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Abstract 
Automotive transport plays a key role in ensuring economic development but is accompanied by 
significant negative impacts on the environment, particularly in areas where vehicles are 
concentrated. This article presents an approach that uses reinforcement learning and accounts for 
traffic flow pressure to optimize the travel time of vehicles through road intersections with the aim 
of reducing CO2 emissions. The proposed method is based on modern approaches to optimizing 
traffic light operations, but with an emphasis on ecological aspects. Experimental verification on 
the synthetic scenario SUMO GRID 4x4 demonstrates the efficiency of the developed algorithm. 
Comparative analysis shows that it outperforms other algorithms, such as MaxPressure and IDQN, 
in particular, it improves travel time and queue length by 33%, and reduces CO2 emissions by 32-
33%. The obtained results lay the foundation for further refinement and implementation of the 
proposed approach in real-world conditions. 
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1. Introduction 

Road transport plays an important role in ensuring economic growth and social development. 
It is defined as a key component of the transportation system due to its objective advantages, 
which are reinforced by significant achievements in the transport infrastructure of the vast 
majority of countries. Road transport is also widely used and is a key priority in economic 
development. However, such circumstances are accompanied by significant pressure on the 
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environment, especially in places where vehicles are heavily congested. Some of these places 
are large cities and transportation interchanges. Hence the problem of transport regulation. 
There is a wide range of problems for the solution of which information technologies of traffic 
improvement are [1]. Accordingly, the development of systems for the formation of climate-
neutral and smart cities is of great importance given the current challenges associated with 
climate change and urban growth. Such systems are determined by the need for the following 
reasons: 

• They help to achieve climate neutrality, which is a strategic objective under the 
European Green Pact [2]. Cities make a significant contribution to greenhouse gas 
emissions, and the implementation of systems aimed at optimizing resources and 
reducing environmental impact helps to solve this problem. 

• Smart cities improve the quality of life for citizens. By optimizing traffic flows and 
reducing air and noise pollution, they contribute to the health and well-being of the 
population. 

• Such systems help to reduce the urban ecological footprint and support sustainable 
development. They aim to reduce resource consumption and develop more efficient 
strategies for managing urban resources. 

• The development of such systems promotes political coherence and citizen 
participation in decision-making. This is important for ensuring the effectiveness of 
strategies and achieving climate neutrality. 

• Smart cities are being integrated into European and global strategies, contributing to 
the achievement of global climate goals and providing synergies with other initiatives. 

To summarize, intelligent systems are a key element of digital transformation and 
innovation, enabling cities to use modern technologies more effectively to achieve climate 
neutrality and support sustainable development. 

One approach to developing intelligent systems is to use reinforcement learning, which 
can be applied to a similar class of tasks [3]. This approach to artificial intelligence allows 
systems to learn from the data they receive and gain experience to make optimal decisions in 
real time. One of the key challenges is the efficient management of urban resources and 
infrastructure to ensure sustainability and efficiency. Reinforcement learning can analyze and 
optimize the operation of traffic lights, transportation systems, and other aspects aimed at 
reducing emissions and improving energy efficiency. Particularly important is the ability to 
train automated transport management systems, which helps to improve traffic flow and 
reduce traffic congestion. This has an impact on CO2 emissions and improves air quality in 
cities, which in turn affects public health and overall quality of life. 

Thus, the main contribution of the paper is the proposed approach using Reinforcement 
Learning to finding the optimal mode of vehicles passing through a traffic light-controlled 
crossroads according to the criterion of reducing CO2 emissions. 

The main contributions of the research include: 

• A new approach to traffic signal control at road intersections using reinforcement 
learning that takes into account the environmental impact of traffic, in particular CO2 
emissions is proposed. 



• The MPLightCO2 algorithm is developed, which is an extension of the existing 
MPLight approach with additional consideration of CO2 emissions from vehicles 
queuing to enter and exit the crossroads. This makes it possible to optimize crossroads 
traffic modes in order to reduce environmental impact. 

• It is proposed to take into account the "traffic flow pressure" metric to determine the 
efficiency of vehicle distribution in the crossroads network and improve throughput. 

• Experimental verification and comparative analysis of the developed MPLightCO2 
algorithm with other approaches, such as MaxPressure, MPLight, and IDQN, were 
carried out on the synthetic test scenario SUMO GRID 4x4. 

• The results showed that MPLightCO2 outperforms existing approaches in terms of 
travel time, average queue length, and CO2 emissions, demonstrating increased 
efficiency in both optimizing traffic flow and reducing its environmental impact, 
which allowed reducing queue length by 75-76% and reducing CO2 emissions by 32-
33%. 

