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Abstract
This research extends the ACT-R cognitive architecture to tackle deceptive overgeneralization within Intelligent Tutoring
Systems (ITS). Existing adaptive learning technologies, while effective, rely on learning data that may not fully capture
the nuances of learner understanding, particularly in cases of deceptive overgeneralization. This phenomenon occurs
when learners exhibit correct actions during monitored learning sessions, yet these actions are grounded in an incomplete
understanding of the necessary conditions. Due to the reliance on observed correctness, ITS may falsely assess mastery,
potentially ceasing to provide further necessary practice opportunities that could aid in the refinement of understanding.
This study aims to identify ITS designs that may inadvertently foster such misconceptions and to develop methods for their
detection, diagnosis, and correction. Utilizing experimental designs, think-aloud protocols, and educational data mining,
the research seeks to refine the adaptivity of ITS and enable more accurate assessments of true skill mastery. This work
contributes to Technology-Enhanced Learning (TEL) by enhancing the precision of automated assessments and supporting
more reliable adaptive learning experiences.
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1. Introduction
Adaptive learning technologies, powered by learning data
and dynamically adjusting to individual learner needs,
have proven effective across various educational settings
[1]. However, by definition, any type of adaptivity relies
on data reflecting student learning [1, p. 523]. The ac-
curacy and completeness of learning data are therefore
critical. There are instances, however, where the learn-
ing data may fall short, particularly in cases of deceptive
overgeneralization.

Deceptive overgeneralization describes an undesired
learning state wherein a learner acquires a relevant but
incomplete subset of the conditions necessary for a skill,
yet manages to perform the correct actions. Such over-
generalization is “deceptive”, as it can lead to seemingly
satisfactory performance during scrutinized learning ses-
sions, as the learner’s observable actions align with those
of individuals who have accurately mastered the skill.
However, these actions are based on a flawed understand-
ing of the underlying conditions.

Deceptive overgeneralization poses a significant chal-
lenge, leading to false evaluations of mastery, which
drives adaptivity. This can mislead learners, instructors,
and researchers into getting prematurely convinced that
a skill has been mastered. Many Technology-Enhanced
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Learning (TEL) environments, especially those utilizing
Intelligent Tutoring Systems (ITS) with adaptive capabil-
ities that dynamically select practice problems based on
estimated skill mastery, might amplify the issue of decep-
tive overgeneralizations. Such environments may prema-
turely cease providing further necessary practice oppor-
tunities that aid in the refinement of understandings, leav-
ing these inaccuracies unaddressed. The consequences
of failing to detect and address deceptive overgeneraliza-
tions can extend beyond academic performance, poten-
tially affecting long-term educational pathways, career
trajectories, and in some cases, leading to dire conse-
quences.

My doctoral research aims to investigate the mecha-
nisms of deceptive overgeneralization by applying and ex-
tending thewell-established cognitive architecture, Adap-
tive Control of Thought – Rational (ACT-R) [2, 3]. This
study aims to uncover how certain designs of ITS might
overlook subtle instances of deceptive overgeneraliza-
tion and to investigate design principles that can detect
and remedy them. Ultimately, my research seeks to con-
tribute to the advancements of adaptive learning tech-
nologies, enhancing their effectiveness as educational
solutions.
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2. Literature Review

2.1. Adaptive Control of Thought –
Rational (ACT-R)

ACT-R, a cognitive architecture for understanding and
modeling human cognitive processes, posits that cog-
nitive behaviors are orchestrated by productions [4, 3].
A production can be represented as a condition-action
pair [2, p.5], with the condition part specifies the circum-
stances under which the production can apply, and the
action part specifies what should be done when produc-
tion applies [5, p.3]. ACT-R has significantly influenced
the development of ITS, which delivers personalized tu-
toring by adapting to the unique learning needs of each
learner. Empirical studies underpinning ACT-R have
led to a proliferation of ITS that successfully enhance
learning outcomes across diverse educational settings
[6, 7, 8]. These systems, particularly cognitive tutors, re-
quire the development and integration of domain-specific
cognitive models that adhere to the ACT-R framework,
to capture various learner strategies and potential mis-
conceptions.

