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Abstract

To determine the key concepts (information resources, threats, and vulnerabilities) necessary for this study,
it is proposed to carry out system modeling of information security risk management processes using the
Structured Analysis and Design Technique (SADT). This approach not only facilitates the identification of
the relationships and informational content of these processes but also enables the classification of an
enterprise’s primary information assets, the identification of critical resources, and the determination of
the required level of protection. SADT allows for process modeling and the establishment of relationships
between information resources, threats, and vulnerabilities, thereby enhancing the identification of system
vulnerabilities and enabling more effective planning of protective measures. Information security risk
management is an essential component of ensuring the sustainability and continuity of an enterprise’s
business processes. In the face of a rapidly changing technological environment and a growing number of
cyber threats, prioritizing the protection of information resources becomes imperative. This process
typically involves several stages, including identifying and assessing resources, identifying potential
threats, conducting comprehensive risk analyses, and implementing appropriate measures to minimize or
eliminate risks. However, to ensure accurate risk assessments, it is crucial not only to understand individual
assets but also to account for their interdependencies. Since each resource may be critical to others within
the system, studies that consider these dependencies in the context of information security risk
management remain limited. The risk assessment methodology utilizing Fuzzy Cognitive Maps (FCM)
offers a means to systematize risk factors for deeper resilience analysis while reducing risks through
effective countermeasures. Incorporating the core security attributes—confidentiality, integrity, and
availability—enables precise risk assessment results and supports effective management decisions, ensuring
the prioritization and proper protection of critical resources.
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1. Introduction

Information systems used today to store and process large volumes of critical information are
increasingly exposed to complex and diverse threats driven by rapidly evolving technologies, such
as the Internet of Things (IoT), artificial intelligence (AI), and cloud computing. These advancements
enable cybercriminals to employ sophisticated attack methods that are more challenging to detect,
thereby presenting significant obstacles to traditional security systems. Such systems are no longer
capable of effectively countering these threats without continuous adaptation to new conditions. In
light of these challenges, international information security standards, such as ISO/IEC 27001:2022,
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which specifies requirements for information security management systems, and the NIST
Cybersecurity Framework (CSF), serve as essential tools for enterprises aiming to develop effective
and adaptive security systems [1-5].

In this context, risk management in information security is becoming increasingly important as
an integral component of enterprise strategy [6—14]. Effective risk management requires the accurate
assessment and classification of information resources, detailed analysis and forecasting of potential
threats, and the timely implementation of appropriate countermeasures to reduce the likelihood of
successful attacks on the system [15-22]. Additionally, the integration of advanced technologies,
such as machine learning and automated monitoring systems, plays a crucial role in enabling early
anomaly detection and breach prevention [23-31]. Standards like ISO/IEC 27005:2018 offer clear
methods and recommendations for conducting risk assessments, assisting businesses in prioritizing
risk management efforts and correctly applying countermeasures [32-38].

It should also be noted that traditional methods of assessing information resources, which rely on
a simple ranking of resources using quantitative or qualitative criteria, are no longer sufficient to
provide a comprehensive and accurate picture of risks. This limitation is particularly evident given
the current level of information technology development and the complexity of interdependencies
among components in distributed systems. For instance, interactions between servers in a cloud
environment can significantly alter the overall threat landscape, where even a minor vulnerability
in one component can lead to severe consequences. This consideration has become the foundation
for new standards, such as ISO/IEC 27035, which outlines security incident response processes. These
processes incorporate detailed risk assessments, including the evaluation of dependencies between
infrastructure components [1, 8, 14, 39-46].

Therefore, this paper proposes an approach to the assessment of information resources that not
only considers their importance and criticality to the enterprise’s business processes but also enables
a detailed analysis of their interdependencies. Such an analysis is crucial for generating accurate and
reliable risk assessments, as practice shows that disregarding the relationships between different
resources can result in significant errors, particularly in a rapidly evolving technological environment
[3-5, 9]. To enhance the accuracy of risk assessments, it is essential to adopt new methodologies, such
as those recommended in ISO/IEC 27019. This standard addresses specific aspects of cybersecurity for
critical infrastructure, offering a more comprehensive approach to assessing and mitigating risks
arising from resource interactions across various levels of the enterprise [6, 16, 25].

2. Literature review

The methodology for ensuring enterprise information security based on information risk assessment
using FCMs represents a comprehensive approach. It enables not only the visual evaluation of the
potential impact of major threats on an enterprise’s information system but also the effective
systematization of risk factors within a broader analysis of information security. By integrating
traditional risk assessment methods with advanced technologies, this approach provides a more
precise analysis of the impact of threats on critical enterprise resources [1-4, 6, 10-13].

