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Abstract
We introduce a state-of-the-art approach for URL categorization that leverages the power of Large
Language Models (LLMs) to address the primary objectives of web content filtering: safeguarding
organizations from legal and ethical risks, limiting access to high-risk or suspicious websites, and
fostering a secure and professional work environment. Our method utilizes LLMs to generate accurate
classifications and then employs established knowledge distillation techniques to create smaller, more
specialized student models tailored for web content filtering. Distillation results in a student model with
a 9% accuracy rate improvement in classifying websites, sourced from customer telemetry data collected
by a large security vendor, into 30 distinct content categories based on their URLs, surpassing the current
state-of-the-art approach. Our student model matches the performance of the teacher LLM with 175
times less parameters, allowing the model to be used for in-line scanning of large volumes of URLs,
and requires 3 orders of magnitude less manually labeled training data than the current state-of-the-art
approach. Depending on the specific use case, the output generated by our approach can either be
directly returned or employed as a pre-filter for more resource-intensive operations involving website
images or HTML.

Keywords
Machine Learning, Web Content Filtering, Large Language Models

1. Introduction

Web content filtering is crucial for maintaining network security and regulatory compliance in
organizations[1, 2]. The aim of a web content filtering system is to prevent employees from
accessing inappropriate content that violates regulatory requirements or company policies, and
by filtering out high-risk content categories, such as pornography and weapons, it helps to
avoid legal liability, reduces the risk of legal or ethical issues arising from exposure to unsuitable
content, and promotes a professional work environment. Unlike security classification, which
detects hosted malware and phishing attacks, content filtering models address a more general
problem that is independent of the attack mechanism. In this work, we address the problem of
web content categorization.

Traditional approaches to website categorization have relied upon creating and main-
taining domain-to-category mappings, which are lists of domains grouped by their manu-
ally assigned categories [3]. A natural extension to list-based URL categorization is to en-
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hance them with signatures created by analysts, that would generalize better than exact
string matching. In the case of web content filtering, the most straightforward signature-
based approach is to propagate labels based on domains and subdomains, although more
complex rules may be applied [4, 5, 6]. An example of this kind of label propagation is
to maintain a list of known domains with predetermined labels, such as labeling “online-
shop.com” as an e-commerce site and “news-site.com” as a news site. All URLs under
these domains inherit the label. For instance, any URL under “online-shop.com” such
as “online-shop.com/products/clothing”, “online-shop.com/products/electronics”, and “online-
shop.com/cart” can be labeled as e-commerce. Similarly, any URL under “news-site.com”, such
as “news-site.com/politics”, “news-site.com/technology”, and “news-site.com/entertainment”
can be labeled as news. In the manuscript, we focus on domain label propagation signatures for
acquiring ground truth for the sake of simplicity, but it could be trivially extended to longest
prefix matching of the URL for ambiguous websites. To provide comprehensive customer teleme-
try coverage for organizations, one of the most resource-effective manual methods involves
ranking domains by frequency and labeling them in descending order. This approach maximizes
coverage by prioritizing the labeling of a single domain. As new websites emerge daily and with
over a billion existing websites, maintaining and scaling signature approaches manually for
the long tail has become increasingly challenging. This necessitates the integration of machine
learning into the classification pipeline[7, 8, 9]. Figure 1 illustrates the telemetry coverage
of a large security vendor, with the space above the bars representing the infrequently seen
long tail distribution of domains not already covered by domain labeling and label propagation
signatures.

Figure 1: Labeling drop-off. The plot visualizes the proportion of analyst-labeled domains across
different popularity levels of a large security vendor. The domain popularity is represented on the 𝑥-axis
using a logarithmic scale, where higher values indicate more popular domains. Each bar in the plot
corresponds to a specific popularity bin, with the height of the bar illustrating the proportion of labeled
domains within that bin.

Maintaining domain-to-category mapping lists and extending them with signatures remains
critical in the early stages of security pipelines [10]. These labels serve as initial shortcuts in
the filtering pipeline to prevent catastrophic false positives, and provide low latency on more
commonly seen websites. Websites like ’stackoverflow.com’ are well-known and need not be



evaluated by a model whereas a potential false positive would translate to a negative impact on
the productivity of an organization. In this work, we focus our evaluations on the long tail of
the distribution, which aligns with actual deployment scenarios and emphasizes the need for
machine learning to address the challenges associated with classifying this ever-growing subset
of domains.

In addition to acting as a pre-filter, domain-to-category mapping lists and label propagation
signatures are often used to create the training sets for machine learning models. However,
machine learning algorithms tend to memorize patterns rather than understand underlying
concepts [11, 12], thus learning from already labeled URLs is insufficient for accurate content
classification in the long tail of the URL distribution. A model whose parameters are configured
to memorize the head of the distribution is undesired as signatures already cover such domains
without risking false positives. Therefore, our objective is to identify models with superior
generalization capabilities for out-of-distribution samples.