The article is structured as follows. In the Related Works section, we review current 
approaches to solving similar problems and formulate the purpose of the paper. The Methods 
and Materials section describes the crossroads control system, provides a formalization of its 
elements, presents an approach using traffic pressure, describes the DQN agent, the 
implementation of deep Q-learning, characterizes the SUMO GRID 4x4 synthetic test and 
approaches to assessing the quality of the solutions obtained. The Results and Discussion 
section analyzes the results of experimental testing on SUMO GRID 4x4, the quality indicators 
of the models, and compares them with other algorithms. The Conclusions and Future Work 
section summarizes the results of the study, outlines limitations and directions for further 
work. 

2. Related Works and Basic Concepts of Approximate Dynamic 
Programming 

A review of recent publications on the topic of the study showed that the modern 
reinforcement learning approach is actively used to solve such problems. Below is an 
overview of these publications. Modern development trends in the field of artificial 
intelligence are actively used to implement effective strategies for optimizing traffic flows in 
cities. The main goal is to reduce environmental impact through the development and 
application of various methods and technologies. Artificial intelligence plays a key role in this 
context, helping to create intelligent systems that ensure efficient traffic management. In 
particular, deep learning algorithms are used to develop smart traffic light control systems 
aimed at dynamic adaptation to changes in traffic flow in real time [4][6]. This not only 
minimizes stops and saves fuel, but also has a positive impact on emissions. It is important to 
study approaches that would meet all the requirements of AI reliability [7][8][9]. Much of the 
papers is aimed at optimizing traffic flows to increase the capacity of transportation routes. 

Another approach is to predict and manage transportation demand, which is becoming 
another aspect where machine learning methods are used to accurately analyze passenger 
flow data and predict its changes at different times of the day [10][12]. This allows optimizing 



the allocation of resources, reducing the number of empty flights and thus contributing to the 
reduction of CO2 emissions. 

The use of traffic monitoring and analysis systems based on data from sensors and cameras 
allows artificial intelligence algorithms to identify patterns and predict possible traffic 
congestion [13]. This opens up opportunities for taking effective measures to avoid 
congestion and, therefore, reduce the negative impact on the environment. The use of route 
optimization algorithms is also important in the context of reducing the environmental impact 
of transport [14] [15]. These algorithms take into account various aspects, such as minimizing 
the use of traffic lights and separating environmentally friendly routes. 

The introduction of electric vehicles and autonomous cars is a key step in ensuring 
environmentally sustainable transportation. Research on the safety [16] and reliability of 
communication equipment is also important [17]. Artificial intelligence is used to optimize 
their movement and develop charging station infrastructure [18] [19]. An integrated approach 
to optimizing traffic flows in cities allows achieving traffic efficiency, reducing emissions and 
promoting sustainable urban transport. Such approaches can improve the conditions of 
movement of vehicles along the roads, reducing their delay, improving speed conditions, 
which ultimately has a positive impact on transport emissions, improving the environment. 
Methods for constructing neural networks are being developed and refined [20][22]. In 
pursuit of this goal, research is being conducted using modern reinforcement learning 
algorithms to optimize the performance of signal controllers in real time [23] [24]. In this 
approach, the state of the crossroads is determined by the parameters of vehicles (lane, speed, 
waiting time, queue position) and the actual signal (traffic permission). The main task of 
reinforcement learning, which is used in the form of an agent, is to optimize a strategy that 
adapts states to the signals. This approach has shown a potential reduction in vehicle delays 
of up to 73% compared to a fixed response time [25]. A method of multi-agent reinforcement 
learning known as cooperative dual Q-learning is used to solve the complexity of traffic signal 
synchronization in large-scale traffic control systems [26]. It uses independent dual Q-
learning methods and an upper confidence bound policy to avoid overestimation problems 
that can occur in traditional algorithms. A new reward distribution mechanism and a local 
state distribution method are introduced to ensure stable and robust learning. Experiments on 
traffic flow scenarios show that the proposed system outperforms state-of-the-art 
decentralized algorithms on various traffic metrics. 

Current research is overwhelmingly focused on the use of intelligent systems to optimize 
traffic flows and reduce congestion. Strategies should also actively seek to improve the 
environmental performance of transportation. Research focuses on traffic optimization rather 
than on the full range of environmental aspects and practical measures to reduce the 
environmental impact of transport. To achieve environmentally sustainable transport, it is 
important to consider not only traffic efficiency, but also improvements in air quality and 
overall environmental sustainability.  

Thus, the aim of the study is to develop and test the effectiveness of an approach that uses 
reinforcement learning and traffic pressure to optimize vehicle travel times through road 
intersections. Particular emphasis is placed on traffic signal control to reduce CO2 emissions. 
The research includes validation of the proposed approach on a synthetic grid4x4 test and 
further analysis of the results. 



3. Methods and Materials 

To systematize the traffic flow at a crossroads, we define typical scenarios, which we will call 
"states". At a signalized crossroads, there are incoming and outgoing roads, each of which may 
include one or more lanes. For each crossroads, we define a set of states ST, where each 
specific state st ∈ ST is associated with a specific direction of traffic.  
The states are considered as conflicting if they cannot be activated simultaneously due to 
traffic crossroads. At each stage, the signaling controller is responsible for establishing a 
specific combination of non-conflicting states in order to optimize the long-term objective 
function. For reinforcement learning-based controllers, the signalized crossroads environment 
can be modeled using the following description. 

