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Abstract
Credal probabilistic facts and credal annotated disjunctions have been recently introduced in the Probabilistic
Answer Set Programming framework to manage imprecise probabilities. In a recent paper, inference within
this formalism has been cast as a constrained non-linear optimization problem. In this paper, we review that
contribution.
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1. Introduction

Probabilistic Answer Set Programming (PASP) combines the effectiveness in solving combinatorial
problems of Answer Set Programming with the flexibility in modelling complex distributions of Proba-
bilistic Programming. Recently [1], PASP has been extended with primitives called credal probabilistic
facts and credal annotated disjunctions to model imprecise probabilities, i.e., probabilities described by
a range, rather than a sharp value. Here, we summarize the paper “Inference in Probabilistic Answer
Set Programs with Imprecise Probabilities via Optimization” presented at the UAI 2024 conference [2],
where we considered the inference task as a constrained non-linear optimization problem. Empirical
results showed the effectiveness of this approach. The paper is structured as follows: Section 2 surveys
the background knowledge, Section 3 shows how to cast inference as an optimization problem and
discusses the experimental evaluation, and Section 4 concludes the paper.

2. Background

Probabilistic facts [3] are of the form 𝜋 :: 𝑎 with the meaning that 𝜋 is the probability associated with
the fact 𝑎. According to the distribution semantics [4], a world is identified by including or not each
probabilistic fact in the program. 𝑃 (𝑤), the probability of a world 𝑤, is computed as:

𝑃 (𝑤) =
∏︁
𝑎𝑖∈𝑤

𝜋𝑖
∏︁
𝑎𝑖 ̸∈𝑤

(1− 𝜋𝑖).

A probabilistic answer set program under the credal semantics (PASP) is composed by an answer set
program extended with probabilistic facts [5]. The credal semantics describes the probability of a query
𝑞, i.e., a conjunction of ground atoms, with a range [P(𝑞),P(𝑞)] where

P(𝑞) =
∑︁

𝑤𝑖|∀𝑚∈𝐴𝑆(𝑤𝑖), 𝑚|=𝑞

𝑃 (𝑤𝑖),

P(𝑞) =
∑︁

𝑤𝑖|∃𝑚∈𝐴𝑆(𝑤𝑖), 𝑚|=𝑞

𝑃 (𝑤𝑖).
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P(𝑞) and P(𝑞) are called, respectively, lower and upper probability. The credal semantics requires
that every world has at least one answer set [6]. Inference in these programs can be cast as a Second
Level Algebraic Model Counting (2AMC) problem [7]. aspcs is a framework that extends aspmc [8]
allowing inference in PASP, that converts the program into a Negation Normal Form (NNF, which
is a rooted directed acyclic graph where internal nodes are labeled with AND (conjunction) and OR
(disjunction) and leaves are associated with literals), via a process called knowledge compilation [9].
This representation allows fast inference.

Credal probabilistic facts and credal annotated disjunctions (ADs) are two possible constructs to
model imprecise probabilities [1]. Their syntaxes are, respectively,

[𝛼, 𝛽] :: 𝑎

with 0 ≤ 𝛼 ≤ 𝛽 ≤ 1 and

[𝛼1, 𝛽1] :: ℎ1; . . . ; [𝛼𝑚, 𝛽𝑚] :: ℎ𝑚 :− 𝑏1, . . . , 𝑏𝑛

with 0 ≤ 𝛼𝑖 ≤ 𝛽𝑖 ≤ 1, 𝛼𝑖 +
∑︀

𝑗 ̸=𝑖 𝛽𝑗 ≥ 1, 𝛽𝑖 +
∑︀

𝑗 ̸=𝑖 𝛼𝑗 ≤ 1, ∀𝑖 ∈ {1, . . . ,𝑚}. We will refer to PASP
extended with either one of the two constructs as PASP with imprecise probabilities.

3. Inference via Optimization

We proposed to perform inference in PASP with uncertain probabilities via optimization. Briefly,
we extract a symbolic formula from the NNF representation of the program where the probabilities
associated with credal facts and credal AD are kept symbolic and then call an optimization solver
to minimize/maximize such formulas subject to constraints deriving from the structure of credal
probabilistic facts and credal ADs. Namely, if 𝑓𝑙𝑝(𝑋) and 𝑓𝑢𝑝(𝑋) are the formulas for the lower
and upper probability for a query 𝑞 and 𝑋 = {𝜋1, . . . 𝜋𝑘} denotes the set of probability parameters
associated with credal probabilistic facts, the lower and upper probability of a query can be computed,
respectively, as

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑙𝑝(𝑋)

s.t . 𝜋𝑖 ∈ [𝑙𝑖, 𝑢𝑖], ∀𝑖 ∈ {1, . . . , 𝑘}

and

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓𝑢𝑝(𝑋)

s.t . 𝜋𝑖 ∈ [𝑙𝑖, 𝑢𝑖], ∀𝑖 ∈ {1, . . . , 𝑘}.

