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Abstract

The research focuses on methods of assessing and providing cybersecurity methods for unmanned
aerial vehicles (UAVs) considering Al-powered means. This article analyzes the primary threats and
attacks against UAVs and Al in UAV systems, identifying key vulnerabilities and limitations of Al
usage. Based on this analysis, a classification of countermeasures at both regulatory and technical
levels has been developed, taking into account the AI aspect in UAVs for both attack and defense
purposes. Examples of profiling Al quality models for UAV systems are presented as a means of Al
standardization. Case study describes building a quality model and results of IMECA analysis to
assess Al-based on-board systems and protection means for UAVs applied in intelligent mobile
systems for humanitarian demining.
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1. Introduction

1.1. Motivation

The use of modern UAVs encompasses various applications that can be divided into civil,
military, and commercial sectors. In the civil sector, UAVs have found their place for [1, 2]
disaster management, in agriculture, healthcare, for building inspections etc. In the military
domain, UAVs play a critical role, becoming effective means to achieve objectives. In the
Russian-Ukrainian conflict, The integration of all types of UAVs can be observed at tactical,
operational, and strategic levels considering russian-Ukrainian war [3]. UAV functions
include [4] reconnaissance, observation, and target engagement. Commercial use of drones is
represented in the form of capturing photos and videos of events, concerts, sports, in the
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entertainment industry, cinematography. Besides legal drone usage, there are countless
possibilities for criminal and terrorist use [5], including smuggling, propaganda, and attacks.

According to [6], the size of the global UAV market was estimated at approximately $26.8
billion in 2022, about $30 billion in 2023, and

more than $50 billion by 2032. Despite this impressive growth, it's essential to remember
that there are both advantages and disadvantages to UAV usage [7]. One of the main concerns
is security. Security is a fundamental aspect that includes measures to protect against data
leaks, ensure flight safety, avoid collisions, etc. Additionally, addressing ethical and legal
issues related to drone use, such as privacy and airspace access, is crucial. Governments and
regulatory bodies are developing relevant standards, safety policies, and legislation to ensure
security and safety.

In the development of UAV technologies, researchers and engineers have concluded that
adding Artificial Intelligence (AI) systems can significantly improve the autonomy and
functionality of these devices. Al allows UAVs to make decisions based on data analysis from
sensors and cameras, optimize flight routes, respond to changes in the environment, and
perform tasks without operator intervention. However, adding Al to UAVs also introduces
vulnerabilities and risks. According to Web of Science indicators analysis for the past 5 years,
significant attention is given to researching the cybersecurity of Al, ensuring the protection of
UAV assets, but considerably fewer studies focus specifically on UAV safety with Al means
(Figure 1).
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Figure 1: Number of publications on the UAV/AI/Cybersecurity related keywords.
1.2 Objectives and approach

UAVs have become a new field of research and development due to their versatile
applications and accessibility. As the use of UAVs increases, concerns about their security and



safety grow. Within the scope of this research, review articles have been examined across
various directions: the security and safety of UAVs, the integration of Al in UAVs, and the
security and safety of AL The current work is specifically focused on reviewing sources aimed
at analyzing the functions of Al in UAVs, the security and safety of Al technology itself, and
existing threats and vulnerabilities to UAV components.

The aim of the research is to analyze possible threats, attacks, interventions, and justify the
selection of countermeasures to enhance the cybersecurity of UAV systems considering their
vulnerabilities and the use of Al to amplify the power of attacks and protection. The
objectives are the following:

e to identify the main barriers to the implementation of Al in UAV systems considering
the safety risks of UAV application, technical limitations, and the cybersecurity of
UAV systems equipped with Al models taking into account the specific vulnerabilities
of technologies and Al components;

e to propose and classify countermeasures considering the aspect of AI; analyze
countermeasures at the regulatory and technical levels and provide partial
assessments of their impact on the overall risks of cybersecurity and safety;

e to analyze an example of implementing an Al system in UAVs and define
requirements from the perspective of using it as a module for performing standard
tasks and applying it as a countermeasure to ensure the safety of UAVs.

Approach to research is based on the several principles and previous results [8, 9], in
particular:

e Extended set of scenarios for using Al for powering attacks and protection, which
were previously considered in [8] for UAV systems;

e Applying the Security Informed Safety methodology and IMECA technique [9] for
UAV systems taking into account the features of using Al means;

e Using Al quality models to justify the requirements for Al in UAVs [9] as a function
that performs a specific task and Al as a means of protecting UAV assets.

The structure of the paper is as follows: Section 2 analyzes specific security and safety
issues for UAVs and systematizes attacks on the vulnerabilities of UAV system components;
Section 3 examines the challenges related to the implementation of Al in UAVs, the
application options for Al in UAVs, and provides an analysis of Al vulnerabilities and attacks
on Al in UAVs; Section 4 presents a taxonomy of possible countermeasures at the regulatory
and technical levels; Section 5 describes a case study of building a quality model to assess Al-
based on-board systems and protection means for UAVs applied for paramilitary demining;
the final Section summarizes and describes directions for future research.

