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Abstract 
To determine the key concepts (information resources, threats, and vulnerabilities) necessary for this study, 
it is proposed to carry out system modeling of information security risk management processes using the 
Structured Analysis and Design Technique (SADT). This approach not only facilitates the identification of 
the relationships and informational content of these processes but also enables the classification of an 
enterprise’s primary information assets, the identification of critical resources, and the determination of 
the required level of protection. SADT allows for process modeling and the establishment of relationships 
between information resources, threats, and vulnerabilities, thereby enhancing the identification of system 
vulnerabilities and enabling more effective planning of protective measures. Information security risk 
management is an essential component of ensuring the sustainability and continuity of an enterprise’s 
business processes. In the face of a rapidly changing technological environment and a growing number of 
cyber threats, prioritizing the protection of information resources becomes imperative. This process 
typically involves several stages, including identifying and assessing resources, identifying potential 
threats, conducting comprehensive risk analyses, and implementing appropriate measures to minimize or 
eliminate risks. However, to ensure accurate risk assessments, it is crucial not only to understand individual 
assets but also to account for their interdependencies. Since each resource may be critical to others within 
the system, studies that consider these dependencies in the context of information security risk 
management remain limited. The risk assessment methodology utilizing Fuzzy Cognitive Maps (FCM) 
offers a means to systematize risk factors for deeper resilience analysis while reducing risks through 
effective countermeasures. Incorporating the core security attributes—confidentiality, integrity, and 
availability—enables precise risk assessment results and supports effective management decisions, ensuring 
the prioritization and proper protection of critical resources. 
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1. Introduction 

Information systems used today to store and process large volumes of critical information are 
increasingly exposed to complex and diverse threats driven by rapidly evolving technologies, such 
as the Internet of Things (IoT), artificial intelligence (AI), and cloud computing. These advancements 
enable cybercriminals to employ sophisticated attack methods that are more challenging to detect, 
thereby presenting significant obstacles to traditional security systems. Such systems are no longer 
capable of effectively countering these threats without continuous adaptation to new conditions. In 
light of these challenges, international information security standards, such as ISO/IEC 27001:2022, 
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which specifies requirements for information security management systems, and the NIST 
Cybersecurity Framework (CSF), serve as essential tools for enterprises aiming to develop effective 
and adaptive security systems [1–5]. 

In this context, risk management in information security is becoming increasingly important as 
an integral component of enterprise strategy [6–14]. Effective risk management requires the accurate 
assessment and classification of information resources, detailed analysis and forecasting of potential 
threats, and the timely implementation of appropriate countermeasures to reduce the likelihood of 
successful attacks on the system [15–22]. Additionally, the integration of advanced technologies, 
such as machine learning and automated monitoring systems, plays a crucial role in enabling early 
anomaly detection and breach prevention [23–31]. Standards like ISO/IEC 27005:2018 offer clear 
methods and recommendations for conducting risk assessments, assisting businesses in prioritizing 
risk management efforts and correctly applying countermeasures [32–38].  

It should also be noted that traditional methods of assessing information resources, which rely on 
a simple ranking of resources using quantitative or qualitative criteria, are no longer sufficient to 
provide a comprehensive and accurate picture of risks. This limitation is particularly evident given 
the current level of information technology development and the complexity of interdependencies 
among components in distributed systems. For instance, interactions between servers in a cloud 
environment can significantly alter the overall threat landscape, where even a minor vulnerability 
in one component can lead to severe consequences. This consideration has become the foundation 
for new standards, such as ISO/IEC 27035, which outlines security incident response processes. These 
processes incorporate detailed risk assessments, including the evaluation of dependencies between 
infrastructure components [1, 8, 14, 39–46]. 

Therefore, this paper proposes an approach to the assessment of information resources that not 
only considers their importance and criticality to the enterprise’s business processes but also enables 
a detailed analysis of their interdependencies. Such an analysis is crucial for generating accurate and 
reliable risk assessments, as practice shows that disregarding the relationships between different 
resources can result in significant errors, particularly in a rapidly evolving technological environment 
[3–5, 9]. To enhance the accuracy of risk assessments, it is essential to adopt new methodologies, such 
as those recommended in ISO/IEC 27019. This standard addresses specific aspects of cybersecurity for 
critical infrastructure, offering a more comprehensive approach to assessing and mitigating risks 
arising from resource interactions across various levels of the enterprise [6, 16, 25]. 

2. Literature review 

The methodology for ensuring enterprise information security based on information risk assessment 
using FCMs represents a comprehensive approach. It enables not only the visual evaluation of the 
potential impact of major threats on an enterprise’s information system but also the effective 
systematization of risk factors within a broader analysis of information security. By integrating 
traditional risk assessment methods with advanced technologies, this approach provides a more 
precise analysis of the impact of threats on critical enterprise resources [1–4, 6, 10–13].  