The state space is formed by the mapping of incoming traffic and active states. It is 
particularly important to consider the differences in research approaches, where some take 
into account high-resolution traffic detection technologies such as real-time observations of 
vehicle counts, waiting times, and average speeds, while others are limited to less informative 
data such as visibility of queue lengths or waiting times for the first vehicle. In terms of the 
envisioned sensing radius, some take a broad approach that covers all entrance roads, but a 
more realistic approach is to use a fixed sensing radius rs. This may depend on the 
technological capability of the detection to provide reliable results, and take into account local 
features such as terrain, visibility limitations, or the presence of obstacles such as buildings or 
trees. In the context of alarm management, at each time step, the controller determines a set 
of non-conflicting states that are allowed to move, which is indicated by the green light. If 
there is a difference between the selected states and the active states, a mandatory yellow 
state is automatically entered for a fixed period of time. The assignment of yellow states is a 
constraint on the sequence of environmental control, not part of the action space. 
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Figure 1: Examples of typical states when crossing a crossroads. 



The transition function is determined by the development of traffic after the signal is 
activated. This dynamics can be modeled according to a specific traffic model in the simulated 
environment or taken from real traffic progress data as part of a real-world implementation. 
The reward function typically uses the reduction in queue length as the sum of the respective 
scores of all incoming lanes and is expressed as an integral reward. This is effective in 
reducing congestion, but does not always normalize the benefits of signal optimization over 
the travel time of a particular route. Therefore, other reward functions are used, such as total 
delays, crossroads delays, crossroads waiting time, traffic volume, and others. 

However, for proper systematization of traffic at the crossroads, it is necessary to take into 
account the action space. At each time step, the controller selects a set of non-conflicting 
states that receive permission to move, which is indicated by turning on the green light. If the 
selected states differ from the current active states, a mandatory yellow state is automatically 
entered for a predefined period of time. The assignment of yellow states is a constraint 
imposed on the sequence of environmental control, not part of the action space.  

The consistency of the defined action space and the choice of optimal states determines the 
efficiency and safety of traffic at the crossroads. Even taking into account the different 
approaches to traffic detection, it is important to consider that parameters such as the 
prescribed sensing radius can affect the accuracy and reliability of the data obtained. Let's 
formalize the elements of the control system at the crossroads. To do this, let's define the main 
parameters taking into account the states. 

Let us denote the set of states as 𝑆𝑡 =  {𝑠𝑡1, 𝑠𝑡2, . . . , 𝑠𝑡𝑛}, 𝑠𝑖 is the specific state associated 
with the direction of traffic; 𝑛 ∈ 𝑁 - the total number of states at the crossroads, determined 
by the number of specific directions of traffic that are selected for modeling or need to be 
taken into account. 

The number of states can be determined by a ratio that takes into account the number of 
possible options for each direction of traffic on each road. If there are 𝑅𝑑 input roads, each of 
which has 𝑑𝑟𝑖 possible directions of movement. Then the total number of states 𝑁 is 
calculated by formula: 

𝑁 = ∏𝑖=1
𝑅𝑑 𝑑𝑟𝑖. (1) 

This formula presents the product of the number of possible directions of movement on 
each input road. Thus, the total number of unique states in the state space is determined 𝑁∗. 

Let us define the action domain 𝐴𝑐𝑡 =  {𝑎𝑐𝑡1, 𝑎𝑐𝑡2, . . . , 𝑎𝑐𝑡𝑚}, where 𝑎𝑐𝑡𝑗 is the specific 
action of the controller at each time step; 𝑚 ∈ 𝑀 is the total number of possible controller 
actions. The transition function is defined as follows 𝑇𝑟𝑠: 𝑆𝑡 × 𝐴𝑐𝑡 → 𝑆𝑡, where 𝑇𝑟𝑠(𝑠𝑡𝑖, 𝑎𝑐𝑡𝑗) 
represents the new state to which the system will move by performing an action 𝑎𝑐𝑡𝑗 in state 
𝑠𝑡𝑖 . 

For the reward function, we establish a ratio 𝑅𝑤𝑑: 𝑆𝑡 × 𝐴𝑐𝑡 → 𝑅𝑤𝑑 that determines the 
amount of reward for choosing a specific action in a specific state. 

A restriction is set if the selected states differ from the active states, and a mandatory 
yellow state is automatically entered for a certain period of time. 