For unknown or new domains, the model must infer a description from the URL. It is useful
to view URL classification, especially for web content filtering, as a natural language processing
task, considering URLs as semi-sentences. For a fair amount of our categories, the URL will
frequently have explicit words to advertise its content, specifically semantically related keywords
for the given category. For example, a site selling weapons will often contain keywords such
as “armaments” or “glock” or “gun”. The current state-of-the-art in URL detection and our
chosen baseline, URLTran [9], frames URL detection as a natural language processing task and
fine-tunes a pre-trained BERT model [13] to detect phishing URLs. The BERT model is an early
example of the transformer architecture [14] which has since been refined and scaled, giving
rise to large language models. Large language models (LLMs) are state-of-the-art on natural
language tasks [15]. LLMs are first pre-trained on large amounts of unlabeled textual data
in a task-agnostic manner, learning a general understanding of language such as syntax and
semantics [15]. Once pre-trained LLMs can effectively generalize to new tasks upon fine-tuning
or few-shot prompting with much smaller amounts of data [15]. The amount of data needed for
LLMs to generalize to new tasks is often several orders of magnitude less than the amount of
data needed to fully train a smaller model.

Direct use of LLMs for URL content classification in production is prohibitive due to cost
considerations at scale [16]. Fine-tuning smaller LLMs that have lower inference costs results
in a loss of performance. Through knowledge distillation [17], the LLM-labeled long tail data
enables a smaller student model to improve its performance while maintaining the necessary
computational efficiency for production. Turc et al. [18] proposed an approach that utilizes
knowledge distillation from the teacher’s predictive distribution (soft labels) followed by super-
vised fine-tuning of the student model. In the domain of web content classification, we combine
the steps of distillation and fine-tuning and our computationally efficient student matches the
performance of the teacher model. Instead of a predictive distribution, we distill the teacher
using hard labels. The student model has a low inference cost and is well-suited for the purposes
of web content filtering in production.

The main contributions of this paper are as follows:

• We demonstrate that when fine-tuned on data labeled with domain propagation signatures,
large language models outperform standard deep learning models by 9% in terms of



accuracy on the long tail categorization problem.
• We demonstrate that we can fine-tune a large language model using 10000 samples to

achieve better performance than the current state-of-the-art approach trained on 10
million samples.

• We showcase the effective application of knowledge distillation from a fine-tuned LLM to
boost the performance of a smaller, more computationally efficient model, specifically for
web content filtering tasks. We attain performance levels comparable to the original LLM
using a model that is 175 times smaller, decreasing from 770 million parameters to just 4
million. This reduction in size makes the model more suitable for production and enables
practical deployment across various contexts, such as serving as a general pre-filter for
all incoming network traffic in firewalls.

• We propose a novel validation approach for the community to adopt, which more ac-
curately assesses model performance in realistic scenarios where it works alongside
a domain-to-category mapping list of ground truth labels, extended via domain label
propagation signatures. In this setting, the model analysis focuses on labeling the long
tail, focusing on a more relevant metric.

Our paper is structured as follows: In Section 1 we introduce the research problem and
elucidate the motivation behind our proposed approach. In Section 2 we review relevant
literature and prior work in the field. In Section 3, we provide a comprehensive description of
our methodology, encompassing the dataset and experimental setups. In Section 4 we present
our results, which include a comparison of our approach’s performance against the current
state-of-the-art, an analysis of the benefits of LLMs in terms of accuracy and sample efficiency, as
well as an exploration of deployment challenges and our proposed solution utilizing knowledge
distillation for more compact and computationally efficient models. Lastly, In Section 5 we
conclude the paper, outlining potential avenues for future research in this domain.

2. Related Work

Previous work in this field has primarily focused on security classification rather than content
classification and filtering. Since machine learning approaches to security classification can be
readily reformulated from binary classification to multi-class classification through modification
of the last layer in the neural network, approaches to security classification are relevant to the
task of content classification. We will compare and build upon security publications as they are
better studied.

Early work on URL-only classification for phishing detection using manually derived feature
sets employed both generic features and features meant to detect certain obfuscation techniques
such as obfuscation of the host with another domain [19]. The features were divided into four
groups: Page Based, Domain Based, Type Based, and Word Based. The authors focused on
manual feature engineering and only applied logistic regression as their classifier. A range
of machine learning models, including Random Forests, Logistic Regression, Support Vector
Machines, Naive Bayes, and Gradient Boosting, have been applied to detect phishing URLs
using manually extracted feature sets [7, 20]. Feature sets may be entirely lexically derived



such as the length of the URL, the number of digits in the primary domain, and the number
of special characters in the path [21]. In addition to lexical features, domain-specific features
such as the number of passive DNS changes or the remaining time of the SSL certificate may be
incorporated [22]. Manual features may also be extracted from the retrieved information of
lookups (Whois, GSB Reporting, Google Ranking, and Selenium Rendering) [23].

The manual feature extraction approach is difficult to maintain as adversaries tend to adapt
obfuscation methods to avoid detection so models have shifted to a featureless approach based
on the raw string as input. Deep learning methods learn and then automatically extract the
feature set from the raw URL during training. The use of automatically extracted features does
not preclude the inclusion of manual features however as the optimal input combination of
manual and automatic features can be optimized with genetic algorithms [24, 25].

Automatic feature extraction can be done on various levels of granularity starting at the
character level. Saxe et al. [8] encode a URL by replacing each character with its corresponding
ID whereby features are extracted from the encoded URL with sequential embedding and
convolutional layers. This approach outperformed a baseline which uses a manual feature set.
Learning meaningful context-independent representations is difficult when using character-level
tokenization as a character token doesn’t carry the same meaning that a word does. More recent
approaches like subword-level and word-level tokenization have been developed in natural
language processing in order to make it easier for models to maintain semantic meaning in
common subwords and learn more meaningful context-independent representations.

