
Car image recognition using convolutional neural
network with efficient met architecture ⋆

Serhiy Balovsyak1,†, Olga Kroitor1,†, Khrystyna Odaiska1,†, Abdel-Badeeh M. Salem2,†

and Serhii Stets1,∗,†

1 Yuriy Fedkovych Chernivtsi National University, Kotsiubynsky 2, 58012, Chernivtsi, Ukraine
2 Ain Shams University, El-Khalyfa El-Mamoun Street Abbasya, Cairo, Egypt

Abstract
A convolutional neural network for car image recognition has been developed. The neural
network model is implemented with the EfficientNet architecture. The software implementation
of the neural network was written in Python using the Keras library. The neural network model
was trained on the basis of the publicly available Vehicle Detection Image Set dataset, which made
it possible to compare the accuracy of the developed model with analogues. The structure of the
developed model with the basic architecture of EfficientNet was improved, which increased the
accuracy of model training. The improvement consisted of adjusting the network parameters,
unfreezing some of its layers, and creating stop conditions to avoid overtraining. These additional
measures helped to improve the model's accuracy. The images used to train the model were pre-
processed by scaling and randomly rotating them (augmentation). Due to the model
improvement and data preprocessing, a high model training accuracy (99.98%) was obtained,
which exceeds the training accuracy for the best analog model (99.63%) on the used dataset. The
developed convolutional neural network can be used for car image recognition and localization.

Keywords
Artificial Neural Network, Convolutional Neural Network, Efficientnet, Car Image Recognition,
Python

1. Introduction

In today's world, there is a need to develop Artificial Neural Networks (ANN) designed to

recognize digital images. In particular, in practice, the task of recognizing car images often

arises. This task is quite effectively solved by Convolutional Neural Networks (CNN) [1-3],

which use deep learning technologies. CNN are particularly effective in image recognition,

as they take into account the geometry of images, the peculiarities of human visual

perception, and use multilayer signal processing for a large number of examples. The name

IntelITSIS’2024: 5th International Workshop on Intelligent Information Technologies and Systems of Information
Security, March 28, 2024, Khmelnytskyi, Ukraine
∗ Corresponding author.
† These authors contributed equally.

s.balovsyak@chnu.edu.ua (S. Balovsyak); o.kroitor@chnu.edu.ua (O. Kroitor); k.odaiska@chnu.edu.ua
(Kh. Odaiska); abmsalem@yahoo.com (Abdel-Badeeh M. Salem); stets.serhii@chnu.edu.ua (S. Stets)

 0000-0002-3253-9006 (S. Balovsyak); 0000-0003-4541-3805 (O. Kroitor); 0000-0002-3167-1195
(Kh. Odaiska); 0000-0003-0268-6539 (Abdel-Badeeh M. Salem); 0009-0007-0231-9970 (S. Stets)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:s.balovsyak@chnu.edu.ua
mailto:o.kroitor@chnu.edu.ua
mailto:k.odaiska@chnu.edu.ua
mailto:abmsalem@yahoo.com
mailto:stets.serhii@chnu.edu.ua
https://orcid.org/0000-0002-3253-9006
https://orcid.org/0000-0003-4541-3805
https://orcid.org/0000-0002-3167-1195
https://orcid.org/0000-0003-0268-6539
https://orcid.org/0009-0007-0231-9970

of CNN is explained by the convolutional operation used in them, which is performed when

processing two-dimensional signals.

However, when recognizing car images using existing convolutional neural network

architectures, difficulties arise due to the low training speed of the CNN and limited

recognition accuracy. The significant training time of the CNN is explained by the large

number of layers of the neural network and the large size of the training sample. Insufficient

accuracy of object recognition is explained, in some cases, by the incompleteness of the

training set. One way to improve the accuracy of CNN is to increase the number of neural

network parameters, but this can lead to overtraining and a decrease in recognition

accuracy for images that do not belong to the training set. In general, the recognition

accuracy decreases due to the mismatch between the architecture and training parameters

of the CNN and the features of the images of the objects to be recognized.

Therefore, an important task is to develop a convolutional neural network that would

ensure high accuracy of car image recognition with acceptable CNN training time. This task

is realized by selecting the appropriate CNN architecture, pre-processing the images of the

training and control samples, and adapting the structure and training parameters of the

CNN to the features of car images.

