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Abstract 
In the article, the neural network-based method of predicting the optimal triangles count of scene 
object‘s polygonal model is proposed. The necessity of polygonal models simplification for providing 
the highly productive visualization of three-dimensional scenes is analyzed. The main approaches to 
polygonal models simplification are discussed. The main geometrical-spatial factors that determine 
the optimal polygons number of object’s surface are indicated. The existing methods of the direct 
simplified model generation, iterative model generation of optimal complexity, model generation 
relative to the parameters of temporal rendering equation, prediction of the optimal local density of 
a particular polygon are described. The advantages and disadvantages of described methods are given. 
The need in complementing the methods of polygonal model simplification with the prediction of 
model’s optimal polygons number is justified. The proposed method of optimal polygons number 
prediction that lies in two-branch neural processing of object’s vector and volume data is described. 
The development of dataset of 24000 samples that is based on ShapeNet dataset for neural network 
training is described. The process of optimization of the proposed neural network architecture’s 
parameters with the usage of the optimization library is characterized. The developed method of 
optimal triangles number prediction is verified through calculating the accuracy metrics of test 
dataset approximation. It is shown that the proposed method is more accurate than guessing the 
triangles number and using feedforward neural networks. The illustrative examples of optimal 
triangles number prediction for the cars and planes models are provided. In the result, the developed 
neural network provides faster and more effective polygonal model simplification at the stage of 
geometrical transformations of graphics pipeline. 
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1. Introduction

The most important requirements of modern graphics systems are high realism and high 
productivity of scene visualization. The productivity of three-dimensional image creation 
depends on the implementation details of the main graphics pipeline stages, which include 
geometrical transformations and rendering. 
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The increase in rendering stage productivity is possible by means of developing effective 
shading methods [1, 2, 3], using simple bidirectional reflectance distribution functions [4, 5], 
simplifying vector normalization procedures [6, 7], and rendering parallelization.  

The productivity of image creation is also determined by the number of polygons, into which 
the object surfaces are divided. Due to the limited computational capabilities of visualization 
systems, polygonal mesh simplification methods are used. The two main polygonal mesh 
simplification methods [8] are removing part of the vertices and merging the edge vertices into 
new vertices (edge collapse). The disadvantage of the first method is the need for repeated 
tessellation after vertices removal. In the second method, the base of the polygonal model is 
conserved. 

It is reasonable to simplify the polygonal mesh to the lowest number of polygons at which 
the losses in visualization quality are imperceptible. The optimal polygons number of an object’s 
surface depends on its geometrical complexity and relative position to the camera. The objects 
with high surface curvature are modeled in more detail, the distant objects from the camera are 
represented by a small number of polygons. 

The automatic determination of reasonable objects’ polygons numbers allows to increase 
the productivity of three-dimensional image creation and the effectivity of the scene’s 
geometrical characteristics optimization. 

Therefore, the development of methods for the three-dimensional figures’ optimal polygons 
numbers prediction is needed. 

2. Related Works 

The most researched direction of polygonal models simplification is the direct generation of 
their simpler versions. In the polygonal model generation method, proposed by R. A. Potamias 
et al. [8], the sampling of vertex points, the prediction of polygons’ edges, and the classification 
of polygons’ faces are combined. The basis of the method lies in applying graph neural networks 
(GNN). In the first step, GNN is used for the selection of points, which approximate the object’s 
surface the most accurately. In the second step, the probability of edge formation between two 
vertices is predicted. In the third step, the probability that the proposed face belongs to a 
simplified model is predicted. The method is universal, provides the single-pass polygonal 
model generation, for the first time the learning of point set and polygonal model generation is 
provided. However, the user needs to choose the needed polygonal model simplification level 
by himself. 

The method, proposed by N. K. Jayakodi et al. [9], provides the images-based polygonal 
model generation at mobile devices, taking into account the optimal polygon number 
(“polycount”) with available energetic resources. Firstly, using a convolutional neural network 
(CNN), the feature vector is extracted from the image. Next, for the model generation, the graph 
convolutional network (GCN) [10] is used. The multilevel system of polygonal mesh generation 
is applied. At each level, the binary mask of the projected image, which is based on the predicted 
model, and the binary mask of the original image are compared. If binary masks are not similar 
enough, the transition to the higher level of generation, which corresponds to a bigger number 
of object’s surface polygons, is carried out. The threshold values for binary mask comparison 
are determined at each generation level, taking into account the energy costs. As a result, the 
generation of simple objects requires less computational resources. The approach lacks the 



direct prediction of polygons number, it leads to iterative generation of the surface’s polygonal 
mesh. 

