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Abstract

Concept lattices of relational structures establish a database-theoretic variant of Formal Concept Analysis (FCA).
As shown in recent work, these concept lattices naturally extend to concept algebras, by means of a semigroup
action. Extensionally, these concept algebras form subalgebras of (a variant of) SPJR table algebras (the conjunctive
query fragment of Codd’s relational algebra). By that means, an axiomatic characterization of the concept A-
subalgebras (up to isomorphism, u.t.i.) has been obtained. However, the axioms are difficult to memorize, and in
some respects, the semigroup action proved cumbersome to work with. In this paper, we reformulate the axioms,
using the signature of Tarski’s cylindric algebras (an algebraization of first-order predicate logic). The axioms
compare surprisingly well to the cylindric algebra axioms, and the concept A-subalgebras correspond to cylindric
set algebras. We also obtain an axiomatic characterization of the concept /\-subalgebras (u.t.i.).
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1. Motivation

Formal Concept Analysis (FCA) [1] is a mathematical theory of concepts. The central notion in FCA is
the concept lattice, a complete lattice which describes a hierarchy of concepts. As the Basic Theorem of
FCA states [1, p. 20], every complete lattice can be represented as a concept lattice. So in this sense,
FCA is the theory of complete lattices, from a different perspective.

In the first publication on FCA [2], Rudolf Wille explains what this different perspective was meant
to achieve. He was inspired by von Hentig [3], who warned that, as an effect of growing specialization,
sciences were becoming disconnected from their surroundings and original motivations, and needed to
be restructured to re-enable such connections. Wille writes:

“Restructuring lattice theory is an attempt to reinvigorate connections with our general
culture by interpreting the theory as concretely as possible, and in this way to promote
better communication between lattice theorists and potential users of lattice theory” [2,

emphasis added]

“For this purpose we go back to the origin of the lattice concept in nineteenth-century

attempts to formalize logic, where the study of hierarchies of concepts played a central
réle [...]7 [2]

More than a decade later, when FCA was already established and had been successfully applied, Wille
announced a second project [4], called restructuring mathematical logic.

“The connections of logic to reality have been narrowed since Frege’s turn to predicate logic,
the leading paradigm of mathematical logic today. Thus, restructuring has to establish a
broader understanding of mathematical logic, in particular, by elaborating the pragmatic
dimension.
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For activating real communication and argumentation, it seems to be most important to
build enough bridges from the logic-mathematical theory to reality. One way to do this is
to revitalize the traditional paradigm of logic given by ’the three essential main functions
of thinking - concepts, judgments and conclusions’ ([5, p. 6]). [4, in-text citation adapted]

A formalization of concepts had already been achieved by FCA. In a follow-up paper [6], Wille
observed that another well-known theory of concepts, Conceptual Graphs [7] by John Sowa, already
offered a formalization of judgments and conclusions. More concretely, Wille points to a mathema-
tization of conceptual graphs by Chein and Mugnier [8]. We gather that S-graphs (with “S for Sowa,
for simple, [...]” [8]), which formalize the most basic type of conceptual graph, represent judgments,
and that conclusions can be characterized by graph homomorphism [8, Thm. 1]. The question was
then how the two theories can be unified, and Wille proceeds with a proposal. First, he introduces
abstract concept graphs as slightly modified S-graphs. Then he introduces power context families, which
represent relational data, and also support the usual notion of concepts for FCA. Finally, he introduces
concept graphs, which combine abstract concept graphs with concepts from a power context family,
thereby obtaining a formalization of judgments that builds on FCA concepts. A summary of concept
graphs is presented in [9, Sect. 6.5].

Wille’s inspirational paper [6] marked the beginning of a new era of FCA, where relations entered
the stage. Relational Concept Analysis (RCA) [10][11] provides a deeper integration of concepts with
relations, adapts to relational databases through conceptual scaling [1], supports different kinds of logical
quantifiers, and is being applied in practice. Baader et al. [12] combine FCA with Description Logics, a
more human-centered branch of logic (cf. Wille’s criticism w.r.t. predicate logic above). Kotters [13]
introduces a database-theoretic FCA variant; a detailed and refined presentation is given in [14, Sects.
3-5], and the paper at hand continues the theoretical developments.

