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Abstract

A convolutional neural network for car image recognition has been developed. The neural
network model is implemented with the EfficientNet architecture. The software implementation
of the neural network was written in Python using the Keras library. The neural network model
was trained on the basis of the publicly available Vehicle Detection Image Set dataset, which made
it possible to compare the accuracy of the developed model with analogues. The structure of the
developed model with the basic architecture of EfficientNet was improved, which increased the
accuracy of model training. The improvement consisted of adjusting the network parameters,
unfreezing some of its layers, and creating stop conditions to avoid overtraining. These additional
measures helped to improve the model's accuracy. The images used to train the model were pre-
processed by scaling and randomly rotating them (augmentation). Due to the model
improvement and data preprocessing, a high model training accuracy (99.98%) was obtained,
which exceeds the training accuracy for the best analog model (99.63%) on the used dataset. The
developed convolutional neural network can be used for car image recognition and localization.
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1. Introduction

In today's world, there is a need to develop Artificial Neural Networks (ANN) designed to
recognize digital images. In particular, in practice, the task of recognizing car images often
arises. This task is quite effectively solved by Convolutional Neural Networks (CNN) [1-3],
which use deep learning technologies. CNN are particularly effective in image recognition,
as they take into account the geometry of images, the peculiarities of human visual
perception, and use multilayer signal processing for a large number of examples. The name
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of CNN is explained by the convolutional operation used in them, which is performed when
processing two-dimensional signals.

However, when recognizing car images using existing convolutional neural network
architectures, difficulties arise due to the low training speed of the CNN and limited
recognition accuracy. The significant training time of the CNN is explained by the large
number of layers of the neural network and the large size of the training sample. Insufficient
accuracy of object recognition is explained, in some cases, by the incompleteness of the
training set. One way to improve the accuracy of CNN is to increase the number of neural
network parameters, but this can lead to overtraining and a decrease in recognition
accuracy for images that do not belong to the training set. In general, the recognition
accuracy decreases due to the mismatch between the architecture and training parameters
of the CNN and the features of the images of the objects to be recognized.

Therefore, an important task is to develop a convolutional neural network that would
ensure high accuracy of car image recognition with acceptable CNN training time. This task
is realized by selecting the appropriate CNN architecture, pre-processing the images of the
training and control samples, and adapting the structure and training parameters of the
CNN to the features of car images.

2. Related Works

The architecture of the CNN is a determining factor that affects the quality of the network.
Therefore, let's consider the main modern CNN architectures that can be used for car image
recognition.

ResNet (Residual Networks) architectures, especially its deep variants ResNet-50 or
ResNet-101, are widely used and have proven to be effective in image classification tasks,
as shown in [3]. They utilize residual block connectivity, which helps to reduce the problem
of vanishing gradients and improves the training of deep networks. Typical ResNet models
are implemented with double or triple layer transmissions, with nonlinear activation
functions (e.g., ReLU), or with batch normalization in the middle. The disadvantage of deep
ResNet models is the long training time due to problems with gradients. In addition, an
increase in the number of layers leads to an increase in the number of parameters, which
requires more computing resources.

DenseNet architectures [4, 5] are known for their dense connectivity, which facilitates
feature reuse and facilitates the flow of gradients during training. DenseNet models have
shown high performance in image classification tasks and can be effective for identifying
cars in images. However, the dense connections of such CNN can lead to an increase in the
number of parameters, which can make model training more difficult.

The Xception architecture [6] uses deep separate convolutional units, which reduces the
number of parameters (with a fairly high performance). Such CNN are successful in various
image classification tasks. However, neural network models with the Xception architecture
may require long training due to their depth and complexity of architecture. In addition,
when deep convolutional units are used, the problem of learning with vanishing gradients
may arise. Compared to other architectures, such as ResNet or DenseNet, Xception may be
less efficient in terms of recognition accuracy and training resource requirements.



