
Preface

Business rules and external regulations are increasingly becoming important in
information systems engineering. Systems, processes and services have to operate
according to the rules, they have to be easily or dynamically adaptable in case
of changes, and the rules and regulations have to be identifiable and traceable.
This has strong implications for the architecture, modeling, management, and
execution frameworks of enterprise systems.

Contracts, rules, standards and regulations are everywhere and apply to a
large variety of fields: financial services, health, insurance, e-business, enterprise
application integration, privacy, transport, safety, security. Because of their grow-
ing complexity, frequent changes, integration, globalization, and on the other
hand the need for instant change and flexibility, the importance of dealing with
rules and regulations in information systems is increasing dramatically. The ob-
jectives of the workshop are mainly to share research and experience on methods
used to model, validate and verify, deploy and adapt information systems based
on extensive existing rules and regulations.

Modeling and deploying rules and regulations of various kinds in enterprise
systems, is a highly interdisciplinary challenge. This workshop tries to provide
a forum for researchers from diverse backgrounds (formal systems, enterprise
architecture, business process management, regulatory compliance, distributed
systems, business rules). Through this interdisciplinary workshop, we expect to
encourage fruitful exchanges between these scientific communities in order to
advance the field of information systems engineering.

June 2008 Jan Vanthienen
Stijn Hoppenbrouwers

Régine Laleau

Program Chairs
ReMoD’08

Organization

Workshop Organizers

PC and Workshop Chair: Jan Vanthienen (Katholieke Universiteit Leu-
ven, Belgium)

Co-Chairs: Stijn Hoppenbrouwers (Radboud University Ni-
jmegen, The Netherlands)
Régine Laleau(University Paris-Est, France)

Program Committee

Grigoris Antoniou (Greek Foundation for Research and Technology, Heraklion,
Greece)

Alcedo Coenen (CIBIT, Bilthoven, The Netherlands)
Robert Darimont (Respect-IT, Belgium)
Guido Governatori (University of Queensland, Australia)
Leo Hermans (Everest B.V., den Bosch, The Netherlands)
Stijn Hoppenbrouwers (Radboud University Nijmegen, The Netherlands)
Régine Laleau (University Paris-Est, France)
Michel Lemoine (Onera Toulouse, France)
Yves Ledru (LIG, University Grenoble, France)
Christophe Mues (University of Southampton, UK)
Tony Morgan (Neumont University, USA)
Fiona Polack (University of York, UK)
Erik Proper (Radboud University Nijmegen, the Netherlands)
Silvie Spreeuwenberg (LIBRT, Amsterdam, The Netherlands)
Shazia Sadiq (University of Queensland, Australia)
Jan Vanthienen (Katholieke Universiteit Leuven, Belgium) (Chair)
Gerd Wagner (Brandenburgische Technische Universität Cottbus, Germany)
Hans Weigand (University of Tilburg, The Netherlands)

Rule-Based Service Composition and Service-Oriented

Business Rule Management

Hans Weigand, Willem-Jan van den Heuvel and Marcel Hiel

INFOLAB, Tilburg University, Warandelaan 2, Tilburg, The Netherlands

H.Weigand@uvt.nl, wjheuvel@uvt.nl, m.hiel@uvt.nl

Abstract. As business processes change constantly, there is a growing need for

adaptive composite services. Unfortunately, existing service composition

languages and techniques result in rather brittle and rigid processes, whose

services live in a straitjacket. In this paper, we propose a rule-driven approach

for service composition that is purely declarative, highly adaptive and

integrated in a truly service-oriented approach to business rule management.

1. Introduction

Today’s business environment dictates organizations to be agile so they are able to

accommodate their business processes to rapidly changing market conditions,

including updated or new legislations and regulations, swiftly changing consumer

demands and novel technological innovations, e.g., new mobile platforms. Service

Oriented Architecture captures an emerging paradigm that is quickly gaining broad

industry acceptance, and enables the development of a new breed of (cross-)

enterprise applications that are comprised of loosely coupled services, which holds

the promise that these applications can be modified and/or extended on the fly..

One of the key impediments towards realizing this vision, unfortunately, is that

currently services are predominantly composed using block-structured and graph-

based languages, notably BPEL, resulting in static and brittle composite services,

although some work has been done on trying to make them a bit more adaptable, e.g.,

[1]. Composite services that are developed in this way are liable of intermingling

process logic with business rules, providing the perfect ingredients for unmanageable

and rather repellent process/rule spaghetti. This has become even more problematic as

companies have begun to apply languages such as BPEL for very agile, real-world

applications, and have observed that rules are in fact much more dynamic than

business processes. Consequently, updating these rules that are deeply buried in the

scattered process definitions has quickly grown into a complex, labor-intensive and

cumbersome task.

It has been suggested that business rules can be separated from the BPEL code in a

kind of aspect-oriented flavor [2]. Although this alleviates the management problem

to some extend, adaptations are still only possible as long as they concern the content

of pre-identified business rules that fit into the fixed BPEL frame.

2 Proceedings of ReMoD 2008

In this paper, we argue that business rules can be used in service composition

without the need of such a BPEL frame, thus increasing the adaptability of the

orchestration significantly. At the deployment level, we introduce a CA-rule engine

that supports rule-based service composition. To keep the business rules manageable

themselves, we describe a service-oriented approach.

This paper is organized as follows. In the following section we will introduce a

realistic running example that motivates the rule-based approach. In section 3, we will

elaborate on this approach and how it fits in a service-oriented architecture. In section

4, we introduce the FARAO approach towards service composition that is based on

the use of a CA-rule engine, and analyze to what extent business rule compliance can

be realized in this framework. The last section summarizes the main findings of our

work, and sketches directions for future research.

2. Motivating Case Study

MultiTech (fictitious name) is a wholesaler SME that buys and sells mobile

phones. Its primary business process revolves around (re-)selling mobile phones,

which it acquires from various international vendors. In this fictional, yet realistic,

case study we exemplify business services, rule services and the actors invoking

them, concentrating on the purchase-and-payment cycle of MultiTech.

This cycle is organized as follows. The cycle starts with an authorized sales clerk

requisitioning mobile phones. After his permission to requisite a particular product is

ascertained, he may issue a purchase requisition to the inventory manager.

The inventory manager then sends the verified purchase requisition to the purchase

agent, whose authorization to deal with this particular kind of order is then checked

(PermissionPolicy). The purchase agent transforms the purchase requisition in a

Fig. 1 Swimlane model of the Purchasing and Payment Processes

S
a
le

s
 C

le
rk

P
ro

c
u

re
r

W
a
re

h
o

u
s
e

R
e
c
e
iv

e
r

A
c
c
o

u
n

t

P
a
y
a
b

le

C
le

rk

P
a
y
m

e
n

t

C
le

rk

Quic k Time™ and a
 dec ompres s or

are needed to s ee th is p ic ture.

Requisition

Service

Quic k Time™ and a
 dec ompres s or

are needed to s ee th is p ic ture.

C reate

Purc has eOrder

Serv ic e

Quic k Time™ and a
 dec ompres s or

are needed to s ee th is p ic ture.

C hek c Agains tPO

Serv ic e

Quic k Time™ and a
 dec ompres s or

are needed to s ee th is p ic ture.

Purc has eProc es s ing

Serv ic e

Quic k Time™ and a
 dec ompres s or

are needed to s ee th is p ic ture.

Pay ment

Serv ic e

Permis s ion

Polic y

Purc has eOrder

Polic y

SOD

Polic y

Ver ific ation

Polic y

Es c alation

Polic y

Purchase

Requisition

Shipping

Document

Payment

Voucher

Purchase Order

D
e
a
le

r

D
e
a
le

r

Verified

Receipt

Document

ExceptionPO

Policy

Institutional

Policy

CheckSH-PO

Policy

Ordering

Policy

Proceedings of ReMoD 2008 3

purchase order, while ensuring that the used master data complies to the supplier’s

product code; in case of a problem, an exception is raised (ExceptionPO-Policy).

Also, the internal stock level is checked; a policy describes the stock replenishment

level. Thereafter, he sends the purchase order to the vendor, and issues two additional

copies of the purchase order, one to the warehouse clerk and one to the payment clerk.

������� ��	�
�		��
���� ����
���

����������	
����
� ���������	����
� ����������
�����������������������������

����������	� �����
����� ����	������� ����

�����
���� �� ���
����� !����� "#����$� ���

����%��� ��� ����������	� 	��� ����� ���	�

&'''�����������	����������

!��������
����(����
����
� ���
����(����)����
� *�������������
�	��	������	����
�������

�����	���	��� �����������
���������������	�

���
��������� ���� ������ %�����
�����

���
�� ������	 � ����%� ���� ����%���

�����	�����	�� ������� �	�� ��� ���

�����������

!��������
����(����
����
� +,
�����	�()����
� *� ���
����� ������
�		��� ���
������� ���

���� �������� �����
�� ����� 	��� �,����
���
���� ������� ����-� �	� �����
����� �� 	�%�

���
���������������	��������������

!��
�* ��	���(
����
� !��
�
.�()����
� *	� �	
���	 � ������	�� ��
���	�������

���
��
���� � ��	��� �� ���
����� ������

��
���	��%����	�/0���������������
�����

���
�������
���
����
�� 1�����
����	����
�� 2�� ���� ��������� ��
���	�� ��� 	��� �������

���	� ���� ������	 � ���
���� ���

�����	������

���
�������
���
����
�� 2	��������	������
�� *����
���������������	�	
���������������

�	� �� ����)����� ������ �
��� �	��������	���

����
������
�������	�
����	��)(,�����

���
�������
���
����
��
(3����
�� ���� �
���� �	����	 � ����� �����
�� �������

����	���������	������
�����	����	 �����

����������	����
�������������� �� ����	�

�����������

�����	�
����
�� +�
������	����
�� 2	�
���������������
�����������������	��

������� ��� ��
������� ��� �� ����	�
��	� ����

�����	�
����
�� (�����	 ����
�� *� �����	��
�	� �	��� ��� �	������� ������
���� �������� �����
��� ����� ���	�

��
��������	��
��
����� ��	��������(��

 Table 1. MultiTech Business Policies

The vendor invoices MultiTech by sending an invoice along with its shipment to

the warehouse clerk. After receipt of the goods and its accompanying shipment

document, the warehouse clerk uses the purchase order and the receiving report to

verify the correctness of the delivery. Then he sends the verified receiving report to

the accounts payable clerk.

If the purchase is not valid, the process is terminated according to the

VerificationPolicy, e.g., in case the budget has been exceeded. Also, the

accountant is liable of reporting any payments directly to the government cf.

Sarbanes-Oxley act, section 409 (InstitutionalPolicy). Also, to ensure segregation

of duties, and circumvent potential fraud, the accountant cannot be the same person as

the sales clerk (SODPolicy).

4 Proceedings of ReMoD 2008

The accountant creates and sends a payment voucher to the payment manager,

together with the verified receiving report, purchase order, and verified invoice; only

after all this information is available the payment can be processed (OrderPolicy).

Note that in case of excessively large purchase orders in a specific time period, the

payment process is escalated to the management for further consideration

(EscalationPolicy).

The example makes clear that business policies are first-class citizens in the

modern enterprise and directly influence business services.

3. Business Rules and Service Composition

In this section, we first define and classify business rules and policies. In 3.2, we

review previous work on rule-based service composition, and in 3.3 a new service-

oriented approach to business rule management is described.

3.1 Business Rules and Policies

We follow the fundamental distinction between business rule and policy [3]. Policies

arise from internal sources such as business needs, from corporate-level guidance,

from external laws and regulations, and from ethical motivations. Based on the OMG

Business Motivation Model (BMM) such policies "govern or guide an enterprise,"

specifying business design aspects that complement information and operation models

[4].

Business policies are usually written in natural languages to cater for evaluation by

domain experts, viz. business analysts. That evaluation assumes human interpretation,

as the ambiguities of natural languages must be resolved and application of policies to

specific business contexts generally requires analysis of impacts, consequences, and

trade-offs. Thus, policies provide guidance but insufficient detail for implementation.

Considerable research has been conducted into the conceptualization of business

policies using languages such as ORM ([5], [6]), ILOG and OCL.

The application of policies in specific contexts leads to business rules, meaning

highly structured, discrete, atomic statements "carefully expressed in terms of a

vocabulary" [4] to enforce constraints (integrity rules), to deduce new information

(derivation rules) or to trigger actions on satisfied conditions (reaction rules) [7]. If a

business rule “defines and constrains some aspect of the business” [4], we can

distinguish between norms or constraints (constraining) and definitions (defining).

The former category can, without loss of generality, be expressed as prohibitions,

indicated in deontic logic with the F modality, whereas the latter typically take the

form of derivation rules.

Following [3], we posit that business rules are about business requirements, rather

than about execution. They model “what” is required, rather than “how” it should be

implemented. Hence we distinguish business rule languages from (executable)

production rule languages such as ECA-Rules [8] and “IF…THEN” (CA)-rules [9].

SBVR is an OMG proposal for the representation of business rules in Structured

English [10].

Proceedings of ReMoD 2008 5

In order to operationalize constraints, often information has to be added. According

to [11], a constraint (called norm frame in their terminology) should consist of 5

elements: a norm condition, a violation condition, a detection mechanism, a sanction

and repairs. The violation condition is a formula denoting the state when the norm is

violated. Although in simple cases, there is a 1-1 relationship between norm and

violation condition – for example, if the norm is F(α) for an observable action α then

the violation condition is DONE(α) – it is not possible to derive one from the other in

all cases. For example, when a certain action is not defined in the operational context,

or when the norms cannot be interpreted in isolation. The detection mechanism

provides the procedure necessary to determine whether the violation holds at a certain

moment. For example, the OBL(α BEFORE d), expressing that action α must be

performed before deadline d, can be checked efficiently by a trigger that fires when

the deadline d has been reached (based on a clock signal), and that checks DONE(α).

Note that the detection mechanism here is more specific than the violation condition.

The sanction is an action that is to be performed when a violation has been detected,

whereas a repair is an action that tries to undo or compensate a violation. Following

this approach, it is clear that the translation from norm to executable rule is not a

simple transformation.

In SOA, a series of (partially overlapping and conflicting) specifications and

standards have been proposed that can be used to render business policies and rules.

WS-Policy entails a family of semantic-agnostic languages to express assertions about

constraints and capabilities of service end-points. These constraints and capabilities

can be either very generic, or domain-specific, e.g., defining security-, transaction or

reliability policy constraints (cf., WS-Security, WS-Transactions and WS-Reliaiblity).

KAoS [12], Cassandra [13] and Rei [14] denote executable policy specification

languages from the semantic web community, which are based on RDF and OWL.

RuleML [15] and the Semantic Web Rule Language [16] constitute two general-

purpose executable rule languages.

3.2 Rule-driven Service Composition –state of the art

Service composition sits at the heart of the Service Oriented Architecture, allowing

service requesters to assemble several services that meet their requirements, into

composite services. Unfortunately, languages like BPEL, suffer from severe

problems, especially with regard to their flexibility and adaptability. Instead, rules

have been investigated as an alternative declarative approach, boasting the following

key advantages:

� Intuitive formal semantics: Rule-based languages exploit a limited set of

primitives with the formality of an underlying logical and/or mathematical

framework, and the quality of being meaningful to the domain expert.

� Direct support for business policies: business rules enact business policies in

that policies can be transformed into business rules in a straightforward and

transparent manner. These business rules are externalized and managed

separately from the processes in which they are applied

� Flexibility: rule-based compositions are believed to be more flexible than

BPEL-like compositions, given their ability to pursue alternative execution paths

6 Proceedings of ReMoD 2008

in case a particular execution path fails, without having to redefine the

composite service and redeploy it on a service engine.

� Adaptability: given the declarative nature of rule-enabled service compositions,

they can be modified and/or extended to accommodate context-specific

situations, e.g., in terms of external services or the deployment platform.

� Reusability: Since rules isolated from the business process context, they can be

more easily reused in other service application contexts.

Recently, considerable efforts have been invested in rule-engines to support service

compositions. In particular, we herein wish to mention the following key

contributions. Firstly, in [7], a service-oriented rule engine was introduced that allows

enterprises to access business rules by invoking distributed service-enabled ruleML

engines that sit at the service supplier’s service end-point. [17] introduces an

alternative service execution environment in which rules can be defined, and

subsequently injected in WSDL specifications, after which they can be deployed on a

service executor. [2] introduces AO4BPEL, an aspect-oriented extension to BPEL that is

able to weave business rules into BPEL frames. Alternatively, in [18] an approach is

suggested to incorporate business rules in BPEL specifications, while enforcing them

in rule engines that work in concert with BPEL engines, and coordinate themselves

through an ESB. This approach basically works as follows; an interceptor is used to

catch incoming and outgoing BPEL service invocations (activities), after which a

business rule broker service is initiated, through which applicable business rules can

be accessed. Depending on the interceptor mode (before/after), the BPEL activity is

either fired or the control flow is continued.

In addition to research prototypes that were developed for the purpose of

validation, several service-oriented rule engines are nowadays available, viz. the

Oracle Fusion Middleware Rule Engine. This rule engine allows specifying business

rules as ILOG facts that can be inserted into BPEL specifications. This is achieved by

allowing users to map BPEL variables to facts in a rule repository.

3.3 A service-oriented approach to business rule management

Business rules are an example of crosscutting concerns, especially those encountered

in composite services with a coordinating function, and run the risk of getting

scattered over the system. In a service-oriented approach it is possible to encapsulate

a certain business policy into a service. The advantage is that this service can be

called from anywhere, and rule redundancy can be avoided (cf. [19]). However, given

the presumed autonomy of services in SOA, it is not immediately clear how

compliance to such rule services is ensured. This situation is similar to the situation in

Multi-Agent Systems (MAS), where autonomy is a fundamental property of agents as

well. In MAS, the problem is addressed by an institutional approach. As one of the

earliest papers on this topic, [20] described a market place architecture for agents that

draws on exception handling third parties that act like “institutions” as we know them

from human societies (e.g. notary, registry). To realize such an institutional approach,

[20] suggests three concepts. First, each agent in the system is assigned a “sentinel”

that mediates the interactions of the agent with other agents. These sentinels monitor

message traffic, detect violations to commitments, and apply resolution handlers. The

Proceedings of ReMoD 2008 7

sentinel incorporates domain-independent exception handling expertise. Secondly, the

system includes institutional or ancillary services such as a reputation service that can

be called upon by the sentinels. Thirdly, agents cannot just enter the system; the only

way to join is to register at the Registrar service, who only allows entrance after

having assigned the agent a sentinel. Is it possible to use this solution approach in

SOA?

As we just noted, the second element of the solution can be easily applied in SOA.

We can introduce institutional services as services, and as far as they represent not

only mechanisms (which is the focus of [20]) but also policies, it is possible to

implement them using a rule-based approach. The first element requires more

attention, as sentinels are clearly not part of SOA. However, there are recent

developments within SOA that provide each service with a service manager (e.g.

[21], [22]). This service manager can be realized as a service and has the possibility to

adapt the service via a management interface (MOWS). In ASOA [22], the service

manager follows a monitor-plan-act cycle as envisioned in autonomic computing,

which is close to the specified behavior of the sentinel.

Fig. 2. Service-oriented business rule management, an institutional approach

In order to apply an institutional solution approach and to solve the compliance

problem, we make the fundamental assumption that services have a dual orientation.