Conjunctive queries [15, Ch. 4] are a natural and fundamental class of database queries. They were
introduced by Chandra and Merlin [16], and have their origin in mathematical logic. Unifying the logical
and database-theoretic viewpoints, we identify conjunctive queries with primitive-positive formulas (i.e.
first-order formulas built from atoms using {3, A}), evaluated in relational structures, where

ress(p) = {t € G¥ | & = o[t} (1)

defines the result table of a formula ¢ (with set X := free(y) of free variables) in a relational structure
& (with universe G).! A relational database is a finite relational structure [16, p. 77]. For any relational
database &, the result operation resg is part of a Galois connection, which means that we obtain a
concept lattice B(®). This establishes a fundamental connection between FCA and database theory.
Tableau queries [15, p. 43] are structural representations of conjunctive queries. Accordingly, we
represent a formula ¢ with X := free(y) by a pair (9, v), consisting of a relational structure 91 and a
window v : X — N, elsewhere called the summary [15, p.43], and obtain the result table as a set

resg (M, v) = {fov|f: N— &} (2)

of homomorphisms as "seen through the window". From a graph-theoretical perspective, a relational
structure is a graph [19]. Likewise, a tableau query can be considered a graph (cf. [14, Sect. 3.1] for our
drawing conventions). Under this perspective, (91, v) is a query graph, and resg (91, ) contains the
pattern matches in the data graph &. Tableau queries offer a natural way to express infinite conjunctive
queries, and indeed, we have not required that (0, ) must be finite. In order to maintain the logical
perspective, a graph logic [14, Sect. 3.4] can be formulated. Homomorphisms f : (M1, v1) — (Mo, v2)
of tableau queries are defined in the obvious way, and correspond to logical implication in the graph
logic.

"Details of the unification: Note that queries can be represented in prenex normal form [17, Sect. 8.4]; constants are not allowed,
but unary relations can play the role of constants [17, Sect. 8.1]; equality is allowed, e.g. the query z=x requests a list of all
objects in the database, even though such a query is not natively supported in Codd’s data model [18]; equality does not
enhance expressivity greatly, because in many instances, equality can be eliminated by substitution [15, p. 47f.] or would be
expressed by variable repetition in a conjunctive calculus query [15, p. 45].



The following reasons suggest that the database-theoretic FCA variant matches Wille’s intention
with the restructuring project:

« Wille indicates [6, pp. 291£.,300] that suitable notions of judgments and conclusions are offered
by S-graphs and their homomorphisms. Since S-graphs represent primitive-positive formulas [8,
Sect. 9.1], we might as well consider tableau queries and their homomorphisms; the difference
being that S-graphs represent closed formulas (i.e. sentences), whereas tableau queries may, and
generally do, represent open formulas (having one or more free variables). By allowing free
variables, we obtain concept extensions (cf. eq. (1)).”

« Conceptual graphs were initially motivated as a human-centered query language for relational
databases [20].°

+ The widespread use of relational databases suggests practical relevance and good availability of
data.

+ The result operation corresponds to the activity of querying a database, which suggests a pragmatic
dimension.

« The implementation of the classical flight example [21] is not based on concept graphs, but on
abstract concept graphs, interpreted as conjunctive queries.

We provide some logical background in Sect. 2, and give a short account of cylindric algebra in Sect. 3.
In Sect. 4 we summarize recent results on table algebras [22][23], and also extend a result in Sect.4.4. In
Sect. 5, we introduce conjunctive concept algebras and present our main results (Props. 10 and 11).

2. Preliminaries

We assume it is generally known what is meant by a first-order formula, and what it means that a first-
order formula ¢ holds in a structure 2 under a variable assignment o, written 2 |= p[a] or (2, o) | ¢,
cf. [17]. A signature is generally a set M of function symbols, constants, and relation symbols. The
set of first-order formulas over the signature M is denoted by FO(M). If M contains only relation
symbols, it is called a relational signature, and a structure 2 over M is called a relational structure.
Because of our take on database theory, we always assume that M is a relational signature; this does
not limit expressivity in general [17, Sect. 8.1]. Each symbol m € M has an arity |m/| > 1. For technical
convenience, we identify the countably infinite set of variables with the ordinal w = {0,1,2,...}. An
atomic formula in FO(M) is either a relational atom Rx; ... x,, an equality atom x=y, or one of the
special atoms true (the tautology) or false (the contradiction), for arbitrary 1, ..., 2n, 2,y € w.

Logical implication between formulas ¢, € FO(M) in the standard semantics is introduced as
in [17]. We say that ¢ logically implies 1), and denote this by ¢ |= v, if (&, a) = ¢ implies (&, ) =
for all structures & of signature M and all variable assignments o € G*. From (5) we obtain that
¢ = 9 holds if and only if p® C 4® for all structures & (of signature M), i.e. logical implication is
conveniently expressed via the solution sets. Accordingly, ¢ and 1) are logically equivalent, denoted by
o ==, if & = ¢ for all &.