The EfficientNet architecture [7] differs from other architectures in that it is balanced, as
it achieves a trade-off between accuracy and training time. EfficientNet uses scaling of
network width, depth, and resolution to achieve an optimal balance between accuracy and
computational efficiency. This ensures high accuracy of image classification with minimal
resource utilization. In addition, EfficientNet's well-balanced architecture uses deep
connections between layers and optimized convolutional units to help avoid problems with
vanishing gradients and ensure stable training even for deep models. The EfficientNet
architecture can be successfully used for a wide range of tasks from image classification to
object detection. For this reason, this architecture is often used in the computer vision [8-
10].

Therefore, taking into account the advantages and disadvantages of the considered CNN
architectures, the EfficientNet architecture (its basic variant EfficientNetB0) was chosen for
the software implementation of the car image recognition system [11- 13].

Real images of cars are obtained from different angles and at different distances from the
video camera [14], and are characterized by uneven lighting, noise, and foreign objects.
Therefore, in order to recognize car images with high accuracy, it is necessary to perform
image preprocessing before training the CNN [15-17]: scaling to a given size, obtaining
images from different angles by rotating them.

3. Convolutional Neural Network Model

For car image recognition, CNN model was developed with the EfficientNet architecture,
which is characterized by an optimal balance between recognition accuracy and the number
of floating-point operations (FLOPS), making it very effective for various computer vision
tasks [18-20]. The structure of EfficientNet (Table 1) consists of a number of stages, which
include various convolution operations and mobile feedback units MBConv. Each stage has
its own input parameters, such as image dimensions (H, W), number of channels (C), and
number of layers (L).

Table 1
EfficientNet-BO baseline network; each row describes a stage i with L; layers, with input
resolution (H;, W;) and output channels C; [7].

Stage Operator Resolution #Channels #Layer
i Fi H; x Wi Ci L
1 Conv3x3 224 x 224 32 1
2 MBConv1, k3x3 112 x 112 16 1
3 MBConv6, k3x3 112 x 112 24 2
4 MBConv6, k5x5 56 x 56 40 2
5 MBConv6, k3x3 28 x 28 80 3
6 MBConv6, k5x5 14 x 14 112 3
7 MBConv6, k5x5 14 x 14 192 4
8 MBConv6, k3x3 7x7 320 1
9 Convlx1 & Pooling & FC 7x7 1280 1




MBConv is the primary block used in the EfficientNet architecture. It is based on the
mobile inverted bottleneck convolution and squeeze-and-excitation optimization. This
block contributes to optimizing the number of parameters and improving the convolutional
operation process. Additionally, EfficientNet differs from other architectures in that it has
optimally tuned scaling coefficients (a, (3, y), allowing for network size increase through
compound scaling [7]. This enables larger models with high accuracy while maintaining an
optimal balance between the number of parameters and computational complexity.

Starting from the baseline EfficientNet-BO model, the compound scaling method is
applied to scale it up in two steps:

STEP 1: Initially, ¢ = 1 is fixed, assuming twice as many resources available, and a small
grid search is conducted for a, B, y values. ¢ represents the compound scaling factor, which
is used to scale the network width, depth, and resolution simultaneously to achieve optimal
performance.

STEP 2: Then, a, B, y are fixed as constants, and the baseline network is scaled up with
different ¢ values.

The EfficientNet model easily adapts to different image sizes and accuracy requirements
through compound scaling. This allows optimizing the model for specific task conditions,
such as varying input image sizes or performance requirements.

4. Software Implementation of Convolutional Neural Network

4.1. Selection of Training and Control Datasets

The developed CNN with the EfficientNet architecture was trained on the basis of the
Vehicle Detection Image Set, which contains 17760 color images, of which 8792 images
contain cars (Fig. 1) and 8968 do not (Fig. 2). The dataset was split into training and test
sets with a ratio of 0.7, respectively, to ensure the accuracy of the model evaluation. The
division of images was made random. The images in the dataset have a size of 64 x 64 pixels.
The dataset is available on the kaggle.com website [21], which makes it possible to compare
the performance of the proposed model with existing works. Before using the dataset, it is
necessary to perform processing and preparation steps to work with the selected neural
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Figure 1: Fragment of the image dataset with cars (12 images out of 8792).
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Figure 2: Fragment of the image dataset without cars (12 images out of 8968).

