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Abstract 
The rapid proliferation of misinformation and fake news across online platforms has become a significant 
challenge, necessitating the development of advanced detection methods. This study explores the 
application of BERT-based models, including RoBERTa, DistilBERT, and XLM-RoBERTa, for the 
identification of fake news. Using diverse datasets (WELLFake, and PolitiFact) our approach involves fine-
tuning these pre-trained models with minimal text preprocessing to preserve linguistic nuances. The models 
were evaluated based on their accuracy, F1-score, and computational efficiency, with experiments 
conducted on Google Colab using NVIDIA GPUs for acceleration. RoBERTa demonstrated the highest 
accuracy on the WELLFake dataset, while DistilBERT achieved the best performance on the more concise 
PolitiFact dataset, highlighting the importance of matching models to dataset characteristics. XLM-
RoBERTa, with its multilingual capabilities, showed strong generalization on diverse data but faced 
challenges with domain-specific tasks. The results underscore that model selection should be tailored to the 
specifics of the dataset and available computational resources, offering valuable insights for deploying 
effective fake news detection systems. 
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1. Introduction 

The proliferation of fake content in electronic media has become a critical challenge in our 
increasingly digitized world. From misinformation and disinformation to sophisticated deepfakes, 
the spread of false or misleading content poses significant threats to social cohesion, democratic 
processes, and individual decision-making. As the volume and complexity of digital content continue 
to grow exponentially, traditional methods of fact-checking and content verification struggle to keep 
pace, necessitating the development of more advanced, automated approaches to identifying fake 
content [1, 2]. 

In recent years, the field of Natural Language Processing (NLP) has witnessed remarkable 
advancements, particularly in the domain of Large Language Models (LLMs). These sophisticated 
Artificial Intelligence (AI) systems, trained on vast corpora of text data, have demonstrated an 
unprecedented ability to understand and generate human-like text, making them promising 
candidates for tackling the fake content detection challenge. Models like CNN (Convolutional Neural 
Network), BERT (Bidirectional Encoder Representations from Transformers), GPT (Generative Pre-
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trained Transformer), and their variants have set new benchmarks in various NLP tasks, including 
text classification, sentiment analysis, and question answering [3-6]. 

The potential of LLMs in identifying fake content lies in their capacity to capture subtle linguistic 
patterns, contextual nuances, and semantic relationships that may be indicative of fabricated or 
misleading information. By leveraging pre-trained models and fine-tuning them on specific datasets 
related to fake content, researchers and developers can create powerful tools for automated content 
authenticity verification [7]. This article explores the application of large language models, with a 
focus on BERT and its variations, in the detection of fake content across various electronic media 
platforms. We will delve into the process of adapting these pre-trained models to the specific task of 
fake content identification, discussing the methodology of retraining several last layers on custom 
datasets chosen for this purpose. 

The approach of fine-tuning pre-trained models offers several advantages in the context of fake 
content detection. Firstly, it allows us to benefit from the rich language understanding already 
encoded in these models, which have been trained on diverse and extensive datasets. Secondly, it 
provides a more efficient and resource-effective method compared to training models from scratch, 
which is especially valuable when working with limited labelled data specific to fake content [8]. 

However, the application of LLMs in this domain is not without challenges. Issues such as model 
bias, the need for continual updating to keep pace with evolving disinformation tactics, and the 
ethical implications of automated content analysis must be carefully considered [9]. Moreover, the 
effectiveness of these models can vary depending on the type and source of fake content, 
necessitating a nuanced approach to model selection and fine-tuning. 

Throughout this article, we will examine the architecture of the chosen pre-trained models, detail 
the process of dataset preparation and model fine-tuning, and present a comprehensive analysis of 
the results obtained. We will also discuss real-world applications, limitations of the current approach, 
and potential future developments in this rapidly evolving field. 

By exploring the use of LLM and the detection of fake content, this study contributes to broader 
efforts to combat disinformation in the digital age. In an increasingly complex information 
environment, developing advanced AI-based tools for content verification is not only a technical 
challenge, but also an important measure to ensure the reliability and credibility of information. 

It should be noted that 
illustration of the power and danger of fake content in modern warfare and international relations. 
The onset of the full-scale phase of the hostilities has been marked by unprecedented levels of 
information warfare, with a flow of fakes and disinformation flooding social media platforms, news 
feeds, and messaging apps.  

The dissemination of fake content in this context ranges from fabricated stories about Ukrainian 
aggression to doctored videos purporting to show military actions that never occurred. This barrage 
of false information has not only complicated the internati
situation, but has also affected public opinion, potentially influencing policy decisions and 
humanitarian aid efforts.  

The situation highlights the critical need for reliable, rapid detection systems for fake content, as 
the consequences of unverified disinformation in such high-stakes geopolitical scenarios can be 
severe and far-reaching. 

The objective of our study is to develop a set of fake news identification models based on pre-
trained BERT models by fine-tuning the last few layers, and compare their performance. 

2. Literature review 

With advancements in Machine Learning (ML), Deep Learning (DL), and LLMs, researchers have 
developed various methods to identify false information accurately. Recent studies in this domain 
have explored different approaches, ranging from traditional machine learning models to advanced 
neural networks, hybrid models, and even explainable AI. Recently have been published several 
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overview of ML and DL approaches in the field of identification of fake content in the digital media 
[10-13].  