The application of word-level tokenization to URL classification was first proposed by Le
et al. [26] who extracted both character-level and word-level features. Each feature set is fed
through its own series of sequential embedding and convolutional layers before being fused.
Tajaddodianfar et al. [27] expand on this approach by first training the word embeddings
in an unsupervised manner via FastText [28]. The word and character convolutional stems
include several convolutional layers in parallel with dilated convolutions allowing the model to
adaptively grow in depth and width, extracting N-grams of various lengths. In addition to using
both character and word-level feature models, Bu et al.[29] apply a triplet network structure in
order to address class imbalances and better learn the similarity between URLs.

In addition, to feature set selection, the choice of model architecture plays a large role in
the performance of a URL classification model. Transformers have achieved state-of-the-art
results in many natural language processing tasks making them a good candidate for URL
classification after fine-tuning or even custom pre-training [30, 31, 9, 32, 33]. In addition to the
URL, a transformer can leverage tokenized features of the HTML [34]. A URL classification
system might employ different architectures in parallel, fusing the output of models with a
convolutional architecture and a transformer architecture [35]. Instead of fusing model outputs,
a system may employ an ensemble of different architectures including Decision Trees, LSTMs,
and transformers for URL classification [36].

Other architectures applied to URL classification include graphical networks [37, 38] and
GANs [39, 40]. AutoEncoders have proven useful against zero-day attacks [41]. In addition
to the URL and HTML sequences, but beyond the scope of this paper, images of the webpage
may be incorporated [42, 43]. The task of classification may be reformulated by approaching
detection from a reinforcement learning perspective [44] or from the perspective of thwarting
an adversarial opponent [45, 46].



The current state-of-the-art for URL-only classification for phishing detection, URLTran [9],
utilizes the transformer architecture underpinning LLMs. Maneriker et al. fine-tune a pre-
trained BERT model on Microsoft’s Edge and Internet Explorer production browsing telemetry.
Parallel to URLTRan is the Unified Text-to-Text Cybersecurity (UTS) model. Pal et al. [47] train
a multi-task encoder-decoder LLM on cybersecurity data that includes URL phishing detection.
Although Pal et al. introduce LLMs to URL phishing detection, they do not explore the few shot
capabilities of LLMs in the URL domain nor test the capabilities of LLMs at scale. Compared to
URLTran, UTS does not consider a methodology which would allow its large model to be used
in production and reports a lower F1 score on a random split compared to URLTran’s evaluation
on the industry standard time split. Therefore, URLTran will act as our baseline to which all of
our results will be compared.

3. Methodology

In this section, we describe our methodology for collecting data and constructing training,
validation, and test sets. We also explain our experimental setup and provide a detailed account
of how we trained our model.

3.1. Data

We obtained our dataset from a large security vendor’s customer telemetry data sourced from
its firewall and endpoint products over a period spanning July 1, 2022 to December 23, 2022.

We track 30 categories in our dataset. These categories were defined by a team of expert
analysts to be representative of the most common internet content categories as well as the most
impactful, which we define as the potential to impact productivity, the degree of liability for
the organization, and the degree of associated ethical concerns. The categories include: “Chat”,
“Games”, “Shopping”, “Sports”, “News”, “Job Search”, “Search Engines”, “Alcohol”, “Gambling”,
“Weapons”, “Porn”, “Banking”, “Business”, “Education”, “Entertainment”, “Food and Dining”,
“Government”, “Health and Medicine”, “Motor Vehicles”, “Peer to Peer”, “Real Estate”, “Religion”,
“Travel”, “Translators”, “Computer and Internet”, “Hunting and Fishing”, “Marijuana”, “Radio
and Audio Hosting”, “Social Networking”, and “Video Hosting”. The majority of websites in our
dataset belong to categories such as “Computer and Internet”, “Search Engines”, and “Business”,
while niche categories such as “Hunting and Fishing” and “Marijuana” have fewer instances.
Figure A5 shows the distribution of categories in our dataset. We define our categorization
task as a closed-world problem, meaning every URL belongs to one of the 30 categories. It’s
important to note that, due to limitations in the domain-to-category database, we only consider
a single category per URL, even though some pages may realistically have multiple category
labels.

3.2. Training Sets

To construct our training dataset which spans the period from July 1, 2022 to August 19, 2022, we
uniformly sampled 10 million distinct URLs, out of the billions of URL lookups, that have been
labeled using a domain-to-category mapping database with label propagation. Additionally, we



sampled 10 million URLs from this period that did not correspond to a signature (unlabeled).
The unlabeled URLs were set aside for training augmentation purposes.

3.3. Validation and Test Sets

We sampled an evaluation dataset spanning from August 19, 2022 to December 23, 2022 and
divided it into two validation and test sets to assess our model’s performance in different
scenarios. The validation sets were based on data first seen between August 19, 2022 and
November 24, 2022 while the test sets included data first seen between November 24, 2022 and
December 23, 2022.

We created a domain and time split to simulate a long tail deployment setting. We separated
the data based on the first-seen time of the URL and the first-seen time of the URL’s domain. The
first-seen time of a domain refers to the earliest instance of a URL from that domain. Meaning,
there is no domain overlap between the training, validation, and test sets. This approach allowed
us to better approximate the unlabeled part of the telemetry.

