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Abstract 
The adoption of Large Language Models (LLMs) in education has prompted questions about their 
impact on programming projects. This research will explore how the use of LLMs affects learning and 
socio-affective outcomes on individual and group level in first software engineering projects. Existing 
literature explores both potential benefits and pitfalls of LLMs in educational contexts. LLMs enhancing 
readability, explaining others’ code and providing quick answers to less experienced students could 
improve group work. However, there are concerns such as students’ judgment of competency, effort 
and contributions created with LLM support affecting group collaboration dynamics. To address the 
gap in empirical research on LLMs' impact on perceptions of teammate competency, connectedness, 
self-efficacy, learning gain, and professional identification we will analyze not only self-reported 
measures but also work with process data from collaborative coding platforms to extract meaningful 
measures of collaboration behavior and issues in group code prominent when LLMs are being used. 
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1. Introduction 
After the vast adoption of Large Language Models 
(LLMs) universities have raised questions about the 
adequacy of curriculum and assessment in response to 
student use of computer-generated output during their 
studies (Kasneci et al., 2023). These questions are 
particularly pertinent for future programming 
professionals, since LLMs are effective in generating 
code chunks (Kazemitabaar et al., 2023). The use of LLM-
generated code can not only speed up programming 
tasks but substantially offload thinking processes to the 
machine. In light of potential automation of coding 
tasks, it has become unclear as to what skills should be 
taught to future programming  professionals  to  enable 
effective integration of LLMs into the human-led 
process. 

The focus on optimization of productivity enabled 
by machines has thus far been central to research on 
how to integrate LLMs into human cognitive practices 
(Wang et al., 2019). Yet such a focus is only partially 
relevant in educational settings. Educational outcomes 
target students' cognitive development and higher-order 
thinking in relation to the domain they study. Tools 
supporting cognitive processes can benefit the learner in 
offloading some parts of such a process and allowing the 
learner to focus on higher- order thinking (Salomon, 
2003). At the same time, improper use of the tool can 
lead to a reduced, shallow understanding (ibid.). 
Therefore, it is important to understand the relationship 
between student use of cognitive tools such as LLMs and 
learning outcomes related to their domain knowledge to 
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ensure that integration does not deprive students from 
developing much needed higher order thinking. 

Another reason why a focus on solely optimizing 
student use of LLMs is insufficient in educational 
settings is that technologies continue to evolve. The 
models change to support humans better, and this 
process cannot be expected to stabilize on a certain 
pattern (Joksimovic et al., 2023). 

Students will need to continue working together, 
solving problems and communicating effectively, 
regardless of the specific cognitive tool they may use. 
Hence, it is also important to understand the 
relationship between the use of cognitive tools and 
educational outcomes that reach beyond domain 
knowledge. Frequent use of tools like LLMs may shape 
students in a way that affects them profoundly, so 
stakeholders need a clearer understanding of how 
broader educational outcomes are affected by those tools 
so that instructional practices can be adapted to preserve 
the focus on developing skills essential for humans. 

To address this pressing need, my project will 
investigate how LLMs affect educational outcomes in a 
collaborative setting where future programming 
professionals practice a broad set of skills. Collaborative 
work is commonly part of software engineering projects 
in computer science curricula. Collaborative work is an 
essential part of professional software engineering and 
interpersonal skills are among the most significant for 
the effectiveness of software engineers (Boyatzis et al., 
2017). Groups have been shown to innovate faster, 
identify mistakes more quickly, and find better solutions 
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to problems; all while reporting a higher job satisfaction 
(Duhigg, 2019). 

Moreover, project-based assignments where 
students practice collaborative  work  are  a  catalyst  for 
bonding and social learning, facilitating social capital 
among future professionals and affecting professional 
identity. Collaboration experiences can also create 
precedents for exclusion and negatively affect belonging 
and diversity in STEM (Miller-Young et al., 2023). This 
richness of educational outcomes makes collaborative 
programming assignments a suitable context to examine 
the effect of cognitive tools, such as LLMs. 

Current literature is limited in explaining the effects 
that LLMs can have on broader educational outcomes in 
programming group work. Existing research suggests 
that such effects could be both positive and negative. 
LLMs have the potential to support participation of 
students with less programming skills in code 
production and help to understand others’ code, 
important for positive collaborative work. However, it 
could also amplify issues of unequal effort distribution 
through the option to auto-generate code, which is 
known to create negative experiences (Nguyen et al., 
2023). LLMs can, for instance, facilitate shared 
understanding by improving code readability and 
documentation as well as reduce the need for any group 
members to spend large parts of the time on lower-level 
tasks such as generating test cases, which might change 
previously common role distributions. With LLMs 
affecting most parts of the programming projects, an 
influence on the social aspects of group work is likely 
and deserves attention. 