Harris et al. [10] explore the emergence of information pollution and the infodemic resulting from 
the widespread use of digital technologies on online social networks, blogs, and websites. They 
highlight the negative consequences of the malicious broadcast of misleading content, including 
social unrest, economic impacts, and threats to national security and user safety. The authors 
critically evaluate existing fake news detection (FND) methods, emphasizing the lack of 
multidisciplinary approaches and theoretical considerations in current research. They argue for a 
more comprehensive analysis of FND through various fields such as linguistics, healthcare, and 
communication, while also examining the potential of pre-trained transformer models for 
multilingual, multidomain, and multimodal FND. The authors suggest future research directions that 
focus on large, diverse datasets and the integration of human cognitive abilities with AI to combat 
fake news and AI-generated content. 

Hu et al. [11] provide a comprehensive overview of fake news detection by analyzing its diffusion 
process through three intrinsic characteristics: intentional creation, heteromorphic transmission, 
and controversial reception. The authors classify existing detection approaches based on these 
characteristics and discuss the technological trends that are shaping this research field. They 
highlight the importance of designing effective and explainable detection mechanisms and offer 
insights into future research directions, helping to advance the understanding and development of 
fake news detection strategies. 

Alghamdi et al. [12] present a comparative study of different approaches to fake news detection. 
The authors evaluate the performance of traditional ML methods such as Support Vector Machines 
(SVMs) and Random Forests (RFs) alongside more advanced DL models like CNN and Long Short-
Term Memory (LSTM) network. Their research highlights the superiority of deep learning models, 
particularly LSTM, in capturing the sequential nature of text data and achieving higher accuracy in 
fake news detection. The study also emphasizes the importance of feature selection and engineering 
in improving model performance, suggesting that a combination of content-based and metadata 
features can lead to more robust detection systems. 

Hamed et al. [13] offer a comprehensive review of fake news detection approaches, focusing on 
the challenges associated with datasets, feature representation, and data fusion. The authors 
critically analyze existing studies, highlighting the limitations of current datasets, which often lack 
diversity and real-world applicability. They discuss various feature representation techniques, from 
traditional bag-of-words models to more sophisticated word embeddings and contextual 
representations. The paper also explores the potential of multi-modal approaches that combine 
textual, visual, and social context information for more accurate fake news detection. The authors 
conclude by identifying key research gaps and suggesting future directions, including the need for 
more robust and diverse datasets, improved feature extraction methods, and the integration of 
explainable AI techniques to enhance the interpretability of FND models. 

For example, in the article [14], the explainability of decision-making in the field of text analysis 
is ensured by the use of semiotic AI tools, namely fuzzy logic. In the article [15], explainable AI was 
implemented based on an artificial neural network, which provided the rationale for the formation 
of logical inference. Additional advantages in the interpretability of artificial intelligence can be 
provided by combining both such approaches, based on semiotic and biological principles of 
constructing AI systems and implemented in neuro-fuzzy hybrid systems, as shown in [16, 17]. 

It is also worth noting the studies that have focused on comparing traditional ML and DL 
approaches for fake news detection. Thus, authors of the review [18] compare the performance of 
such ML algorithms as Naïve Bayes, Logistic Regression, SVM, and RNNs. They noted that SVM and 
Naïve Bayes outperform the other models in terms of classification efficiency. This approach 
addresses the growing issue of misinformation on social media, where users often perceive content 
as reliable without verification.  
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In contrast, DL techniques have gained attention for their ability to automatically extract features 
from text data. Nasir et al. [19] employed CNNs and RNNs for fake news detection, showing that 
CNNs excel at capturing local patterns in text, while RNNs, particularly LSTM models, are better at 
understanding sequential information. The combination of these two models led to superior results.  

Tipper et al. [20] provide a comprehensive review of video deepfake detection techniques using 
hybrid CNN-LSTM models. The paper systematically investigates feature extraction approaches and 
widely used datasets, while evaluating model performance across various datasets and identifying 
factors influencing detection accuracy. The authors here also compare CNN-LSTM models with non-
LSTM approaches, discuss implementation challenges, and propose future research directions for 
improving deepfake detection. 

Paka et al. [21] introduced Cross-SEAN, a semi-supervised neural attention model for detecting 
COVID-19 fake news on Twitter, leveraging both labelled and unlabelled data. Their approach, which 
incorporates external knowledge from trusted sources, achieved significant performance 
improvement over seven state-of-the-art models. Despite some limitations, such as potential biases 
in external knowledge, the model shows promising results, particularly with its real-time application 
in the Chrome-SEAN extension, designed to label fake tweets and collect user feedback for 
continuous improvement. 

Recent studies show that the use of LLMs such as GPT and BERT has led to more refined 
approaches in fake news detection [22-25]. These models enhance the ability to understand the 
context, semantics, and intricate relationships within news articles, which are essential for 
distinguishing between truthful and deceptive content. By leveraging deep learning techniques, 
LLMs have significantly improved the accuracy and effectiveness of fake news detection systems, 
making them more robust in combating misinformation in the digital landscape. 

For instance, Radhi et al. [22] examine the application of DL methods, including transformer-
based models like BERT, to detect fake news. Their research highlights the growing impact of 
misleading content on social media platforms such as Facebook, Twitter, Instagram, and WhatsApp, 
and emphasizes the urgency of addressing the problem of fake news, particularly in the context of 
psychological warfare and revenue-driven clickbait.  

