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Abstract
Inconsistency-tolerant semantics are approaches to provide meaningful answers to queries even in the presence

of inconsistent knowledge. Several such semantics rely on the notion of a repair, which is a “maximal” consistent

subset of the database, where different maximality criteria might be adopted depending on the application at

hand. Common maximality criteria assume that all facts in a database are equally important. However, in several

real-world applications, it is often the case that different facts have different importance. In this paper, we consider

Datalog
±

knowledge bases where database facts are weighted, with weights expressing facts’ importance (or

reliability or some other aspect of interest). We present recent results on the complexity of querying inconsistent

knowledge bases in this setting.
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1. Introduction

In real-world applications, data possibly coming from different sources may exhibit inconsistencies.

Obtaining meaningful query answers in these scenarios can be achieved by resorting to inconsistency-

tolerant semantics. Popular ones are the ABox repair (AR), first defined for relational databases [1]

and then generalized for description logics (DLs) [2], the intersection of repairs (IAR) [2], and the

intersection of closed repairs (ICR) [3]. All such semantics, as well as others (see, e.g., [2]), are based on

the notion of a repair, which is a “maximal” consistent subset of the knowledge base’s facts. Subset

maximality was adopted upon introduction of the above semantics. However, other maximality criteria

are relevant in practice and have been introduced over the years. For instance, maximum cardinality

is a stronger criterion ruling out subset-maximal repairs not containing the highest number of facts,

which is suitable for settings where all database facts are considered equally reliable. For Datalog
±

languages, subset-maximal repairs have been considered in [4, 5] while cardinality-maximal ones in [6];

in the context of querying inconsistent DL knowledge bases, the aforementioned maximality criteria,

as well as others, have been investigated in [7]. Inconsistency-tolerant semantics have been defined

also w.r.t. “preferred” repairs that are selected among the subset-maximal ones on the basis of user

preferences [8, 9, 10, 11, 12].

In this paper, we consider the case where database facts are associated with weights (e.g., quantitatively

measuring their reliability), a scenario arising in many applications. For example, consider a neuro-

symbolic system in which the neuronal part of the system produces some predictions as database facts

associated with a confidence score (see, e.g., [13] and references therein). Then, in case of inconsistencies,

these values can be used in the computation of most reliable repairs. In such a setting, a natural criterion

to define repairs is to select the weight-maximal consistent subsets of the database. In this paper, we
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discuss recent results presented in [14] on the complexity of the AR, IAR, and ICR semantics when

such a notion of repair is adopted in the presence of weighted knowledge bases expressed via Datalog
±

languages.

2. Preliminaries

General. We assume a set C of constants, a set N of labeled nulls, and a set V of variables. A term 𝑡 is a

constant, a null, or a variable. We also assume a set of predicates, each associated with an arity, i.e., a

non-negative integer. An atom has the form 𝑝(𝑡1, . . . , 𝑡𝑛), where 𝑝 is an 𝑛-ary predicate, and 𝑡1, . . . , 𝑡𝑛
are terms. An atom containing only constants is also called a fact. Conjunctions of atoms are often

identified with the sets of their atoms. An instance 𝐼 is a (possibly infinite) set of atoms containing only

constants and nulls. A database 𝐷 is a finite instance that contains only constants. A homomorphism is

a substitution ℎ : C∪N∪V → C∪N∪V that is the identity on C and maps N to C∪N. A Boolean
conjunctive query (BCQ) 𝑞 has the form ∃Y𝜑(Y), where 𝜑(Y) is a conjunction of atoms without nulls.

A BCQ 𝑞 is true over an instance 𝐼 , denoted 𝐼 |= 𝑞, if there is a homomorphism ℎ with ℎ(𝜑(Y)) ⊆ 𝐼 .

Dependencies. A tuple-generating dependency (TGD) 𝜎 is a first-order formula

∀X∀Y (𝜙(X,Y) → ∃Z 𝑝(X,Z)), where X, Y, and Z are pairwise disjoint sets of variables,

𝜙(X,Y) is a conjunction of atoms, and 𝑝(X,Z) is an atom, all without nulls. An instance 𝐼 satisfies

a TGD 𝜎, written 𝐼 |= 𝜎, if the following holds: whenever there exists a homomorphism ℎ such

that ℎ(𝜙(X,Y)) ⊆ 𝐼 , then there exists ℎ′ ⊇ ℎ|X, where ℎ|X is the restriction of ℎ on X, such that

ℎ′(𝑝(X,Z)) ∈ 𝐼 . A negative constraint (NC) 𝜈 is a first-order formula ∀X (𝜙(X) → ⊥), where X ⊆ V,

𝜙(X) is a conjunction of atoms without nulls, and ⊥ denotes the truth constant false . An instance 𝐼
satisfies an NC 𝜈, written 𝐼 |= 𝜈, if there is no homomorphism ℎ such that ℎ(𝜙(X)) ⊆ 𝐼 . We will use