Assessing information security risks is an essential component of ensuring the stable operation 
of an enterprise amidst the growing landscape of threats, particularly those associated with 
digitalization and globalization. The advancement of modern technologies further underscores the 
urgency of employing contemporary methods for risk assessment and management. As enterprise 
information resources often constitute vulnerable elements within IT infrastructures, effective risk 
management is critical to safeguarding their security [2–5, 7, 12].  

Modern approaches to information security risk management incorporate both quantitative and 
qualitative assessment methods, enabling the evaluation of interdependencies among various 
enterprise resources and their significance to business processes. Notably, models that integrate 
external threats provide a more comprehensive understanding of risks. For instance, studies by 
Sharma and Shahi, among others, demonstrate the use of neural networks to predict threats based 
on historical data, offering valuable insights for proactive risk management [9–13, 15, 18].  



Another example is the work of Bensou and Martinez, who developed a context-based risk 
assessment methodology. This approach not only evaluates the value of assets and the threats they 
face but also considers how these assets interact with the external environment, including other 
businesses and government agencies. By incorporating these interactions, the methodology provides 
a more accurate determination of the level of exposure enterprises face in the rapidly evolving digital 
landscape, particularly in scenarios involving attacks on supply chains or critical infrastructure [11, 
19–22].  

The FCM methodology, as part of this system, enables the assessment of both the likelihood and 
impact of threats while also identifying critical points within the enterprise’s information system. 
This approach facilitates more precise risk assessments and the implementation of appropriate 
countermeasures to mitigate potential losses. Such capabilities are especially vital in a world where 
emerging technologies, including artificial intelligence, the Internet of Things (IoT), and cloud 
computing, are continuously reshaping the nature and scope of threats.  

Given these trends, this paper proposes a methodology for assessing information resources that 
not only accounts for their significance to an enterprise’s business processes but also provides a 
detailed analysis of their interdependencies—an aspect crucial for achieving accurate risk 
assessments. Furthermore, innovative risk management approaches based on SADT technology 
facilitate the identification of key concepts, the recognition of critical resources, and the uncovering 
of relationships among them. This, in turn, significantly enhances the effectiveness of risk mitigation 
and information security measures [6–8, 23–24, 31–35].  

Another crucial step is the integration of risk management into cybersecurity processes at the 
strategic level. Following the recommendations of Curtis and Chen, the increasing prevalence of cyber 
threats necessitates a cybersecurity strategy that embeds risk management as a core component of 
corporate culture and management practices. This approach aims to proactively prevent data breaches, 
cyber fraud, and other criminal activities [9, 13–17].  

Thus, utilizing fuzzy cognitive maps to assess an enterprise’s information risks enables the 
integration of advanced technologies into the risk management process, ensuring a comprehensive 
approach to mitigating potential threats.  

To identify the key concepts (information resources, threats, and vulnerabilities) necessary for 
this study, it is proposed to use systematic modeling of information security risk management 
processes based on the Structured Analysis and Design Technique (SADT). SADT is a methodology 
for structural analysis and design that is widely used to model complex systems and processes. It has 
proven effective in the design of risk management systems, as it enables the visual modeling of 
processes and supports informed decision-making. This approach facilitates the identification of 
relationships and informational content within these processes, the classification of an enterprise’s 
primary information assets, the identification of the most critical resources, and the determination 
of the required levels of protection. The primary objective of SADT is to create a clear, logically 
structured framework that explains how a system operates, how its components interact, and which 
components are critical to achieving the desired outcomes [5, 8, 12]. In the context of information 
security risk management, SADT allows for the modeling of processes and the analysis of 
relationships among information resources, threats, and vulnerabilities. This enhances the ability to 
identify system vulnerabilities more effectively and plan protective measures accordingly.  

Therefore, this paper proposes an approach to the assessment of information resources that not 
only considers their importance and criticality to the business processes of an enterprise but also 
includes a detailed analysis of their interdependencies. Such analysis is crucial for generating 
accurate and well-founded risk assessments. As practice demonstrates, disregarding the 
interrelationships between different resources can result in significant errors in risk evaluation, 
particularly in a rapidly evolving technological environment [7–9, 16]. To enhance the accuracy of 
risk assessments, it is essential to adopt new methodologies, such as those outlined in ISO/IEC 27019. 
This standard addresses specific aspects of cybersecurity for critical infrastructure and provides a 
more holistic approach to assessing and mitigating risks associated with resource interactions at 
various levels within the enterprise [25–29]. 



3. Methods 

The study of dependencies between information resources, as illustrated in the simplified model 
shown in Figure 1, enables a deeper analysis of the relationships within an enterprise’s information 
infrastructure, while accounting for modern security requirements. These dependencies are 
organized into a hierarchical structure, with the building serving as the highest-level node. The 
physical integrity of this node underpins all other enterprise resources. In the event of its destruction, 
and without the availability of data backups or alternative information processing centers located in 
other facilities, all critical information assets would effectively be lost [2, 16–19, 26, 39–41]. However, 
it is important to recognize that, in practice, most modern enterprises implement strategies involving 
multi-level redundancy and business continuity. These strategies often leverage cloud technologies, 
virtualization, and automated disaster recovery systems to mitigate the risks associated with such 
dependencies [3, 11–15]. 

