous valuations, this number is at

most 𝑛(𝑛− 1)/2, which yields a polynomial time algorithm for computing a SSTU outcome.

For general valuations, however, we prove that computing a SS outcome is PLS-complete by

reworking a reduction from the Max Cut problem originally designed in [5].

To measure the efficiency of stable outcomes, we resort to two state-of-the-art metrics: the

price of anarchy (PoA) and the price of stability (PoS). They compare the USW of a socially

optimal outcome against the USW of, respectively, the worst and the best possible stable outcome.

As a corollary of the fact that the USW is a potential function, the PoS of all three stability

notions is equal to 1. The characterization of the PoA, instead, is much more challenging and

constitutes one of the main results of our work. We first show that the PoA of SS outcomes can

be unbounded even for games with dichotomous valuations. A similar negative result is also

obtained for SSTU outcomes (and so also for SSS ones) for games with generic valuations and

even for games with dichotomous valuations, as long as there exist agents who dislike all the

other ones (i.e., misanthropes). In light of these negative results, our investigation will be limited

to the characterization of the PoA of both SSS and SSTU outcomes in games with dichotomous

valuations and no misanthropes. For SSS outcomes, we show that the PoA is exactly 2𝑘 − 1. To

obtain the upper bound, we first derive a couple of technical lemmas. The first lemma lower

bounds the USW of a SSS outcome as a function of the size of the largest coalition. The second

one, instead, upper bounds the sum of the utilities of the agents belonging to any two coalitions

𝑐 and 𝑐′ in a SSS outcome which half of the total utility that the agents would get if they were

all together in a coalition. By summing over all possible pairs of coalitions, the desired bound

can be obtained. However, the technical lemma does not hold when both 𝑐 and 𝑐′ are singleton

sets. Thus, one needs to deal with the presence of singletons in the coalition structure. We

resolve this issue by means of an ingenious inductive argument on the number of singleton

coalitions. For SSTU outcomes, for which the 2𝑘 − 1 upper bound carries over, we complement

the analysis with a lower bound of 2𝑘 − 2 + 1
𝑘−1 . This lower bound is tight for 𝑘 = 2 and

almost tight up to an additive factor of 1 for any other value of 𝑘.

We also investigate the problem of computing a social optimum (SO). On the negative side,

we show that a SO cannot be approximated within 𝑛𝑜(1)
, even for games with dichotomous

valuations. Even for constant 𝑘, computing a SO remains NP-hard. On the positive side, by

leveraging known approximability results for the Densest 𝑡-Subgraph [6], we obtain an 𝑂(𝑘2)-
approximation algorithm. For dichotomous valuations, we know that a SSTU outcome can be

computed in polynomial time and that this outcomes is a (2𝑘 − 1)-approximation of the SO.

However, if all coalitions have size at least 3, we design an algorithm whose approximation

guarantee is

(︁
1 + 𝑠

𝑠−1(𝑘 − 1)
)︁

, where 𝑠 is the size of the smallest coalition. In particular, as 𝑠

increases, the performance guarantee tends to 𝑘.
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Abstract
In this perspective paper, we propose different formalizations of games that are played over Attack
Graphs between an Attacker and a Defender. In all such games we propose a formal approach (such as
logics and automata theory) to check whether the Attacker has a strategy to win the game.

Keywords
Attack Graphs, Sabotage Games, Logics in Games

1. Introduction

Modern systems are inherently complex and security plays a crucial role. The main challenge in
developing a secure system is to come up with tools able to detect vulnerability and unexpected
behaviors at a very early stage of its life-cycles. These methodologies should be able to measure
the grade of resilience to external attacks. Crucially, the cost of repairing a system flaw during
maintenance is at least two order of magnitude higher, compared to a fixing at an early design
stage [1]. In the past fifty years several solutions have been proposed and a story of success
is the use of formal methods techniques [1]. They allow checking whether a system is correct
by formally checking whether a mathematical model of it meets a formal representation of its
desired behavior. Recently, classic approaches such as model checking and automata-theoretic
techniques, originally developed for monolithic systems [2, 3], have been meaningfully extended
to handle multi-agent systems [4, 5, 6, 7, 8]. These are systems that encapsulate the behavior
of two or more rational agents interacting among them in a cooperative or adversarial way,
aiming at a designed goal [9].

In system security checking, a malicious attack can be seen as an attempt of an Attacker
to gain an unauthorized resource access or compromise the system integrity. In this setting,
Attack Graph [10] is one of the most prominent attack model developed and receiving much
attention in recent years. This encompasses a graph where each state represents an Attacker at
a specified network location and edges represent state transitions, i.e., attack actions by the
Attacker. In this paper, we sketch three different methodologies to reason about Attack Graphs
by introducing game models in which a player (called Attacker) travels through adjacent edges
of an Attack Graph and tries to reach a certain target state, and another player (called Defender)
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tries to prevent to Attacker to reach his goal by dynamically deploying countermeasures. All
the game models that we will introduce can be handled by means of formal methods, i.e., to
reason about such games we will use logical methods or automata-theoretic approaches.

2. Attack Graphs

The term Attack Graph has been first introduced by Phillips and Swiler [11]. Attack Graphs
represent the possible sequence of attacks in a system as a graph. An Attack Graph may be
generated by using the following information: a description of the system architecture (topology,
configurations of components, etc.), the list of the known vulnerabilities of the system and the
Attacker’s profile (his capabilities, password knowledge, privileges etc.) and attack templates
(Attacker’s atomic action, including preconditions and postconditions). An attack path in the
graph corresponds to a sequence of atomic attacks. Several works have developed this approach
and each work introduces its own Attack Graph model with its specificity, and thus there is no
standard definition of an Attack Graph, see [12] for a survey. However, all introduced models
can be mapped into a canonical Attack Graph as introduced in [13]. It is a labelled oriented
graph, where:

1. each node represents both the state of the system (including existing vulnerabilities) and
the state of the Attacker including constants (Attacker skills, financial resources, etc.) and
variables (knowledge on the network topology, privilege level, obtained credentials, etc.);

2. each edge represents an action of the Attacker (a scan of the network, the execution of an
exploit based on a given vulnerability, access to a device, etc.) that changes the state of
the network or the states of the Attacker; an edge is labelled with the name of the action
(several edges of the Attack Graph may have the same label).

We recall that a rooted Kripke structure𝑀 is given by a non-empty set𝑆 of states, a designated
initial state 𝑠0, a finite-non empty set Σ of labels, a ternary relation 𝑅 ⊆ 𝑆 × Σ × 𝑆 and a
labeling function 𝑉 that maps any element of 𝑆 to a set of atomic proposition. By abstracting
all the data in the above discussion, one can define an Attack Graph as follows.

Definition 1. Let Σ be a finite set of labels, and 𝒫 a finite set of atomic propositions, such that
win ∈ 𝒫 . An Attack Graph is a tuple 𝐴𝐺 = ⟨𝑆, 𝑠0,Σ, 𝑅, 𝑉,𝑊 ⟩ where:

– ⟨𝑆, 𝑠0,Σ, 𝑅, 𝑉 ⟩ is a rooted Kripke structure where the set 𝑆 of states is finite and 𝑉 (𝑠) ⊆ 𝒫
for any 𝑠 ∈ 𝑆;

– 𝑊 is a non-empty subset of 𝑆 such that win ∈ 𝑉 (𝑠) for all 𝑠 ∈𝑊 .

The set 𝑊 represents the set of target states of the Attacker.

Let us make things more concrete. Consider the following scenario: an enterprise has a local
area network (LAN) that features a Server, a Workstation and two databases A and B. The LAN
also provides a Web Server. Internet’s access to the LAN are controlled by a firewall. Such
scenario is depicted in Figure 1. Suppose that we know some vulnerabilities and that we have
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established that a malevolent user can make the attacks listed in the Table of Figure 1, e.g., by
making 𝑎𝑡𝑡2, an Attacker can exploit a vulnerability related to the Server : as a precondition the
Attacker needs to have root access to the Web Server and, as a postcondition, he will obtain
root access to the Server. Then we can construct an Attack Graph built from this set of atomic
attacks and collecting possible attack paths as depicted in Figure 11. The Attacker’s initial state
is a node in the Attack Graph. Let us suppose that the Attacker is in state 𝑠1 and wants to
reach state 𝑠4. To get to this target, he can perform the sequences of atomic attacks 𝑎𝑡𝑡2, 𝑎𝑡𝑡4
or 𝑎𝑡𝑡3, 𝑎𝑡𝑡2, 𝑎𝑡𝑡4.

Attack Location Precondition Postcondition Counter
measure

𝑎𝑡𝑡1 Web Server 𝑤𝑒𝑏_𝑠𝑒𝑟𝑣𝑒𝑟 : 𝑟𝑜𝑜𝑡 _
𝑎𝑡𝑡2 Server 𝑤𝑒𝑏_𝑠𝑒𝑟𝑣𝑒𝑟 : 𝑟𝑜𝑜𝑡 𝑠𝑒𝑟𝑣𝑒𝑟 : 𝑟𝑜𝑜𝑡 𝑐2
𝑎𝑡𝑡3 Workstation 𝑤𝑒𝑏_𝑠𝑒𝑟𝑣𝑒𝑟 : 𝑟𝑜𝑜𝑡 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 : 1234 _
𝑎𝑡𝑡4 Database A 𝑠𝑒𝑟𝑣𝑒𝑟 : 𝑟𝑜𝑜𝑡 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝐴 : 𝑟𝑜𝑜𝑡 𝑐4
𝑎𝑡𝑡5 Database B 𝑠𝑒𝑟𝑣𝑒𝑟 : 𝑟𝑜𝑜𝑡∧ 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝐵 : 𝑟𝑜𝑜𝑡 𝑐5

𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 : 1234

Figure 1: An illustrating LAN architecture example, a list of Atomic attacks and countermeasures over
the LAN, and an Attack Graphs generated by such Atomic attacks.