To compare our results with the industry-standard evaluation methodology we also created a
time split. This split was sampled from the same time span as the domain and time split but
without the constraint of dividing based on the domain’s first-seen time.

For the domain and time split, the validation set was comprised of 79,313 unique URLs from
30,897 unique domains, with a maximum of 5 URLs per domain. The test set included 110,624
unique URLs from 43,996 domains. For the time split, we sampled 183,935 URLs from 62,961
domains.

To compare the various splits, we display the most common domains and their frequencies
for the labeled training data, both test splits, and the unlabeled training data in Table 1. The
labeled training set and the time split are dominated by common domains such as “google.com”.
The domain and time split is most similar to the unlabeled long tail of the data where the desired
value of machine learning resides.

Table 1
Domains and their frequencies in the train and test sets.

Training Set Time Split Test Set Domain and Time Split Test Set Unlabeled Data

Domain Frequency % Domain Frequency % Domain Frequency % Domain Frequency %

google.com 20 google.com 33 tomcleaneraddon.com <1 wymondhamcollege.org 2
microsoft.com 6 microsoft.com 4 ammdx.com <1 mfa.cloud 1
googleapis.com 5 gstatic.com 2 ogp.me <1 dimmittisd.net <1
cedexis-radar.net 3 googlesyndication.com 2 officested.com <1 qq.com.cn <1
gvt1.com 3 doubleclick.net 2 dimensionu.com <1 gnsmat.co.uk <1
facebook.com 2 msn.com 2 shreemaruti.com <1 headlandentertainment.com <1
zeotap.com 2 googleusercontent.com 2 wbe-eindhoven.nl <1 murray.edu <1
youtube.com 1 youtube.com 1 vapornodes.finance <1 pcbid.top <1
amazonaws.com 1 amazonaws.com 1 trendingtrck.com <1 stoughtonwi.com <1
sharepoint.com 1 cloudfront.net 1 bluedrop360.com <1 aveha.com <1

To quantitatively assess the disparities between the domain distributions of the time split
and the domain and time split, which more closely models the long tail, we employed the
Kullback-Leibler (KL) divergence as a metric for measuring the dissimilarity between token
distributions. The KL divergence values were calculated between each validation split and
the training dataset as the reference. We tokenized all the URLs in the training dataset using
BERT tokenization and then combined all of the tokens to define the distribution of the base



training dataset. We tokenized all the URLs in both validation splits using BERT tokenization
and each token sequence was converted into probability distributions by computing normalized
histograms. The KL divergence between the token probability distribution of each URL and the
reference distribution was then determined using the entropy function. Figure 2 illustrates that
the token distribution of the domain and time split displays substantially higher KL divergence
values from the reference compared to the time split. This observation highlights the distinct
nature of the domain distributions in the two validation splits and the similarity between the
unlabeled part of the customer telemetry and the domain and time split.

Figure 2: KL Divergence over BERT tokens. The 𝑥-axis represents the possible range of KL divergence
values over BERT tokens, while the 𝑦-axis represents the estimated probability density of these values.
The plot quantifies the difference between validation split URLs as compared to the training set token
distribution, with higher KL divergence values indicating greater differences between the BERT token
distributions of the base training set and validation split.

3.4. Experiments

The primary objective of our experiments was to identify the best-performing model in terms
of accuracy on our dataset, while using as few training labels and being as small as possible. To
achieve this, we varied the training set size as a hyperparameter for each LLM, compact model,
and the baseline. We explored training set sizes ranging from few-shot to large-scale learning,
increasing the sample size from 10 samples per category to 5 million total samples, growing
by an order of magnitude at each step. For a given sample step size 𝑁 , the exact samples per
category were determined by the minimum of 𝑁 and the total labeled instances in that category.

Our next goal was to refine the top-performing large language model (LLM) configuration
into a more compact student model. We achieved this by using labels generated by the best-
performing LLM to train smaller models.

We labeled 10 million unlabeled URLs from our dataset using the best-performing LLM,
utilizing them as hard labels. This resulted in a total of 20 million training set with the 10
million signature-labeled base training set and an additional 10 million labels generated by the



LLM. We then investigated the impact of combining these labels using various mixing ratios of
labeled samples from the base training set and LLM-labeled samples. Each compact student
model and baseline were trained on a variety of dataset configurations, each containing a total
of 10 million samples.

We began with a 10-million base training set, incorporating LLM-generated labels at 0.0,
0.25, 0.50, 0.75, and 1.0 ratios. The 0.0 ratio used only the base training set, while the 0.25
ratio included 7.5 million base URLs and 2.5 million LLM-generated. At 0.5, the sources were
evenly split with 5 million each. The 0.75 ratio contained 2.5 million base and 7.5 million LLM
URLs, and the 1.0 ratio relied solely on LLM-generated labels. By varying the mixing ratios,
we were able to assess the effectiveness of our knowledge distillation process and compare the
contributions of LLM-generated labels to simply using signature-generated labels.