 

Figure 1: Relationships between enterprise information resources. 

As the analysis reveals, a single information resource may depend on multiple others, 
significantly increasing the complexity of managing such systems. For instance, an Exchange server 
may depend simultaneously on both physical server 2 and an Active Directory server, creating a 
complex web of infrastructure interdependencies that must be carefully considered when designing 
a security strategy. Modern risk management methods, particularly those incorporating the concepts 
of Business Continuity and Disaster Recovery, emphasize the examination of all potential points of 
failure. These include not only physical components but also network and software resources, 
ensuring a comprehensive approach to minimizing risks [6, 39, 41].  

When analyzing the database server, it is evident that a redundancy mechanism is in place—the 
company employs an additional server capable of handling the load in the event of a failure of the 
primary server. This ensures uninterrupted access to critical data [7]. However, for effective risk 
management, it is essential to account for the complex interdependencies among the data stored on 
these servers. Even a minor error in modeling these dependencies can result in significant 
consequences during an incident [8]. Furthermore, the integration of advanced technologies, such as 
artificial intelligence, machine learning, and automated monitoring systems, enables not only the 
prediction of potential failures but also rapid responses to emerging threats. This significantly 
enhances the security and stability of the enterprise’s information infrastructure [9].  



When developing a modern model of information risk management for an enterprise, several key 
assumptions can be made to determine the effectiveness and depth of the analysis of dependencies 
between information resources and infrastructure elements. The first assumption is that the business 
goals of the enterprise are directly influenced by all the end elements in the hierarchy of the 
information resource system [10]. Consequently, ensuring the proper functionality and security of 
the organization requires guaranteeing the confidentiality, integrity, and availability of data and 
other critical resources, in alignment with the established hierarchy of dependencies [11, 17]. For 
instance, user data in such a hierarchy follows a clearly defined chain of dependencies, beginning 
with the Active Directory server and extending to the physical location of the building. Since 
enterprise infrastructures are continually exposed to risks from cyber threats, natural disasters, and 
technical failures, it is important to recognize that most modern companies actively adopt strategies 
for multi-level redundancy and business continuity. These strategies often involve the use of cloud 
technologies, virtualization, and automated disaster recovery systems [12]. Such measures not only 
mitigate the impact of physical disasters on operations but also enable rapid recovery from 
cyberattacks or failures, ensuring greater resilience and operational stability. 

Additionally, for a more precise risk assessment, it is essential to assign a specific weight to each 
element in the dependency chain. This weighting enables a more efficient analysis of risks based on 
particular threats. For example, if one element depends on another that carries a high level of risk (e.g., 
due to software vulnerabilities or unresolved configuration errors), this risk should be proportionally 
transferred to the dependent element to accurately represent its contribution to the overall security 
posture of the organization [13, 17, 39–41]. In the case of redundant or duplicated infrastructure 
elements (e.g., a backup server taking over if the primary server fails), the OR connection type is used. 
This approach reduces the overall risk level, as the risk is distributed among multiple components that 
perform the same functions. Conversely, the use of the AND connection type—where a dependent 
element relies on only one specific higher-level element—provides a clear delineation of the 
dependency chain, ensuring transparency in business continuity planning [10, 14, 24].  

In general, the adoption of modern approaches to risk modeling provides a more accurate 
representation of dependencies within a system, which is critical for managing enterprise 
cybersecurity, particularly in the face of contemporary threats such as cyberattacks, phishing, and 
insider threats [1, 3, 4, 19–23, 30–32, 39, 40]. With the advancement of cutting-edge technologies, 
such as artificial intelligence (AI) and machine learning (ML), it has become possible to automatically 
detect and predict risks through big data analysis. This capability enables not only the timely 
identification of vulnerabilities in information systems but also rapid responses to potential threats, 
thereby enhancing the overall level of protection. In particular, automated monitoring systems play 
a crucial role by detecting anomalies in real time, ensuring a more efficient and swift response to 
emerging threats.  

In the context of risk modeling for our information system, risk values can be assessed using a 
4×4 risk matrix (Figure 2), which serves as an effective tool for classifying the likelihood of threats 
and evaluating their impact. In this matrix, the probability of a threat is represented by the columns, 
while the level of impact is represented by the rows. The following categories are used to classify 
risks: from 1 to 5—low risk; from 6 to 9—medium risk; from 10 to 16—high risk. This structured 
approach enables a clear and systematic evaluation of risks, facilitating better decision-making in 
the management of information system security [33–35].  

 

Figure 2: The value of risk. 



Although this matrix offers a clear understanding of the probability and potential impact of threats 
on various elements of the system, it is important to note that, in practice, it is not always possible to 
determine these values with precision. This challenge is particularly relevant in the context of rapidly 
evolving technologies and continuously emerging threats. Therefore, in the subsequent stages of the 
analysis, these intervals will be used to enable a more flexible risk assessment. This approach allows 
for the consideration of diverse scenarios and potential outcomes, ensuring a more adaptive and 
comprehensive evaluation of risks.  