The method, developed by N. Tack et al. [11], also provides a highly productive generation 
of polygonal models for mobile devices. The equation for evaluating an approximate time of 
object rendering is proposed, it depends on the time of code initialization, projective 
transformations, vertex shading, triangle, row and pixel rasterization, number of vertices and 
triangles, probabilities of vertices shading and clipping. If the allowed time of object rendering 
is set, the optimal number of triangles is determined from the equation. After this, from the 
special plot the necessary level of detail and threshold angle between the polygon’s vertices 
normals (determines the need in the subdivision of the polygon) are determined. The 
implementation of the level of detail increase is based on uniform or non-uniform (takes into 
account the curvature or silhouettes) triangles subdivision. The disadvantage of the approach 
is the dependence of distinct parameters’ contributions to the complete time of visualization on 
the chosen renderer and the evolution of rendering algorithms. 

R. Kanapady et al. [12] introduced a method to assess the optimal density of specific polygon 
within an object's polygonal model. Triangle density in the study is defined as the radius of the 
circle, drawn around the triangle. The optimal radius is the maximum radius, in the direction 
of which the approximation of the given surface characteristic is accurate enough. The 
prediction of triangles densities is carried out using the feedforward neural network with one 
hidden layer. 

The method, proposed by Z. Zhang et al. [13], lies in predicting the maximum threshold area 
of a particular polygon relative to a given low-polygonal surface model. For the area prediction, 
the usage of three neural networks is possible: fully connected, ResNet1, and ResNet2. In order 
to provide the desired number of polygons the K coefficient is used. The equal distribution of 
surface approximation error is provided – the bigger polygons are characterized by lower error 
density. 

The disadvantage of the last two methods is that only the local density of the polygonal 
model is predicted. Data about optimal local density provide the generation of the simplest 
possible polygonal mesh with acceptable accuracy of original surface reconstruction. However, 
during the simplification of the polygonal model, the initial solution usually is already 
characterized by the density distribution of particular polygons. Then, with the condition of the 
main surface’s features conservation by the simplification algorithm, it is only enough to 
determine the optimal number of triangles. In addition, these methods are aimed at solving the 
material sciences tasks, that lie outside the computer graphics field. 

In the method, proposed by A.-M. Cretu et al. [14], the generation of simplified polygonal 
model with the preservation of object’s interest regions is investigated. For the object’s 
polygonal model simplification the gas neural networks are used. The novelty of method is the 
prediction of the model’s optimal faces number for different levels of detail. The prediction of 
faces number is made using two-layer feedforward neural network, the hidden layer of which 
includes 40 neurons. The input of neural network takes the polygonal model, the output data 
are predicted faces numbers. During the training dataset creation, for every resolution interval 
the number of faces that provided the most effective original model approximation was chosen. 
One of the method’s disadvantages is that the usage of simple feedforward networks doesn’t 
provide the comprehensive learning of objects’ local features [15]. It is more appropriate to use 
more complex neural networks types, in particular, convolutional networks that allow to learn 



the hierarchical spatial features [15] of three-dimensional figure. The approach can be improved 
through determination of the connection between object’s polygons number and human 
perception of final image quality, and by considering the given coordinates of object and 
camera. 

Thus, the task of predicting the reasonable surface’s polygons number is insufficiently 
researched. Only in two of the discussed methods the direct determination of the surface 
model’s optimal triangles number is present. However, the first of the specified methods is 
characterized by a large number of parameters for determination and is more connected with 
the features of the graphics pipeline, than with the objects’ locations and surface features. The 
second of the specified methods is not effective enough for learning the local and spatial 
features of three-dimensional graphic figures. In addition, in most of the reviewed methods 
neural network-based processing of object surfaces’ features is applied. The advantage of neural 
network usage for polygonal model simplification is the possibility of complex patterns, that 
are connected with the figure surface’s geometry, learning. 