2.2. Adaptivity of Intelligent Tutoring
Systems

Adaptive learning, fundamental to ITS efficacy, is sup-
ported by various theoretical perspectives, such as Vy-
gotsky’s zone of proximal development [9], the cognitive
apprenticeship model [10], the expertise reversal effect
[11], and the assistance dilemma [12]. The efficacy of ITS
in improving learning outcomes is largely attributable
to its adaptivity, which allows for personalized learning
based on individual learner progress and needs.

Adaptivity is not a binary property, but rather “a mat-
ter of degree” [1, p.523]. ITS distinguish themselves by
adapting across all three major time scales defined by the
Adaptivity Grid: step, task, and design [1, p.525].

Within the step-loop, ITS provides timely and targeted
feedback at each problem-solving step. Indeed, timely
feedback is critical to enable the learners to continu-
ously monitor their learning and evaluate their problem-
solving strategies and their current understanding [13].
The positive effects of feedback are well supported by the
rich wealth of evidence in the literature review by Shute
[14]. Feedback is most effective when it clearly highlights
discrepancies between a learner’s current performance
and the desired outcome, while offering actionable guid-
ance to help learners meet specific target criteria [15,
p.139]. ITS embody these best practices of feedback, by
detecting and diagnosing observable discrepancies be-
tween expected and actual actions at each step. With
a developed cognitive model, a cognitive tutor employs
model tracing to compare learner actions at each problem-

solving step against the possible actions generated by the
cognitive model, in order to provide individualized, just-
in-time learning support tailored to the learners’ specific
approach to a problem [16, p.142].

In the task-loop, ITS employ knowledge tracing algo-
rithms such as Bayesian Knowledge Tracing (BKT) [17]
to dynamically adjust problem sequences based on real-
time assessments of learner mastery. Each time a learner
attempts a step in a practice problem, the system updates
its estimate of the learner’s mastery of the relevant pro-
duction rule based on the correctness of the learner’s
action [16, p.143]. This ongoing assessment allows ITS
to dynamically tailor the sequence of problems, ensuring
that each practice opportunity aligns with the learner’s
current skill level and learning trajectory. When the sys-
tem reaches a high degree of certainty, typically exceed-
ing a predefined threshold (e.g., 95%) [16, p.144], about
a student’s mastery of a skill through repeated observa-
tions of correct actions, it ceases presenting tasks related
to that skill. This automated stopping rule optimizes
the balance between learning time and effort, preventing
overpractice and maximizing educational efficiency.

Furthermore, the design-loop adaptivity involves data-
driven instructional (re)design, before and between itera-
tions of ITS development, informed by learning data [1,
p.526].

However, the adaptivity of ITS is not without limita-
tions. One key challenge lies in addressing deceptive
overgeneralization—where learners perform correct ac-
tions based on a flawed understanding of underlying
conditions. This phenomenon challenges the assessment
models of ITS, which typically rely on differentiating
between correct versus incorrect actions to gauge mas-
tery. As such, deceptive overgeneralization presents an
intriguing area for further research.

3. Deceptive Overgeneralization as a
Possible Learning State

Learning is typically characterized by a gradual and con-
tinuous process rather than sudden transformative in-
sights [18]. The Knowledge-Learning-Instruction (KLI)
framework views learning as the acquisition of Knowl-
edge Components (KCs), which are acquired units of
cognitive functions or structures [19]. The KLI frame-
work identifies induction and refinement as one primary
type of learning processes, particularly for acquiring KCs
associated with variable conditions: for KCs with condi-
tions that can vary in form or value, learners must induce
and refine KCs so that the acquired KCs are “accurate,
appropriately general, and discriminating” [19]. As we
consider the induction and subsequent refinement of a
KC as a continuous learning progression, learners may
initially acquire an inaccurately generalized version of



Table 1
Examples of Correct and Inaccurate Generalization in Knowledge Components Across Various Disciplines

Discipline / Topic Correct KC Referenced Inaccurate KC
Math / Geometry IF the triangle is isosceles AND two angles

are at the base of the triangle THEN the
two angles are equal

IF the triangle is isosceles AND two angles
THEN the two angles are equal [20]

Language / English Articles IF single mountain name THEN zero article IF mountain name THEN zero article [21]
Statistics / Data Visualization IF categorical data THEN choose pie chart IF demographic data THEN choose pie

chart [22]

the target KC. This initial misunderstanding may either
be refined into an accurate KC through further practice,
or it may persist as inaccurate due to a lack of practice
opportunities that support the refinement process.