Thus, the utilization of the 4×4 risk matrix, combined with the consideration of all critical aspects 
of risk management, enables enterprises to effectively identify key points of vulnerability. This 
approach facilitates the development of comprehensive protection strategies that encompass both 
technical and organizational measures. These strategies are designed to mitigate risks and ensure 
the continuity of business processes, even in the event of serious incidents [17–19]. 

4. Design of a dependency assessment model for an enterprise 

information system 

When designing a dependency assessment model for an enterprise information system, it is essential 
to address both the technical and organizational aspects of risk management. Given the prevalence 
of modern threats and the rapid pace of technological advancements, such models must be flexible 
and capable of adapting to new conditions. To achieve this, a well-defined algorithm is employed to 
construct a comprehensive view of risks and dependencies within the system. This approach ensures 
an effective evaluation of the risk level associated with each element, enabling informed decision-
making and improved security measures [25, 36–38].  

The risk management process is conducted in several stages. During the preparatory stage, the 
information system is divided into subsystems and individual elements, followed by an expert 
assessment of the significance level of each subsystem. At the stage of risk assessment for the system, 
subsystems, and elements, the composition and number of elements within each subsystem are 
identified. Additionally, an expert evaluation of the characteristic criteria for each element is 
performed based on predefined categories, and the risks are calculated for each subsystem and for 
the entire system as a whole [20–24]. The subsequent step involves determining the adequacy of the 
risk level. A risk is deemed adequate if its level is classified as “below average” or “low”. If the risk 
level is found to be inadequate, plans and measures are developed to mitigate these risks. 
Alternatively, in cases of repeated application of the methodology, adjustments are made, with these 
refinements being implemented in practice.  

The risk of an individual element of a subsystem of a certain type is determined by the formula: � = ����, (1) 

where �—is the degree of interest of the attacker in attacking elements of this type, �—is the degree 
of damage to the subsystem from the consequences of a possible attack on elements of this type, �—
the degree of vulnerability of the horns of this type, �—the degree of probability of an attack on an 
element of this type. The specific risk of homogeneous elements is calculated as follows: 

� = 	
	 �
, (2) 

where ��—is the risk of an individual element of the subsystem �-of the subsystem, 	�—is the number 
of homogeneous elements �-of the -th type in the subsystem, 	—is the total number of elements of 
all types in the subsystem. Subsystem risk: 

� = 
 �(�)�
���

, (3) 

where 
—is the degree of importance of the subsystem, �—is the specific risk of homogeneous 
elements, �—number of types of elements.  

The total risk of a subsystem can be calculated as the sum of the risks of all its elements: 



� = � ��� ,
�

���
 (4) 

where ��—risk �-of the subsystem, �—is the number of subsystems in the system.  
Analyzing formulas (1), (2) and (4), we can conclude that, with equal risk parameters of individual 

elements of each subsystem, the risk of the entire system is a power function of the form � = ��4. 
The formula for calculating the risk is as follows: �� = � ∙ ���, (5) 

where ��—is the risk of the whole system in �-is the state of equality of risk levels of its elements in 
conventional units, �—is the system constant when operating in this configuration, ��—is the risk 
level of the system in terms of expert assessments in �-the state of equality of risk levels of its 
elements.  

Obviously, the parameter �� reflects a qualitative assessment of the system’s risk. From formula 
(5) we can express: 

� = �����, (6) 

�� =  ���! , (7) 

The resulting value �� can be translated into a qualitative assessment using the scale used: to do 
this, round it to the nearest whole number and determine which level of risk it corresponds to on the 
scale. The degree of assessment is ranked on a five-point scale, where 1 is low and 5 is high. The risk 
is calculated for each resource of the structure: “subsystem element—subsystem—system”. Expert 
assessments are used to rank the risks of indicators for each element of the subsystem. The risk for 
the entire system is defined as the arithmetic mean of the risks of subsystems.  

The following indicators are used for risk assessment: 
—level of subsystem significance 
(indicator of “destructiveness”) —conditional ranking of subsystems in the hierarchy of the entire 
system, determined by the degree (contribution) of a particular subsystem to the functioning of the 
entire system; 	—number of elements of this type—the number of elements in the subsystem that 
ensure the performance of technological functions; �—the degree of interest of the attacker in 
attacking the element—the measure of interest on the part of the attacker in performing unauthorized 
actions; �—the degree of damage from the consequences of an attack on an element—the degree of 
damage caused in the event of a successful threat; �—the degree of vulnerability of the element—the 
degree of change in the technological properties of the element in the event of a successful threat; �—the degree of probability of an attack is a measure of the probability of successful unauthorized 
actions by an attacker that lead to changes in the functional characteristics of the system or obtaining 
confidential information.  

Expert opinions were obtained through the use of questionnaires. These questionnaires consist 
of scoring sheets that include a list of resources, indicators, and criteria used to evaluate the degree 
of risk. 