Yellow state restrictions can be represented in the form of the following ratios. 
We denote sets: 
𝑆𝑡𝑎𝑐𝑡𝑣 is the set of active states; 



𝑆𝑡𝑠𝑐𝑙𝑑 is the set of selected states; 
𝑆𝑡𝑦𝑙𝑤 is the set of yellow states to be entered as mandatory for a certain period of time. 
Then the constraint can be expressed by the following formula: 

𝑆𝑡𝑦𝑙𝑤 = (𝑆𝑡𝑠𝑙𝑐𝑑 ∖ 𝑆𝑡𝑎𝑐𝑡𝑣) ∪ (𝑆𝑡𝑎𝑐𝑡𝑣 ∩ 𝑆𝑡𝑠𝑙𝑐𝑑). (2) 

This formula defines the set of yellow states as the union of those selected states that are 
not yet active (𝑆𝑡𝑠𝑙𝑐𝑑 ∖ 𝑆𝑡𝑎𝑐𝑡𝑣) and the crossroads of selected and active states (𝑆𝑡𝑎𝑐𝑡𝑣 ∩

𝑆𝑡𝑠𝑙𝑐𝑑). 
A mandatory yellow state can be introduced with an additional parameter, for example

ylwTm , which defines the duration of the mandatory yellow state. In this way, it is possible can 

define the time interval during which the yellow state will be active after the selected states 
have changed. For example: 

𝑆𝑡𝑦𝑙𝑤(𝑡) = {
𝑆𝑡𝑠𝑙𝑐𝑑(𝑡) ∖ 𝑆𝑡𝑎𝑐𝑡𝑣(𝑡) , 𝑡 ≤ 𝑇𝑚𝑦𝑙𝑤

∅ , 𝑡 > 𝑇𝑚𝑦𝑙𝑤 ,
 

(3) 

where 𝑡 is the time;  
     𝑆𝑡𝑠𝑙𝑐𝑑(𝑡) and 𝑆𝑡𝑎𝑐𝑡𝑣(𝑡) represent the sets of selected and active states at a given time 𝑡. 
Accordingly, the crossroads control system will look like this: 

{
𝑆𝑡𝑡+1 = 𝑇𝑟𝑠(𝑆𝑡𝑡, 𝐴𝑐𝑡𝑡);

𝑅𝑤𝑑(𝑆𝑡𝑡 , 𝐴𝑐𝑡𝑡); &𝐴𝑐𝑡𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∀𝑎𝑐𝑡∈𝐴𝑐𝑡 𝑅𝑤𝑑(𝑆𝑡𝑡 , 𝑎𝑐𝑡).
 

(4) 

The dependencies can be adapted and extended to fit the specific details of the crossroads 
management system and to take into account various conditions and constraints. 

The required system parameters can be represented as follows: 

𝑆𝑡𝑡+1 = 𝑇𝑟𝑤(𝑆𝑡𝑡 , 𝐴𝑐𝑡𝑡) + 𝛼 ⋅ (𝑅𝑤𝑑(𝑆𝑡𝑡 , 𝐴𝑐𝑡𝑡) − 𝛽 ⋅ |𝑆𝑐𝑡𝑡 ∩ 𝐴𝑐𝑡𝑡|) (5) 

where: 𝑆𝑡𝑡+1 is the new state of the system at the next time; 
       𝑇𝑟𝑤(𝑆𝑡𝑡, 𝐴𝑐𝑡𝑡) – transition function, which determines how the system moves from a 

state 𝑆𝑡𝑡 to a new state under the influence of the selected actions 𝐴𝑐𝑡𝑡; 

       𝛼 is the coefficient that takes into account the impact of the reward on the selected 
actions; 

      𝑅𝑤𝑑(𝑆𝑡𝑡 , 𝐴𝑐𝑡𝑡) – a reward function that determines how effective the choice of a 
specific set of actions is in each state; 

       𝛽 is the coefficient that takes into account the limitations of yellow states and the 
number of conflict states; 

       |𝑆𝑐𝑡𝑡 ∩ 𝐴𝑐𝑡𝑡| is the number of conflict states in the current state and selected actions. 
This formula takes into account the dynamics of the system, the impact of the selected 

actions on the state, the reward for these actions, and the limitations on the number of 
conflict states. 

It is also possible to take into account the effect of pressure on the movement of vehicles, 
and possible changes in the system over time 𝑡. Taking these parameters into account, the 
description of the system state will take the following form: 



𝑆𝑡𝑡+1 = 𝑇𝑟𝑤(𝑆𝑡𝑡 , 𝐴𝑐𝑡𝑡) + 𝛼

⋅ [𝑅𝑤𝑑(𝑆𝑡𝑡, 𝐴𝑐𝑡𝑡) − 𝛽 ⋅ 𝛿𝑡 ⋅ (|𝑆𝑐𝑡𝑡 ∩ 𝐴𝑐𝑡𝑡|) − 𝛾 ⋅ 𝑃𝑟𝑠(𝑆𝑡𝑡, 𝐴𝑐𝑡𝑡)], 
(6) 

where 𝛿𝑡 is the dynamic coefficient that takes into account changes in the system over time; 
      𝛾 is the coefficient that takes into account the effect of pressure on the movement of 

transport; 
      𝑃𝑟𝑠(𝑆𝑡𝑡 , 𝐴𝑐𝑡𝑡) is the function of pressure on the movement of vehicles, which may 

include factors such as traffic density, speed, and other factors. 
Let's take a closer look at the traffic pressure function. One possible approach is to take 

into account traffic density and vehicle speed. The pressure function 𝑃𝑟𝑠(𝑆𝑡𝑡 , 𝐴𝑐𝑡𝑡) can be 
expressed as follows: 