We trained and compared the performance of five models: BERT-based URLTran as the
baseline[9], which demonstrated state-of-the-art performance for URL classification, eXpose
[8] and BERTiny [48] as the student models, and T5 Large [49] and GPT-3 Babbage [15] as
the teacher models. The size configurations of our teacher models were limited by budgetary
constraints, precluding larger configurations such as GPT-3 Davinci and T5-11B. Our student
models were chosen for the following reasons: BERTiny is the smallest pre-trained configuration
of the baseline and the inclusion of eXpose allows us to demonstrate the improvements of the
transformer architecture over convolutional models for natural language tasks, specifically web
content categorization. Unless otherwise noted, all experiments were evaluated on the test set
of both validation splits. The GPT-3 Babbage model was not fine-tuned on 5 million samples
due to cost considerations.

3.5. Training

For all models, we pre-processed the data by splitting at the first occurrence of the “?” character
and removing the query parameters. The query is assumed to be noisy and without any
meaningful information. All URLs were truncated to a fixed length of 128 characters as we have
seen no improvement in further increasing the size. The base pre-trained models and tokenizers
for all T5 Large, BERT, and BERTiny configurations were the HuggingFace defaults [50].

For all reported T5 configurations, we fine-tuned all weights of a pre-trained T5 Large model
using the Adafactor optimizer [51]. Early stopping was applied by monitoring performance
on the validation set of the domain and time split. For all reported GPT-3 configurations, we
fine-tuned the Babbage model using the OpenAI API.

T5 and GPT-3 are generative models that can utilize semantic relationships between class
labels and keywords in a URL for making predictions. Consequently, we employed literal class
labels as our prediction target. When reporting aggregate metrics, out-of-vocabulary (OOV)
predictions are not considered as a separate class, and they were considered as misclassfication
for every class. Additionally, any unlabeled data for which LLM generates an OOV prediction is
excluded from the distillation process.

For GPT3 the temperature was set to 0 to ensure deterministic results upon inference. The
logit bias for tokens associated with the class labels were set to 100 to ensure exclusive selection
of expected tokens. Finally, the stop token was set to the stop sequence seen during training.

For the student models, we trained a 1D convolutional eXpose model and fine-tuned all



weights of a pre-trained BERTiny model. We fine-tuned all weights of a pre-trained BERT model
to reproduce the architecture of URLTran as our baseline. No custom vocabulary was created
for the BERT-based models. Hyperparameter configurations for T5, BERTiny, BERT, and eXpose
may be found in Tables A7, A4, A5, and A6 respectively.

4. Results

Figure 3: The results for scaling and augmentation are dependent on the domain and time split. Left:
Scaling results: illustrates the performance of various models in relation to the logarithm of training
sample size. Right: Augmentation results: compares the top-performing LLM and baseline configurations
with the performance of different student models as a function of the mixing ratio for LLM-generated
labels. The GPT-3 Babbage model was not fine-tuned on 5 million samples due to cost considerations.

In this section, we present the key findings and results of our two sets of experiments. We
report the results in terms of accuracy, with additional metrics for both experiments provided
in the Appendix.

The performance of various models as a function of the log of the training sample counts is
displayed in Figure 3. The top-scoring configuration for each model is detailed in Table 2. On
the domain and time split, the best performing model, T5 Large, achieves 46.3% accuracy after
being fine-tuned on 10,000 samples. GPT-3 Babbage attains 44.4% accuracy after fine-tuning
on 10,000 samples. Both LLMs surpass the best baseline configuration, which achieves 38.3%
accuracy. BERTiny and eXpose achieve 35.7% and 30.2% accuracy, respectively, when trained
on 5 million samples.

On the time split, eXpose achieves 92.8% accuracy when trained on 5 million samples. BERTiny,
fine-tuned on 5 million samples, attains 97.6% accuracy. The best configurations for the baseline,
GPT-3 Babbage, and T5 Large achieve 97.1%, 98.14%, and 97.5% accuracy, respectively. Additional
metrics for the time split are reported in Table A10, and for the domain and time split in Table
A9 for all experiments.

On the domain and time split, the best performance was achieved with T5 on 10,000 training
samples, so we selected it as our teacher model. For the domain and time split, we found the best
ratio to be 1.0, where every training sample had 10 million previously unlabeled URLs labeled
by T5. Training eXpose on all of them increases the accuracy from 31.5% to 45%. Fine-tuning
BERTiny on all 10 million LLM labels, compared to the 10 million base training set, improves



the accuracy from 37.5% to 46.2%. Finally, fine-tuning URLTran on all 10 million LLM labels,
compared to the 10 million base training set, raises the accuracy from 41.6% to 46.8%.

For the traditional time split, the augmentation at a ratio of 0.75 also increased the performance,
albeit marginally.

The performance of the students and the baseline trained via knowledge distillation is shown
in the augmentation plot of Figure 3 as a function of the LLM label ratio in the training data.
The top-scoring distillation configuration for each student model is detailed in Table 2.

Table 2
The best performing model configurations are presented, including the distilled versions of the students
and baseline. The accuracy for each model’s top configuration is displayed, along with the model’s
parameter count relative to the best performing LLM. For the Time and Domain split, the LLM label
ratios correspond to 1.0, and for the Time split, the ratio is 0.75, as these were consistently the best
across the models. More detailed results can be found in Table A9 and Table A10.