One orientation is the client-orientation that lies at the heart of SOA. However,

implicitly or explicitly, there is also another orientation towards someone who wants

this service to be delivered. This party can be called the principal, and the relationship

is one of delegation. Delegation means that a party wants to achieve something –

typically providing a service to some customer – but rather than doing it himself, he

asks another party (“agent”) to do it on his behalf. Conceptually, the relationship can

be characterized as a service offered by the “agent” to the principal. The delegation

provides us with a mechanism to introduce services. A service X is introduced by a

service provider – which we identify with a service manager – by replying to a

request from the principal to deliver service X.

Now it becomes clear how a service can be bound to a business policy. When the

principal requests the service manager to deliver service X, the request contains a

reference to all the policies that should be respected as well. By adopting the request,

the service manager commits himself to respect these policies. Within these policies,

8 Proceedings of ReMoD 2008

a distinction can be made between generic rules, such as for detecting norm

violations and reporting, and context-specific rules; the latter can be offered as

separate services, and a generic rule only says that the service manager should call

these services for this or that occasion. Fig. 2 describes the process of service

introduction. A certain business rule service is assumed to exist representing some

policy, for example, the PermissionPolicy of MultiTech. The principal uses this

service (1). The service manager of the “agent” provides a service delivery service to

the principal (2) upon his request. In performing this service, it uses and invokes the

business rule service (3). Typically, in the case of a composite service, this implies

that the service execution itself involves the business rule service (4), by

orchestration. This all being in place, a client can call the service (5).

This scenario offers a solution to the compliance problem, but it does not assume a

central Registrar authority. Each principal can impose its own policies. However,

what the principal imposes is not an autonomous decision, as it depends on the

policies imposed on him by powers above him.

Fig. 3 The FARAO approach towards service composition

4. Framework for Designing, Reusing and Evolving Business

Rules in Service Compositions

FARAO stands for a FrAmewoRk for Adaptive Orchestration. The ultimate goal of

FARAO is to support the development of adaptable service orchestrations and to

prepare for adaptivity by providing a manageability interface to a service manager,

such as described in xSOC [23] and ASOA (Adaptive Service Oriented Architecture)

[22]. Fig. 3 conceptualizes the relations between the ingredients of our service

orchestration. Given a set of services to be orchestrated, the designer starts with

retrieving the interface and data descriptions, typically from the registry. From these

descriptions, Condition-Action (CA) rules are derived that manage the data flow. We

have chosen for CA-rules rather than ECA-rules as the latter introduce more

dependencies between the rules. In step (2), these rules are extended with business

rules that typically steer the decisions in the orchestration. In step (3), the designer has

the opportunity to add additional control-flow constraints, if required. In ASOA, all

Proceedings of ReMoD 2008 9

three steps will be delegated to the service manager who executes them autonomously

or semi-autonomously.

4.1 Data dependencies

The FARAO lifecycle model starts with a data-driven approach where the process

structure is derived essentially from the data dependencies between the services

involved in the orchestration. For example, if an orchestration involves both an

Inventory service that returns, among others, the actual price of the product and a

message to the customer with a quote, there is a data dependency between the two

services that (implicitly) enforce that the former precedes the latter. If there is no data

dependency between two services, there is no need to schedule one before the other,

and by refraining from an arbitrary ordering we increase flexibility.

As hinted at in the above, we generate a CA-rule for each message that the

orchestrator has to send. From the WSDL of the service in question, we derive the

structure of the document it expects. Range restrictions on the message elements are

copied into the conditions of the CA-rule. If there is not a range restriction, a NOT

NULL condition is generated. In the action part, we put a send action that takes the

service and its input document as parameters.

Rules refer to data items. In order to increase adaptability, we require that the

orchestration is based on a shared ontology. WSDL-S [24] provides a mechanism to

add semantics to web services. This allows, among others, that the message elements

of the service are mapped to a given ontology. By requiring the WSDL descriptions of

the services to be semantically annotated, we can let the rules refer to data items in

terms of the shared ontology. In this way, changes in the service interface do not

influence directly the orchestration, as long as the services adhere to the shared

ontology.

4.2 Inference rules

The CA rules generated from the data dependencies provide an executable

orchestration, but it only works well to the extent that the data items in the documents

are seamlessly integrated. This is not always the case: sometimes an inference step is

needed. For example, if one data item is "credit rating" and another is "creditworthy",

then we need a rule to correlate the two that essentially prescribes when a person is

creditworthy (for example, if credit rating > 10).

The general format of these inference rules is:
IF <condition> THEN a

1
 = v

1
 .. a

j
 =v

j

Technically, these inference rules are not CA-rules. We coerce them into CA rules

by giving the consequent part an assignment interpretation: if the conditions are

satisfied, then assign values v
1
 .. v

j
 to the variables a

1
.. a

j

Example: After the accounts payable clerk has got the information from the

CheckAgainstPO service it must decide whether or not to further process the order.

The business rules for this decision can be formulated as follows:
Rule 1: IF verified-shipping-doc != "ok" THEN shippingstatus = reject
Rule 2: IF verified-shipping-doc == "ok" THEN shippingstatus = accept

10 Proceedings of ReMoD 2008

These rules are to be used in combination with the rule (for the action) that processes

the verified shipping document. This rule contains the condition that shippingstatus

= accept. The rules 1 and 2 can be fed directly into the CA-engine, but they may also

be part of a business rule service included in the orchestration. In the latter case, they

are much easier to maintain of course. In a real-life implementation, a combination of

the two approaches can consist in a caching solution, where the rules from the

business rule service are moved to the CA-engine of the service temporarily. This

approach saves on the communication overhead attached to service invocations. The

cache has to be refreshed when the business rules are modified at the source.

4.3 Control flow constraints

The most prominent control flow constraint is the precedence constraint, where a

certain service can only be executed after some other service has happened or some

state has been reached. In Linear Temporal Logic, such a precedence constraint is

usually described as: ¬β UNTIL α, where α and β are arbitrary propositions. In the

case of orchestration, we restrict ourselves to constraints in which β is a service call.

Then the meaning of the constraint is that this service cannot be called as long as α is

not true.

For example, ¬send(PaymentVoucher) UNTIL (PurchaseProcessing = "ok")

which enforces payment voucher is not issued to the service PaymentService before

the PurchaseProcessing service has been concluded (MultiTech OrderingPolicy).

A fundamental restriction of SOA is that services are autonomous, so the orchestrator

cannot verify himself whether a certain service is finished; he is dependent on return

messages of that service. If no return message is returned, there is no way to enforce

precedence. Hence we restrict the α part of the precedence constraint to propositions

on data (and not on the completion of some service as such). Within the present

context, the β part is restricted to the event of sending a document.

In FARAO step (3), the control flow constraints are inserted into the CA-rules. In

step (1), a CA-rule has been generated for each outgoing document. Let this rule be of

the form "IF D THEN send(M)", and let a control flow constraint be ¬send(N)

UNTIL C". If M=N, then we derive the rule "IF D AND C THEN send(M)".

Atomic prohibitions such as the PermissionPolicy in MultiTech can be injected

into the CA-rule condition in a similar way (not worked out for lack of space).

4.4 Business Rules Implementation in FARAO

As far as business rules are concerned, we made a distinction between definitions and

constraints. In the above, we have indicated how definitions can be incorporated in

(the CA-engine of) FARAO as inference rules. Precedence constraints can be injected

into the CA-rules. However, the interpretation of a norm frame requires more than

precedence constraints. Not all norms are enforceable. In that case, the norm frame

includes detection and remedy parts, among others. In FARAO, these can be directly

implemented as CA-rules, although preferably, the service orchestration itself only

Proceedings of ReMoD 2008 11

contains detection rules and the remedy is left to the service manager or an

institutional service.

A type of rules not mentioned so far are permissions. If we follow the “everything

is permitted unless forbidden” regime, permissions are not strictly needed. However,

often permissions function as “second-order” constraints, determining which

prohibitions can be added and which can not. In other words, they prohibit certain

prohibitions, in which case they can be treated as constraints.

5. Conclusions

At present, organizations typically rely on block-structure, light-workflow

specifications such as BPEL, to realize their business processes as composite Web-

services. Unfortunately however, this style of composition assumes that at run-time, a

detailed and complete process layout is “carved in stone”, making its adaptation

cumbersome, complex and time-consuming, requiring re-compilation of the process

engine, and causing disruptions in, potentially mission-critical, business processes.

In this paper, a declarative and rule-driven framework to dynamic service

composition, labeled “FARAO”, is introduced, while its ramifications are further

explored and illustrated with a realistic case study. The “heart-and-soul” of FARAO

constitutes business rules that prescribe the way in which services can actually be

aggregated dynamically into processes. The business rules are fed into the engine in a

service-oriented way, that is, by a principal requesting a service delivery in

accordance with given policies and by the service manager accepting this request. The

business rules are maintained and updated outside the operational services. Given the

platform independence offered by SOC, this can be anywhere inside or outside the

company.

Our current research efforts concentrate on the implementation of the FARAO

framework to experiment with rule-based service composition. A topic for future

research is the mapping of our business rule representation to standard business rule

languages, and to define a transformation from this language to the operational

FARAO environment using a model-driven engineering approach.

References

[1] Reichert, M., Rinderle, S.: “On design principles for realizing adaptive service flows with bpel”. In:

Weske, M., Nttgens, M., (eds), EMISA. Volume 95 of LNI., GI, pp.133–146, 2007.
[2] Charfi, A. and Mezini, M., “AO4BPEL: An Aspect-oriented Extension to BPEL”, World Wide Web,

V.10, nr. 3, pp.: 309-344, 2007.

[3] N. Nayak et al., “Core business architecture for a service-oriented enterprise”, IBM Systems Journal,
Vol 46, No. 4, pp. 723-742, 2007

[4] The Business Motivation Model, Business Rules Group and the Object Management Group (OMG),

http://www.businessrulesgroup.org/bmm.shtml
[5] Hargreaves, A. “Expressing Business Rules with Object Role Modeling”, Proceedings of the 17th

NACCQ, 2004.

[6] Halpin, T. “Business Rules and Object Role Modeling”, Database Programming and Design, Oct 1996.

12 Proceedings of ReMoD 2008

[7] Nagl, C., Rosenberg, F., Dustdar, S., ViDRE - A Distributed Service-Oriented Business Rule Engine

based on RuleML. In: Proceedings of the 10th IEEE International Enterprise Distributed Object

Computing Conference (EDOC'06), 16-20. October 2006, Hong Kong, China.
[8] Chen, L et al., “ECA Rule-based workflow modeling and implementation for service composition”,

IEEE Transactions on Information & Systems, Vol. 89, Nr. 2, pp. 624-630, Feb. 2006.

[9] Geminiuc, K. “A Services-Oriented Approach to Business Rules Development”, In: SOA Best
Practices: SOA Cookbook, Oracle, 2007. Available at:

http://www.oracle.com/technology/pub/articles/bpel_cookbook/geminiuc.html.

[10] Semantics of Business Vocabulary and Business Rules (SBVR), The Object Management Group, Sept
2006, http://www.omg.org/cgi-bin/apps/doc?dtc/06-08-05.pdf

[11] Vasquez-Salceda, J., H. Aldewereld, F. Dignum, Implementing norms in multiagent systems. In: G.

Lindemann, J. Denzinger, I. Timm, R. Unland (eds), Multi-Agent System Technologies. LNAI 3187,
Springer Verlag, pp. 313-327, 2004.

[12] Bradshaw, J.M., S. Dutfield, B. Carpenter, R. Jeffers, and T. Robinson. "KAoS: A Generic Agent

Architecture for Aerospace Applications", in Proc. of the CIKM'95 Intelligent Information Agents
Workshop. Baltimore, MD, 1995.

[13] Becker, M.Y.; Sewell, P Cassandra: distributed access control policies with tunable expressiveness.

Proc. Fifth IEEE Int. Workshop on Policies for Distributed Systems and Networks (POLICY 2004), pp.
159-168, 2004.

[14] Kagal, L., Finin, T., Joshi, A., ‘A Policy Language for a Pervasive Computing Environment’,

Proceedings of IEEE 4th Int. Workshop on Policies for Distributed Systems and Networks (POLICY
2003), Lake Como, Italy, 2003.

[15] Schroeder, M. and G. Wagner (Eds.): Proc. of the Int. Workshop on Rule Markup Languages for

Business Rules on the Semantic Web., Italy, June 2002. CEUR-WS Publication Vol-60
[16] Horrock, I. et al., “SWRL: Semantic Web Rule Language”, http://www.daml.org/rules/proposal/ ,

Dec. 2004.
[17] Kamada, A. and M. Mendes, “Business Rules in a Service Development and Execution Environment”,

Proc. of the Int. Symposium on Communications and Information Technologies, pp. 1366-1371, IEEE,

2007.
[18] Rosenberg, F. and S. Dustdar, “Business rules integration in BPEL: A service-oriented approach”,

Proceedings of the 7th International Conference on E-Commerce Technology, IEEE, 2005.

[19] Rosenberg, F. and S. Dustdar, “Towards a distributed service-oriented business rule system”,
Proceedings of the Third European Conference on Web Services (ECOWS’05), IEEE, 2005.

[20] Dellarocas, C., Klein, M., and Rodriguez-Aguilar, J. A. An exception-handling architecture for open

electronic marketplaces of contract net software agents. In Proc. of the 2nd ACM Conf. on Electronic
Commerce, EC '00, pp.225-232. ACM, 2000.

[21] Papazoglou, M.P. and W.J. van den Heuvel, “Service oriented architectures: approaches, technologies

and research issues", VLDB Journal, Vol.16(3):389-415, 2007
[22] Hiel, M., H. Weigand and W.J. van den Heuvel, “An Adaptive Service-Oriented Architecture”, In:

Mertens, K, R. Ruggaber, K. Popplewell, X. Xu (eds), Enterprise Interoperability III, pp.197-208,

Springer, 2008.

[23] Papazoglou, M.P., Extending the Service-Oriented Architecture. In: Business Integration Journal,

February 2005, pp. 18-21.
[24] W3C, “Web Services Semantics”, Version 1, W3C member submission, 2005.

Supporting Corporate Governance with Enterprise

Architecture and Business Rule Management: A

Synthesis of Stability and Agility

M.W. (Matthijs) van Roosmalen, S.J.B.A. (Stijn) Hoppenbrouwers

Radboud University Nijmegen

Matthijs@van-roosmalen.com, S.Hoppenbrouwers@cs.ru.nl

Abstract. Business rule management (BRM) and enterprise architecture (EA)

both offer support for corporate governance. They do this in different ways,

with EA emphasizing a stable framework while BRM offers more agility to the

enterprise through control of changing business rules. This paper explores the

combination of BRM and EA in deployment to support governance, and argues

for a synthesis between the two. Such a synthesis offers an organization the

benefits of both stability and overview demanded by regulatory bodies, as well

as agility in the face of rapidly changing compliance demands.

Keywords: corporate governance, compliance, business rules, business rule

management, enterprise architecture

1 Introduction

1.1 Context

It is often stated that today’s society is characterized by a high degree of turbulence

and uncertainty, in which changes occur frequently and in rapid succession [1].

Global and interconnected forces such as globalization, shifting demographics,

demanding consumer markets, environmental concerns and political activism are

driving these changes [2]. Governments of the OECD countries have stepped in with

regulations to contain some of the uncertainty and prevent corporate, political and

environmental scandals. These regulations increasingly demand that organizations can

prove having a clear insight into their operations and ensure compliance with

applicable laws [3]. Well-known examples are the Sarbanes-Oxley Act in the U.S.

and the Basel II framework.

This has led to challenges for organizations balancing their internal concerns from

strategy formulation to execution and IT support with external demands on

compliance from supervisory, regulatory and enforcement authorities. As both market

conditions and legislation are subject to more and rapidly changing regulations, the

cost of compliance rises [4]. This draws valuable time and resources away from the

core business processes and pursuing new opportunities for competitive advantage.

There appears to be a conflict in the demand for a stable governance framework that

14 Proceedings of ReMoD 2008

supports transparency and accountability, and the ability to make quick changes to

this framework, possibly harming its integrity. This organizational conflict between

stability and change has also been referred to as the paradox of flexibility [43]. The

ability of an organization to change quickly in response to external influences will be

referred to here as agility [5].

1.2 EA and BRM in Corporate Governance

It is argued in this paper that the approaches of enterprise architecture (EA) and

business rule management (BRM) offer complimentary positions concerning

corporate governance1 in light of the conflicting demands of stability and agility.

When deployed together in an organization, these approaches may facilitate a

synthesis where stability and agility do not conflict, but rather co-exist and

complement each other in attaining successful governance. This contention is

supported by the goal-oriented analysis of EA and BRM [6], which identified

governance and flexibility as major areas of synergy.

In related work on business rules in the context of EA, particular attention has thus

far gone out to the role of rules in architecting the enterprise [7] and documenting and

modeling them [8][9][10]. This includes the positioning of business rules in enterprise

architecture design and development methods and frameworks [11], such as the

Zachman framework [12]. With so much emphasis on the architecting and design

aspects, the deployment aspect has so far been largely neglected. Deployment in this

context refers to the integration and application in the organization – in other words,

actually using EA and BRM in order to realize their implied benefits.

This paper specifically concerns the deployment of BRM in conjunction with an

enterprise architecture, rather than the development and design of the architecture and

the business system. By focusing on deployment, it aims to address the significant

knowledge gap that currently exists in this field. In particular, the consequences and

benefits of deploying BRM and EA for the practice of corporate governance are

identified. Besides contributing to the academic body of knowledge on these young

disciplines, this is relevant for organizations dealing with complex governance issues,

as well as those offering services or products related to EA or BRM.

First the aspects of EA and BRM that relate to their contribution to corporate

governance will be discussed separately, during the course of the next two sections. In

the fourth section, the synthesis between them is introduced and explicated. Finally

some general conclusions and suggestions for further research will be given.

1 The definition of corporate governance adopted in this paper is the inclusive definition given

by Turnbull: “Corporate governance describes all the influences affecting the institutional

processes, including those for appointing the controllers and/or regulators, involved in

organizing the production and sale of goods and services.” [13].

Proceedings of ReMoD 2008 15

2 Enterprise Architecture as a Stable Governance Framework

2.1 Defining Enterprise Architecture

The field of architecture is filled with different interpretations and applications of the

term, which has resulted in a wide variety of definitions in the literature today. There

are also a large number of frameworks, tools, descriptive languages, models and

supporting methods in existence that can be applied widely to architectures at

different levels of aggregation [14][15][16].

This paper considers EA to be the architecture that prescribes and describes an

organization at its highest level, and at its most holistic. It is about the entire

organization and all of its elements; not specific sub systems such as IT or particular

business units. This is appropriate in the context of corporate governance, because

here too, the organization has to be considered as an inclusive whole. For this purpose

the following definition of EA is adopted from [3]:

Enterprise Architecture. A coherent whole of principles, methods, and models that

are used in the design and realisation of an enterprise’s organisational structure,

business processes, information systems, and infrastructure.

Furthermore, EA itself is viewed on a meta-level of abstraction, which means that the

properties of EA discussed in this paper are as independent as possible from specific

approaches and implementations. Both guiding architectural principles that are used

in architecting the enterprise, as well as more detailed models and visualizations of

the architecture, are considered. This is of course done from the deployment

perspective.

2.2 Enterprise Architecture for Governance

As systems become more and more complex, many organizations lack the required

cohesion between different systems for them to be effectively maintained and

controlled. This can be caused by historical mishaps such as integrating business

processes by connecting originally separate systems and choosing the fastest and

easiest solution to a particular need in an isolated area [17]. The result is a

heterogeneous mix of systems spread throughout the organization, without a common

structure, which is nearly impossible to oversee and maintain due to its complexity

and size. This problem was the original driver for EA as conceived by Zachman [18],

and is still recognized as an important issue today, but now includes the integration

and alignment of business and IT [3]. As IT is becoming more embedded and

integrated into organizations, the governance of IT from the enterprise perspective

becomes increasingly important [19].