The risk assessment utilized the following criteria for each indicator: the attacker’s interest in 
targeting the element, the damage resulting from the attack, the vulnerability of the element, and 
the likelihood of the attack being realized. An attacker’s interest may stem from access to commercial 
or technical information, personal gain, or unmotivated malicious intent. Damage is assessed based 
on the element’s interconnections with other parts of the subsystem, the consequences of its failure, 
and the costs associated with mitigating the impact of an attack. Vulnerability considers the physical 
accessibility of the element as well as its susceptibility to informational and mechanical 
vulnerabilities. Likelihood of an attack is determined by the effectiveness of existing protection 
mechanisms, the element’s ability to resist attacks and physical impact, and the historical analysis of 
similar attacks on analogous elements. Once experts evaluate each criterion, the arithmetic mean for 
each element is calculated, and the resulting score is rounded to the nearest whole number. Risks are 



assessed on a five-point scale, ranging from minimum to maximum risk. The methodology employs 
a dynamic algorithm that accounts for the interconnections among elements and subsystems at all 
levels of operation. Since monitoring systems are integral to enterprise infrastructure, this 
methodology can be adapted for assessing the risks of other enterprise information systems. This 
adaptability is particularly effective due to the interdependence of assets, which can be analyzed 
using cognitive maps.  

The first step in constructing a dependency assessment model for an enterprise information 
system is to identify the highest level in the hierarchy of the enterprise’s information resources. This 
typically includes critical elements such as the main server or a key building that serves as the 
operational hub. Starting with the most critical components enables the assessment of dependencies 
on these elements and provides a foundation for progressively analyzing smaller, yet equally 
significant components. This hierarchical approach ensures the integrity of the analysis and 
facilitates an accurate evaluation of the impact each element has on the overall security of the 
enterprise [26–29, 31].  

The next step is to assign weights to the three main components of dependencies: privacy #$%�, #��& and #'('. These components are key to determining the level of importance of each element 
in the context of security and its vulnerability to various threats. The weight of each component is 
estimated on a scale from 0 to 1 in increments of 0.1, which allows you to accurately reflect the 
importance of each aspect for a particular element [30–35]. This approach provides a more detailed 
assessment of dependencies in the system and allows you to identify even non-obvious 
vulnerabilities that may affect security. 

After determining the weights of the components, the next step is to adjust the risks using a 
specialized dependency formula [34–38]. This formula enables the consideration of not only 
individual elements but also their interrelationships. For instance, in cases where elements are 
connected according to the OR principle, the risk for each component is adjusted using the average 
value of the adjusted risks of the interconnected elements. Conversely, for elements that depend on 
multiple other components, the adjustment must account for all higher levels of dependencies. This 
means that if one element relies on several others, accurately determining its risk level requires 
incorporating the risks of all these elements as well as their interactions. 

Further risk adjustments are made using special formulas: 

#� = � #���)*�.��,.-.-
, (8) 

#� × 0'�  (#)*�, #��,, #-.-) × ��, (9) 

where #0—is the total dependency weight for the element, #$%�, #��& and #'('—are the weights 
of the dependency components, and �� (Risk Value) is the risk value for the higher-level entity to 
which the current entity is related. The formula allows you to adjust the risk value depending on the 
weight of the components and the type of connection of the elements.  

In the real world, accurate risk assessment can be challenging due to rapidly changing 
technologies and the continuous evolution of threats. Therefore, the application of such models 
necessitates constant updating and adaptation. To address this, intervals of risk values are employed 
to create a more flexible model for risk assessment and forecasting [17, 29]. Incorporating these 
intervals allows for the identification of potential threats, even in scenarios that were not initially 
considered during the early stages of the analysis.  

The total weight of dependencies, determined by the sum of the component weights and their 
maximum value, enables the construction of a comprehensive picture of dependencies for each 
element within the system. Notably, the risk adjustment process can incorporate advanced 
technologies, such as cloud services and automated monitoring systems, which facilitate the real-
time identification of potential threats [6–8, 19–22]. These innovations not only enhance the 
effectiveness of risk assessment but also enable faster and more efficient responses to potential 
security incidents.  

An example of risk adjustment: 



1. Low dependence and low risk: If an asset has a low dependence on a low-risk element 
(�� = 1), the risk adjustment can be as little as +1 point.  

2. Medium dependence and medium risk: in the case of medium dependence and medium risk 
(�� = 2), the risk adjustment can be increased by +2.4 points.  

3. High dependence and high risk: If an asset is highly dependent and exposed to a high risk 
element (�� = 3), the risk adjustment can be significant—by +7.2 points. 

These adjustments allow for a more accurate reflection of the real level of risk and enable an 
enterprise to develop more effective strategies for protecting its information resources [9–12].  

As a result of applying this dependency assessment model, an enterprise receives a clear picture 
of potential threats, which allows it to respond quickly to possible incidents and increase the overall 
level of cybersecurity in a rapidly changing threat environment. 