Kaliyar et al. [23] propose FakeBERT, a BERT-based model that combines BERT with a CNN to 
handle ambiguity in news content. This model achieves a remarkable accuracy of 98.90%, 
outperforming existing models by using bidirectional training to capture semantic and long-distance 
dependencies, thus improving classification performance.  

Similarly, Alnabhan and Branco [24] present BERTGuard, a multi-domain fake news detection 
system that employs a two-tiered approach for domain classification and domain-specific news 
validity verification. This system demonstrates its effectiveness through rigorous testing on various 
datasets and incorporates strategies to mitigate class imbalance, enhancing its reliability and 
generalizability.  

Dhiman et al. [25] propose a novel framework called GBERT, combining GPT and BERT to tackle 
the problem of fake news detection. The model's high performance, achieving 95.30% accuracy and 
a 96.23% F1 score, underscores its potential to address the challenges posed by fake news in the digital 
era. 

Overall, these diverse approaches underline the evolving nature of research in fake news 
detection. While traditional ML models still provide a foundation, the rapid advancements in deep 
learning, LLMs, and hybrid methods have expanded the capabilities to combat disinformation. The 
integration of explainable AI and adversarial training techniques ensures that these models remain 
both transparent and robust, helping to build trust in automated fake news detection systems. 
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3. Methodology 

3.1. BERT-like models 

In our study, the methodology focuses on leveraging a pre-trained BERT (introduced by Devlin et al. 
in 2018 [6]) and its modifications for fake news detection. BERT is a powerful transformer-based 
model known for its deep bidirectional nature, which allows it to understand the context of words 
in a text by looking both to the left and right of a given token.  

Due to its ability to encode rich semantic information from large text corpora, BERT has been a 
popular choice for various NLP tasks, including text classification, sentiment analysis, and fake news 
detection. Here, the goal is to fine-tune BERT for classifying news articles into "real" or "fake" 
categories, aiming for accurate detection of misleading information. 

At its core, BERT utilises a multi-layer bidirectional Transformer encoder. This bidirectional 
approach enables the model to consider context from both directions simultaneously, which is in 
stark contrast to traditional left-to-right language models. The standard BERT model comprises 
(BERT base) 12 transformer layers (encoders), 12 attention heads, and about 110 million parameters. 
The larger variant (BERT large) has 24 layers, 16 attention heads, and 340 million parameters (Fig. 1). 

 

 

Figure 1: Simplified architecture of the BERT model (designed by the authors based on [6]) 

 
BERT consists of the following main components: 

1. Tokenizer. BERT uses a WordPiece tokenizer that splits text into tokens, including subwords, 
to effectively handle rare words. This helps the model manage vocabulary more efficiently and 
capture the meaning of morphologically complex words. 

2. Embeddings. BERT embeddings include: 
• Token embeddings: vectors that represent individual tokens. 
• Positional embeddings: encodes the position of each token in the sequence to capture word 
order. 
• Segment embeddings: differentiate between segments (sentences) within the input 
sequence, enabling the model to distinguish sentences in tasks like question answering. 

3. Encoders. BERT consists of multiple layers of encoders, each containing: 
• Multi-head Self-Attention: this mechanism allows the model to focus on different parts of 
the input sequence, capturing dependencies between all tokens regardless of their distance 
from each other. 
• Feed-Forward Networks (FFN): each attention layer is followed by an FFN that applies non-
linear transformations, enhancing the model's capacity to learn complex patterns. 
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• Residual connections and layer normalization: these are used to stabilize training and 
improve gradient flow through the network. 

The input representation in BERT is a combination of three embeddings: token embeddings, 
segment embeddings, and position embeddings. Token embeddings represent individual words or 
subwords, segment embeddings differentiate between pairs of sentences, and position embeddings 
provide information about the token's position in the sequence. These embeddings are summed to 
produce the final input representation. 

BERT's transformer layers consist of multi-head self-attention mechanisms and feed-forward 
neural networks. The self-attention mechanism allows the model to assign varying importance to 
different words in the input when processing each word, capturing complex relationships within the 
text. The feed-forward networks then refine this processed information, applying non-linear 
transformations that enhance the model's capacity to recognize and learn complex patterns. 

BERT's pre-training process involves two novel unsupervised tasks. The first is Masked Language 
Modeling (MLM), where the model attempts to predict randomly masked tokens in the input 
sequence (Fig. 2).  

 

 

Figure 2: BERT masked language model predictions (designed by the authors based on [6]) 

This task forces the model to consider context from both directions, enhancing its bidirectional 
understanding. The second task is Next Sentence Prediction (NSP), where the model learns to predict 
whether two sentences naturally follow each other, fostering a grasp of the relationships between 
sentences. 

One of BERT's key strengths is its ability to generate contextualised word embeddings. Unlike 
static word embeddings, BERT's representations for a given word can vary depending on the 
surrounding context, capturing nuanced word usage and polysemy effectively. 

The fine-tuning process allows BERT to be adapted to a wide range of downstream tasks. By 
adding task-specific layers to the pre-trained BERT model and fine-tuning on task-specific data, 
researchers can achieve state-of-the-art results on various NLP tasks, including question answering, 
sentiment analysis, text classification, summarisation, and named entity recognition. 

BERT's impact extends beyond its architecture. It has sparked a new paradigm in NLP, 
demonstrating the power of unsupervised pre-training on large corpora followed by supervised fine-
tuning. This approach has led to the development of numerous BERT variants and inspired new 
research directions in contextual language modeling. 