3.1. Modeling of Deceptive
Overgeneralization

A KC connects features of a problem to a corresponding
response. A learner has acquired a KC that is considered
accurate, or “with high feature validity”, when all of the
features are relevant to making the response and none
of them are irrelevant [23]; otherwise, a KC is inaccurate
and requires further refinement. Inaccurate generaliza-
tion could be overgeneralization, undergeneralization, or
even more nuanced a mix of them. Indeed, inaccurate
generalization is a common phenomenon observed in
learning sciences research across various disciplines. Ta-
ble 1 presents examples of incorrect generalization, along
with their corresponding accurate KCs, drawn from re-
search literature. Among these, deceptive overgeneral-
ization is particularly intriguing to investigate.

In ITS, specifically those developed using Cognitive
Tutor Authoring Tools (CTAT) [24, 25], each production’s
condition-action pair is structured as an IF-THEN state-
ment [26]: IF <condition> THEN <action>. Overgen-
eralization occurs when a learner acquires production
rules whose IF part is overly broad compared to the cor-
rect IF part. In computational or logical terms, overgen-
eralization can happen due to the omission of logical AND
operators in the IF part. Consider a target KC requiring
multiple conditions for its activation, represented as IF A
AND B THEN <action>. Overgeneralization might arise
when a learner acquires a KC that omits part of the con-
ditions, resulting in IF A THEN <action>.

It is crucial to distinguish the phenomenon of deceptive
overgeneralization from the broader concept of “miscon-
ceptions.” Consider a simple algebra problem: Anderson
describes an observation that a student incorrectly solves
the equation 2𝑥 = 6 by subtracting 2 from both sides,
erroneously resulting in 𝑥 = 4 instead of 𝑥 = 3 [18]. Such
misconceptions lead to actions that are clearly incorrect,
allowing for immediate observation, feedback provision,
and tailored subsequent training. In contrast, deceptive

overgeneralization involves learners who, during closely
monitored learning sessions, apply correct actions that
are based on incomplete understanding of the necessary
conditions. These learners may later inappropriately ap-
ply these actions under unsuitable circumstances, often
beyond the scrutiny of the initial learning. This high-
lights why deceptive overgeneralization is particularly
“deceptive”: learners are still observed to take correct
actions, despite their misconceptions.

Furthermore, my research differs from prior studies
that have primarily focused on distinguishing between
superficial and deep features in learning. Superficial fea-
tures, also known as shallow or surface features, are
those that do not contribute to correct solution pathways
[22, 27, 28]. For example, a learner chose to use a pie chart
because the data is demographic (superficial) rather than
categorical (deep) [22]. In contrast, my research inves-
tigates scenarios in which learners take correct actions
based on a relevant yet incomplete set of features. Im-
portantly, unlike superficial features, all these features
belong to the correct solution pathways, thereby making
the learners’ understanding appear deceptively correct.

3.2. Stickiness of Deceptive
Overgeneralization

The KLI framework delineates a relationship between ob-
servable and unobservable events: instructional events,
learning events, and assessment events [19]. Instruc-
tional events cause learning events, which are unobserv-
able processes that result in changes in KCs, such as
acquisition of new KCs or refinement of existing KCs.
The changes of KCs, in turn, cause learner performances
that are observable during assessment events. Given that
learning events are central yet unobservable, assessments
are expected to be designed with the quality to accurately
reflect the true nature of learning events. However, in
cases of overgeneralization, certain designsmay fail short.
Using set theory, overgeneralization can be visualized as
an inclusion relation and we can identify a specific type
of potential design flaw, as depicted in Figure 1.

Many TEL environments, particularly those involv-
ing ITS, leverage automated evaluation and feedback
mechanisms to deliver learning at scale. The reliance



OvergeneralizedIF

CorrectIF

Figure 1: Overgeneralization occurs when a learner acquires
production rules whose IF part is a superset of the correct
rule’s IF part, covering an overly extended range. This rela-
tionship can be expressed as OvergeneralizedIF ⊇ CorrectIF.
Cross marks within CorrectIF represent practice activities that
cannot test for overgeneralization. If all practice activities fall
within CorrectIF, focusing solely on correct actions, the in-
structional design will fail to identify whether learners have
acquired the correct rule or an overgeneralization.