4.2. Preliminary Image Processing

Before training the CNN, images are loaded from the catalogs. The program accepts paths
to directories containing images with and without cars. After that, the images are loaded
using OpenCV for the processing stage. Each loaded image is scaled using the
reshaped_image method. This method converts the image to a size of 100 x 100 pixels. If
the original image is not square, then additional pixels are added to it or unnecessary ones
are removed (to maintain proportions). An algorithm has been developed that transforms
rectangular images into square ones. To reduce distortion in scaled images, the color of the
added pixels is calculated as the average value of the nearest half of the image (Fig. 3).
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Figure 3: An example of how the algorithm works to transform a rectangular image into a
square one.

This scaling allows to process images of any proportions with by CNN. After scaling, the
color channel values of all pixels in the image are normalized in the range from 0 to 1. This
improves the convergence of the neural network training. These steps ensure that the
images are prepared for use in the neural network for classification.



4.3. Data Augmentation

One approach to data augmentation is to apply random rotation of images with a small tilt
angle. This approach aims to increase the diversity of the data and improve the overall
ability of the model to generalize new images. In the developed program, each input image
from the dataset is rotated twice: first to the right and then to the left by a random angle
(for example, between -10 and 10 degrees). Thus, each original image is complemented by
two rotated images. This allows the CNN model to learn to recognize objects in images from
different viewing angles, making it more robust to changes in the position or angle of objects
(e.g., cars).

An important advantage of data augmentation is that it increases the stability of the
model. The CNN becomes more adaptable to different shooting conditions (viewing angles,
lighting, etc.). This method also helps to avoid overtraining, as the model is trained on more
diverse data, which makes it capable of generalizing new images. Increasing data diversity
also helps to make the model less sensitive to noise and other artifacts in the data. A
visualization of image augmentation is shown in Figure 4.
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Figure 4: An example of data augmentation using image rotation.

However, it should be noted that data augmentation leads to an increase in the size of
the dataset and an increase in the computational cost of model training. After augmentation,
the dataset is increased to 53,280 images, of which 42624 are used for training and 10656
for validation.

4.4. Software Implementation of a CNN with EfficientNet Architecture

In this work, the CNN model with the EfficientNetB0O architecture was implemented using
the Python programming language and the Keras library (Table 1). Also, layers for global
average pooling were added to the model, followed by two fully connected layers for
classification, and the last layer used the softmax activation function. The program code to
implement the model based on EfficientNetB0 uses the Keras framework, which provides a
user-friendly interface for building and training neural networks. The first step is to load
the pre-trained EfficientNetBO model without the top classification layer. The
EfficientNetBO architecture has been added to the Tensorflow [22] and Keras [23] libraries.



This allows using CNN weights that are pre-trained on the large ImageNet dataset (which
also contains car images).

In the EfficientNetBO0 architecture, a layer corresponds to a computing unit that performs
a specific image processing operation. Let’s consider several layers of the CNN (Fig. 5) and
explain their functions:

1. input_1 (InputLayer) - an input layer that accepts input images of 100x100 pixels
with three color channels (RGB).

2. rescaling (Rescaling) - the layer scales the color channel values for the pixels of the
input image to the range [0, 1]. This helps to prepare the data for further processing
in the network and ensures the stability of the learning process.

3. normalization (Normalization) - this layer normalizes the input pixel color values to
balance their distribution. It can perform different types of normalization, such as
centering and scaling. Normalization helps to avoid problems with gradients during
training.

4. stem_conv (Conv2D) - the layer is responsible for convolution of the input images.
The convolution is applied with a kernel of 3 x 3 elements to highlight important
features in the image.