1This Attack Graph is not complete w.r.t. our previous description, since some possible sequences of atomic attacks
are not listed: for instance 𝑎𝑡𝑡1, 𝑎𝑡𝑡2, 𝑎𝑡𝑡3, 𝑎𝑡𝑡5 are not taken into account.
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3. Attack Graph Games

In the previous section, we saw that an Attack Graph represents a sequence of possible actions
made by an Attacker to reach a specific goal. Let us add another character to this story,
the Defender, whose objective is to counter the attack. Suppose that she has the power to
dynamically deploy a predefined set of countermeasures: for instance by reconfiguring the
firewall filtering rules, or patching some vulnerabilities, that is by removing one or several
preconditions of an atomic attack. A given countermeasure 𝑐 will prevent the Attacker from
longing a given attack 𝑎𝑡𝑡. One can imagine a game played over the Attack Graph in which the
Attacker tries to reach one of its goal states, and the Defender tries to prevent the Attacker from
reaching a goal state by deploying countermeasures. Given such a game, one natural question
to ask is the following: is there a winning Attacker Strategy? We will now define three possible
settings in which such games can be formalized.

3.1. Attack Graph Games & (Subset) Sabotage Modal Logic

Above, we introduced a Defender, whose power is to deploy certain countermeasures, and we
introduced the concept of game over an Attack Graph. To make things less abstract, consider
a two player turn-based game over Attack Graph in which: the Defender starts the game by
selecting a certain countermeasure 𝑐. By choosing such a countermeasure, she deletes a subset
of edges of the Attack Graph: all the edges that are labeled by 𝑐. The Attacker takes his turn
and moves from 𝑠0 to one of its successor along the edges that have not being erased (if any).
The game evolves following this pattern. The Attacker wins if he can reach one of the states
in W in a finite number of moves, the Defender wins otherwise. A run in such a game is
nothing more than a run in a insidious sabotage game. Sabotage games were introduced by
van Benthem in 2005 [14], with the aim of studying the computational complexity of a special
class of graph-reachability problems. Namely, graph reachability problems in which the set of
edges of the graph became thinner and thinner as long as a path of the graph is constructed. To
reason about sabotage games, van Benthem introduced Sabotage Modal Logic. Such Logic is
obtained by adding to the ♢-modality of classical modal logic another modality ♦.

Let𝐺 be a directed graph and 𝑠 one of its vertex (or states); the intended meaning of a formula
♦𝜙 is “ ♦𝜙 is true at a state 𝑠 of 𝐺 iff 𝜙 is true at 𝑠 in the graph obtained by 𝐺 by erasing an
edge 𝑒". Our sabotage games differs from the one introduced by van Benthem because one of
the players can erase an entire subset of edges of a given graph. To reason about such games,
in [15] we introduce a variant of Sabotage Modal Logic that we call, for lack of wit, Subset
Sabotage Modal Logic (SSML, for short). The logic SSML is obtained by adding a modality
♦⊂
𝑎 to the language of classical modal logic. Being more precise, let 𝒫 be a non-empty set of

atomic propositions and Σ a finite, non empty set of labels. Formulas of SSML are defined by
the following grammar

𝜙 ::= 𝑝 | ⊤ | ¬𝜙 | 𝜙 ∧ 𝜙 | ♢𝑎𝜙 | ♦⊂
𝑎 𝜙

where 𝑝 is any atomic proposition and 𝑎 any label. One can define the boolean connectives
∨ and → in the usual way, □𝑎𝜙 as ¬♢𝑎¬𝜙, and ■⊂

𝑎 𝜙 as ¬♦⊂
𝑎 ¬𝜙.
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The intended meaning of a formula ♦⊂𝜙 is “ ♦⊂
𝑎 𝜙 is true at a state 𝑠 of a directed graph 𝐺

iff 𝜙 is true at 𝑠 in the graph 𝐺′ that is obtained from 𝐺 by erasing a non-empty set of edges
that are labeled by 𝑎". We now precisely define the semantics of SSML. If 𝑀 = ⟨𝑆, 𝑠0,Σ, 𝑅, 𝑉 ⟩
is a Kripke structure and 𝐸 ⊆ 𝑅, we write 𝑀 ∖ 𝐸 to denote the Kripke structure obtained by
erasing the subset 𝐸 from the relation 𝑅. If 𝑒 = (𝑠, 𝑎, 𝑠′) ∈ 𝑅 we say that 𝑒 is a labeled edge or
simply an edge, and that 𝑎 is the label of 𝑒. We denote by 𝑅𝑎 the subset of labeled edges of 𝑅
whose label is 𝑎, that is 𝑅𝑎 = {𝑒 ∈ 𝑅 | 𝑒 ∈ 𝑆 × {𝑎} × 𝑆}.

The notion of satisfaction of a formula 𝜙 at a given state 𝑠 of a Kripke structure 𝑀 (written
𝑀, 𝑠 |= 𝜙) is inductively defined as follows:

𝑀, 𝑠 |= ⊤ for all 𝑠 ∈ 𝑆;

𝑀, 𝑠 |= 𝑝 iff 𝑝 ∈ 𝑉 (𝑠);

𝑀, 𝑠 |= ¬𝜙 iff not 𝑀, 𝑠 |= 𝜙 (notation 𝑀, 𝑠 ̸|= 𝜙);

𝑀, 𝑠 |= 𝜙1 ∧ 𝜙1 iff 𝑀, 𝑠 |= 𝜙1 and 𝑀, 𝑠 |= 𝜙2;

𝑀, 𝑠 |= ♢𝑎 𝜙 iff there is a 𝑠′ ∈ 𝑆 such that (𝑠, 𝑎, 𝑠′) ∈ 𝑅 and 𝑀, 𝑠′ |= 𝜙;

𝑀, 𝑠 |= ♦⊂
𝑎 𝜙 iff there is a non-empty 𝐸 ⊆ 𝑅𝑎 such that 𝑀 ∖ 𝐸, 𝑠 |= 𝜙.

We say that a formula 𝜙 is true in a rooted Kripke structure 𝑀 (written 𝑀 |= 𝜙 ) iff 𝜙 is true
at the initial state of 𝑀 . Remark that 𝑀, 𝑠 |= ■⊂

𝑎 𝜙 if and only if for any non-empty subset
𝐸 of 𝑅𝑎 we have that 𝑀 ∖ 𝐸, 𝑠 |= 𝜙, 𝑅𝑎 included. This implies that if 𝑀, 𝑠 |= ■⊂

𝑎 𝜙 then
𝑀 ∖𝑅𝑎, 𝑠 |= 𝜙.
A strategy is a plan of action. As it is logical, the plan is winning when it leads me to victory,
whatever my opponent’s plan of action. Thus, a winning strategy can be expressed as an
alternance of universally quantified sentences and existentially quantified sentences “for all
actions of my Opponent, there is an action that I can make that leads me to victory". Let us put
ourselves in the villain’s shoes: suppose that we are the Attacker, and that, by playing, we have
reached a certain state 𝑠 of an Attack Graph 𝐴𝐺. It is now Defender’s turn. If I have a winning
strategy, I must be able to reach a successor state 𝑠′ of 𝑠 and this for any subset that is removed by
the Defender. Said differently, we must have that𝐴𝐺, 𝑠 |= ■⊂ ♢𝜙 = (■⊂

𝑎 ♢𝜙)∧· · ·∧(■⊂
𝑏 ♢𝜙)

for some formula 𝜙 that expresses the winning condition. First, we define:

■⊂ 𝜙
.
=

⋀︁
𝑎∈Σ

■⊂
𝑎 𝜙 ♢𝜙

.
=

⋁︁
𝑎∈Σ

♢𝑎 𝜙

We can now define a family of formulas expressing the fact the the Attacker as a winning
strategy to win a Subset Sabotage Game played over an Attack Graph.

Definition 2 (Winning Formulas). The family {𝜓𝑛}𝑛∈N of Winning formulas is defined by
induction on 𝑛 as follows:

𝜓𝑛 =

{︃
win if 𝑛 = 0

♢⊤ ∧ ■⊂ ♢(𝜓𝑛−1 ∨ win) otherwise
(1)
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The following thereom can be proved by induction on the size of the Attack Graph.

Theorem 1. For any attack Graph 𝐴𝐺 = ⟨𝑆, 𝑠0,Σ, 𝑅, 𝑉,𝑊 ⟩ such that |𝑆| = 𝑛 we have that
𝑀 |= win ∨ 𝜓𝑛−1 if and only if there is a Winning Attacker Strategy for the Subset Sabotage
Game played over 𝐴𝐺.

The model-checking problem for SSML, consist in deciding if 𝑀 |= 𝜙 given a finite rooted
Kripke Structure 𝑀 and a SSML formula 𝜙. The proof of the following theorem is obtained by
defining a translation (parametrized by a given Kripke structure) from SSML formulas to SML
formulas.

Theorem 2. The model checking problem for SSML is decidable: if 𝑀 is a finite rooted Kripke
Structure and 𝜙 an SSML formula, we can decide whether 𝑀 |= 𝜙 or not.

