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Ellipsoidal distribution-free set 
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Abstract 
This paper introduces a distribution-free approach based on the Hill's assumption and the Petunin 
ellipsoids. Several distributions are used to generate points and build ellipsoids, which are then used to 
check if test points with same distribution are created inside largest ellipsoid. As a result, a new 
prediction set is constructed in the form of Petunin ellipsoid, while confidence level refers to the number 
of points. The method described here works effectively for chosen distributions. Moreover, statistical 
analysis of the quantity of points inside is performed. This method is a useful tool for solving many 
urgent problems of machine learning, e.g. generalization of training samples, effective cross-validation 
etc. 
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1. Introduction 

Construction of prediction sets is a popular problem in machine learning, often placed together 
with neural networks. In recent years many international scientists have discussed prediction sets. 
For example, Adam Khakhar, Stephen Mell and Osbert Bastani [1] used a trained code generation 
model in algorithm that leverages an abstract syntax tree based on programming language to 
create a set of programs with high confidence about the correct program. Another example by 
Soroush H. Zargarbashi, Mohammad Sadegh Akhondzadeh and Aleksandar Bojchevski [2] derive 
provably robust sets by defining bounds for the worst-case change related to conformity scores. 

Another important idea is to find distribution-free classification and sets. Here we can mention 
a work by Chirag Gupta, Aleksandr Podkopaev and Aaditya Ramdas [3] where they study 
calibration and prediction sets combined with confidence intervals. Their research is dedicated to 
binary classification in case of distribution-free sets. Based on demonstrated theorems, confidence 
intervals for binned probabilities allow to perform distribution free calibration. 

In [4] Hongxiang Qiu, Edgar Dobriban and Eric Tchetgen Tchetgen offer a novel flexible 
distribution-free method named PredSet-1Step for constructing prediction sets where asymptotic 
coverage is guaranteed under unknown covariate shift. 

As for [5] A.N. Angelopoulos, S. Bates, J. Malik and M.I. Jordan present an algorithm which 
changes a chosen classifier to determine a predictive set, where the true label is inside with 
probability set by user. This simple and fast algorithm reminds of Platt scaling but results into a 
formal finite-sample coverage for every model and dataset. 

Approach described in [6] by analysis of a holdout set allows to choose the size of the prediction 
sets and leads to explicit finite-sample guarantees. As a result, simple, distribution-free and 
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rigorous error control is obtained for many tasks, demonstrated on five large-scale machine 
learning problems. 

Some more works related to predictions offer various approaches: prediction based on language 
models [7], neural networks compared to calibrated predictions [8], distribution-free uncertainty 
quantification and conformal prediction [9], conformal risk control [10], conformal predictors 
applied for medical imaging [11], confident prediction in case distributions shift [12], conformal 
prediction robust to label noise [13], conformal prediction via probabilistic circuits [14]. 

Not only predictions attract modern scientists. Some related topics are also worth being 
mentioned: uncertainty quantification is performed over graph using conformalized graph neural 
networks [15], adversarial robustness applied to randomly smoothed classifiers [16], randomized 
smoothing for graphs and images [17], adversarially trained smoothed classifiers [18].  

The purpose of our paper is to describe a method to construct ellipsoidal prediction set for a set 
of the randomly generated points, based on chosen distribution. The main tools for our forecast are 
predictive sets represented by ellipses, constructed using generated points. Test points are 
generated with same distribution, the more ellipses contain a point  the higher probability of 
belonging to same class can be expected.  Consider the problem of creating conformal prediction 
based on points 1 2, ,..., d

mx x x  . The aim is to find a prediction set  ( )1 2, ,..., d
mE x x x   resulting 

into probability ( )1 1mp x E+   − , where 0 1   is a chosen significance level, so that 

( )1mp x E+   is the confidence level of the predictive set. 
 

2. Hill`s Assumption ( )mA  

As 1 2, ,..., mx x x  we denote a sample drawn from a population generated according to absolutely 
continuous distribution F. Next, we arrange it in the increasing order and create the variance series 

(1) (2) ( )... mx x x   , where ( )ix  is i-th order statistics. The resulting order statistics (1) (2) ( ), ,..., mx x x  
are dependent. The distribution ( )kF x  of the k-th order statistics ( )kx  can be calculated as  

( ) ( ) ( )
11

m i mi
k m

i k
F u C F u F u −

=

      = − , where  ( ) ( )F u p x u=  . 