These developments have also affected the public sector and the field of e-

government, where it is argued by Bellman and Rausch that it is crucial to adopt a

holistic view encompassing both IT and business [20]. The thorough insight into the

structure and processes of the organization along with its IT that is provided by

16 Proceedings of ReMoD 2008

having EA in place makes it easier to ensure regulatory compliance and report on the

internal situation to the required authorities. This allows crucial management

decisions to be made more rapidly and securely. EA thus guides the translation of

corporate goals into concrete actions that are in line with both regulatory demands and

internal policies [21].

It has been said that EA functions as a map for the boardroom, which has the

purpose of positioning decisions and overseeing their consequences in the broader

context of the enterprise [17]. In other words, it serves the governance of the

enterprise. There are four main ways in which EA contributes directly to corporate

governance:

First, the EA facilitates comprehensive decision making by providing a holistic

overview of the enterprise, which yields the insights necessary for understanding the

ramifications of these decisions [22].

Second, the framework provided by EA is a solid basis for planning and setting

goals and targets for various organizational units, as well as keeping track of who can

be held accountable for them.

Third, EA enables the management and introduction of common standards and

practices that are used and agreed upon. This may include standards regarding ways

of working, policies, guidelines, IT and communication standards, and even best

practices [23].

Fourth, EA supports the identification of risks throughout the enterprise, which is a

boon to risk management. This overview created by an EA can be used to help

identify and keep track of the responsibilities and owners with respect to various

processes and risk-sensitive systems and areas.

2.3 Stability and Episodic Change

An important area of application for enterprise architecture that borders the domain of

corporate governance is the directing of organizational change. This can be seen from

two perspectives; the stable situation which is only changed occasionally and in

revolutionary bursts, and more evolutionary changes that take place within a defined

context and framework.

EA often deals with the migration from a state before the architecture (IST) to a

more desirable new state that is prescribed by the architecture (SOLL). Considering

the definition of EA given earlier: it guides the design of the business system. Once

the migration to the desired state is complete, the architecture is preserved for a longer

period of time, typically at least a few years. This is good because it allows the stable

governance structures and procedures outlined in the previous section to be realized

and put into practice. Having some measure of stability is a necessity for many of

EA’s contributions to corporate governance, such as a shared reference framework,

agreed upon standards and insight into responsibilities and risks.

However, all enterprises invariably move through a life cycle from their initial

concept in the mind of an entrepreneur through a series of stages or phases, just as

their products and service offerings do [24]. The enterprise architecture by definition

needs to change as the enterprise it governs moves from one stage in its life cycle to

the next. Weick and Quinn refer to this kind of change as episodic change [25], but

Proceedings of ReMoD 2008 17

the term revolutionary change is also used e.g. by [26]. Weick and Quinn state that

these episodes of change undergo a trajectory consisting of three phases: unfreeze –

transition – refreeze.

A major part of managing such revolutionary organizational change is often

dealing with cultural and psychological factors regarding different stakeholders, in

order to overcome resistance to change. This process is referred to as unfreezing. EA

aids this process by reducing the resistance to change by offering a framework in

which all the enterprise’s objectives are positioned and the rationale for pursuing any

of them at any particular time can be seen by everyone [27]. In the transition phase,

the new or evolved EA guides the design and realization of the new enterprise from

the IST to the SOLL state. The EA is then deployed in the refreeze phase, where it

will remain stable until the next episode of change in the life cycle of the enterprise.

Even though EA is characterized by stability and only occasional episodes of great

change, this does not mean it opposes or contradicts smaller, more evolutionary

changes from happening. The stable framework of EA is also a valuable tool for

facilitating changes in the organization that fall within the space prescribed by the

architecture. In this manner the EA serves as a guiding framework through which the

change efforts can be directed. What EA does generally not do however, is provide

the means to make these changes as such.

3 Business Rule Management for Agile Governance

3.1 Defining Business Rule Management

Business rules are essentially all the rules that exist in an enterprise environment and

are under the jurisdiction of the business. Organizations typically have thousands of

such rules governing the business operations [28]. Various experts define business

rules in a slightly different way, but all agree on their importance and that their main

concern is that they should correlate directly to the business [29]. In this paper, the

definition of the Business Rules Group will be adopted, because it is a widely

accepted definition with a sufficiently thorough basis that is specific enough to be

practically useful [30].

Business Rule. A statement that defines or constrains some aspect of the business.

It is intended to assert business structure or to control or influence the behavior of the

business.

There are many different types of business rules according to various identification

schemes and classifications; an overview can be found in [10]. They exist on two

different levels: the business level and the information system level. In this view,

business rules at the information system level are specified in a way understandable

by machines, so that their processing can be automated. This does not mean that rules

are essentially different on each level, but merely that they are represented in a

different way. Some business rules are only present on the business level, but do not

need to be implemented in a solution at the information systems level, and are for

18 Proceedings of ReMoD 2008

example enforced through human efforts. Business rules always exist on the business

level however, since the focus of BRM is on business and not technology.

BRM is in fact a mechanism for governing and controlling aspects of an

organization, using business rules. A good working definition of BRM is given by

von Halle [31].

Business Rule Management. A formal way of managing and automating an

organization’s business rules so that the business behaves and evolves as its leaders

intend.

A thorough and comprehensive methodology for BRM can be found in [32]. It

stresses the importance of modeling and deploying business rules in relation to

enterprise models and business goals as well as information systems design. BRM is

typically aided by sophisticated tools that manage large repositories of rules and

provide support for the elicitation and authoring of the rules themselves, known as

business rule management systems or suites (BRMS). Where formal execution and

enforcement of the rules are automated at the level of the information systems, a

business rule engine (BRE) is deployed. Such an engine makes use of reasoning

algorithm technology to compute the applicable rules in a given situation and whether

they are being complied with [33].

3.2 Governance through Business Rules

Business rules tend to focus on what needs to be done, leaving the how open to

specific situations, implementation choices and the personal freedom of those

following the rules [34]. Business rules therefore set boundaries for acceptable and

desired behavior, allowing some room for creativity while maintaining a sense of

fairness and consistency of output. This is a property of the way business rules are

deployed, that distinguishes them from other rule-bound ways to regulate behavior

such as strict formalization and fully specified instructions.

Perhaps the most important contribution of BRM to the organization is that the

business rules can be changed relatively quickly. This allows the organization to

respond more quickly to new risks and threats, increasing the capacity for agility. This

added agility makes business rules suitable for guiding and controlling parts of an

organization that are highly susceptible to change, both from within and from the

environment. This is relevant in the primary processes of the organization, which

implement the strategy set out by the organization in order to meet its business goals,

but also in supporting and controlling processes which ensure compliance and are

naturally rich in rules.

This has profound potential for corporate governance. Even though an organization

may be too complex to capture everything in rules, the aim is to capture the right

aspects that are crucial for efficient and responsive control. When the compliance

demands from external regulatory influences change, this translates into changing

business rules for the affected organization. BRM supports these rapid changes of the

rules as well as their deployment and enforcement. If the currently applicable rules

are immediately known at all times, this response time is further shortened [35].

Proceedings of ReMoD 2008 19

BRM also provides insight into the rules that govern the enterprise. This goes for

any given situation at which it needs to be clear which rules apply and should be

satisfied. Deploying BRM forces organizations to make their policies and rules

explicit. This enables them to always be available to the right persons; the ones who

need to comply with them. Edwards states that business rules are “core to establishing
and maintaining a compliance competent organization” [36]. Dissemination of

knowledge of the applicable rules is therefore an important contribution made by

BRM to compliance.

Also important is knowledge regarding the consequences of any violation of the

rules and the likelihood of this happening. This touches upon the area of risk

management. By having access to the rules, insight is gained into the risks, making it

possible to assess them with greater accuracy. Business rule technology also offers

possibilities for simulating different scenarios based on simulated changes in the

rules. This helps to identify potential compliance risks in future situations, for

example when new laws are about to go into effect.

3.3 Agility and Continuous Change

In contrast to EA, BRM is all about providing the means to make rapid changes to the

way the business is run. Because the business rules are separated from the processes,

activities and information systems of the organization, they can be more easily

managed and changed [37]. This allows the organization to respond to changes in the

environment. The detection of such changes is often considered to be in the domain of

environmental scanning and business intelligence [38]. In the context of corporate

governance, BRM clearly allows for more sense-and-respond agility towards the

marketplace and regulatory bodies demanding compliance.

The changes that BRM facilitates are often short term, isolated in specific areas

and not deeply rooted in the organization’s culture and values. These characteristics

on the dimensions of time, complexity and culture are typical of what Weick and

Quinn refer to as continuous change [25]. This kind of organizational change is also

known as incremental or evolutionary change [26]. Such changes are cyclic and

without a clear end state, as opposed to episodic change which is linear (from IST to

SOLL) and between stable states. This is where the agility offered by BRM is evident,

the rules can always be changed to reflect the current demands and the set of rules is

never constrained by a long term end state. Weick and Quinn state that continuous

change consists of an enduring cycle of the three phases freeze – rebalance –

unfreeze.

A change intervention made by BRM is a good example of what happens in the

freeze phase. The rules and patterns governing the current state are made visible and

tangible so that they can be changed. BRM yields insights into the rules that are

relevant in the light of new circumstances, and which need to be altered. It also gives

the organization the means to rebalance the situation. In this phase, the situation is

reevaluated and the rules changed in such a way that the organization is compliant in

the new state. Finally, there is the phase of unfreezing, in which the rules are once

again interpreted and applied by individuals. It is crucial that this leaves these

20 Proceedings of ReMoD 2008

individuals the appropriate degrees of freedom to improvise and learn, which is

possible because the rules specify the what and not the how.

While BRM typically supports continuous, evolutionary change, this does not

imply that it prevents revolutionary change from happening. BRM has been suggested

as a powerful tool in business restructuring and re-engineering efforts [39], which are

revolutionary in nature. However, the core of the agility in governance offered by

BRM is due to the fact that it enables continuous change that benefits the compliance

of the organization. What BRM may lack due to its malleable nature is a consistent

and stable framework providing overview, in order to keep track of changes and

support more complex revolutionary changes when they become necessary.

4 Synthesis between EA and BRM

4.1 Comparative Goal Analysis

The complimentary position of BRM and EA is made clear by the comparative goal

analysis of their normative organizational goals [6]. This analysis has identified 35

unique goals of both BRM and EA, for a total of 70 goals. These goals have been

structured and modeled in the form of hierarchical goal trees, which revealed areas of

similarity as well as differences. The leaf goals of the different goal trees were then

analyzed for their compatibility, which resulted in the network of goal relationships

shown in fig. 1. Some clusters representing common or mutually compatible goals

can clearly be seen. Main goals that emerged from the goal analysis have been

included in the text of this paper as relevant. For details on the goal analysis, see [6].

Fig. 1. The network of organizational goals of both EA and BRM on the leaf level of the goal

tree hierarchy, as drawn in UCINET [40]. These goals have been clustered and analyzed in

order to identify complementarities between the two approaches.

Proceedings of ReMoD 2008 21

One of the areas where the goals of EA and BRM complement each other is that of

corporate governance [6]. The different ways in which these two approaches support

governance and compliance have been outlined in the previous two sections of this

paper. These complimentary contributions may offer benefits regarding the flexibility,

reliability and effectiveness of corporate governance. There are also some differences

however that need to be reconciled in order to realize the potential benefits of the joint

deployment of EA and BRM.

 These differences concern the approach to change and stability. EA puts the most

emphasis on preserving a stable state and using it to direct the business, only

occasionally engaging in episodes of revolutionary change. BRM on the other hand is

focused on enabling rapid changes to fine-tune the business and respond to

environmental influences, in a way that is continuous and evolutionary. It is the

assertion of this paper that both of these approaches, in the form of stability and

agility, contribute to successful governance.

4.2 Synthesis of Stability and Agility

In order to benefit the most from the joint deployment of BRM and EA, a synthesis

must be reached which incorporates both a stable governance framework and

sufficient agility to cope with rapidly changing demands. In such a synthesis, BRM

makes the EA more flexible, while EA provides the missing governance overview to

the BRM. Here it is useful to make a distinction between higher order governing of

business design and strategy execution, which is likely to be more constant, and the

day-to-day operations of the business, which may have a higher degree of liquidity.

A possible weakness of EA is that because it focuses on a high level of abstraction,

it becomes too hierarchically structured, prescriptive and one-size-fits-all. When only

major episodes of change are facilitated, it becomes constraining in terms of

innovation and struggles to adapt to a turbulent environment. The combination with

BRM gives an organization the means to make continuous changes. These changes

should take place within the overall boundaries of the EA and are concentrated in the

business operations that need to adapt to changing demands regarding for example

compliance.

The swift and easy changes in the rules increase the adaptability of individual

processes and services, but they should be managed at a higher level, where the

necessary overview of the enterprise as a whole exists. This is where EA provides the

insight and overview necessary to guide the lower level agility in the right overall

direction. This concept of operational agility built upon a solid base of business

values and insight for higher level guidance is particularly suitable for surviving and

competing in turbulent environments [41].

Particularly with compliance in mind it is crucial to not only have an overview of

the risks and responsibility structure within the organization, but also to have certain

elements of this structure firmly in place. The demands from regulatory organizations

are such that they require an orderly framework for clear-cut procedures to deal with

legislation and governmental standards. Such a framework should be somewhat stable

in order to accommodate the meeting of all compliance requirements. This is typically

done at the EA level, affecting all units of the organization. The Business Motivation

22 Proceedings of ReMoD 2008

Model [42] provides a model for positioning business rules in an organizational

context, but lacks the prescriptive power needed to guide organizational change.

When the governance framework is no longer viable, it needs to be reconstructed by

means of an episodic change process guided by architecture.

What BRM advocates is an agile approach in which rules can be easily changed in

order to meet changing requirements for compliance, often eliminating the need for

revolutionary change. This becomes necessary when changes occur so quickly that

the sluggish overall framework of governance is not able to keep up, and going

through episodes of major upheaval for every change would be too costly. The

redesign process is therefore sometimes better carried out in an evolutionary way

[44]. While changes are frequent, they usually do not occur across the entire range of

regulations at the same time, but tend to focus in specific areas. Therefore, both a

stable overall framework and the ability to quickly change specific compliance

measures are needed.

This is where BRM can enrich the EA framework for governance and compliance,

by separating the rules and making them easily accessible and changeable within the

boundaries laid out by the architecture. This reduces the complexity and waiting times

involved in making changes required in response to specific external regulations,

while also maintaining an enterprise wide overview and governance framework. If

only BRM were to be used, this overview could be lost because critical parts of the

business are expressed in a multitude of atomic rules.

These findings are in line with an emerging body of literature that argues that

organizations combine evolutionary and radical change harmoniously [44]. Tushman

and O’Reilly refer to organizations that control both revolutionary and evolutionary

change as being ambidextrous [26]. This is the key to the synthesis between stability

and agility in corporate governance, which can be achieved by deploying both EA and

BRM.

5 Conclusion

This paper discussed the contributions of EA and BRM in support of corporate

governance and the relationship between the two approaches. It was found that both

have complimentary ways in which they support the common goal of governance, but

differ regarding their approach to change. EA takes a higher level view of governance

and supports a stable framework, while BRM facilitates agile operations and

compliance. A synthesis between the two approaches in combined deployment allows

for both stability and agility in governance. This synthesis supports corporate

governance in dealing with the demands regarding stability from regulatory

supervision and agility from changing legislation and a turbulent environment.

This has profound consequences for research into EA and BRM in the broadest

sense and for the purpose of governance in particular. Both fields have a lot to gain

from more integration between the two, because they complement each other’s

weaknesses in working towards the same goal. Future research should focus on the

joint development as well as deployment.

Proceedings of ReMoD 2008 23

The consequence for the practical deployment of BRM and EA in organizations

that wish to improve their governance is that neither approach is by itself sufficient to

deal with the demands regarding stability and agility and that they should be

combined. Organizations will have to consider their environment and find the right

mix of a stable EA and continuous changes in the governing business rules.

References

1. Chakravarthy, B.: A New Strategy Framework for Coping with Turbulence. Sloan Management
Review. 38, 2 (1997) 69-82

2. Laudicina, P.A.: World out of Balance: Navigating Global Risks to Seize Competitive Advantage.

McGraw-Hill, New York (2005)
3. Lankhorst, M.M. et al.: Enterprise Architecture at Work: Modelling, Communication, and Analysis.

Springer-Verlag, Berlin Heidelberg (2005)

4. Hopkins, T.D.: Regulatory Costs in Profile. CSAB Policy Study Number 132 (1996)
5. Pal, N., Pantaleo, D.C. (eds.): The Agile Enterprise. Springer, New York (2005)

6. van Roosmalen, M.W.: Enterprise Architecture and the Business Rule Approach: A Goal-Oriented

Analysis and Synthesis. Master’s Thesis, Radboud University Nijmegen, The Netherlands (2008)
7. Dietz, J.G.L.: Architectural Principles & Business Rules. Presentation delivered at the Business Rule

Platform Nederland, December 6th (2007)

8. Perkins, A.: Business Rules = Meta-Data. Proceedings of the 34th International Conference on
Technology of Object-Oriented Languages. Los Alamitos, CA (2000) 285-294

9. Liles, D.H., Presley, A.R.: Enterprise Modeling Within an Enterprise Engineering Framework. In:

Charnes, J.M., Morrice, D.J, Brunner, D.T., Swain, J.J. (eds.): Proceedings of the 1996 Winter
Simulation Conference (1996) 993-999

10. Taveter, K., Wagner, G.: Agent Oriented Enterprise Modeling Based on Business Rules. In: Proc. of

20th Int. Conf. on Conceptual Modeling (ER2001), Yokohama, Japan. Springer-Verlag. LNCS 2224
(2001) 527-540

11. Iyer, B.,Gottlieb, R.: The Four-Domain Architecture: An Approach to Support Enterprise

Architecture Design. IBM Systems Journal. 43, 3 (2004) 587-597
12. Zachman, J.A.: Enterprise Architecture: Managing Complexity and Change. In: Von Halle, B.,

Goldberg, L. (eds.): The Business Rule Revolution. Happy About (2006)

13. Turnbull, S.: Corporate Governance: Its Scope, Concerns and Theories. Corporate Governance. 5, 4.
(1997) 180-205

14. Schekkerman, J.: How to Survive in the Jungle of Enterprise Architecture Frameworks: Creating or

Choosing an Enterprise Architecture Framework. Trafford, Canada (2003)
15. Jonkers, H. et al.: Towards a Language for Coherent Enterprise Architecture Descriptions.

Proceedings of the Seventh International Enterprise Distributed Object Computing Conference

(EDOC'03) (2003) 28-38
16. Arbab, F., De Boer, F.S., Bonsangue, M., Lankhorst, M.M. Proper, H.A., van der Torre, L.:

Integrating Architectural Models. Enterprise Modelling and Information Systems Architectures. 2, 1.

(2007) 40-57
17. Rijsenbrij, D., Schekkerman, J., Hendrickx, H.: Architectuur, Besturingsinstrument voor Adaptieve

Organisaties: De Rol van Architectuur in het Besluitvormingsproces en de Vormgeving van de

Informatievoorziening. Lemma Utrecht (2004)
18. Zachman, J.A.: A Framework for Information Systems Architecture. IBM Systems Journal. 26, 3

(1987).