2. Attacks on UAVs

The main security problems in UAV systems involve attacks on drone operators, Ground
Control System (GCS), drone components, communication, and cloud services [1, 10-14]
presented in Figure 2.



Drone operators are responsible for controlling flight, navigation, executing imaging tasks,
or remotely exploring areas, and ensuring flight safety. Threats/attacks on drone operators
include unauthorized access, social engineering, privilege escalation, unrestricted
administrative capabilities, accidental errors, and insider attacks.

The GCS performs mission planning, communication with the platform, and control
functions for payload through communication systems and data transmission lines for
interfacing with the airborne platform and its onboard systems. Possible breaches of the GCS
include accidental virus infections: sometimes viruses or malicious programs may accidentally
be loaded onto the control system, leading to compromising the security of the drone and
information.

Components of UAVs can be separately targeted by attacks such as:

e Backdoor Attack: A malicious attack aimed at introducing harmful software into the
UAV control system;

e TFlooding Attack: An attack where the adversary sends a large number of packets to
deplete the resources of the UAV and reduce the network bandwidth;

e Selfish Node Attack: This type of attack in the context of a UAV network involves one
drone engaging in malicious actions, consuming more resources than necessary to
optimize its own performance, to the detriment of other drones in the network;

e GPS Spoofing: An attack in which the adversary creates interference in the GPS
satellite link sensor, generating fake GPS signals with high intensity compared to the
original;

e Telemetry Spoofing: A type of cyberattacks in which attackers attempt to create and
insert fake telemetry data into the stream of real telemetry data collected from devices
or systems interacting with a cloud server or other networked systems.

Communication ensures the transmission and exchange of information among all system
components. In the context of UAVs, this includes communication between the GCS and
UAVs, UAV and UAV, UAV and Cloud Services. Communication between UAVs and the GCS
(D2GS) is often publicly accessible and sometimes unprotected or relies on single-factor
authentication, which can be easily compromised. Attacks on D2GS communication include:

e Single Point of Failure (SPOF): A type of cyberattacks aimed at one or several critical
components or services in the network that serve as a single vulnerability point for
disrupting or causing unavailability of other components of the system;

e Eavesdropping: Attacks where the attacker listens to unencrypted messages through a
communication channel, or in the case of an encrypted channel, the eavesdropper
aims to intercept and decrypt confidential information later;

e Jamming: Can be created for intentional or unintentional reasons. Jamming attack is a
type of security threat in wireless communication where the attacker deliberately
transmits interference (jamming signals) on the same frequency as the target
communication channel, disrupting the normal functioning of the wireless channel;

e Man in the Middle (MITM): An attack where, unlike eavesdropping, the attacker
actively manipulates the message after intercepting it;



e Replay: A type of attack where the attacker intercepts encrypted messages and then
replays these messages to another UAV, masquerading as a legitimate sender.

Attacks on communication between UAVs in Drone-to-Drone (D2D) communication
include both standard D2GS attacks (Eavesdropping, Jamming, MITM, Replay) and others:

e  Sybil Attack: A type of cyberattacks where the perpetrator creates numerous fictitious
nodes (in this case, UAVs) used to represent specially crafted false entities in the
network. The goal of such an attack is to gain control over the network or inflict a
destructive influence on its functioning, maximizing the number of false nodes;

e Impersonation: A threat in which a malicious UAV presents forged data and claims to
have been a legitimate part of the network, attempting to gain unauthorized access to
the system or resources.

Attacks on communication between the cloud and UAVs include:

e Black Hole Attack: A variant of a denial-of-service attack, where a malicious node
pretends to have the fastest path to the cloud server, causing other nodes to route their
data through it. The attacker then drops or ignores incoming packets, disrupting the
connection between the UAVs and the cloud server;

e Grey Hole Attack: A type of malicious network attack where the attacker gains access
to a network device and selectively controls the transmission or blocking of traffic on
specific network links for a defined period;

e Deauthentication Attack: An attack initiated by a malicious actor who sends a certain
number of deauthentication frames to the UAV and/or cloud system with the aim of
disconnecting the UAV from the system;

e Data Tampering during Transmission: Falsification of data during transmission. This
data could include session keys, operational information, or sensor readings from the
UAV;

e Eavesdropping.

Attacks on cloud services and storage encompass a wide range. Key threats include data
tampering and denial of service. To increase the payload capacity of UAVs, some commercial
UAVs store data in cloud databases. Any unauthorized alteration of this data can expose
personal information or impact the network's operation.

Therefore, despite the development of cybersecurity measures, UAV systems remain
vulnerable to a broad spectrum of attacks and require improvements in regulations and
standardization of cybersecurity requirements.
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Figure 2: Attacks on UAV System Components.

3. Risk analysis of vulnerabilities, and attacks on Al solutions of
UAYV systems

3.1 Challenges of applying Al in UAV systems

The integration of AI in UAVs can enhance their efficiency and productivity. Machine
learning algorithms enable UAVs to make real-time decisions and find optimal solutions that
meet mission requirements. However, the integration of Al in UAVs poses certain challenges
and security concerns, making it difficult to achieve complete automation of UAVs.