𝑞𝜈 to denote the BCQ ∃X𝜙(X). Given a set Σ of TGDs and NCs, 𝐼 satisfies Σ, written 𝐼 |= Σ, if 𝐼
satisfies each TGD and NC of Σ. For a class C of TGDs, C⊥ denotes the combination of C with arbitrary

NCs. Finite sets of TGDs and NCs are called programs. The Datalog
±

languages we consider are among

the most frequently analyzed in the literature, namely, linear (L) [15], guarded (G) [16], sticky (S) [17],

and acyclic TGDs (A), the “weak” generalizations weakly sticky (WS) [17] and weakly acyclic TGDs

(WA) [18], their “full” restrictions linear full (LF), guarded full (GF), sticky full (SF), and acyclic full

TGDs (AF), respectively, and full TGDs (F) in general. We refer to [12, 5] for a detailed overview.

Knowledge Bases. A knowledge base is a pair (𝐷,Σ), where 𝐷 is a database and Σ is a program. For

a program Σ, Σ𝑇 and ΣNC denote the subsets of Σ containing the TGDs and NCs of Σ, respectively.

The set of models of KB = (𝐷,Σ), denoted mods(KB), is the set of instances {𝐼 | 𝐼 ⊇ 𝐷 ∧ 𝐼 |= Σ}.

We say that KB is consistent if mods(KB) ̸= ∅, otherwise KB is inconsistent. The answer to a BCQ

𝑞 relative to KB is true, denoted KB |= 𝑞, if 𝐼 |= 𝑞 for every 𝐼 ∈ mods(KB). Another way to define

ontological query answering is via the concept of the Chase (see, e.g., [16, 19]).

The BCQ answering problem is: given a knowledge base KB and a BCQ 𝑞, decide whether KB |= 𝑞.

Following [20], the combined complexity of BCQ answering considers the database, the program, and the

query as part of the input. The bounded-arity-combined (or ba-combined) complexity assumes that the

arity of the underlying schema is bounded by constant. The fixed-program-combined (or fp-combined)

complexity considers the program fixed; in the data complexity the query is fixed as well. We refer to

[5] for an overview of the complexity of BCQ answering for the languages in this paper. For more on

computational complexity theory we refer the reader to any textbook on the topic, such as [21].

3. Inconsistency-Tolerant Semantics for Weighted KBs

From now on, we implicitly assume that the database 𝐷 of any knowledge base comes along with a

weight function 𝑤 : 𝐷 → N assigning weights to its facts. For every 𝐷′ ⊆ 𝐷, 𝑤 assigns a weight to

𝐷′
defined as 𝑤(𝐷′) =

∑︀
𝑓∈𝐷′ 𝑤(𝑓) (with a slight abuse of notation, 𝑤 applies to both facts and sets

of facts). For every 𝐷1, 𝐷2 ⊆ 𝐷, we write 𝐷1 ≤𝑤 𝐷2 (resp., 𝐷1 <𝑤 𝐷2) iff 𝑤(𝐷1) ≤ 𝑤(𝐷2) (resp.,

𝑤(𝐷1) < 𝑤(𝐷2)).



Given a knowledge base KB = (𝐷,Σ), a selection of KB is a database 𝐷′
such that 𝐷′ ⊆ 𝐷. A

selection 𝐷′
of KB is consistent iff (𝐷′,Σ) is consistent. Symmetrically, the concept of consistent

selection is linked to that of culprit, which is a subset 𝐶 of 𝐷 s.t. (𝐶,Σ𝑇 ) |= 𝑞𝜈 for some 𝜈 ∈ ΣNC . By

deleting from 𝐷 a hitting set ([22, 23, 24]) of facts 𝑆 intersecting all culprits, we obtain a consistent

selection 𝐷′ = 𝐷 ∖ 𝑆.

Definition 3.1. A ≤𝑤-repair of a knowledge base KB is a consistent selection 𝐷′ of KB such that there
is no consistent selection 𝐷′′ of KB with 𝐷′ <𝑤 𝐷′′.

For a knowledge base KB = (𝐷,Σ), Rep≤𝑤
(KB) denotes the set of all ≤𝑤-repairs of KB , and the

closure of KB , denoted Cl(KB), is the set of all facts built from constants in 𝐷 and Σ, entailed by 𝐷
and the TGDs of Σ.

Definition 3.2. Let KB be a knowledge base and let 𝑞 be a BCQ.

• KB entails 𝑞 under the ≤𝑤-AR semantics, denoted KB |=≤𝑤-AR 𝑞, if (𝐷′,Σ) |= 𝑞 for all 𝐷′ ∈
Rep≤𝑤

(KB).

• KB entails 𝑞 under the ≤𝑤-IAR semantics, denoted KB |=≤𝑤-IAR 𝑞, if (𝐷𝐼 ,Σ) |= 𝑞, where
𝐷𝐼 =

⋂︀
{𝐷′ | 𝐷′ ∈ Rep≤𝑤

(KB)}.