5. stem_bn (BatchNormalization) - the layer performs batch normalization of the
output values after convolution to stabilize the learning process and improve the
convergence rate.

6. stem_activation (Activation) - the layer applies the activation function ReLU
(Rectified Linear Unit) to the output values after batch normalization to introduce
nonlinearity into the network.

7. blockla_dwconv (DepthwiseConv2D) - the layer performs depthwise convolution,
i.e. independent convolution for each channel of the input image.

8. blockla_bn (BatchNormalization) - after depthwise convolution, this layer is used
for batch normalization.

9. blockla_activation (Activation) - the activation layer applies a nonlinear function to
the output values after batch normalization to preserve the nonlinear properties of
the data.

Pre-training of CNNs greatly simplifies the learning process [24]. After the base model is
loaded, the layers are frozen (fixed), which avoids overtraining on a small data set. Layer
freezing is set with the parameter trainable=False. Next, a global mean pooling layer is
added to the CNN model, which allows to collapse the spatial dimensions of the previous
layer to a fixed-length vector. This helps to reduce the number of parameters and
computational size of the model, which is especially important when training on limited
amounts of data. After the global mean pooling step, two fully connected layers are added,
which are used to classify the images into two classes: "car" and "non-car". The last layer
uses softmax activation to select the class with the highest probability. Once the model is
built, the compile method is called to set the training parameters, such as the optimizer, loss
function, and metrics for evaluating the model.



Layer (type) Output Shape Param # Connected to

input_1 (InputlLayer) [(None, 188, 166, 3 8 [1

)]
rescaling (Rescaling) (None, 1688, 188, 3) B ["input_1[8][0]"]
normalization (Normalization) (None, 108, 186, 3) 7 ['rescaling[@][@]"]
rescaling_1 (Rescaling) (None, 186, 188, 3) © ["normalization[@][8]"]
stem_conv_pad (ZeroPadding2D) (None, 161, 161, 3) 8 ["rescaling 1[@][8]"]
stem_conv (Conv2D) (None, 5@, 58, 32) 864 ["stem _conv_pad[8][8]"]

stem_bn (BatchMormalization)  (None, 58, 58, 32) 128

—

*stem_conv[@][@]"]

stem_activation (Activation) (None, 58, 5@, 32) ©

—

‘stem_bn[8][0]"]

blockla_dwconv (DepthwiseConv2 (Mone, 58, 58, 32) 288 ["stem_activation[@][8]"]
D)

blockla _bn (BatchMormalization (Mone, 5@, 58, 32) 128 ["blockla_dwconv[B][8]"]
)

blockla activation (Activation (Mone, 58, 58, 32) 8 ["blockla _bn[B8][8]"]

)

Figure 5: A fragment of the CNN model with the EfficientNetB0 architecture obtained from
the tensorflow library.

The Adam optimizer was chosen, the binary_crossentropy loss function (since the task
is binary classification), and the accuracy metric to evaluate the model's accuracy during
training. The structure of the CNN model (Model summary) is shown in Figure 6.

Layer (type) Qutput Shape Param #
efficientnetb (Functional) (Nome, 4, 4, 1289) 4049571
global average pooling2d (G (None, 1288) 8
lobalAveragePooling2D)

dense (Dense) {Mone, 128) 163968
dense_1 (Dense) (Mone, 2) 258

Total params: 4,213,797
Trainable params: 4,171,774
Non-trainable params: 42,823

Figure 6: A fragment of the structure of the CNM model with the EfficientNetB0 architecture.

The EfficientNetBO0 architecture has a large number of parameters that are used to detect
various features in images. In the case of the developed CNN model, the total number of



parameters is 4,213,797, so the model has a great potential power to detect complex
dependencies in the input data.

A graphical interface for interactive adjustment of neural network parameters has been
developed (Fig. 7). The interface was created using the tkinter library of the Python
programming language. The developed interface makes it possible to select the location of
the dataset, the number of epochs, the path of saving the model, etc.