Then clearly, in the table semantics, ¢ and 1) should be logically equivalent if resg () = resg (1) for
all ®. The formulas z=x and y=y are then not equivalent, because the result tables have schemas {z}
and {y}, respectively, at least for nonempty & and different x, y. So while the special atom true is a
tautology, the equality atoms x=x and y=y are not. A logic with undefined variables provides a formal
underpinning: the modified result operation

resg () := {t € Tup(G) | (&,1) = ¢} ©)

Beyond the formal analogy, the distinction between concepts and judgments in the conjunctive query approach needs to be
clarified.
*Interestingly, Sowa’s article predates Chandra and Merlin’s [16] by a year.




uses the finite tuples in Tup(G) := U{G¥ | X € Pgn(w)} as variable assignments, and if an
assignment ¢ is not defined on all variables in free(y), then (&, t) %= . We refer to this as the tuple set
semantics. The function

4)

- Tab(G) — Pan(Tup(Q))
T {t € Tup(G) | t|schema(T) € T}

satisfies resg = h o resg, so it relates table semantics and tuple set semantics. It forms an embedding
h: (Tab(G), x) — (Pan(Tup(G)),N) of meet-semilattices, i.e. an injective homomorphism; and as
such, it also forms an order embedding h : (Tab(G), <) — (Pgn(Tup(G)), C); thereby providing a
set interpretation of the tables and their order, see also [14, Sect. 3.5][24]. In particular, p < ¢ 1< VS :
resg (@) <resg(v) & VO :resg () C resg (1)) denotes logical implication in both the table semantics
and the tuple set semantics. So both semantics are equivalent; we can use either of them, depending
on the purpose. Finally, we write ¢ ~ 1 if and only if ¢ < ¥ and ¥ < ¢, which coincides with our
initially postulated notion of equivalence.
The following proposition relates table semantics with standard semantics.

Proposition 1. Let ¢, € PP(M). Then ¢ < 1) if and only if ¢ |= 1 and free(y)) C free(yp).

Proof. The case = false is trivial. Now let ¢ # false and 1) = false. Because ¢ is primitive-positive
(and not the contradiction), it is satisfiable (cf. [17, Ex. 3.4]), i.e. there exists & such that 0® Z () = ¢®,
s0 @ [~ 1; and likewise, we obtain ¢ £ 1. The case @, 1) # false is covered in [14, Prop.3]. O O

3. Cylindric Algebra

The two most fundamental disciplines of logic, as of today, are propositional logic and predicate logic; and
by predicate logic, we usually mean first-order logic. Boolean algebras are well-known algebraizations of
propositional logic. Likewise, cylindric algebras by Alfred Tarski are algebraizations of first-order logic.
The classical monographs on cylindric algebras are the works of Henkin, Monk and Tarski [25][26],
and for an introduction, we refer to the papers of Németi [27] and Monk [28]. We first present cylindric
set algebras (Sect. 3.1), then turn to cylindric algebras in general (Sect. 3.2).

3.1. Cylindric Set Algebras

Every relational structure & with signature M induces a solution operation (-)® : FO(M) — P(G¥)
that maps each first-order formula ¢ to its solution set

o® = {a e[ (8.0) ¢} )

The algebra FO(M) = (FO(M), V, A, —, false, true, 3, t=Y), yew interprets V, A, = and 3, (for
all z € w) as syntactic operations, e.g. V(p, 1) := (¢ V ¢) and 3, () := (Fzp). Moreover, it contains
false, true, and all equality atoms x=y as distinguished elements. The solution operation forms a
homomorphism (-)® : (FO(M), V, A, -, false, true) — (P(G¥), U, N, (-)t,0, G¥). In this sense, the
logical operations are represented by set operations. Likewise, existential quantification over z is

represented by the cylindrification C,, : P(G) — P(G), defined by
Cr(A):={aeG”|JgeG:alc A}, (6)

where o € G* is the modification of « that satisfies a2 (x) = gand aZ(y) = a(y) forally € w\ {z}.
Finally, the equality atoms x=y are represented by the diagonals

Dy i={a € G*| a(z) = a(y)} - )

This motivates Cs(G) := (P(G¥),U,N, (-)E, 0,G¥,Cy, Dyy)z ycw as a set-theoretic counterpart of
FO(M); but note that in principle, G and M are independent. In summary, the relational structure &
induces the solution homomorphism (-)® : FO(M) — Cs(G).