𝑃𝑟𝑠(𝑆𝑡𝑡 , 𝐴𝑐𝑡𝑡) = 𝜂 ⋅ 𝐷𝑛𝑠𝑡(𝑆𝑡𝑡 , 𝐴𝑐𝑡𝑡) ⋅ 𝑉𝑙𝑠𝑡(𝑆𝑡𝑡 , 𝐴𝑐𝑡𝑡), (7) 

where: 𝜂 is the coefficient that determines the weight of the impact of traffic density and 
vehicle speed on pressure; 

        𝐷𝑛𝑠𝑡(𝑆𝑡𝑡, 𝐴𝑐𝑡𝑡) is the traffic density, which can be measured by the number of 
vehicles in a certain state and with selected actions; 

        𝑉𝑙𝑠𝑡(𝑆𝑡𝑡 , 𝐴𝑐𝑡𝑡) is the average speed of vehicles in a certain state and with selected 
actions. 

The pressure function can be customized according to the specific characteristics of the 
crossroads and the optimization goal. This formula allows taking into account both traffic 
density and vehicle speed as factors that affect the pressure on the movement of vehicles at 
the crossroads. 

Traffic density 𝐷𝑛𝑠𝑡(𝑆𝑡𝑡, 𝐴𝑐𝑡𝑡) can be determined in a variety of ways, depending on the 
data availability and specifications of the crossroads control system.  

Some solutions for determining traffic density: 

• Installing counters on the entrance roads to count the number of vehicles entering the 
crossroads. Traffic density is defined as the number of vehicles per unit of time on 
each input road. 

• Using modern transportation sensor technologies, such as cameras or sensors, to 
automatically determine traffic density. Video stream or sensor data is analyzed to 
determine the number of vehicles and their movement on the roads. 

• Using information from transportation agents or transportation monitoring systems 
that can provide traffic density data. 

• Traffic modeling, which uses mathematical models to simulate traffic flows and 
determine traffic density based on parameters such as speed, number of lanes, and 
others. 

Depending on the conditions and availability of resources, it is possible to choose one or a 
combination of these methods to determine the traffic density at a particular time and the 
state of the crossroads. 

The general approach to determining the schedule density is as follows:  

𝐷𝑛𝑠𝑡(𝑆𝑡𝑡 , 𝐴𝑐𝑡𝑡) =
𝑉𝑙𝑚𝑡𝑜𝑡𝑎𝑙

𝐿𝑛𝑔𝑡𝑜𝑡𝑎𝑙
, 

(8) 



where: 𝑉𝑙𝑚𝑡𝑜𝑡𝑎𝑙 is the represents the Q volume of vehicles entering the crossroads per unit of 
time; 
            𝐿𝑛𝑔𝑡𝑜𝑡𝑎𝑙 is the represents the Q total length of all entrance roads leading to the 
crossroads. 

The total volume of vehicles 
totalVlm  is determined by taking into account the number of 

traffic flows and their characteristics on each input road. Let 𝐹𝑙𝑣𝑖𝑗 the traffic flow from 
direction 𝑖 to direction𝑗. Then the total vehicle volume is defined as: 

𝑉𝑙𝑚𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝐹𝑙𝑣𝑖𝑗

𝑗𝑖

. (9) 

This dual sum represents the total number of vehicles entering the crossroads through all 
possible combinations of input and output directions. Each element represents the number of 
vehicles traveling from the respective directions. 

The total length of all input roads 𝐿𝑛𝑔𝑡𝑜𝑡𝑎𝑙 is determined by adding the width of each road, 
if it is different for different roads. Let be 𝑊𝑑𝑡𝑖 the width of the input road. Then the total 
length is determined by the formula: 

𝐿𝑛𝑔𝑡𝑜𝑡𝑎𝑙 = ∑(𝐿𝑛𝑔𝑖 ⋅ 𝑊𝑑𝑡𝑖)

𝑖

. (10) 

In order to take into account the factors for determining the volume of vehicles, we write 
down the total volume of vehicles 𝑉𝑙𝑚𝑡𝑜𝑡𝑎𝑙, taking into account the factors related to the 
speed of vehicles 𝑉𝑙𝑠𝑖𝑗 on each input road between crossroads 𝑖 and 𝑗. We also introduce the 
travel time factor 

ijTime , which determines the time required to travel the distance between 

roads 𝑖 and 𝑗 and take into account the traffic density between the roads in terms of the 
number of vehicles per unit time per kilometer 𝐷𝑛𝑠_𝑖𝑛𝑡𝑖𝑗. 