Since its release, various modifications and improvements have been introduced to address 
specific limitations and further enhance the model's performance on a range of NLP tasks. Some of 
the notable modifications include RoBERTa, DistilBERT, and XLM-RoBERTa, each designed with 
unique features to optimize BERT's efficiency, scalability, and multilingual capabilities. 

RoBERTa (a Robustly Optimized BERT pretraining Approach by Liu et al. [26]) was developed to 
address some of the original training challenges in BERT. RoBERTa builds upon the BERT 
architecture by using more training data and a larger number of training steps, along with other 
optimizations like removing the Next Sentence Prediction objective.  
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Instead of focusing on the relationships between sentence pairs, RoBERTa concentrates purely 
on the Masked Language Modeling objective, which has shown to be more effective for a wide range 
of downstream NLP tasks. Additionally, RoBERTa utilizes dynamic masking, which allows for 
different masked tokens during each epoch, offering a more diverse learning experience. As a result, 
RoBERTa has consistently outperformed BERT on various benchmarks, making it a preferred choice 
for tasks like text classification and sentiment analysis. 

DistilBERT (by Sanh et al. [27]) is another significant modification aimed at making BERT lighter 
and faster while retaining most of its performance capabilities. Developed using a technique called 
knowledge distillation, DistilBERT is approximately 60% of the size of BERT, making it faster during 
both training and inference. In knowledge distillation, a smaller model (the student model) is trained 
to reproduce the behavior of a larger pre-trained model (the teacher model).  

This process enables the student model, DistilBERT in this case, to learn a more compact 
representation of the language while preserving 97% of BERT's language understanding abilities. 
DistilBERT's smaller size makes it particularly suitable for scenarios where computational resources 
are limited or where real-time performance is critical, such as in mobile or edge computing 
applications. 

XLM-RoBERTa (Cross-lingual Language Model) is an extension of the BERT architecture 
designed for multilingual tasks, building on the success of both RoBERTa and the earlier XLM. XLM-
RoBERTa is pre-trained on a large-scale multilingual corpus covering over 100 languages, making it 
capable of handling cross-lingual understanding and translation tasks more effectively. 

The model learns representations that are common across languages, which allows it to perform 
well on tasks involving low-resource languages by transferring knowledge from high-resource 
languages.  

Proposed by Lan et al. [28], ALBERT (A Lite BERT) addresses BERT's limitations of model size 
and training time. It introduces parameter-reduction techniques like factorized embedding 
parameterization and cross-layer parameter sharing. Despite having fewer parameters, ALBERT 
achieves state-of-the-art results on several benchmarks while being more efficient. 

Developed by Clark et al. [29], ELECTRA (Efficiently Learning an Encoder that Classifies Token 
Replacements Accurately) introduces a new pre-training task where the model learns to distinguish 
between real input tokens and fake tokens generated by a small masked language model. This 
approach is more sample-efficient than BERT's masked language modeling, allowing ELECTRA to 
achieve strong performance with less computation. 

Each of these modifications brings unique strengths to the BERT family of models. RoBERTa's 
focus on robust training has made it highly accurate, but it comes with increased computational 
requirements due to the larger dataset and training time. DistilBERT addresses the issue of 
computational expense by providing a smaller, faster alternative, making it a practical option for 
deployment in environments where resources are constrained. XLM-RoBERTa, meanwhile, opens 
the door to advanced multilingual applications, offering a model that can understand and process a 
variety of languages effectively.  

In this paper we used both BERT base model and its modifications (RoBERTa, DistilBERT, and 
XLM-RoBERTa). 

3.2. BERT-based classification pipeline 

The pipeline starts with data collection and pre-processing, where text data is cleaned and tokenized. 
This involves removing any special characters, URLs, and unnecessary whitespace. Tokenization is 
done using the BERT tokenizer, which converts the text into a format that the BERT model can 
handle, specifically by converting words into tokens, adding special tokens like [CLS] and [SEP], and 
creating attention masks that help the model focus on relevant parts of the input data.  

The data is then split into training, validation, and test sets to ensure that the model can be 
properly evaluated. The pre-trained BERT-like model is fine-tuned on the training dataset. Fine-
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tuning involves using the general knowledge gained during BERT-like initial training on a large 
corpus and tailoring it to the specific task of detecting fake news. In this study, we freeze all layers 
of the model except the last few encoders and the soft max classifier, which are retrained on our 
dataset (Fig. 3).  

 

 
Figure 3: RoBERTa fine-tuning model 

The model is trained on the labelled dataset, adjusting its weights using the cross-entropy loss by 
the Adam optimizer. During training, the learning rate is carefully controlled using a scheduler, 
starting from a small value to ensure stable updates and avoid overfitting.  

Our study applies early stopping based on the validation loss to avoid training for too many 
epochs, which can lead to overfitting. This way, the model is more likely to generalize well on 
unknown data. The evaluation of the fine-tuned model is performed using metrics such as accuracy 
and F1-score.  

These metrics provide a comprehensive understanding of the model's performance in detecting 
fake news. The F1-score, as the harmonic mean of precision and recall, provides a balanced measure 

insight into the types of errors the model may make.  
Since BERT was pre-trained on a large corpus, it can leverage the linguistic patterns learned 

during this general training, thereby requiring less labelled data for the specific task of fake news 
detection. This is especially advantageous given the scarcity of high-quality labelled fake news 

-tuning allows it to adapt to the nuances of fake news language without starting 
from scratch, making this approach efficient and effective. 