19. Korac-Kakabadse, N., Kakabadse, A.: IS/IT Governance: Need for an Integrated Model. Corporate
Governance. 1, 4 (2001) 9-11

20. Bellman, B., Rausch, F.: Enterprise Architecture for e-Government. In: Traunmüller, R. (ed.): EGOV

2004. Springer-Verlag Berlin Heidelberg. LNCS 3183 (2004) 48-56
21. Ross, J.W., Weill, P., & Robertson, D.C.: Enterprise Architecture as Strategy. Harvard Business

School Press, Boston MA (2006)

24 Proceedings of ReMoD 2008

22. Johnson, P., Ekstedt, M., Silva, E., Plazaola, L.: Using Enterprise Architecture for CIO Decision-

Making: On the Importance of Theory. Proceedings of the 2nd Annual Conference on Systems

Engineering Research. Los Angeles, CA (2004)
23. Rood, M.A.: Enterprise Architecture: Definition, Content, and Utility. Proceedings of the 3rd

Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises. (1994) 106-111

24. Williams, T.J.: The Purdue Enterprise Reference Architecture. Purdue Laboratory for Applied
Industrial Control, Purdue University (1992)

25. Weick, K.E., Quinn, R.E.: Organizational Change and Development. Annual Review of Psychology.

50 (1999) 361-386
26. Tushman, M.L., O’Reilly, C.A. III. The Ambidextrous Organization: Managing Evolutionary and

Revolutionary Change. California Management Review. 38, 1 (1996) 8-30

27. Veasey, P.W.: Use of enterprise architectures in managing strategic change. Business Process
Management Journal. 7, 5 (2001) 420-436

28. Gottesdiener, E.: Business RULES Show Power, Promise. Application Development Trends. 4, 3

(1997)
29. Steinke, G., Nickolette, C.: Business Rules as the Basis of an Organization's Information Systems.

Industrial Management & Data Systems. 103, 1 (2003) 52-63

30. The Business Rule Group. Defining Business Rules ~ What Are They Really? (2001)
31. von Halle, B.: Business Rules Applied. Wiley New York (2002)

32. Bajec, M., Krisper, M.: A Methodology and Tool Support for Managing Business Rules in

Organisations. Information Systems. 30 (2005) 423-443
33. Charfi, A., Mezini, M.: Hybrid Web Service Composition: Business Processes Meet Business Rules.

Proceedings of the 2nd international conference on Service oriented computing, New York (2004) 30-

38
34. Date C.: What not How: The Business Rules Approach to Application Development. Addison-Wesley

Publishing Company (2000)
35. Cetin, S., Altintas, N.I., Solmaz, R.: Business Rules Segregation for Dynamic Process Management

with an Aspect-Oriented Framework. In: Eder, J., Dustdar, S. (Eds.): BPM 2006 Workshops.

Springer-Verlag Berlin Heidelberg (2006) 193-204
36. Edwards, J.: Compliance Competent Life Assurance Companies: A Partnership Approach. Journal of

Financial Regulation and Compliance. 11, 1 (2003) 10-21

37. Ross, R.G.: Principles of the Business Rules Approach. Pearson, Boston: MA (2003)
38. Choo, C.W.: The Art of Scanning the Environment. Bulletin of the American Society for Information

Science. 25, 3. (1999)

39. Rosca, D., Wild, C.: Towards a Flexible Deployment of Business Rules. Expert Systems with
Applications. 23 (2002) 385-394

40. Borgatti, S.P., Everett, M.G., Freeman, L.C.: Ucinet for Windows: Software for Social Network

Analysis. Analytic Technologies, Harvard: MA (2002)
41. Ahmed, P.K., Hardaker, G., Carpenter, M.: Integrated Flexibility—Key to Competition in a Turbulent

Environment. Long Range Planning. 29, 4. (1996) 562-571

42. The Business Rules Group: The Business Motivation Model: business governance in a volatile world,
release 1.2 (2005)

43. Volberda, H. W.: Building The Flexible Firm: How to Remain Competitive. Oxford University Press,

New York (1998)
44. Jarvenpaa, S.L., Stoddard, D.B.: Business Process Redesign: Radical and Evolutionary Change.

Journal of Business Research. 41, 1 (1998) 15-27

Modelling Parliamentary Workflows

a Case Study in Belgian Parliaments

Christophe Ponsard1, Gaetan Deberdt2, and Joël Tournemenne3

1 CETIC Research Center, Charleroi (Belgium) - cp@cetic.be
2 Parlement de la Communauté Française (Belgium) - gaetan.deberdt@pcf.be
3 Parlement Francophone Bruxellois (Belgium) - jtournemenne@pfb.irisnet.be

Abstract. Parliament work is regulated by a number of democratic
rules about the way laws are proposed, discussed and finally voted. De-
spite a number variations, most parliaments share the same kind of work-
flow supported by one or two assemblies. Such workflows are most of the
time described by a regulation stated in natural language and gener-
ally approved by the assemblies themselves. This document is subject to
some interpretation, especially by the administration responsible of the
day to day management. Currently this management is also on-going
strong electronification with even a direct exposure of the parliamentary
work on the internet for better transparency and control by the citizen.
In this paper we report about our work of modelling the parliamentary
workflows, starting from the official documents and in-place systems. The
aim of this work is multiple: first, discover potential ambiguities and in-
consistencies, then compare how similar are a number of parliaments and
finally see how those models can be translated in the computer systems,
especially in the perspective of the open-sourcing and mutualisation of
such systems among different parliaments. Our practical experience of
applying various modelling techniques is reported and discussed using
two of the seven (!) parliaments running in Belgium. This comparison
work relies both on a set of modelling requirements for such systems and
on the SEQUAL reference framework for assessing the quality of models.

Key words: e-government, parliament, modelling, workflow, mutuali-
sation

1 Introduction

All democratic countries of the world run some kind of parliamentary system
whose main functions are to make law and control the work of the executive
power, following the principle of separation of powers. Parliaments may consist of
chambers or houses, and are usually either bicameral or unicameral. In bicameral
systems, the lower house is almost always the originator of legislation, while the
upper house is usually the body that offers the ”second look” and decides whether
to veto or approve the bills [23].

Law making also follows a general common process, starting from a bill either
proposed by the executive or legislative body, then discussed by the assemblies.

26 Proceedings of ReMoD 2008

After preliminary readings, it is generally sent to specialised committees which
will work on it. This will result in a number of amendments and finally a vote.
In case of adoption, the law is then promulgated by being officially signed by
the authority (e.g the President or the King) and finally published. It is then
generally followed by executive laws to enforce it. The following figure show this
process for the Australian (bicameral) parliament.

Fig. 1. Typically Parliamentary Workflow [15]

With the raise of ICT, e-democracy is on its way and is present at various lev-
els: e-voting, e-forms, e-referendum... and among them e-legislation which is the
part we are interested in here. The electronification process has already started in
the 90’s at the data and document level (scanning, OCR, meta-data, automated
generation of documents, diffusion on web-site). More recently it is reaching the
legislative processes themselves. After initial phases of incertainty and eupho-
ria, this evolution is now reaching some maturity and being ”institutionalised”
[4][19]. The main goals identified in this process are to improve:

– the procedural quality: better modelling (less complex, less operational), sup-
porting evolution and re-engineering;

Proceedings of ReMoD 2008 27

– the output quality: drafting systems for improving the formal quality of legis-
lation and regulatory impact assessment for improving the material quality
of legislation;

– the participatory quality: introducing new communication tools into the rep-
resentative system or even more visionary concepts for new democracy mod-
els.

Most parliaments have now a strong ICT department in charge of this work.
As parliaments have the same business, this also means that they need the same
kind of solution. Rather than reinventing the wheel, some assemblies have started
to collaborate and mutualise their efforts, this is especially true in Belgium
which has a complex organisation with many assemblies at region, community
and federal levels. This effort also requires to be able to know precisely the
commonalities and differences between those assemblies and thus to model them
precisely.

This paper reports about a practical case-study done in two regional as-
semblies of Belgium in the context of mutualising their development with the
longer term goal to open-source the resulting more generic software [7]. Those
assemblies are the Parliament of the French Community (PCF in short) and the
French Parliament of Brussels (PFB in short), which are respectively a medium-
size and a smaller size parliament. The first step of this study was to precisely
model those two assemblies, starting from the existing situation as documented
in the regulation issued by the assemblies themselves and as observed on the
field [16].

This paper is structured as follows. In section 2, we will discuss about the re-
quirements on the adequate language to capture parliamentary workflow. Then,
in section 3, we will see how a number of candidate languages fit those require-
ments by showing selected parts of our case studies. Section 4 will compare those
models based both on the previous requirements and on a reference framework
for assessing model quality. Based on this, a number of important lessons learned
from those models will be discussed. Finally, section 5 will draw some conclusions
and perspectives.

2 Requirements on the Modelling Language

The main requirements discovered during the study were the following:

– [BEHAV] Ability to capture behaviors. The language must be able to capture
the dynamic nature of the parliamentary workflows.

– [RESPO] Ability to capture responsibilities. The language should be able to
describe the various agents playing some role in the system and their respon-
sibilities. More precisely what they control and under which circumstances.

– [GOAL] Ability to capture the goals. The language should be able to cap-
ture underlying goals of some operational construct. Goals can be either
functional or non-functional (such as security, reliability, etc.)

28 Proceedings of ReMoD 2008

– [PRECISE] Precise language. The language should be precise and unam-
biguous.

– [UNDER] Easy to understand. The language should be accessible to non spe-
cialist for validation purposes. Languages should preferably have a graphical
semantics associated with it.

– [TOOLS] Tool support. The language should be supported by tools at mod-
elling level and at run-time level, either directly or through some model
transformation.

3 Study of Selected Languages

This section reports about various modelling techniques used to model parlia-
mentary work. It does not claim to present all relevant techniques in an exhaus-
tive way. A useful reference for this is [24].

3.1 Use Cases and Sequence Diagrams

A use case is a description of a system’s behaviour as it responds to a request that
originates from outside of that system. Use cases, stated simply, allow description
of sequences of events that, taken together, lead to a system doing something
useful.[2] Each use case describes how the actor will interact with the system to
achieve a specific goal. One or more scenarios may be generated from each use
case, corresponding to the detail of each possible way of achieving that goal (or
possible exception/failure).

Fig. 2. UC Context Model of a Parliament Management System.

Notations for Use Case include UML Use Case (graphical) [11] and template-
based descriptions (textual) [5]. They are usefully complemented by sequence

Proceedings of ReMoD 2008 29

diagrams for graphically describing the generated scenarios with a very compre-
hensive view of the system with the time on the vertical dimension and the in-
teraction between agents structured horizontally. Note while UML 1.X sequence
diagrams were limited to rough traces, UML 2.X supports many structuring
operators like conditionals, options, even loops, with the danger to capture too
much complexity in a single scenario.

Fig. 3. Sequence Diagram for some procedure.

UML Use Cases diagrams have a good capacity to capture the context of
the system and the general responsibilities but lacks the capacity to reflect the
dynamic behavior. Textual templates can describe some part of the behavior
but not very precisely. Sequence diagrams used together enable a more precise
capture of behaviours but generally partial and at instance level. Goals can be
captured using methods like [5] however generally mainly at functional level.

3.2 Goal Models

From [22], a goal is an objective the system under consideration should achieve.
Goal formulations thus refer to intended properties to be ensured; they are op-
tative statements as opposed to indicative ones, and bounded by the subject
matter. Goals may be formulated at different levels of abstraction, ranging from
high-level, strategic concerns (such as ”Efficient Management of Parliamentary
Work”) to low-level, technical concerns (such as ”Publishing of Voted Laws on
Parliamentary Website”). Goals also cover different types of concerns: functional
concerns associated with the services to be provided, and nonfunctional concerns
associated with quality of service - such as safety, security, accuracy, perfor-
mance, and so forth. Within the scope of this paper, we will use the KAOS
goal-oriented language [8].

30 Proceedings of ReMoD 2008

Fig. 4. Goal Model of the Parliament Administration.

Goal models enable to capture, structure and reason about system proper-
ties and agent responsibilities. Languages like KAOS have precise semantics.
The goal level is defined using temporal logics [14], semantics refinements and
operations are also precisely defined [9][13]. Not however that the operational
level is not very practical to use especially to describe workflows as the language
is not designed for this level.

3.3 Final State Machines and State Diagrams

A finite state machine (FSM) is a model of behavior composed of a finite number
of states, transitions between those states, and actions. FSM have been extended
by Harel to statecharts to allow the modeling of superstates, concurrent states,
and activities as part of a state. This notation is now standardised in UML State
Diagrams [11].

State Diagrams are very popular. They are very easy to understand and thus
to use to validate a behavior even with non-experts. The hierarchical structure
allows also the system to be nicely described at progressive levels of details.
There are precise semantics although several alternative semantics have been
defined, leaving possible ambiguities but generally for specific cases. Goals can
be associated with a FSM for example as invariant or obligation an FSM should
enforce. This can be verified using model-checking tools.

FSM are also supported by tools for simulating the system or generating
the behavioral part of the code (e.g. Rhapsody [21]). It is also easy to design
such a generator. In our case study, the company responsible of the system
development has such a framework, called XOooF which is now open-source
[20]. The framework supports the partial generation of the application code

Proceedings of ReMoD 2008 31

Fig. 5. Final State Machine for the Journey of a Bill.

from XML-based description of state machines. Some aspects not covered are
persistency, advanced transactions and graphical user interfaces. Several target
languages such as VB/COM, C#, Java and Python are supported.

3.4 Business Process Oriented Languages

Many notations have developed for modelling business processes, with different
coverages (activities, products, decisions, context), specification levels (organi-
sation, orchestration, web-services) and underlying semantics. To leverage this,
BPMN (Business Process Modelling Notation) is a current standardisation ef-
fort aiming at unifying the expression of basic business process concepts (e.g.,
public and private processes, choreographies) as well as advanced modelling con-
cepts (e.g., exception handling, transaction compensation) [1]. The connection
of BPMN with more operational standard such as BPEL (Business Process Ex-
ecution Language) is however not entirely solved as discussed in [17] but seems
to be evolving favorably.

UML - more software-oriented - also support this kind of modelling through
the activity diagram which can represents business and operational step-by-step
workflows of components in a system. Activity diagrams can be unstructured
or organised using swimlanes (somehow similar to sequence diagram lifelines)
which enable a better capture of the action responsibilities. Figure 6 shows a
typical process model of the parliament work using those notations.

At semantic level, BPMN remains semi-formal although quite complete.
Some attempts have been made to more deeply formalise parts of it [3]. Back
to our example described with UML, the semantics were changed between UML

32 Proceedings of ReMoD 2008

Fig. 6. Activity Diagram for the Journey of a Bill.

1.x w (variation of the UML State Diagram) and UML 2.x (semantics based on
Petri nets) [18]. This is a good evolution as Petri nets have better mechanisms
for controlling concurrency and synchronisation which is important in workflow
management. Petri nets are frequently used as formal underlying model and are
also supported by tools (e.g. Flexo was considered for the Belgian case study
[10]).

4 Lessons Learned

In this section, we will first compare the qualities of the previous models w.r.t.
the requirements described in section 2. This discussion will also rely on the
SEQUAL reference framework for assessing the quality of models [12]. The rest
of the section will put those conclusions in a wider perspective by going back to
the e-government goals defined by Schefbeck [19].

4.1 Comparison Table of Modelling Languages

Table 1 summarises our comparative work based on our requirements described
in section 2.

Proceedings of ReMoD 2008 33

Model Use Cases Goal Trees State Diagrams Business Pro-
cess Models

Behaviour through se-
quence dia-
grams

partially very good, hi-
erarchical, scal-
able

very good

Responsibility at context level very good poor through swim-
lanes

Precision semi-formal formal (KAOS) formal (FSM) formal (petri-
nets)

Understand. good good very good very good

Tools UML tools Objectiver UML tools,
Rhapsody

BPEL tools,
some UML
tools...

Table 1. Modelling Languages Comparison Table (domain requirements)

To consolidate this comparison, we used the SEQUAL reference framework
which defines a number of model qualities: empirical, syntactical, semantical,
pragmatic, societal, knowledge and language [12]. Those quality factors are com-
pared in table 2. Some of those qualities are already addressed in our require-
ments: empirical is understandability, semantical is precision. The organisational
quality is defined as how well the goals of modeling are reached by the model.
This is exactly the purpose of table 1, so this factor is a synthesis of that table.

Model Use Cases Goal Trees State Diagrams Business Pro-
cess Models

Empirical Poor-to-
medium (de-
pending on
template used)

medium-to-
good (depend-
ing on refine-
ment checking
strategy)

medium (diffi-
cult to struc-
ture)

good (control
flow)

Semantical semi-formal formal (KAOS) formal (FSM) formal (petri-
nets)

Pragmatic good good very good very good

Knowledge good (cap-
ture of sce-
nario/functions)

very good (cap-
ture of system
goals)

poor
(states/transition
not directly
linked to do-
main)

good (business
process level)

Organisational medium medium medium good

Language generic generic generic more specific

Table 2. Modelling Languages Comparison Table (SEQUAL)

The main lessons learned from those tables is that a single language does
not fit all our requirements. Activity diagrams seem the most adapted for our
purpose given the current evolution of methods and tools while in the past, state
machines were more the reference framework.

Other notations are useful to use in a complementary matter. Especially in
the reengineering, and comparative study it is important to make sure the goals

34 Proceedings of ReMoD 2008

are fully aligned because variation in goals will inevitably result in variation at
the workflow level and it is important to understand if some variation is a design
decision or more fundamentally bound to a goal.

4.2 Procedural Quality

The use of modelling techniques helped greatly in the process of understanding
the way the assemblies are working, their commonalities and differences.

During the elicitation phase in the first assembly (PCF), the various models
were built from a number of sources of domain knowledge: the official regula-
tion of each parliament, interviews with the staff and the documentation of the
existing system. Building those models allowed us to have guidelines for com-
pleteness (e.g. asking about missing transitions) and for conflict identification
(e.g. different actions reported by different sources). It allowed us to discover a
number of undocumented choices left open by the regulation and to understand
the rationale behind those choices. This resulted in an improvement of the doc-
umentation of the procedures, which are not only meant for developing a new
system but also helpful as training material for new collaborators.

The work in the second assembly (PFB) did not start from scratch but was
carried out based on the models from the first assembly (PCF), assuming their
would be only few differences. This assumption was confirmed with the following
main differences:

– Syntactic variations in the vocabulary used (e.g. the term for a law, for the
board of presidents...)

– Small behavioral differences, typically variations in some transitions. Those
are easily implemented at specification level and propagated to the imple-
mentation by regenerating the impacted code.

– A more fundamental difference is the distribution of roles: as PFB is smaller,
the same people would typically handle a several tasks. As the model was
built using roles, this has however no impact on our models.

4.3 Output Quality

Prior to our study, a strong model-based approach was already in place in PCF
(based on finite state machines) and partially at PFB (based on a document
management workflow).

The impact on the output quality was especially visible at PCF with a chain
of model-based tools supporting the whole parliamentary process, from the gath-
ering of minutes to the diffusion of the reports on the website.

The traceability of the parliamentary process is also excellent based on the
accumulation of state traces in the system.

4.4 Maintainability and Reusability

The long term goal initiated by the case study is to eventually be able to share
common code between assemblies and even to open-source such code. The cur-
rent closed source model has a number of limits, especially when a number of

Proceedings of ReMoD 2008 35

assemblies share common needs and have to develop their own solutions sep-
arately and at high cost. This process has already started under the Tabellio
project [7]. A number of generic enough modules have been open-sourced to-
gether with the XOoof FSM-based framework.