2. Related Works

The architecture of the CNN is a determining factor that affects the quality of the network.

Therefore, let's consider the main modern CNN architectures that can be used for car image

recognition.

ResNet (Residual Networks) architectures, especially its deep variants ResNet-50 or

ResNet-101, are widely used and have proven to be effective in image classification tasks,

as shown in [3]. They utilize residual block connectivity, which helps to reduce the problem

of vanishing gradients and improves the training of deep networks. Typical ResNet models

are implemented with double or triple layer transmissions, with nonlinear activation

functions (e.g., ReLU), or with batch normalization in the middle. The disadvantage of deep

ResNet models is the long training time due to problems with gradients. In addition, an

increase in the number of layers leads to an increase in the number of parameters, which

requires more computing resources.

DenseNet architectures [4, 5] are known for their dense connectivity, which facilitates

feature reuse and facilitates the flow of gradients during training. DenseNet models have

shown high performance in image classification tasks and can be effective for identifying

cars in images. However, the dense connections of such CNN can lead to an increase in the

number of parameters, which can make model training more difficult.

The Xception architecture [6] uses deep separate convolutional units, which reduces the

number of parameters (with a fairly high performance). Such CNN are successful in various

image classification tasks. However, neural network models with the Xception architecture

may require long training due to their depth and complexity of architecture. In addition,

when deep convolutional units are used, the problem of learning with vanishing gradients

may arise. Compared to other architectures, such as ResNet or DenseNet, Xception may be

less efficient in terms of recognition accuracy and training resource requirements.

The EfficientNet architecture [7] differs from other architectures in that it is balanced, as

it achieves a trade-off between accuracy and training time. EfficientNet uses scaling of

network width, depth, and resolution to achieve an optimal balance between accuracy and

computational efficiency. This ensures high accuracy of image classification with minimal

resource utilization. In addition, EfficientNet's well-balanced architecture uses deep

connections between layers and optimized convolutional units to help avoid problems with

vanishing gradients and ensure stable training even for deep models. The EfficientNet

architecture can be successfully used for a wide range of tasks from image classification to

object detection. For this reason, this architecture is often used in the computer vision [8-

10].

Therefore, taking into account the advantages and disadvantages of the considered CNN

architectures, the EfficientNet architecture (its basic variant EfficientNetB0) was chosen for

the software implementation of the car image recognition system [11- 13].

Real images of cars are obtained from different angles and at different distances from the

video camera [14], and are characterized by uneven lighting, noise, and foreign objects.

Therefore, in order to recognize car images with high accuracy, it is necessary to perform

image preprocessing before training the CNN [15-17]: scaling to a given size, obtaining

images from different angles by rotating them.

3. Convolutional Neural Network Model

For car image recognition, CNN model was developed with the EfficientNet architecture,

which is characterized by an optimal balance between recognition accuracy and the number

of floating-point operations (FLOPS), making it very effective for various computer vision

tasks [18-20]. The structure of EfficientNet (Table 1) consists of a number of stages, which

include various convolution operations and mobile feedback units MBConv. Each stage has

its own input parameters, such as image dimensions (H, W), number of channels (C), and

number of layers (L).

Table 1

EfficientNet-B0 baseline network; each row describes a stage i with Li layers, with input

resolution (Hi, Wi) and output channels Ci [7].

Stage

i

Operator

Fi

Resolution

Hi × Wi

#Channels

Ci

#Layer

Li

1 Conv3×3 224 × 224 32 1

2 MBConv1, k3×3 112 × 112 16 1

3 MBConv6, k3×3 112 × 112 24 2

4 MBConv6, k5×5 56 × 56 40 2

5 MBConv6, k3×3 28 × 28 80 3

6 MBConv6, k5×5 14 × 14 112 3

7 MBConv6, k5×5 14 × 14 192 4

8 MBConv6, k3×3 7 × 7 320 1

9 Conv1×1 & Pooling & FC 7 × 7 1280 1

MBConv is the primary block used in the EfficientNet architecture. It is based on the

mobile inverted bottleneck convolution and squeeze-and-excitation optimization. This

block contributes to optimizing the number of parameters and improving the convolutional

operation process. Additionally, EfficientNet differs from other architectures in that it has

optimally tuned scaling coefficients (α, β, γ), allowing for network size increase through

compound scaling [7]. This enables larger models with high accuracy while maintaining an

optimal balance between the number of parameters and computational complexity.