4. Datasets and software implementation 

4.1. Datasets 

To effectively train and test BERT-type models for fake news detection, we utilized a variety of 
datasets that are widely recognized in the field. These datasets (FakeNewsNet, particular, PolitiFact 
subset, and WELFake Dataset) offer diverse contexts and sources of fake news, allowing for robust 
model evaluation. Each dataset has unique characteristics that contribute to a comprehensive 



83 
 

training and testing process, helping to ensure that the models generalize well across different types 
of misinformation. 

FakeNewsNet (PolitiFact) [30] is a well-established dataset that combines news content with 
social context to facilitate the study of fake news detection. It includes news articles verified by the 
PolitiFact fact-checking website, where each article is classified as either "fake" or "real" based on 
professional verification. This dataset not only includes the text of the news articles but also 
metadata such as user engagement and social media activity around each news item.  

The social context allows models to capture the diffusion patterns of fake news, which is crucial 
for understanding how misinformation spreads online. By training BERT-type models on the textual 
content supplemented 
by considering both linguistic features and social spread patterns.  

We used PolitiFact subset, which contains around 1,200 records, with the average length of the 
text being about 15 words, offering a moderate level of detail for each news item. This shorter length 
allows the BERT models to focus on concise stylistic and contextual indicators of fake news. 

WELFake (Web Evaluated Fake News) [31] is significantly larger, with over 70,000 news articles. 
Its structure is simpler, focusing primarily on the text, title of the articles and a label field that 
classifies each article as "fake" or "real". This minimal structure makes WELFake an ideal dataset for 
large-scale training, enabling models to learn from a vast variety of textual examples. Despite its 
large size, the dataset is not entirely balanced, with a higher number of fake news records compared 
to real news. This imbalance requires careful consideration during model training, such as using 
class weighting or oversampling techniques to prevent the model from overfitting to the majority 
class. The average length of texts in WELFake is around 540 words, which provides enough data for 
models to learn linguistic patterns while ensuring efficient training time due to shorter text 
sequences. This shorter length allows the BERT models to focus on concise stylistic and contextual 
indicators of fake news. 

By using these datasets, we were able to train BERT-type models with a diverse range of textual 
inputs and associated features. This diversity ensures that the models are not only capable of 
recognizing the typical writing styles and topics of fake news but also understand how false 
information is often framed within a broader social context. Moreover, combining datasets with 
large-scale examples like WELFake and more specific examples like those in PolitiFact ensures a 
balance between the volume of data and the richness of context. This approach helps improve the 
generalization abilities of the models, making them better suited to real-world applications where 
misinformation can take on many different forms and reach audiences through various channels. 

Thus, in the PolitiFact dataset after removing duplicates there are a few short records (about 1,000 
with an average length of 15 tokens), and in the WELLFake dataset there are about 50,000 with an 
average length of 540 tokens. Such diversification will allow us to test the performance of BERT-
similar models in fundamentally different conditions. 

 
4.2. Software 

In our study, we utilized a variety of software tools and libraries to train, test, and analyze the BERT-
type models in identifying fake news. These tools facilitated the entire pipeline from data pre-
processing and model training to evaluation and visualization of results. The combination of these 
software solutions allowed us to leverage state-of-the-art techniques and streamline our workflow. 

PyTorch served as the core library for building, training, and fine-tuning our deep learning 
models. As an open-source deep learning framework, PyTorch offers dynamic computational graphs 
and an intuitive API, making it suitable for implementing complex BERT-like models. It also provided 
robust support for GPU acceleration, which was crucial for training large language models efficiently 
on the substantial datasets we used. The ease of integrating PyTorch with pre-trained models 
through the Hugging Face Transformers library allowed us to fine-tune these models specifically for 
the task of fake news detection. 
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Pandas played a critical role in managing and pre-processing our datasets. Given the size and 
complexity of datasets, Pandas' capabilities for data manipulation and analysis were invaluable. We 
used it to load, filter, and clean data, ensuring that the text fields were formatted properly for input 
into the models. Pandas also allowed us to explore dataset characteristics, such as class distribution 
and text length, which helped guide our approach to model training and evaluation. Its versatility in 
handling various data formats, including CSV and JSON, streamlined the process of preparing our 
data. 

Python 3.8 served as the primary programming language for this project, owing to its simplicity, 
versatility, and extensive ecosystem of libraries. Python's flexibility enabled us to integrate diverse 
tools seamlessly, from data pre-processing with Pandas to model training with PyTorch. 
Additionally, Python's wide range of libraries for data visualization, like Matplotlib and Seaborn, 
made it easier to conduct analysis of 
community support and documentation further facilitated the smooth implementation of cutting-
edge methods. 

Scikit-Learn was used for a range of pre-processing and evaluation tasks. This included splitting 
datasets into training and testing samples, calculating various performance metrics like accuracy, 
precision, recall, F1-score, and generating confusion matrices for deeper insights into model 
predictions. Scikit-Learn's easy-to-use API allowed us to quickly compare different models and pre-
processing strategies, ensuring that we could iteratively refine our approach to achieve the best 
results. 

Seaborn and Matplotlib were essential for data visualization throughout the project. Seaborn, with 
its high-level interface, was used to create aesthetically pleasing and informative plots, such as 
histograms of text lengths and confusion matrices, which helped us understand the distribution of 
data and model performance at a glance. Matplotlib provided additional customization capabilities, 
allowing us to tailor visualizations to our specific needs, such as adjusting axis scales or highlighting 
specific data points. 