Figure 3 shows part of the enterprise model, where each infrastructure element is assigned the 
appropriate weights for the dependency components. 

 

Figure 3: Determining dependency weights for infrastructure elements. 

Each element is assessed in the context of the risks associated with its dependencies on other 
elements [13]. It is important to note that, following the initial risk assessment for each 
organizational element, these values are adjusted based on the actual dependencies between the 
elements [14–16]. For instance, when assessing customer data, we consider not only its direct 
vulnerability but also the elevated risk level of the database servers that store this data. This approach 
provides a more accurate representation of the actual threat level to the information.  

It should also be noted that the adjustment of risk values depends on the availability of redundant 
infrastructure elements. For example, for customer data with duplication at the database server level, 
the risk adjustment is limited to +2.1, as the presence of redundant resources mitigates the potential 
impact of the threat [18]. However, certain key system elements, such as private data, require 
significant adjustments to their risk values. This is because such data has dual dependencies—on both 
the Active Directory server and the physical server. These additional dependencies introduce 
heightened vulnerability, necessitating an increase in the risk level by +4 points [19–21].  

Algorithms for assessing the security of enterprise information resources can be based on the use 
of FCM. A cognitive map is a sign-oriented graph where the key factors of the modeling object 
(concepts) are interconnected by arcs that reflect cause-and-effect relationships. These connections 
characterize the degree of influence of concepts on each other and are set using fuzzy WijWij weights 
in the form of interval scores or linguistic terms. In general, a fuzzy cognitive map is defined as a 
tuple of sets [20–22]: 1�2 =  3�, 1, #4, (10) 



where FCM—is an oriented graph specified by a tuple of sets: � = {��}—a finite set of vertices 
(concepts), 1 = {15}—is a finite set of links between concepts (the set of oriented graph arcs), and # = {#��}—a finite set of weights of these connections. Figure 4 shows an example of building an 
FCM for assessing information risks of an enterprise. In the example of building an FCM for assessing 
information risks of an enterprise, the concepts are divided into five types: �6—a set of target factors, �7—a set of destabilizing factors (threats), �
—set of information resources, ��—set of basic factors 
(intermediate concepts indicators), ��—a set of controlling factors [4, 9]. The weights of the links 
were determined on the basis of expert assessments using linguistic variables (“weak”, “medium”, 
“strong”) on a scale of [0,1]. Three main factors were selected as the target concepts to be analyzed: 
“Reputation”, “Quality of products/services” and “Material and technical condition”, which reflect 
the general state of the enterprise in the market [4–7]. 

 

Figure 4: FCM for assessing information risks of an enterprise. 

The FCM built in this way allows us to assess the impact of both individual threats and their 
combination on a particular target factor. The overall effect of the impact of the concept С7� (threat) 
on the concept С�6 (target factor) is determined using the reach matrix: 8  #�, (11) #� =  ‖#��‖� × �, (12) 

where#� = ‖#��‖�×�—is the adjacency matrix of the FCM, #��—is the weight of the link between �-
m and �-FCM concepts, �—is the number of FCM concepts [8, 9]. With fuzzy values of weights #�� 
the multiplication and addition operations are replaced by the operations of finding the minimum 
and maximum, respectively. The indirect effect of the impact С7� on С�6 is determined by the 
minimum value of the weights of the links in the path: 8�(С7� →  С�6) =  0�� 3#��4. (13) 

The full (total) effect of the impact on С7� on С�6is determined by adding up all the values of the 
links that exist between the concepts �(С7� →  С�6)  =  0'� 3�1, 82, …  8	4, (14) 

where 8�—is the indirect effect between the threat С7� and the target factor С�6{#��}—is the set of 
weights of links on the path between concepts С7� and С�6	—is the number of indirect effects (i.e., 
the number of paths between concepts С7� and С�6) [10–12]. 



Table 1 presents the concepts selected for analysis and their variable states, offering a generalized 
example of how concepts can be defined within the framework of FCMs for assessing enterprise 
information risks. It is crucial to note that transitions between the different states of each concept 
are guided by expert opinions or the results of risk analysis [13]. 

Risk �-of the target factor in relation to the �-threat is determined by the formula: ��� =  �� 8(С7� →  С�6) ?�, (15) 

where ?�—value �-of the resource, 8(С7� → С�6)—is the full effect of the threat С7� on С�6, ��—is 
the probability of realization �-of the threat being realized. 

The total risk � for the considered set of threats is defined as: 

� = � � �@�A@ ,�

�B

C
��B

 (16) 

where 0—is the number of threats, �—is the number of target factors, and �D—is the significance of 
the �-of the target factor determined by experts [14, 15]. 

Table 1 

Concepts and Their Variable States for Analyzing Enterprise Information Risks 

Con-
chain 

Concept name Type of concept Variables states 

С17 Theft Destabilizing factor 
(threat) 

x₁: the average number of thefts per unit of time. 

С72 Modification Destabilizing factor 
(threat) 

x₂: the average number of unauthorized modifications per unit of time.  