The homomorphic image Cs(&) := [FO(M)]® is the subalgebra of Cs(G) that consists of the
solution sets. More generally, a subalgebra of Cs(G) is called a cylindric set algebra with base G and
dimension w. We now pose two questions, and state the answers below, as found in Monk [28]:

a) How are the solution set algebras Cs(®) characterized from among all cylindric set algebras of
dimension w?

b) Is there an axiomatic characterization for the cylindric set algebras of dimension w?

a) The algebras Cs(®) are precisely the locally finite-dimensional and regular cylindric set algebras
of dimension w (cf. [28, Thm. 12.2]), b) The cylindric set algebras of dimension w are not first-order
axiomatizable (cf. [28, p. 279]).

3.2. Cylindric Algebras

Because of negative results with regard to first-order axiomatization of cylindric set algebras and other
concrete notions, cylindric algebra were introduced. They are defined by a finite schema of equations,
to provide for a good theory, and are meant to circumscribe the interesting classes of concrete algebras
sufficiently well. In that sense, the notion of cylindric algebra is arbitrary, cf. [27, Sect. 4].

Definition 2. A cylindric algebra is an algebra (V,V, A, —,0,1, ¢y, dyy) 2 yew consisting of a binary
supremum V, a binary infimum A, a unary complement —, a zero element 0, a one element 1, a unary
cylindrification ¢, for each € w, and a diagonal element d,, for each (z,y) € w X w, which satisfies

(CA0) (V,V,A,—,0,1) is a Boolean algebra (CA%) c(cy(u)) = cylcx(u))

(CA1) ¢, (0) =0 (CA5) d,, = 1

(CA2) u < cy(u) (CA6) = #y,z2 = dy. = cz(dys Ndy2)

(CA3) cip(uNcy(v)) = cp(u) Acg(v) (CA7) z# y = cp(day Nu) Acg(dgy A—u) =0

forallu,v € Vandallz,y, z € w.

4. Table Algebras

From an extensional point of view, concept lattices of relational structures are table algebras. In quest
for a Basic Theorem, this motivates the study of table algebras.

4.1. DPJR Algebras

The SPJR algebra [15, Sect. 4.4] allows to specify conjunctive queries using algebraic operations; these
are the table operations of selection, projection, (natural) join and renaming, indicated by the letters.
It is also called the named conjunctive algebra, because it operates on tables with named columns (as
opposed to tables with ordered columns). While Abiteboul et al. [15] refer to SPJR algebra as a query
language, it better suits our extensional viewpoint to think of it as an algebra of tables, with concrete
operations.

We define a table as a set T C GX, where X C w is a finite set of column names (not column
numbers), an element ¢ € T is a row, t(x) is the entry in row ¢ and column z, and G is an arbitrary set.
Hence,

Tab(G) = | J{P(G¥) | X C w finite} (8)

contains all tables with entries in G. Note that while X must be finite, a table can have an infinite
number of rows if G is infinite. Naturally, the empty set () represents the empty table. The schema of a
table 7' € Tab(G) is uniquely defined by

X fTecGXandT # )

schema(T) := { w T —0 . 9)



Note that G? has a single element (), called the empty tuple, and {§}} € P(G?) is the unique table with
schema ().

For finite X C w, the set Tab(G)[X] := P(G™) is the X-slice of Tab(G). The natural join of tables
S € Tab(G)[X] and T' € Tab(G)[Y] is a table T' € Tab(G)[X U Y], defined by

SxT:={tcG*Y |tlx € Sandtly € T} . (10)
Moreover, for all z, y € w, we define the diagonal
By = {t € G | t(z) = t(y)} . (11)

The natural join is associative and commutative [15, p. 58], and trivially idempotent, i.e. (Tab(G), x) is
a meet-semilattice, with the implied table order T} < Ty & Ty = T} X Tb. The tables () and {(}} are
the absorbing element and neutral element, respectively, w.r.t. to the join. This means that they are also
the smallest and greatest elements in the lattice order.

A finite partial transformation of w is a partial function A : w — w, defined on a finite set def(\) =
X C w, and we set rng(\) = {A(x) | z € def(\)}. We use Tg,(w) to denote the set of finite partial
transformations on w. The pair (7, 0) is a semigroup, with o as composition of partial functions,
which naturally acts on the tables through the right multiplication

‘ { Tab(G) x Tgp(w) — Tab(G) (12)
(T,\) = T A= {toA|teT) °

The right multiplicaton encodes three different table operations: projection, renaming and column
duplication. For the partial identity Tx : w — w, which can be written {(z,x) | z € X} as a relation,
T - wx is the projection of T' on the column set X. Note that right multiplication is totally defined, so
generally schema(7T - mx) = schema(7") N X. A partial bijection is an injective function & : w — w,
and it acts as a renaming on Tab(G). Moreover, a folding is a partial function 0 : w — w with § o § = 4,
and for each = € def(9), the table T"- § has a column x which is a copy of d(x); the column 6 (z) is fixed
because of § o § = 4. This completely describes right multiplication, since every A € Tg,(w) acts as a
sequence of these operations [22, Lemma 1]; more concretely, there is a decomposition A = mx 0 £ 0§,
and furthermore T'- (mx 0 £ 0d) = ((T - wx) - §) - d. For the above reason, we call

DPJR(G) = (Tab(G), x,0,{0}, -, Eyy, schema), yew (13)

the full DPJR algebra with base G. A DPJR algebra with base G is a subalgebra of DPJR(G). Before we
proceed, the relation with SPJR algebras shall be explained.

