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Abstract

The adoption of Large Language Models (LLMs) in education has prompted questions about their
impact on programming projects. This research will explore how the use of LLMs affects learning and
socio-affective outcomes on individual and group level in first software engineering projects. Existing
literature explores both potential benefits and pitfalls of LLMs in educational contexts. LLMs enhancing
readability, explaining others’ code and providing quick answers to less experienced students could
improve group work. However, there are concerns such as students’ judgment of competency, effort
and contributions created with LLM support affecting group collaboration dynamics. To address the
gap in empirical research on LLMs' impact on perceptions of teammate competency, connectedness,
self-efficacy, learning gain, and professional identification we will analyze not only self-reported
measures but also work with process data from collaborative coding platforms to extract meaningful
measures of collaboration behavior and issues in group code prominent when LLMs are being used.
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1. Introduction

After the vast adoption of Large Language Models
(LLMs) universities have raised questions about the
adequacy of curriculum and assessment in response to
student use of computer-generated output during their
studies (Kasneci et al, 2023). These questions are
particularly  pertinent for programming
professionals, since LLMs are effective in generating
code chunks (Kazemitabaar et al., 2023). The use of LLM-
generated code can not only speed up programming
tasks but substantially offload thinking processes to the
machine. In light of potential automation of coding
tasks, it has become unclear as to what skills should be
taught to future programming professionals to enable

future

effective integration of LLMs into the human-led
process.

The focus on optimization of productivity enabled
by machines has thus far been central to research on
how to integrate LLMs into human cognitive practices
(Wang et al., 2019). Yet such a focus is only partially
relevant in educational settings. Educational outcomes
target students' cognitive development and higher-order
thinking in relation to the domain they study. Tools
supporting cognitive processes can benefit the learner in
offloading some parts of such a process and allowing the
learner to focus on higher- order thinking (Salomon,
2003). At the same time, improper use of the tool can
lead to a reduced, shallow understanding (ibid.).
Therefore, it is important to understand the relationship
between student use of cognitive tools such as LLMs and
learning outcomes related to their domain knowledge to

ensure that integration does not deprive students from
developing much needed higher order thinking.

Another reason why a focus on solely optimizing
student use of LLMs is insufficient in educational
settings is that technologies continue to evolve. The
models change to support humans better, and this
process cannot be expected to stabilize on a certain
pattern (Joksimovic et al., 2023).

Students will need to continue working together,
solving problems and communicating effectively,
regardless of the specific cognitive tool they may use.
Hence, it is also important to understand the
relationship between the use of cognitive tools and
educational outcomes that reach beyond domain
knowledge. Frequent use of tools like LLMs may shape
students in a way that affects them profoundly, so
stakeholders need a clearer understanding of how
broader educational outcomes are affected by those tools
so that instructional practices can be adapted to preserve
the focus on developing skills essential for humans.

To address this pressing need, my project will
investigate how LLMs affect educational outcomes in a
collaborative setting where future programming
professionals practice a broad set of skills. Collaborative
work is commonly part of software engineering projects
in computer science curricula. Collaborative work is an
essential part of professional software engineering and
interpersonal skills are among the most significant for
the effectiveness of software engineers (Boyatzis et al.,
2017). Groups have been shown to innovate faster,
identify mistakes more quickly, and find better solutions
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to problems; all while reporting a higher job satisfaction
(Duhigg, 2019).

Moreover, project-based assignments where
students practice collaborative work are a catalyst for
bonding and social learning, facilitating social capital
among future professionals and affecting professional
identity. Collaboration experiences can also create
precedents for exclusion and negatively affect belonging
and diversity in STEM (Miller-Young et al., 2023). This
richness of educational outcomes makes collaborative
programming assignments a suitable context to examine
the effect of cognitive tools, such as LLMs.

Current literature is limited in explaining the effects
that LLMs can have on broader educational outcomes in
programming group work. Existing research suggests
that such effects could be both positive and negative.
LLMs have the potential to support participation of
skills
production and help to understand others’ code,

students with less programming in code
important for positive collaborative work. However, it
could also amplify issues of unequal effort distribution
through the option to auto-generate code, which is
known to create negative experiences (Nguyen et al.,
2023). LLMs shared

understanding by improving code readability and

can, for instance, facilitate
documentation as well as reduce the need for any group
members to spend large parts of the time on lower-level
tasks such as generating test cases, which might change
previously common role distributions. With LLMs
affecting most parts of the programming projects, an
influence on the social aspects of group work is likely
and deserves attention.