Assessing information security risks is an essential component of ensuring the stable operation
of an enterprise amidst the growing landscape of threats, particularly those associated with
digitalization and globalization. The advancement of modern technologies further underscores the
urgency of employing contemporary methods for risk assessment and management. As enterprise
information resources often constitute vulnerable elements within IT infrastructures, effective risk
management is critical to safeguarding their security [2-5, 7, 12].

Modern approaches to information security risk management incorporate both quantitative and
qualitative assessment methods, enabling the evaluation of interdependencies among various
enterprise resources and their significance to business processes. Notably, models that integrate
external threats provide a more comprehensive understanding of risks. For instance, studies by
Sharma and Shahi, among others, demonstrate the use of neural networks to predict threats based
on historical data, offering valuable insights for proactive risk management [9-13, 15, 18].



Another example is the work of Bensou and Martinez, who developed a context-based risk
assessment methodology. This approach not only evaluates the value of assets and the threats they
face but also considers how these assets interact with the external environment, including other
businesses and government agencies. By incorporating these interactions, the methodology provides
a more accurate determination of the level of exposure enterprises face in the rapidly evolving digital
landscape, particularly in scenarios involving attacks on supply chains or critical infrastructure [11,
19-22].

The FCM methodology, as part of this system, enables the assessment of both the likelihood and
impact of threats while also identifying critical points within the enterprise’s information system.
This approach facilitates more precise risk assessments and the implementation of appropriate
countermeasures to mitigate potential losses. Such capabilities are especially vital in a world where
emerging technologies, including artificial intelligence, the Internet of Things (IoT), and cloud
computing, are continuously reshaping the nature and scope of threats.

Given these trends, this paper proposes a methodology for assessing information resources that
not only accounts for their significance to an enterprise’s business processes but also provides a
detailed analysis of their interdependencies—an aspect crucial for achieving accurate risk
assessments. Furthermore, innovative risk management approaches based on SADT technology
facilitate the identification of key concepts, the recognition of critical resources, and the uncovering
of relationships among them. This, in turn, significantly enhances the effectiveness of risk mitigation
and information security measures [6-8, 23-24, 31-35].

Another crucial step is the integration of risk management into cybersecurity processes at the
strategic level. Following the recommendations of Curtis and Chen, the increasing prevalence of cyber
threats necessitates a cybersecurity strategy that embeds risk management as a core component of
corporate culture and management practices. This approach aims to proactively prevent data breaches,
cyber fraud, and other criminal activities [9, 13-17].

Thus, utilizing fuzzy cognitive maps to assess an enterprise’s information risks enables the
integration of advanced technologies into the risk management process, ensuring a comprehensive
approach to mitigating potential threats.

To identify the key concepts (information resources, threats, and vulnerabilities) necessary for
this study, it is proposed to use systematic modeling of information security risk management
processes based on the Structured Analysis and Design Technique (SADT). SADT is a methodology
for structural analysis and design that is widely used to model complex systems and processes. It has
proven effective in the design of risk management systems, as it enables the visual modeling of
processes and supports informed decision-making. This approach facilitates the identification of
relationships and informational content within these processes, the classification of an enterprise’s
primary information assets, the identification of the most critical resources, and the determination
of the required levels of protection. The primary objective of SADT is to create a clear, logically
structured framework that explains how a system operates, how its components interact, and which
components are critical to achieving the desired outcomes [5, 8, 12]. In the context of information
security risk management, SADT allows for the modeling of processes and the analysis of
relationships among information resources, threats, and vulnerabilities. This enhances the ability to
identify system vulnerabilities more effectively and plan protective measures accordingly.

Therefore, this paper proposes an approach to the assessment of information resources that not
only considers their importance and criticality to the business processes of an enterprise but also
includes a detailed analysis of their interdependencies. Such analysis is crucial for generating
accurate and well-founded risk assessments. As practice demonstrates, disregarding the
interrelationships between different resources can result in significant errors in risk evaluation,
particularly in a rapidly evolving technological environment [7-9, 16]. To enhance the accuracy of
risk assessments, it is essential to adopt new methodologies, such as those outlined in ISO/IEC 27019.
This standard addresses specific aspects of cybersecurity for critical infrastructure and provides a
more holistic approach to assessing and mitigating risks associated with resource interactions at
various levels within the enterprise [25-29].



3. Methods

The study of dependencies between information resources, as illustrated in the simplified model
shown in Figure 1, enables a deeper analysis of the relationships within an enterprise’s information
infrastructure, while accounting for modern security requirements. These dependencies are
organized into a hierarchical structure, with the building serving as the highest-level node. The
physical integrity of this node underpins all other enterprise resources. In the event of its destruction,
and without the availability of data backups or alternative information processing centers located in
other facilities, all critical information assets would effectively be lost [2, 16-19, 26, 39-41]. However,
it is important to recognize that, in practice, most modern enterprises implement strategies involving
multi-level redundancy and business continuity. These strategies often leverage cloud technologies,
virtualization, and automated disaster recovery systems to mitigate the risks associated with such
dependencies [3, 11-15].
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Figure 1: Relationships between enterprise information resources.