For the process to be successful, the code quality should however be improved
prior to its open-sourcing and this is currently on-going. A major evolution is
the transition to a workflow management systems which is not based on code
generation as before but on a workflow engine, based on the Plone framework
and in coordination with other e-Government initiatives such as PloneGov [6].
Here again, the underlying model proves fundamental has it will drive the con-
figuration of the new system and the definition of the data migration procedure
between repositories.

5 Conclusions and Perspectives

In this paper, we explored various way to model parliamentary workflows using
different languages. The comparison was driven by a real-world case study and
performed using both specific requirements and the SEQUAL reference frame-
work. As expected, a single language cannot fit all requirements and qualities.
However business process models seem the most adapted for the needs of mod-
elling parliamentary workflows. Other notations such as goal models allow the
analyst to have a deeper insight of the system and to better understand varia-
tions between different assemblies and better manage the evolution of a given
system.

Among the other lessons learned, the use of adequate models greatly helped
in the understanding of the way each assembly was working and how similar they
were. Models are also fundamental to deploy tool support. Firstly, in a model-
driven architecture perspective, models greatly ease the development of solutions
by removing the need to write and test substantial part of the system. Secondly,
in a mutualisation perspective, those tools can even be shared together with
some representative models and guidelines on how to adapt them. The reuse is
then maximal, reducing maintenance costs and allowing easy tuning to the need
of other assemblies, especially those of developing countries. This also opens a
number of interesting perspectives to further improve the way democracy works:
speeding the process, introducing more transparency, etc.

At the methodological level, there is room for many improvements. The com-
parison work done here is very coarse grained. In order to draw more conclusions
about the models and the way to use them, more precise metrics have to be de-
fined and measured together with the reference quality framework. This work
will be considered in the current re-engineering phase of the workflow system.

Acknowledgements

This work was financially supported by the Walloon Region and European Union
(ERDF and ESF). We also warmly thanks the staff of the respective parliaments.

36 Proceedings of ReMoD 2008

References

1. Object Management Group/Business Process Management Initiative,
http://www.bpmn.org/.

2. Kurt Bittnera and Ian Spence, Use Case Modeling, Addison Wesley Professional,
2002.

3. M. Brambilla, LTL Formalization of BPML Semantics and Visual Notation for
Linear Temporal Logic, Tech. report, January 2005.

4. Daniel Brassard, How can information technology transform the way parliament
works ?, Parliamentary Information and Research Service - Library of Parliamen-
tarians of Canada, 2005.

5. Alistair Cockburn, Writing Effective Use Cases, Addison-Wesley, 2001.
6. PloneGov Consortium, The PloneGov Project, http://www.plonegov.org.
7. Tabellio Consortium, Tabellio : an Open Source Collaboration for Assemblies,

http://www.tabellio.org.
8. A. Dardenne, A. van Lamsweerde, and Stephen Fickas, Goal-Directed Requirements

Acquisition, Science of Computer Programming 20 (1993), no. 1-2, 3–50.
9. R. Darimont and A. van Lamsweerde, Formal refinement patterns for goal-driven

requirements elaboration, 4th FSE ACM Symposium, San Francisco, 1996.
10. Denali, FlexoBPM, http://www.denali.be.
11. Martin Fowler, UML Distilled - Third Edition, Addison-Wesley, 2004.
12. J. Krogstie and A. Solvberg, Information Systems Engineering: Conceptual Mod-

elling in a Quality Perspective, Kompendiumforlaget, Trondheim, 2003.
13. E. Letier and A. van Lamsweerde, Deriving Operational Software Specifications

from System Goals, FSE’10, Charleston, November 2002.
14. Z. Manna and A. Pnueli, The Reactive Behavior of Reactive and Concurrent Sys-

tem, Springer-Verlag, 1992.
15. Australian National Audit Office, Managing Parliamentary Workflow - Best Prac-

tice Guide, April 2003.
16. C. Ponsard, A Comparative Analysis of the French Community

Parliament and the French Parliament of Brussels (in French),
http://www.tabellio.org/documentation/manual/analyse-comparative-pcf-pfb-
cetic, 2005.

17. J. Recker and J. Mendling, On the Translation between BPMN and BPEL: Concep-
tual Mismatch between Process Modeling Languages, Proc. of 11th Int. Workshop
on Exploring Modeling Methods in Systems Analysis and Design, June 2006.

18. W. Reisig, Petri Nets: An Introduction, Springer-Verlag New York, Inc., New York,
NY, 1985.

19. Gunther Schefbeck, E-Parliament: Legislative Standards and Good Practice, Pro-
ceedings of International Workshop on E-Parliament: Managing Innovation,
Geneva, Switzerland, 2007.

20. SoftwareAG, XOooF, http://xooof.sourceforge.net, 2006.
21. Telelogic, Rhapsody, http://www.telelogic.com/products/rhapsody.
22. A. van Lamsweerde, Goal-Oriented Requirements Engineering: A Guided Tour,

Invited minitutorial, Proc. RE’01, August 2001.
23. Wikipedia, Parliament, http://en.wikipedia.org/wiki/Parliament, 2008.
24. Michael zur Muehlen, Workflow-based Process Controlling: Foundation, Design,

and Application of Workflow-driven Process Information Systems, Logos Verlag,
2004.

Regulating Organizations:

The ALIVE Approach⋆

Huib Aldewereld, Loris Penserini, Frank Dignum, and Virginia Dignum

Institute of Information and Computing Sciences
Universiteit Utrecht

P.O.Box 80089, 3508 TB Utrecht
The Netherlands

Abstract. Regulating organizations requires a fine balance between cen-
tral control and (local) adaptability. In this paper we report on our ap-
proach using explicit organization and coordination models based on
the research performed within the European FP7 project alive. One of
the principal aims of alive is to combine coordination and organization
mechanisms in order to provide a flexible, high-level means to model
the structure of interactions between services in the environment. Our
main focus is on the implementation and integration of organizational
structures and on the translation of (abstract) norms (e.g., laws and
regulations) into (concrete) software systems. Such a way of abstracting
from low level system complexity by the use of human- and social- ori-
ented system requirements is very promising to cope with requirements
changes, e.g., useful to develop adaptive (service-based) systems.

Key words: Organizations, implementation, norms

1 Introduction

The deployment of regulations in human societies and in information systems
show remarkable resemblances. Both fields need to cope with relating the ab-
stract level of the regulations with the concrete practice (either the “work floor”
of the human organization or the “low-level” software implementation, e.g., us-
ing service-based systems). A common tendency when relating the regulations
to the practice is to directly connect the top (abstract) level with the concrete
implementation, but in this paper we argue that the use of intermediate level(s)
allows for a greater flexibility and, at the same time, an increased robustness of
the system. This new source of (human- and social- oriented) system require-
ments pave the way for new challenges in software engineering. That is, recent
software engineering approaches have dealt with how to endow single (agent-
based) systems with the ability to cope with context changes, without taking

⋆ This work has been performed in the framework of the FP7 project ALIVE IST-
215890, which is funded by the European Community. The author(s) would like
to acknowledge the contributions of his (their) colleagues from ALIVE Consortium
(http://www.ist-alive.eu)

38 Proceedings of ReMoD 2008

into account that such adaptivity properties can be easier and better studied and
handled at organizational level, as often it happens in real life. A challenging
aim of this paper is to bridge adaptivity at organizational level.

The research presented in this paper is part of the European FP7 project
alive, which aims to create a framework for software and service engineering,
based on combinations of coordination and organization mechanisms [1, 3, 13,
14] (providing a flexible, high-level means to model the structure of interactions
between services in the environment) and Model Driven Design (providing for
automated transformations from models into multiple platforms). Although the
main goal of the alive project is to enhance the development and deployment
of service-based (information) systems, we will show that the same approach can
be applied to the deployment of regulations in human organizations.

The approach taken in the alive project is to gradually translate the reg-
ulations from the abstract level of organizational regulations into a system de-
scription at the concrete level of service-based implementations. First, the ab-
stract regulations are translated into operational norms and structures, which
are more concrete than the regulations themselves. This translation is done by
adding operational information to the regulations (i.e., how a given regulation
can be achieved in a given context/domain). These operational artifacts [10],
however, still abstract from the specific choices needed for the implementation
(e.g., different checks to be made, specific system calls, etc.). The use of such
an intermediate level is advantageous, because it, in essence, specifies the global
objective of the organization in concrete terms, while still describing a family
of implementations (i.e., the intermediate level allows for a flexible implemen-
tation). This means that this intermediate level contains enough information to
make implementational changes without having to go back to the most abstract
level of the organizational regulations (i.e., you change the implementation by
choosing a different member of the family of implementations that is specified
at the operational level).

One way of deploying regulations in an organization is by regimenting the
participants of the organization and constrain them in such manners that they
can only perform behaviour which the organization considers legal. That means,
all possible actions are a priori defined by the organization. While, at first glance,
this appears to be a fruitful approach, it has the major disadvantage that the
system loses much of its flexibility and robustness. If, however, the participants
are allowed to perform actions that are not described as allowed (such actions
could be illegal, but could also be not considered a priori), the participants can
(e.g., through exploration) come up with more effective ways of doing things and
react to unexpected situations which were not taking into consideration when
the organizational regulations were recorded. In this case, however, the safety
of the system has to be guaranteed by sanctioning participants for doing illegal
actions.

Throughout this paper we will use a generic, simple example based on a sim-
ple regulation to regulate the temperature of the building at a comfortable level

without wasting energy. This can be seen or described as the regulation or norm

Proceedings of ReMoD 2008 39

that the organization has to comply to; namely, the thermostat is obliged to
keep a comfortable level of heat in the building without wasting energy. Before
we translate this regulation into service specifications, combining the services
needed to achieve this objective, we first create an operational description of the
general objective. That is to say, we give an operational meaning to the regu-
lation, which is informing the organization, still on an abstract level but more
concrete than the norm/regulation itself, how the objective is to be reached.
There are alternative mappings to operational descriptions possible for this ex-
ample regulation. For now, let us assume that the operational meaning of the
regulation is that the temperature in the building needs to be 18 ◦C whenever

there are people around. Finally, this operational description of the regulation is
used to combine the services (at the implementation level) in such a way that
the regulation of the organization can be fulfilled. In this case, this might mean
the combination of the following services:

– a service to get the day of the week;

– a service to get the time of day;

– services to get the temperature of every room in the building;
– a service to translate temperatures in ◦Fahrenheit to ◦Celsius;

– a service to regulate the heater/air-conditioner of the building.

The services for the time of day and day of the week are needed to determine
whether there are people in the building (i.e., the system does not need to use the
heater/air-conditioner during evenings and weekends). The translation service
from ◦F to ◦C is only needed if not all services (that measure the temperature
or regulate the heater/air-conditioner) are speaking the same “language”.

In this paper we compare the approach of alive, based on previous research
done [1, 3, 13, 14], to the regulation of organizations in general. In the next section
we give a broad overview of the alive project. In section 3, we explain how the
use of intermediate levels helps the deployment of regulations. We present our
ideas about how the transition of regulations from an abstract organizational
point of view can be made to the concrete practice. Moreover, we present our
ideas about how to cope with adaptivity and how this affects organizational
structures. We end the paper with some conclusions.

2 The ALIVE approach

New generations of networked applications based on the notion of software ser-
vices that can be dynamically deployed, adjusted and composed will make it pos-
sible to create radically new types of software systems. In turn, this will require
profound changes in the way in which software systems are designed, deployed
and managed – exchanging existing, primarily top-down “design in isolation”
engineering, to new approaches which are based on integrating new function-
alities and behaviours into existing running systems already active, distributed
and interdependent processes.

40 Proceedings of ReMoD 2008

role

rolerole role

actor

actor

actor

actor

Organisational level

Coordination level

Service level

SD

SD

SD

SD

SD

SD

WS

WS

WS

WS

WS

WS

F
o
rm

a
l F

ra
m

e
w

o
rk

M
o
d
e
l-D

riv
e
n
 E

n
g
in

e
e
rin

g

Fig. 1. The alive framework for software and service engineering.

The alive project is based around the central idea that many strategies
used today to organize the vastly complex interdependencies found in human
social, economic behaviour will be essential to structuring future service-based
software systems. More specifically, the project aims to combine cutting edge
Coordination and Organization mechanisms and Model Driven Design to create
a framework for software and service engineering for “live” open systems of active
services.

The project extends current trends in service-oriented engineering by adding
three extra layers (see Figure 1).

– The Service Layer augments and extends existing service models with se-
mantic descriptions (SD) to make components aware of their social context
and of the rules of engagement with other web services (WS).

– The Coordination layer provides the means to specify, at a high level, the
patterns of interaction between services, using a variety of powerful coordi-
nation techniques from recent European research in the area.

– The Organization Layer provides context for the other levels – specifying the
organizational rules that govern interaction and using recent developments
in organizational dynamics to allow the structural adaptation of distributed
systems over time.

In the following sections we focus mainly on the connections between the
organizational level (where the regulations reside) and the service level by using

Proceedings of ReMoD 2008 41

an intermediate level. We show how the ideas of alive relate to the deployment
of regulations in human organizations and allow for flexible adaptation.

Regulation

Normative ontology

System ontology

Abstract normative

specification

Operational norms

Landmarks

Interaction structures

Electronic organisation

system interactions

practice

procedural

information

Fig. 2. From laws to electronic organizations.

3 From Abstract Regulation to Implementation

The deployment of regulations in the alive approach consists of a gradual tran-
sition from the organizational level to the service-based implementation (the
bottom two levels of the model in Figure 1). Given that organizations are char-
acterized by their rules and conventions [1, 3], this process of implementing or-
ganizational regulations is then as proposed in Figure 2.

First, a formal representation of the regulations is created, giving an ab-

stract normative specification of the allowed interactions in the organization
(e.g., in deontic logic). Given our example, this means a formalization like, e.g.,
Othermo(temperature(comfortable)) and Fthermo(waste(energy)). Which states
that thermo is obliged to make sure that the temperature is comfortable and
thermo is forbidden to waste energy. The creation of a formal representation
of the regulations also creates a basis for the ontology that is needed (we call
this basis the normative ontology). The normative ontology is built from: 1) the
concepts and relations used in the formalization step, and 2) information taken

42 Proceedings of ReMoD 2008

from the ontological definitions in the regulations themselves. In our example, the
normative ontology contains the concepts of comfortable, temperature, energy,
etc. The normative ontology and the formal representation of the regulations can
be seen as the organizational level of Figure 1.

The normative specification is also used as the basis of the implementation of
the regulations. The process from normative specification to implemented norms
is as follows: 1) the abstract norms are translated to concrete operational norms

(although these are only useable for a certain context, i.e., this particular or-
ganization, and less expressive than abstract norms, concrete norms are a lot
easier to implement); 2) the operational norms are translated into constraints
and procedures that will see to it that the norm is enforced in the organization.
In our example, the operational norm is the temperature in the building needs

to be 18 ◦C whenever there is people around. The design of interaction struc-

tures that can be used in the organization consists of the following steps: 1) the
important characteristics of the norms that express how interactions should be
in the organization are extracted from the norms to create a prototypical in-
teraction structure on a high level of abstraction (we call these important steps
derived from the norms landmarks, and the structure that expresses the ordering
over these landmarks a landmark pattern); 2) by using procedural information
and the expected capabilities of the system components an interaction struc-

ture is created to give a default manner for achieving certain objectives in the
organization. For our example we can create an interaction structure by using
landmarks (e.g., L1 =check temperature and L2 =adjust heater, with the tempo-
ral ordering that L1 < L2): if(today = normal weekday) then temperature :=
requestTemperature(servicetemp); if(temperature ≤ 18) then turnHeaterOn.
The operational norms and landmark patterns provide the intermediate level of
the transition from organizational regulations to a implementation. This level
can be seen as the coordination level as shown in Figure 1.

Finally, the system ontology, which contains all concepts used in the norms as
well as those used in the implementation is build from the normative ontology.
The normative ontology is extended with the concepts and relations that follow
from the operational and procedural information that was added to create the
operational norms and the interaction structures. Moreover, concepts describing
the system states and actions need to be added and linked as well.

As shown in Figure 2, the following four elements are of prime importance
when implementing regulations in organizations:

– A common ontology, defining the meaning of concepts, the roles used in
the organization and the relations between different contexts.

– A normative specification of the allowed interactions in the organization.
– Interaction structures to specify conventions in procedure mechanisms,

giving a typical interaction profile which should work in any circumstance.
– An active enforcement mechanism to make sure that the participants of

the organization adhere to the normative specification.

The ontology is needed to specify how the participants interact, defining the
communicative propositions that are used, and defining the roles and role hi-

Proceedings of ReMoD 2008 43

erarchy that is used throughout the norms. The normative specification is the
basis of the organization, specifying the legal and illegal actions in the environ-
ment. Denoted in a formal language, this specification can be used to derive the
last two elements of the framework. The interaction structures define standard
ways in which the legal interactions can take place in the organization. They
provide a means for non-norm aware participants to perform their task in the
organization, or provide a guideline for norm-aware participants to follow (to
show how things can be done, though are not necessarily the only way to do
it, and can be deviated from if need arises). The norm enforcement is necessary
to guarantee the safety of the system. Since we do not restrict the participants
of the organization to only perform the allowed actions, the organization is re-
quired to check and enforce the proper ways of acting upon the participants in
the organization. Much like in the real-world, instead of equipping all cars with
speed-limiting devices, one specifies that speeding is illegal, and checks whether
everyone adheres to that norm (even if one would opt for the regimented option
of installing speed-limiting devices in cars, one would still have to check that no
one tampers with the device and violates the norm).

An important step of this deployment process is the addition of operational
information (taken from practice or procedures) to create an intermediate level
(in Figure 2; the operational norms and the landmarks) that tries to capture the
essence of the organizational level, but brings it closer to the actual implemen-
tation. Let us look at the addition of such information in more detail.

Adding Operational Information

The translation from organizational regulations from natural language to a for-
mal representation (the abstract normative specification) is only the first step
of the process of implementing the regulations. Usually the regulations are ex-
pressed at a high level of abstraction, to allow the regulation to cover a wide
variety of situations and to be used for an extensive period of time without the
need for modifications, it is hard to link these regulations to the concrete situa-
tions that arise in the practice. To make the normative specification useful in the
deployment of the organization, an interpretation of the norm is needed, which
should contain concrete (organizational) meanings of the vague and abstract
terms used in the norm and which possibly contains procedural information that
can be used to simplify the enforcement of the norm. This process of interpreting
the norms to make them useable for a single context, i.e., the organization, is
referred to as contextualization [1].

The contextualization process is meant to give a link between the abstract
terms and concepts used in the abstract normative specification and the con-
crete situations and concepts that exist in the practice. Where norms contain
terms such as ‘fair’ and talk about actions like ‘discriminating’, these concepts
have no clear meaning in the implementation. There are, however, states and
(sequences of) action(s) in the implementation that can be classified as an inter-
pretation of one of these vague concepts in the context of the organization. These
interpretations are highly context dependent and can differ from organization

44 Proceedings of ReMoD 2008

to organization. For example, in accordance with the example described in the
introduction, the abstract norm regulate the heat of the building at a comfortable

level without wasting energy is contextualized (e.g., based on the preferences of
the people that work in the buildings) to the temperature in the building needs to

be 18 ◦C whenever there are people around. In another implementation, however,
it could be something different, e.g., the heater should be turned off at night or

when the temperature is above 68 ◦F.

Although norms that result from the contextualization process are concrete
and contain only concepts that are meaningful in the organization, these norms
still require further explicification before they can be implemented. Norms only
have a declarative meaning, i.e., how things should be, while abstracting from
operational meanings, which expresses how it should be achieved. Moreover,
there is more than one way to enforce a single norm and procedural information
(which is not part of the norm) will have to be used to decide how the norm is best
implemented. This second translation process of adding additional operational
and procedural information to the norms is referred to as operationalisation [1].