Then the formula for determining the total volume of vehicles will look like this: 

𝑉𝑙𝑚𝑡𝑜𝑡𝑎𝑙 = ∑ ∑(𝐷𝑛𝑠_𝑖𝑛𝑡𝑖𝑗𝑖𝑗
⋅ 𝐿𝑛𝑔𝑖 ⋅ 𝑊𝑑𝑡𝑖 ⋅ 𝑉𝑙𝑠𝑖𝑗 ⋅ 𝑇𝑖𝑚𝑒𝑖𝑗)

𝑗𝑖

. (11) 

Thus, we take into account not only the length of each road, but also its width, which is an 
important parameter in determining the volume of vehicles and traffic density at the 
crossroads. 

3.1. Pressure-based Coordination  

In order to optimize the traffic flow in the field of pressure management, the concept of flow 
pressure is becoming a staple. The main focus is on improving the efficiency of the traffic flow 
in general. The crossroads load is defined as the difference between the length of the queues 
of vehicles approaching the crossroads and those leaving it. This reflects an imbalance in the 
distribution of vehicles. 

The main task is to minimize this pressure in order to achieve equilibrium in the 
distribution of vehicles along the network of directions and, as a result, increase the network 
capacity.  



The maximum pressure control strategy aims to optimize stability by not only stabilizing 
traffic but also maximizing flow using local data from each crossroads. 

The main aspect of this strategy is to optimize traffic signal performance by reducing the 
pressure in each state. In real-world maximum pressure control, a greedy approach is used to 
achieve a locally optimal decision. 

Algorithm 1: Controlling the maximum pressure for each crossroads. 

1. Pressure initialization and estimation. For each state at the crossroads, the pressure 
𝑝𝑟𝑠(𝑠𝑡𝑖) is calculated, taking into account various aspects of the traffic flow, such as 
density, speed, and vehicle interaction. 

2. Weight determination of the next state. Given the need to balance the various aspects 
of traffic, determine the next state 𝑠𝑡𝑖+1 as the argument that maximizes pressure 
reduction while taking into account environmental considerations. 

3. Adaptive pressure control. Taking into account the dynamics of the movement, the 
pressure calculation parameters are adaptively changed to ensure an effective 
response to changing road conditions. 

4. Synchronization with other road intersections. Optimized state selection, taking into 
account common and interacting factors with other road intersections, to achieve 
harmonious traffic in the system. 

5. Additional function of emergency states. Additional functions, such as emergency 
management or improved mobility of road users, are tested to ensure that a wide 
range of circumstances are taken into account. 

3.2. DQN Agent 

Agents in the reinforcement learning method seek to maximize their overall reward within 
the objectives of the maximum pressure control method. This increase in reward is 
proportional to the overall network throughput, subject to certain constraints. 

Each agent is constrained to a certain subset of the overall system state. For example, for a 
typical crossroads that manages traffic flows, the agent's observation covers the active state 
and the pressure associated with the flows. In the case of fewer flows, the observation vector 
may contain zeros to maintain consistency. 

The agent selects the state at any given time, determining the traffic light configuration. 
This approach allows for greater adaptability by allowing the agent to choose the optimal 
state to activate. 

The reward for the agent is determined by the reduced pressure at the crossing. This 
pressure takes into account the difference in CO2 emissions from vehicles waiting to enter and 
exit the crossroads. 

3.3. Implementation of Deep Q-learning 

Based on the chosen basic model, we apply the DQN method to solve problems related to 
various scenarios of traffic lights control at road intersections. The DQN implementation 
takes as input the state characteristics of different traffic flows and calculates the Q-value for 
each possible action, i.e., traffic state, based on the following Bellman equation: 



𝑄(𝑠𝑖𝑡 , 𝑎𝑐𝑡𝑡) = 𝑅𝑟𝑤(𝑠𝑡𝑡 , 𝑎𝑐𝑡𝑡) + 𝜆 𝑚𝑎𝑥 𝑄 (𝑠𝑡𝑡+1, 𝑎𝑐𝑡𝑡+1), (12) 

where: 𝑄(𝑠𝑡𝑡 , 𝑎𝑐𝑡𝑡) is the represents the Q-value for state 𝑠𝑡𝑡 and action 𝑎𝑐𝑡𝑡; 
       𝑅𝑟𝑤(𝑠𝑡𝑡 , 𝑎𝑐𝑡𝑡) is the reward for performing an action 𝑎𝑐𝑡𝑡 in the state𝑠𝑡𝑡; 
       𝜆 is the discount factor; 
       𝑚𝑎𝑥 𝑄 (𝑠𝑡𝑡+1, 𝑎𝑐𝑡𝑡+1) is the maximum Q-value for the next state 𝑠𝑡𝑡+1 and all 

possible actions𝑎𝑐𝑡𝑡+1. 
This equation estimates the Q-value for the current state and action using information 

about future rewards and maximum Q-values. 