Additionally, we leveraged the Hugging Face Transformers library to access pre-trained BERT-
type models and adapt them for our task. This library enabled us to import and fine-tune models 
with minimal efforts, allowing us to focus on the nuances of the fake news detection problem rather 
than the complexities of implementing models from scratch. The ease of integrating these models 
with PyTorch through the Transformers library made it possible to quickly experiment with different 
architectures and configurations. 

We leveraged Google Colab as the primary development environment for training and evaluating 
our models. Google Colab is a cloud-based platform that offers a Jupiter notebook interface, 
providing a powerful and convenient setting for executing Python code and running deep learning 
experiments. One of the key advantages of Google Colab is its access to free GPUs and TPUs, which 
significantly accelerated the training process for our BERT-type models. 

5. Experimental setup 

5.1. Final hyperparameter settings 

The final hyperparameter settings are presented in Table 1. These settings describe our setup for 
fine-tuning pre-trained BERT-type models. A batch size of 16 provides a balance between memory 
usage and training speed that is suitable for most GPUs. Input sequences are limited to 128 (64 for 
PolitiFact) tokens, which is sufficient for our datasets. The model is trained for 5 epochs, allowing it 
to train on the data multiple times without overfitting. 

The learning rate is small, allowing careful adjustment of the pre-trained weights. For 
optimization, the AdamW optimizer is used, an improved version of Adam that properly implements 
weight decay. CrossEntropyLoss serves as a loss function that is standard for many classification 
tasks in natural language processing. 
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Table 1 
Final hyperparameter settings 

Hyperparameters Description Value 
Batch Size Number of samples processed per batch 16 
Max Sequence Length Maximum length of the input sequence 64 (128) 

Number of Epochs Number of complete passes through the 
training dataset 5  

Learning Rate Learning rate used by the optimizer 2,00 0-5 
Optimizer Optimization algorithm AdamW 
Loss Function Loss function used for training CrossEntropyLoss 
Device Computational device used GPU (NVIDIA L4) 
Training Environment Platform used for model training Google Colab 
Validation Split Proportion of data used for validation 20% 

 
To prevent overfitting, a dropout rate of 0.3 is applied, randomly deactivating 30% of neurons 

during training. The optimization process takes advantage of GPU acceleration, in particular NVIDIA 
L4, which significantly speeds up the computation compared to CPU. Google Colab serves as a 
training environment, offering free access to GPUs for model development. 

5.2. Text preprocessing 

 
Text preprocessing for our fake identification task was intentionally minimal, leveraging the robust 
capabilities of BERT-type models. These models are pre-trained on vast corpora of unrefined text, 
allowing them to handle raw input effectively. This approach preserves the natural structure and 
nuances of the text, which can be crucial for detecting subtle indicators of fake content. 

The primary preprocessing step was performed by the tokenizer specific to each BERT model 
variant. These tokenizers are designed to break down text into subword units, handling out-of-
vocabulary words and maintaining semantic relationships. The tokenization effectively translates 
raw text into a format that BERT models can process, without losing important linguistic 
information. 

Our preprocessing pipeline focused mainly on preparing the data structure for input into the 
model. This included binary encoding of labels, transforming the classification targets into a format 
suitable for machine learning. In addition, duplicates and data with gaps were removed. 

We also concatenated various fields related to each piece of content, such as the author's name, 
the main text of the article, its title, and the URL. This concatenation allows the model to consider 
all relevant information simultaneously, potentially capturing relationships between different 
aspects of the content that might indicate its authenticity or lack thereof. 

By keeping preprocessing minimal, we aimed to reveal the sophisticated language understanding 
capabilities of BERT models. This approach allows the models to work with text that closely 
resembles what it encountered during the pre-training phase, potentially improving its ability to 
detect nuanced signals of fake content across various writing styles and formats. 

5.3. Evaluation metrics 

To compare forecasting performance of the proposed models we used Accuracy metric and F1-score. 
Accuracy characterizes the share of correct answers of the classifier and can be calculated as 

%,100
+

+
=

NP
TNTPAccuracy  
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where TP and TN are the number of correctly estimated positive (articles with fake news) and 
negative (articles without fakes) classes, respectively; P and N are the actual number of 
representatives of each class, respectively. 

The F1-score provides a balanced measure of a model's performance, particularly when the 
dataset is imbalanced, i.e. when the number of positive and negative instances is significantly 
different. F1-score is calculated as: 

,21
RecallPrecision
RecallPrecisionF

+


=  

where 
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+
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+
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and FP, FN are false positive (predicting fake news when there is none) and false negative (assessing 
news as real when it is fake) classes, respectively. 

Note that since we are primarily interested in the correct identification of fakes, we have chosen 
them as a positive class (label 1).  

We also calculated Confusion Matrix, which provides a comprehensive view of the model's 
performance, allowing for the calculation of various metrics and providing insights into the types of 
errors the model is making. It's particularly useful for understanding the compromises between 
different types of misclassifications and for fine-tuning the model to meet specific performance 
criteria. 

5.4. Empirical results 

The results presented in Tables 2 and 3 highlight the performance of various BERT-type models on 
the WELLFake and PolitiFact datasets, providing insights into their strengths and weaknesses in the 
context of fake news detection. The metrics of accuracy and F1-score, along with training time and 
the number of trainable parameters, provide a basis for a comprehensive comparison of these models. 