This research gap calls for empirical examination of
the effects of LLMs in programming assignments on
domain- specific knowledge and the effect on group
processes, as well as longer-term imprint on students,
such as the formation of professional identity. My thesis
will focus on addressing this gap. I will employ mixed
methods research design. First, I will analyze the effect
of LLM integration into programing group projects, in
relation to student perceptions of learning, their socio-
affective attitudes towards teammates and their
evolving identification with the domain. Second, I will
investigate the relationship between these perceptions
and process data from code progression, as student
perceptions are largely mediated by the code-based
communication on GitHub. The thesis is in its planning
stage.

2. Related Work

When students use LLM-based tools for their tasks
in a course, this affects how and what they learn. To
advance the goal of understanding the effect of LLMs in
collaborative programming assignments, this section
explains how LLM use in collaborative programming

tasks may affect educational outcomes. This includes
individual outcomes, such as learning, self- efficacy, and
professional identity, as well as group-related socio-
affective outcomes, such as trust in teammates
competency and connectedness. I also explain why the
process of how learners collaborate when they
individually use LLMs must be considered.

2.1. Effect of LLMs on Learning
Individuals

LLMs offer a diverse range of applications for
enhancement of learning experiences, personalized to
the student (Kasneci et al., 2023). In introductory
programming assignments, LLM-based coding tools
currently already perform at the level that outscores the
average student (Finnie- Ansley et al., 2022). Most
students prefer using a LLM, especially to get a starting
point, even when they often face difficulties in
understanding, editing, and debugging generated code
(Vaithilingam et al., 2022). Studies have also shown that
programmers tend to defer tasks
comprehension to the LLM, even though this can steer

related to

them in the wrong direction (Nam et al., 2024). Some
scholars also suggests that students use LLMs for
requesting explanations of code and general questions
more often than for code generation (Kazemitabaar et
al., 2024).

To circumvent challenges associated with LLM
use, chatbots have been developed to offer hints to
mimic human tutoring, instead of giving students full
solutions (Bassner et al., 2024).

Literature so far has shown that integrating LLMs
into practices around learning and studying can affect
individual learning gains. A major concern here is that
when students regularly offload to technology, they may
not actually learn how to perform the task on their own.
(Darvishi et al. 2024) found that when using LLM,
students seem to be finishing tasks well, but once the
LLM was removed, they did not replicate the new
strategies used by the LLM that were helpful with the
tasks. Another study showed that learning gains from
using an LLM in learning programming languages vary
with context and task complexity (Aviv et al., 2024).
Researchers observed that LLMs did not reduce
metacognitive difficulties for students with limited
programming abilities and even introduced new ones
(Prather et al., 2024).

In addition to learning gains, integrating LLMs
into learning practices can impact self-perceptions, such
as self- efficacy and professional identity. Studies on
LLMs’ effects on students’ self-efficacy found that LLM-
supported review of course topics improved students’
self- efficacy and motivation (Lee et al., 2022). This effect
on self-efficacy appeared because LLM helped students
become active during learning, as it provided a safe way



to explore questions (Y.-F. Lee et al., 2022). A study
where interactions with an LLM supported student
thinking deeply about a topic showed improved self-
efficacy and learning achievements (Chang et al., 2022).
(Wang et al, 2023) found that AI based on good
technology combined with technological skills in a
higher education program improve students’ self-
efficacy, mediating performance. Perception of self-
efficacy can also benefit from having a starting point in
coding (Vaithilingam et al., 2022).

Self-efficacy further plays an important role in
securing diversity, equity, and inclusion in STEM.
Minorities and women feel less included in the
engineering groups in general, but female students’ who
plan to persist in this male-dominated domain also show
high self-efficacy (Marra et al., 2009). It therefore also
may be important to ensure that integrating LLMs into
collaborative work, where many of the exclusionary
practices occur (e.g. William M. Hall, Toni Schmader,
Elizabeth Croft, 2015), maintains positive impact on
long- term professional orientation, mediated by group
experiences.