Abiteboul et al. [15, p. 57] refer to two kinds of selection, denoted by 04—, and 0 4—p5, where A and
B are column names, and a denotes an object in the universe. The reference to a reflects a database-
theoretic convention, whereby objects in the universe are exposed as constants. Note however, that in
our formalization of conjunctive queries, which unifies the database-theoretic and logical viewpoints
(cf. the footnote in Sect. 1), we strictly allow relation symbols only. So the corresponding variant of
SPJR algebra would only use the second kind of selection (i.e. 0 4—p, which deletes all rows having
different entries in the A and B columns). It is a moderately easy exercise to show that DPJR algebra
(without diagonals) is equivalent to this variant of SPJR algebra. The diagonals are not part of SPJR
algebra; their inclusion in the DPJR algebra also caters to the unified viewpoint.

4.2. Conjunctive Table Algebras

We motivate conjunctive table algebras in the same way we have motivated cylindric set algebras
in Sect. 3.1. A first-order formula is primitive-positive if it is built from atoms using {A, 3}. The set
of primitive-positive formulas over the relational signature M is denoted by PP(M). The algebra
PP(M) := (PP(M), A, false, true, 3., x=y, free), ye., extends PP (M) with the respective syntactic
operations and constants (cf. the algebra FO(M) in Sect. 3.1), and it also includes the function



free : PP(M) — P(w), which maps each formula to its set of free variables; for the special atoms, we
define free(true) = () and free(false) = w.

Every relational structure &, with universe GG and signature M, induces a result operation resg :
PP(M) — Tab(G) that maps each formula ¢ to its result table, given by

ress (i7) = {t € G0 | (8,1) = o} . (14)

In particular, we have resg(false) = () and resg(true) = {()}. Note that each variable in free(y)
corresponds to a column in the result table resg ().

Next, we identify the table operations which correspond to the logical operations. Existential
quantification is matched by column deletion; we define the deletion operation del, : Tab(G) — Tab(G)
by

del,(5) := {t|X\{z} |teS}. (15)

Note that del,(S) = S if x ¢ X. The other required operations have already been defined in Sect. 4.1.
As expected, we have

rese (0 A Y) = resg (@) X rese ()

resg (false

0

{0}

del, (rese(¢))
Ey

resg (I
resg(x =y

) =
)
resg (true)
)
)

and if resg () # 0, then also schema(resg(p)) = free(gp). This motivates to define Tab(G) :=
(Tab(G), X, 0, {0}, del,, Eyy, schema), e, as the full conjunctive table algebra with base G.

As indicated, in the case resg () = (), the free variables of ¢ can not be recovered from the result table,
and in this sense they are not preserved. Consequently, we do not consider resg : PP(M) — Tab(G)
to be a proper homomorphism, and refer to it as a zero-tolerant homomorphism, a slightly weaker kind
of homomorphism. But it does preserve all logical operations and constants, so the homomorphic image
Tab(®) := ress[PP(M)] is a subalgebra of Tab(G). This motivates our main definition.

Definition 3 (Conjunctive Table Algebra). A conjunctive table algebra with base G is a subalgebra 2 of
Tab(G).

The X -slice of 2, for each X € Pg,(w), is the set A[X] := {T' € A | T € GX}. For convenience,
we define A*[X| := {T € A | schema(T) = X} = A[X] \ {0}. Note that n = {0,...,n — 1}, so
Aln] = A[{0,...,n — 1}] and A*[n] = A[{0,...,n — 1}].

In Sect. 3.1, we have presented two questions (and their answers) on cylindric set algebras. We
formulate their counterparts in our database-theoretic setting:

a) How are the algebras Tab(®) characterized from among all conjunctive table algebras?

b) Is there an axiomatic characterization for the conjunctive table algebras?
Proposition 4. Conjunctive table algebras and DPJR algebras are equivalent:

i) Every conjunctive table algebra is closed under right multiplication.

ii) Every DPJR algebra is closed under deletions.