As the analysis reveals, a single information resource may depend on multiple others,
significantly increasing the complexity of managing such systems. For instance, an Exchange server
may depend simultaneously on both physical server 2 and an Active Directory server, creating a
complex web of infrastructure interdependencies that must be carefully considered when designing
a security strategy. Modern risk management methods, particularly those incorporating the concepts
of Business Continuity and Disaster Recovery, emphasize the examination of all potential points of
failure. These include not only physical components but also network and software resources,
ensuring a comprehensive approach to minimizing risks [6, 39, 41].

When analyzing the database server, it is evident that a redundancy mechanism is in place—the
company employs an additional server capable of handling the load in the event of a failure of the
primary server. This ensures uninterrupted access to critical data [7]. However, for effective risk
management, it is essential to account for the complex interdependencies among the data stored on
these servers. Even a minor error in modeling these dependencies can result in significant
consequences during an incident [8]. Furthermore, the integration of advanced technologies, such as
artificial intelligence, machine learning, and automated monitoring systems, enables not only the
prediction of potential failures but also rapid responses to emerging threats. This significantly
enhances the security and stability of the enterprise’s information infrastructure [9].



When developing a modern model of information risk management for an enterprise, several key
assumptions can be made to determine the effectiveness and depth of the analysis of dependencies
between information resources and infrastructure elements. The first assumption is that the business
goals of the enterprise are directly influenced by all the end elements in the hierarchy of the
information resource system [10]. Consequently, ensuring the proper functionality and security of
the organization requires guaranteeing the confidentiality, integrity, and availability of data and
other critical resources, in alignment with the established hierarchy of dependencies [11, 17]. For
instance, user data in such a hierarchy follows a clearly defined chain of dependencies, beginning
with the Active Directory server and extending to the physical location of the building. Since
enterprise infrastructures are continually exposed to risks from cyber threats, natural disasters, and
technical failures, it is important to recognize that most modern companies actively adopt strategies
for multi-level redundancy and business continuity. These strategies often involve the use of cloud
technologies, virtualization, and automated disaster recovery systems [12]. Such measures not only
mitigate the impact of physical disasters on operations but also enable rapid recovery from
cyberattacks or failures, ensuring greater resilience and operational stability.

Additionally, for a more precise risk assessment, it is essential to assign a specific weight to each
element in the dependency chain. This weighting enables a more efficient analysis of risks based on
particular threats. For example, if one element depends on another that carries a high level of risk (e.g.,
due to software vulnerabilities or unresolved configuration errors), this risk should be proportionally
transferred to the dependent element to accurately represent its contribution to the overall security
posture of the organization [13, 17, 39-41]. In the case of redundant or duplicated infrastructure
elements (e.g., a backup server taking over if the primary server fails), the OR connection type is used.
This approach reduces the overall risk level, as the risk is distributed among multiple components that
perform the same functions. Conversely, the use of the AND connection type—where a dependent
element relies on only one specific higher-level element—provides a clear delineation of the
dependency chain, ensuring transparency in business continuity planning [10, 14, 24].

In general, the adoption of modern approaches to risk modeling provides a more accurate
representation of dependencies within a system, which is critical for managing enterprise
cybersecurity, particularly in the face of contemporary threats such as cyberattacks, phishing, and
insider threats [1, 3, 4, 19-23, 30-32, 39, 40]. With the advancement of cutting-edge technologies,
such as artificial intelligence (AI) and machine learning (ML), it has become possible to automatically
detect and predict risks through big data analysis. This capability enables not only the timely
identification of vulnerabilities in information systems but also rapid responses to potential threats,
thereby enhancing the overall level of protection. In particular, automated monitoring systems play
a crucial role by detecting anomalies in real time, ensuring a more efficient and swift response to
emerging threats.

In the context of risk modeling for our information system, risk values can be assessed using a
4x4 risk matrix (Figure 2), which serves as an effective tool for classifying the likelihood of threats
and evaluating their impact. In this matrix, the probability of a threat is represented by the columns,
while the level of impact is represented by the rows. The following categories are used to classify
risks: from 1 to 5—low risk; from 6 to 9—medium risk; from 10 to 16—high risk. This structured
approach enables a clear and systematic evaluation of risks, facilitating better decision-making in
the management of information system security [33-35].
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Figure 2: The value of risk.



