CEUR-WS.org/Vol-3675/paper20.pdf

C

CEUR

Workshop
Proceedings

Methods for detecting software implants in
corporate networks

Dmytro Denysiuk?t, Tomas Sochor2t, Mariia Kapustian?*f, Antonina
Kashtalian’t and Oleg Savenkol"

1 Khmelnytskyi National University, Instytutska str., 11, Khmelnytskyi, 29016, Ukraine
2 Prigo University, Havirov, Czech Republic

Abstract

With innovations in the technological sphere, the development of mechanisms that allow
obtaining confidential information without the proper authorization of the owner is increasing.
One of such mechanisms is software implants. This type of software is very difficult to detect
because it does not use specialized signatures or code obfuscation, making it difficult to detect.
This paper proposes a software implant detection system based on recurrent neural networks
and a classifier. The classifier is a mechanism that describes the operating behavior of the
software and provides the recurrent neural network with the ability to learn. This mechanism
helps to identify behavioral patterns characteristic of software implants and notify the user of
the possible risk of data loss.

During the experiments, it was found that in order to successfully detect a software implant that
initiates the creation of additional processes, the system needs to be trained for 50 epochs. Thus,
the detection efficiency is 97.50%, which indicates the possibility of using this system as an
effective mechanism for detecting software implants in corporate systems. Given the results
obtained, it can be recommended for use in a wide range of information systems to ensure
reliable protection against potential security threats.

Keywords
malware detection, distributed computing, heterogenous computer systems, decoys, software
implants, deception system

1. Introduction

Data security is particularly important in today's world, where society and the economy are
becoming increasingly digitalized and interconnected. The growing volume of electronic
data and its strategic importance in various fields of activity necessitates a comprehensive
approach to ensuring the security, integrity and availability of this data. Modern
technological innovations, such as cloud computing, the Internet of Things (IoT) and

IntellTS1S’2024: 5th International Workshop on Intelligent Information Technologies and Systems of Information
Security, March 28, 2024, Khmelnytskyi, Ukraine
*Corresponding author.
t These authors contributed equally.
& denysiuk@khmnu.edu.ua (D. Denysiuk); tomas.sochor@osu.cz (T. Sochor); kapustianm@khmnu.edu.ua (M.
Kapustian), yantonina@ukr.net (A. Kashtalian); savenko_oleg_st@ukr.net (0. Savenko)

0000-0002-7345-8341 (D. Denysiuk); 0000-0002-1704-1883 (T. Sochor); 0000-0001-9200-1622 (M.
Kapustian); 0000-0002-4925-9713 (A. Kashtalian); 0000-0002-4104-745X (O. Savenko)
h@ 2

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:denysiuk@khmnu.edu.ua
mailto:tomas.sochor@osu.cz
mailto:kapustianm@khmnu.edu.ua
mailto:yantonina@ukr.net
mailto:savenko_oleg_st@ukr.net
https://orcid.org/0000-0002-7345-8341
https://orcid.org/0000-0002-1704-1883
https://orcid.org/0000-0001-9200-1622
https://orcid.org/0000-0002-4925-9713
https://orcid.org/0000-0002-4104-745X

artificial intelligence, require stricter security measures as they open up new opportunities
for abuse and exploitation. Ensuring effective protection against potential threats requires
research into innovative methods of data protection and detection. Particular attention
should be paid to the interaction between entities that process and store data and entities
responsible for software development. Such an integrated approach may take into account
technical, organizational and legal aspects of data protection. Ensuring data security in the
modern world is a highly specialized task that requires constant improvement and
adaptation to unpredictable threats and challenges in the ever-changing digital
environment.

Ratenjay
3,0%

Ghost

,0%
Arechclient2
5,0%

SocGholish

CoinMiner

ViperSoftX

Fake Browser

Agent Tesla
10,0%

NanoCore
15,0%

RogueRaticate
11,0%

Figure 1: Analysis of the most malicious software.