As a consequence of the two above theorems, we can decide if there is a winning Attacker
Strategy for the Subset Sabotage Game played over 𝐴𝐺, by checking if 𝐴𝐺 is a formal model of
the formula 𝜓𝑛−1 where 𝑛 is the size of 𝐴𝐺.

3.2. Attack Graph Games & Automata

In the SSML setting that we sketched in the previous section, we can decide if there is a winning
Attacker Strategy over the subset sabotage game played over 𝐴𝐺, by checking if 𝐴𝐺 is a formal
model of a certain SSML formula 𝜓𝑛. Such a solution is quite ad-hoc: we have designed the
logic SSML exactly to solve our problem. To reason about the kind of games that we described
in the previous section, we can use another technique. We have presented such a technique
in [16] by working together with other colleagues.

We define a game 𝒢 as a structure ⟨𝑉, 𝑣𝐼 , 𝑇,𝐺⟩ where 𝑉 = 𝑉1 ∪ 𝑉2 is a set of vertex such
that 𝑉1 ∩ 𝑉2 = ∅, 𝑣0 ∈ 𝑉1 is the initial vertex, 𝑇 = 𝑇1 ∪ 𝑇2 is a transition relation such that
𝑇1 ⊆ 𝑉1 × 𝑉2 and 𝑇2 ⊆ 𝑉2 × 𝑉1 and 𝐺 ⊆ 𝑆2 is a non-empty subset representing the set of
Attacker’s goal states. Given an Attack Graph 𝐴𝐺 = ⟨𝑆, 𝑠0,Σ, 𝑅, 𝑉,𝑊 ⟩ together with a set of
countermeasures 𝒞 (as showed in Figure 1), we can easily convert the Attack Graph in a game 𝒢
by using an algorithm. We briefly describe the idea of this algorithm with the following points:

1. Each vertex 𝑣 of the game produced will be a pair ⟨𝑠, 𝐿⟩, where 𝑠 is an 𝐴𝐺-state and 𝐿 is
a list of edge labels.

2. We start by setting as initial state of the game the pair ⟨𝑠0, 𝜖⟩ and for each 𝑠′, such that
(𝑠0, 𝑎, 𝑠

′) ∈ 𝑅 for some 𝑎 ∈ Σ we create an edge (⟨𝑠0, 𝜖⟩, ⟨𝑠′, 𝜖⟩) ∈ 𝑇1.

3. If one of the 𝑠′ is in𝑊 we create a sink and we add ⟨𝑠′, 𝜖⟩ ∈ 𝐺. Otherwise, for each counter-
measure 𝑐 ∈ 𝒞 we create a vertex ⟨𝑠′, 𝑐⟩ ∈ 𝑉2 and we add a transition (⟨𝑠′, 𝜖⟩, ⟨𝑠′, 𝑐⟩) ∈ 𝑇2.

4. If in the Attack Graph 𝐴𝐺 there is an edge labeled with 𝑑 ̸= 𝑐 such that (𝑠′, 𝑑, 𝑠′′) ∈ 𝑅
we add a vertex ⟨𝑠′′, 𝑑⟩ ∈ 𝑉1 and an edge (⟨𝑠′, 𝑐⟩, ⟨𝑠′′, 𝑑⟩) ∈ 𝑇1, otherwise we create a
sink (⟨𝑠′, 𝑐⟩, ⟨𝑠′, 𝑐⟩) ∈ 𝑇1.
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We repeat this procedure until there are states in 𝐴𝐺. It is clear that if the Attack graph 𝐴𝐺
does not contain cycles, then the game 𝒢 given by the procedure is a finite, labeled tree whose
root is labeled by 𝑣𝐼 = ⟨𝑠0, 𝜖⟩. We can thus define a winning strategy for the Attacker as a
pruning of 𝒢 in which each state in 𝑉1 has at most one child and whose leaves are all in 𝐺, i.e.,
we can define winning strategies as follows.

Definition 3. An attacker strategy for a game ⟨𝑉, 𝑣𝐼 , 𝑇,𝐺⟩ is a finite tree whose root is 𝑣𝐼 , whose
branches are plays over 𝒢 and that satisfy the following properties:

1. For each node 𝑠 of the strategy: if 𝑠 ∈ 𝑉1 then 𝑠 has at most one child.

2. For each node 𝑠 of the strategy: if 𝑠 ∈ 𝑉2 and 𝑠 /∈ 𝐺 then 𝑠 has as many child as there are
nodes 𝑠′ such that (𝑠, 𝑠′) ∈ 𝑇2.

An attacker strategy is winning whenever each leaf of the strategy belongs to 𝐺.

Finite trees can be recognized by finite tree automaton.

Definition 4. A nondeterministic tree automaton (𝑁𝑇𝐴, for short) is a tuple 𝒜 =
⟨𝑄,Σ, 𝑞0, 𝛿, 𝐹 ⟩, where: 𝑄 is a set of states, 𝑞0 ∈ 𝑄 is an initial state, 𝛿 : 𝑄 × Σ → 2𝑄 is a
transition function mapping pairs of states and symbols to a set of states, and 𝐹 ⊆ 𝑄 is a set of
the accepting states.

A 𝑁𝑇𝐴 𝒜 recognizes trees and works as follows. For a node tree labelled by 𝑎 and 𝒜 being
in a state 𝑞, it sends different copies of itself to successors in accordance with 𝛿. Given a
non-deterministic tree automaton 𝒜 (NTA, for short), we can check in linear time if the set
of trees accepted by the automaton is empty. If such set is empty, there will be no winning
strategies for the Attacker. Since the size (i.e. number of vertices) of a tree constructed by the
NTA does not exceed the size of the game, we obtain the following result.

Theorem 3. Given a game 𝒢 it is possible to decide in linear time whether the Attacker has a
strategy to win the game.

3.3. Attack Graph Games & Interpreted System

The games we described in the two previous subsections are two-player turn-based games with
perfect information. The two players move in turns and they have perfect information about
each other’s actions. These two assumptions are quite unrealistic. In particular, it is unrealistic
to think that a Defender always have perfect information about Attacker’s actions. Moreover,
while in both models we have a clear view of what an Attacker is — we can identify him with
the Attack Graph itself— the Defender is relegated to a subordinate role. Such a character does
not have a clear ontological status has it is identified with a set of countermeasures that are
given independently of the graph structure. If we want to think in terms of multi-agent system,
we should try to give a clear agent’s status to the Defender as well. To tackle all these problems
we propose to think about Attacker and Defender(s) in a game played over an Attack Graph as
Agents of an Interpreted System [17]. An Interpreted Systems (IS) is constructed starting from
a finite set of Agents 𝐴𝑔 = {1, . . . , 𝑛}, each agent 𝑖 is specified by giving:
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• a set 𝐿𝑖 of local states;

• a set 𝑎𝑐𝑡𝑖 of agent’s action;

• a function 𝑃𝑖 associating to each local state a non-empty set of agent’s 𝑖 actions;

• a transition function 𝑡𝑖 that takes an agent 𝑖 state 𝑙𝑖 and an action 𝑎𝑘 for each agent in
𝐴𝑔 as argument and outputs an agent 𝑖 state. The function 𝑡𝑖(𝑙𝑖, 𝑎1, . . . , 𝑎𝑘) is defined if
and only if we have that 𝑎𝑖 ∈ 𝑃𝑖(𝑙𝑖).

If 𝐴𝑔 is a set of 𝑘 agents, a global state 𝑠 is a tuple 𝑠 = ⟨𝑙1, . . . , 𝑙𝑘⟩ where each 𝑙𝑖 is an
agent 𝑖 state. The set of global states is denoted by 𝐺𝐼 . Finally an Interpreted System is
a tuple 𝐼 = ⟨𝐴𝑔, 𝑠0, 𝑇,Π⟩ where 𝐴𝑔 is a set of agents, 𝑠0 ∈ 𝐺𝐼 is the global initial state,
𝑇 : 𝐺𝐼 × 𝑎𝑐𝑡𝐴𝑔 → 𝐺𝐼 is the global transition function such that 𝑇 (𝑠, 𝑎1, . . . , 𝑎𝑘) = 𝑠′ iff for
every 𝑖 ∈ 𝐴𝑔, 𝑡𝑖(𝑠, 𝑎𝑖) = 𝑠′, and Π is a labeling function, associating to any global states a
subset of atomic propositions. Interpreted systems can be used together with logics for the
strategic reasoning such as Alternating-time temporal logic (ATL)[5] and Strategy Logic (SL)[7].
Moreover, interpreted systems came with a natural concept of imperfect information: if 𝑠 is a
global state, we denote by 𝑠[𝑖] its 𝑖-component. Two global states 𝑠 and 𝑠′, are equivalent for
the agent 𝑖 whenever 𝑠[𝑖] = 𝑠′[𝑖]. We denote such notion by 𝑠 ∼𝑖 𝑠

′. Two histories, i.e. finite
sequences of global states, ℎ and ℎ′, are equivalent for the agent 𝑖 whenever they have the same
length 𝑚 and ℎ𝑗 ∼𝑖 ℎ

′
𝑗 for any 0 ≤ 𝑗 ≤ 𝑚.