Model
Accuracy

Time and Domain Split
Accuracy
Time Split

Parameter Count
in millions

Parameter Count Relative
to the Teacher (%) Training Samples Count

eXpose (Conv) 0.30 0.93 3.3 5× 106

BERTiny 0.36 0.97 4.4 5× 106

URLTran (BERT) 0.38 0.97 110 1× 105

T5 Large 0.46 0.97 770 1× 104

GPT3 Babbage 0.45 0.98 6700 1× 105

eXpose + T5 Labels 0.45 0.98 3.3 0.42 1× 107

BERTiny + T5 Labels 0.46 0.98 4.4 0.57 1× 107

URLTran + T5 Labels 0.47 0.99 110 14.29 1× 107

4.1. Discussion

A comparison of the models’ performance on the two evaluation splits reveals that results on
the time split, the traditional validation approach, are overly optimistic. Small models such as
BERTiny, trained merely on signature-driven data, exhibit performance comparable to T5 and
GPT-3. The disparity in model performance between the domain and time split versus the time
split, particularly for small models, underscores that signature-sourced data is repetitive and
can be memorized with just a few million parameters. Time split validation measures a model’s
ability to match the signature distribution while in a production setting the primary concern
within the context of the overall pipeline is a model’s capacity to generalize to new data from
the long tail that falls outside the coverage of signatures.

When considering the domain and time split—which aligns more closely with real-world
performance on unlabeled data—small models no longer match the performance of LLMs, as
seen in Figure 3. Beyond 10,000 samples, LLMs show minimal to no performance gains when
scaling up further. Conversely, the performance of small models and the baseline has not yet
converged at 5 million training samples. This demonstrates the sample-efficiency of LLMs in
the domain of website content categorization.

LLMs outperform student models in terms of performance, but they still fall short of perfection
when applied to domain and test splits. This discrepancy can be attributed to two main factors.
First, due to dataset limitations, web content classification is framed as a single-label classification
problem. Table 3 displays a set of LLM misclassifications on domain and time split, highlighting



Table 3
Examples of LLM (T5) misclassifications. Comparison of LLM performance on the domain and time
split, highlighting the impact of the single-label strategy and keyword-absent URLs.

Domain LLM Label True Label

citytocoastneurosurgery.com.au HEALTH AND MEDICINE BUSINESS
twittodon.com SOCIAL NETWORKING COMPUTER AND INTERNET
robinsonmalls.com/mall-info SHOPPING BUSINESS
online-weinshop.at SHOPPING ALCOHOL
www.fourbakery.com BUSINESS FOOD
sargenttoolsonline.com BUSINESS SHOPPING
praeyforthegods.com RELIGION GAMES
www.hygiene-3d.com HEALTH AND MEDICINE SHOPPING
beta.x9zb.live COMPUTING AND INTERNET GAMBLING
www.857zb6.com ENTERTAINMENT SPORTS
www.lxf.cz BUSINESS SHOPPING
g11.178tiyu.com ENTERTAINMENT SPORTS

that a URL could potentially belong to multiple categories. In the first three samples, the
analyst opted for the more generic label, while the model choose the more generic labels in
the following three samples. Both predicted and true labels could be considered correct in
all six cases, suggesting that the true performance is likely better than the metrics indicate
because of the single-label limitation. This trade-off between equally correct specific and general
labels becomes evident when examining the confusion matrix, displayed in Figure A4 in the
Appendix, for a T5 Large model’s performance on the domain and time split. As we can see on
the confusion matrix, the LLM tends to generate class labels that are more specific than manual
labels.

The second factor occurs when a URL lacks keywords or context related to its category, as
demonstrated by the last six entries in Table 3. For the middle two URLs, the model was misled
by a prominent keyword in the URL, which was unrelated to its content. The final four URLs
contain no apparent signal. Consequently, the large-scale pre-training of LLMs struggles to
effectively transfer knowledge to a URL from the long tail. This means that if a URL lacks
clear or strong indicators of its category, the LLM may not accurately classify it, leading to
misclassifications.

Our results reveal that mixing in the LLM-generated labels significantly enhances the perfor-
mance of student models BERTiny and eXpose as we can see on Figure 3. Through this simple
form of augmentation, we nearly matched the 46.3% accuracy of T5 Large, the best-performing
LLM, with a transformer model that has a parameter count several orders of magnitude smaller
(0.57% of the teacher) and could reasonably be deployed in-line in production.

5. Conclusion

In conclusion, our paper contributes to the field of web content classification with the develop-
ment of lightweight models distilled from fine-tuned LLMs. We have demonstrated that LLMs,



when fine-tuned on data labeled with domain propagation signatures, significantly outperform
the current state-of-the-art approach on the long tail categorization problem. Our teacher-
student training approach enables the distillation of LLMs into models 175 times smaller without
sacrificing accuracy, thus making deployment practical in a wide variety of new contexts. The
amount of manual labels required to finetune the teacher LLM is orders of magnitude smaller
than what is required for convergence of the current state-of-the-art approach. Furthermore,
we have proposed a new validation approach that better measures model performance in more
realistic scenarios, which should be adapted by the community to improve generalization
capabilities to unseen data.