The Bletchley Declaration [15], signed by representatives of twenty-eight governments
during the AI Security Summit, emphasizes the need for regulation and ethics in Al
development. This declaration wunites countries for collaborative research and the
establishment of new rules governing the use of Al The main identified issues include:

e Transparency of Al tools and models may be insufficient even for experts, which can
lead to unforeseen results. Decisions made by AI may contain inaccuracies and
embedded biases, potentially resulting in discrimination;

e The increasing use of Al-generated media negatively impacts social and political
spheres, requiring careful consideration;

e The collection of personal data by Al systems raises concerns and emphasizes the need
for privacy protection;

e Concerns about the uncontrolled or malicious use of AL

Al can achieve excellent performance in ideal conditions, which are challenging to
replicate in many real-world situations. AI typically operates in well-maintained data
processing centers with a large number of computational resources and power. Currently,
most high-performance Al models developed for vision and language tasks rely on these huge



resources. However, these resources are highly limited in many real-world systems, including
drones, satellites, or ground transportation. This poses the challenge of "embedded artificial
intelligence": running Al directly on a device or system without additional support from
server-side computing. There are cases where running models on-board is optimal or
necessary, providing several advantages. However, limitations in embedded computing can
introduce significant constraints [16] or completely hinder the use of certain models in some
systems. This creates a gap between the most efficient Al systems and those deployed in the
real world, affecting the performance and reliability of many sought-after applications.
Limitations of on-board Al systems depend on:

e  Model Size: Models with a large number of parameters require more computation and
memory to operate;

e  Model Architecture: The connection of parameters in a neural network affects model
computations, memory requirements, and speed,;

e Input Data: Programs that require high-resolution input data or large input data
volumes may demand an excessive amount of computation and memory;

e Decision-making Speed: The speed of making decisions should match the data input
and initiate conclusions for a specific task according to requirements;

e Preprocessing of Input Data: Preprocessing input data according to the model and
program requires significant computation;

e Number of Applied Models: Programs that use multiple Al models require the shared
utilization of limited resources on the device.

There are also device-dependent and environmental-dependent limitations, such as:

e Computation: The device must be capable of performing a sufficient number of
calculations per second to run Al models and other processes within an acceptable
timeframe;

e Memory: Models require working memory for temporary storage and retrieval of
information on the device. Memory can affect model speed, energy consumption, and
overall functionality;

e Storage: Insufficient onboard memory may limit the choice of AI models;

e Power: Every computation or data movement requires energy. High-performance
hardware operating on large models may surpass embedded power sources;

e Size and Weight: While processors are small, they typically require additional
components that may exceed size and weight constraints of many systems;

e Auxiliary computations needed to run non-Al-related functions increase the resources
required on the device;

e Environmental Characteristics: Environments with extreme temperatures, humidity,
or radiation may lead to malfunctioning of computational equipment. Equipment
designed for such conditions usually has lower performance, limiting AI models;

e  Accessibility: Models may be constrained by hardware that is outdated or inaccessible,
making it physically impossible to access, support, or replace it.



3.2 Al functions in UAV systems

To automate UAVs, various learning algorithms are employed, including Supervised and
Unsupervised Learning, Reinforcement Learning, and Federated Learning. Al models in UAVs
can operate at different levels and perform tasks such as (Figure 3):

The task of optimal deployment involves strategically placing aerial base stations to
reduce energy consumption by drones and alleviate the load on GCS, or creating a
structured radio map [17, 18], especially in regions with complex terrain. The primary
goal is to ensure effective network coverage in such conditions. To address this task, a
structured radio map can be constructed, which is a detailed representation of radio
signal propagation characteristics in the respective area;

The task of enhancing communication efficiency [17] between UAVs and base
stations. When a UAV transmits data and communicates with a base station, it may be
affected by the wind, leading to drift or signal loss. To address this issue, methods
supporting Recurrent Neural Networks (RNN) can be employed. They predict the
future position and tilt angles of UAVs relative to the base station based on previous
position and tilt angle data;

The task of predicting path loss between UAVs. Signal loss is a phenomenon that
occurs in wireless communication systems, describing the signal or energy loss as it
traverses space with specific obstacles. When a radio signal is emitted from the
transmitter and propagates through the air, it undergoes various influences, leading to
signal attenuation at the receiver located at a certain distance from the transmitter.
Algorithms such as "K Nearest Neighbours" (KNN) and "Random Forest" are used for
predicting signal loss. Parameters such as signal propagation distance, transmitter
height, receiver height, and elevation angle can be utilised for signal loss prediction;
The task of monitoring and detecting anomalies [17, 18] in UAVs and their sensors
that may occur during operation. Since UAVs are highly sensitive to any malfunctions
or anomalies, it is crucial to have a system that can timely detect and respond to such
events. Various methods for detecting anomalies in the operation of UAVs are
proposed:

— Using deep learning based on images from bird's-eye view and GPS data to
detect unusual events in the drone's field of view;

— Utilizing an anomaly detection algorithm to identify and isolate UAVs with
malfunctions. This involves analyzing data from external sensors, such as
humidity and wind speed;

— Some methods include installing sensors on the motor to measure
vibrations, analyzing vibration signals to determine the motor's condition
and predict time to failure. Other systems use temperature sensors to
identify motor overheating and the capability for automatic UAV landing
in case of exceeding critical temperature.