Although this matrix offers a clear understanding of the probability and potential impact of threats
on various elements of the system, it is important to note that, in practice, it is not always possible to
determine these values with precision. This challenge is particularly relevant in the context of rapidly
evolving technologies and continuously emerging threats. Therefore, in the subsequent stages of the
analysis, these intervals will be used to enable a more flexible risk assessment. This approach allows
for the consideration of diverse scenarios and potential outcomes, ensuring a more adaptive and
comprehensive evaluation of risks.

Thus, the utilization of the 4x4 risk matrix, combined with the consideration of all critical aspects
of risk management, enables enterprises to effectively identify key points of vulnerability. This
approach facilitates the development of comprehensive protection strategies that encompass both
technical and organizational measures. These strategies are designed to mitigate risks and ensure
the continuity of business processes, even in the event of serious incidents [17-19].

4. Design of a dependency assessment model for an enterprise
information system

When designing a dependency assessment model for an enterprise information system, it is essential
to address both the technical and organizational aspects of risk management. Given the prevalence
of modern threats and the rapid pace of technological advancements, such models must be flexible
and capable of adapting to new conditions. To achieve this, a well-defined algorithm is employed to
construct a comprehensive view of risks and dependencies within the system. This approach ensures
an effective evaluation of the risk level associated with each element, enabling informed decision-
making and improved security measures [25, 36-38].

The risk management process is conducted in several stages. During the preparatory stage, the
information system is divided into subsystems and individual elements, followed by an expert
assessment of the significance level of each subsystem. At the stage of risk assessment for the system,
subsystems, and elements, the composition and number of elements within each subsystem are
identified. Additionally, an expert evaluation of the characteristic criteria for each element is
performed based on predefined categories, and the risks are calculated for each subsystem and for
the entire system as a whole [20-24]. The subsequent step involves determining the adequacy of the
risk level. A risk is deemed adequate if its level is classified as “below average” or “low”. If the risk
level is found to be inadequate, plans and measures are developed to mitigate these risks.
Alternatively, in cases of repeated application of the methodology, adjustments are made, with these
refinements being implemented in practice.

The risk of an individual element of a subsystem of a certain type is determined by the formula:

R =1ICVP, (1)
where [—is the degree of interest of the attacker in attacking elements of this type, C—is the degree
of damage to the subsystem from the consequences of a possible attack on elements of this type, V—
the degree of vulnerability of the horns of this type, P—the degree of probability of an attack on an
element of this type. The specific risk of homogeneous elements is calculated as follows:

R = &R- )

=R
where Rj—is the risk of an individual element of the subsystem j-of the subsystem, Nj—is the number
of homogeneous elements j-of the -th type in the subsystem, N—is the total number of elements of
all types in the subsystem. Subsystem risk:

k
R=5) (R) ®)
i=0

where S—is the degree of importance of the subsystem, R—is the specific risk of homogeneous
elements, k—number of types of elements.
The total risk of a subsystem can be calculated as the sum of the risks of all its elements:
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where Ri—risk i-of the subsystem, n—is the number of subsystems in the system.

Analyzing formulas (1), (2) and (4), we can conclude that, with equal risk parameters of individual
elements of each subsystem, the risk of the entire system is a power function of the form f = kx4.
The formula for calculating the risk is as follows:

R; = k- B}, (5)
where Ri—is the risk of the whole system in i-is the state of equality of risk levels of its elements in
conventional units, k—is the system constant when operating in this configuration, Bi—is the risk
level of the system in terms of expert assessments in i-the state of equality of risk levels of its
elements.

Obviously, the parameter Bi reflects a qualitative assessment of the system’s risk. From formula
(5) we can express:

R;
k = B (6)
l
4R
Bi = #, (7)

The resulting value Bi can be translated into a qualitative assessment using the scale used: to do
this, round it to the nearest whole number and determine which level of risk it corresponds to on the
scale. The degree of assessment is ranked on a five-point scale, where 1 is low and 5 is high. The risk
is calculated for each resource of the structure: “subsystem element—subsystem—system”. Expert
assessments are used to rank the risks of indicators for each element of the subsystem. The risk for
the entire system is defined as the arithmetic mean of the risks of subsystems.

The following indicators are used for risk assessment: S—level of subsystem significance
(indicator of “destructiveness”) —conditional ranking of subsystems in the hierarchy of the entire
system, determined by the degree (contribution) of a particular subsystem to the functioning of the
entire system; N—number of elements of this type—the number of elements in the subsystem that
ensure the performance of technological functions; [—the degree of interest of the attacker in
attacking the element—the measure of interest on the part of the attacker in performing unauthorized
actions; C—the degree of damage from the consequences of an attack on an element—the degree of
damage caused in the event of a successful threat; V—the degree of vulnerability of the element—the
degree of change in the technological properties of the element in the event of a successful threat;
P—the degree of probability of an attack is a measure of the probability of successful unauthorized
actions by an attacker that lead to changes in the functional characteristics of the system or obtaining
confidential information.