/" CNN Model Settings - X
Cars Image Directory: |./data./keras/cars,/ ‘
Not Cars Image Directory: I /data/keras/not_cars/ ‘

Object Detection Test Image Directory: I./data/object_detection/ }

Number of Epochs:

Show CNN Performance Graph

Show Incorrectly Predicted Images
Show Sliding Window Search

Save CNN model

Save model path: o

Figure 7: Graphical interface for setting up CNN parameters.

Also, using checkboxes, user can display a graph of model accuracy, show incorrectly
recognized images during image validation, and implement car recognition using a sliding
window as an example. This interface allows for quick and interactive change of various
parameters of the neural network and the image recognition program itself. Just like the
GUI, user can change all the parameters and run the neural network using the Command
Line Interface (CLI).

5. Improvement of the Convolutional Neural Network Model

After the implementation of the basic CNN model with the EfficientNetBO architecture,
improvements were made. It is important to note that the efficiency of the basic model is
already quite high due to preliminary training on a large ImageNet dataset.

5.1. Fine-tuning

Initially, the fine-tuning method was used to tune the base model with the EfficientNetBO
architecture, in which the layer weights were frozen (fixed). In the new model, some of the
layers are unfrozen and subjected to fine-tuning along with the newly added layers on top.
This allows the CNN model to learn on more specific image features using the knowledge
from the previously trained weights. The last 20 layers of the base model were unfrozen by



setting the trainable parameter to True for each of these layers. The model was compiled
using the Adam optimizer at a low learning rate (0.0001) for tuning.

The model was then trained on the dataset using the specified number of epochs, with a
control sample used to prevent overfitting. The number of unfrozen layers, learning rate,
and other hyperparameters were adjusted to meet the specific requirements of the dataset
and the image recognition task. During fine-tuning, the model may be overtrained,
especially if the amount of training data is limited. Therefore, it is important to monitor
changes in the metrics and, if necessary, take timely measures to prevent overfitting, such
as regularization or early stopping of training.

5.2. Early Stopping

Early stopping of training is used in the process of training the ANN model. This approach
avoids overtraining by monitoring the losses on the validation dataset and stopping training
when these losses stop decreasing or start increasing. For this purpose, the EarlyStopping
callback from the Keras library was used. This callback monitors the losses on the validation
dataset and stops training if the losses do not decrease for a certain number of epochs (the
patience parameter). In addition, the restore_best_weights parameter allows to restore the
model weights to those that gave the best result on the validation set. In this work, the
callback object for early stopping was used with the parameters monitor='val_loss'
(monitoring losses on the validation set), patience=3 (waiting for 3 epochs without
improvement), and restore_best_weights=True (restoring the best model weights). This
ensures that the training process will be stopped if the losses on the validation set do not
improve within a specified number of epochs.

5.3. Learning Rate Scheduling

A study was conducted to adjust the learning rate using Learning Rate Scheduling. This
approach allows to adjust the learning rate during training, which potentially leads to faster
convergence and better model performance. To do this, the Ir_scheduler function was
defined, which reduces the learning rate by 10% every 10 epochs. Next, the
Ir_scheduler_callback object was created using the LearningRateScheduler callback, to
which the learning rate scheduler function was passed. During model training, both
callbacks responsible for early stopping and learning rate scheduling were passed to the
callbacks parameter of the fit method. This ensures that during training, the learning rate
will adapt according to the set schedule. This approach is a tool for optimizing the training
process of neural networks. Reducing the learning rate over time can help to avoid delays
in convergence and model overtraining. This allows the CNN to "rest" from sudden changes
and ensures a more stable learning process. The use of Learning Rate Scheduling is
especially useful in cases where complex data or large neural network architectures are
used, where the learning process can be very sensitive to changes in the learning rate.