Given an Attack Graph 𝐴𝐺 we can define an Attacker Agent whose states are the states of
the attack graph, whose actions are the labels of the Attack Graph’s edges (and eventually the idle
action), and in which given two states 𝑠 and 𝑠′ of the𝐴𝐺 if (𝑠, 𝑏, 𝑠′) ∈ 𝑅 then 𝑡(𝑠, (𝑏, 𝑎⃗)) = 𝑠′ for
some tuple of other’s agent actions 𝑎⃗. The natural question is: how can we define the Defender?
As we can see from the table in Figure 1, each attack in the Attack Graph, is identified with a
set of preconditions and postconditions. The latter is nothing more than atomic propositions
labeling states. If the Attacker is in a state 𝑠 that is labeled with some preconditions, he can
make an attack and move to a state 𝑠′ labeled by the postconditions of the attack. We can
suppose that the Defender’s set 𝒞 of countermeasures is defined symmetrically: each Defender
countermeasure is identified with a pair of sets ⟨𝐶𝑝𝑟𝑒, 𝐶𝑝𝑜𝑠𝑡⟩ of atomic propositions that labels
some states in the Attack Graph. Now, let 𝐴𝐺 = ⟨𝑆, 𝑠0,Σ, 𝑅, 𝑉,𝑊 ⟩ be an attack graph. By
definition, 𝑉 (𝑠) is a set of atomic propositions, for any 𝑠 ∈ 𝑆. In Section 2, we saw that
the atomic propositions labeling a state represent two heterogeneous types of information:
information about the system (vulnerabilities, state of the system, etc.), and information about
the Attacker (his skills, knowledge of the network, access to device, etc.). We can imagine
that a Defender has partial knowledge, e.g., she does not know exactly what are the skills of
the Attacker, or she does not know to which devices the Attacker can access, or she has only
information about the system or, even, of some subset of states of the system. We can thus
imagine that the pairs ⟨𝐶𝑝𝑟𝑒, 𝐶𝑝𝑜𝑠𝑡⟩ in the set of countermeasures vary over the knowledge
of the defender, i.e. 𝒫𝐷 ⊆ 𝒫 . Consider the directed graph 𝐴𝐺𝐷 = ⟨𝑆𝐷, 𝑅𝐷⟩ where the set
of states 𝑆𝐷 is the set of equivalence classes of states of the Attack Graph modulo 𝒫𝐷 (the
knowledge of the defender). That is, 𝑠 ∈ 𝑆𝐷 iff 𝑠 is an equivalence class of states modulo the
relation 𝑠𝑖 ≡ 𝑠𝑗 ⇐⇒ 𝑉 (𝑠𝑖) ∩ 𝒫𝐷 = 𝑉 (𝑠𝑗) ∩ 𝒫𝐷, where 𝑠𝑖, 𝑠𝑗 ∈ 𝑆. The set of edges 𝑅𝐷 is
given by:
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1. (𝑠, 𝑠′) ∈ 𝑅𝐷 if (𝑠𝑖, 𝑏, 𝑠𝑗) ∈ 𝑅 for some states of the 𝐴𝐺, 𝑠𝑖 belonging to the equivalence
class 𝑠 and 𝑠𝑗 belonging to the equivalence class 𝑠′ or,

2. (𝑠, 𝑠′) ∈ 𝑅𝐷 if 𝑉 (𝑠𝑖) = 𝐶𝑝𝑟𝑒 and 𝑉 (𝑠𝑗) = 𝐶𝑝𝑜𝑠𝑡 for some state of the 𝐴𝐺, 𝑠𝑖 belonging
to the equivalence class 𝑠 and 𝑠𝑗 belonging to the equivalence class 𝑠′.

Over such a structure, we can construct a Defender Agent, whose set of states is 𝑆𝐷,
having an action for each edge in 𝑅𝐷 and in which the local transition functions mimics the
relation 𝑅𝐷 . We can impose that whenever the defender is in a state that is a precondition of a
countermeasure, if she plays a certain action then the local transition functions will output the
associated postconditions no matter what are the actions of the other agents.

Remark that by using such a construction, we can easily consider 𝑛-different defenders: we
can imagine that each defender knows a different subset of 𝒫 and as a consequence generates
different defender’s agent. This approach paves the way to the introduction of the strategic
reasoning typical of the ATL logics into the Attack Graphs frame. In the two previous subsections,
we only asked whether, given an 𝐴𝐺 one can find a winning Attacker strategy, i.e., we were
obliged to consider only reachability goals for the Attacker. Thanks to the fact that Interpreted
Systems are a model of the logic ATL, we can specify the strategic properties that we are
interested to check via such a logic, and e.g., verify properties about the strategy ability of a
coalition of Defenders.

4. Conclusion

We have sketched three possible formalization of Attacker-Defender(s) games that are played
over an Attack Graph. All the approaches make use of formal methods techniques to estimate
whether one of the players can win the proposed games. Two of the formalization consider
two-players turn-based reachability games with perfect information, and are obtained by the
means of, respectively, modal logic and automata theory. The third conceptualization, which in
our opinion is the more promising, paves the way to a formalization of such games in terms
of concurrent 𝑛-agents games with imperfect information and the use of formal verification
techniques, e.g., model checking for the various strategic logics, to reason about such games.

The amount of work that still needs to be done to make such formalization attractive is
enormous. However, we take the liberty of pointing out a research direction that we feel is a
priority. It is known that under the hypothesis of uniformity, the model checking problem for
ATL⋆ with memoryfull strategies and imperfect information is undecidable [18]. Thus, if we want
to use effectively the Interpreted System framework we sketched, we should restrict ourselves to
use partial solutions to the problem, such as abstractions either on the information [19, 20, 21, 22]
or on the strategies [23, 24, 25, 26, 27]. In the last decade, ATL has been extended to deal with
the concept of strategies to obtain an objective under a limited bound of resources [28]. Such a
concept is attractive for the security scenario that we are trying to take into account: an Attacker
could have a limited amount of resources to make an attack and, equally, a Defender could
have a limited amount of resources to make a countermeasure. To the best of our knowledge,
quantitative extensions of ATL with imperfect information have not been studied in the literature.
Furthermore, in this context, we can also study if an Attacker has some backup strategies to
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achieve his objectives by following the line on graded modalities as done in [29, 30, 31]. We
believe that it would be interesting and useful for our goals to study such variants.
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Explicit and Symbolic Approaches for Parity Games
Antonio Di Stasio

Department of Computer Science, University of Oxford, UK

Abstract
In this paper, we review a broad investigation of the symbolic approach for solving Parity Games.
Specifically, we implement in a tool, called SymPGSolver, four symbolic algorithms to solve Parity
Games and compare their performances to the corresponding explicit versions for different classes of
games. By means of benchmarks, we show that for random games, even for constrained random games,
explicit algorithms actually perform better than symbolic algorithms. The situation changes, however,
for structured games, where symbolic algorithms seem to have the advantage. This suggests that when
evaluating algorithms for parity-game solving, it would be useful to have real benchmarks and not only
random benchmarks, as the common practice has been.

Keywords
Parity Games, Symbolic Algorithms

Parity games (PGs) [1] are abstract games with a key role in automata theory and formal
verification [2, 3, 4, 5, 6]. In the basic setting, parity games are two-player, turn-based, played
on directed graphs whose nodes are labeled with priorities (also called, colors) and players
have perfect information about the adversary moves. The two players, Player 0 and Player 1,
take turns moving a token along the edges of the graph starting from a designated initial node.
Thus, a play induces an infinite path and Player 0 wins the play if the smallest priority visited
infinitely often is even; otherwise, Player 1 wins the play.

In formal system design [7, 3, 5, 8] parity games arise as a natural evaluation machinery
for the automatic synthesis and verification of distributed and reactive systems [9, 10, 11], as
they allow to express liveness and safety properties in a very elegant and powerful way [12].
Specifically, in model-checking, one can check the correctness of a system with respect to a
desired behavior, that is, a Kripke structure, by checking whether a model of the system is
correct with respect to a formal specification of its behavior. In case the specification is given
as a 𝜇-calculus formula [13], the model checking question can be rephrased, in linear-time, as a
parity game [1]. Then, a parity game solver can be used as a model checker for a 𝜇-calculus
specification (and vice-versa), as well as for fragments such as CTL, CTL⋆, and the like.

In the automata-theoretic approach to 𝜇-calculus model checking, under a linear-time transla-
tion, one can also reduce the verification problem to a question about automata. More precisely,
one can take the product of the model and an alternating tree automaton accepting all tree
models of the specification. This product can be defined as an alternating word parity automaton
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over a singleton alphabet, and the system is correct with respect to the specification iff this
automaton is nonempty [5]. It has been proved there that the nonemptiness problems for
nondeterministic tree parity automata and alternating word parity automata over a singleton
alphabet are equivalent and that their complexities coincide. Hence, algorithms for the solution
of the 𝜇-calculus model checking problem, parity games, and the emptiness problem for parity
automata can be interchangeably used to solve any of these problems, as they are linear-time
equivalent.

The problem of deciding if Player 0 has a winning strategy (i.e., can induce a winning play)
in a given parity game is known to be in UPTime ∩ CoUPTime [14]; whether a polynomial time
solution exists is a long-standing open question [6]. Several algorithms to solve PGs have been
proposed aiming to tighten the asymptotic complexity of the problem, as well as to work well in
practice. Well known are Recursive (RE) [15], small-progress measures (SPM) [16], and APT [2, 17],
the latter originated to deal with the emptiness of parity automata. Recently, Calude et al. [18]
have given a major breakthrough providing a quasi-polynomial time algorithm for solving
parity games that runs in time 𝑂(𝑛⌈𝑙𝑜𝑔(𝑐)+6⌉). Previously, the best known algorithm for parity
games was Dominion Decomposition [19] which could solve parity games in 𝑂(𝑛

√
𝑛), so this

new result represents a significant advance in the understanding of parity games. Notably, all
these algorithms are explicit, that is, they are formulated in terms of the underlying game graphs.
Due to the exponential growth of finite-state systems, and, consequently, of the corresponding
game graphs, the state-explosion problem limits the scalability of these algorithms in practice.
Hence for the analysis of large finite-state systems symbolic algorithms are necessary.