Tasks for solving computer vision problems for UAVs include:

— Detection of safe emergency landing sites for drones



— Real-time detection of other UAVs based on the analysis of sound data
received from the drone and images

— Detection and classification of specific objects

e The route planning task involves using RL to plan the route for UAVs in unknown or
unpredictable environments. To navigate the drone in an entirely new environment,
the model utilizes data about the initial state, environment, and target state. Drone
sensors collect information about the surrounding environment, and the model uses
this data to analyze possible routes. Computer vision tools and other sensors help the
drone determine the most suitable route to reach its goal, enabling navigation,
trajectory adjustments, and continuous learning during flight to adapt to
environmental changes and improve navigation;

e Collision avoidance is crucial for the safe operation of UAVs. Drones may encounter
obstacles in their path, such as terrain and air traffic. Various methods have been
developed to avoid such collisions, including the use of GPS, obstacle detection and
avoidance sensors (LiDAR, sonar, radar), and computer vision;

e Planning and resource management pose significant challenges due to resource
constraints. The application of reinforcement learning allows for optimal decision-
making in event planning and resource allocation [17];

e The content caching task involves utilizing data collected on board UAVs for training
models. This enables devices to autonomously select which content to cache for
further processing without the need for constant communication with the central
network [17, 19];

e The optimization task for power distribution and planning in the UAV network relies
on a comprehensive analysis of diverse data, including geographical information,
sensor data, device status, task requirements, and network condition [17-18, 20].
Optimizing network resource utilization takes into account signal quality data, data
transmission delays, and resource usage, contributing to making effective decisions in
resource management and task execution in a timely and efficient manner. To achieve
optimal efficiency, federated learning algorithms are employed on local data from each
UAV.

3.3 Vulnerabilities and attacks on Al systems in UAVs

Attacks on Al technology encompass a broad spectrum of threats that can impact the security
and reliability of information systems. These attacks include various methods, algorithms, and
strategies aimed at exploiting and utilizing weaknesses in Al systems, creating potential
threats to the confidentiality, integrity, and availability of data.

Attacks on Al technology can be conditionally divided into adversarial attacks, poisoning
attacks, and model extraction attacks [8,21]. The goal of adversarial attacks is to deviate with
maximum confidence, causing misclassification in the model with minimal perturbation of
input data by altering input data. The goal of model extraction is to create a copy that will
perform well on the original task (intellectual property theft) or that contains the same errors
as the original model. The goal of poisoning attacks is to maximize the classification error of
the entire dataset or a specific example by introducing poisoning samples into the training



data. This leads to an increase in the attack surface for both Al and UAVs. The application of
Al-based methods for controlling and managing UAVs can be beneficial in terms of
performance but raises concerns about the security of these methods and their vulnerability to
adversarial attacks. Attacks on Al in UAVs are already being developed.
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Figure 3: Al functions in UAVs and placement options for Al systems in UAVs with
corresponding usage challenges.

This provokes an increase in the attack surface for both Al and UAVs. The application of
Al-based methods for controlling and managing UAVs can be beneficial in terms of
productivity but raises concerns about the security of these methods and their vulnerability to
adversarial attacks. Adversarial attacks on Al in UAVs are currently under development.

Attacks on visual object tracking in UAVs are discussed in [22]. Such attacks generate
adversarial examples that can lead to the loss of the tracked object for tracking systems. The
Ad2Attack attack method proposes a new approach in which adversarial examples are
generated during the regeneration of visual data in the object search process. This method
allows determining how well the object is tracked in the current frame compared to the initial
one by assessing the similarity between them. However, due to the vulnerability of deep
neural networks (DNN) to adversarial attacks, Siamese trackers can be easily attacked by
minor changes in the input image, resulting in incorrect position determination, posing a
significant threat to UAV tracking tasks.



Authors [23] explore the attack of injecting adversarial perturbations into the bridge
inspection process using UAVs. The attack operates by injecting adversarial examples into the
bridge inspection process. These adversarial examples are generated by interfering with the
data received by the UAV model during inspection. These artifacts are created by an
adversarial model used to detect vulnerabilities in the UAV model. In this process, the
adversarial model replicates the UAV model being attacked to identify possible vulnerabilities
and alters them to cause incorrect results during inspection. The result of such attacks may
involve neglecting certain risky areas of the bridge during inspection, leading to potential
issues and safety threats.