This research gap calls for empirical examination of 
the effects of LLMs in programming assignments on 
domain- specific knowledge and the effect on group 
processes, as well as longer-term imprint on students, 
such as the formation of professional identity. My thesis 
will focus on addressing this gap. I will employ mixed 
methods research design. First, I will analyze the effect 
of LLM integration into programing group projects, in 
relation to student perceptions of learning, their socio- 
affective attitudes towards teammates and their 
evolving identification with the domain. Second, I will 
investigate the relationship between these perceptions 
and process data from code progression, as student 
perceptions are largely mediated by the code-based 
communication on GitHub. The thesis is in its planning 
stage. 

2. Related Work 
When students use LLM-based tools for their tasks 

in a course, this affects how and what they learn. To 
advance the goal of understanding the effect of LLMs in 
collaborative programming assignments, this section 
explains how LLM use in collaborative programming 

tasks may affect educational outcomes. This includes 
individual outcomes, such as learning, self- efficacy, and 
professional identity, as well as group-related socio-
affective outcomes, such as trust in teammates 
competency and connectedness. I also explain why the 
process of how learners collaborate when they 
individually use LLMs must be considered. 

2.1. Effect of LLMs on Learning 
Individuals 

LLMs offer a diverse range of applications for 
enhancement of learning experiences, personalized to 
the student (Kasneci et al., 2023). In introductory 
programming assignments, LLM-based coding tools 
currently already perform at the level that outscores the 
average student (Finnie- Ansley et al., 2022). Most 
students prefer using a LLM, especially to get a starting 
point, even when they often face difficulties in 
understanding, editing, and debugging generated code 
(Vaithilingam et al., 2022). Studies have also shown that 
programmers tend to defer tasks related to 
comprehension to the LLM, even though this can steer 
them in the wrong direction (Nam et al., 2024). Some 
scholars also suggests that students use LLMs for 
requesting explanations of code and general questions 
more often than for code generation (Kazemitabaar et 
al., 2024). 

To circumvent challenges associated with LLM 
use, chatbots have been developed to offer hints to 
mimic human tutoring, instead of giving students full 
solutions (Bassner et al., 2024). 

Literature so far has shown that integrating LLMs 
into practices around learning and studying can affect 
individual learning gains. A major concern here is that 
when students regularly offload to technology, they may 
not actually learn how to perform the task on their own. 
(Darvishi et al. 2024) found that when using LLM, 
students seem to be finishing tasks well, but once the 
LLM was removed, they did not replicate the new 
strategies used by the LLM that were helpful with the 
tasks. Another study showed that learning gains from 
using an LLM in learning programming languages vary 
with context and task complexity (Aviv et al., 2024). 
Researchers observed that LLMs did not reduce 
metacognitive difficulties for students with limited 
programming abilities and even introduced new ones 
(Prather et al., 2024). 

In addition to learning gains, integrating LLMs 
into learning practices can impact self-perceptions, such 
as self- efficacy and professional identity. Studies on 
LLMs’ effects on students’ self-efficacy found that LLM-
supported review of course topics improved students’ 
self- efficacy and motivation (Lee et al., 2022). This effect 
on self-efficacy appeared because LLM helped students 
become active during learning, as it provided a safe way 



 
 

to explore questions (Y.-F. Lee et al., 2022). A study 
where interactions with an LLM supported student 
thinking deeply about a topic showed improved self- 
efficacy and learning achievements (Chang et al., 2022). 
(Wang et al., 2023) found that AI based on good 
technology combined with technological skills in a 
higher education program improve students’ self- 
efficacy, mediating performance. Perception of self-
efficacy can also benefit from having a starting point in 
coding (Vaithilingam et al., 2022). 

Self-efficacy further plays an important role in 
securing diversity, equity, and inclusion in STEM. 
Minorities and women feel less included in the 
engineering groups in general, but female students’ who 
plan to persist in this male-dominated domain also show 
high self-efficacy (Marra et al., 2009). It therefore also 
may be important to ensure that integrating LLMs into 
collaborative work, where many of the exclusionary 
practices occur (e.g. William M. Hall, Toni Schmader, 
Elizabeth Croft, 2015), maintains positive impact on 
long- term professional orientation, mediated by group 
experiences. 