С73 Disclosure Destabilizing factor 
(threat) 

x₃: the average number of disclosures per unit of time.  

С74  Viruses Destabilizing factor 
(threat) 

x₄: the average number of virus attacks per unit of time.  

С75  Hardware and 
software failures 

Controlling factor x₅: the average number of hardware and software failures per unit of time.  

С1
 Databases Basic factor x₆: the level of reliability of information in databases, %.  
С2
 Confidential 

information 
Target factor x₇: level of confidentiality, %.  

С3
 Software. Target factor x₈: software availability level, %.  
С4
 Hardware resources Basic factor x₉: operability of computers and other equipment, %.  

С1� Emotional and 
psychological state 

Destabilizing factor 
(threat) 

x₁₀: number of stressful situations or incidents, units.  

С�2 Violation of the 
company’s work 
schedule 

Destabilizing factor 
(threat) 

x₁₁: the number of production schedule disruptions, units.  

С�3 Qualification level of 
employees 

Target factor x₁₂: the average level of qualification of employees on a five-point scale.  

С16 Reputation of the 
company 

Target factor x₁₃: number of negative publications or statements, units.  

С62 Quality of service 
provision 

Target factor x₁₄: the share of employees who successfully work in their specialty, %.  

С63 Material and technical 
condition 

Basic factor / 
Controlling factor 

x₁₅: capitalization, UAH.  

 
Table 2 presents estimates of the impact of threats С17−С75 on the target factors С16−С63. The 

analysis of the FCM shows that, given the strength of the connection between the concepts, the 
realization of the threat “Theft” in relation to the information resources of the enterprise “strongly” 
affects the concepts “Quality of products/services” and “Material and technical condition” and 
“moderately” affects the concept “Reputation” of the enterprise [19–22, 40–43]. By determining the 
value of the target factors in absolute or conditional units С7� it is possible to calculate the potential 
risk (damage) both for individual target factors from the impact of certain threats and the overall 
(total) risk [18, 39–41]. 

The use of the FCM makes it possible not only to visually identify the negative processes that 
occur in the information system under the influence of threats, but also to identify the most 
vulnerable areas and ways to reduce the impact of threats through the introduction of appropriate 



control measures (countermeasures) {С��} which allows to reduce the level of information risks to 
an acceptable value. For example, if viruses are considered as a threat to the company’s information 
resources (concept С74), and the level of impact of this threat on the target factors С62 (“Quality of 
products/services”) and С63 (“Material and technical condition”) is defined as “strong”, then to 
reduce this impact, it is necessary to implement such countermeasures as choosing an anti-virus 
protection strategy, selecting an appropriate anti-virus program, managing anti-virus tools, etc. This 
will reduce the degree of influence of the concept С74 on the concepts С62 and С63 to the “medium” 
level [16, 17, 39, 41–43]. Table 3 shows the recommended measures (a set of controlling factors) and 
estimates of the degree of their impact on the mentioned concepts. The corresponding FCM after the 
introduction of countermeasures (concepts С1�−С�31) is shown in Figure 5. 

Table 2 

Assessment of the Degree of Impact of Threats on Target Factors 

The threat 
(СEF ) 

The full effect of the threat on the target 
factor before countermeasures are taken 

The full effect of the threat on the target factor 
after the introduction of countermeasures 

 СGH СGI СGJ СGH СGI СGJ С17 average strong strong weak average average С72 average average average weak weak weak С73 weak weak weak weak weak weak С74 - strong strong - average average С75 - strong strong - average average 

 

 

Figure 5: FCM for assessing information risks of an enterprise taking into account a set of 
controlling factors. 

An analysis of the ratio between risks and the costs of mitigation measures enables the 
identification of rational approaches to managing an enterprise’s information security and justifies 
the necessary expenditures on security. Decision-making regarding the selection of appropriate 
countermeasures and the evaluation of acceptable risk levels should be guided by the cost-
effectiveness criterion [2, 16, 40–43]. In this context, the following formulations of tasks for selecting 
control factors to reduce risks are possible: 

1. �N ≤ �-PP when 
Q → 0�� —determining the minimum costs of implementing information 
security measures while ensuring an acceptable level of risk;  

2. 
N ≤ 
-PP when �Q → 0��—minimizing risk at a given cost of implementing measures [9]. 



Here �N and 
N—total risk and costs of information security measures (countermeasures), �-PP 
and 
-PP—permissible values of the total risk and costs.  

The effectiveness of controlling influences is calculated by the formula: 

R = �Q/ − �Q�Q/
 × 100%, (17) 

where �Q/—is the calculated initial risk, and �Q—is the risk after the introduction of additional 
countermeasures. 