Expert opinions were obtained through the use of questionnaires. These questionnaires consist
of scoring sheets that include a list of resources, indicators, and criteria used to evaluate the degree
of risk.

The risk assessment utilized the following criteria for each indicator: the attacker’s interest in
targeting the element, the damage resulting from the attack, the vulnerability of the element, and
the likelihood of the attack being realized. An attacker’s interest may stem from access to commercial
or technical information, personal gain, or unmotivated malicious intent. Damage is assessed based
on the element’s interconnections with other parts of the subsystem, the consequences of its failure,
and the costs associated with mitigating the impact of an attack. Vulnerability considers the physical
accessibility of the element as well as its susceptibility to informational and mechanical
vulnerabilities. Likelihood of an attack is determined by the effectiveness of existing protection
mechanisms, the element’s ability to resist attacks and physical impact, and the historical analysis of
similar attacks on analogous elements. Once experts evaluate each criterion, the arithmetic mean for
each element is calculated, and the resulting score is rounded to the nearest whole number. Risks are



assessed on a five-point scale, ranging from minimum to maximum risk. The methodology employs
a dynamic algorithm that accounts for the interconnections among elements and subsystems at all
levels of operation. Since monitoring systems are integral to enterprise infrastructure, this
methodology can be adapted for assessing the risks of other enterprise information systems. This
adaptability is particularly effective due to the interdependence of assets, which can be analyzed
using cognitive maps.

The first step in constructing a dependency assessment model for an enterprise information
system is to identify the highest level in the hierarchy of the enterprise’s information resources. This
typically includes critical elements such as the main server or a key building that serves as the
operational hub. Starting with the most critical components enables the assessment of dependencies
on these elements and provides a foundation for progressively analyzing smaller, yet equally
significant components. This hierarchical approach ensures the integrity of the analysis and
facilitates an accurate evaluation of the impact each element has on the overall security of the
enterprise [26-29, 31].

The next step is to assign weights to the three main components of dependencies: privacy Wcon,
Wint and Wava. These components are key to determining the level of importance of each element
in the context of security and its vulnerability to various threats. The weight of each component is
estimated on a scale from 0 to 1 in increments of 0.1, which allows you to accurately reflect the
importance of each aspect for a particular element [30-35]. This approach provides a more detailed
assessment of dependencies in the system and allows you to identify even non-obvious
vulnerabilities that may affect security.

After determining the weights of the components, the next step is to adjust the risks using a
specialized dependency formula [34-38]. This formula enables the consideration of not only
individual elements but also their interrelationships. For instance, in cases where elements are
connected according to the OR principle, the risk for each component is adjusted using the average
value of the adjusted risks of the interconnected elements. Conversely, for elements that depend on
multiple other components, the adjustment must account for all higher levels of dependencies. This
means that if one element relies on several others, accurately determining its risk level requires
incorporating the risks of all these elements as well as their interactions.

Further risk adjustments are made using special formulas:

W, = Z w;, ®)

i=con.int.ava
WO X max (I/Vcon/ I/Vint/ Wava) X RV, (9)
where W0—is the total dependency weight for the element, Wcon, Wint and Wava—are the weights
of the dependency components, and RV (Risk Value) is the risk value for the higher-level entity to
which the current entity is related. The formula allows you to adjust the risk value depending on the
weight of the components and the type of connection of the elements.

In the real world, accurate risk assessment can be challenging due to rapidly changing
technologies and the continuous evolution of threats. Therefore, the application of such models
necessitates constant updating and adaptation. To address this, intervals of risk values are employed
to create a more flexible model for risk assessment and forecasting [17, 29]. Incorporating these
intervals allows for the identification of potential threats, even in scenarios that were not initially
considered during the early stages of the analysis.

The total weight of dependencies, determined by the sum of the component weights and their
maximum value, enables the construction of a comprehensive picture of dependencies for each
element within the system. Notably, the risk adjustment process can incorporate advanced
technologies, such as cloud services and automated monitoring systems, which facilitate the real-
time identification of potential threats [6-8, 19-22]. These innovations not only enhance the
effectiveness of risk assessment but also enable faster and more efficient responses to potential
security incidents.

An example of risk adjustment:



1. Low dependence and low risk: If an asset has a low dependence on a low-risk element
(RV = 1), the risk adjustment can be as little as +1 point.

2. Medium dependence and medium risk: in the case of medium dependence and medium risk
(RV = 2), the risk adjustment can be increased by +2.4 points.

3. High dependence and high risk: If an asset is highly dependent and exposed to a high risk
element (RV = 3), the risk adjustment can be significant—by +7.2 points.

These adjustments allow for a more accurate reflection of the real level of risk and enable an
enterprise to develop more effective strategies for protecting its information resources [9-12].