Let us clarify this with an example.

Example 1. Consider the following PASP with two credal facts.

[0.3,0.4]::a.
[0.4,0.9]::b.
q:- a.
q ; r :- b.

First, we convert it into

pa::a.
pb::b.
q:- a.
q ; r :- b.



where 𝑝𝑎 and 𝑝𝑏 are parameters. By traversing the NNF for the query 𝑞 we obtain two equations:
𝑓𝑙𝑝(𝑝𝑎) = 𝑝𝑎 for the lower probability, and 𝑓𝑢𝑝(𝑝𝑎, 𝑝𝑏) = 𝑝𝑎− 𝑝𝑏 · (𝑝𝑎− 1) for the upper probability.
P(𝑞) is computed by minimizing 𝑓𝑙𝑝(𝑝𝑎) with 𝑝𝑎 ∈ [0.3, 0.4], obtaining 0.3. For P(𝑞), we need
to maximize 𝑓𝑢𝑝(𝑝𝑎, 𝑝𝑏) with 𝑝𝑎 ∈ [0.3, 0.4] and 𝑝𝑏 ∈ [0.4, 0.9]. In this case, we obtain 0.94. So,
[P(𝑞),P(𝑞)] = [0.3, 0.94].

If credal ADs are present, the optimization process becomes more involved and first it requires
converting each credal AD into a combination of probabilistic facts and normal rules [10]. For example,

[0.1,0.3]::red;[0.2,0.4]::green;[0.4,0.6]::blue.

is expanded into

p1::f1.
p2::f2.
red :- f1.
green :- not f1, f2.
blue :- not f1, not f2.

Then, the optimization process also needs to consider constraints on the probabilities on the credal
facts.

With 𝑛𝑎𝑑 credal ADs, the optimization problem for the lower probability is

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑋)

𝑠.𝑡. 𝜋𝑙
𝑖 ·

∏︁
𝑗<𝑖

(1− 𝜋𝑙
𝑗)− 𝛼𝑙

𝑖 ≥ 0,

𝛽𝑙
𝑖 − 𝜋𝑙

𝑖 ·
∏︁
𝑗<𝑖

(1− 𝜋𝑙
𝑗) ≥ 0,

∀𝑙 ∈ {1, . . . , 𝑛𝑎𝑑}, ∀𝑖 ∈ {1, . . . ,𝑚𝑙}

assuming 𝜋𝑚𝑙
𝑖 = 1, where 𝜋𝑘

𝑖 is the probability associated with the 𝑖-th probabilistic fact related to the
𝑖-th head of the 𝑘-th AD and 𝑚𝑙 is the number of disjuncts in the 𝑙-th AD. This requires imposing 2 ·𝑚
constraints for each credal AD with 𝑚 heads. The problem to solve for the computation of the upper
probability is analogous. More concretely, with the credal AD shown above, we have the following
set of constraints: 𝑐1 − 0.1 ≥ 0, 0.3 − 𝜋1 ≥ 0, (1 − 𝜋1) · 𝜋2 − 0.2 ≥ 0, 0.4 − (1 − 𝜋1) · 𝜋2 ≥ 0,
(1− 𝜋1) · (1− 𝜋2)− 0.4 ≥ 0, and 0.6− (1− 𝜋1) · (1− 𝜋2) ≥ 0.

The overall algorithm is as follows: first, credal facts and credal ADs are converted to remove ranges.
Then, the program is converted into a NNF, and two equations are extracted, which are simplified to
reduce the number of operations involved. Lastly, these are sent to a non-linear optimization solver
that can manage non-linear constraints.

The algorithm was implemented in Python and the experimental evaluation was conducted by con-
sidering SymPy [11] to simplify equations and SciPy [12] as optimization solver with the COBYLA [13]
and SLSQP [14] algorithms. Empirical results showed that: i) solving the optimization problem by
considering a simplified version of the equations is much faster than considering the equations directly
extracted from the NNF, even if the simplification process may be slow (for larger datasets, this takes
more than 50% of the total execution time); ii) this approach is much faster than already existing solver
based on enumeration [15]; iii) COBYLA is often more efficient and effective than SLSQP.

4. Conclusions

In this paper, we summarized [2] where inference in probabilistic answer set programs under the credal
semantics with imprecise probabilities has been cast as a constrained non-linear optimization problem.
Empirical results against an already existing solver based on enumeration shows the effectiveness of
this approach.
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