on these automated mechanisms can pose challenges for
all stakeholders regarding deceptive overgeneralization.
TEL tools might mistakenly provide positive feedback
to learners who perform correct actions based on an
inaccurate understanding of conditions, inadvertently
reinforcing misconceptions. Instructors and researchers
employing learning analytics or educational data mining
are similarly at risk of being misled by seemingly satis-
factory learning data, potentially missing opportunities
for intervention and correction that address learners’ in-
correct understandings. Moreover, ITS, with its adaptive
capabilities that dynamically select practice problems and
assess mastery, might amplify these issues. The reliance
on observed correctness by knowledge tracing algorithms
can lead to premature conclusions about learner mastery,
halting further necessary practice that aids genuine skill
development and refinement, leaving those misconcep-
tions unaddressed. As what is captured and reported by
TEL tools appears correct, encouraging, and satisfactory,
deceptive overgeneralization may be particularly “sticky”
and resistant to detection and change.

3.3. Both Novices and Experts Could be
Prone to Deceptive
Overgeneralization

If “practice makes perfect” were true to the extent that
well-developed expertise guarantee refined and accurate
skills, then deceptive overgeneralization could be effec-
tively addressed by providing ample practice opportuni-
ties in favorable learning conditions. However, I argue
that even experts are not immune to deceptive overgen-
eralization, despite their considerable mastery of skills.

Ambrose et al. [15, p.97]modeledmastery and its devel-
opment into four stages, as illustrated in Figure 2. As this

model suggests, while competence develops in a more-or-
less linear fashion, consciousness initially increases and
then decreases, as both novices (in Stage 1) and experts
(in Stage 4) operate in states of relative unconsciousness,
though for vastly different reasons [15, p.97]. I contend
that deceptive overgeneralization may occur during any
stage transition, including transitions towards Stage 4.
Experts, as they develop their proficiency and automatic-
ity, may also be prone to forming inaccurate heuristics
and cognitive shortcuts to enable fast task completion.

An example demonstrating that experts can form de-
ceptive overgeneralization, and that deceptive overgen-
eralization can lead to severe consequences, is the Cros-
sair Flight 498 Crash. The official incident investigation
report identified one human factor probable cause as fol-
lows: “when interpreting the attitude display instruments
under stress, the commander resorted to a reaction pat-
tern (heuristics) which he had learned earlier” [29, p.10].

As demonstrated in Figure 3, a Soviet attitude dis-
play indicates a left roll of the airplane with a counter-
clockwise rotation. The appropriate response, detailed
in Algorithm 1, is to stabilize the airplane by rotating it
right. This rule acts as a cognitive shortcut that simpli-
fies decision-making by minimizing the cognitive load
needed to interpret the display. However, errors can arise
if this shortcut is overgeneralized, omitting the condition
that it should only apply to Soviet displays, leading to
incorrect responses with other types of attitude displays.

Algorithm 1 Correct Production Rule for Interpreting
(Soviet) Attitude Display to Stabilize an Airplane

if the goal is stabilize an airplane and attitude display
rotates counter-clockwise and it is a Soviet display
then

rotate the airplane right
end if

For the first 20 years of his flying career, the com-
mander received training that was “in theory compre-
hensive,” exclusively at a flying school in the former
Soviet Union [29, p.18]. However, upon transitioning
to aircraft equipped with Western systems, no special
differential training was provided to highlight the differ-
ences between Eastern and Western systems, nor did the
commander undergo any unusual attitude training [29,
p.19]. Therefore, the commander “had no opportunity to
be trained in any other pattern of behavior” [29, p.96],
meaning no opportunities to ever detect and correct the
acquired deceptive overgeneralization. As the comman-
der resorted to the overgeneralization in the scenario as
illustrated in Figure 4, the commander kept rotating the
airplane right (further) when the airplane was already
rolling right, eventually resulting in a loss of control.