Proof. i) Let 2 be a conjunctive table algebra. We show T'- A € Aforall T € A[Y], Y € Pgp(w), and
A € Tip(w). Since T'- A =T - A|y-1(y), we may assume w.Lo.g. that ng(\) C V,ie A: X — Y for
some X € Pp(w). HXNY =0, thenT -\ =dely(T x E)) € A[X]. Otherwise, let{ : Y — Z be a
bijection onto some Z € Pgy,(w) with ZN X =0 and Z NY = (). By reduction to the previous case,
we first obtain 7 - ¢ 1 € A[Z],and then T - A\ = (T'- £71) - (€0 A) € A[X].

ii) Let 2 be a DPJR algebra. For all T' € [X], X € Pg,(w) and = € w, we have del,(T) =
T- TxX\{z} € QL[X \ {x}] O



Proposition 5. The conjunctive table algebras are precisely the result table algebras Tab(®) of relational
structures ®.

Proof. By definition, every algebra Tab(®) is a conjunctive table algebra. Now let 2 be a conjunctive
table algebra with base G. Let My = | J,,~; 2*[n] be the relational signature which uses *[n] as its
set of n-ary relation symbols. Each T' € 2[*[n] is also a set of n-tuples, i.e. an n-ary relation. Let Gy
be the relational structure with universe GG and signature My, given by the map [ : My — My that
maps each T' € A*[n] (as a symbol) to T' € A*[n] (as a relation), i.e. I = idpy,. It remains to show
resg , [PP(My)] = 2.

"C:" By definition of g, we have resg, (T'(0,...,n — 1)) = T € My C A for all relational
atoms 7'(0,...,n — 1). Let 0 : n — X be a substitution of variables, such that n N X = (). Then
T(0(0),...,0(n — 1)) is equivalent to 7, := 30...In — 1 : (T(0,...,n — 1) AO=c(0) A--- A
n—1=c(n —1)). Soresg, (T(0(0),...,0(n —1))) = ressy (¢1,5) = delg ... del,—1 (T X Epy ) X
o X By 5(n—1)) € A. Every relational atom T'(x1, . .., ¥,) is obtained from 7'(0, ..., n — 1) by two
such substitutions, i.e. resgy (T'(z1, ..., 2yn)) € A for all relational atoms. By induction, resg, (¢) € A
for all ¢ € PP(M).

"D:"Let T € A*[X] for some X € Pgy(w) with cardinality n := #X. We choose an arbitrary
bijection £ : n — X, and obtain T"- § € A*[n] C resg, [PP(Msy)]. By Prop. 4, the homomorphic image
is closed under right multiplication, so we also have 7' = (T - ) - £ € resg, [PP(My)]. O

Proposition 5 provides a simple answer to our question a) above: The algebras Tab(®) are precisely
the conjunctive table algebras. The primary question is how the algebras Tab(®) can be axiomatized.
As we have seen now, the formal framework of cylindric set algebras fits the question perfectly (which
was not the case for cylindric set algebra, cf. question a) in Sect. 3.1). An answer to our question b) is
given in Sect. 4.3.

4.3. Projectional Semilattices

The main result of [23] is the axiomatic characterization of conjunctive table algebras by projective
semilattices. The given axiomatization is not a first-order axiomatization, but a comparison with
cylindric algebra axioms, given below, should convince the reader of their value.

Definition 6 ([23, Def. 2]). A projectional semilattice is an algebra

(V.A,0,1, ¢y, dgy, dom), e, consisting of a binary infimum A, a zero element 0, a one element 1, a
unary cylindrification ¢, for each x € w, a diagonal element d,, for each (x,y) € w X w, and a domain
function dom : V' — P(w), which satisfies

(PS0) (V,A,0,1) is a bounded semilattice (PS7) = # y = dyy N cp(dey ANu) <
(PS1) ¢,(0) =0 (PS8) u # 0 = dom(u) finite

(PS2) u < ci(u)

(PS3) cu(u A cp(v)) = cp(u) A cz(v)
(PS4) cy(cy(u)) = cylca(u))

(PS5) u # 0= (u# cp(u) = u < dyy) (PS11) dyy # 0
(PS6) = # y,2z = dy, = cx(dyz N dy2) (PS12) dyy = dy,

(PS9) dom(u) ={z € w | u < dys}

(PS10) dom(u) =0 =>u=1

forallu,v € Vandx,y,z € w.

Proposition 7 ([23, Thms. 1,3]). The conjunctive table algebras over non-empty universes are precisely
(up to isomorphism) the projectional semilattices.