Symbolic algorithms are an efficient way to deal with extremely large graphs. They avoid
explicit access to graphs by using a set of predefined operations that manipulate Binary Decision
Diagrams (BDDs) [20] representing these graphs. This enables handling large graphs succinctly,
and, in general, it makes symbolic algorithms scale better than explicit ones. For example, in
hardware model checking symbolic algorithms enable going from millions of states to 1020 states
and more [21, 22]. In contrast, in the context of PG solvers, symbolic algorithms have been only
marginally explored. In this direction we just mention a symbolic implementation of RE [23, 24],
which, however, has been done for different purposes and no benchmark comparison with the
explicit version has been carried out. Other works close to this topic and worth mentioning
are [25, 26], where a symbolic version of SPM has been theoretically studied but not implemented.

In [27, 28] a first broad investigation of the symbolic approach for solving PGs is provided.
We implement four symbolic algorithms and compare their performances to the corresponding
explicit versions for different classes of PGs [29]. Specifically, we implement in a new tool,
called SymPGSolver1, the symbolic versions of RE, APT, and two variants of SPM. The tool also
allows to generate random games, as well as compare the performance of different symbolic
algorithms.

Our analysis started from constrained random games [30]. The results show that on these
games the explicit approach is better than the symbolic one, exhibiting a different behavior than
the one showed in [30]. To gain a fuller understanding of the performances of the symbolic
and the explicit algorithms, we have further tested the two approaches on structured games.
Precisely, we have considered ladder games, clique games, as well as game models coming from

1The tool is available for download from https://github.com/antoniodistasio/sympgsolver
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practical model-checking problems.

Ladder Games. In a ladder game, every node in P𝑖 has priority 𝑖. In addition, each node
𝑣 ∈ P has two successors: one in P0 and one in P1, which form a node pair. Every pair is
connected to the next pair forming a ladder of pairs. Finally, the last pair is connected to
the top. The parameter 𝑚 specifies the number of node pairs. Formally, a ladder game of
index 𝑚 is 𝒢 = (P0,P1,Mv , p) where P0 = {0, 2, . . . , 2𝑚 − 2}, P1 = {1, 3, . . . , 2𝑚 − 1},
Mv = {(𝑣, 𝑤)|𝑤 ≡2𝑚 𝑣 + 𝑖 for 𝑖 ∈ {1, 2}}, and p(𝑣) = 𝑣 𝑚𝑜𝑑 2. Tables 1 and 2 reports the
benchmarks.

𝑚 SRE SAPT SSP SSP2

1,000 0 0.00013 24.86 0.47

10,000 0.00009 0.00016 abort𝑇 41.22

100,000 0.0001 0.00018 abort𝑇 abort𝑇

1,000,000 0.00012 0.00022 abort𝑇 abort𝑇

10,000,000 0.00015 0.00025 abort𝑇 abort𝑇

Table 1
Runtime executions of the symbolic algorithms
on ladder games.

𝑚 RE APT SPM

1,000 0.0007 0.0006 0.002

10,000 0.006 0.005 0.0017

100,000 0.057 0.054 0.18

1,000,000 0.59 0.56 1.84

10,000,000 6.31 5.02 20.83

Table 2
Runtime executions of the explicit algorithms
on ladder games.

Benchmarks indicate that SRE and SAPT outperform their explicit versions, showing an
excellent runtime execution even on fairly large instances. Indeed, while RE needs 6.31 seconds
for games with index 𝑚 = 10𝑀 , SRE takes just 0.00015 seconds. Tests also show that SSP and
SSP2 have yet the worst performance.

Clique Games. Clique games are fully connected games without self-loops, where P0 (resp.,
P1) contains the nodes with an even index (resp., odd) and each node 𝑣 ∈ P has as priority the
index of 𝑣. An important feature of the clique games is the high number of cycles, which may
pose difficulties for certain algorithms. Formally, a clique game of index 𝑛 is 𝒢 = (P0,P1,Mv , p)
where P0 = {0, 2, . . . , 𝑛 − 2}, P1 = {1, 3, . . . , 𝑛 − 1}, Mv = {(𝑣, 𝑤)|𝑣 ̸= 𝑤}, and p(𝑣) = 𝑣.
Benchmarks on clique games are reported in Tables 3 and 4.

𝑛 SRE SAPT SSP SSP2

2,000 0.007 0.003 5.53 abort𝑇

4,000 0.018 0.008 19.27 abort𝑇

6,000 0.025 0.012 39.72 abort𝑇

8,000 0.037 0.017 76.23 abort𝑇

Table 3
Runtime executions of the symbolic algorithms
on clique games

𝑛 RE APT SPM

2,000 0.021 0.0105 0.0104

4,000 0.082 0.055 0.055

6,000 0.19 0.21 0.22

8,000 0.35 0.59 0.63

Table 4
Runtime executions of the explicit algorithms
on clique games

The main result we obtain from our comparisons is that for random games, and even for
constrained random games, explicit algorithms actually perform better than symbolic ones,
most likely because BDDs do not offer any compression for random sets. The situation changes,
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however, for structured games, where symbolic algorithms sometimes outperform explicit
algorithms. This is similar to what has been observed in the context of model checking [31].

𝑛 Pr Property SRE SAPT SSP SSP2 RE APT SPM WS DS

14,065 3 ND 0.00009 0.00006 3.30 0.0001 0.004 0.004 0.029 2 2

17,810 3 IORD1 0.0003 0.0005 abort𝑇 85.4 0.006 0.006 0.037 2 2

34,673 3 IORW 0.0006 0.0008 164.73 56.44 0.015 0.014 0.053 2 2

2,589,056 3 ND 0.0002 abort𝑇 abort𝑇 0.29 1.02 0.93 9.09 4 2

3,487,731 3 IORD1 abort𝑇 abort𝑇 abort𝑇 abort𝑇 1.81 1.4 17.45 4 2

6,823,296 3 IORW 0.3 abort𝑇 abort𝑇 abort𝑇 3.87 3.13 22.26 4 2

Table 5
SWP (Sliding Window Protocol)

𝑛 Pr Property SRE SAPT SSP SSP2 RE APT SPM DS

81,920 3 ND 0.00002 31.69 1.37 0.0016 0.031 0.034 0.22 2

88,833 3 IORD1 0.0027 0.003 abort𝑇 abort𝑇 0.036 0.0038 0.27 2

170,752 3 IORW 14.37 98.4 abort𝑇 abort𝑇 0.07 0.07 0.47 2

289,297 3 ND 0.0001 154.89 12.3 0.0058 0.13 0.12 1.34 4

308,737 3 IORD1 0.0088 0.009 abort𝑇 abort𝑇 0.14 0.13 1.37 4

607,753 3 IORW 43.7 abort𝑇 abort𝑇 abort𝑇 0.29 0.27 2.06 4

Table 6
OP (Onebit Protocol)

𝑛 Pr Property SRE SAPT SSP SSP2 RE APT SPM DS

328 1 ND 0.00002 0.002 0.005 0.00002 0.0001 0.0001 0.0004 2

308 1 safety 0.00002 0.003 0.028 0.00002 0.0001 0.0001 0.0004 2

655 3 liveness 0.00008 0.0001 5.52 0.09 0.0003 0.0002 0.001 2

51.220 1 safety 0.0001 1.48 32.14 0.00002 0.01 0.01 0.09 4

53.638 1 ND 0.0001 0.2 4.67 0.0001 0.017 0.015 0.07 4

107,275 3 liveness 0.005 0.001 abort𝑇 abort𝑇 0.03 0.03 0.18 4

Table 7
Lift (Lifting Truck)

Finally, we evaluate the symbolic and explicit approaches on some practical model checking
problems as in [32]. Specifically, we use models coming from: the Sliding Window Protocol
(SWP) with window size (WS) of 2 and 4 (WS represents the boundary of the total number of
packets to be acknowledged by the receiver), the Onebit Protocol (OP), and the Lifting Truck
(Lift). The properties we check on these models concern: absence of deadlock (ND), a message
of a certain type (d1) is received infinitely often (IORD1), if there are infinitely many read
steps then there are infinitely many write steps (IORW), liveness, and safety. Note that, in all
benchmarks, data size (DS) denotes the number of messages.

As we can see, by comparing Tables 5, 6, and 7, the experiments indicate more nuanced
relationship between the symbolic and explicit approaches. Indeed, they show a different
behavior depending on the protocol and the property we are checking. Overall, we note that
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SRE outperforms the other symbolic algorithms in all protocols, although the advantage over
RE is discontinued. Specifically, SRE is the best performing in checking absence of deadlock
in all three protocols, but for IORD1 in the SWP protocol with 𝑊𝑆 = 2, or for IORW in
the OP protocol, RE exhibits a significant advantage. Differently, SAPT and SSP2 show better
performances on a smaller number of properties. Moreover, the results highlights that SSP
exhibits the worst performances in all protocols and properties.