2.2. Effect of LLMs on Learning Groups

When it comes to collaborative learning settings
as in group programming assignments, LLM use reaches
beyond the effects on the individual, such as learning,
self-perceptions, and future identification. Both socio-
cultural (Vygotsky, 1978) and socio-cognitive theories of
learning (Dillenbourg, 1990) highlight the influence of
the environment on learning, often enacted through
peer interactions. LLM use by individual learners can
potentially influence peer interactions, mediated by
technology, and further impact group- related socio-
affective outcomes, such as trust in group members and
connectedness.

Research on the use of LLMs in collaborative
learning has been limited to the development of tools
that target collaborative processes at the group-level
For example, Kasneci et al. (2023) speculate that these
tools can facilitate group discussions by providing
feedback and personalized guidance to students to
group participation or give
recommendations to support collaborative writing.

improve editing
LLMs could help avoid common faults in the group
processes by integrating information or promoting
knowledge convergence and decision-making - all
group-level  processes  essential for effective
collaboration (Westby & Riedl, 2023; Jarveld & Hadwin,
2013; Khakurel & Blomqvist, 2022). It is noteworthy that
many of these existing propositions are limited to the
LLM-based tools specifically designed to support group
work. However, group members can also choose to use
LLMs for individual needs, rather than to support group

processes. The effects of such individual use within a
collaborative task have not yet been explored.

Previous research suggests that AI can affect
collaboration in unintended ways (Wang et al., 2022),
and this can also be expected when students integrate
LLMs to support individual programming needs within
a collaborative task. For instance, group-related socio-
affective outcomes, such as trust in teammates’
competency and feeling of connectedness with the
group, may be affected. Students’ perceptions of
teammates’ contributions may change when individuals
submit auto-generated code without transparency of
how it was created. Engagement in collaborative work is
strongly connected to trust in team members, and
motivation to perform collaborative tasks may diminish
when this is compromised (Dirks, 1999). Studies in
software engineering emphasize the role of perceived
transparency for trust (P. T. Y. Lee et al., 2024) as well as
the role of perceived task-related competency of another
team member (Mayer et al., 1995). Presumably, when
team members use LLMs to generate code that in its
form resembles more advanced programmers’ code,
their competency is much harder to judge, especially in
the earlier stages of a project and by novices. As team
members progress in collaborative tasks, building on
others’ code is necessary and requires judgment of the
quality of that code. Studies about the relationship of
LLM to the judgment of competency show that LLM use
can lead novice programmers to misaligned confidence
regarding their skills and understanding (Prather et al.,
2024). Research has not yet addressed if the difficulty
associated with the judgement of competency also
applies to group-related judgement.

The difficulty in judging contributions might also
affect the connectedness of the group. Previously, social
connectedness, defined via measurements of frequency
of social contact, task assistance and compassion, as well
as sense of belonging, has been shown to be related to
well-being (Frieling, M., Peach, E. K., & Cording, J.,
2018). Connectedness can be defined as an affective
outcome of group processes developed directly from
interactions, such as mutual support, but also
impressions of others, from their contributions against
the context of own work on the common project.

2.3. The Role of Process in Collaborative
Programming

I have argued that LLMs used by individuals in
collaborative programming may affect learning and
socio-affective outcomes. A sole focus on outcomes in a
collaborative  learning scenario is insufficient.
Dillenbourg et al. (1996) argued that process variables
must also be considered when studying collaboration.
This is because interaction effects between the many

process-related mediators of collaboration outcomes



would prevent reliable causal inference. Given the
dearth of research on process variables related to LLM-
mediated contributions in a collaborative process, a
relationship between the indicators of the process data
with learners’ perceptions of the members and the group
need to be established.