Paper [24] examines the threats of adversarial attacks on UAVs operating in public spaces
and the use of Al, particularly DL, to control these devices, taking into account the
vulnerability of these methods to attacks. The authors propose a method based on deep
learning solutions to create an effective detector that protects these methods and UAVs from
attacks.

4. Countermeasures for providing UAV cybersecurity

To mitigate the impacts of attacks or reduce the likelihood of their success, it is important to
implement countermeasures. Based on the analysis of threats in UAVs and Al it is proposed
to divide the threats into two types: A powered and traditional, and to implement
countermeasures for neutralizing these threats at levels of government regulation and
technical application. The resulting systematization of countermeasures for the identified
threats, along with a description of security breaches and their impact on safety
(countermeasures that can be powered by Al are marked with **) is provided in Figure. 4.

4.1 Al-powered threats, attacks and countermeasures

Al can be maliciously used, thereby increasing the risks of attacks. Threats enhanced by Al
can include Al-generated Telemetry/GPS Spoofing, Adversarial attacks against Al modules in
UAVs, and the use of Autonomous UAVs.

It has been found that for Al-generated Telemetry/GPS Spoofing to create false data points,
an attacker can use various techniques such as statistical modeling, machine learning, or
signal processing. The spoofing algorithm can be trained on a dataset of telemetry and
corresponding false data points using supervised or unsupervised learning. Training data can
be created through simulation or by collecting real telemetry data from the UAV-cloud
system. To assess the effectiveness of the spoofing algorithm, an attacker can use metrics such
as success rate, attack efficiency, and computational complexity. In a centralized architecture,
there is a high likelihood of GPS spoofing and telemetry spoofing attacks impacting if the
central server is compromised, so a successful attack can have serious consequences [14].

At the regulatory level, it is proposed to implement technological standards and
requirements for aviation systems that use Al, which take into account security measures
against spoofing attacks. This will create a basis for developing effective detection and
prevention methods for such attacks, increasing the overall level of security of aviation
systems.



Al-powered Threats

*%  protection could be Al-based

A
Protection
UAV Threats Securil Safel
ty 5 Regularization & Legislation Technical
Attacks exploit vulnerabilities by
aa (AI) Potentially could cause UAVSs to follow
b spoofing to manipulate incorrect paths, make erroneous i sy
Thiamelryisrs navigation/telemetry data, | decisions, o fail to complete their Al Regulation Anomaly Detection ** & Response
P 9 compromising the integrity of missions
their operations
Adversarial attacks | Attacks exploit vulnerabilities, - Ntenmi‘yﬂ?ﬁ: cause Al Regulation Adversarial Training **
against Al modules in manipulating input data to it . g
navigation errors, or compromised N 1
UAVs deceive the Al algorithms decision-making capabilities Standardization of Al Security Partial Human Control Systems
Al-powered Autonomous UAVs Safety problems with Al-powered Strict Verification
exploit i UAVs encompass. Standardization of UAV Security
subjected to hacking attempts, |challenges related to algorithmic errors,| Standardization of Al Security Implementation of Robust Al modules **
A uav ing adversarial lack of explainability in decision- Forensics Techniques Usage
attacks, unauthorized access, making, and the imperative for robust Enhanced Surveillance Partial Human Control Systems
potential sensor data fail-safes and lack of ethical principles Al Regulation
manipulation in dynamic environments Monitoring and Tracking Systems Usage
A“‘zz::;:z:;;gﬂl?{:::g’:s " Potentially could cause communication Intrusion Detection Systems (IDS):
DoS/DDoS, overwhelming networks and dl:'ruulmn, n:twwk congestion, and ) _
Fiooding causing vy performance egradation, putentw!\v : Rule-Based Intrusmn‘ Detec!mq
compromising the UAVS' comp! g the UAVSs' functionality Signature-Based Intrusion Detection
runct\nrl:allty ang pefomarioe and mission success Anomaly-Based Intrusion Detection **
2 Potentially could lead to potential
Replay Attack, A:‘:;;:ﬂ’ﬁﬁ:;vxxz::g:fo:v navigation errors, loss of control, and Intrusion Detection Systems (IDS) **
Black/Gray Hole integrity, ¢ A and risks of collisions due to compromised Standardization of UAV Security X
Attack e reliability comr and malicious Measures T t and Nonce
of data
Attack disrupts the y could lead to of | Forensics Techniques Usage Inturzi?:r:d[l):at:z;;eg:::etrr‘:?r[?g;g‘ .
Jamming communication and control normal operation or loss of contral and i
signals of UAV compromised mission success Incident Response Strategies | Adaptive Federated Reinl.o.rcement Learning (AFRL)
Hacking and extraction of confidential Usage of Ilg:rt‘:ve‘gg;?:fs:r?;‘:‘f,hmnc“mn'
MITM Attacks compromise sensitive information from UAVs can lead to s g :
f information, threaten data unauthorized access to sensitive data, . "
E““ﬂmp?mg’ integrity, and undermine the compromising mission details, Fun:tln_nal Encryption (FE)
Data Stealing/ confidentiality and security of arinBans Hichholady: of ohHer A Traceable and Privacy-Preserving Authentication
Injection/Modification UAVS Y l::taspsmednl’nfﬂrmatlo?\y'pnsmg a Homomorphic Encryption (HE)
ity A ; Distributed Network Architecture with
significant risk to national security Dy ication & (DNA-DAW)
Sew;::egr;\:g:lio‘g?r " The malicious use of UAVs involves Drone Licensing
vulnerabilities to m; romise deploying UAVs for nefarious purposes, Firmer Restrictions & Laws Enhanced Drone/UAV Detection Methods **
data integrity, b n h including unauthorized surveillance, Restricted & Confined Areas
Malicious use of UAVs cnnﬁdae:l:g\lﬁnar‘:h rglaecntnall privacy invasion, weaponization, or Forensics Techniques Usage Specialized Non-Lethal Security Measures
taunch cybier- e h sm; anacksv carrying out cyber and physical attacks, Enhanced Surveillance
Y phy! d posing potential threats to safety, National Counter- of Forensics Techniques
undermining the overall security security, and privac Efforts
posture and objectives of UAVS Yy ANC privacy.
A\ 4