The acquisition of shortcuts can be modeled using the



1 2 3 4

Unconscious Incompetence Conscious Incompetence Conscious Competence Unconscious Competence

Do not know what
they do not know

Recognize what they do not know
and need to learn

Act deliberately
with considerable competence

Act automatically
and instinctively

Figure 2: The Four Stages of Mastery. This model illustrates the progression from novice to expert, highlighting the
development of competence and the shifting levels of consciousness.
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Figure 3: A simplified depiction of a Soviet attitude display.
The display reflects a “third-person view”, where the horizon
stays fixed, and the airplane’s position is shown relative to the
horizon. A counter-clockwise rotation (of the airplane relative
to the horizon) indicates that the airplane is rolling left.

process called knowledge compilation in the ACT-R the-
ory, which serves to eliminate multiple production firings
and the need for retrieval from declarative memory [4,
p.169]. A primary compilation process, known as com-
position, is to takes sequences of productions that follow
each other in solving a particular problem and collapses
them into a single “macro-production” that has the effect
of the sequence [2, p.235]. For example, Algorithm 1
could be compiled as shown in Algorithm 2. These pro-
duction rules are intentionally represented in pseudo
code, mimicking the implementation style of cognitive
tutors developed with CTAT [24]. This representation
serves to highlight several benefits of composition: fewer
conditions and actions, fewer variables to track, and the
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Figure 4: A simplified depiction of a Western attitude display.
The display reflects a “first-person view”, where the airplane
stays fixed and the horizon rotates relative to the airplane.
A counter-clockwise rotation (of the horizon relative to the
airplane) indicates that the airplane is rolling right.

elimination of redundant subgoals. These optimizations
enhance the efficiency of themacro-production compared
to the original series of separate productions [5, p.35].

However, it is possible that even experts who havemas-
tered accurate basic production rules may develop inaccu-
rate “macro-productions” during the process of building
proficiency and automaticity if errors enter into the com-
pilation process. Although composition increases overall
efficiency by pruning redundant conditions and actions,
these composed macroproductions tend to grow larger,
particularly with an increase in the size of the condition
sides [2, p.239]. With an increasingly more complex and
composite condition side, it becomes more likely that
some conditions will be overlooked, potentially leading
to overgeneralization. While human compilation is grad-
ual (in contrast to computer compilation), which may
provide some protection against errors of omitting con-
ditional tests from entering compilation, this protection
is not infallible and can only reduce, but not eliminate,
the possibility of condition omission [5, p.46].

Knowledge compilation in ACT-R theory suggests that
new productions generated through knowledge compila-
tion do not replace, but rather coexist with old ones [2,
p.237]. A process known as conflict resolution then deter-
mines which productions to apply [2, p.132]. This raises



Algorithm 2 Knowledge Compilation for Interpreting
Attitude Display to Stabilize an Airplane

Rule P1:
Condition: goal == stabilizeAirplane AND rollDirec-
tion == unknown
Action: subgoal = identifyRollDirection
Rule P2:
Condition: subgoal == identifyRollDirection AND dis-
playRotation == counterClockwise AND displayType
== Soviet
Action: rollDirection = left
Rule P3:
Condition: goal == stabilizeAirplane AND rollDirec-
tion != unknown
Action: subgoal = recoverAttitude
Rule P4:
Condition: subgoal == recoverAttitude AND rollDirec-
tion == left
Action: rotateAirplane(right)
Composed Rule P1&P2&P3&P4:
Condition: goal == stabilizeAirplane AND displayRota-
tion == counterClockwise AND displayType == Soviet
Action: rotateAirplane(right)
Efficiency Gain:
2 subgoals, 4 conditions, 3 intermediate cognitive ac-
tions, and 2 variables get reduced by composition

the question of why the commander chose the overgen-
eralized shortcut over the basic alternative productions.
The ACT-R strengthening mechanism might provide an
explanation [2, p.250]. Production strength reflects the
frequency of successful past applications [2, p.133]. Over
the years, while flying Soviet aircraft, this shortcut—de-
spite being overgeneralized—consistently led to correct
actions within the context of Soviet attitude displays.
This increased production strength may have made this
shortcut the preferred choice during conflict resolution.

Another contributing factor to the commander’s selec-
tion of the overgeneralization could be the medication
effects, which potentially limited the commander’s cogni-
tive capacity [29, p.107]. The improved efficiency of the
composed shortcut may have prompted the commander
to favor the overgeneralized macro-production over a
sequence of basic productions, especially under stress
requiring immediate action, and possibly while multitask-
ing. Such demanding and stressful scenarios are common,
particularly in fields where individuals are considered
experts and carry critical responsibilities. Moreover, sit-
uations involving limited cognitive capacity can occur
to anyone. The ability to perform under conditions of
stress, sleep deprivation, or fatigue is crucial, as is the
capability to effectively manage simultaneous secondary
tasks [30]. This indicates that overgeneralized shortcuts

may be widespread, which highlights the importance of
understanding their mechanisms through research.