Table 2 
Classification performance for WELLFake dataset 

Model Number of trainable 
parameters 

Training 
time, sec Accuracy F1-score 

BERT base 7,088,641 4733 0.985 0.985 
RoBERTa 7,679,233 2025 0.998 0.994 
DistilBERT 7,680,002 4410 0.985 0.985 
XLMRoBERTa 7,680,002 2048 0.994 0.991 

RoBERTa emerges as the best classifier with an accuracy of 0.998 and an F1-score of 0.994 on the 
WELLFake dataset. This suggests that RoBERTa is particularly adept at capturing the nuances of the 
language used in fake news, allowing it to make very accurate predictions. The relatively short 
training time of 2025 seconds further highlights the effectiveness of RoBERTa, indicating that it can 
quickly process and adapt to the dataset, making it a strong candidate for real-world applications 
where both accuracy and speed are important.  

XLM-RoBERTa also demonstrated strong performance with an accuracy of 0.994 and an F1-score 
of 0.991. XLM- -training allows it to 
effectively handle the diverse linguistic features present in the WELLFake dataset. However, despite 
the high accuracy, it took slightly longer to train (2048 seconds) compared to RoBERTa.  

BERT base and DistilBERT achieved an accuracy of 0.985 with a corresponding F1-score. While 
they performed well, their accuracy did not reach the accuracy of RoBERTa or XLM-RoBERTa. This 
suggests that while the basic BERT architecture can effectively classify fake news, the additional 
fine-tuning and optimization present in RoBERTa and XLM-RoBERTa provide a noticeable 
advantage. Moreover, these two models took almost twice as long to train. It should be noted that 
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the lighter DistilBERT architecture did not contribute to  significant reduction in training time (it 
took 4410 seconds compared to 4733 for BERT base), which does not make it an efficient model in 
terms of computing resources. 

On the PolitiFact dataset, the performance landscape shifts, as shown in Table 3. Here, DistilBERT 
outperforms the other models, achieving an accuracy of 0.917 and an F1-score of 0.931. This result is 
particularly noteworthy because it demonstrates that DistilBERT, despite being a lighter and more 
compact version of BERT, can achieve higher accuracy on smaller datasets. Its reduced the number 
of trainable parameters makes it easier to train and adapt, especially when computational resources 
are a constraint. The relatively short training time of 9.8 seconds further underscores its efficiency. 

Table 3 
Classification performance for PolitiFact dataset 

Model Number of trainable 
parameters 

Training 
time, sec Accuracy F1-score 

BERT base 7,088,641 12.6 0.901 0.912 
RoBERTa 7,679,233 12.2 0.891 0.891 
DistilBERT 7,680,002 9.8 0.917 0.931 
XLMRoBERTa 7,680,002 11.1 0.872 0.883 

 
BERT base followed DistilBERT with an accuracy of 0.901 and an F1-score of 0.912. This performance 
suggests that the original BERT architecture remains highly effective for fake news detection, 
particularly when fine- training 
time of 12.6 seconds compared to DistilBERT reflects the additional computational demands of its 
more complex architecture. 

RoBERTa, which excelled on the WELLFake dataset, achieved an accuracy of 0.891 and an F1-
score of 0.891 on PolitiFact. This indicates that while RoBERTa is highly effective with larger datasets 
like WELLFake, it may not generalize as well to smaller datasets like PolitiFact without further fine-
tuning. Its training time was slightly lower than BERT, at 12.2 seconds, suggesting some 
computational efficiency, but it also had lower accuracy. 

XLM-RoBERTa achieved the lowest accuracy on the PolitiFact dataset at 0.872, with an F1-score 
of 0.883. This could be due to its design, which is optimized for multilingual tasks rather than domain-
specific datasets like PolitiFact. Although it is highly versatile across different languages and 
contexts, this versatility may result in decreased performance when applied to a narrower task. The 
training time for XLM-RoBERTa was also substantial at 11.1 seconds, indicating that it is not the 
most efficient choice for this particular dataset. 

Figures 4, 5 show the loss and accuracy graphs for the best models for the datasets we used, and 
Figures 6, 7 present the confusion matrices for these models. 

 
Figure 4: RoBERTa Loss and Accuracy graphs for WELLFake dataset 
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The graphs in Figure 4 illustrate the RoBERTa model's learning progress over the course of training 
epochs. The loss curve shows a steady decline, indicating that the model is successfully minimizing  
classification error as training proceeds. Simultaneously, the accuracy graph rises, reflecting the 
model's increasing ability to correctly classify fake news instances. The convergence of the loss and 
accuracy curves suggests that the model has effectively learned on the training data without 
significant signs of overfitting. The smoothness of the curves highlights the stability of RoBERTa 
during training, which contributes to its high performance on the WELLFake dataset. 

 
Figure 5: DistilBERT Loss and Accuracy graphs for PolitiFact dataset 

Figure 5 shows the loss and accuracy graphs for the DistilBERT model on the PolitiFact dataset. 
Compared to RoBERTa, the DistilBERT model's loss decreases at a faster rate, indicating a more rapid 
adaptation to the training data. The accuracy also increases steadily, suggesting that DistilBERT 
quickly learns to distinguish between real and fake news articles. Despite the smaller architecture of 
DistilBERT, the model achieves high accuracy after a few epochs, which makes it particularly suitable 
for scenarios where computational resources or training time are limited. The relatively sharp drop 
in loss and corresponding rise in accuracy suggest that the model efficiently utilizes the information 
from the PolitiFact dataset. 