Expanding beyond web content classification, the cybersecurity field could greatly benefit
from proven methods of distilling large language models (LLMs) into more compact versions.
This approach is particularly valuable when dealing with large data volumes and expensive
training samples, especially when the model is applied to out-of-distribution cases. For ad-
dressing web content classification tasks specifically, we suggest future work should focus on
augmenting the training data and feature space with HTML and image data, utilizing GPT-4
as a teacher, allowing URLs to have more than one label, and re-working signatures for the
assignment of general categories.
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A. Supplementary Plots and Tables

Figure A4: Normalized confusion matrix on the domain and time split for the best T5 Large configuration

http://arxiv.org/abs/2110.01518


Figure A5: Class Distribution. Displaying the 30 classes and their distribution over the datasets.

Table A4
BERTiny Parameters

Parameter Value

model_name prajjwal1/bert-tiny
hidden_size 128
hidden_act gelu
initializer_range 0.02
vocab_size 30522
hidden_dropout_prob 0.1
num_attention_heads 2
type_vocab_size 2
max_position_embeddings 512
num_hidden_layers 2
intermediate_size 512
attention_probs_dropout_prob 0.1
maximum sequence length 128
learning rate 1e-4
batch size 49160
optimizer Adam
maximum training epochs 20



Table A5
BERT Parameters

Parameter Value

model_name bert-base-uncased
hidden_size 768
hidden_act gelu
initializer_range 0.02
vocab_size 30522
hidden_dropout_prob 0.1
num_attention_heads 12
type_vocab_size 2
max_position_embeddings 512
num_hidden_layers 12
intermediate_size 3072
attention_probs_dropout_prob 0.1
maximum sequence length 128
learning rate 1e-4
batch size 2048
optimizer Adam
maximum training epochs 20

Table A6
eXpose Parameters

Parameter Value

vocab_size 76
filter_size 128
dropout 0.05
learning rate 1e-3
batch size 49160
optimizer Adam
maximum training epochs 20



Table A7
T5 Parameters

Parameter Value

model_name t5-large
d_ff 4096
d_kv 64
d_model 1024
dropout_rate 0.1
initializer_facto 1.0
layer_norm_epsilon 1e-06
n_positions 512
num_heads 16
num_layers 24
relative_attention_num_buckets 32
vocab_size 32128
maximum sequence length 128
learning rate 1e-3
batch size 60
optimizer Adafactor
Adafactor scale_parameter False
Adafactor relative_step False
Adafactor warmup_init False
maximum training epochs 15

Table A8
Adafactor Parameters

Parameter Value

scale_parameter False
relative_step False
warmup_init False



Table A9
Model performance on Domain and Time Split

Model Samples Accuracy Macro F1 Macro Recall Macro Precision
BERTiny 10 0.051 0.045 0.077 0.06
BERTiny 100 0.089 0.083 0.152 0.089
BERTiny 1000 0.117 0.079 0.123 0.119
BERTiny 10000 0.251 0.098 0.109 0.137
BERTiny 100000 0.348 0.208 0.185 0.317
BERTiny 1000000 0.333 0.213 0.196 0.279
BERTiny 2500000 0.348 0.232 0.208 0.313
BERTiny 5000000 0.357 0.241 0.221 0.304

BERTiny + LLM Labels (0.0 Ratio) 10000000 0.375 0.253 0.23 0.335
BERTiny + LLM Labels (0.25 Ratio) 10000000 0.457 0.34 0.296 0.456
BERTiny + LLM Labels (0.5 Ratio) 10000000 0.456 0.336 0.293 0.452
BERTiny + LLM Labels (0.75 Ratio) 10000000 0.449 0.323 0.279 0.442
BERTiny + LLM Labels (1.0 Ratio) 10000000 0.462 0.347 0.299 0.473

GPT-3 Babbage 10 0.267 0.235 0.362 0.214
GPT-3 Babbage 100 0.316 0.265 0.384 0.232
GPT-3 Babbage 1000 0.375 0.315 0.379 0.294
GPT-3 Babbage 10000 0.444 0.364 0.354 0.402
GPT-3 Babbage 100000 0.449 0.36 0.328 0.428
GPT-3 Babbage 1000000 0.444 0.364 0.33 0.465

T5 Large 10 0.211 0.254 0.284 0.324
T5 Large 100 0.273 0.277 0.374 0.282
T5 Large 1000 0.379 0.34 0.382 0.367
T5 Large 10000 0.463 0.368 0.332 0.477
T5 Large 100000 0.427 0.372 0.353 0.426
T5 Large 1000000 0.428 0.296 0.256 0.434
T5 Large 5000000 0.438 0.329 0.286 0.454

URLTran (BERT) 10 0.135 0.055 0.092 0.096
URLTran (BERT) 100 0.186 0.176 0.285 0.168
URLTran (BERT) 1000 0.304 0.261 0.308 0.261
URLTran (BERT) 10000 0.379 0.278 0.266 0.322
URLTran (BERT) 100000 0.383 0.246 0.224 0.325
URLTran (BERT) 1000000 0.358 0.264 0.254 0.333
URLTran (BERT) 5000000 0.377 0.288 0.278 0.357