As a result of applying this dependency assessment model, an enterprise receives a clear picture
of potential threats, which allows it to respond quickly to possible incidents and increase the overall
level of cybersecurity in a rapidly changing threat environment.

Figure 3 shows part of the enterprise model, where each infrastructure element is assigned the
appropriate weights for the dependency components.
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Figure 3: Determining dependency weights for infrastructure elements.

Each element is assessed in the context of the risks associated with its dependencies on other
elements [13]. It is important to note that, following the initial risk assessment for each
organizational element, these values are adjusted based on the actual dependencies between the
elements [14-16]. For instance, when assessing customer data, we consider not only its direct
vulnerability but also the elevated risk level of the database servers that store this data. This approach
provides a more accurate representation of the actual threat level to the information.

It should also be noted that the adjustment of risk values depends on the availability of redundant
infrastructure elements. For example, for customer data with duplication at the database server level,
the risk adjustment is limited to +2.1, as the presence of redundant resources mitigates the potential
impact of the threat [18]. However, certain key system elements, such as private data, require
significant adjustments to their risk values. This is because such data has dual dependencies—on both
the Active Directory server and the physical server. These additional dependencies introduce
heightened vulnerability, necessitating an increase in the risk level by +4 points [19-21].

Algorithms for assessing the security of enterprise information resources can be based on the use
of FCM. A cognitive map is a sign-oriented graph where the key factors of the modeling object
(concepts) are interconnected by arcs that reflect cause-and-effect relationships. These connections
characterize the degree of influence of concepts on each other and are set using fuzzy WijWij weights
in the form of interval scores or linguistic terms. In general, a fuzzy cognitive map is defined as a
tuple of sets [20-22]:

FCM = {C,F,W}, (10)



where FCM—is an oriented graph specified by a tuple of sets: C = {Ci}—a finite set of vertices
(concepts), F = {FK}—is a finite set of links between concepts (the set of oriented graph arcs), and
W = {Wij}—a finite set of weights of these connections. Figure 4 shows an example of building an
FCM for assessing information risks of an enterprise. In the example of building an FCM for assessing
information risks of an enterprise, the concepts are divided into five types: CG—a set of target factors,
CU—a set of destabilizing factors (threats), CS—set of information resources, CI—set of basic factors
(intermediate concepts indicators), CR—a set of controlling factors [4, 9]. The weights of the links
were determined on the basis of expert assessments using linguistic variables (“weak”, “medium”,
“strong”) on a scale of [0,1]. Three main factors were selected as the target concepts to be analyzed:
“Reputation”, “Quality of products/services” and “Material and technical condition”, which reflect
the general state of the enterprise in the market [4-7].
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Figure 4: FCM for assessing information risks of an enterprise.

The FCM built in this way allows us to assess the impact of both individual threats and their
combination on a particular target factor. The overall effect of the impact of the concept CUi (threat)
on the concept CjG (target factor) is determined using the reach matrix:

T =2 Wi, (11)

Wi = ||Wij|ln X n, (12)
whereWi = [Wij|nxn—is the adjacency matrix of the FCM, Wij—is the weight of the link between i-
m and j-FCM concepts, n—is the number of FCM concepts [8, 9]. With fuzzy values of weights Wij
the multiplication and addition operations are replaced by the operations of finding the minimum
and maximum, respectively. The indirect effect of the impact CUi on CjG is determined by the

minimum value of the weights of the links in the path:

Tk(CUi - CjG) = min {Wij}. (13)

The full (total) effect of the impact on CV; on Cj6is determined by adding up all the values of the
links that exist between the concepts

I(CUi - CjG) = max {I1,T2,... TN}, (14)
where Tk—is the indirect effect between the threat CUi and the target factor CjG{Wij}—is the set of
weights of links on the path between concepts CUi and CjGN—is the number of indirect effects (i.e.,
the number of paths between concepts CUi and CjG) [10-12].



Table 1 presents the concepts selected for analysis and their variable states, offering a generalized
example of how concepts can be defined within the framework of FCMs for assessing enterprise
information risks. It is crucial to note that transitions between the different states of each concept
are guided by expert opinions or the results of risk analysis [13].

Risk j-of the target factor in relation to the i-threat is determined by the formula:

Rij = PIT(CUi - CjG)rj, (15)
where rj—value j-of the resource, T(CUi — CjG)—is the full effect of the threat CUi on CjG, PI—is
the probability of realization i-of the threat being realized.

The total risk R for the considered set of threats is defined as:

R= izk:v,R,,, (16)

i=1j=1
where m—is the number of threats, k—is the number of target factors, and V;—is the significance of
the j-of the target factor determined by experts [14, 15].