Traditional Threats

Figure 4: Systematization of threats and countermeasures in UAVs.

At the technical level, it is advisable to implement anomaly detection systems in telemetry
data, which include the analysis of statistical parameters such as mean value and standard
deviation, to assess the normality of data arrival followed by anomaly detection. The next step
after detecting anomalies is to apply systems with automatic reaction activation, such as
adjusting UAV control algorithms, blocking the source of spoofed signals, or activating
additional systems to ensure UAV security. The proposed approach can be Al-based and will
allow for effective evaluation of protection considering metrics such as performance speed
and accuracy of attack detection.

As indicated in Section 4, there are potential threats from attacks on Al modules in UAVs,
which can be either deliberate or accidental errors, leading to serious consequences. At the
regulatory level, it makes sense to introduce standards and regulations regarding the use of Al
in UAVs to ensure the reliability of these technologies [5]. Additionally, it is important to
establish strict restrictions, especially regarding the illegal use of UAVs and their dangerous
use near critical infrastructures such as airports or military installations. Furthermore, an
improved surveillance system, particularly for drone supplies, considering their purchase
history, can also help prevent the unwanted use of these technologies.

At the technical level, the implementation of specific technical measures is proposed to
increase the resilience of Al systems in UAVs, such as:



e Applying Adversarial Training techniques to train Al modules on input data that may
contain potentially attacking influences, with the goal of increasing resilience to
adversarial attacks;

e Implementing systems of partial human control, where a human must participate in
the management process and make decisions to provide an additional level of control
and safety in situations that may be difficult for fully autonomous systems;

e Developing resilient AI modules and using strict methods of AI module verification,
which include analysis and code verification, to ensure their correctness and absence
of vulnerabilities before implementation in real-world conditions;

e Using monitoring and tracking systems for continuous observation of the Al modules'
operation, detecting anomalies, and rapidly responding to possible deviations in their
functioning.

The use of Autonomous UAVs poses a threat. The most obvious threat from the use of Al-
powered UAVs arises from their potentially insufficient controllability and exceptional
efficiency.

At the regulatory level, the introduction of safety standards for both UAVs and AI systems
is being considered, along with the use of forensic methods to investigate incidents,
improving surveillance systems to detect possible threats, and introducing effective
regulations to govern the use of Al in these systems.

At the technical level, for protection, the implementation of strict verification of UAV
software and hardware, the development of reliable Al modules, the creation of systems for
partial human control for quicker response to unforeseen situations, and the use of advanced
monitoring and tracking systems for continuous detection and tracking of UAV actions are
proposed, with the aim of effective control and response to potential threats.

4.2 Standard threats, attacks and countermeasures

Despite the development of technologies, standard threats such as DoS/DDoS, Flooding,
Replay Attack, Black/Gray Hole Attack, Jamming, MITM, Eavesdropping, still remain
relevant. At the regulatory level, the solution proposed involves the implementation of
security standards for UAVs and the use of forensic analysis methods to detect incidents and
determine their causes. In the context of UAV security, forensic analysis is used to detect,
investigate, and disclose crimes or incidents related to unmanned systems. This includes the
application of forensic methods to digital data, specifically the collection, analysis, and
interpretation of digital traces that may indicate unauthorized or anomalous activity [5].
Additionally, the development of incident response strategies helps improve the response to
potential threats and the rapid detection and elimination of security issues in UAV systems.
Technical countermeasures against jamming attacks may include [12] the traditional
approach of Uncoordinated Frequency Hopping (UFH), which allows two nodes to create and
exchange a secret key using coordinated frequency hopping, complicating attackers'
identification of the used frequencies. Another approach is Intrusion Detection Systems (IDS),
automated with AI [5, 12], which use RL methods such as Adaptive Federated Reinforcement
Learning (AFRL) for effective detection and protection against various types of jamming
attacks. AFRL uses models without Q-learning and is capable of adapting to various scenarios,



training local models on UAV nodes, allowing effective counteraction against constant,
random, and reactive jamming attacks [12].