SocGholish [2] - is a malicious downloader implemented in the JavaScript language that
spreads through malicious or compromised websites. It uses fake software updates, such as
web browser or Flash updates, to trick users and even social engineering tools to make the
entered requests look innocent. The malware uses various methods to redirect traffic and
spread the payload. It is noted that SocGholish uses Cobalt Strike to steal information from
victims' systems. In addition, SocGholish infection can cause other types of attacks, such as
downloading the NetSupport Remote Access Tool, Async Remote Access Tool, and, in some
cases, even ransomware.

NanoCore [3] - is a remote access tool (RAT[4]) that spreads via spam emails with an
attachment such as a malicious Excel XLS spreadsheet. This malicious tool interacts with
the system by receiving commands to download and execute files, visit websites, and create
a RunOnce key in the victim's registry for later storage. Its spread and interaction with the
system can cause serious consequences for computer security and data privacy on infected
systems.

RogueRaticate[5] - is a malicious downloader implemented with JavaScript that spreads
through vulnerable or compromised websites using fake browser updates. The
RogueRaticate payload is represented by an HTML application file that is archived or
downloaded as a shortcut file. RogueRaticate infection leads to further attacks, such as
downloading legitimate remote access tools, such as NetSupport, using the attackers' tools.

Agent Tesla[6] - is a malware designed for Windows operating systems. It can be
purchased on criminal forums as a Malware-as-a-Service[6] (MaaS). Depending on the
version purchased, it has a variety of functionalities, such as intercepting keystrokes and
screenshots, collecting saved credentials from web browsers, copying the contents of the
clipboard, invading the victim's files, and downloading other malware to the computer.
These capabilities allow the attacker to carry out various attacks and criminal activities,
gaining control over the victim's system.

Fake Browser|[5] - is a downloader virus that uses the JavaScript language and spreads
through malicious or compromised websites via fake browser updates. Note that Fake
Browser infection may result in additional infected actions, such as using a remote access
tool such as NetSupport. This opens up the possibility for the virus to perform various
criminal actions and further spread the malicious impact to the targeted systems.

ViperSoftX[7] - is a cryptocurrency thief with multiple levels of complexity. It is usually
distributed in the form of a malicious crack for known software via torrent networks and
file sharing sites. This method of distribution often facilitates its unnoticeable penetration
and activation on the systems of users using illegal copies of the software. This opens up the
possibility for ViperSoftX to use its advanced capabilities to engage in cryptocurrency
mining, launch attacks and other malicious activities that have a major impact on infected
systems.

CoinMiner[8] - are a family of cryptocurrency miners that primarily use Windows
Management Instrumentation (WMI) to distribute themselves across the network.
Additionally, they often use the standard WMI event handler to execute scripts and ensure
constant activity. However, the functionality of this malware can vary as there are different
variants within the family. CoinMiner is often distributed via spam emails or in combination
with other malware.

Arechclient2[9] - is a network virus, also known as SectopRAT, with a variety of
functionalities, including the ability to bypass security systems. This malicious tool is
capable of analyzing victims' systems, stealing sensitive information such as browser data
and cryptocurrency wallets, and initiating the creation of a hidden desktop to control
browser sessions. Moreover, it is equipped with a number of features aimed at overcoming
the protection of virtual machines and emulators

GhOst[10] - is a remote administrative tool (RAT) used to control infected endpoints. By
interacting with other malicious programs, GhOst creates a secret channel for the attacker
to communicate. This approach opens up the possibility of unauthorized control and
various attacks.

Ratenjay[11] - is a remote control tool that infects a victim's system by coinciding with
other malware or during file uploads. Once infected, it activates remote command execution
and is equipped with a keylogging feature that allows the attacker to monitor keystrokes on

the victim's system. This functionality allows the attacker to gain access to confidential
information entered by the user in order to further use it for criminal purposes.