In the next section, taking advantage of recent results from adaptive system
engineering approaches, we show our vision about how to cope with adaptivity
requirements at the organizational level.

4 Introducing Adaptivity in organizations

Implementing regulations for organizations that are completely static is quite
straightforward. The real challenge comes when the circumstances change and
the organization needs to adapt to the new situation while still trying to abide
by the regulations. In this section, we focus on those features of the proposed or-
ganization framework to effectively deal with context changes, namely, how the
organizational models for the intended (service-based) system adapts to different
kinds of changes. Before going into detail how our approach achieves adaptiv-
ity qualities, let us first look at how adaptivity is handled in other (recent)
approaches.

A very compelling research topic within the area of software engineering
regards methods, architectures, algorithms, techniques, and tools that can be
used to support the development of adaptive systems. That is, software engineers
are looking for techniques to model important requirements for adaptive software
systems such as the ability to cope with changes of stakeholders’ needs, changes
in the operational environment, and resource variability. On one hand, a quite
recent and interesting example of adaptive systems is IBM’s work on autonomic
software systems [5, 7]. Such a software type is characterised by properties of
being able to automatically re-configure itself when new components come into
or are removed from the system (self-configuration); being able to continually
tune its parameters for optimisation (self-optimisation); being able to monitor,
analyse, and recover from faults and failures when they occur (self-healing); and
being able to protect itself from malicious attacks (self-protection).

Proceedings of ReMoD 2008 45

On the other hand, promising software engineering approaches have recently
adopted goal-oriented methodologies with an extensive use of goal models (GM s),
which have been initially proposed in Distributed Artificial Intelligence as a
means for capturing agent intentions and guiding agent coordination [6, 8] within
dynamic environments. Within such methodologies, requirements are elicited,
specified, and elaborated using the concept of goal, which can be used to model
stakeholder and organizational objectives, but also an agent goal. In other words,
the goal concept allows designer to represent high-level (strategic) concerns.

In [9, 11], GM s allow a designer to represent and reason about stakeholder
objectives and agent goals in a given application domain in order to derive
requirements for adaptive software. According to these approaches, GM s give
support in exploring and evaluating alternative solutions which can meet stake-
holders expectations (objectives) and in detecting conflicts that may arise from
multiple viewpoints (see also [12]).

The above approaches identify several crucial components that a develop-
ment framework should take into account to effectively deal with software adap-
tivity. Nevertheless, how such requirements affect organizational structures has
not been completely addressed. Finally, in [2, 4] interesting approaches to cope
with reorganization issues have been presented. The principal aim in [2, 4] has
been to develop a modelling language to describe organizational structures, and
how their objectives are related to changes in the environment. Specifically, a
simulator framework, where agents play modeled organizational roles having
different objectives, has been adopted to test reorganization behaviours to cope
with changes.

Adaptivity within organizations

Results from the above approaches, related to specifying the system adaptivity,
are useful to properly interpret and reflect such requirements at the organiza-
tional level. Specifically, we aim at illustrating by simple example scenarios that
our framework (see Figure 1) can distribute the complexity –to handle context
changes– among its different layers. This latter property is important to improve
the flexibility and robustness of the (service-based) system. Adaptations on the
lower level might violate specific procedural interpretations of a regulation, but
still comply to the more abstract regulation specified on a higher level. When
such a situation occurs one can now change the operationalizaion of the regula-
tion such that the new practices conform to these procedures, while preserving
the same regulation at an abstract level.

Principal sources/causes of dynamic changes in the context can be described
as follows.

Stakeholder needs. Changes in the stakeholder needs happen frequently in
open organizations where new roles may be added and old ones are detached
in order to better reflect the market changes. In other words, stakeholder needs
have to be strictly related with organizational objectives to effectively deal with
changes of needs, e.g., re-adapting to new organization market strategies. Ac-

46 Proceedings of ReMoD 2008

cording to our example, let us assume an enterprise 1 has to pursue the objective
make employees comfortable and to do that it depends on the work and quality
of thermostat devices of all departments provided by a thermostat organization.
Then, let us consider that because of the market strategy, the area-manager
changes her needs, delegating to each department-manager the objective min-

imise heating costs to pursue too, which requires reorganising its internal service
providing structure. This change may result in selecting another service to play
the role thermostat that is cheaper, by e.g. auctioning a new offer. Notice that,
according to Figure 1, this change is sensed at organizational level but handled
at coordination level.

Environment conditions. Depending on the kind of application domain, such
requirements have to reflect real life situations into the organizational behaviour,
e.g., symptoms to be forecasted (at design-time) and then anticipated (at run-
time) to avoid failures in pursuing objectives. Moreover, such requirements deal
also with how norms can affect and are related to organization objectives. Ac-
cording to our example, let us assume that the thermostat has a digital power
meter (services to get the temperature of every room in the building) in order
to maintain its objective regulate the heat of the building to a comfortable level

without wasting energy. This service periodically verifies whether the consumed
energy in each building correctly stays into a specific range. Let us also assume
that, during the winter time, a couple of employees went on holiday but forgot
to close their office windows. This environment change (symptom) could cause
the failure of the previous objective (expressed in the normative specification)
if no countermeasures (enforcement mechanisms) have been considered in ad-
vance to properly handle such a fault symptom. The enforcement has to trigger
another objective achievement, e.g., asking to the building attendant to check
all the windows, therefore such a change mainly affects the coordination level
of Figure 1. Moreover, to get such a process completely automated, the rea-
soning mechanisms have to be supported by (domain) ontologies that describe
symptoms, faults, recovery objectives, and roles along their relationships.

System functionalities. Although the modelling of the organizational knowl-
edge level has a key role within the whole framework, role and objective concepts
need to be properly grounded into specific system functionalities (agent capa-
bilities and/or service functionalities) in order to really affect and sense the
environment. In other words, changes in environment and in stakeholder needs
(discussed above) inherently are reflected in the orchestration process of the ser-
vice level of Figure 1, following an implicit top-down approach (see Figure 2). In
the other hand, changes in system functionalities deal with a bottom-up prop-
agation, namely, several dynamic issues can arise from the service-level and,
consequently, need to be related and handled by the organizational and coor-
dination levels. Let us consider the example sketched in Section 1, where the
thermostat has to maintain the regulation the temperature in the building needs

1 According to the example of Section 1, this enterprise acts as the committer for the
thermostat organization (supplier), i.e., roles commonly played within any organi-
zation.

Proceedings of ReMoD 2008 47

to be 18 ◦C whenever there are people around (O1). To achieve this objective,
the information system has to orchestrate different services and then combine
their results collected every time, e.g., get the day of the week (sO1

1
), get the time

of day (sO1

2
), translate temperatures from ◦Fahrenheit to ◦Celsius (sO1

3
) because

the thermostat device works in ◦Fahrenheit, calculate whether the sensed tem-
perature is in the established range (sO1

4
), and sense the environment for people

presence (sO1

5
). Now, let us assume that at the time O1 had to be achieved, the

system recognizes that sO1

3
is not available. Where and how to handle this sensed

change? Maybe the service level (the where) has been provided with some sim-
ple recovery function (the how) such as searching for an equivalent service. But,
the most compelling scenario arises when the service level brings about some
important failure (e.g. no other equivalent service available), propagating it to
the next-up level. Again using different levels of abstraction in the specification
now allows for different solutions using different types of knowledge present at
those levels.

5 Conclusions and Future Work

In this paper we presented how the alive approach can be used for the deploy-
ment of regulations and the reorganization of both human societies and infor-
mation systems. The alive project aims to create a framework that combines
coordination and organization mechanisms in order to provide flexible, high-level
models to assist software and service engineering. A main element of the alive

approach is to distribute the design of coordination and organization of service-
based implementations over different levels of abstraction. At the highest level of
abstraction (the organizational level) the context is defined in terms of abstract
regulations and objectives. These abstract norms are operationalized in the next
level of abstraction (the coordination level), where operational and contextual
information is added taken from procedures and practice. The lowest level of ab-
straction (the service level) then deploys the operational norms and structures
defined on the coordination level to create a service-based implementation.

The process of translating the abstract regulation to an implementation has
been illustrated. In this process, the main elements are 1) an abstract normative
specification, 2) a common system ontology, 3) a set of interaction structures
describing default interactions, and 4) mechanisms for enforcing the norms to
guarantee safety in the system. Moreover, we have shown that the translation
or regulations to an implementation in practice is not a straight-forward, one-
step process. The organizational regulations have to be contextualized and op-

erationalized before they can be implemented. That is, the abstract regulations
need to be translated into more concrete regulations which use only concrete con-
cepts and relations (which are context dependent) and operational information,
to express how the regulation is to be achieved/maintained, has to be added.

This paper also reports on how the proposed framework naturally fits for
the modelling of context (requirements) changes to better reflect real organiza-
tion behaviours. Moreover, taking advantage from system specification of self-

48 Proceedings of ReMoD 2008

adaptive systems, we have shown how the framework can handle such require-
ments at organizational and coordination levels.

As future work, we are interesting to investigate how the organizational
framework should behave to deal with context changes that are not within the
organization knowledge, e.g., new objectives, roles, and relationships not de-
scribed in the domain ontology. This challenging research aspect is very related
to both the evolutionary design and the evolutionary qualities of agent systems,
namely, how to automatically update organization models from new knowledge
that emerges from the service level.

References

1. H. Aldewereld. Autonomy vs. Conformity: an Institutional Perspective on Norms
and Protocols. PhD thesis, Universiteit Utrecht, June 2007.

2. F. Dignum, V. Dignum, and L. SonenBerg. Exploring congruence between organi-
zational structure and task performance: a simulation approach. In Coordination,
Organisation, Instiutions and Norms in Agent Systems I, LNAI 3913, 2006.

3. V. Dignum. A Model for Organizational Interaction: based on Agents, founded in
Logic. PhD thesis, Universiteit Utrecht, 2004.

4. V. Dignum and C. Tick. Agent-based Analysis of Organizations: Performance and
Adaptation. In 2004 IEEE/WIC/ACM International Conference on Intelligent
Agent Technology (IAT 2007), California, USA, 2007. IEEE CS Press.

5. A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing era. IBM
Systems Journal, 42(1):5–18, 2003.

6. N. Jennings. Foundations of Distributed Artificial Intelligence, chapter Coordina-
tion Techniques for Distributed Artificial Intelligence. Wiley-IEEE, 1996.

7. J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
IEEE Computer Society Press, 36(1):41–50, 2003.

8. V. Lesser. A retrospective view of fa/c distributed problem solving. In Systems,
Man and Cybernetics, IEEE Transactions on, volume 21, pages 1347–1362. 1991.

9. M. Morandini, L. Penserini, and A. Perini. Towards Goal-Oriented Development
of Self-Adaptive Systems. In Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2008). ACM and IEEE digital libraries, to appear, 2008.

10. A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini. Coordination
artifacts: Environment-based coordination for intelligent agents. In Proc. of the
3rd Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS
2004), pages 286–293. ACM Press, 2004.

11. L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. High Variability Design for
Software Agents: Extending Tropos. ACM Transactions on Autonomous and Adap-
tive Systems (TAAS), 2(4), 2007.

12. A. van Lamsweerde and E. Letier. Handling obstacles in goal-oriented require-
ments engineering. IEEE Transactions on Software Engineering, Special Issue on
Exception Handling, 26(10), 2000.

13. J. Vázquez-Salceda. The Role of Norms and Electronic Institutions in Multi-Agent
Systems. The HARMONIA framework. Whitestein Series in Software Agent Tech-
nology. Birkhäuser Verlag, 2004.

14. J. Vázquez-Salceda, V. Dignum, and F. Dignum. Organising multiagent systems.
JAAMAS, 11(3):307–360, November 2005.

Towards Modeling Civil Aviation Safety Legislations

Eduardo R. López Ruiz1 and Michel Lemoine1

1ONERA. 2, avenue Edouard Belin,

Toulouse, France. 31400

{eduardo.lopez-ruiz, michel.lemoine}@onera.fr

Abstract. Building on the work of the EDEMOI methodology, this paper

proposes a twofold expansion of this methodology consisting in: (1) broadening

its scope to include aviation safety legislations and (2) extending its usability to

detect regression originating from regulatory amendments. Accordingly, this

paper analyses the differences between safety and security legislations in civil

aviation, develops on their similarities and proposes a tailored graphical model

apposite for safety legislations. Finally, this paper defines the case-study in

which the proposed graphical model will be initially implemented.

Keywords: Graphical specification, legislations.

1 Introduction

Aeronautics is an industry that is highly aware of the need to incorporate human

factors science and engineering into its different domains to further improve safety

and security. This includes the domain of printed materials. Accordingly, international

aviation organizations, research centers and some aviation authorities have conducted

human factor studies aimed at characterizing and improving the semiotic (i.e. the

semantics, syntactics and pragmatics), visual and structural quality of their different

printed materials1 [1]. However, until recently, these studies and standards have

mostly targeted the clarity, readability and legibility of the printed materials but not

their embedded logic.

Yet, operational feedbacks have hinted that the effectiveness of these printed texts

also depends on logical traits such as: their consistency and their robustness. This is of

great consequence since (analogously with safety-critical software) these traits ensure

that the benchmark legislation being enforced is not inherently rendered ineffective

due to contradictory policies (either by themselves or globally), and that it

exhaustively covers all the possible scenarios within its domain of application.

Consequently (and within the backdrop of September 11
th

, 2001), a group of

French universities and research laboratories sought to enhance the rulemaking

process used by civil aviation organizations and authorities, to create and validate

security legislations. Their proposal was to incorporate simulation and

counterexample checking tools into the legislations' validation phase, to better ensure

1 Support material, training material, procedure manuals and checklists, etc.

50 Proceedings of ReMoD 2008

their embedded logic. To this end, they propounded the utilization of formal methods

to specify and validate aeronautical security-related requirements.

In fact, conscious of the necessities of civil aviation authorities, they proposed a

specially conceived specification methodology that took into account the intricacies of

formal notations and the familiarity needed for their comprehension (See Figure 1).

Fig. 1. In the first step of the EDEMOI approach, a Model Engineer extracts the security goals

imposed by an International Standard and translates them into a Graphical Model that

faithfully represents their structure and relations (while reducing the use of inherently

ambiguous terms). Once this Graphical Model has been revised and validated by the

Certification Authority, the Model Engineer performs a systematic translation of the Graphical

Model to produce an implicitly valid Formal Model, which can be later analyzed using Test

Scenarios.

This methodology, referred to as the EDEMOI methodology, has been

implemented to the modeling of both international [2] and European security

legislations [3]. In both cases, the analysis of passenger-related security standards was

emphasized. These standards were translated into formal models using the B and Z

notations and animated [4]. Thanks to this, its appropriateness (i.e. its aptitude to

specify and assist in the design and validation of security requirements) has been

established.

Still, as civil aviation authorities are concerned with ensuring both the security and

the safety of civil aviation, and given that new legislations are evolutions of existing

ones (prompting the study of their non-regression), an expansion of the EDEMOI

methodology has been proposed. This expansion consists in: (1) broadening its scope

to include aviation safety legislations and (2) extending its usability to detect

regression originating from regulatory amendments.

Neither one of these two aspects can be considered as a simple, straightforward

effort, given that there are fundamental differences between security and safety

legislations. Therefore, their realization will entail a change in the techniques

proposed within the EDEMOI methodology, to focus on the specificities of safety-

related requirements. Additionally the study of the non-regressions is an endeavor on

its own, based on the use of animation and proof techniques to compare successive

versions and detect regressions.

Proceedings of ReMoD 2008 51

In Section 2 of this paper, the differences between safety and security legislations

will be discussed, emphasizing on how the EDEMOI methodology (its methods and

tools) can contribute to improving safety legislations. Section 3 will highlight the new

role that will be given to the legislations applicability criteria in the modeling of

aviation safety legislations. Then, Section 4 shall propose a tailored graphical method

apposite for safety requirements, and its use in a future case study to illustrate its

benefits. Finally, Section 5 will draw the conclusions and perspectives of this work.

2 The Differences between Security and Safety Legislations

As mentioned previously, the expansion of the EDEMOI methodology has two

objectives: firstly, to adapt it for a suitable implementation in the analysis of safety

legislations and, secondly, to facilitate the analysis of regression between succeeding

versions. In order to achieve the first objective, we need to have a very clear

understanding of the differences between safety and security legislations.

Furthermore, we need to correctly identify what civil aviation authorities seek in

terms of improving safety legislations.

So, the first considerable difference between safety and security legislations is their

purpose. That is to say, safety legislations focus on preventing accidental events

(detrimental to civil aviation) while security legislations are focused on the prevention

of intentional acts (detrimental to aircraft, airport infrastructures, persons, etc). For

this reason, their legislative domains are markedly dissimilar in terms of coverage size

and participating stakeholders.

Security legislations are implemented within a relatively small and contained

domain, covering the airport areas (including off-site security zones), their perimeter

and the aircraft's interiors. Conversely, for safety legislations, their corresponding

domain is harder to limit, since civil aviation safety is a collaborative contribution of

the aircraft's initial and continual airworthiness, its operation and also of navigation

and control services. Moreover, the safety requirements for a specified element will

vary in function of its geopolitical location and the type of operations it is performing.

So, an aircraft that is entering European airspace will “automatically” be subjected to

safety obligations that were not applicable the instant before.

Additionally, in terms of legislative evolution, it is primarily safety legislations that

need to be more adaptive to the industry's constantly evolving state-of-affairs, helping

steer developments instead of contriving their progress. This refers to the fact that, in

aeronautics, advancements are the result of a fragile compromise between what is

technologically achievable, what is economically profitable and what is cautiously

acceptable. For this reason, civil aviation authorities must be careful not to impose

unduly or unjustifiable safety requirements, as they might hinder future developments.

Nevertheless, safety and security legislations do have some commonalities. The

most important is that they impose their requirements using 'directive statements'.

Moreover, their requirements can be classified on the basis of their approach, and are

said to be either objective based or prescriptive requirements. The difference between

these approaches is that the first sets targets or goals to be met but provides flexibility

52 Proceedings of ReMoD 2008

in terms of how they are met; while the second does not offer such flexibility and

instead, details how these must be met. However, most requirements cannot be easily

classified as either one or the other, but rather as a mix.

For example, a largely objective based safety requirement that has been central to

the design of commercial aircraft is that (for the aircraft and its subsystems), there

must be an inverse relationship between the probability of a failure and the

consequences of said failure. In other words, the most dangerous failures should have

the lowest probability of occurrence, yet it is up to the designer and manufacturers of

aircraft (and their subsystems) to come up with ways to ensure this. In contrast, a

largely prescriptive safety requirement could impose specific design constraints. For

instance, authorities impose the number and types of emergency exits required for an

airplane (given certain conditions), in order to maximize the probability of its safe

evacuation.

Yet, given the intrinsic nature of all 'directive statements', we are confident that

the underlying principle of the EDEMOI methodology (i.e. the use of formal methods

to specify and validate their embedded logic) is still valid for civil aviation safety

requirements. However, the usefulness of this expansion will be limited to certain

domains of safety legislation. Tentatively, to the domains whose legislation is not

highly objective based, such as: the operation of aircraft, the provision of air traffic

services, aerodrome operation and aircraft airworthiness standards. As was the case in

security legislations, a formal specification outside of these domains would be, either

irrelevant or particularly ineffectual.