• KB entails 𝑞 under the ≤𝑤-ICR semantics, denoted KB |=≤𝑤-ICR 𝑞, if (𝐷𝐶 ,Σ) |= 𝑞, where
𝐷𝐶 =

⋂︀
{Cl((𝐷′,Σ)) | 𝐷′ ∈ Rep≤𝑤

(KB)}.

4. Discussion of Complexity Results

The problems whose complexity we are interested in are denoted as ≤𝑤-𝑆(ℒ), with 𝑆 ∈
{AR, IAR, ICR}, and are defined as follows: Given a knowledge base (𝐷,Σ) with Σ ∈ ℒ, and a

BCQ 𝑞, does (𝐷,Σ) |=≤𝑤-S 𝑞 hold?

The complexity results are summarized in Tables 1 and 2. All entries are completeness results. The

complexity ranges from Δp

2- to 2exp-completeness. For more details on how the results have been

derived, we refer the reader to [14]. Here we focus on the main takeaways the complexity analysis

provides.

The IAR and ICR semantics have the same complexity, which is a behavior shown by cardinality-

maximal repairs as well [6], while this does not hold for subset-maximal ones [5]. As usual (under other

maximality criteria to define repairs), the IAR and ICR semantics are at most as expensive as the AR
semantics. Indeed, we can see that the complexity increases when moving from the IAR/ICR to the

AR semantics only in the fixed-program combined complexity, while the complexity does not change

across the three inconsistency-tolerant semantics under the remaining complexity measures (namely,

data, bounded-arity combined, and combined complexity).

It is also interesting to compare weight-maximal repairs with subset-maximal and cardinality-maximal

ones, whose complexity results can be found in [5] and [6], respectively. Clearly, weight-maximal repairs

generalize cardinality-maximal ones (the latter can be simply modeled by assigning the same weight to

all facts), and when we move from the latter to the former, the complexity of all inconsistency-tolerant

semantics increases in several cases. Compared with subset-maximal repairs, the complexity of all

inconsistency-tolerant semantics under weight-maximal repairs is always at least as high as the one

under subset-maximal repairs. Overall, we can conclude that while weights give us the flexibility of

assigning different importance to different facts, they incur an increase of complexity compared with

more “standard” notions of repairs.



ℒ Data fp-c. ba-c. Comb.

L⊥, LF⊥, AF⊥ Δp

2 Πp

2 Δp

3 pspace

S⊥, SF⊥ Δp

2 Πp

2 Δp

3 exp

A⊥ Δp

2 Πp

2 p
nexp

p
nexp

G⊥ Δp

2 Πp

2 exp 2exp

F⊥, GF⊥ Δp

2 Πp

2 Δp

3 exp

WS⊥, WA⊥ Δp

2 Πp

2 2exp 2exp

Table 1
Complexity of ≤𝑤-AR(ℒ).

ℒ Data fp-c. ba-c. Comb.

L⊥, LF⊥, AF⊥ Δp

2 Δp

2 Δp

3 pspace

S⊥, SF⊥ Δp

2 Δp

2 Δp

3 exp

A⊥ Δp

2 Δp

2 p
nexp

p
nexp

G⊥ Δp

2 Δp

2 exp 2exp

F⊥, GF⊥ Δp

2 Δp

2 Δp

3 exp

WS⊥,WA⊥ Δp

2 Δp

2 2exp 2exp

Table 2
Complexity of ≤𝑤-IAR(ℒ) and ≤𝑤-ICR(ℒ).

5. Summary and Outlook

We have considered the problem of querying inconsistent knowledge bases whose database facts are

weighted. We have discussed recent results, presented in [14], on the complexity of inconsistent-tolerant

semantics in such a setting.

Future research includes defining other semantics for inconsistency-tolerant OMQA, by considering

more elaborate user preferences over repairs [25, 26, 27, 28, 29, 30, 31] and also considering compact

representations [32, 33, 34]. Another interesting approach that has been investigated recently in the

context of handling inconsistent knowledge is that of measuring inconsistencies via the Shapley value

[35], it would be interesting to bring to existential rules the ideas implemented for DLs [36, 37, 38].

As a natural extension of the setting considered in this paper, TGDs and NCs might be weighted too,

similarly to what has been recently done in [39], which considers weighted knowledge bases where

both axioms and assertions have weights. Another direction for future work is to devise approximation

algorithms that are practical, as done in the setting of incomplete databases [40, 41], e.g. by resorting to

a logic programming approach [42]. Recently, there has been an increasing interest on explainable AI,

including explaining query answering under existential rules [43, 44, 45] and DLs [46, 47]. In particular,

[46, 48, 49] addressed the problem of explaining why a query is entailed or not under inconsistency-

tolerant semantics, where repairs are subset-maximal. An interesting direction for future work is to

address the same problem for weight-maximal repairs.
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