Table 1
Concepts and Their Variable States for Analyzing Enterprise Information Risks
Con- Concept name Type of concept Variables states
chain
CiU  Theft Destabilizing factor ~ x,: the average number of thefts per unit of time.
(threat)
CU, Modification Destabilizing factor ~ x,: the average number of unauthorized modifications per unit of time.
(threat)
CU; Disclosure Destabilizing factor ~ xs: the average number of disclosures per unit of time.
(threat)
CU, Viruses Destabilizing factor ~ x,: the average number of virus attacks per unit of time.
(threat)
CUs Hardware and Controlling factor Xs: the average number of hardware and software failures per unit of time.
software failures
CiS  Databases Basic factor x,: the level of reliability of information in databases, %.
C.S  Confidential Target factor x,: level of confidentiality, %.
information
CsS  Software. Target factor Xg: software availability level, %.
C,sS  Hardware resources Basic factor X,: operability of computers and other equipment, %.
C1l  Emotional and Destabilizing factor ~ x;,: number of stressful situations or incidents, units.
psychological state (threat)
CI2  Violation of the Destabilizing factor ~ x,;: the number of production schedule disruptions, units.
company’s work (threat)
schedule
CI3  Qualification level of ~ Target factor X,,: the average level of qualification of employees on a five-point scale.
employees
CiG  Reputation of the Target factor X,5: number of negative publications or statements, units.
company
CG;  Quality of service Target factor X,4: the share of employees who successfully work in their specialty, %.
provision
CGs;  Material and technical Basic factor / X,5: capitalization, UAH.
condition Controlling factor

Table 2 presents estimates of the impact of threats C;U~CU; on the target factors C,6-C¢. The
analysis of the FCM shows that, given the strength of the connection between the concepts, the
realization of the threat “Theft” in relation to the information resources of the enterprise “strongly”
affects the concepts “Quality of products/services” and “Material and technical condition” and
“moderately” affects the concept “Reputation” of the enterprise [19-22, 40-43]. By determining the
value of the target factors in absolute or conditional units CY; it is possible to calculate the potential
risk (damage) both for individual target factors from the impact of certain threats and the overall
(total) risk [18, 39-41].

The use of the FCM makes it possible not only to visually identify the negative processes that
occur in the information system under the influence of threats, but also to identify the most
vulnerable areas and ways to reduce the impact of threats through the introduction of appropriate



control measures (countermeasures) {CRk} which allows to reduce the level of information risks to
an acceptable value. For example, if viruses are considered as a threat to the company’s information
resources (concept CU4), and the level of impact of this threat on the target factors CG2 (“Quality of
products/services”) and CG3 (“Material and technical condition”) is defined as “strong”, then to
reduce this impact, it is necessary to implement such countermeasures as choosing an anti-virus
protection strategy, selecting an appropriate anti-virus program, managing anti-virus tools, etc. This
will reduce the degree of influence of the concept CU4 on the concepts CG2 and CG3 to the “medium”
level [16, 17, 39, 41-43]. Table 3 shows the recommended measures (a set of controlling factors) and
estimates of the degree of their impact on the mentioned concepts. The corresponding FCM after the
introduction of countermeasures (concepts C1R-CR31) is shown in Figure 5.

Table 2
Assessment of the Degree of Impact of Threats on Target Factors
The threat The full effect of the threat on the target The full effect of the threat on the target factor
(CY;) factor before countermeasures are taken after the introduction of countermeasures
CG1 CG:2 CaGs CG1  CG: CG3
CiU average strong  strong weak average average
CU2 average average average weak weak  weak
CUs weak weak weak weak weak  weak
CUa - strong strong - average average
CUs - strong strong - average average
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Figure 5: FCM for assessing information risks of an enterprise taking into account a set of
controlling factors.

An analysis of the ratio between risks and the costs of mitigation measures enables the
identification of rational approaches to managing an enterprise’s information security and justifies
the necessary expenditures on security. Decision-making regarding the selection of appropriate
countermeasures and the evaluation of acceptable risk levels should be guided by the cost-
effectiveness criterion [2, 16, 40-43]. In this context, the following formulations of tasks for selecting
control factors to reduce risks are possible:

1. Ry < Rg4q when Sy = min —determining the minimum costs of implementing information
security measures while ensuring an acceptable level of risk;
2. Sy < 5,44 When Ry = min—minimizing risk at a given cost of implementing measures [9].