URLTran + LLM Labels (0.0 Ratio) 10000000 0.416 0.317 0.307 0.364
URLTran + LLM Labels (0.25 Ratio) 10000000 0.465 0.357 0.326 0.446
URLTran + LLM Labels (0.5 Ratio) 10000000 0.465 0.364 0.338 0.443
URLTran + LLM Labels (0.75 Ratio) 10000000 0.466 0.364 0.329 0.453
URLTran + LLM Labels (1.0 Ratio) 10000000 0.468 0.375 0.338 0.496

eXpose (Conv) 10 0.033 0.023 0.05 0.049
eXpose (Conv) 100 0.062 0.052 0.107 0.062
eXpose (Conv) 1000 0.097 0.059 0.093 0.074
eXpose (Conv) 10000 0.223 0.051 0.063 0.105
eXpose (Conv) 100000 0.256 0.042 0.049 0.129
eXpose (Conv) 1000000 0.262 0.107 0.103 0.175
eXpose (Conv) 5000000 0.302 0.153 0.143 0.229

eXpose + LLM Labels (0.0 Ratio) 10000000 0.315 0.168 0.157 0.237
eXpose + LLM Labels (0.25 Ratio) 10000000 0.444 0.316 0.266 0.45
eXpose + LLM Labels (0.5 Ratio) 10000000 0.436 0.308 0.259 0.445
eXpose + LLM Labels (0.75 Ratio) 10000000 0.422 0.28 0.231 0.426
eXpose + LLM Labels (1.0 Ratio) 10000000 0.45 0.318 0.268 0.453



Table A10
Model performance on Time Split

Model Samples Accuracy Macro F1 Macro Recall Macro Precision
BERTiny 10 0.206 0.104 0.27 0.128
BERTiny 100 0.307 0.155 0.401 0.15
BERTiny 1000 0.355 0.135 0.301 0.176
BERTiny 10000 0.432 0.177 0.228 0.197
BERTiny 100000 0.912 0.713 0.722 0.714
BERTiny 1000000 0.967 0.78 0.765 0.802
BERTiny 2500000 0.973 0.821 0.804 0.844
BERTiny 5000000 0.976 0.856 0.838 0.882

BERTiny + LLM Labels (0.0 Ratio) 10000000 0.987 0.867 0.858 0.878
BERTiny + LLM Labels (0.25 Ratio) 10000000 0.971 0.835 0.814 0.86
BERTiny + LLM Labels (0.5 Ratio) 10000000 0.98 0.858 0.841 0.878
BERTiny + LLM Labels (0.75 Ratio) 10000000 0.982 0.877 0.859 0.902
BERTiny + LLM Labels (1.0 Ratio) 10000000 0.608 0.546 0.546 0.605

GPT-3 Babbage 10 0.429 0.304 0.593 0.269
GPT-3 Babbage 100 0.603 0.409 0.716 0.343
GPT-3 Babbage 1000 0.771 0.62 0.793 0.534
GPT-3 Babbage 10000 0.969 0.818 0.831 0.809
GPT-3 Babbage 100000 0.973 0.837 0.829 0.849
GPT-3 Babbage 1000000 0.984 0.855 0.839 0.874

T5 Large 10 0.394 0.35 0.497 0.344
T5 Large 100 0.475 0.375 0.61 0.328
T5 Large 1000 0.688 0.542 0.715 0.489
T5 Large 10000 0.927 0.794 0.796 0.8
T5 Large 100000 0.959 0.821 0.824 0.821
T5 Large 1000000 0.966 0.772 0.73 0.838
T5 Large 5000000 0.975 0.835 0.807 0.874

URLTran (BERT) 10 0.122 0.093 0.192 0.166
URLTran (BERT) 100 0.396 0.272 0.598 0.238
URLTran (BERT) 1000 0.636 0.508 0.773 0.432
URLTran (BERT) 10000 0.944 0.757 0.812 0.72
URLTran (BERT) 100000 0.947 0.778 0.791 0.774
URLTran (BERT) 1000000 0.971 0.817 0.806 0.836
URLTran (BERT) 5000000 0.956 0.82 0.802 0.873

URLTran + LLM Labels (0.0 Ratio) 10000000 0.992 0.914 0.897 0.94
URLTran + LLM Labels (0.25 Ratio) 10000000 0.985 0.859 0.851 0.869
URLTran + LLM Labels (0.5 Ratio) 10000000 0.988 0.889 0.884 0.896
URLTran + LLM Labels (0.75 Ratio) 10000000 0.991 0.908 0.896 0.927
URLTran + LLM Labels (1.0 Ratio) 10000000 0.74 0.676 0.672 0.706

eXpose (Conv) 10 0.125 0.075 0.165 0.116
eXpose (Conv) 100 0.296 0.168 0.362 0.164
eXpose (Conv) 1000 0.306 0.193 0.327 0.215
eXpose (Conv) 10000 0.565 0.18 0.204 0.26
eXpose (Conv) 100000 0.549 0.156 0.147 0.399
eXpose (Conv) 1000000 0.904 0.539 0.478 0.744
eXpose (Conv) 5000000 0.928 0.662 0.601 0.784

eXpose + LLM Labels (0.0 Ratio) 10000000 0.978 0.838 0.809 0.878
eXpose + LLM Labels (0.25 Ratio) 10000000 0.964 0.78 0.748 0.823
eXpose + LLM Labels (0.5 Ratio) 10000000 0.971 0.823 0.796 0.858
eXpose + LLM Labels (0.75 Ratio) 10000000 0.976 0.842 0.811 0.886
eXpose + LLM Labels (1.0 Ratio) 10000000 0.49 0.413 0.397 0.477
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