We take this as an important development because it suggests a methodological weakness
in this field of investigation, due to the excessive reliance on random benchmarks. We believe
that, in evaluating algorithms for PG solving, it would be useful to have real benchmarks and
not only random benchmarks, as the common practice has been. This would lead to a deeper
understanding of the relative merits of PG solving algorithms, both explicit and symbolic.
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Abstract
In this paper, we review the history of model checking and runtime verification on multi-agent systems

by recalling the results obtained in the two research areas. Then, we present some past, present and

future directions to combine these techniques in the two possible sides, that is by using model checking

for multi-agent systems to solve runtime verification problems and vice versa.

Keywords
LaTeX class, paper template, paper formatting, CEUR-WS

1. Introduction

Software systems cannot be trusted. Even though this sounds as a bold statement, it is most

of the time the case. A software system, to be considered trustworthy, has to offer some

guarantees to the end user. Amongst these guarantees, correctness is by far one of the most

challenging to demonstrate. However, existent solutions to proof software correctness mainly

focus on monolithic systems. So, systems that do not usually present any kind of autonomy, nor

distribution, whatsoever. Unfortunately (in some sense), nowadays, artificial intelligent systems

can be found everywhere. Thus, techniques to tackle their verification in order to establish their

correctness also need to be revised (and adapted).

When we talk about software verification, we mainly refer to standard approaches such

as: testing, simulation, and formal verification. Testing and simulation have one main issue:

they can detect errors but can not determine their absence. To overcome this problem, formal
verification results to be very useful. This approach provides a formal-based methodology to

model systems, specify properties, and verify that a system satisfies a given specification.

In formal verification, the specification is usually based on temporal logics. The latter can

describe the order of events without introducing the time explicitly. In temporal logics, we

mainly distinguish between linear- and branching-time logics, which reflect the underlying
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nature of the time we consider. The most popular temporal logics are 𝐿𝑇𝐿 (linear-time temporal

logic) [34], 𝐶𝑇𝐿 (computation tree logic) [14], and their extension 𝐶𝑇𝐿*
[18]. An outstanding

development in the area of temporal logics has been the discovery of algorithmic methods

to verify properties of finite-state systems represented by Kripke structures [28]. Hence, the

formal verification of a system modelled by a Kripke structure 𝑀 with respect to a temporal

logic specification 𝜙 can be rephrased as “Is 𝑀 a model of 𝜙?”, which explains the name model
checking (MC), as it was coined by Clarke and Emerson in [14].

Naturally, model checking is not the only existent formal verification technique. Specifically,

another verification approach focused on a more dynamic perspective (execution of the system

rather than verification of an abstraction of the latter) is called Runtime Verification [32].

Runtime verification (RV) is being pursued as a lightweight verification technique bridging

static verification techniques, such as MC, and testing. One of the main distinguishing features

of RV is due to its nature of being performed at runtime, which opens up the possibility to

act whenever incorrect behavior of a software system is detected. A fault is defined as the

deviation between the current behavior and the expected behavior of the system [32, 16]. A

fault might lead to a failure, but not necessarily. An error, on the other hand, is a mistake made

by a human that results in a fault and possibly in a failure. Runtime verification is the discipline

of computer science that deals with the study, development, and application of those verification

techniques that allow checking whether a run of a system under scrutiny satisfies or violates a

given correctness property.

In [20], we presented an initial vision on possible overlapping of RV and MC, especially in

the area of Multi-Agent Systems (MAS); which are distributed systems comprised of intelligent

components (called agents) that can be deployed to solve complex tasks in an autonomous

fashion (which may, or may not, involve cooperation and communication amongst the agents).

We focused on MAS for their implicit complexity, and consequently hard verification problem.

Nonetheless, in [20] we mainly focused on the verification aspects of combining RV and MC.

Instead, in here, we present some novel results in that direction, but we also focus on the synergy

between RV and MAS. Thus, not only focusing on how RV can be deployed to verify MAS, but

also on how the verification for MAS can be exploited to support RV.

In the rest of the paper we first discuss the state of the art of model checking and runtime

verification for MAS (Section 2). Then, in Section 3 we present our results to use runtime verifi-

cation to reduce the model checking complexity on MAS and conclude with future directions.

Finally, in Section 4 we present model checking techniques to help runtime verification and

conclude with some future works.

2. State of the art

Model Checking for MAS. One of the most important developments in this field is

Alternating-Time Temporal Logic (ATL), introduced by Alur, Henzinger, and Kupferman [4].

Such a logic allows to reason about strategies of agents having the satisfaction of temporal

goals as payoff criterion. More formally, it is obtained as a generalization of CTL, in which

the existential E and the universal A path quantifiers are replaced with strategic modalities of

the form ⟨⟨Γ⟩⟩ and [[Γ]], where Γ is a set of agents. Despite its expressiveness, ATL suffers
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from the strong limitation that strategies are treated only implicitly in the semantics of such

modalities. This restriction makes the logic less suited to formalize several important solution

concepts, such as the Nash Equilibrium. These considerations led to the introduction of Strategy
Logic (SL) [33], a more powerful formalism for strategic reasoning. As a key aspect, this logic

treats strategies as first-order objects that can be determined by means of the existential ∃𝑥 and

universal ∀𝑥 quantifiers, which can be respectively read as “there exists a strategy 𝑥” and “for
all strategies 𝑥”. Notably, a strategy is a generic conditional plan that at each step of the game

prescribes an action. With more detail, there are two main classes of strategies: memoryless

and memoryful. In the former case, agents choose an action by considering only the current

game state while, in the latter case, agents choose an action by considering the full history

of the game. Therefore, this plan is not intrinsically glued to a specific agent, but an explicit

binding operator (𝑎, 𝑥) allows to link an agent 𝑎 to the strategy associated with a variable 𝑥.

Unfortunately, the high expressivity of SL comes at a price. Indeed, it has been proved that the

model-checking problem for SL becomes non-elementary complete and the satisfiability unde-

cidable. To gain back elementariness, several fragments of SL have been considered. Among

the others, Strategy Logic with Simple-Goals [6] considers SL formulas in which strategic

operators, bindings operators, and temporal operators are coupled. It has been shown that

Strategy Logic with Simple-Goals strictly subsume ATL and its MC problem is P-Complete, as

it is for ATL. To conclude this section, we want to focus on a key aspect in MAS: the agents’

visibility. Specifically, we distinguish between perfect and imperfect information games [35].

The former corresponds to a basic setting in which every agent has full knowledge about the

game. However, in real-life scenarios it is common to have situations in which agents have

to play without having all relevant information at hand. In computer science these situations

occur for example when some variables of a system are internal/private and not visible to an

external environment [29, 13]. In game models, the imperfect information is usually modelled

by setting an indistinguishability relation over the states of the game [29, 35]. This feature

deeply impacts on the MC complexity. For example, ATL becomes undecidable in the context

of imperfect information and memoryful strategies [17]. To overcome this problem, some

works have either focused on an approximation to perfect information [8, 11] or developed new

notions on strategies [7, 26, 27, 10, 12, 9].

Runtime Verification for MAS. In [2], the authors presented a framework to verify at run-

time agent interaction protocols (AIP). The formalism used in this work allows the introduction

of variables, that are then used to constrain the expected behavior in a more expressive way.

In [19], the same authors proposed an approach to verify at runtime AIP using multiple monitors.

This is obtained by decentralizing the global specification (specified as a Trace Expression [1]),

which is used to represent the global protocol, into partial specifications denoting the single

agents’ perspective. In [5, 36], other works on runtime verification of agent interactions are

proposed, and in [30] a framework for dynamic adaptive MAS (DAMS-RV) based on an adaptive

feedback loop is presented. Other approaches to MAS RV include the proposals spin-off from

the SOCS project where the SCIFF computational logic framework [3] is used to provide the se-

mantics of social integrity constraints. To model MAS interaction, expectation-based semantics

specifies the links between observed and expected events, providing a means to test runtime
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conformance of an actual conversation with respect to a given interaction protocol [38]. Similar

work has been performed using commitments [15].

3. Runtime verification gives a hand to Model checking for
MAS

The model checking problem for 𝐴𝑇𝐿 giving a generic MAS is known to be undecidable.

Nonetheless, decidable fragments exist. Indeed, model checking 𝐴𝑇𝐿 under perfect information

is PTIME-complete [4], while under imperfect information and imperfect recall is PSPACE [37].

Unfortunately, MAS usually have imperfect information, and when memory is needed to achieve

the goals, the resulting model checking problem becomes undecidable. Given the relevance of

the imperfect information setting, even partial solutions to the problem are useful.

The only existent work on exploiting RV to formally verify the strategic behaviour in MAS

is [24, 22]. In such work, given an 𝐴𝑇𝐿 formula 𝜙 and a model of MAS 𝑀 , the procedure

extracts all the sub-models of 𝑀 with perfect information that satisfy a sub-formula of 𝜙. Then,

runtime monitors are used to check if the remaining part of 𝜙 can be satisfied at execution time.

If this is the case, we conclude at runtime the satisfaction of 𝜙 for the corresponding system

execution. Note that, this does not imply that the system satisfies 𝜙, indeed future executions

may violate 𝜙. The formal result over 𝜙 only concerns the current execution, and how it has

behaved in it. However, the following preservation results holds.