 
Figure 6: RoBERTa Confusion Matrix for WELLFake dataset 
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Figure 6 displays the confusion matrix for the RoBERTa model's performance on the WELLFake 
dataset. The confusion matrix provides a detailed view of the model's classification accuracy, 
including the TP, TN, FP, and FN. RoBERTa demonstrates a strong ability to correctly classify both 
real and fake news instances, with high counts in the TP and TN cells. The minimal number of 
misclassifications suggests that RoBERTa's understanding of linguistic features is effective in 
discerning deceptive content. This detailed insight into the types of errors made by the model is 
crucial for understanding the model's strengths in dealing with a large and diverse dataset like 
WELLFake. 

Figure 7 provides the confusion matrix for the DistilBERT model on the PolitiFact dataset.  
 

 
Figure 7: DistillBERT Confusion Matrix for PolitiFact dataset 

The matrix in Figure 7 reveals that DistilBERT is accurate in identifying fake news, as reflected by 
the high TP rate. The model's ability to minimize FN is crucial in a context where failing to identify 
fake news can have significant consequences. The overall balance in correct classifications across 
both classes reflects the model's adaptability to the shorter and more concise news articles, typical 
of the PolitiFact dataset. 

6. Discussion and conclusion 

The results of our study illustrate the strengths and compromises of different BERT-based models in 
the context of fake news detection. RoBERTa demonstrated exceptional efficiency on the WELLFake 
dataset, achieving an accuracy of 0.998, highlighting its ability to handle complex and diverse text 
data. Its robust training process, which focuses heavily on the masked language modeling task, 
allows RoBERTa to capture subtle linguistic cues and contextual relationships that are often 
indicative of fake news. This makes RoBERTa a suitable model for applications where high accuracy is 
paramount, even if it comes at the cost of increased computational requirements. 

DistilBERT, on the other hand, excelled on the smaller PolitiFact dataset, where it achieved an 
accuracy of 0.917. Its lightweight architecture, derived from the knowledge distillation process, 
enables it to learn efficiently from fewer data points while maintaining a high level of accuracy. This 
makes DistilBERT an ideal choice in scenarios where computational resources are limited, such as 
real-time fake news detection on edge devices. The model's rapid convergence and lower training 
time also make it more practical for applications that require quick deployment and frequent 
retraining. 
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However, the study also highlights certain limitations associated with each model. While 
RoBERTa offers superior accuracy on larger datasets like WELLFake, its performance on the smaller 
PolitiFact dataset was relatively low, with an accuracy of 0.891. This suggests that the model's 
complexity might require further fine-tuning to adapt to datasets with shorter text lengths and less 
diverse content.  

XLM-RoBERTa's results provide additional insights into the role of multilingual models in fake 
news detection. Its high accuracy on the WELLFake dataset (0.994) suggests that cross-lingual 
training can enhance a model's ability to generalize across diverse linguistic styles. However, its 
relatively lower performance on the domain-specific PolitiFact dataset (accuracy of 0.872) indicates 
that models optimized for multilingual capabilities may not always perform best on specific, 
monolingual datasets without additional fine-tuning. This points to a potential compromise between 
multilingual versatility and domain-specific accuracy that researchers must consider when selecting 
models for fake news detection. 

Overall, the comparison between these BERT-based models suggests that there is no one-size-
fits-all solution for fake news detection. The choice of model depends largely on the characteristics 
of the dataset, the computational resources available, and the specific requirements of the 
application. For large-scale fake news detection tasks where accuracy is critical, RoBERTa is likely 
the most effective choice. For environments where speed and resource efficiency are priorities, such 
as mobile platforms or real-time applications, DistilBERT provides a viable alternative with its 
compact structure and faster training time. 

Another key finding of our study is the importance of dataset diversity and structure in 
influencing model performance. The WELLFake dataset, with its large volume and longer average 
text length, allowed RoBERTa and XLM-RoBERTa to excel by leveraging their deeper architectures 
and advanced contextual understanding. Meanwhile, the PolitiFact dataset, characterized by shorter 
text samples, contributed to the effectiveness of DistilBERT in learning from more concise linguistic 
patterns. These differences emphasize the need for tailored approaches in selecting models for fake 
news detection, depending on the dataset's nature. 

The study also underscores the role of minimal preprocessing in leveraging the strengths of 
BERT-based models. By allowing the models to handle raw text inputs, we preserved linguistic 
nuances that are critical for distinguishing fake news. This approach highlights the power of pre-
trained models in adapting to specific tasks without extensive preprocessing, making them versatile 
tools for a wide range of applications in the field of NLP. 

In conclusion it should be noted, that proposed approach to detecting fake content in digital media 
based on fine-tuned models such as BERT focuses on understanding linguistic nuances and 
contextual relationships in text. However, these models do not directly check the factual content of 
claims against external databases or sources. Instead, they work by detecting hidden linguistic 
features and patterns commonly associated with fake or misleading information.  

This approach is advantageous in situations where external fact-checking is either impossible or 
time-consuming, but it also introduces certain limitations as the models rely heavily on linguistic 
cues rather than external verification. 

Thus, the findings of this study contribute to the broader effort of developing reliable AI-driven 
tools for combating misinformation, which is 
Future research could explore further fine-tuning techniques and hybrid approaches that combine 
the strengths of multiple models to create even more robust solutions for fake news detection. 
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