Much of the software provided can be defined as a software implant. This indicates that

these programs are embedded in the system in order to create remote access mechanisms
and perform various functions without the user's knowledge, which can have serious
consequences for the security and confidentiality of information. Software implants differ
from other types of malware in that they are more difficult to detect, especially because they
differ slightly from standard program code. Additionally, parts of a software implant can be
embedded in normal functions of a software product, making them invisible to normal
monitoring and analysis. The importance of analyzing this feature is that implants mask
their presence by embedding themselves in the normal circulation of program code. This
ability reduces the possibility of detecting software implants and requires the development
of highly effective methods for detecting such malicious elements.
Due to the unique nature of software implants, it is important that research focuses on their
identification and the development of innovative analysis tools. One area of research is to
develop a mechanism for detecting software implants in software products. A software
implant, which is a piece of code created by a developer to gain unauthorized access, is a
focus of attention in efforts to improve the security and protection of information systems.
The development of effective tools to detect these implants is defined as a step towards
improving information security and addressing potential vulnerabilities to cyberattacks.
Consideration of the mechanisms of implementation of software implants and their impact
on the functioning of software products expands the understanding of challenges in the field
of system protection and contributes to the development of strategies to counter these
threats. Analyzing the characteristics of implants is important to identify their potential
impact, which will provide more effective means of combating these new forms of attacks
on the information system. Thus, the class of malware under consideration differs from the
other classes in that it includes malware that does not reproduce or transfer on its own, but
is embedded in useful software at the stage of developing it. Therefore, it is difficult to detect
and requires the development of new and improvement of existing detection methods.
Thus, there is a need to develop methodologies for detecting software implants based on
mechanisms for analyzing the behavior of system components in order to detect software
implants at the verification stage of a software product before its implementation in the IT
infrastructure.

In this paper, we propose to use a mechanism for detecting software implants based on
the analysis of the behavior of system resources relative to the expected behavior of the
program, which is set through a classifier.

2. Characteristics of software implants in related works

The main characteristics of software implants that distinguish them from other classes of
malware are presented in modern related works:

No code obfuscation [12]. Software implants differ from other types of malware in that
their code is not subject to obfuscation[19,20]. Obfuscation is the process of transforming
or hiding program code to make it difficult to understand and analyze.

Lack of signatures [13]. Due to the fact that a software implant is actually embedded in
the software, it does not have suspicious signatures that are standardly used by antivirus
programs to detect malware. Thus, software implants successfully avoid detection by
antiviruses during scans.

Lack of direct commands in the source code of the software implant. In this context, there
are no direct instructions that can be executed in the specified software file. This property
provides resistance to detection during visual inspection of the source code.

The absence of direct connections with developers is an important feature of software
implants. They avoid direct connections with developers to avoid detection and
intervention by antivirus systems. This mechanism not only guarantees anonymity, but also
reduces the risk of compromising the developer of the software implant.

The ability to receive commands from external software resources is a key feature of
software implants. Software implants can use external files to receive commands to execute.
For example, these commands can be encrypted using steganography techniques[14] and
embedded in images. When the software implant is hosted on a web server, the image files
can be periodically updated to allow for new commands. This approach allows the software
implant to be controlled without undue detection through additional network connections.

An important step in developing an effective malware implant detection method is the
classification stage by attack method. This classification includes ransomware, remote
access programs, programs that wait for commands, and programs that collect and transmit
information. Further study and analysis of these categories allows you to create reliable
detection methods for various types of software implants.

Ransomware - is a category of software implants aimed at extorting and collecting
confidential information related to a user or system. It initiates the process of extorting this
information by using unauthorized methods to gain access and interfere with the system.
This type of implant is aimed at obtaining confidential data for further use for profit.

A program waiting for the team, is a class of implants designed to execute specific
commands or instructions coming from an attacker. Its main purpose is to perform specific
tasks or attacks using the received remote commands.

A program that provides remote access, is a category of implants aimed at creating
remote access points to a system. This allows attackers to perform remote operations and
manipulate system resources.

Thus, the classification of software implants according to certain features and criteria is
the basis for the development of new and improvement of the known methods of their
detection.

3. Intrusion detection methods

Software implants that have similarities to Trojan horses in their purpose pose a potential
threat to systems. In order to effectively detect and prevent their introduction and activities,
various mechanisms are used, which can be divided into detection mechanisms and
prevention mechanisms.

The detection mechanisms include obfuscation analysis[19]. Obfuscation analysis is a
process of systematic study and analysis of the obfuscation techniques used in program

code. In this context, obfuscation refers to techniques aimed at making it difficult to read
and understand program code by introducing various transformations, transformations
and hiding program logic. Obfuscation analysis involves a detailed study of the obfuscation
techniques used to determine the degree of difficulty in revealing the true functionality of
the program. This process includes identifying and deciphering various obfuscation
techniques, determining the level of code complexity and its impact on the readability and
understanding of the program.