Technical countermeasures against DoS/DDoS and Flooding attacks also use IDS. These
systems are based on various approaches such as rules, signatures, and anomalies for
detecting malicious interference. In rule-based IDS, clear norms and limitations are defined by
which deviations from the system's normal behavior are identified. Signature-based IDS
compare activity against known attack signatures for their detection. This method is effective
for detecting known threats but not new attacks. Anomaly-based IDS, which use ML/DL,
analyze changes in system behavior in real time and detect unusual or deviant actions.
Combining different IDS methods is an effective approach to ensure comprehensive system
protection against various types of attacks, complementing each other and detecting both
known and new threats.23.

Technical countermeasures against Replay Attack include methods of implementing
Timestamps and Nonce (a unique value) [12]. The use of fresh nonce during system
initialization guarantees the absence of repeated messages, while Timestamps allow for
correct time synchronization and the rejection of messages if the Timestamp has expired. For
protection against Black/Gray Hole Attacks, Intrusion Detection Systems (IDS) based on Al
can be utilized. For example, an Agent-based Hierarchical Intrusion Detection and Response
System (HID-RS) [12] uses a centralized GCS node as a trusted element for packet monitoring.
Each UAV sends a packet with neighboring data to the GCS, including the UAV type and
information about neighboring and previous nodes.

For protection against MITM attacks and interceptions at the technical level, it is proposed
to use lightweight message authentication-encryption algorithms. Functional Encryption (FE),
Homomorphic Encryption (HE), and the Dual Authentication Watermark Network
Architecture (DNA-DAW) are methods that can also be used to ensure data confidentiality
and integrity [7, 9]. However, such approaches may present challenges related to
computational complexity and efficiency, especially in conditions of limited resources in
devices. Therefore, it is necessary to ensure a balance between security and performance, as
well as to address the issues related to the size and weight of algorithms in the context of
unmanned systems.

At the regulatory level to control this threat, it is necessary to implement licensing systems
for UAV owners and strengthen legislation regulating their use. Stricter restrictions and legal
norms are important parts of strategies to prevent unauthorized UAV use. Surveillance and
national security efforts are identified as key for timely detection and prevention of potential
terrorist or criminal actions using UAVs.

Regarding technical implementations for protection, the use of Al systems for improved
detection and notification of any approaching UAVs is highlighted, providing a more effective
approach to alarms and sufficient time for neutralizing the threat remotely. Another approach
identified is considering the capabilities of specialized automated security measures that do
not lead to lethal outcomes, to overcome threats from UAVs over areas where their use is
prohibited, in order to prevent downing and injury. Also important is the development of
forensic tools for the identification and investigation of illegal UAV use, allowing for the
establishment of actual responsibility and the application of appropriate security measures.



5. Case study. Intelligent UAV System for Humanitarian Demining

5.1 Requirements for Al-Based Components and Al-Powered Protection
Means for UAV System for Humanitarian Demining

One example of standardizing requirements for Al involves quality model based defining its
characteristics [10], which allows assessing the trustworthiness and efficiency of Al platforms
and improving the security and safety of the UAV systems.

As a case study, it is proposed to adapt a basic quality model, in which Al is used in
unmanned systems for paramilitary demining [25], specifically for developing, first, onboard
computer vision for UAVs, and second, protection of the UAV system assets.

The adaptation of the quality model for Al-based on board system considering the
peculiarities of the demining tasks, includes (Figure 5a) the following marked characteristics:

e  Verifiability (VFB) of Al in this case becomes crucial in ensuring accurate and reliable
identification of explosive objects on the map, adapting to various environmental
conditions and undergoing verification through a variety of tests aimed at realistic
simulation of operational conditions;

e Ethics (ETH) is important for protecting the rights and safety of people during the use
of demining technologies, as well as for avoiding negative impacts on the
environment, which is a key aspect in the context of real demining operations;

e Explainability (EXP) and Transparency (TRP). Current issues regarding ethics,
morality, privacy, and law due to the lack of "understandable functions”" and
knowledge representation; such absences undermine the ability of humans to control
or even understand the proposed solutions. Since safety-critical systems must be
traceable, there is a trend away from the Black-Box concept;

e Lawfulness (LFL). Since UAVs can be used in critical sectors, Al interacting with the
system must comply with current legislation and consider rules and norms related to
air traffic organization;

e  Security (SCR). All components of UAV systems must be safe and secure, including Al
systems onboard or in the cloud. Since many Al systems rely heavily on input signals
from the external environment, their deliberate or targeted manipulation can lead to
errors and corresponding negative unforeseen consequences;

e Safety, diversity, resilience, and robustness (SFT, DVS, RSL, RBS) entail not only
preventing risks and damages due to failures but also minimizing potential
consequences in case of unforeseen situations. AI models must detect and effectively
respond to unexpected circumstances, also having built-in means for emergency
shutdown or automatic management in dangerous scenarios, thereby ensuring safety
and reliability in demining operations;

e Interactivity (INR) and Human Autonomy (HMA) are critical characteristics. It's
important that operators can interact with the system and intervene in its operation if
necessary, while still allowing autonomy for system decisions. Current research in
human-machine interaction is driven by the increasing volumes of processed
information and the complexity of automation, and this should improve human-
machine coordination;



e Trustworthiness (TST) ensures that the system reliably performs its functions of
recognizing explosive objects and meets safety standards, fostering users' confidence
in its reliability;

Accuracy (ACR) is key to avoiding false identifications and ensuring that recognized objects
correspond to the actual situation.