For this, individual and group-level team code
submissions need to be transformed to appropriate
interaction process indicators. Log data
programming projects is different from conversation
data often applied in collaboration research, though
conceptual similarities exist. For example, students who
work on programming projects regularly merge their

from

modified versions of the software into a common
version. How the students amend the versions and who
does this gives insight into success of previous
coordination as well as (perceived) value of the
individual members’ contributions and who maintains
overview of the group’s code. In some groups, major
conflicts result from not being able to amend different
versions to a working product (Tushev et al., 2018). In
sum, group-level patterns of logs can make an
impression on student perceptions of others and the
group itself.

Moreover, depending on the type of contributions,
individual roles in relation to the group may also be
visible in GitHub traces. For example, previous work has
talked about the “cowboy
programming”, where a group member took over the
management of the relevant parts of the software

phenomenon  of

development without including others (Tushev et al.,
2018). Similarly, “free riders” and “social loafers”
describe common patterns of individual roles students
take on, bringing out negative group work dynamics
(Nguyen et al., 2023).

Existing research on process indicators in
programming creates a foundation for analyzing both
individual and group processes. According to code
collaboration project research, best- performing teams
show equal contributions, not necessarily the highest
total number of commits, but parallel main work times
and work on separate branches of the code (Tushev et
al., 2018). Team roles can be visible as one person
contributing documentation while another contributes
the code (Tushev et al., 2018). (Gitinabard et al., 2020)
look at teamwork features on GitHub projects and
classify the student teams into three groups,
collaborative, cooperative, or solo-submit,
differentiating each contribution into types such as bug
fix, documentation, test case, or implementation. They
look at how many lines of code the members change,
across how many different files, how much they delete,
and informativeness of commit messages written by a
contributor. Another line of work goes deeper into
contribution quality from code analysis and considers

which contributions fix or keep problems in the code as
indicated by build logs (Chen et al., 2022). These process
measures have been analyzed in relation to student
performance, but not in relation to student perceptions
of each other and the group, as well as with LLM-
ingestions within the contributions.

3. Research Questions

To investigate the effects of individual use of LLM-based
tools on group-based learning in programming projects
in higher education, this project poses the following
research questions:

1. How does the use of LLM in collaborative
programming affect individual outcomes, such as
learning gain, self-efficacy, and professional
identification, and group-related socio- affective
attitudes, such as perceptions of teammate
competency and connectedness?

2. What is the relationship between process
indicators describing individual and group- level
team code with the perceptions of competency
among team members and group-related socio-
affective attitudes?

4. Research Design

To address these research questions, a series of authentic
studies in a university scenario are planned. I plan to
collect the data from group-based programming projects
from the courses targeting novice programmers. This
choice is due to the focus on the first experiences with
programming group projects within higher education.
The courses are expected to give us a participant number
of between 600 and 1800 students in 120 to 450 groups.

We will collect data via interviews, self- reports
with established tools three times throughout the course
and log data of the evolving code and all GitHub
activities. The interviews are employed to potentially
show causalities between our researched variables.
Including a self- and team assessment part in group
projects is a common strategy for their grading, and we
will extend the wusual questions with additional
questions. A final presentation of the artifacts is part of
the project’s examination and questions about the
team’s code show each students’ understanding of the
software.

The first study will address the question of how
the use of LLM in collaborative programming affects
individual outcomes, such as learning gain, self-efficacy,
and professional identification, and group-related socio-
affective attitudes, such as perceptions of teammate



competency and connectedness, also considering
perceived equality of contributions. We will use self-
reports for tools and
interviews to capture these.

In the second study, we will analyze process data

established measurement

to evaluate relations to perceived effort distribution,
accuracy of judgment in team members’ competency,
trust, differences in patterns in code contributions,
mutual support, prevalent issues in engineering the
software, perceived gain of skill, perceived appreciation
from others and identification with the field of study and
future professions.

Since I am at an early stage of this project, I am not
set on the methods of analysis yet. We will tentatively
analyze the first data and develop process measures
appropriate to the theory of group dynamics in
programming projects and relate them to self-report
measures. The process measures will be sourced from
log data of AI interactions, submitted milestone
planning documents for coordination traces and features
of the frequently logged contributions (using analytics
of and building on previous code contribution
evaluation metrics). The intra-group interactions will
include information of who built on top of or modified
whose code, who fixed code cohesion or formatted the

others code, who contributed comments or
documentation, and where were errors introduced and
resolved.
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