In order to analyze and detect code obfuscation, we consider a methodology aimed at
identifying metamorphic viruses. This approach is based on a thorough study of obfuscation
features that characterize program code modifications. The focus is on identifying and
analyzing variations in the functional blocks of suspicious programs and their modified
versions. This strategy is aimed at identifying certain obfuscation patterns that are
characteristic of metamorphic viruses and allows to increase the efficiency of the process of
detecting such threats. Therefore, an important step in the process of detecting a software
implant in software is to systematically check the program code to identify the presence of
obfuscation patterns. This stage of analysis is aimed at identifying changes made to the code
by the implant that may hide its existence or complicate the detection of malicious actions.
The emphasis is placed on identifying characteristic obfuscation patterns and analyzing
them to effectively detect potentially malicious modifications in the program code.

One approach to malware detection within distributed systems with partial
centralization[18]. This method involves the use of distributed systems operating with
partial centralization, which include decentralized subsystems where decisions on malware
detection are made by a centralized management body. To determine the presence of
malware in the system components, characteristic indicators have been established, and
generalized analytical expressions for their calculation have been developed. These
analytical expressions make it possible to assess the state of system components and make
appropriate decisions to optimize the malware detection process.

Detection mechanisms include an expanded range of technical and analytical tools
designed to detect and analyze software implants. These mechanisms are based on a
thorough analysis of program code, detection of anomalies during program execution,
monitoring of system resources, security audits, and the use of static and dynamic analysis
to identify potentially harmful elements. Additionally, detection mechanisms include
measures aimed at protecting against code modification, detecting illegal connections to the
developer, and effectively monitoring and analyzing the interaction of the program with
system resources. The interaction of these mechanisms helps to detect software implants
and provides a high level of protection of information systems from potential threats.

Prevention mechanisms include a variety of technical and organizational strategies
designed to make it impossible to introduce and effectively control software implants.
These mechanisms are focused on detecting and deviating from standard behavior that may
indicate the presence of malicious program code.

Prevention systems include the effective implementation of intrusion detection systems
(IDS[15]) to respond to anomalies in network traffic in a timely manner. In addition, it is
important to implement and configure mechanisms for tracking program behavior that
allow you to actively recognize abnormal changes and activities in the program code and

operating system. For the proper functioning of IDSs, an important step is a detailed
analysis of their work, which can be presented in the form of a scheme, as shown in Fig. 2.
2. This scheme allows the intrusion detection system to effectively analyze network traffic,
detect abnormal patterns, and take appropriate measures to prevent further incidents. The
approach of using intrusive detection systems and mechanisms for tracking program
behavior provides comprehensive protection of information systems from potential
threats, ensuring the detection and neutralization of possible intrusions.

Packets

¥

Abnormal packet | Packets filter Filtered packages

Unknown packet

Y i
h 4

Abnormal packet Database trainin

g
Alarm Generator ‘FI Database Trainer

Packet classifier I#

Alarms

z
=
)
o=

MNormal packet

Y

Risk Assessment System H Intrusion response system

Figure 2: Intelligent intrusion detection scheme based on anomalies.

Anomaly Behavior Detection (ABD) systems[16] are a tool for detecting deviations in the
behavior of a system or user from a predictable pattern. They are used in a variety of areas,
including intrusion detection, fraud prevention, defect detection, system performance
monitoring, event detection in network sensors, and ecosystem disruption response.

ABD systems fall into two main categories:

1. Misuse Detection Systems (MDS): These systems respond to known attacks using
signatures and patterns of behavior that have previously been classified as abuse.

2. Anomaly Detection Systems (ADS): These systems record deviations from the
normal development of a system, not necessarily predefined. They detect unusual
patterns or anomalies that may indicate potential threats.