The commander’s extensive experience, amounting to
over 8,000 hours [29, p.15], categorizes him within Stage
4 of the mastery model illustrated in Figure 2, where in-
dividuals are capable of acting automatically and instinc-
tively. However, this incident starkly demonstrates that
such automatic actions performed by experts, when based
on deceptive overgeneralization, can lead to dire conse-
quences. A similar case, that exemplifies the dangers of
overgeneralization in aviation training, is the American
Airlines Flight 587 crash, where poorly-designed train-
ing led to deceptive overgeneralization, resulting in actions
deemed correct during training but were inappropriate for
actual conditions, ultimately leading to catastrophic out-
comes. Specifically, the American Airlines Advanced Air-
craft Maneuvering Program included an excessive bank
angle simulator exercise intended to prepare pilots for
extreme wake turbulence. This equipped trainees with
aggressive roll upset recovery techniques. Unfortunately,
the scenario used in training was overly extreme and
not representative of the actual aircraft type involved.
This inappropriate training “enabled” the first officer to
mistakenly apply these excessive techniques during a
moderate wake turbulence encounter, leading to the in-
flight separation of the vertical stabilizer and culminating
in a fatal plane nosedive [31]. It can be argued that had
the pilot not been trained to perform such aggressive ma-
neuvers, the disaster could have been entirely avoided.

In summary, acquiring a production rule that pairs cor-
rect actions with incorrect conditions is an undesirable
learning outcome, which at best might later be rectified
without severe repercussions, and at worst, could result
in catastrophic outcomes.

3.4. Summary
This section presents the problem identification and ex-
amination on the phenomenon of deceptive overgeneral-
ization through literature review and case studies, yield-
ing several key characteristics of deceptive overgeneral-
ization that underscore the need for further investigation:

1. Deceptive overgeneralization is prevalent across
various domains.

2. Deceptive overgeneralization can be “sticky”, dif-
ficult to detect and resistant to change.

3. In certain cases, deceptive overgeneralization can
be worse learning outcomes than if the skill had
not been learned at all.

4. Both novices and experts could be prone to de-
ceptive overgeneralization.



Table 2
Summary of Methodologies for Each Research Question

Research Question Methodology
RQ1: Formation Experiments followed by Think-Aloud Studies; RCTs.

RQ2: Detection and Diagnosis RCTs
RQ3: Remediation RCTs

RQ4: Retrospective Discovery EDM techniques using both synthetic and authentic datasets

4. Research Questions
My doctoral research aims to investigate the mechanisms
of deceptive overgeneralization using the context of ITS
and develop effective strategies for addressing deceptive
overgeneralization. The proposed research questions
are structured to methodically examine the formation,
detection, remediation, and retrospective discovery of
deceptive overgeneralization:

RQ1: Formation of Deceptive Overgeneralization.
What types of production rules are most susceptible to
deceptive overgeneralization? Under what conditions do
ITS risk promoting deceptive overgeneralization?

RQ2: Detection and Diagnosis of Deceptive Over-
generalization. What features can be integrated into
ITS to detect and diagnose deceptive overgeneralization?
RQ3: Remediation of Deceptive Overgeneraliza-

tion. What instructional strategies are effective at cor-
recting deceptive overgeneralization?
RQ4: Retrospective Discovery of Past Deceptive

Overgeneralization. Can Educational Data Mining
(EDM) techniques discover previously undetected decep-
tive overgeneralization from existing education datasets?

5. Methodology
This section has outlined the research methodologies
corresponding to each of the research questions guid-
ing my doctoral study. To rigorously investigate the
phenomenon of deceptive overgeneralization, a diverse
methodological approach will be employed. The methods
range from experiments, think-aloud studies, and EDM
techniques, as summarized in Table 2.
RQ1: Formation of Deceptive Overgeneraliza-

tions. The initial step in my research is to evaluate
the hypothesized design flaw, as illustrated in Figure 1.
This hypothesis suggests that when a series of practice
activities only evaluate whether learners have performed
the expected actions, such instructional designs may not
adequately determine whether learners have internalized
the correct rule or an overgeneralization.