Lemma 1. Given a model 𝑀 and an ATL formula 𝜙, for any history ℎ of 𝑀 starting in 𝑠𝐼 , we
have that:

𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝜙𝐿𝑇𝐿(ℎ) = ⊤ ⇒ 𝑀, 𝑠𝐼 |= 𝜙𝐴𝑔

𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝜙𝐿𝑇𝐿(ℎ) = ⊥ ⇒ 𝑀, 𝑠𝐼 ̸|= 𝜙∅

where 𝜙𝐿𝑇𝐿 is the variant of 𝜙 where all strategic operators are removed, 𝜙𝐴𝑔 is the variant of 𝜙
where all strategic operators are converted into ⟨⟨𝐴𝑔⟩⟩, 𝜙∅ is the variant of 𝜙 where all strategic
operators are converted into ⟨⟨∅⟩⟩.

Lemma 1 shows a preservation result from RV to ATL model checking that needs to be

discussed. If our monitor returns true we have two possibilities:

1 The procedure found an under-approximation sub-model in which the original formula 𝜙
is satisfied then it can conclude the verification procedure by using RV only by checking

that the atom representing 𝜙 holds in the initial state of the history ℎ given in input;

2 A sub-formula 𝜙′
is satisfied in an under-approximation sub-model and at runtime the

formula 𝜙𝐴𝑔 holds on the history ℎ given in input.

While case (1) gives a preservation result for the formula 𝜙 given in input, case (2) checks

formula 𝜙𝐴𝑔 instead of 𝜙. That is, it substitutes 𝐴𝑔 as coalition for all the strategic operators

of 𝜙 but the ones in 𝜙′
. So, our procedure approximates the truth value by considering the

case in which all the agents in the game collaborate to achieve the objectives not satisfied in
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the model checking phase. That is, while in [8, 11] the approximation is given in terms of

information, in [7] is given in terms of memory of strategies, and in [21] the approximation

is given by generalizing the logic, here we give results by approximating the coalitions. So,

the main limitation of this approach concerns this aspect. Furthermore, we recall that the

procedure produces always results, even partial. This aspect is strongly relevant in concrete

scenario in which there is the necessity to have some sort of verification results. For example,

in the context of swarm robots, with this procedure we can verify macro properties such as

“the system works properly” since we are able to guarantee fully collaboration between agents

because this property is relevant and desirable for each agent in the game. The same reasoning

described above, can be applied in a complementary way for the case of over-approximation

sub-models and the falsity.

Note that this is the first attempt of using runtime verification to verify strategic properties on

MAS. Thus, even though the solution might not be optimal, it is a milestone for the corresponding

lines of research. Additional works will be done to improve the technique and, above all, its

implementation. For instance, we are planning to extend this work by considering a more

predictive flavour.

4. Model checking for MAS gives a hand to Runtime
verification

Runtime Verification is built on the assumption of perfect information over the system, that is,

the monitor checking the system can perceive everything. Unfortunately, this is not always the

case, especially when the system under analysis contains rational/autonomous components

and is deployed in real-world environments with possibly faulty sensors. In [23], an extension

of the standard Runtime Verification of Linear Temporal Logic properties to consider scenarios

with imperfect information is presented; along with all the engineering steps necessary to

update the verification pipeline. Moreover, a corresponding implementation is proposed and

applied to a case study involving robotic systems. In particular, [23] defines the notion of

imperfect information w.r.t. the monitor’s visibility over the system, and then re-engineers the

LTL monitor’s synthesis pipeline to recognise such visibility information.

In [23], imperfect information is specified by means of a indistinguishability relation ∼ over

the atomic propositions. Intuitively, given two atomic propositions 𝑝 and 𝑞, it is said that they

are indistinguishable if and only if 𝑝 ∼ 𝑞.

To handle the verification process in the imperfect information scenario, the standard RV

approach needs to be extended. This extension is based on the notion of duplication of the

atoms. The latter is used in order to make the truth value of each atomic proposition explicit.

The new monitor is defined as follows.

Definition 1 (Monitor with imperfect information). Given an LTL formula 𝜙 and a visible
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history ℎ𝑣 , a monitor with imperfect information is so defined:

𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑣𝜙(ℎ𝑣) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊤ ℎ𝑣 ∈ ℒ(𝜙) ∧ ℎ𝑣 /∈ ℒ(¬𝜙) ∧ ℎ𝑣 /∈ ℒ(⊗𝜙)

⊥ ℎ𝑣 /∈ ℒ(𝜙) ∧ ℎ𝑣 ∈ ℒ(¬𝜙) ∧ ℎ𝑣 /∈ ℒ(⊗𝜙)

𝑢𝑢 ℎ𝑣 /∈ ℒ(𝜙) ∧ ℎ𝑣 /∈ ℒ(¬𝜙) ∧ ℎ𝑣 ∈ ℒ(⊗𝜙)

? ̸⊥ ℎ𝑣 ∈ ℒ(𝜙) ∧ ℎ𝑣 /∈ ℒ(¬𝜙) ∧ ℎ𝑣 ∈ ℒ(⊗𝜙)

? ̸⊤ ℎ𝑣 /∈ ℒ(𝜙) ∧ ℎ𝑣 ∈ ℒ(¬𝜙) ∧ ℎ𝑣 ∈ ℒ(⊗𝜙)

? ℎ𝑣 ∈ ℒ(𝜙) ∧ ℎ𝑣 ∈ ℒ(¬𝜙) ∧ ℎ𝑣 ∈ ℒ(⊗𝜙)

Where ℒ(𝜙) is the language of histories satisfying 𝜙, ℒ(¬𝜙) is the language of histories

violating 𝜙, and finally, ℒ(⊗𝜙) is the language of histories making 𝜙 undefined (because of

lack of information).

In what follows, we provide two preservation results from the monitor with imperfect

information to the one with perfect information.

Lemma 2. Given a finite history 𝜎, a monitor with its visibility 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑣𝜙(ℎ), and a general
monitor 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝜙(ℎ), we have that:

if 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑣𝜙(ℎ𝑣) = ⊤ then 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝜙(ℎ) = ⊤
if 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑣𝜙(ℎ𝑣) = ⊥ then 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝜙(ℎ) = ⊥

The above results can be extended to consider multi-monitors and solved by using formal

verification for MAS. In fact, even though a single monitor does not have access to all the

information it needs, multiple monitors might. As in standard distributed RV [25], we are

planning to explore this idea as well, but focusing on the theoretical foundations of information

sharing amongst monitors. Specifically, we are going to show how this can be specified as a

multi-agent problem; where each monitor is denoted as an agent with the goal of gathering

all the information needed to carry out the verification of its formal property. By representing

the information sharing as a multi-agent problem, we could gain from different viewpoints. In

particular, we could exploit existing techniques, used for strategic reasoning [31], to guide the

information sharing amongst the monitors. Moreover, by denoting monitors as agents, we would

recognise their autonomy on what concern the sharing of private information. For instance, a

monitor could be the only one with the access to a certain resource, and it is not realistic to

assume it will freely share such information. This because the act of sharing information is not

free of charge, since it requires to both consume computation time and bandwidth. For this,

and other reasons, it is of paramount importance to take into consideration the cost of sharing.

We are going to show how such cost can be ported into the multi-agent problem, and how it

can guide the selection of the information sharing strategy of the agents (i.e., the monitors).

In particular, we are going to study the theoretical foundation of information sharing amongst

runtime monitors. We will tackle this by porting the problem into a multi-agent setting. By

dosing so, we apply existing formal verification techniques, such as model checking [31], to

exploit the strategic reasoning of the agents to overcome the information sharing problem. We

will not only present theoretical results, but we will also propose an implementation prototype,

as a proof of concept.
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Logics for Reasoning about Auctions
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Abstract
In this paper, I summarize the results obtained in my thesis, whose aim was to investigate the use of
formal methods for the specification, design, and evaluation of mechanisms, with a focus on auctions. We
address such challenges by introducing logic-based approaches for representing and designing auction-
based markets with strategic players. Firstly, for providing a foundation for general and automated
auction playing in MAS, we propose a framework for representing auctions, denoted Auction Description
Language (ADL). ADL addresses important dimensions of auction-based markets and is general enough
to represent most auction settings. Second, we propose a novel approach for reasoning and designing
new auctions (and, in general, mechanisms) based on formal methods. Such an approach for Automated
Mechanism Design aims to automatically generate mechanisms from their specifications and verify
them in relation to target economical properties. We demonstrate how this approach can express key
concepts from Economic Theory (including Nash equilibrium and strategyproofness) and how it enables
automatically generating optimal mechanisms from a quantitative logical specification.

Keywords
Strategic Reasoning, Auctions, Formal Methods, Multi-Agent Systems, Mechanism Design

1. Introduction

An auction is a popular mechanism that aggregates participants’ bids into a social
decision, usually expressed in terms of allocations and payments. Automated agents are
widely used in auction-based markets but software agents are usually designed to act on a
specific context, which prevents them from switching between different kinds of markets.
For doing so, they should be able to “understand” the auction rules and reason about
their own valuations and also about other players private information valuations. This
limitation inspires the development of a lightweight logic-based language for representing
the rules of an auction market.

More than describing, the design and evaluation of new auctions (and, more generally,
mechanisms) is a central problem in multiagent settings [1]. In such setting, we need to
be able to aggregate individual preferences, which are conflicting when agents are self-
interested. More importantly, the mechanism should choose a socially desirable outcome
and reach an equilibrium despite the fact that agents can lie about their preferences [2].
Although logic-based languages have been widely used for verification [3] and synthesis [4]
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of Multi-Agent Systems (MAS), the use of formal methods for reasoning about auctions
under strategic behavior as well as automated mechanism design has not been much
explored yet. An advantage in adopting such perspective lies in the high expressivity and
generality of logics for strategic reasoning [5]. Moreover, by relying on precise semantics,
formal methods provide tools for rigorously analysing the correctness of systems, which
is important to improve trust in mechanisms generated by machines. The problem of
formally reasoning about mechanisms requires to consider quantitative information (e.g.,
utilities and payments), private information about the participant’s preferences, and
complex strategic concepts (such as strategy dominance and equilibria).