Starting from the baseline EfficientNet-B0 model, the compound scaling method is

applied to scale it up in two steps:

STEP 1: Initially, φ = 1 is fixed, assuming twice as many resources available, and a small

grid search is conducted for α, β, γ values. φ represents the compound scaling factor, which

is used to scale the network width, depth, and resolution simultaneously to achieve optimal

performance.

STEP 2: Then, α, β, γ are fixed as constants, and the baseline network is scaled up with

different φ values.

The EfficientNet model easily adapts to different image sizes and accuracy requirements

through compound scaling. This allows optimizing the model for specific task conditions,

such as varying input image sizes or performance requirements.

4. Software Implementation of Convolutional Neural Network

4.1. Selection of Training and Control Datasets

The developed СNN with the EfficientNet architecture was trained on the basis of the

Vehicle Detection Image Set, which contains 17760 color images, of which 8792 images

contain cars (Fig. 1) and 8968 do not (Fig. 2). The dataset was split into training and test

sets with a ratio of 0.7, respectively, to ensure the accuracy of the model evaluation. The

division of images was made random. The images in the dataset have a size of 64 × 64 pixels.

The dataset is available on the kaggle.com website [21], which makes it possible to compare

the performance of the proposed model with existing works. Before using the dataset, it is

necessary to perform processing and preparation steps to work with the selected neural

network architecture.

Figure 1: Fragment of the image dataset with cars (12 images out of 8792).

Figure 2: Fragment of the image dataset without cars (12 images out of 8968).

4.2. Preliminary Image Processing

Before training the CNN, images are loaded from the catalogs. The program accepts paths

to directories containing images with and without cars. After that, the images are loaded

using OpenCV for the processing stage. Each loaded image is scaled using the

reshaped_image method. This method converts the image to a size of 100 × 100 pixels. If

the original image is not square, then additional pixels are added to it or unnecessary ones

are removed (to maintain proportions). An algorithm has been developed that transforms

rectangular images into square ones. To reduce distortion in scaled images, the color of the

added pixels is calculated as the average value of the nearest half of the image (Fig. 3).

Figure 3: An example of how the algorithm works to transform a rectangular image into a

square one.

This scaling allows to process images of any proportions with by CNN. After scaling, the

color channel values of all pixels in the image are normalized in the range from 0 to 1. This

improves the convergence of the neural network training. These steps ensure that the

images are prepared for use in the neural network for classification.

4.3. Data Augmentation

One approach to data augmentation is to apply random rotation of images with a small tilt

angle. This approach aims to increase the diversity of the data and improve the overall

ability of the model to generalize new images. In the developed program, each input image

from the dataset is rotated twice: first to the right and then to the left by a random angle

(for example, between -10 and 10 degrees). Thus, each original image is complemented by

two rotated images. This allows the CNN model to learn to recognize objects in images from

different viewing angles, making it more robust to changes in the position or angle of objects

(e.g., cars).

An important advantage of data augmentation is that it increases the stability of the

model. The CNN becomes more adaptable to different shooting conditions (viewing angles,

lighting, etc.). This method also helps to avoid overtraining, as the model is trained on more

diverse data, which makes it capable of generalizing new images. Increasing data diversity

also helps to make the model less sensitive to noise and other artifacts in the data. A

visualization of image augmentation is shown in Figure 4.

Figure 4: An example of data augmentation using image rotation.

However, it should be noted that data augmentation leads to an increase in the size of

the dataset and an increase in the computational cost of model training. After augmentation,

the dataset is increased to 53,280 images, of which 42624 are used for training and 10656

for validation.

4.4. Software Implementation of a CNN with EfficientNet Architecture

In this work, the CNN model with the EfficientNetB0 architecture was implemented using

the Python programming language and the Keras library (Table 1). Also, layers for global

average pooling were added to the model, followed by two fully connected layers for

classification, and the last layer used the softmax activation function. The program code to

implement the model based on EfficientNetB0 uses the Keras framework, which provides a

user-friendly interface for building and training neural networks. The first step is to load

the pre-trained EfficientNetB0 model without the top classification layer. The

EfficientNetB0 architecture has been added to the Tensorflow [22] and Keras [23] libraries.