In what concerns regression analysis, we believe that the graphical modeling

technique presented in [2] helps facilitate the detection of certain types of regressions

independently of their safety or security nature, mainly thanks to the model’s tree-like

structuring which is rooted from a safety/security property and expands outwards (See

Figure 2).

§ 4.4.1 § 4.4.2

Screening of Originating

and Transfer Passengers

and their Cabin Baggage

Screening of Transit

Passenger and their

Cabin Baggage

Maintaining the

“Screened” Condition

§ 4.4.3

ICAO Annex 17

Amendment 11

§ 4.1.1 § 4.2.1

Proposed Revision

of Regulation

(EC) 2320/2002§ 4.1.1 § 4.3.1

Regulation

(EC) 2320/2002

Legend

Fig. 2. The "security property" approach to modeling security legislations helps improve the

management and traceability of such documents. Consequently, these types of model help

detect certain forms of regressions. For instance, international standards such as ICAO’s Annex

17 need to be further specified and adapted, before being enacted at a national level. In the case

of Europe, this specification came in the form of Regulation (EC) 2320/2002. As illustrated

above. The initial version of Regulation (EC) 2320/2002 (symbolized in a parallelogram) did

not impose requirements concerning the prevention of unauthorized interference with screened

passengers and baggage. However, both its founding text, ICAO's Annex 17 and its Proposed

Revision do contain such requirements (rectangle and a rounded-rectangle respectively).

Proceedings of ReMoD 2008 53

Finally, having established the traits that are the most relevant (to civil aviation

authorities) for safety legislations, we consider that a model around the requirements'

applicability criteria will be an insightful tool for aviation authorities (as will be

discussed in Sections 3 and 4).

3 The Applicability Criteria

Applicability criteria are used in legislations to explicitly define the set of elements

upon which a set of requirements will be imposed. For example, the following

statement (taken from ICAO's Annex VI) explicitly states a condition that is

applicable to "All flight crew members…on flight deck duty".

ICAO - Annex VI §4.4.4.1 Take-off and landing. All flight crew

members required to be on flight deck duty shall be at their stations.

Moreover, this condition is only applicable during a particular moment,

"[throughout the aircraft's] Take-off and landing [phases]".

Hence, in the case of civil aviation legislations, the applicability criteria will be a

general element (e.g. “an aircraft”), an element in a specific state (e.g. "all flight crew

members required to be on flight deck duty") or only a state (e.g. "during take-off and

landing").

As these criterion and states are at the core of the legislative texts, their clear

understanding is of high importance. This is why some legislations provide generic

definitions of the elements and states invoked by their applicability criteria. For

example, ICAO – Annex VI provides the following definition of a Flight Crew

Member:

“A licensed crew member charged with duties essential to the

operation of an aircraft during a flight duty period”.

At any rate, applicability criteria are a rich source of information. They can be used

to deduce the different elements affected by the legislation, their allowed operations

and states.

For instance, by combining the definition given for a flight crew member, with the

requirement §4.4.4.1 (referred to above), we can tentatively deduce that all required

Flight Crew Members will be in one of the two following opposed states: “not on

flight deck duty” and “on flight deck duty”.

Moreover, we suspect that there is a trigger operation that fires a transition of the

flight crew member from the first to the second state (and that, from an

implementation perspective, such trigger operation would occur only during the flight

crew member's flight duty period. Hence the word required in §4.4.4.1).

The EDEMOI methodology used this type of reasoning to build the graphical

models which comprised the legislation’s application domain. In this case a "class"

Flight Crew Member would be proposed, with two Boolean attributes:

54 Proceedings of ReMoD 2008

"on_flight_deck_duty" and "on_flight_duty_period". Similarly, a number of

representative operations would be generated to modify these attributes.

Simply, legislations can be regarded as a function which associates a set of

applicability criteria to their corresponding set of safety and security requirements. As

a result, the applicability criteria are an important constituent of legislative

documents, central to their implementation. As such, they are a very familiar concept

for civil aviation authorities; and it could be expected that, for this same reason,

aviation authorities would be responsive to graphical models founded on these

criteria.

In addition, applicability criterion can help understand the underlying justification

of a given requirement. In particular in the context of safety requirements,

applicability criteria are chosen on the basis that they are criterion relevant to the

known (or likely) safety risks. Therefore it seems desirable that a graphical model of

the legislation should be able to (implicitly or explicitly) show this relation, to

substantiate that a given safety requirement is not unwarrantedly or wrongly imposed.

For example, in 1964 the U.S. Federal Aviation Agency (FAA) sought to amend

the flight engineer requirements set fourth in three of its safety documents (CAR

Sections 40.263, 41.263, and 42,2632). These requirements imposed a three person

flight crew (the pilot, copilot and a flight engineer) on all civil airplanes3 with a

maximum certificated takeoff weight (MCTOW) of more than 80,000 pounds and on

all four-engine airplanes weighing more than 30,000 pounds MCTOW (when deemed
necessary for the safe operation of the airplane)[5].

The underlying reason behind this requirement was that, in the early days of

aviation, the weight of the aircraft (and the number of engines it had) was

representative of its size, which in turn was representative of it operational

complexity. However, by 1964, this was no longer true, and the implementation of

these requirements resulted in the employment of an additional flight-crew member

without it contributing materially to the safety of the flight.

For this reason, an amendment was adopted prescribing broad standards to

establish the minimum flight crew. This involved a shift in the requirement's

applicability criteria, moving from the airplane's weight (which is a quantifiable but

loosely representative criterion) to the workload involved in the airplane's operation

(which is an unquantifiable but largely representative criterion).

This situation -where a set of requirements are no longer adequately enforced

because their applicability criterion is no longer representative of the operational

reality- is reasonably common within civil aviation, and it is mainly caused by the

adoption of break-away technology.

Now, given that the capability to properly sustain the integrity of the legislative

structure depends heavily in the timely anticipation and prevention of legislative

incompatibilities, it is imperative that the EDEMOI extension takes into account such

situations, and provides a tool to facilitate their detection and emendation.

Under these circumstances, a graphical model that is centered on the legislation’s

applicability criteria is very informative, and might prove valuable for undertaking

this type of comprehensive legislative enhancements.

2 Now 14 CFR Part 121.
3 Used in operations governed by these parts.

Proceedings of ReMoD 2008 55

4 Proposing an Extension

Given the specificities of safety legislations, we consider that an enhancement in the

EDEMOI methodology concerning the use of graphical models is warranted.

As was discussed in the previous section, safety legislations cover a very wide

domain, with various domain-specific legislations governing a unique aspect.

However, as each of these legislations may deal with a different aspect of a same

element, there is a need for a tool that helps verify their inter-legislative coherence.

This can be achieved by mapping the associations between the applicability criteria

(i.e. the elements and/or states) and the safety requirements.

Yet, given that safety requirements may be pressed to evolve (in reaction to

changes in civil aviation), the mapping of their association to the applicability criteria

should be complemented with that of the safety risk that they are targeting (Refer to

Figure 2), and the safety outcome they mean to provide.

Therefore we propose the creation of an interactive (adaptable) graphical model,

centered on the legislation’s applicability criteria, which will afford a pithy

description of the safety requirements by:

• mapping out the association between the applicability criteria and the safety

requirements,

• singling out the known or likely safety risk addressed by the different safety

requirements (as well as the elements invoked), and

• highlighting the structure and hierarchy of the legislative texts and

documents.

This graphical model would build on the strengths of the previously proposed

EDEMOI models. Especially in terms of: (1) highlighting the structure and hierarchy

of the legislative documents, and (2) enabling the analysis of regressions (mainly

those arising from the suppression of previously enacted requirements). For this

reason, our interactive graphical model will be a complementary tool within the

EDEMOI methodology, specially designed for safety legislations.

4.1 The Graphical Model Proposed

The graphical model that we are proposing –in order to answer to the specific needs

of safety legislations- would result from the aggregation of multiple nuclear diagrams

(in theory, one diagram per requirement).

These nuclear diagrams are intended to (1) delineate the applicability criteria of

each requirement (including intricate relationships amongst these criteria, such as:

signs of aggregation, conjunction, disjunction, sequential and/or temporal conditions,

etc), (2) identify the elements summoned (affected or addressed), (3) associate the

requirements with the known (or likely) safety risks they address, and (4) state the

56 Proceedings of ReMoD 2008

desired safety outcome due to compliance with the requirement (i.e. the desired

condition/state).

We propose a form of “spray diagram” combined with a “cause-and-effect

diagram” (See Figure 3), in which the applicability criteria and partaking elements

are connected to the legislative provision in which they are referenced. In addition,

the diagram can include additional information such as the mitigating measures

prescribed (if any), the safety risk being targeted and the measure's expected

outcome.

§ X § X.X.x§ X § X.X.x

Prev. Next

Legislation

Version Y.Y

§ X.X

Applicability

Criteria 1

Applicability

Criteria 2

Applicability

Criteria 3

Provisions

Involved

Applicability

Criteria

(Legislation

Version

§ Z.A.A

<<references>>

A

B

then
§ X.X

A

B

and

A

B

or

A

B

during § X.X§ X.X§ X.X

§ X.X On mouse-over, the complete

legislative text of this article would

appear, along with this window.

Legend

Conjunction Disjunction Sequential and Temporal Conditions

Mitigating

Measure

Prescribed

Partaking Element

<<Action verb>>

Measure’s

Outcome

Safety/Security

Risk Targeted

Fig. 3. The above figure is a representation of the nuclear structure of a safety requirement. An

important characteristic of this diagram is the breakup of the requirement into three main

particles: its Applicability Criteria, its Provisions Involved and the Safety/Security Risk

Targeted. Indeed, this last particle encapsulates both the Mitigating Measure Prescribed and its

expected Outcome. A partial caption is shown in the lower part. In the main diagram, the safety

requirement is pertinent in either of two cases: (1) if Applicability Criteria 1 and 2 are both

satisfied, or (2) if Applicability Criteria 3 is satisfied.

But, as we wish to continue conveying the structure (sections and sub-sections) of

the legislative document, as the previously proposed EDEMOI model (See Figure 2),

we are obliged to propose an interactive model whose visual structuring would be

altered by the user, to facilitate specific browsing requirements. The extracted views

of the model would resemble what is shown in Figure 4.

Proceedings of ReMoD 2008 57

§ X.X

C

A

Element 1

<<Action verb>>

B Measure’s

Outcome

Safety Risk

Targeted 1

Safety Risk

Targeted 1

BA

§ X.X

§ X.Y

§ A.B C

Safety Risk

Targeted 2

Legislation-centric

visualization

Element-centric

visualization
Element 1

§ X.Y

Mitigating

Measure

Prescribed

Fig. 4. Although the model's visualization will be centric (i.e. emanating from a single

element), its root element will be changeable. The upper half of the figure illustrates the

structuring characteristic to the 'Legislation-centric visualization', with requirement §X.X as its

root element. The advantage of this visualization is that it allows a synthesized visual

representation of the requirement. On the other hand, the 'Element-centric visualization' (shown

in the bottom half of the figure) provides a holistic view of the safety requirements that bear on

the C root element, along with the safety risk that they are meant to target.

Currently, the scope of this new graphic model is still being ascertained and its

notation has not been finalized. Progress is being made through the implementation of

this modeling technique in the assessment of the Very Light Jets (VLJ) [6] case study

described in the following section. Furthermore, some security requirements have also

been translated into this complementary notation in order to do an informal

comparison of its "expressiveness" in this field.

4.2 A Future Case-study

The situation previously discussed in Section 3, where the safety requirements are no

longer adequately enforced because their applicability criterion is no longer

representative of the reality, is reappearing today. A case in point is that engine and

material technologies have allowed the creation of high performance light jets. These

jets, aptly named Very Light Jets, are capable of achieving the same flight

performances (in terms of flight level and speed) as large commercial aircraft.

However, navigational equipments required for flights within controlled airspace

are (until now) enforced based on the aircraft’s design and physical characteristics

58 Proceedings of ReMoD 2008

(See Figure 5). Because of this, the VLJs will be able to find themselves within the

same flight bands as large commercial aircraft, with incompatible and rudimentary

navigational equipment.

Of course, ultimately safety will take precedence. For this, the applicability

criterion of navigational requirements will need to be amended. A shift from the

current criteria is required; the aircraft's weight, engine type and passenger seating

capacity can no longer be regarded as the main parameters for determining its

legislative requirements. New criteria must be adopted, to effectively highlight that it

is the aircraft's operating environment which is determinant for such equipments.

Under such circumstances, a graphical model that is centered on the legislation’s

applicability criteria is very informative, and might prove valuable for undertaking

such a comprehensive legislative enhancement.

ICAO Doc 7030/4

-Regional Supplementary Procedures-

Fourth Edition

Amendment 203

§ 20.1.1

Turbine Engined

Civil fixed-wing

Aircraft

MTOW > 5,700 kg

Operating in

EUR Region

Operating in

EUR Region

After January 1st, 2005

After January 1st, 2005

Turbine Engined

Civil fixed-wing Aircraft

Maximum Approved

PAX Seating > 19

Turbine Engined

Civil fixed-wing Aircraft

Maximum Approved

PAX Seating > 19

<<imposes>>

ACAS II

Carriage and Operation

Aircraft Carrying

And Operating

an ACAS II

Mid-air collision

avoidance

according to

ACAS II protocol

Fig. 5. ICAO’s Regional Supplementary Procedures 7030/4 imposes requirements concerning

the carriage and operation of the Airborne Collision Avoidance System (ACAS). The

requirement (§20.1.1) states that “[With effect from 1 January 2005] ACAS II shall be carried

and operated in the EUR region by all…civil fixed-wing turbine-engined aircraft having a

maximum take-off mass exceeding 5700 kg or a maximum approved passenger seating

configuration of more than 19.” Given these applicability criteria, the new VLJ aircraft would

not be required to carry and operate an ACAS II. The diagram presented above is a

visualization of this safety requirement. In it, the two discerning cases that are concerned with

this requirement are shown. The aircraft’s weight discriminant is presented in its ‘component-

representation’ (i.e. each of the criterions is placed as an independent element), whereas the

other is presented in its constituted version (i.e. as an element with fixed attribute values).

5 Conclusions and Perspectives

In this paper we argue about the creation of an interactive graphical model based on

the safety legislations applicability criteria. The purpose of this graphical model is to

extend the application domain of the EDEMOI methodology to include safety

legislations (taking into account the specificities of these legislations and the concerns

of civil aviation authorities). By itself, the extension which we propose follows a

Proceedings of ReMoD 2008 59

branch of the original EDEMOI methodology, in which graphical models were used

as tools in the analysis of security requirements (in contrast to their use as a stepping

stone to the formal specification of the requirements [7]). Nevertheless, given the

intrinsic nature of all 'directive statements', it is foreseeable that this extension will be

equally useful in the analysis of security requirements.

Furthermore, the underlying principle of the EDEMOI methodology (i.e. the use of

formal methods to specify and validate their embedded logic) is still valid for civil

aviation safety requirements. However, the usefulness of this methodology will be

limited to certain domains of safety legislation. Tentatively, to the domains whose

legislation is not highly objective based. The reason for this is that, as was the case for

security regulations, the interest of the formal model lies in its ability to be animated.

Yet, highly objective based requirements impose abstract and/or unquantifiable

targets that are incompatible with an insightful analysis through test-case animation.

Moreover, given this abstract and/or unquantifiable nature, less of their important

aspects can be viably formalized.

Some perspectives of this work include the complete analysis of the case-study

discussed in Section 4.2, finalizing the notation and defining the scope of the

modeling technique proposed in Section 4.

References

1. Degani, A.,: On the Typography of Flight-Deck Documentation. NASA Technical

Memorandum #177605. Moffett Field (1992)

2. Laleau, R. et al.: Adopting a situational requirements engineering approach for the analysis

of civil aviation security standards. J. Soft. Proc. Vol. 11. Issue 5, 487-503 (2006)

3. Lopez Ruiz, E.R.: Formal Specification of Security Regulations: The Modeling of European

Civil Aviation Security. Master Thesis. Toulouse (2006)

4. Ledru, Y.: Using Jaza to animate RoZ specifications of UML class diagrams. In: 16th IEEE

International Z User Meeting, IEEE Press, Columbia (2006)

5. Moore, G.S.: Notice of Proposed Rulemaking. 14 CFR Parts 40, 41, 42. Federal Aviation

Administration. Washington, D.C. (1964)

6. United States Government Accountability Office (GAO) Report to Congressional

Requesters.: Very Light Jets, Several Factors Could Influence Their Effect on the National

Airspace. Washington D.C. (2007)

7. Dupuy, S., Ledru, Y., Chabre-Peccoud, M.: An overview of RoZ: A Tool for Integrating

UML and Z. In: 12th Conference on Advanced Information Systems Engineering. Springer

Press, (2000)

Checking compliance of a system with

regulations : towards a formalisation

Laurence Cholvy and Claire Saurel

ONERA Centre de Toulouse
2 avenue Edouard Belin
31055 Toulouse, France
{cholvy,saurel}@cert.fr

Abstract. This paper addresses the problem of checking if an updated
system is in compliance with the current regulations which apply on the
domain.
We first present the applicative context in which this problem has been
met. We sketch a formalisation of the problem of compliance and we
show that is can be split in several sub-problems of different types, the
solutions of which are discussed.

Keywords Compliance, regulations, formalisation.

1 The applicative context

This study is part of the ONERA program named IESTA1, which aims at de-
velopping models, methods and a platform of simulation for analysing innova-
tive concepts of Air Transportation Systems (ATS). This platform will allow its
customers (air companies, aircraft manufacturers, official regulation providers,
research laboratories and relevant ATS stakeholders) to virtually modify some
parameters of the ATS (for instance modify landing procedure, modify types of
airplanes, equipe aircrafts with new kinds of fuel...) and analyse the impacts of
these scenarii on some environmental metrics.

In particular, this platform will allow its users to study the impacts of ex-
pected ATS modifications, on the noise level and chimical emission in the vicinity
of a given airport. Modifications of interest will thus be the ones which, according
to the simulation, lead to a reduction of noise or/and pollution levels.

In this context, we focus on the particular problem of the compliance of these
modifications with the current regulations.

For instance, assume that the simulation shows that, for such a given aiport,
modifying the landing procedure in such a given way leads to noise reduction.
Before discussing the adoption of this interesting modification, it would be help-
ful to help users to check if it complies with the current regulations, or if it is
incompatible with them or if it is not even ruled.

This is the problem we address.
More generally, the problem we are interested in can be described as follows:

1 with financial support of DGA, FNADT, FEDER and Région Midi Pyrénées

Proceedings of ReMoD 2008 61

– given a system composed of several components,
– given the set of regulations which rule this system,
– given a modification which is proposed for the system (modification concern-

ing its structure or the way of performing its function),
– we first want to be able to check if the modified system is in compliance with

regulations. If it is not, we want to help users to understand where are the
causes of non compliance. Users will then have to revise the given regulations
or to revise the proposed modification.

This paper is organized as follows. Section 2 tends to formalise the problem of
checking compliance of a system with regulations. Section 3 analyses more deeply
this problem and shows that it can be split in several sub-problems of different
types. Section 4 focuses on the problem of providing the users an assistance to
revise violated regulations. Section 5 mentions some relevant works, the scientific
domains they belong to (Information Retrieval and Normative Reasoning) being
candidate to provide us with solutions. Section 6 concludes this paper.

2 Towards a formalisation of the problem of checking

compliance

The variables of the problem we address are the following.

Definition 1. new denotes the updated system the compliance of which has to

be checked.

Definition 2. KB denotes the background knowledge, i.e the knowledge about

the considered environment.