3.4. Synthetic test SUMO scenario GRID 4x4 

The GRID 4x4 scenario in SUMO (Simulation of Urban MObility) is a synthetic test case used 
to simulate vehicle movements at road intersections in an urban environment. This scenario is 
used to test and evaluate traffic signal control algorithms, road safety, and transportation 
efficiency. 

In the GRID 4x4 scenario, the crossroads consists of 4x4 road segments, creating a network 
of 16 road intersections. A large number of road intersections allow studying the interaction 
of traffic flows, conflicts, and optimal management strategies. 

The main characteristics of the GRID 4x4 test scenario include: 

• location of 4x4 road intersections; 
• the number of roads is 16; 
• a large number of road intersections to study the interaction of traffic flows. 

Such a test scenario allows researching and testing traffic control algorithms at road 
intersections in an urban environment. 

3.5. Evaluation of the quality of solutions 

To determine the environmental impact of transport, in particular CO2 emissions, we use the 
developed models with a traffic simulator. This makes it possible to model traffic in an urban 
environment and take into account its environmental impact. 

To determine the environmental impact of CO2 emissions in the simulation, we will take 
into account the following parameters: 

• Identification of vehicle types, such as cars, trucks, buses, etc. Each type may have its 
own characteristics in terms of fuel consumption and CO2 emissions. 

• For each type of vehicle, it is necessary to specify characteristics such as average fuel 
consumption and CO2 emission factor per unit of fuel consumed. 

• Simulate the movement of vehicles in an urban environment, recording their routes, 
speeds, and fuel consumption while driving. 

• Based on the recorded data, we calculate CO2 emissions using the entered vehicle 
characteristics. 
 



The calculation of CO2 emissions is usually based on fuel consumption and vehicle-specific 
CO2 emission data. To determine the CO2 emissions, we defined the types of vehicles and 
specify their characteristics, such as average fuel consumption and CO2 emission factor per 
kilometer. During the simulation, we determine the fuel consumption for each vehicle and the 
CO2 emissions.  

The fuel consumption is defined as follows: 

𝐹𝑙𝐶𝑛 = ∑ 𝐹𝑙𝑖

𝑁∑

𝑖=1

 
(13) 

Each vehicle belongs to a certain category or type 𝑇𝑟𝑇 that consumes a certain amount of 
fuel𝐹𝑙. 

CO2 emissions: 

𝐸𝑚𝑠 = ∑ 𝐹𝑙𝑖

𝑁

𝑖=1

× 𝐹𝑙𝑈𝐶𝑂2
. 

(14) 

Emissions are thus determined based on the fuel consumed 𝐹𝑙 by each vehicle unit and 
𝐹𝑙𝑈𝐶𝑂2

 the CO2 emission factor per unit of fuel consumed. 

4. Results and Discussion 

To evaluate the effectiveness of our approach, we chose the SUMO GRID 4x4 scenario. This 
scenario is characterized by a 4x4 road grid where each crossroads has the same settings and 
parameters. 

In the SUMO GRID 4x4 scenario, traffic flows in a network consisting of a 4x4 grid of road 
intersections. Each crossroads has the same settings and parameters, making it ideal for 
testing the effectiveness of our approach. 

Throughout the experiments, we analyze various aspects such as the environmental impact 
of transportation, fuel consumption, and traffic signal efficiency. These aspects are 
determined by the scenario parameters and the performance of our approach to optimizing 
traffic at road intersections. 

 
Figure 2: Scheme of the system validation scenario. 



To test the performance of the developed algorithm, we used a traffic scenario similar to 
the synthetic 4 × 4 symmetric network shown in Figure 1, the 4 × 4 Grid. The study conducted 
a comparative analysis of the four algorithms: 

• Maximum pressure control in which a combination of states with maximum joint 
pressure is enabled. 

• MPLight algorithm, which uses traffic light control approaches to optimize traffic 
flow [4]. 

• Idependent Deep Q-Network, i.e. independent DQN agents. For each intersection, a 
separate DQN agent is used, each of which uses the same convolutional neural 
network to aggregate information from different lanes. The hyperparameters are left 
by default in the Preferred RL library, except for the target network update interval, 
which was adapted to the environment. 

• An extension of MPLight that takes into account the environmental impact, 
specifically CO2 emissions from vehicles queuing to enter and exit the crossroads. 

The algorithms were evaluated and compared across various environmental metrics, 
providing conclusions on the effectiveness and sustainability of their implementation. The 
diagrams below show the dynamics of queue length changes according to different numbers 
of training episodes. 

 
 

 

Figure 3: Dynamics of queue length change according to different number of training 
episodes. 



                   

 

Figure 4: Average waiting time for a vehicle to cross the crossroads. 

                   

 

Figure 5: Average route travel time for all vehicles. 