This allows using CNN weights that are pre-trained on the large ImageNet dataset (which

also contains car images).

In the EfficientNetB0 architecture, a layer corresponds to a computing unit that performs

a specific image processing operation. Let’s consider several layers of the CNN (Fig. 5) and

explain their functions:

1. input_1 (InputLayer) – an input layer that accepts input images of 100x100 pixels

with three color channels (RGB).

2. rescaling (Rescaling) – the layer scales the color channel values for the pixels of the

input image to the range [0, 1]. This helps to prepare the data for further processing

in the network and ensures the stability of the learning process.

3. normalization (Normalization) – this layer normalizes the input pixel color values to

balance their distribution. It can perform different types of normalization, such as

centering and scaling. Normalization helps to avoid problems with gradients during

training.

4. stem_conv (Conv2D) – the layer is responsible for convolution of the input images.

The convolution is applied with a kernel of 3 × 3 elements to highlight important

features in the image.

5. stem_bn (BatchNormalization) – the layer performs batch normalization of the

output values after convolution to stabilize the learning process and improve the

convergence rate.

6. stem_activation (Activation) – the layer applies the activation function ReLU

(Rectified Linear Unit) to the output values after batch normalization to introduce

nonlinearity into the network.

7. block1a_dwconv (DepthwiseConv2D) – the layer performs depthwise convolution,

i.e. independent convolution for each channel of the input image.

8. block1a_bn (BatchNormalization) – after depthwise convolution, this layer is used

for batch normalization.

9. block1a_activation (Activation) – the activation layer applies a nonlinear function to

the output values after batch normalization to preserve the nonlinear properties of

the data.

Pre-training of CNNs greatly simplifies the learning process [24]. After the base model is

loaded, the layers are frozen (fixed), which avoids overtraining on a small data set. Layer

freezing is set with the parameter trainable=False. Next, a global mean pooling layer is

added to the CNN model, which allows to collapse the spatial dimensions of the previous

layer to a fixed-length vector. This helps to reduce the number of parameters and

computational size of the model, which is especially important when training on limited

amounts of data. After the global mean pooling step, two fully connected layers are added,

which are used to classify the images into two classes: "car" and "non-car". The last layer

uses softmax activation to select the class with the highest probability. Once the model is

built, the compile method is called to set the training parameters, such as the optimizer, loss

function, and metrics for evaluating the model.

Figure 5: A fragment of the CNN model with the EfficientNetB0 architecture obtained from

the tensorflow library.

The Adam optimizer was chosen, the binary_crossentropy loss function (since the task

is binary classification), and the accuracy metric to evaluate the model's accuracy during

training. The structure of the CNN model (Model summary) is shown in Figure 6.

Figure 6: A fragment of the structure of the CNM model with the EfficientNetB0 architecture.

The EfficientNetB0 architecture has a large number of parameters that are used to detect

various features in images. In the case of the developed CNN model, the total number of

parameters is 4,213,797, so the model has a great potential power to detect complex

dependencies in the input data.

A graphical interface for interactive adjustment of neural network parameters has been

developed (Fig. 7). The interface was created using the tkinter library of the Python

programming language. The developed interface makes it possible to select the location of

the dataset, the number of epochs, the path of saving the model, etc.

Figure 7: Graphical interface for setting up CNN parameters.

Also, using checkboxes, user can display a graph of model accuracy, show incorrectly

recognized images during image validation, and implement car recognition using a sliding

window as an example. This interface allows for quick and interactive change of various

parameters of the neural network and the image recognition program itself. Just like the

GUI, user can change all the parameters and run the neural network using the Command

Line Interface (CLI).

5. Improvement of the Convolutional Neural Network Model

After the implementation of the basic CNN model with the EfficientNetB0 architecture,

improvements were made. It is important to note that the efficiency of the basic model is

already quite high due to preliminary training on a large ImageNet dataset.

5.1. Fine-tuning

Initially, the fine-tuning method was used to tune the base model with the EfficientNetB0

architecture, in which the layer weights were frozen (fixed). In the new model, some of the

layers are unfrozen and subjected to fine-tuning along with the newly added layers on top.