An essential characteristic of ABD systems is their ability to handle attacks even when
the attacker has already gone through the authentication and authorization process and the
formal access rights correspond to his or her authority. This makes it possible to detect
anomalies that occur during legitimate operations but deviate from the typical context of
behavior. The structure of the process with the depicted scheme is shown in Fig. 3. This
scheme demonstrates the operation of the anomaly detection system algorithm, where each

block corresponds to a specific stage of analysis and decision-making. Such an anomaly
detection system allows to effectively identify unforeseen deviations in behavior, enhancing
the overall level of protection of information systems from potential threats and attacks.

Audit logger —
e e

User Behavior

Network Traffic

¥
Data processing

[

y
[Radis
|

Mining Frequent patterns]

/ Detection model /

Anomaly detection

\Jcm al

Anomaly

Figure 3: Scheme of the system for detecting abnormal behavior.

Thus, there is a need to develop a system for detecting software implants in order to
improve the effectiveness of information system protection. This initiative is driven by the
growth of threats and the emergence of new methods of attacking the digital environment.
The development of such a system is determined by the need to reliably detect and analyze
software implants that are difficult to detect and differ from regular program code. The
creation of this system involves consideration of innovative methods aimed at effectively
detecting and protecting against potential digital security threats, ensuring reliable control
over digital Front matter.

4. Method for detecting software implants using a decoy system

A decoy method can be used to detect software implants. This system will emulate the
operation of the subsystem, simultaneously analyzing requests to program files, network
requests from the program, and process interaction. It will also perform the functions of
creating, running, restarting and monitoring data that is loaded into the system's memory.
The described decoy system is defined by its ability to emulate the behavior of a typical
object that can be targeted by software implants. It performs the functions of analyzing and
observing actions that may indicate a potential threat or inappropriate interference in the
system. The work of the algorithm is shown in Fig. 4. This diagram allows you to understand
in detail the sequence of operations performed by the decoy system to detect possible
software implants.

System configurator

Analysis of network
requests

Y

Analysis of the
processes used

L, Analysis of the 7

Information
zystem

resources used

h 4

Analyze the
]
Alarms system contents of RAM

Figure 4: Concept of a software implant detection system.

Since a software implant is a piece of code that is virtually indistinguishable from regular
code, its effective detection requires that the initial settings be determined using a system
configurator. This configurator is a tool that includes a set of patterns that characterize a
given software product. These patterns combine information about the program's
interaction with resources, a description of TCP/IP, the interaction of processes performed
by the software, and the structure of the RAM used by the software.

The system configurator acts as a system tool, setting the parameters and characteristics
of the software in accordance with the specified patterns. This process provides the
algorithm with the ability to detect and respond to abnormal parameters in the software
operation. Due to the difficulties of detecting software implants, the use of a system
configurator becomes a necessary element for customizing the detection system. This
allows the system to be adapted to different types of software, providing the ability to
effectively respond to a variety of implant threats.

Network request analysis includes a network traffic scanning mechanism that actively
evaluates whether the software generates additional requests to third-party resources,
taking into account the resources that were described in the configurator. To effectively
detect software implants, the system analyzes the frequency of requests, their number, and
the length of packets in each request. Additionally, the system checks the content of
requests that were not specified in the configurator. This makes it possible to determine
whether incoming requests contain external commands and whether outgoing requests
contain confidential information.

To analyze data in network queries, a recurrent neural network (RNN) is used[17]. Due
to the characteristics of recurrent neural networks, traffic analysis and anomaly detection
in the network data stream are efficient. These features of recurrent neural networks
contribute to more accurate and sensitive detection of anomalous data in network traffic,
which makes this method important for identifying potential threats and inconsistencies in
network behavior. The principle of operation of the network query analysis mechanism is
shown in Fig. 5.

Metwork trafiic

RMNM

Fresence anomaly

Mo Yes

Transferring traffic

Figure 5: Scheme for analyzing network requests.

To improve the efficiency of detecting software implants aimed at creating botnet
networks, a multi-agent approach in computer systems can be applied [21-23]. This
approach can serve as an additional stage of system analysis. The multi-agent approach to
detecting botnets in computer systems is a methodology based on the concept of multi-
agent systems to detect and counteract botnets. A botnet is defined as a network of
computers or other devices that are controlled by an attacker and used to perform various
tasks, such as spreading malware or attacking other systems. The multi-agent approach
involves the use of autonomous agents that act independently and interact with each other
to detect and counter botnets. Each agent can perform its own functions and tasks, such as
analyzing network traffic, detecting anomalies, or analyzing the characteristics of the
attacks used. This approach is aimed at improving systems for detecting and responding to
threats posed by botnets, providing a more efficient and adaptive mechanism for protecting
computer systems.