Therefore, there is a need for the development of a neural method that determines the 
optimal number of triangles for an object’s surface, considering both the object's location and 
complexity. The purpose of the article is the neural network development for predicting the 
optimal polygons number of graphic scene’s object that will provide more efficient polygonal 
model simplification. 

3. Proposed Methodology for Predicting the Optimal Triangles 
Number of Graphic Object 

In the article, the relation between the geometrical complexity of the object, its location in the 
scene, and the optimal polygons number of the object’s surface is discussed. As polygons, the 
triangles are considered, taking into account their simplicity and most frequent usage for 
surface tessellation. 

3.1. The General Structure of Neural Network for Predicting the Optimal 
Polygons Number 

The geometrical features of an object’s surface are represented as voxelized tensor of 
dimensions 48 48 48× × . The advantages of this approach are the structuredness of data and 
the effective representation of structural-spatial relations between surface points. 

The features of the object’s location in the scene are represented by a vector of dimension 
5 1×  that includes the data about the object’s and camera’s coordinates in the Blender Cartesian 
system. The vector also includes the number of triangles of the original polygonal model. In 
this study, the constant z-coordinates of the camera and objects are used for simplification. 

The optimal number of polygons is defined as the minimal number of triangles, at which the 
NMSE error between the original-model-based image and the simplified-model-based image 
doesn’t exceed 0.001. NMSE (Normalized Mean Square Error) is calculated using the formula 
[16]: 

∑ (𝑅𝑅1(𝑖𝑖) − 𝑅𝑅2(𝑖𝑖))2 + (𝐺𝐺1(𝑖𝑖) − 𝐺𝐺2(𝑖𝑖))2 + (𝐵𝐵1(𝑖𝑖) − 𝐵𝐵2(𝑖𝑖))2𝑖𝑖
∑ 𝑅𝑅1(𝑖𝑖)2 + 𝐺𝐺1(𝑖𝑖)2 + 𝐵𝐵1(𝑖𝑖)2𝑖𝑖

, (1) 



where R , G , B  – the values of RGB model channels, i  – number of pixel, 1  and 2  – the 
indices of original and new images respectively. 

Threshold NMSE value 0.001 means that images differ significantly for an observer [16]. 
The proposed method (Fig. 1) for determining the optimal number of triangles lies in the 

usage of two neural network branches. The first branch («first nn-branch») is designed for the 
transformations of the object’s surface voxel tensor. The second branch (“second nn-branch”) 
is designed for the transformations of the object’s features vector. Both branches are merged 
into the resulting neural network branch (“unified nn-branch”) that provides the optimal 
number of triangles prediction. The general structure of the proposed neural network is shown 
in Fig. 1. 

 

Figure 1: The structure of neural network for predicting the polygonal model’s optimal number 
of triangles. 

3.2. The Development of Dataset for Neural Network Training 

In the study, a sample of 2000 converted to .stl format figures from the ShapeNet dataset [17] is 
used. The 400 objects from five file size intervals ([0, 2), [2, 4),[4, 6), [6, 8), [8, 10]  Mb) were 
selected in order to ensure that the dataset is balanced in terms of figure complexity levels. The 
base of the sample includes the figures of transport objects (Fig. 2). 

 

Figure 2: Examples of used figures from ShapeNet dataset. 

For each of the figures, 12 cases of its mutual location with the camera were considered. The 
camera was located at 4 directions relative to the object along the x, y axes of the coordinate 
system. The object was located at three discrete remoteness levels relative to the camera. 
Overall, there are 24000 combinations of objects and their locations relative to the camera. 



For each of the combinations, 10 levels of triangles number reduction (

{ }0.001,0.01,0.025,0.05,0.1,0.25,0.5,0.75,0.9,1.0 ) were considered. The Blender modifier 

Decimate was applied in the mode of edge collapse. Fig. 3 shows the example of the figure 
«Plane» for different numbers of triangles. 

 

Figure 3: Visualized figure «Plane» for different percentages of polygonal model simplification. 