My thesis [6] addressed such challenges by introducing logic-based approaches for
representing and designing auction-based markets with strategic players. Our motivation
is two fold: first, we aim to provide a foundation for general and automated auction
playing in MAS, by establishing a logical framework to create a good balance between
expressive power and computational efficiency. Second, we propose a novel approach
based on formal methods for (i) reasoning about auctions under strategic behavior and (ii)
Automated Mechanism Design. Such approach aims to automatically generate auctions
from their specifications and verify them in relation to target economical properties.

2. Background and Context

Representation of Auctions There are numerous variants of auctions depending on
the parameters considered, including the number of distinct items and copies as well
as the number of sellers and buyers [7, 8]. For a fixed set of parameters, the protocol,
i.e., the bidding, payment and allocation rules, may also differ. Building intelligent
agents that can switch between different auctions and process their rules is a key issue
for building automated auction-based marketplaces. In this scenario, the auctioneer
should at first allow participants to express their preferences and second describe the
rules governing the market. In relation to the formal representation of auction rules,
we recall the descriptive auction language [9], which allows the specification of auctions
by allowing players to bid using the XOR language. Rule-based approaches have also
being used for representing single-dimensional auctions [10] and negotiation protocols
[11]. Similarly, negotiation protocols have being handled with meta-languages [12], the
Extensible Markup Language [13] and rule-markup languages [14]. Since the above
languages lack a precise semantics, Wooldridge and Parsons (2000, 2000) motivate and
compare the use of different logical languages for specifying negotiation protocols. In
the context of General Game Playing (GGP), the Game Description Language (GDL)
was designed for specifying game rules while maintaining a tractable complexity [17].
This language has been extended to deal with integer values [18] and epistemic operators
[19]. The use of languages inspired on GDL for describing market-based protocols have
been studied in the context of negotiation [20, 21] and single-item markets [22]. Such
approaches lack a clear link between the language, the mechanism formalization and the
agents’ preferences, which is a key aspect for enabling reasoning about auctions.
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AutomatedMechanismDesign Designing an auction in such manner to ensure features
of the outcome alongside with a desirable behavior of the participants is a key challenge
in Economics. In fact, this problem is known as Mechanism Design: the formulation
of game-like systems whose equilibria satisfy some desired properties, usually expressed
in terms of incentive, utility or social welfare. Traditionally, mechanisms have been
formulated and verified by human specialists, who use their knowledge and experience
for defining the game rules. Creating and verifying mechanisms which will be played
by strategic agents can be a very difficult and time-consuming task. Sandholm (2003)
introduced Automated Mechanism Design (AMD), whose goal is to automatically create
mechanisms for solving a specific preference aggregation problem. AMD is usually
handled as an optimization and domain-oriented problem. Most solutions used on the
literature are based on machine learning, which include, for instance, neural networks
[24, 25] and statistical techniques [26]. A number of works explore computed-aided
verification of auctions [27, 28, 29], where the process is assisted by a reasoner. In the
context of fully-automatic verification, Pauly and Wooldridge (2003 ) and Wooldridge
et al. (2007 ) advocate the use of Alternating-time Temporal Logic (ATL) [32] to reason
about mechanisms. The main limitation in these works is the purely qualitative setting
and the impossibility of expressing key strategic concepts such as dominance in the logic.

Logics for Strategic Reasoning This work is also related to the long-established logical
approach to systems verification [3] and synthesis [4]. In the recent years much progress
has been made in the field of logics for strategic reasoning. Pioneering work includes
the Alternating-time Temporal Logic ATL [32], which uses coalition modalities to specify
strategic abilities of groups of agents, an important notion in Mechanism Design. The
Strategy Logic (SL) [33, 34] subsumes ATL and considers explicit manipulation of strategies.
A recent quantitative extension of SL, denoted SL[ℱ ] [35], introduces values in models
and functions in the language, enabling the reasoning about key game-theoretic concepts
such as utilities and preferences. Several works have also considered extensions of SL with
imperfect information [36, 37, 38], which is also an important feature when modeling
auctions with private valuations.

3. Contribution

We addressed the problem of modeling and analyzing auction mechanisms for MAS using
logics and strategic reasoning. First, we provided a framework for representing auctions,
denoted Auction Description Language (ADL) [39, 40, 41]. ADL addresses important
dimensions of auction-based markets and is general enough to represent most auction
settings. We illustrated the generality of ADL by modeling a number of representative
auctions. We demonstrated how this language can be used for the automated verification of
direct mechanisms and for automatically checking well-formedness of auction descriptions.
We then extended ADL with knowledge operators and an action modality [42, 43] (denoted
Epistemic ADL, or simply ADLK) for providing a ground for the design of general auction
players and characterizing their rational behavior when reasoning about the effect of
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actions and other players rationality. We show that the model-checking problem for
ADL-formulas belongs to Ptime when it involves functions that be computed in polynomial
time. By the other hand, we show that the model-checking problem for ADLK is in
Exptime.

In relation to Automated Mechanism Design, we investigate logical frameworks for
strategic reasoning about mechanisms. We first propose a new variant of Strategy
Logic with quantitative features, imperfect information and epistemic operators, denoted
SLK[ℱ ] [44]. We demonstrated how SLK[ℱ ] can express the implementation of social
choice functions and be used for automatically verifying a number of important concepts
and properties often required in auctions, or more generally in mechanism design. We
also show how we can express properties relating agents’ revenues with respect to their
beliefs about other agents’ preferences. We showed that verifying a mechanism in relation
to classical properties boils-down to model checking a SLK[ℱ ] formula and we prove it
can be done in Pspace for memoryless strategies.

We then introduced a quantitative semantics for SL with natural strategies and
imperfect information (denoted NatSL[ℱ]) [45], which provides a new perspective
for formal verification and design of novel mechanisms based on the complexity of
strategies. We show how to model popular strategies for repeated keyword auctions
using NatSL[ℱ] and prove properties pertaining to this game; We proved that the model-
checking problem for NatSL[ℱ] is Pspace-complete and that NatSL[ℱ] has incomparable
distinguishing and expressive power to SL[ℱ ]. Finally, we offered a novel perspective on
the design of mechanisms by rephrasing the AMD problem in terms of synthesis from
SL[ℱ ] specifications [46, 47]. This approach enables automatically generating optimal
mechanisms from a quantitative logical specification, which may include not only game
rules but also requirements over the strategic behavior of participants and quality of
the outcome. We solved the synthesis problem for SL[ℱ ] by investigating the related
satisfiability problem in two cases: action-bounded and turn-based mechanisms.

4. Perspectives and Future Work

In a recent work [48], we considered the use of the probabilistic extension of SL [49] to
handle stochastic features often present in auctions. Going from deterministic setting to a
more general and probabilistic one is challenging due to several aspects. First, the wide and
heterogeneous range of settings considered in the literature obscures the path for a general
and formal approach to verification. The setting may consider deterministic or randomized
mechanisms, incomplete information about agents’ types (Bayesian mechanisms), mixed
or pure strategies and iterative protocols (indirect mechanisms). Second, considering
Bayesian mechanisms brings out different methods for evaluating a mechanism according
to the time-line for revealing the incomplete information as the game is run.

We studied the verification of mechanisms under memoryless combinatorial strategies
and Natural Strategies with bounded recall. This setting is enough to capture many
kinds of auctions (such as one-shot or English auctions) where memoryless strategies are
sufficient to represent the bidders behaviour since all the relevant information can be

M. Mittelmann Logics for Reasoning about Auctions 134



encoded in a state. However, when participating in repeated auctions, agents could gather
information from other agents behaviour and act based on what happened in previous
instances of the game. An interesting direction is, then, to investigate the use of strategies
with recall for learning other players’ valuations based on their behavior. For such
situations we can study the model-checking problem for SLK[ℱ ] with memoryful strategies.
In the qualitative setting already, imperfect information yields undecidability, but known
decidable cases exist [37, 36], which should be considered also in the quantitative case.

We believe the automated synthesis of mechanisms is a promising and powerful tool
for AMD. However, the high expressiveness of SL[ℱ ] may not always be needed for
simple classes of mechanisms, and one may consider fragments of it to achieve better
complexity. Therefore, an interesting direction for future work is to study the complexity
of synthesizing from SL[ℱ ]-fragments, inspired from the SL-fragments One-Goal SL [50, 51]
and Simple-Goal SL [52], for instance. These fragments are usually computationally easier
than full SL, and we can hope that similar results can be established in the quantitative
setting. On a related vein, we can study the translation of ADL to SL[ℱ ]-formulae, so as
to include the auction description in the mechanism specification. In this setting, SL[ℱ ]
formulae can be used to express requirements of well-formed auction descriptions.

The problems contemplated in my thesis are also worth investigating from an empirical
perspective. One direction is to explore the interplay between agents’ bounded rationality
and the auctioneer revenue so as to understand the impact of bounded rationality on
mechanism design. An implementation of a model checker for NatSL[ℱ] would enable
the empirical evaluation of natural strategies and auctions played by participants with
restricted memory. Finally, experimental results could be used to assess the practical
relevance of our proposed approaches, especially in relation to mechanism synthesis from
SL[ℱ ] specification due to the high theoretical complexity of the problem.
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