The next stage of detecting software implants is carried out by monitoring the processes
generated by the software. This mechanism operates with a table of allowed processes and
procedures to determine the occurrence of anomalies in processes. It includes a task
manager for active software and a mechanism for detecting new resources. When a new
process is detected, the system stops its operation and checks whether it can be re-created.
If the process is restored, the system displays a message about the probability of the
presence of a software implant that initiates the restoration of processes. The application
of this method is based on the study and analysis of process dynamics, relying on the
principles of monitoring and analyzing changes in system resources to timely detect and
counteract cases of creating unforeseen processes. The operation of the system for
detecting abnormal processes is shown in Fig. 6.

Process list

Process cnnﬂguratnr} o Clazsifier o« [Kill process]
RMNN l

fes

Process anomaly Process repeaied

Mo es

Execute process Alarms

Figure 6: Algorithm of the system for detecting abnormal processes.

This algorithm performs a number of key functions. First, it checks whether the process
belongs to the list of configured processes. Next, it checks the classification of the process
and analyzes the resources it uses. A recurrent neural network (RNN[24-25]) is used to
assess possible threats. If the process is suspicious, the system tries to stop its operation. If
the suspicious process is repeated, the system generates information about its potential
danger to the system. This approach is based on the use of scientific methods and takes into
account aspects of process behavior analysis in order to effectively identify and eliminate
possible threats.

The algorithm for analyzing used resources and RAM content operates in accordance
with the principles used in the algorithm for analyzing network requests. When analyzing
the contents of the RAM, the system compares the declared amount of allocated memory
described in the classifier with the actual amount of memory allocated. As for the analysis
of used resources, the system examines which files are used in the program and how they
are used. For example, if it is found that a file that is not intended to read data in binary
format at all, such as an image, is processed as a binary file, this may indicate an attempt to
manipulate the system through file input.

Thus, the described method can be implemented and the detection strategy set by the
steps of this method is promising for further research.

5. Experiment

Setting up the experiment. The experiment involves the use of the developed system,
which implements the method of detecting software implants. The conditions of the

experiment were clearly defined. It is noted that the application of this method is possible
in the corporate environment, since it is in corporate information systems that software
implants can mainly occur. The experiment involved software implants aimed at various
tasks:

Collecting information and transferring it to the server.

The implant waiting for the command is hidden in the image using steganography.
A program that provided access to the system console.

Implants designed to create fake accounts.

For the experiment, a recurrent neural network was used to classify software implants
depending on their functionality:

Interaction with the network.

Operations with files.

Process management.

Execute commands from the command line.

B W=

The object for classification was a system specially designed for warehouse
management. The classifier included characteristics related to the types of files that the
software product processed, as well as a detailed description of the operations that
could be performed on the files. The servers to which the program made requests and
the console operations available to the software implant were also identified.

To objectively evaluate the algorithm, more than 3,000 different operations were
performed during the experiment, including 400 operations that were specific to
software implants. This had a positive impact on the quality of classification of software
implants and allowed for a deeper understanding of their functional purpose within the
experiment.

Results of experimental studies. To perform the experiment, an isolated system and
a system that simulated user actions were used. In order to effectively train the
recurrent neural network and correctly classify software implants, it was planned to
spend 50 epochs training the model.

The results of the experiment are presented in Table 1, which shows the data for
every 10 epochs. This allowed us to obtain detailed data on the detection and
classification of software implants during the experiment. The results of the experiment
are shown in Table 1.

During the experiment, it was found that the network was effectively trained for 50
epochs. It was noted that the network demonstrated the highest efficiency when
detecting software implants that initiate additional processes.

The overall efficiency of detecting software implants that create additional processes
was 98.00%. The training schedule of the software implant detection system is shown
in Fig. 7.

Table 1
Results of the experiments, TP - True positive, TN - True negative, FN - False positive, FP -
False negative.