5.4. Improved Structure of the Convolutional Neural Network

In this improved structure of the CNN model, several important changes have been made to
improve its performance and learning capabilities. Residual connections, a key element in



deep neural networks, are utilized. Residual connections enable the prediction of residual
information that remains after passing through each layer of the network. This helps
mitigate the vanishing gradients problem and contributes to faster training and improved
model convergence. Adding residual connections between the layers of the model allows
gradients to more easily propagate backward through the network during error
backpropagation, leading to more effective learning.

The LeakyReLU activation function was also used, which is a modification of the standard
ReLU activation function. In the standard ReLU function, neurons are not trained if their
input value is less than zero. This can lead to stagnation problems and slower model
training. Using LeakyReLU allows to pass negative values through the network with a small
slope, which improves the gradient flow and helps avoid the problem of stalling. The alpha
parameter specifies the slope value that adjusts the output of the LeakyReLU function for
negative values. The choice of this parameter affects the speed and stability of training. A
shortcut is created that is added to the output value after several fully connected layers.
This allows the model to freely "bypass" some layers, which facilitates the learning process
and allows the model to learn faster.

These changes in the model architecture are aimed at improving its learning capability
and ability to avoid overfitting. The combination of the lagged links and the LeakyReLU
activation function helps the model to detect complex dependencies in the data more
effectively. In addition, the updated CNN structure adds another fully connected layer with
the LeakyReLU activation function and Dropout layers, which helps to regularize the model
and prevent overfitting. These additional layers help to moderate the complexity of the
model, making it more generalizable and resistant to overfitting. They provide an additional
layer of control over the propagation of gradients and the internal representation of data in
the network.

6. Results

6.1. Training Results of the Basic Convolutional Neural Network Model

After the basic CNN model was built and compiled, it was trained on the training data for 10
epochs. After each epoch, the model's accuracy was evaluated on a control dataset (to avoid
overfitting). The training took approximately 25 minutes. According to the results of the
experiment on the control dataset, the model accuracy is 82.69%. This indicates that the
CNN is able to cope with the task of detecting cars in images, but the accuracy is
unsatisfactory. To improve the accuracy, an improved CNN model was used.

6.2. Training Results of the Improved Convolutional Neural Network Model

The improved CNN model with the EfficientNet architecture showed a significant increase
in accuracy compared to the baseline model. The total number of parameters of the
improved model is 4,451,685. When using images without rotation, the model training
process lasted only 6 epochs (instead of the planned 10). This is due to the fact that the
model stopped improving the results on the validation dataset, so additional training
epochs were not needed. An important metric is the accuracy of the model, which reached



a value of about 99.77% on the validation dataset (Fig. 8). When using images with
rotations, an extremely small training error of 2 x 10-4 was obtained for the validation
dataset, and the model accuracy reached 99.98% (Fig. 9).
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Figure 8: Graphs of training loss and accuracy for the improved CNN (image without
rotation is used)
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Figure 9: Graphs of training losses and accuracy for the improved CNN (image with
rotations is used)

This indicates the high efficiency of the model, which allows for accurate classification of
images with and without cars. The obtained accuracy exceeds the accuracy for the best
analog program (99.63%), which was trained on this dataset [25]. This confirms the
prospects of the developed CNN model.



7. Conclusion

A CNN model with the EfficientNet architecture has been developed for car image
recognition. The CNN model is implemented using the Python programming language and
the Keras library. The widely used Vehicle Detection Image Set dataset was used to train
the model, which made it possible to compare the effectiveness of the proposed model with
existing solutions. The structure of the developed model was improved: its parameters
were adjusted, some layers were unfrozen, and stop conditions were added to avoid
overtraining. These additional measures helped to improve the model's accuracy. Due to
data augmentation, which was performed by randomly rotating the images, a high model
training accuracy (99.98%) was obtained, which exceeds the training accuracy for the best
analog (99.63%) on the used dataset.
The developed CNN model can be practically used for car image recognition.
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