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Abstract

Comments are very useful to the flow of code development. With the increasing use of code in common-
place life, commenting the codes becomes a hassle for rookie coders, and often they do not even think
commenting as a part of the development process. This in general causes the quality of comments to
degrade, and a considerable amount of useless comments are found in such codes. In these experiments,
the usefulness of C comments are evaluated using Support Vector Machine (SVM) and Naive Bayes
Classifier. The results of the experiments create a baseline for better results that can be found in the
future through more research. Based on these findings, more complex and intricate machine learning
models can be created that can improve the accuracy achieved in performing said task.
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1. Introduction

Comments are an integral part of code development [1], and a lot of time is used to write the
comments to make the code more readable [2]. But, not all comments are useful in helping the
cause, and with coding becoming more and more commonplace, novice coders are ignoring
the art of commenting, and the quality and quantity of comments are degrading [3]. A lot of
comments are useless. But reading through a long comment only to find out that it is useless is
frustrating, and a wastage of time.

The quantity of comments can be increased using various automatic commenting models based
off of deep learning [4]. But, unfortunately there is a lack of research done when it comes to
address the bad quality of these comments. However, finally these problems are being addressed,
and to improve the quality of the human-written comments, machine learning models are being
developed to recognize and label the comments based on their usefulness.

The author has explored various Machine Learning (ML) models to approach this problem. In
this paper, the author tries to find the answer to the following questions as a part of a shared
task, called the Information Retrieval in Software Engineering (IRSE) at Forum for Information
Retrieval Evaluation (FIRE) 2022 [5], which was completed with the team name FaultySegment:
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« How much complex does a Machine Learning model need to be for being able to reliably
separate the useful comments from the useless ones?

+ How do models like SVM and Naive Bayes Classifier, two models which are known to
even the most novice Machine Learning students, fair in this problem?

The paper aims to show that models like these can be good starting points in approaching a
problem like this, and further complex models can be built upon these, with, of course, keeping
the factor of overfitting in mind. The paper

2. Related Works

Several research works have been done to classify code comments, and different papers have
also been published.

Yoann Padioleau et. al. showed that there exist many different classes of comments, each
serving a different purpose [6].

Luca Pascarella et. al. worked on classifying Java comments based on their use cases and
types [7] where they used random forests and multinomial naive bayes classifier to distinguish
between the different commonly occuring types of code comments.

Similarly, Jingyi Zhang et. al. classified comments based on their use cases and types [8] where
they used decision trees and multinomial naive bayes classifier to distinguish between the
different commonly occuring types of code comments.

Yusuke Shinyama et. al. have analysed different type of code comments in Java and
Python to get details about the working of the code at a microscopic level using methods
like decision tree to identify explanatory comments with 60% precision and 80% percent recall [9].

Srijoni Majumdar et. al. have worked on evaluating the quality and usefulness of comments
in being able to make the relevant code more comprehensible [10] where they use neural
networks to achieve precision and recall scores of 86.27% and 86.42%, respectively.

Mohammed Masudur Rahman, et. al. worked on evaluating usefulness of comments in code
review [11] where they used textual features along with developer experience.

Pooja Rani et. al. have looked at classifying comments of multiple languages, and the
differences that appear among the types of comments in those different languages [12].

3. Task and Dataset Description

In this section, a description of the task at hand and the dataset provided are given. The task at
IRSE, FIRE 2022 was as follows:



A binary classification task to classify source code comments as Useful or Not Useful for a given
comment and associated code pair as input.

The corresponding dataset was split into two:

+ The training dataset with 8048 data points, and
« the testing dataset with 1001 data points.

The training dataset was randomly split into 70% for training the models, and 30% for cross-
validation. The data was labelled as follows:

+ Useful: Comments that are useful for code comprehension

+ Not Useful: Comments that are not useful for code comprehension

Table 1
Description of the Dataset for the Task
Label Example
Useful /*not interested in the downloaded bytes, return the size®/
Useful /*Fill in the file upload part*/
Not Useful  /*The following works both in 1.5.4 and earlier versions:*/
Not Useful /*lock_time*/

4. System Description

4.1. Text Preprocessing

All the links, punctuations, numbers and stop words have been removed. Lemmatization is
used for grouping together the different forms of a word into a single word. NLTK wordnet
[13] is used for lemmatization. Both training and testing datasets use same preprocessing steps.

4.2. Feature Extraction
TfidfVectorizer [14] is used for converting the text into numerical features. Tokenizer by Keras
[15] library is used, along with TfidfVectorizer that was used from scikit-learn library.

4.3. Machine Learning Models

Two runs have been submitted for the task: one using Support Vector Machine (SVM) model,
and another with Naive Bayes classifer model. We have used the SciKit-Learn library for both
of the models, with the parameters for the SVM model as follows:

o C: (regularization parameter) =1

« kernel: (kernel type) =’linear’



Table 2
Results of Classifier Runs

Run Macro F1 Score  Macro Precision  Macro Recall  Accuracy%
SVM 0.771718 0.772345 0.771381 77.2670
Naive Bayes 0.599571 0.609193 0.644289 63.9751

5. Findings

With these parameters set for the SVM model, the validation set gives a 77.26708074534162%
accuracy score, along with an F1 score of 0.786464410735123.

Also, with the Naive Bayes Classifier, the validation set gives a 60.993788819875775% accuracy
score, along with an F1 score of 0.699233716475096.

6. Conclusion

The tasks have been completed using elementary machine learning models like SVM and Naive
Bayes Classifier, and the results for the SVM classifier shows that this model can be improved
upon and more complex models can be created, which will better suit the problem statement,
and will give a better result. Srijoni Majumdar, et. al. have already gotten better results using
neural networks [10], and the author hopes that these results will only improve over time.
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