This allows the CNN model to learn on more specific image features using the knowledge

from the previously trained weights. The last 20 layers of the base model were unfrozen by

setting the trainable parameter to True for each of these layers. The model was compiled

using the Adam optimizer at a low learning rate (0.0001) for tuning.

The model was then trained on the dataset using the specified number of epochs, with a

control sample used to prevent overfitting. The number of unfrozen layers, learning rate,

and other hyperparameters were adjusted to meet the specific requirements of the dataset

and the image recognition task. During fine-tuning, the model may be overtrained,

especially if the amount of training data is limited. Therefore, it is important to monitor

changes in the metrics and, if necessary, take timely measures to prevent overfitting, such

as regularization or early stopping of training.

5.2. Early Stopping

Early stopping of training is used in the process of training the ANN model. This approach

avoids overtraining by monitoring the losses on the validation dataset and stopping training

when these losses stop decreasing or start increasing. For this purpose, the EarlyStopping

callback from the Keras library was used. This callback monitors the losses on the validation

dataset and stops training if the losses do not decrease for a certain number of epochs (the

patience parameter). In addition, the restore_best_weights parameter allows to restore the

model weights to those that gave the best result on the validation set. In this work, the

callback object for early stopping was used with the parameters monitor='val_loss'

(monitoring losses on the validation set), patience=3 (waiting for 3 epochs without

improvement), and restore_best_weights=True (restoring the best model weights). This

ensures that the training process will be stopped if the losses on the validation set do not

improve within a specified number of epochs.

5.3. Learning Rate Scheduling

A study was conducted to adjust the learning rate using Learning Rate Scheduling. This

approach allows to adjust the learning rate during training, which potentially leads to faster

convergence and better model performance. To do this, the lr_scheduler function was

defined, which reduces the learning rate by 10% every 10 epochs. Next, the

lr_scheduler_callback object was created using the LearningRateScheduler callback, to

which the learning rate scheduler function was passed. During model training, both

callbacks responsible for early stopping and learning rate scheduling were passed to the

callbacks parameter of the fit method. This ensures that during training, the learning rate

will adapt according to the set schedule. This approach is a tool for optimizing the training

process of neural networks. Reducing the learning rate over time can help to avoid delays

in convergence and model overtraining. This allows the CNN to "rest" from sudden changes

and ensures a more stable learning process. The use of Learning Rate Scheduling is

especially useful in cases where complex data or large neural network architectures are

used, where the learning process can be very sensitive to changes in the learning rate.

5.4. Improved Structure of the Convolutional Neural Network

In this improved structure of the СNN model, several important changes have been made to

improve its performance and learning capabilities. Residual connections, a key element in

deep neural networks, are utilized. Residual connections enable the prediction of residual

information that remains after passing through each layer of the network. This helps

mitigate the vanishing gradients problem and contributes to faster training and improved

model convergence. Adding residual connections between the layers of the model allows

gradients to more easily propagate backward through the network during error

backpropagation, leading to more effective learning.

The LeakyReLU activation function was also used, which is a modification of the standard

ReLU activation function. In the standard ReLU function, neurons are not trained if their

input value is less than zero. This can lead to stagnation problems and slower model

training. Using LeakyReLU allows to pass negative values through the network with a small

slope, which improves the gradient flow and helps avoid the problem of stalling. The alpha

parameter specifies the slope value that adjusts the output of the LeakyReLU function for

negative values. The choice of this parameter affects the speed and stability of training. A

shortcut is created that is added to the output value after several fully connected layers.

This allows the model to freely "bypass" some layers, which facilitates the learning process

and allows the model to learn faster.

These changes in the model architecture are aimed at improving its learning capability

and ability to avoid overfitting. The combination of the lagged links and the LeakyReLU

activation function helps the model to detect complex dependencies in the data more

effectively. In addition, the updated CNN structure adds another fully connected layer with

the LeakyReLU activation function and Dropout layers, which helps to regularize the model

and prevent overfitting. These additional layers help to moderate the complexity of the

model, making it more generalizable and resistant to overfitting. They provide an additional

layer of control over the propagation of gradients and the internal representation of data in

the network.