Table 3 

Set of Controlling Factors 

Designation Concept name 
The impact of the 
concept on 
communication 

Designation Concept name 
The impact of the 
concept on 
communication СBW, СXW,  СYW 

Differentiation of 
user access levels 

average СBZW  Organization of the document 
storage procedure 

average 

С[W, С\W,  СZW, С]W С�W 

Control and 
management of 
access to the 
premises 

average С[�W  Developing a procedure for 
recovery from virus attacks 

average 

СŴ, СB�W  Development and 
implementation of 
the virus protection 
concept 

strong СB^W , С[BW , С[XW  
Developing a procedure for 
prompt response to incidents 

average 

СBBW , СB[W  Administrative and 
technical means of 
controlling the work 
of users 

average С[[W , С[]W  Use of licensed software, 
access control 

average 

СB[W , СB\W  Measures to prevent 
failures 

average С[�W , С[\W , С[YW  
Technical support of 
hardware resources 

average 

СB�W , СBYW ,  С[ZW  
Formation of a 
corporate culture of 
information security 

average С[^W , С]�W , С]BW  
Development of measures to 
improve the stability of 
production processes 

average 

СBXW  Backup and restore strong 

 
The methodology for ensuring enterprise information security through information risk 

assessment using FCMs is a comprehensive approach. It enables not only the visual evaluation of the 
potential impact of major threats on the enterprise information system but also the effective 
systematization of risk factors as part of a holistic analysis of information security [3, 14, 35–38, 41–
43]. This methodology serves as a practical tool to support decision-making across all levels of the 
enterprise security policy. It enhances the convenience and accuracy of information security 
management at both strategic and operational levels, enabling the implementation of adaptive and 
timely management measures.  

Automating the processes of analyzing information risks, prioritizing them, and selecting 
effective countermeasures to protect an enterprise’s information assets significantly reduces the time 
required for comprehensive risk analysis. It also improves the quality of decision-making and helps 
reduce the costs associated with implementing security measures. This is achieved by structuring all 
stages of analysis and countermeasure selection. Automation enables the flexible adaptation of 
security strategies to the enterprise’s current needs and facilitates a rapid response to evolving threat 
conditions.  

The proposed structure of the decision support system (DSS) for managing enterprise information 
risks, based on cognitive modeling, offers enhanced objectivity and efficiency in information security 
decision-making. Cognitive modeling enables a deeper analysis of the cause-and-effect relationships 
between threats and risks, facilitates the timely identification of the most vulnerable elements within 
the information system, and supports the development of adaptive countermeasures [7, 10, 33]. Such 
a system significantly reduces potential losses from both external and internal threats while ensuring 
optimal resource allocation and maintaining stable information security. 



This approach enables the consideration of interdependencies among various information 
resources in the process of managing information security risks. It facilitates the analysis of how 
specific factors can influence the overall security of information assets and the achievement of the 
organization’s information security objectives. In light of current trends in cybersecurity and 
technologies such as cloud computing, automated recovery systems, and virtualization, it is crucial 
to account for these dependencies when developing a sustainable risk management model. These 
technologies not only mitigate the impact of physical disasters on operations but also ensure rapid 
recovery from cyberattacks, thereby enhancing the resilience of the infrastructure against 
unpredictable threats [8, 18]. 

5. Conclusions 

The study proposes a method for assessing the dependencies among information resources within 
an information system, which can significantly enhance the accuracy and efficiency of risk analysis 
at an enterprise. While similar approaches have been applied in both scientific and practical contexts, 
the importance of considering these dependencies and their impact on the overall level of risk is 
becoming increasingly evident and critical amidst modern challenges and rapid technological 
advancements. 

International standards in the field of information security, particularly ISO/IEC 27005:2018, 
along with established risk management guidelines, emphasize the necessity of incorporating 
dependencies among information resources into the processes of risk analysis and assessment. This 
standard highlights the importance of determining the degree of dependency between information 
resources and their impact on enterprise security, specifically in maintaining the confidentiality, 
integrity, and availability of data. In this context, the proposed method considers dependencies not 
only in terms of the direct significance of information resources but also through their role in 
achieving the strategic goals of the enterprise and their susceptibility to various threats.  

Additionally, the dependency assessment model incorporates not only direct connections 
between infrastructure elements but also considers scenarios where information resources exhibit 
multiple dependencies or duplication. This approach enables risk mitigation through the redundant 
allocation of resources or the integration of additional security layers. Such measures are particularly 
relevant in the context of the increasing adoption of cloud technologies, virtualization, and 
automated recovery systems.  

The method of assessing information risks in an enterprise using fuzzy cognitive maps enables a 
1.5 to 2-fold reduction in the time required for decision-making regarding the selection of necessary 
countermeasures. This approach significantly reduces information risks by implementing effective 
management actions (countermeasures) while keeping the total cost of information protection 
within acceptable limits.  

Due to its flexibility, the proposed method can be seamlessly integrated into existing risk 
management processes, enabling the adjustment of risk assessments to account for the real 
dependencies between information resources. In the future, an extended model can be developed 
that incorporates quantitative methods to more precisely measure the security status of an 
enterprise. This advancement will provide timely, accurate, and well-founded data for decision-
making, aligning with the requirements of modern cybersecurity and the dynamically evolving 
threat landscape. 
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