My research strategy includes conducting experiments
with ITS that adhere to best practices in ITS design, such
as cognitive model development through Cognitive Task
Analysis (CTA) [32], tailored hints and feedback, and

task-loop adaptivity. However, these systems are not
specifically designed to prevent deceptive overgeneral-
ization. My experimental design draws inspiration from
studies on the Einstellung effect, which describes how
practice with a fixed method can bias individuals toward
applying this method even when better alternatives ex-
ist [33]. In my experiments, learners will practice using
ITS until they have achieved mastery as deemed by ITS.
Subsequently, these learners will face tasks where the
actions they have learned are no longer suitable. As my
research contends that ITS may have limitations when
it comes to accurately assessing true skill mastery, the
research plan will incorporate qualitative data collected
through think-aloud studies [34]. Specifically, “graduated
novices”—learners who have completed training and are
judged by the ITS to have mastered the content—will ver-
balize their understanding of the conditions during these
sessions, in order to identify instances of deceptive over-
generalization. Next, to ascertain under what conditions
ITS may inadvertently promote deceptive overgeneral-
ization and to identify which features of instructional
design are most susceptible to fostering these errors, my
research plan includes conducting randomized controlled
trials (RCTs) that compare different ITS interface designs
and problem sequencing.

RQ2: Detection and Diagnosis of Deceptive Over-
generalization. To investigate features that can be inte-
grated into ITS for effectively detecting and diagnosing
deceptive overgeneralization, RCTs will be conducted
to compare different ITS interface designs and problem
sequencing.

Traditionally, ITS interfaces are designed to guide
learners toward correct actions, potentially neglecting
interface elements which represent potential incorrect
actions that learners should avoid, as these elements do
not belong to the prescribed solution pathway. Con-
sequently, learners might attempt to perform incorrect
actions but find themselves unable to do so, making those
mistakes undetected, uncorrected, and unlogged. One
hypothesized effective design is to provide practice op-
portunities where “lack of action” is the correct response.
Although detecting non-actions poses more challenges
than evaluating actions, we may consider ITS design
that incorporates interface elements that learners should
avoid interacting with, in order to make “lack of action”
observable and test whether learners can appropriately



refrain from actions when the conditions do not warrant
them. This approach is similar to including distractor op-
tions in multiple-choice questions (MCQs), where learn-
ers must correctly identify and decide against choosing
such options. Of course, the expertise reversal effect [11]
suggests that such distractor interface elements should
only be introduced when learners have reached a certain
level of skill mastery, to ensure that cognitive workload
remains manageable.
RQ3: Remediation of Deceptive Overgeneraliza-

tion. Similar to RQ2, RCTs that compare different ITS
interface designs and problem sequencing will be con-
ducted. One instructional design hypothesized to be
effective involves providing side-by-side comparisons
between scenarios that do and do not warrant certain
actions. This approach requires learners to identify dif-
ferences in problem features, facilitating a deeper under-
standing of when specific actions are appropriate.

Incorporating both RQ2 and RQ3, the problem sequenc-
ing design pattern illustrated in Algorithm 3 is hypoth-
esized to aid both in initial induction and subsequent
refinement, and can detect, diagnose, and remedy decep-
tive overgeneralization. The checkSAI() function, as in
CTAT, represents the automated evaluation by ITS that
compare learner actions with reference ones [24].

Algorithm 3 Problem Sequencing Design Hypothesized
to Aid in Initial Induction and Subsequent Refinement

Target Knowledge Component (KC):
if 𝐴 AND 𝐵 then

<action>
end if
Potential Overgeneralization:
if 𝐴 then

<action>
end if
Problem Type 1: Designed for Induction
if 𝐴 AND 𝐵 then

checkSAI(<action>)
end if
Problem Type 2: Designed for Refinement
Problem Subtype 2.1: Unsuitable Context
if 𝐴 AND NOT 𝐵 then

checkSAI(NO <action>)
end if
Problem Subtype 2.2: Insufficient Information
if 𝐴 AND Missing Info about 𝐵 then

checkSAI("Not Enough Info")
end if

RQ4: Retrospective Discovery of Past Deceptive
Overgeneralization. In addition to designing and con-
ducting experiments specifically for investigating decep-
tive overgeneralization, my research could better con-

tribute to the TEL community if there is evidence that the
research findings can also generate actionable insights
using existing datasets. Therefore, the last research ques-
tion focuses on retrospective analysis to discover past
deceptive overgeneralizations, using learning datasets
already collected through standard procedures. My re-
search plans to employ learning curve analysis facilitated
by DataShop [35], which graphically represents changes
in learner performance, visualizing any improvement or
stagnation as learners engage in repeated practice oppor-
tunities [36]. ITS systems developed with CTAT, which
typically store learning logs in DataShop, which are ready
candidates for retrospective analysis.