The axioms (PS0), ..., (PS7) correspond to the axioms (CAO),...,(CA7) for cylindric algebras.
Axiom (CADO) asserts a Boolean algebra; since we do not consider disjunction and negation, axiom
(PSO0) only asserts a bounded semilattice. The Axioms (CA1), (CA2), (CA3), (CA4)and (CA6)



are identical to (PS1), (PS2), (PS3), (PS4) and (PS6), respectively. Cylindric algebra axiom (CA5)
states d,; = 1, reflecting that x=ux is a tautology; however, the table semantics in eq. (1) corresponds to
a logic with undefined variables, where x=x is not a tautology! We consider (PS5) to be a suitable
replacement: Under the definition axiom (PS9), axiom (CA5) asserts dom(u) = w for all u # 0;
whereas axiom (PS5) asserts dom(u) = {z € w | ¢z(u) # u} for all u # 0; the latter set is known as
the dimension set A(u) in the terminology of cylindric algebras. Axiom (PS7) is the historical axiom
(CAT); the contemporary axiom (CAT) is equivalent but involves negation! Historically, there was
also an axiom (CAS8), stating that A(u) is finite for all u € V. Since dom(u) = A(u) for u # 0, we
can identify (CA8) with (PS8), disregarding the case u = 0.

4.4. Complete Projectional Semilattices

The table algebras Tab(G) are complete lattices [14, Sect. 3.5]. The join X ;c; T; of a family (7;);c;
is the empty table if | J,.; schema(T;) is infinite (because no other tables with infinite schema are
contained in Tab(G)), and is otherwise defined in the natural way.

A conjunctive table algebra 2 is complete if X ;c; T; € A for all families (7;);cs in A. In this section,
we provide an axiomatic characterization of complete conjunctive table algebras. Likewise, we say that
a projectional semilattice (V, A, 0, 1, ¢z, dgy, dom) yew is complete if (V, <) is a complete lattice.

Proposition 8. The complete conjunctive table algebras over non-empty universes are precisely (up to
isomorphism) the complete projectional semilattices.

Proof. Trivially, every complete conjunctive table algebra is a complete projectional semilattice. Now
let 2 be a complete projectional semilattice. In the proof of [23], an embedding ext, : 2 — Tab(G)
into a full table algebra with non-empty base G is obtained, where o : |y €Pan () GX — Ais atuple
labeling of 2 (cf. [22, Def. 4]), in particular it satisfies schema(«(t)) = def(¢) and

a(t)-A=a(to)) (16)
for all A € T, (w). The embedding ext,, is defined by
exto(u) := {t € GX | a(t) < u} (17)

for all u € A[X] and X € Pg,(w). Our proof amounts to an adaptation of the infimum case in the
proof of [22, Thm. 2]. From that paper, we also obtain [22, Prop. 3x)]

alt) <u; < alt) mx, <u;. (18)
Now let (u;)icr be a family of elements in 2. We have to show extq(A;c; ui) = Wicrextq(u;). If

Ui dom(u;) is infinite, we obtain extq(/\;c; ui) = extq(0) = 0 = W es extq (u;). Otherwise,

te exta(/\ui) esViel:alt)<u; & Viel:alt) mx, <u;
icl (17) (18)

(<:6>)Vi el: Oz(t|Xi) <y (<:7>)VZ el: t‘Xi € exta(ui) ste N exta(ui) .
! ! icl

5. Conjunctive Concept Algebras

For every relational structure &, the result operation resg of eq. (2) is part of a Galois connection, from
which a concept lattice is obtained in the usual way, cf. [14, Sect. 5][13]. The pair of maps can be stated
as

rese (M, v) == {t € GIW) | (M, v) < (8,1)} (19)



infog(T') := H(@, t) (20)

teT

where (M, v) < (8,¢) = 3f f: (M, v) — (&, 1) denotes the existence of a tableau query homomor-
phism, and [],.(®,t) is the direct product of tableau queries. A concept of & is a pair (T, (M, v))
such that T = resg (M, v) and (M, v) = infos (7). The table ext(T, (N,v)) := T is the concept’s
extent, and the tableau query int(7, (I, v)) := (M, v) is the concept’s intent. For practical purposes,
the intents can be simplified by reduction to connected components and query minimization, cf. [13,
Figs. 5,2]. Complexity of intents can be further reduced by pattern projections [14, Sect. 6.2][29], but
this amounts to considering an /\-sublattice of *B(®). For theoretical purposes, we use egs. (19) and (20)
as they are. The concept lattice of & is denoted by B(®). It is a complete lattice; we denote the
infimum by A, the supremum by V, the top concept by T and the bottom concept by L. Every con-
cept of B(&) has a domain dom(T, (M, v)) := schema(T) C w, and the X-slice of B(B) is the set
B(B)[X]:={C e€B(B)|dom(C)=X}U{L}

The operations of the DPJR algebra can be lifted to concepts, which results in orbital concept lat-
tices [30]. The right multiplication on concepts is defined by (7', [(9T,v)]) - A := (T - A\, [N, v 0 N)]) €
B(®), where intents are classes of equivalent tableau queries, or their representives (for technical
details see [14, Sect. 4.3]). Note that if C € B(&)[Y]and A : X — Y, then C - X € B(8)[X]. Also
in [30], we have introduced equality concepts &, for each (z,y) € w x w. We now introduce a deletion
operation del,, on B(®) for every x € w, given by del,(C) := C - mx\ (4} for C € B(S)[X]. The

following definition is inspired by the definition of cylindric set algebras.