For each of the 24000 specified combinations, the 10 images, which correspond to different 
polygonal model simplification percentages, were formed. Using the NMSE metric, it was 
determined, which image is the last (in the direction of simplifying) that deviates from the 
original by less than 0.001. Accordingly, the triangles number of the model, at the basis of which 
the chosen image was formed, was determined. The found number of triangles is considered to 
be optimal. 

As a result, the dataset of 24000 objects’ feature vectors (see «The General Structure of 
Neural Network for Predicting the Optimal Polygons Number») and target optimal triangles 
numbers was created. 

Web tool Drububu.com was used for the formation of 2000 voxelized figure tensors. Fig. 4 
shows examples of voxelized figures from the ShapeNet dataset. 

 

Figure 4: Examples of voxelised figures from ShapeNet dataset 
 
75% of dataset are used for training, 15% are used for validation, 10% are used for testing. 

3.3. The Development of Neural Network Architecture 

The neural network branch for the object’s feature vector processing is implemented using 
multi-layer perceptron (MLP) [18], branch for the object surface’s voxel tensor processing is 
implemented using convolutional neural network (CNN) [19, 20]. These neural network types 



are the standard solutions [15] for vector and volumetric data processing respectively. The 
output values of both branches serve as input values for MLP that merges them. 

For the determination of optimal architectures for the specified neural network branches the 
optimization Python library Optuna was used. 

For the optimization of first-branch MLP, the parameters were the number of neuron layers 
(interval of values [1,10]) and the number of neurons in layer ([4,128]). The 100 optimization 
experiments were conducted, validation MSE (mean squared error) was set as the error metric 
for minimization, validation MAE (mean absolute error) was set as error change tracking metric, 
the recommended by documentation sampler TPESmapler and pruner HyperbandPruner were 
used.  

The resulting MLP includes 6 layers with 127, 16, 57, 60, 18, 35 neurons. MSE, MAE relative 
to the target triangles numbers were 30597088 and 3409 respectively. 

For the CNN optimization, the parameters were the numbers of filters (categorical values 

{ }16,32,64,128 ) for four convolutional layers. The size of the convolution kernel was set as 

3 3 3× × , and the size of pooling windows was set as 2 2 2× × . The 50 experiments were 
conducted, validation MSE and MAE were set as metrics of error minimization and error change 
tracking. The same sampler and pruner were used.  

The resulting numbers of filters were 32, 128, 128, 128. MSE, MAE were 16505085 and 2280 
respectively. 

For the optimization of MLP that merges neural network branches the parameters were the 

number of neurons in the layer, which receives the information from MLP ({ }1,4,16 ), number 

of neurons in the layer, which receives the information from CNN ({ }1,4,16 , this layer is 

located after the layer with 512 neurons), number of the following layers ([1,4] ) and number 

of neurons inside them [4,128] . 
The resulting architecture of merging MLP includes 16-neuron layers for receiving 

information from both branches, 1 layer with 76 neurons. The final node of architecture is the 
neuron for result calculation. After 20 experiments MSE, MAE were 10997652 and 2009 
respectively. 

Fig. 5 shows the optimized architecture of the proposed neural network. 
The last layer of neural network is linear. After convolutional and fully connected layers 

ReLU activation function is used. 

3.4. Neural Network Training 

For neural network training, the following parameters were set: number of iterations – 100, the 
criterion of early stoppage – validation error is not improving for 10 iterations, batch size – 32. 
MSE was selected as the error metric for minimization, MAE was selected as the metric for the 
error tracking. Adam optimizer was used.  

The training was performed using Kaggle TPU VM v3-8.  
Validation error MSE stopped improving after 71 training epochs. Fig. 6 shows the plot of 

training and validation MAE changes during the neural network training. 
 



 

Figure 5: Optimized structure of neural network. 



 
Figure 6: The plot of training and validation MAE error changes during neural network 
training. 

In the Table 1, the final error metrics values after neural network training are listed. 

Table 1 
Final values of error metrics after training 

Metric Type Value 
MSE Training 6159425 
MSE Validation 6597670 
MAE Training 1186 
MAE Validation 1212 

3.5. Neural Network Testing on the Test Dataset 

Test dataset includes 10% of full dataset samples. Fig. 7 shows the plot with the predicted and 
target values of optimal triangles numbers of polygonal models. Metric MAE relative to the test 
dataset equals 1322. 