2.2. Effect of LLMs on Learning Groups 
When it comes to collaborative learning settings 

as in group programming assignments, LLM use reaches 
beyond the effects on the individual, such as learning, 
self-perceptions, and future identification. Both socio-
cultural (Vygotsky, 1978) and socio-cognitive theories of 
learning (Dillenbourg, 1990) highlight the influence of 
the environment on learning, often enacted through 
peer interactions. LLM use by individual learners can 
potentially influence peer interactions, mediated by 
technology, and further impact group- related socio-
affective outcomes, such as trust in group members and 
connectedness. 

Research on the use of LLMs in collaborative 
learning has been limited to the development of tools 
that target collaborative processes at the group-level. 
For example, Kasneci et al. (2023) speculate that these 
tools can facilitate group discussions by providing 
feedback and personalized guidance to students to 
improve group participation or give editing 
recommendations to support collaborative writing. 
LLMs could help avoid common faults in the group 
processes by integrating information or promoting 
knowledge convergence and decision-making – all 
group-level processes essential for effective 
collaboration (Westby & Riedl, 2023; Järvelä & Hadwin, 
2013; Khakurel & Blomqvist, 2022). It is noteworthy that 
many of these existing propositions are limited to the 
LLM-based tools specifically designed to support group 
work. However, group members can also choose to use 
LLMs for individual needs, rather than to support group 

processes. The effects of such individual use within a 
collaborative task have not yet been explored. 

Previous research suggests that AI can affect 
collaboration in unintended ways (Wang et al., 2022), 
and this can also be expected when students integrate 
LLMs to support individual programming needs within 
a collaborative task. For instance, group-related socio-
affective outcomes, such as trust in teammates’ 
competency and feeling of connectedness with the 
group, may be affected. Students’ perceptions of 
teammates’ contributions may change when individuals 
submit auto-generated code without transparency of 
how it was created. Engagement in collaborative work is 
strongly connected to trust in team members, and 
motivation to perform collaborative tasks may diminish 
when this is compromised (Dirks, 1999). Studies in 
software engineering emphasize the role of perceived 
transparency for trust (P. T. Y. Lee et al., 2024) as well as 
the role of perceived task-related competency of another 
team member (Mayer et al., 1995). Presumably, when 
team members use LLMs to generate code that in its 
form resembles more advanced programmers’ code, 
their competency is much harder to judge, especially in 
the earlier stages of a project and by novices. As team 
members progress in collaborative tasks, building on 
others’ code is necessary and requires judgment of the 
quality of that code. Studies about the relationship of 
LLM to the judgment of competency show that LLM use 
can lead novice programmers to misaligned confidence 
regarding their skills and understanding (Prather et al., 
2024). Research has not yet addressed if the difficulty 
associated with the judgement of competency also 
applies to group-related judgement. 

The difficulty in judging contributions might also 
affect the connectedness of the group. Previously, social 
connectedness, defined via measurements of frequency 
of social contact, task assistance and compassion, as well 
as sense of belonging, has been shown to be related to 
well-being (Frieling, M., Peach, E. K., & Cording, J., 
2018). Connectedness can be defined as an affective 
outcome of group processes developed directly from 
interactions, such as mutual support, but also 
impressions of others, from their contributions against 
the context of own work on the common project. 

2.3. The Role of Process in Collaborative 
Programming 

I have argued that LLMs used by individuals in 
collaborative programming may affect learning and 
socio-affective outcomes. A sole focus on outcomes in a 
collaborative learning scenario is insufficient. 
Dillenbourg et al. (1996) argued that process variables 
must also be considered when studying collaboration. 
This is because interaction effects between the many 
process-related mediators of collaboration outcomes 



 
 

would prevent reliable causal inference. Given the 
dearth of research on process variables related to LLM-
mediated contributions in a collaborative process, a 
relationship between the indicators of the process data 
with learners’ perceptions of the members and the group 
need to be established. 

For this, individual and group-level team code 
submissions need to be transformed to appropriate 
interaction process indicators. Log data from 
programming projects is different from conversation 
data often applied in collaboration research, though 
conceptual similarities exist. For example, students who  
work  on  programming  projects regularly merge their 
modified versions of the software into a common 
version. How the students amend the versions and who 
does this gives insight into success of previous 
coordination as well as (perceived) value of the 
individual members’ contributions and who maintains 
overview of the group’s code. In some groups, major 
conflicts result from not being able to amend different 
versions to a working product (Tushev et al., 2018). In 
sum, group-level patterns of logs can make an 
impression on student perceptions of others and the 
group itself. 