Definition 9. The algebra €(®) := (B(B), A, L, T, del,, €y, dom), yew is the full conjunctive con-
cept algebra with base ®. A conjunctive concept algebra with base & is a subalgebra of €(®).

We infer from Prop. 4 that right multiplication is a derived operation on €(®); i.e. the conjunctive
concept algebras coincide with the subalgebras of orbital concept lattices. Note that the primitive-
positive formulas correspond to the finite tableau queries [14, Sect. 3.2][15]. The subalgebra €5, (&) :=
{C € B(®) | ext(C) € resg(PP(M))} consists of the primitive-positive definable concepts of &.
The concept algebra €q,, (&) is essentially a concept algebra in the sense of Andreka and Németi [31],
applied there specifically to cylindric set algebras, and used with other kinds of logic in [32].

By Prop. 5, for each set G, there exists a relational structure & such that Tab(G) = resg [PP(M)).
In other words, €5, (®) is isomorphic to Tab(G). Then necessarily, we have €g, (&) = €(&). So in
conclusion, for every set G, there exists a conjunctive concept algebra €(®) that is isomorphic to the
table algebra Tab(G). This means that Props. 7 and 8 translate to concepts:

Proposition 10. The conjunctive concept algebras (up to isomorphism) with non-empty base & are
precisely the projectional semilattices.

Proposition 11. The complete conjunctive concept algebras (up to isomorphism) with non-empty base &
are precisely the complete projectional semilattices.

While we have not arrived at a Basic Theorem, a substantial connection to algebraic logic has been
made. The remaining question is whether every complete subalgebra of a concept lattice B(®) is itself
isomorphic to a concept lattice. We conjecture that this is the case.

Conjecture 12. The concept algebras (&) (up to isomorphism) over non-empty & are precisely the
complete projectional semilattices.

6. Related Work

Imielinski and Lipski [24] have described a mapping from a relational algebra into a cylindric set algebra,
which acts as an embedding under certain assumptions. As Diintsch and Mikulas[33] have pointed
out, the table schema is not preserved by this mapping, so this mapping can not be truly considered



an embedding. In order to preserve the table schema, they include a new element in the cylindric set
algebra, which does not occur in tables. This new element amounts to a value of "undefined", so that
the sets in the cylindric set algebra become sets of partial functions.

In this paper, we suggest to take a different route, and adapt the axioms of cylindric algebra to the
database-theoretic setting. In his survey paper, Németi [27] presents variants of cylindric algebras, and
also discusses the merits of such an approach [27, Sect. 7(4)], citing Howard [34] and Craig [35] as
protagonists. However, they work with a different signature, which includes negation/complements, and
which supports the unnamed perspective, while we present an axiomatization in the named perspective
(cf. [15] for perspectives), which is closer to the original axioms. Variants of cylindric algebras, which are
based on other first-order fragments (cylindrification only, cylindrification with union, cylindrification
with union and intersection) are presented by Hansen [36].

7. Conclusion

We have characterized the A-subalgebras of concept algebras €(®) by axioms in the style of cylindric
algebras, and have more specifically likened them to cylindric set algebras. This establishes a connection
between FCA and algebraic logic in the database-theoretic setting. In addition, we have obtained
an axiomatic characterization of the /\-subalgebras of concept algebras €(®). Since )\ -sublattices
correspond to pattern projections [29], we have thus axiomatized conjunctive pattern concept algebras
(to be defined in a suitable way). Moreover, we have conjectured that the concept algebras €(&) are
precisely (u.t.i.) the complete projectional semilattices. The results raise the question how concept V-
subalgebras and concept \/-subalgebras can be axiomatically characterized. Moreover, while conjunctive
concept algebras correspond to cylindric set algebras, is there also a well-motivated counterpart of
cylindric algebras in this setting? Finally, we suggest to use relational concept algebra as a generic
notion, and consider conjunctive concept algebras, as well as their orbital counterpart [30], as special
kinds of relational concept algebras.
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