To effectively visualize and demonstrate learning
curves that may indicate overgeneralization, I will start
with synthetic data. Synthetic data, artificially generated
by computer algorithms and not derived from real-world
events, mimics authentic datasets. The ethical gener-
ation and application of synthetic data is a widely ac-
cepted practice in learning sciences, particularly within
the realm of Educational Data Mining (EDM), as evi-
denced by its use in numerous EDM research studies
[37, 38, 39, 40, 41]. Synthetic data addresses the complex-
ities of authentic learner data, aiding in the validation of
models for skill mastery assessment, and can faithfully
reflect reality when properly modeled [41].

To examine how deceptive overgeneralization affects
learning trajectories, BKT was used to simulate per-
formance with problem sequencing illustrated in Algo-
rithm 3 with the following parameters: 𝑝𝑖𝑛𝑖𝑡 𝑖𝑎𝑙 = 0.5,
𝑝𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑖𝑜𝑛 = 0.2, 𝑝𝑠𝑙𝑖𝑝 = 0.1, and 𝑝𝑔𝑢𝑒𝑠𝑠 = 0.2. The learning
process is modeled with a single KC with three possible
states: Unlearned, Overgeneralized, and Learned. This
approach adheres to the BKT framework by treating the
learning progression as a transition between states. As
learners in the Unlearned state receive repeated practice
opportunities, they may either remain in the Unlearned
state, transition to an Overgeneralized state, or move
directly to the Learned state. Learners in the Overgeneral-
ized state can only possibly progress to the Learned state
through problems designed for refinement. Another core
assumption made in the simulation is the probability of
correct responses based on knowledge state and problem
phase, as illustrated in Table 3. Problems designed for in-
duction can be correctly answered (unless a slip occurs)
using either the correct generalization or an overgen-
eralization. For the problems designed for refinement,
learners who either remain in the Unlearned state or who
have adopted the overgeneralized rule are expected to an-
swer incorrectly most of the time. However, rather than
guessing like those in the Unlearned state, learners in
the Overgeneralized state will answer incorrectly unless
a slip occurs, which reflects how learners with decep-
tive overgeneralization will “confidently” make mistakes
when the conditions do not actually warrant the actions.



Table 3
Probability of Correct Responses Based on Knowledge State and Problem Phase

State Induction Phase (Same as Original BKT) Refinement Phase (Reverse Slip Model)
Unlearned P_GUESS P_GUESS

Overgeneralized 1 - P_SLIP P_SLIP
Learned 1 - P_SLIP 1 - P_SLIP

Figure 5: Simulated Performance Trends

Figure 5 visualizes the simulated performance trends of
learners with the above assumptions. First, during the
induction phase, the performance is not distinguishable
between the “Ever Overgeneralized” group and the “Di-
rectly Learned” group. Second, the “Ever Overgeneral-
ized” group (red line), with learners who have ever ac-
quired theOvergeneralized state, notably exhibits a signif-
icant and sudden performance drop when transitioning
to the refinement phase, which corresponds to the prob-
lems designed to detect overgeneralization. This drop
starkly contrasts with the stable performance growth of
the “Directly Learned” group (blue line) with learners
who directly transited from Unlearned to Learned state.
The performance recovery of the “Ever Overgeneralized”
group after the drop demonstrates the remediation of
overgeneralization.

My future research plan is to transition from syn-
thetic to authentic datasets by collaborating with other
researchers to perform retrospective analysis on existing
datasets.

6. Contribution to TEL
In my doctoral research, I plan to extend the ACT-R cog-
nitive architecture to tackle deceptive overgeneralization.
My research seeks to refine the adaptivity of ITS and
enable more accurate assessments of true skill mastery.
This work contributes to Technology-Enhanced Learning
(TEL) by enhancing the precision of automated assess-

ments and supporting more reliable adaptive learning
experiences.
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