6. Results

6.1. Training Results of the Basic Convolutional Neural Network Model

After the basic CNN model was built and compiled, it was trained on the training data for 10

epochs. After each epoch, the model's accuracy was evaluated on a control dataset (to avoid

overfitting). The training took approximately 25 minutes. According to the results of the

experiment on the control dataset, the model accuracy is 82.69%. This indicates that the

CNN is able to cope with the task of detecting cars in images, but the accuracy is

unsatisfactory. To improve the accuracy, an improved CNN model was used.

6.2. Training Results of the Improved Convolutional Neural Network Model

The improved CNN model with the EfficientNet architecture showed a significant increase

in accuracy compared to the baseline model. The total number of parameters of the

improved model is 4,451,685. When using images without rotation, the model training

process lasted only 6 epochs (instead of the planned 10). This is due to the fact that the

model stopped improving the results on the validation dataset, so additional training

epochs were not needed. An important metric is the accuracy of the model, which reached

a value of about 99.77% on the validation dataset (Fig. 8). When using images with

rotations, an extremely small training error of 2 × 10-4 was obtained for the validation

dataset, and the model accuracy reached 99.98% (Fig. 9).

Figure 8: Graphs of training loss and accuracy for the improved CNN (image without

rotation is used)

Figure 9: Graphs of training losses and accuracy for the improved CNN (image with

rotations is used)

This indicates the high efficiency of the model, which allows for accurate classification of

images with and without cars. The obtained accuracy exceeds the accuracy for the best

analog program (99.63%), which was trained on this dataset [25]. This confirms the

prospects of the developed CNN model.

7. Conclusion

A CNN model with the EfficientNet architecture has been developed for car image

recognition. The CNN model is implemented using the Python programming language and

the Keras library. The widely used Vehicle Detection Image Set dataset was used to train

the model, which made it possible to compare the effectiveness of the proposed model with

existing solutions. The structure of the developed model was improved: its parameters

were adjusted, some layers were unfrozen, and stop conditions were added to avoid

overtraining. These additional measures helped to improve the model's accuracy. Due to

data augmentation, which was performed by randomly rotating the images, a high model

training accuracy (99.98%) was obtained, which exceeds the training accuracy for the best

analog (99.63%) on the used dataset.

The developed CNN model can be practically used for car image recognition.

References

[1] A. Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow,

O'Reilly Media, Inc., 2019.

[2] N. K. Manaswi, Deep Learning with Applications Using Python, Apress, India, (2018).

doi: 10.1007/978-1-4842-3516-4.

[3] K. He, X. Zhang, S. Ren and J. Sun, Deep Residual Learning for Image Recognition, in:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,

USA, 2016, pp. 770-778. doi: 10.1109/CVPR.2016.90.

[4] G. Huang, S. Liu, L. Maaten and K. Q. Weinberger, CondenseNet: An Efficient DenseNet

Using Learned Group Convolutions, in: Proceedings of the 2018 IEEE/CVF

Conferenceon Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018,

pp. 2752–2761.

[5] T. Li, W. Jiao, L. Wang and G. Zhong, Automatic DenseNet sparsification, IEEE Access 8

(2020) 62561–62571.

[6] F. Chollet, Xception: Deep Learning with Depthwise Separable Convolutions, in: IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,

2017, pp. 1800-1807. doi: 10.1109/CVPR.2017.195.

[7] Tan Mingxing, V. Le Quocm, EfficientNet: Rethinking Model Scaling for Convolutional

Neural Networks, in: Proceedings of the 36th International Conference on Machine

Learning, Long Beach, California, PMLR 97 (2019) 1-11. URL:

https://arxiv.org/pdf/1905.11946.pdf.

[8] R. Gonzalez, R. Woods, Digital image processing, Pearson/ Prentice Hall, New York,

2018.

[9] S. Russell, P. Norvig, Artificial Intelligence. A Modern Approach, Pearson Education,

2021.

[10] K. Kargin, Computer Vision Fundamentals and OpenCV Overview. URL:

https://medium.com/mlearning-ai/computer-vision-fundamentals-and-opencv-

overview-9a30fe94f0ce.

https://arxiv.org/pdf/1905.11946.pdf
https://medium.com/mlearning-ai/computer-vision-fundamentals-and-opencv-overview-9a30fe94f0ce
https://medium.com/mlearning-ai/computer-vision-fundamentals-and-opencv-overview-9a30fe94f0ce

[11] Abdallah Wagih Ibrahim, Vehicle Detection. URL:

https://www.kaggle.com/code/abdallahwagih/vehicle-detection-cnn-acc-99-3.