Epochs of Classes of TP TN FN FP Overall
learning implants accuracy, %
1-10 1 102 100 102 96 50.50%

2 101 85 110 104 46.50%
3 111 95 105 89 51.50%
4 111 95 99 95 51.50%
10-20 1 143 123 70 64 66.50%
2 125 134 69 72 64.75%
3 120 155 70 55 68.75%
4 125 132 69 74 64.25%
20-30 1 137 137 55 71 68.50%
2 131 150 44 75 70.25%
3 143 125 73 59 67.00%
4 134 124 73 69 64.50%
30-40 1 156 161 47 36 79.25%
2 139 168 48 45 76.75%
3 155 168 48 46 78.00%
4 159 160 47 34 79.75%
40-50 1 218 172 4 6 97.50%
2 179 211 5 5 97.50%
3 191 201 3 5 98.00%
4 206 185 3 6 97.75%

-1 -2 3 =4

100,00
95,00
90,00
85,00
80,00
75,00
70,00
65.00
60,00
55,00
50.00

45,00
1-10 10-20 20-30 30-40 40-50

Figure 7: System learning dynamics.

6. Conclusions

As a result of the study, a software implant detection system based on recurrent neural
networks and a classifier was developed. The classifier is a mechanism that describes the
operating behavior of the software and provides the recurrent neural network with the
ability to learn. This mechanism helps to identify behavioral patterns characteristic of
software implants and notify the user of the possible risk of data loss.

During the experiments, it was found that in order to successfully detect a software
implant that initiates the creation of additional processes, the system needs to be trained
for 50 epochs. Thus, the detection efficiency is 97.50%, which indicates the possibility of
using this system as an effective mechanism for detecting software implants in corporate
systems. Given the results obtained, it can be recommended for use in a wide range of
information systems to ensure reliable protection against potential security threats.

Further research work is aimed at creating automatic classification systems designed to
automate the process of setting up a software implant detection system. This will help
reduce the time required to configure and put into operation a system designed to detect
software implants in various types of software and information systems.

References

[1] Top 10 Malware Q3, 2023. URL: https://www.cisecurity.org/insights/blog/top-10-
malware-q3-2023

[2] S.Poudyal, D. Dasgupta, Al-powered ransomware detection framework, IEEE Symposium
Series on Computational Intelligence (SSCI). (2020) 1154-1161.

[3] V. Valeros, S. Garcia, Growth and commoditization of remote access Trojans, IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW). (2020) 454-462.

[4] O. Ude, B. Swar, Securing Remote Access Networks using malware detection tools for
industrial control systems. 4th IEEE International Conference on Industrial Cyber-Physical
Systems (ICPS). (2021) 166-171.

[5] Enterprise Cybersecurity Solutions, Services & Training | Proofpoint US, 2024. URL:
https://www.proofpoint.com/us/blog/threat-insight/are-you-sure-your-browser-date-
current-landscape-fake-browser-updates

[6] G.F.M.Karo-Karo, M.S.A. Harumnanda, C. Lim, Investigating Multiple Malware as a Service
(MaaS): Analysis and Prevention Techniques. IEEE International Conference on
Cryptography, Informatics, and Cybersecurity (ICoCICs). (2023) 270-274.

[7] H. Shuang, L. Zhao, D. Lie, vWitness: Certifying Web Page Interactions with Computer
Vision, 53rd Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2023, pp. 431-444. URL: https://security.csl.toronto.edu/blog/wp-
publications/hshuangdsn2023vwitness

[8] Sudhakar, S. Kumar, An emerging threat Fileless malware: a survey and research
challenges. Cybersecurity, vol. 3 (2020) 1-11.