Adaptation of the quality model for UAV systems, where Al represented as a powered
protection means for UAV system assets is illustrated by Figure 5b where significant
characteristics marked:

e VFB is defined by the ability to subject Al to verification and testing through the
application of various methods in real conditions for protecting UAV systems;

e ACR of the Al model is key for trustworthy detection and identification of potential
threats or anomalies in UAV systems;

e TST provides the creation of reliable protection of UAV systems in conditions of high
safety requirements. DVS allows the system to adaptively counter various attacks, and
RSL and RBS ensure resistance to faults and changes in conditions;

e The use of Al as a means of UAV protection requires compliance with Security
requirements, ensuring the integrity and confidentiality of the system, providing a
high level of protection in conditions of constantly increasing cyber threats;

e EXP, TRP, and Interpretability (INP) aspects become important factors in the context
of security, because the need for effective interaction and understanding of the
decisions made is critical for ensuring the safety of UAV protection systems.

Figure 5: Basic quality model for Al a) for demining tasks, b) as a protection mean.

According to the specified characteristics, an assessment is made and compliance with the
requirements, in particular, with regard to security and safety, is determined. An integral
quality metric for Al tools can then be calculated using additive convolution.



5.2 Risk mitigation assessment

For quantitative risk assessment, various methods are applied, among which risk-oriented
approaches, such as IMECA [8], are worth highlighting. Application of IMECA for
multifunctional UAV fleets has been demonstrated in [26].

By analyzing various attacks and appropriative countermeasures, it is possible to
determine how effective risk reduction will be after the implementation of AI powered
protection measures at regulation and technical levels. Figure 6 presents information about
potential threats and means of their protection based on the countermeasures mentioned in
Figure 4. Column 2 determines whether there might be Al powered threats.

Column 3 determines whether there might be Al-based protection. The assessment scale
includes three levels of consequence severity or attack probability: "Low," "Medium," and
"High," denoted as L, M, and H, respectively. After applying protection means, one or both

indicators decrease, thereby reducing the level of overall risk.
Thisats Al powered | Al-based | Probability Severity

threats protection change change Risk change
Telemetry/GPS " v MoL HoM H-M
Spoofing
Adversarial attack
against Al-based UAV i Y B =SIM H= M Hi-iM
Autonomous UAV v v M- L H-M H-M
DoS/DDoS, Flooding v H-H H-L H-M
Replay Attack,
Black/Gray Hole v M-M M-L M-M
Attack
Jamming v H-L H-M H-M
MITM, Eavesdropping,
Data Stealing/ H-L H-H H-M
Injection/Modification
Malicious use of UAVs v H-M H-L H-L

Figure 6: Change of criticality indicators caused by Al-powered protection and
countermeasures.

6. Conclusion and future work

The main contribution of this study is the classification of protection means considering the
aspect of Al and an example of implementing standardization of Al components in UAVs
depending on the specified functions. The implementation of AI in UAVs significantly
improves their efficiency, while also unveiling new threats and opportunities for malicious
actors. Within the assessment of effectiveness, safety, and security of UAV systems, Al
technology must be considered as one of the factors of system unreliability due to the nature
of the technology itself and viewed as a method to enhance current attacks. The proposed
systematization consists of regulatory methods aimed primarily at legalizing use,
standardization, and quality control of UAVs and Al, and the corresponding technical
implementations of these methods. Additionally, provisional assessments of the impact of
analyzed attacks on cybersecurity and safety risks are provided. The proposed approach can
be extended to security-informed safety analysis of critical systems operated in aggressive
information and physical environments and providing proactive defense against attacks
strengthened by Al means [27].

Future research could be directed towards developing methods for assessing
countermeasures and analyzing attacks on UAVs equipped with AI systems. An important
direction is the study of combined attacks, development of attack graphs, as well as
investigating the impact of parallel and sequential attacks, which could be independent,



homogeneous, or heterogeneous. The implementation of such approaches could significantly
contribute to ensuring the resilience and dependability of systems in the context of the
continuously increasing risk of cyberattacks and modern challenges in the field of unmanned
mobile technologies and Al Intelligent robotic-biological system [25] for humanitarian
demining is a very interesting object of future research and development in context safety-
security-performance tradeoff considering different explosive ordinance, conditions of cyber
physical environment, and possibilities of dynamical reconfiguring IT-infrastructure.
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