[12] M. Bayati, M. Çakmak, Real-Time Vehicle Detection for Surveillance of River Dredging

Areas Using Convolutional Neural Networks, International Journal of Image, Graphics

and Signal Processing (IJIGSP) 15 (5) (2023) 17-28. doi:10.5815/ijigsp.2023.05.02.

[13] O. Pavlova, A. Bilinska, A. Holovatiuk, Y. Binkovskyi, D. Melnychuk, Automated system

for determining speed of cars ahead, Computer Systems and Information Technologies

3 (2023) 32-39. doi:10.31891/csit-2023-3-4.

[14] S. Balovsyak, Kh. Odaiska, O. Yakovenko, I.Iakovlieva, Adjusting the Brightness and

Contrast parameters of digital video cameras using artificial neural networks, in: Proc.

SPIE, Sixteenth International Conference on Correlation Optics 12938 (2024) 129380I-

1 – 129380I-4. doi: 10.1117/12.3009429.

[15] S. Balovsyak, I. Fodchuk, Kh. Odaiska, Yu. Roman, E. Zaitseva, Analysis of X-Ray Moiré

Images Using Artificial Neural Networks, in: IntelITSIS 2022: 3nd International

Workshop on Intelligent Information Technologies and Systems of Information

Security, March 23–25, 2022, Khmelnytskyi, Ukraine, CEUR Workshop Proceedings,

2022, pp. 187-197.

[16] S.V. Balovsyak, Kh. S. Odaiska, Automatic Determination of the Gaussian Noise Level on

Digital Images by High-Pass Filtering for Regions of Interest, Cybernetics and Systems

Analysis 54 (3) (2018) 662-670. doi: 10.1007/s10559-018-0067-3.

[17] V. Alto, Understanding the Inception Module in GoogLeNet. 2020. URL:

https://valentinaalto.medium.com/understanding-the-inception-module-in-

googlenet-2e1b7c406106.

[18] T. Hovorushchenko, V. Kysil, Selection of the artificial intelligence component for

consultative and diagnostic information technology for glaucoma diagnosis, Computer

Systems and Information Technologies 4 (2023) 87–90. doi: 10.31891/csit-2023-4-12.

[19] Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou, A Survey of Convolutional Neural Networks:

Analysis, Applications, and Prospects, IEEE Transactions on Neural Networks and

Learning Systems 33 (12) (2022) 6999-7019. doi:10.1109/TNNLS.2021.3084827.

[20] A. Soni, A. Rai, An Efficient CNN Model for Automatic Diagnosis of Cardiomegaly from

Chest Radiographic Images, International Journal of Image, Graphics and Signal

Processing(IJIGSP) 15 (3) (2023) 81-96. doi:10.5815/ijigsp.2023.03.07.

[21] Vehicle Detection Image Set. URL:

https://www.kaggle.com/datasets/brsdincer/vehicle-detection-image-set.

[22] TensorFlow. An end-to-end open source machine learning platform. URL:

https://www.tensorflow.org.

[23] Keras. URL: https://keras.io.

[24] Chandra Mohan Bhuma, Ramanjaneyulu Kongara, A Novel Technique for Image

Retrieval based on Concatenated Features Extracted from Big Dataset Pre-Trained

CNNs, International Journal of Image, Graphics and Signal Processing(IJIGSP) 15 (2)

(2023) 1-12. doi:10.5815/ijigsp.2023.02.01.

[25] Abhijit Singh, Vehicles identification. URL:

https://www.kaggle.com/code/abhijitsingh001/vehicles-identification-val-acc-99-

62/notebook.

https://www.kaggle.com/code/abdallahwagih/vehicle-detection-cnn-acc-99-3
https://valentinaalto.medium.com/understanding-the-inception-module-in-googlenet-2e1b7c406106
https://valentinaalto.medium.com/understanding-the-inception-module-in-googlenet-2e1b7c406106
https://www.tensorflow.org/
https://www.kaggle.com/code/abhijitsingh001/vehicles-identification-val-acc-99-62/notebook
https://www.kaggle.com/code/abhijitsingh001/vehicles-identification-val-acc-99-62/notebook