Moreover, depending on the type of contributions, 
individual roles in relation to the group may also be 
visible in GitHub traces. For example, previous work has 
talked about the phenomenon of “cowboy 
programming”, where a group member took over the 
management of the relevant parts of the software 
development without including others (Tushev et al., 
2018). Similarly, “free riders” and “social loafers” 
describe common patterns of individual roles students 
take on, bringing out negative group work dynamics 
(Nguyen et al., 2023). 

Existing research on process indicators in 
programming creates a foundation for analyzing both 
individual and group processes. According to code 
collaboration project research, best- performing teams 
show equal contributions, not necessarily the highest 
total number of commits, but parallel main work times 
and work on separate branches of the code (Tushev et 
al., 2018). Team roles can be visible as one person 
contributing documentation while another contributes 
the code (Tushev et al., 2018). (Gitinabard et al., 2020) 
look at teamwork features on GitHub projects and 
classify the student teams into three groups, 
collaborative, cooperative, or solo-submit, 
differentiating each contribution into types such as bug 
fix, documentation, test case, or implementation. They 
look at how many lines of code the members change, 
across how many different files, how much they delete, 
and informativeness of commit messages written by a 
contributor. Another line of work goes deeper into 
contribution quality from code analysis and considers 

which contributions fix or keep problems in the code as 
indicated by build logs (Chen et al., 2022). These process 
measures have been analyzed in relation to student 
performance, but not in relation to student perceptions 
of each other and the group, as well as with LLM-
ingestions within the contributions. 

 

3. Research Questions 
To investigate the effects of individual use of LLM-based 
tools on group-based learning in programming projects 
in higher education, this project poses the following 
research questions: 
 

1. How does the use of LLM in collaborative 
programming affect individual outcomes, such as 
learning gain, self-efficacy, and professional 
identification, and group-related socio- affective 
attitudes, such as perceptions of teammate 
competency and connectedness? 

 
2. What is the relationship between process 
indicators describing individual and group- level 
team code with the perceptions of competency 
among  team  members and group-related socio-
affective attitudes? 

 

4. Research Design 
To address these research questions, a series of authentic 
studies in a university scenario are planned. I plan to 
collect the data from group-based programming projects 
from the courses targeting novice programmers. This 
choice is due to the focus on the first experiences with 
programming group projects within higher education. 
The courses are expected to give us a participant number 
of between 600 and 1800 students in 120 to 450 groups. 

We will collect data via interviews, self- reports 
with established tools three times throughout the course 
and log data of the evolving code and all GitHub 
activities. The interviews are employed to potentially 
show causalities between our researched variables. 
Including a self- and team assessment part in group 
projects is a common strategy for their grading, and we 
will extend the usual questions with additional 
questions. A final presentation of the artifacts is part of 
the project’s examination and questions about the 
team’s code show each students’ understanding of the 
software. 

The first study will address the question of how 
the use of LLM in collaborative programming affects 
individual outcomes, such as learning gain, self-efficacy, 
and professional identification, and group-related socio- 
affective attitudes, such as perceptions of teammate 



 
 

competency and connectedness, also considering 
perceived equality of contributions. We will use self-
reports for established measurement tools and 
interviews to capture these. 

In the second study, we will analyze process data 
to evaluate relations to perceived effort distribution, 
accuracy of judgment in team members’ competency, 
trust, differences in patterns in code contributions, 
mutual support, prevalent issues in engineering the 
software, perceived gain of skill, perceived appreciation 
from others and identification with the field of study and 
future professions. 

Since I am at an early stage of this project, I am not 
set on the methods of analysis yet. We will tentatively 
analyze the first data and develop process measures 
appropriate to the theory of group dynamics in 
programming projects and relate them to self-report 
measures. The process measures will be sourced from 
log data of AI interactions, submitted milestone 
planning documents for coordination traces and features 
of the frequently logged contributions (using analytics 
of and building on previous code contribution 
evaluation metrics). The intra-group interactions will 
include information of who built on top of or modified 
whose code, who fixed code cohesion or formatted the 
others’ code, who contributed comments or 
documentation, and where were errors introduced and 
resolved.  
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