A comparative analysis of the impact of different traffic signal control algorithms on traffic 
efficiency and environmental impacts yielded the following results. The MPLight and 
MPLightCO2 methods proved to be the most effective, improving travel time and waiting time 
by about 33% compared to the MaxPressure algorithm. IDQN also showed improvement, but 
less significant, increasing travel time and waiting time by about 34%. MPLight and 
MPLightCO2 were effective in reducing CO2 emissions by about 32-33%, making them 
environmentally friendly compared to MaxPressure and IDQN.  

       

 

 

Figure 6: CO2 emissions of vehicles crossing the crossroads. 



Table 1 
Quality indicators of models 

Based on the results for travel time, MPLightCO2 performed the best, with a shorter 
average travel time compared to the other models. The average queue length in number of 
vehicle for MPLightCO2 is also the shortest, indicating more efficient traffic management and 
reduced congestion. MPLightCO2 showed the lowest CO2 emissions of all the models, 
indicating its greater environmental efficiency. 

MPLightCO2 performs better in terms of travel time, average queue length, and CO2 
emissions than both MPLight and MaxPressure. Compared to the baseline MaxPressure 
model, MPLightCO2 shows an improvement in travel time of 5.77%, in average queue length 
of approximately 29.51%, and in CO2 emissions of approximately 7.43%. 

Table 2 
Results of traffic modeling 

MPLight, MPLightCO2, and IDQN showed similar improvements in queue length and 
maximum queue length, reducing them by about 75-76% and 70-71%, respectively, compared 

Model Average duration of 
travel, s 

Average queue 
length 

CO2, mg/s 

MPLight 161,4 0,57 461908 
MaxPressure 161,2 0,61 457459 
MPLightCO2 151,9 0,47 423419 

Agent Metric First Value Last Value 
IDQN Duration, s 242,4 146,9 
MaxPressure Duration, s 160,4 161,2 
MPLight Duration, s 241,0 161,4 
MPLightCO2 Duration, s 242,2 151,9 
IDQN Waiting time, s 100,8 12,4 
MaxPressure Waiting time, s 23,2 23,2 
MPLight Waiting time, s 99,1 21,9 
MPLightCO2 Waiting time, s 101,2 17,2 
IDQN CO2, mg/s 674575,8 408332,7 
MaxPressure CO2, mg/s 455778,6 457459,8 
MPLight CO2, mg/s 671710,8 461908,3 
MPLightCO2 CO2, mg/s 675505,5 423419,3 
IDQN Queue length 2,53 0,34 
MaxPressure Queue length 0,61 0,61 
MPLight Queue length 2,49 0,57 
MPLightCO2 Queue length 2,53 0,47 
IDQN Max queue 1,67 0,28 
MaxPressure Max queue 0,47 0,47 
MPLight Max queue 1,59 0,44 
MPLightCO2 Max queue 1,64 0,36 



to MaxPressure. Hence, MPLight and MPLightCO2 algorithms seem to be more effective from 
both a traffic improvement and environmental perspective than MaxPressure and IDQN in the 
studied scenario. 

MPLight and MPLightCO2 performed significantly better than MaxPressure and IDQN in 
terms of travel time and waiting time. This may indicate the importance of considering not 
only traffic but also environmental aspects in crossroads management. Taking into account 
CO2 emissions in the MPLightCO2 algorithm led to a significant reduction in the 
environmental impact of traffic. This is an important aspect in the context of urban 
sustainability. The reduction in queue length and maximum queue length in the MPLight and 
MPLightCO2 algorithms indicates their ability to effectively regulate traffic flow and provide 
better crossing capacity at road intersections. It is important to consider how adaptive the 
MPLight and MPLightCO2 algorithms are to different traffic conditions. Consider optimizing 
the parameters to improve adaptability in different scenarios. 

5. Conclusions and Future Work 

The study presents an approach that uses reinforcement learning and traffic pressure to 
optimize vehicle travel time through a crossroads to reduce CO2 emissions. The proposed 
method is based on the modern approaches MPLight, PressLight, but with an emphasis on the 
priority of the CO2 emission metric as a key component of decision-making. 

The developed algorithm has been experimentally tested on the synthetic test scenario 
SUMO GRID 4x4, which simulates the movement of vehicles at road intersections in an urban 
environment. The comparative analysis showed that the MPLight and MPLightCO2 
algorithms, which take into account the impact on the environmental situation, proved to be 
more effective than MaxPressure and IDQN. They demonstrated an improvement in travel 
time and waiting time of up to 33%, a reduction in queue length by 75-76%, and a reduction in 
CO2 emissions by 32-33%. 

MPLightCO2 showed the best results among the algorithms compared, with the shortest 
travel time, shortest average queue length, and lowest CO2 emissions, indicating its high 
performance from both a traffic improvement and environmental perspective. 

The results obtained are preliminary and more testing on different models and 
configurations, as well as verification in real-world conditions, is needed. However, the 
proposed approach has shown satisfactory control results in a large-scale road network, 
which gives grounds for its further improvement and implementation. 
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