[9] MalwareBazaar | Browse Checking your browser, 2024. URL:
https://bazaar.abuse.ch/browse/tag/Arechclient2/

https://www.cisecurity.org/insights/blog/top-10-malware-q3-2023
https://www.cisecurity.org/insights/blog/top-10-malware-q3-2023
https://www.proofpoint.com/us/blog/threat-insight/are-you-sure-your-browser-date-current-landscape-fake-browser-updates
https://www.proofpoint.com/us/blog/threat-insight/are-you-sure-your-browser-date-current-landscape-fake-browser-updates
https://bazaar.abuse.ch/browse/tag/Arechclient2/

[10] Y.Zhang, H. Xue, |. Lin, X. Liu, W. Gai, X. Yang, A. Wang, Y. Yue, B. Sun, ER-ERT: A Method of
Ensemble Representation Learning of Encrypted RAT Traffic. 2023 IFIP Networking
Conference (IFIP Networking) (2023) 1-10.

[11] J.JeZovnik,, Glasovne in naglasne znacilnosi terskega narecja. ZaloZba ZRC, vol. 43 (2022).

[12] S.Zafar, M.U. Sarwar, S. Salem, M.Z. Malik, Language and obfuscation oblivious source code
authorship attribution. IEEE Access (2020) vol. 8, 197581-197596.

[13] J. Acharya, A. Chaudhary, A. Chhabria, S. Jangale, Detecting malware, malicious URLs and
virus using machine learning and signature matching. 2021 2nd International Conference
for Emerging Technology (INCET) (2021) 1-5.

[14] D. Denysiuk, O. Savenko, S. Lysenko, B. Savenko and A. Kashtalian, Method for Detecting
Steganographic Changes in Images Using Machine Learning, 2023 13th International
Conference on Dependable Systems, Services and Technologies (DESSERT), Athens,
Greece, (2023) 1-6, doi: 10.1109/DESSERT61349.2023.10416453.

[15] M. Eskandari, Z.H. Janjua, M. Vecchio, F. Antonelli, Passban IDS: An intelligent anomaly-
based intrusion detection system for [oT edge devices. IEEE Internet of Things Journal,
(2020) vol. 7, 6882-6897.

[16] H. Zhang,]. Li, X. Liu, C. Dong, Multi-dimensional feature fusion and stacking ensemble
mechanism for network intrusion detection. Future Generation Computer Systems, (2021)
vol. 122, 130-143.

[17] K. Guo, Y. Hu, Z. Qian, H. Liu, K. Zhang, Y. Sun,]. Gao, B. Yin, Optimized graph convolution
recurrent neural network for traffic prediction. IEEE Transactions on Intelligent
Transportation Systems (2020) vol. 22, 1138-1149.

[18] B. Savenko, A. Kashtalian, S. Lysenko and O. Savenko, Malware Detection By Distributed
Systems with Partial Centralization, 2023 IEEE 12th International Conference on
Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), Dortmund, Germany, 2023 pp. 265-270

[19] S.S. Albougq, A.A. Abi Sen, A. Namoun, N.M. Bahbouh, A.B. Alkhodre, A. Alshangqiti, A double
obfuscation approach for protecting the privacy of 1oT location based applications. IEEE
Access (2020) vol. 8, 129415-129431.

[20] G.Markowsky, O.Savenko, S. Lysenko, A. Nicheporuk The technique for metamorphic viruses'
detection based on its obfuscation features analysis, CEUR-WS, 2104 (2018) 680-687.

[21] Y. Tesnim,]. Farah, A multi-agent-based system for intrusion detection. Agents and Multi-
Agent Systems: Technologies and Applications 2021: Proceedings of 15th KES
International Conference, KES-AMSTA 2021, June 2021 (2021) 177-191.

[22] C. Liang, B. Shanmugam, S. Azam, A. Karim, A. Islam, M. Zamani, S. Kavianpour, N.B. Idris,
Intrusion detection system for the internet of things based on blockchain and multi-agent
systems. Electronics (2020) vol. 9, 1120.

[23] S.R. Zahra, M.A. Chishti, A generic and lightweight security mechanism for detecting
malicious behavior in the uncertain Internet of Things using fuzzy logic-and fog-based
approach. Neural Computing and Applications (2022) vol. 34, 6927-6952.

[24] A. Tsantekidis, N. Passalis, A. Tefas, Recurrent neural networks. Deep learning for robot
perception and cognition, Elsevier (2022) 101-115.

[25] L. Ruiz, F. Gama, A. Ribeiro, Gated graph recurrent neural networks. IEEE Transactions on
Signal Processing (2020) vol. 68, 6303-6318.