Table 2 shows the MAE values by intervals of target triangles numbers of objects. 
  



Table 2 
MAE metric values by intervals of target triangles numbers 

Interval of target triangles numbers MAE 
10 – 10 000 880 

10 000-20 000 2521 
20 000-30 000 5191 

30 000+ 6563 

NRMSE (Normalized Root Mean Square Error) [21] of approximating the target values set 
equals 

⋅ ⋅
= = =

− −_ max _ min

100 100 7884324 3.2%
87857 10real real

MSENRMSE
y y

. 

 

 
Figure 7: The plot with the predicted and target values of optimal triangles numbers. 

The average speed of triangles number prediction for one figure was 0.09 s when using 
Kaggle CPU, 0.008 s when using Kaggle TPU VM v3-8. 

Fig. 8 shows the examples of predicted optimal triangles numbers for the surfaces of three-
dimensional cars and planes models. 

 The predicted optimal values are circled with a red line. The target triangles numbers are 
located below the images in the middle. 



4. The Analysis of Results 

RMSE value of the test dataset approximation is 3.2% of the dataset’s target values range. Hence, 
the highly accurate prediction of the optimal object’s triangles number is provided. 

Let’s compare the results of the model’s predictions with guessing (guessing the constant 
value for each case). It was determined that the most accurate approximation of test dataset 
values is achieved with the number 3000. Then, MAE equals 4018. Therefore, the proposed 
model provides four times more accurate predictions of polygonal models’ triangles numbers 
than simple guessing. In addition, the comparison of the proposed neural network architecture 
usage and the usage of the architecture, used in [14], for predicting the optimal polygons 
number was conducted. Two-layer feedforward neural network was used for predicting the 
optimal triangles numbers of objects from the created dataset at the three distance levels from 
the camera. In a result, MAE was 3767. The proposed model was also compared with more 
complex neural network ResNet1, used in [13], that includes fully connected layers of size 32, 
32, 64, 128, 64, 32, 1, and residual connection. As the ResNet1 input the data vector and voxel 
tensor were used. Then, the number of both network parameters is approximately the same. 
MAE value was 1623. 

In comparison with guessing, two-layer feedforward neural network, ResNet1 the decrease 
in approximating error of test dataset by 67%, 65% and 19% is provided respectively. The 
increase in the accuracy of triangles number prediction is explained by the usage of CNN for 
figures’ local features learning and MLP for the corrective consideration of objects’ spatial 
parameters. Therefore, the combined CNN and MLP usage provides more accurate learning of 
three-dimensional objects’ features and predicting for them optimal triangles numbers. 

 

Figure 8: Examples of predicting the optimal triangles numbers for cars and planes models. 

5. Discussion 

Within the work, the precision of determining the optimal triangles number is improved by 
combining the optimized architectures of MLP, CNN and using NMSE metrics. In further 
research, the proposed approach can be improved.  



The vector of the object’s features includes simple data about the figure (initial number of 
polygons, coordinates of object and camera). The usage of more complex features (number of 
points of interest, mean points curvature) will raise the accuracy of dataset approximation. The 
research on encoding vector data into efficient representation is promising. For the 
representation of three-dimensional surfaces, it is planned to compare the usage of voxel 
tensors, polygon vertices arrays, and point clouds. For more precise triangles number prediction 
the enlargement of the dataset, which includes mainly the transport figures, is desirable. The 
diversification of mutual camera and object locations is needed. The weights learned on the 
transport figures are advisable for transfer learning usage. The neural comparison of image with 
the reference image is more flexible and promising than the usage of similarity metrics. Another 
possible direction of future research is the parallelization of triangles number prediction. 

6. Conclusions 

In the article, the neural network-based approach to determining the optimal triangles number 
of the object’s polygonal model is proposed. The approach is based on two-branch processing 
of volumetric and vector object’s features. The direct triangles number prediction is provided 
based on the learning of local surface and hierarchical spatial patterns of the object, considering 
the peculiarities of human perception, which is absent in the analyzed methods of polygonal 
model simplification. 

The most promising directions of future research are comparing different methods of object 
representation, applying the developed neural network in transfer learning for a wider range 
of objects. 
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