Here Ry and Ss—total risk and costs of information security measures (countermeasures), R4,
and S, 4—permissible values of the total risk and costs.
The effectiveness of controlling influences is calculated by the formula:

R, — Ry 0
n=——— x100%, 17)
RZ'
where R é—is the calculated initial risk, and Ry—is the risk after the introduction of additional
countermeasures.
Table 3
Set of Controlling Factors
The impact of the The impact of the
Designation Concept name concept on Designation Concept name concept on
communication communication
CR,C&, Differentiation of average (6 Organization of the document average
cE user access levels storage procedure
CB,cg, Control and average ck, Developing a procedure for average
CR ck management of recovery from virus attacks
ck access to the
premises
C&, ck, Development and strong CR,,C8,,  Developing a procedure for ~  average
implementation of (8 prompt response to incidents
the virus protection
concept
ck,ck, Administrative and ~ average c&,, C5, Use of licensed software, average
technical means of access control
controlling the work
of users
ck,, ck Measures to prevent  average CR,,CB;,  Technical support of average
failures C§7 hardware resources
Cf, CE, Formation of a average €3, C5,, Development of measures to  average
cBs corporate culture of ck improve the stability of
information security production processes
cks Backup and restore  strong

The methodology for ensuring enterprise information security through information risk
assessment using FCMs is a comprehensive approach. It enables not only the visual evaluation of the
potential impact of major threats on the enterprise information system but also the effective
systematization of risk factors as part of a holistic analysis of information security [3, 14, 35-38, 41—
43]. This methodology serves as a practical tool to support decision-making across all levels of the
enterprise security policy. It enhances the convenience and accuracy of information security
management at both strategic and operational levels, enabling the implementation of adaptive and
timely management measures.

Automating the processes of analyzing information risks, prioritizing them, and selecting
effective countermeasures to protect an enterprise’s information assets significantly reduces the time
required for comprehensive risk analysis. It also improves the quality of decision-making and helps
reduce the costs associated with implementing security measures. This is achieved by structuring all
stages of analysis and countermeasure selection. Automation enables the flexible adaptation of
security strategies to the enterprise’s current needs and facilitates a rapid response to evolving threat
conditions.

The proposed structure of the decision support system (DSS) for managing enterprise information
risks, based on cognitive modeling, offers enhanced objectivity and efficiency in information security
decision-making. Cognitive modeling enables a deeper analysis of the cause-and-effect relationships
between threats and risks, facilitates the timely identification of the most vulnerable elements within
the information system, and supports the development of adaptive countermeasures [7, 10, 33]. Such
a system significantly reduces potential losses from both external and internal threats while ensuring
optimal resource allocation and maintaining stable information security.



This approach enables the consideration of interdependencies among various information
resources in the process of managing information security risks. It facilitates the analysis of how
specific factors can influence the overall security of information assets and the achievement of the
organization’s information security objectives. In light of current trends in cybersecurity and
technologies such as cloud computing, automated recovery systems, and virtualization, it is crucial
to account for these dependencies when developing a sustainable risk management model. These
technologies not only mitigate the impact of physical disasters on operations but also ensure rapid
recovery from cyberattacks, thereby enhancing the resilience of the infrastructure against
unpredictable threats [8, 18].

5. Conclusions

The study proposes a method for assessing the dependencies among information resources within
an information system, which can significantly enhance the accuracy and efficiency of risk analysis
at an enterprise. While similar approaches have been applied in both scientific and practical contexts,
the importance of considering these dependencies and their impact on the overall level of risk is
becoming increasingly evident and critical amidst modern challenges and rapid technological
advancements.

International standards in the field of information security, particularly ISO/IEC 27005:2018,
along with established risk management guidelines, emphasize the necessity of incorporating
dependencies among information resources into the processes of risk analysis and assessment. This
standard highlights the importance of determining the degree of dependency between information
resources and their impact on enterprise security, specifically in maintaining the confidentiality,
integrity, and availability of data. In this context, the proposed method considers dependencies not
only in terms of the direct significance of information resources but also through their role in
achieving the strategic goals of the enterprise and their susceptibility to various threats.

Additionally, the dependency assessment model incorporates not only direct connections
between infrastructure elements but also considers scenarios where information resources exhibit
multiple dependencies or duplication. This approach enables risk mitigation through the redundant
allocation of resources or the integration of additional security layers. Such measures are particularly
relevant in the context of the increasing adoption of cloud technologies, virtualization, and
automated recovery systems.

The method of assessing information risks in an enterprise using fuzzy cognitive maps enables a
1.5 to 2-fold reduction in the time required for decision-making regarding the selection of necessary
countermeasures. This approach significantly reduces information risks by implementing effective
management actions (countermeasures) while keeping the total cost of information protection
within acceptable limits.

Due to its flexibility, the proposed method can be seamlessly integrated into existing risk
management processes, enabling the adjustment of risk assessments to account for the real
dependencies between information resources. In the future, an extended model can be developed
that incorporates quantitative methods to more precisely measure the security status of an
enterprise. This advancement will provide timely, accurate, and well-founded data for decision-
making, aligning with the requirements of modern cybersecurity and the dynamically evolving
threat landscape.
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