Example 1. In the ATS case, if the problem is to check the compliance of the ATS
when aircrafts are given a new fuel, then KB may include characteristics and
properties of this new fuel (density, volumic mass, inflammation temperature...),
but also characteristics of airport environment (atmospheric pressure, physical
models...). Any information describing the modified ATS when aircrafts are given
a new fuel is in new.

¿From a more formal point of view, new and KB should be modelled in a
common model. For instance, KB could be modelled by ontologies, hierarchy of
concepts, dependance graphs between concepts, or more generally, and this will
be supposed in the rest of the paper, by logical formulas. In the same way, new

could be modelled by sets of nodes in the ontologies, sets of concepts, or more
generally, and this will be supposed in the rest of the paper, by logical formulas.

Assumption In the following, we will suppose that new is compatible with
KB i.e, KB ∪ new will be supposed to be a consistent set of formulas.

62 Proceedings of ReMoD 2008

Consistency is a prerequisite to the problem of compliance since, if KB ∪
new is inconsistant, this means that new contradicts the domain knowldege,
thus, building new is impossible. Consequently, the question of checking his
compliance is not posed.

Definition 3. A regulation r is a triplet: r = < str, refr, normsr, defr >, where

– str is an ordonned list of the levels which structure the text of r in an ar-

borescent way.

– refr denotes the set of other regulations r refers to.

– normsr denotes the normative contents of r. If n is in normsr, n is assigned

a position label related to str which denotes its position in the arborescent

structure of r.

– defr is a set of the definitions of the concepts which are used in the regulation

text.

Note that several members of normsr may have the same position label. It means
that they are in the same text unit in r.

What we want here to capture is that a regulation contains information of
very different natures :

– conceptual definition information (defr) : that is an optional part of the
regulation. Concepts which are ruled by r are defined in defr.

– rules (normsr) : that is the core of the regulation. The rules apply on the
real world by stating what is obligatory, permitted or forbidden under which
conditions. Formal modelling rules requires the use of a logical formalism
dedicated with normative reasoning i.e a deontic logic (see section 5). In the
following, we will thus suppose that these rules are modelled by formulas of
such a logic.

– In a regulation r, conceptual definition and rules are expressed according a
given structure (str).

– information about other regulations refr : regulations which inspire the reg-
ulation, regulations which are abrogated by the regulation...One generally
mainly find it in the head of the text of r.

Example 2. For r being [2], str = [article, alinea]. That means that r is com-
posed of several articles, each of them being eventually composed of alineas.

Example 3. Consider now r0 a regulation such that str0
= [part, subpart, article].

If the formula n is in the 2d article of the 3rd subpart of the 1st part of r0, then
the position label assigned to n is [(part, 1), (subpart, 3), (article, 2)].

Example 4. Finally, for r being [2], refr includes regulations [16] and [3].

Definition 4. R = {r1, ...rn} denotes the set of all the regulations which apply

on the domain.

Proceedings of ReMoD 2008 63

Example 5. In the ATS case, the set R of regulations which rule the aeronautic
domain is composed of CEE regulations, national regulations such as environ-
ment code, civil aviation code, and lots of orders and procedures.

Several relations exist in R such as:

– r2 ≥S r1 is true if regulation r1 is a specialization of regulation r2. ≥S is a
partial pre-order defined upon R.

– r2 ≥A r1 is true if regulation r2 abrogates regulation r1 : it means that r1

doesn’t apply anymore since r2 applies. ≥A is a partial pre-order defined
upon R.

– a binary relation replace so that replace(aij
, akl

) is true if the ith article of
regulation rj replaces the kth article of regulation rl.

Some of relations of this type has been presented in [4]. Our model represents
a slightly simplified form of real regulations, since as for instance, ≥A could
be defined between text units of regulations, and not only between regulations
(as for the relation replace) . We here suppose that instances of such relations
concerning a regulation r are explicited in refr.

Example 6. Let r1 and r2 respectively being regulations [2] and [16]. r2 ≥S

r1, because the regulation dealing with rules concerning the Blagnac airport
specializes the regulation about french public air transport.

Definition 5. If R = {r1, ..., rn} is the set of regulations which apply on the

domain, we define normsR, as the set of all the rules of all the regulations of R,

i.e, normsR = ∪n
i=1

normsri

normsR is thus a set of formulas of a particular deontic logic.

More formally, we assume that a formal model (formal language and formal
inference denoted |= in the following) has been chosen for modelling and reason
with rules of normR, background knowledge KB and modification new2.

In the rest of the paper, we will suppose that normR is consistent i.e is a
consistent set of rules.3

2 Ideally, this formal model is a logic which allows to express and reason with any
type of deontic notions which appear in regulations, any type of knowledge, causal
or temporal, which appear in KB. Such a logic should then be a deontic logic ([5],
[8]) allowing to reason with causality and time as well. Defining such a general logic
remains to be done.

3 Notice that consistency of sets of rules has been defined in [6] so that, normR is a
consistent set of rules if there is no situation (or state of the world) s, consistent
with KB (i.e possible) such that : s ∪ normsR |= false. This general definition is
not taken here for simplicity, but notice that if normR is a consistent set of rules
according to this definition, then normR is a consistent set of rules

64 Proceedings of ReMoD 2008

Checking compliance is then defined by checking one of the following asser-
tions:

1. “case of permitted modification”

∀φ KB ∪ new |= φ =⇒ |= normsR → permitted(φ)

This expresses that all the consequences the system modification new (under
context KB) are explicitely permitted by the rules in the regulations. In the
first case, new could be accepted without any other modification since it is
compliant with the regulations.

2. “case of forbidden modification”

∃φ ∃r ∈ R KB ∪ new |= φ and |= normsr → forbidden(φ)

This expresses that the system modification, new, has some consequences
(under context KB) which are explicitely forbidden by one regulation In
this case, new cannot be taken into account since it explicitely leads to vi-
olate regulations, unless modifying regulations themselves. Localizing the
very rules which are violated by new is addressed in section 4.

Notice that in the general case, the prohibition is not caused by only one
regulation. So the case of forbidden modification should be described by:

∃φ KB ∪ new |= φ and |= normsR → forbidden(φ)

However, in this paper, we assume that the prohibition is caused by a single
regulation because it simplifies the presentation of localizing violated rules
(see section 4).

3. “case of a non ruled modification”

∃φ KB ∪ new |= φ and

6|= normsR → permitted(φ) and 6|= normsR → forbidden(φ)

This expresses that the system modification, new, has some consequences
(under context KB) which are neither explicitely permitted nor explicitely
forbidden by the regulations. In this case, it will be possible to accept new

only after an analyse and modifications of regulations so that consequences
of new are permitted.

By definition, these three assertions are exhaustive. Furthermore, they are ex-
clusive only if normR is consistent. This is the reason why assuming consistency
of rules is a prerequisite to the definition of compliance.

Proceedings of ReMoD 2008 65

3 Decomposing the problem of checking compliance

Checking compliance can be decomposed into several sub-problems. The idea is
to check compliance only on a subset of R, made of regulations which “apply
at present” and “concerned by new”. At this step, the property “being a regu-
lation concerned by new” remains to be formally defined. This property could
be defined so that the test of checking compliance is more efficient in time. It
could also be defined so that we can help the user (in the second case) to find
the precise articles of the regulations that are violated.

– Problem pb 1 : find the “regulations which could be violated”
This problem can be divised into two sub-problems as follows:

• Problem pb 1.1 : find the “regulations which apply at present”
This problem consists in selecting the regulations which are not abro-
gated nor replaced by other regulations. In other words, the problem is
to focus only on the regulations that apply at the moment.
This problem may be defined by : find max≥A

(R) 4

Information in ∪n
i=1

refri
will be hepful to solve this sub-problem .

• Problem pb 1.2 : find the “regulations concerned by new”
This problem is a problem of Information Retrieval, the information to
be retrieved being regulations.
In order to solve it, considering information in ∪n

i=1
defri

(i.e definitions
of the concepts used in the regulation text) will be necessary.

The two above sub-problems may be solved in any sequence order : each of
them contributes towards reducing the set of regulations to be considered in
checking compliance.

Let us denote Rnew the set of the regulations of R which apply at present
and which are concerned by new.

– Problem pb 2 : checking compliance of new with Rnew

This comes to check the three assertions:

∀φ KB ∪ new |= φ =⇒ |= normsRnew → permitted(φ)

∃φ ∃r ∈ Rnew KB ∪ new |= φ and |= normsr → forbidden(φ)

∃φ KB∪new |= φ and 6|= normsRnew → permitted(φ) and 6|= normsRnew → forbidden(φ)

4 If ≥ is a partial pre-order defined on R, then max≥(R) is defined by:
max≥(R) = {r ∈ R : ∀r′ ∈ R, r′ ≥ r ⇒ r ≥ r′}

66 Proceedings of ReMoD 2008

4 Towards assisting localization of violated rules

In this section, we suppose the case when new doesn’t comply with Rnew. I.e,
we assume that the second assertion of problem pb 2 is true.

Definition 6.

RForbidden = {r ∈ Rnew ,∃φ KB∪new |= φ and |= normsr → forbidden(φ)}

RForbidden denotes the set of regulations which are involved in the cause of
non compliance of new with Rnew under KB.

In order to assist users in revising such regulations, several kinds of aids may
be proposed to him. Below we sketch some induced problems.

– Problem pb 3 : localize a cause of non compliance in a regulation
Let r ∈ RForbidden. This problem consists in:

1. exhibiting the elements in normsr which are involved in a demonstration
of “forbidden modification”.

2. finding their position label in r (according to str, as defined in definition
3).

– Problem pb 4 : localize the least specialized regulations involved
in non compliance
The problem is to identify the uppest regulations involved in non compli-
ance, towards the specialization relation defined on R : in other words, it is
to identify sources (in the specialization or hierarchical sense) of non com-
pliance.

Formally : find max≥S
(RForbidden)

– Problem pb 5 : propagate a cause of non compliance in a set of
regulations
The problem is, given a regulation involved in non compliance, to identify
all the regulations which specialize it. These regulations, because they take
their inspiration from the violated regulations, are are also involved as causes
of non compliance.

Formally : let r ∈ RForbidden, find {r′ ∈ RForbidden, r ≥S r′}.

– Problem pb 6 : explanation for non compliance The problem is to give
an informative explanation based upon non compliance demonstrations.
This comes to a problem of Explanation Generation, which has been studied
for many years [20], [1].

Proceedings of ReMoD 2008 67

5 Relevant works

Among the different sub-problems we have raised in the previous sections, two
of them are of particular interest. More specifically, these are: a problem of infor-
mation retrieval, the information to be retrieved are regulations (cf problem 1.2)
and a problem of normative reasoning (cf problem 2). These two very different
questions have been addressed by many works we mention some of them below.

5.1 Information retrieval, regulation retrieval

Information Retrieval is a vast domain of research whose works aim to define
models and methods or algorithms, to retrieve information among a large set of
information, like the web space. See [22] for an interesting overview. The user’s
demand is formalised by a query Q (of the form “retrieve documents which
contains terms t1...tn”).

The three most used models in Information Retrieval are the vector space
model, the probabilistic model and the inference network model.

According to the vector space model, the user query as well as the documents
the query is addressed to, are represented by vectors of terms (words of a given
vocabulary for instance). The score of a document is defined as a similarity degree
between its vector and the query vector. Several similarity degrees are usually
used, among which the dot product defined by: if D denotes the document vector
and Q denotes the query vector, then the score of D for Q is:

sim(D,Q) =
n∑

i=1

di.qi

where di is the value of the ith component of (D) and qi is the value of the
ith component of (Q). The value di (resp qi) is called the weight of the dith term
in the document (resp, query).

Various methods for weighting terms have been defined. All of them are
based on different parameters which are : term frequency (words that repeat
several times in a text are considered salient), document frequency (words that
appear in many documents are considered common and are not very indicative
of document content), the number of documents that contain a given term, the
document lenght (in bytes), the average document length (in bytes)...

As for Probabilistic models, they assume that documents in a collection
should be ranked by decreasing probability of their relevance to a query (proba-
bilistic ranking principle). Since knowing its true value is impossible, the proba-
bility of relevance of a document to a query has to be estimated. In this family,
the models differ from the way they estimate that probability of relevance.

Last models are Inference network models. In these models, document re-
trieval is modeled as an inference process in an inference network.

Since we consider Regulation Retrieval as a particular case of Information
Retrieval, solving pb 1.2 could be done by adapting a model of Information
Retrieval. For doing so, the definitions of concepts used in a regulation (i.e the

68 Proceedings of ReMoD 2008

defr part) has obviously an important role to play in the process. Furthermore,
the very structure of regulations (i.e the str part) is also something particular
which must be taken into account by Regulation Retrieval models to be defined
([4], [9]).

Let us also mention [10], in which the authors define a tool to analyse a
regulation and extract rights and duties expressed in the regulation. Legal texts
are annotated in order to identify the agents, their rights (actions that the agents
have the permission to perform under come conditions) and duties (the actions
they have to perform under some conditions)... A semantic model in then built
from these annotations.

Let us finally cite [13], in which the author defines a legal ontology of the
french Law. Such an ontology could be used as a common concept description
language and links with the defr part of regulations should be establised.

5.2 Reasoning with regulations, normative reasoning

Problem pb 2 raises the question of checking if a given formula, (here permitted(φ)
or forbidden(φ)), is implied by some rules (here normsRnew

). This is a particular
case of what is called “normative reasoning” i.e, reasoning with norms.

Reasoning with norms requires at least modelling deontic notions (permis-
sion, prohibition, obligation...). But it also requires modelling individuals (agents
on which obligations, permission and prohibition apply) and properties on indi-
viduals. It sometimes also require modelling several dimensions of time (time of
validity of norms, deadlines...) and different types of norms (defeasible norms,
Contrary-to-duties...). To our knowledge, there is no general logical formalism
which allow to reason with so many different notions. However, there are several
kinds of formalisms which allow to model some aspects of the norms. These are
deontic logics [8].

Most of deontic logics are modal ones, [5], since deontic operators are not
very-functional operators (for instance, it may be the case that smoking is for-
bidden, even if somebody is smoking). Some of them are based on dynamic logics
[15], or based on temporal logics, or both [7]. They also may be non monotonic
[11], [23].

However, First Order Logic (FOL) can also been used to reason with deontic
notions ([21], [14], [17], [19], [12]...) and is a compromise between expressivity
and simplicity. In this case, normative reasoning comes to a problem of theorem
proving in FOL which is solved (at least from a theoretic pioint of view) by
different means: provers based on Resolution Rule, tableaux methods, or any
method defined for the SAT problem.

Let us finally mention a very theoretical but interesting work, [18], in which
the authors define a dynamic deontic logic for reasoning with consequences on
permissions and prohibitions, that the modification of a policy generates. This
aims at helping the user who wants to modify a regulation, by allowing him/her
to derive the permissions which were valid before the modification and which are
no more valid after; or the permissions which become valid after the modification
etc.

Proceedings of ReMoD 2008 69

6 Conclusion

In this paper we have addressed the problem of checking compliance of an up-
dated system with regulations. The main contributions are a formalisation of
this problem and its decomposition in several sub-problems of different types.
We also sketched some functionalities which could help a user to revise regula-
tions in case of non compliance. We finally quickly presented relevant litterature,
more precisely Information retrieval and Normative Reasoning, which could offer
solutions.

Notice however that this work is very preliminary and thus raises many open
questions, the most important one being the definitions of the solutions of the
different sub-problems and their applicability as well. The case named “case of a
non ruled modification” has also to be studied. And the model of regulations used
in this work, has to be refined in order to take into account a finer granularity
of representation. Indeed, for instance, this model does not allow to represent
relations between text units .

However, even preliminary, this work enlights the complexity of the problem
of checking compliance and the varieties of questions to be solved.

Acknowledgments. We would like to thank the anonymous reviewers for
their comments which helped us to improve the paper.

References

1. F. Benamara et P. Saint Dizier. WEBCOOP: A Cooperative Question-Answering
System on the Web. 10th European Chapter of the Association of Computational
Linguistics (EACL), Budapest, Hongrie, avril 2003.

2. Arrêté du 21 mars 2003 portant restriction d’exploitation de l’aérodrome de
Toulouse-Blagnac (Haute-Garonne), NOR: EQUA0300268A

3. Réglement (CEE) n 2408/92 du Conseil, du 23 juillet 1992, concernant l’accès des
transporteurs aériens communautaires aux liaisons aériennes intracommunautaires

4. B. Chabbat. Modélisation multiparadigme de textes réglementaires. Thèse
soutenue le 8 décembre 1997, à l’INSA de Lyon.

5. B. F. Chellas Modal logic, an introduction. Cambridge University Press, 1980.
6. L. Cholvy Checking regulation consistency by using SOL-deduction Proc. of AI

and Law conference, Oslo, Norway, june 1999.
7. F. Dignum and R. Kuiper. Combining dynamic deontic logic and temporal logic for

the specification of deadlines. In Jr. R. Sprague, editor, Proc. of thirtieth HICSS,
Wailea, Hawaii, 1997.

8. Proceedings of the DEON workshops. http://deon2008.uni.lu/publications.html
9. D. Jouve Modélisation sémantique de la réglementation Thèse de l4INSA de Lyon,

novembre 2003
10. N. Kiyavitskaya et al. Extracting Rights and Obligations from regulations: To-

ward a Tool-supported Process 22nd IEE/ACM Int. Conf. on Automated Software
Engineering (ASE’07), Atlanta, november 2007.

11. J. Horthy. Deontic Logic as Founded on Nonmonotonic Logic Annals of Mathe-
matics and Artificial Intelligence, 1993.

70 Proceedings of ReMoD 2008

12. J.Y. Halpern, V. Weissman. Using First-Order Logic to Reason about Policies
Proc. of the 6th IEEE Computer Security Foundations Workshop CSFW-03, 2003.

13. Guiraude Lame. Construction d’ontologies partir de textes.
Une ontologie du droit dédiée à la rechecrhe d’information sur le web.

14. R. Lee. Bureaucracies as deontic systems ACM Transactions on Information
Systems (TOIS) 6(2), pp 87 - 108 , April 1988.

15. J.-J.Ch. Meyer. A different approach to deontic logic: Deontic logic viewed as a
variant of dynamic logic. In Notre Dame Journal of Formal Logic, vol.29, 1988.

16. Arrêté du 12 mai 1997 relatif aux conditions techniques d’exploitation d’avions
par une entreprise de transport aérien public (OPS1)- NOR: EQUA9700893A

17. Ong, R. Lee Detecting deontic dilemmas in bureaucratic rules: a first-order imple-
mentation using abduction Proc of Proceedings of the second Workshop on Deontic
Logic and Computer Science (DEON’94), Oslo, 1994.

18. R. Pucella, V. Weissman. Reasoning about Dynamic Policies. In proc. of the
6th Int. Conf. on Foundations of Software Science and Computation Structure
(FOSSACS 04), 2004.

19. U. Ryu, R.M. Lee. Defeasible Deontic Reasoning and Its Applications to Normative
Systems. Decision Support Systems, 14(1), pp. 59-73, 1995.

20. Cl. Saurel. Méthode de génération d’explications négatives à partir d’une base
de connaissances en logique des prédicats 8èmes journées internationales sur les
systèmes experts et leurs applications, Avignon, 1988.

21. M.J. Sergot. Prospects for representing the law as logic programs. . In K.L.
Clark and S.. Tarnlund, editors, Logic Programming , pp 33–42. .Academic Press,
London, 1982.

22. A. Singhal. Modern Information retrieval: a brief overview IEEE Data Engineering
Bulletin 24(4), 35-43, 2001.

23. L. van der Torre. Violated obligations in a defeasible deontic logic. Proc of ECAI
1994.