( )mA  [19] states that if ( )ix is chosen from the population according to 
distribution F  then  

( )( )1 ( ) ( ), , .
1m i j

j ip x x x j i
m+

−
 = 

+
                                                           (1) 

 ( )nA  was proven in papers of Yu.I. Petunin [20] and by several other 
scientists. Let us recall the proof for random variables   and  . If they are independent, then 

( ) ( ) ( )p F u dF u  


−

 =  ,                                                                   (2) 

where ( )F u  and ( )F u  denote the distribution functions of   and  , respectively. The 
probability density of i-th order statistics is: 
 

( ) ( ) ( ) ( ).1
m mi m ii

k m i
i k i k

f u C F u F u G u−

= =

= =      − 
                                             (3)

 

Hence, ( ) ( )'
m

k i
i k

F u G u
=

=  , 

 
( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

1 11 1k m k k m kk
k mG u C k F u F u f u F u m k F u f u− − − − = −

 
 − − −

        (4) 
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The second term is compensated by the first term: 

( ) ( )
( )

( )

( )

( ) ( ) ( ) ( )
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k k
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The last term of the previous sum is equal to zero 

( )( ) ( )( ) ( ) ( )
01 0mF u F u m m f u− − =  . 

Thus, 
( ) ( ) ( ) ( )

11
1 1k m kk

k mf u mC F u F u f u− −−

−       = − . 

Let us find ( )( )ip x x  and ( )( )jp x x . Using the above equations, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1( ) 1 1
1 1

0

1 1 .i m i mi i i i
i m mp x x F u dF u mC F u F u dF u mC v v dv
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− −− −

− −

− −
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It is proven that,  

( )
( ) ( )

( )
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1
11
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x x

p q p q
−− =

  − −
− =

 + − + −  . 

We can apply this equation as 
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Previous equation was obtained by multiplying numerator and denominator by (j  1). So, we get 

( ) ( )( )( ) ( ) ( )1 1 1, .
1 1 1m m j m ii j
j j iip x x x p x x p x x

m m m+ + + =  −
−

 = − =
+ + +

 

So, in case a random variable x  is independent from 1 2, ,..., mx x x  and it is chosen by sampling from 
the same population based on distribution ( )F u , then 

( )( )(1) ( ), 1
1m

mp x x x
m


−

=
+

 . 

Remark 1. The confidence level of the tolerance interval ( )(1) ( ), mx x  is 1
1

m
m
−

+
, thus for 39m    the 

confidence level of this interval is less than 0.05. 

3. Petunin Ellipsoids 

The algorithm for construction of the ellipsoid containing the set as m random points with the 

probability 1
1

m
m
−

+
 was proposed by Yu. I. Petunin. Statistical and geometrical properties of the 

Petunin ellipsoids were investigated in [21]. 
Here we applied -dimensional case. First, we find two points 

farthest from each other kx  and lx  of the set  1,...,n mM x x= . Connect them with a line (next 
mentioned as diameter), then project all the points to the hyperplane orthogonal to this line. To 
simplify this, we can rotate all objects together around line center to make it horizontal. But then 
we will need to rotate it back in the end (Figure 1). 
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Figure 1: The furthest from each other points 

Next, we need to find the farthest points from the line. Construct lines parallel to the diameter 
through these points. Create lines that are orthogonal to diameter and pass through the farthest 
from each other points. As a result, we obtain a rectangle, which covers the given set of points and 
lies on a two-dimensional plane (Figure 2). 

 
Figure 2: Rectangle covering the images of the points 

By dividing the shorter side length by the longer side length, we can obtain the shrinking 
coefficient. Translate, rotate and shrink mentioned above rectangle to construct a square covering 
the given points. 

 
Figure 3: Square covering the images of the points 

Find its center and all distances from the center of the square to every image of point. Then, we 
need to find maximal distance and create a circle with center same as square center and radius that 
is equal to maximum distance from the center to the images of points. 



32 
 

 
Figure 4: The circle covering the images of the points 

Perform inverse transformations of this circle. The result is the Petunin ellipse (Figure 5). 

 
Figure 5: Petunin ellipse covering the initial points 

In high-dimensional case, we can construct a minimum volume axis-aligned orthogonal 
parallelepiped that contains images 1,..., mx x   of initial points. Perform shrinking transformation 
from the orthogonal parallelepiped to a hypercube. Find its center and distances from it to 1,..., mx x  . 
Next find the maximum distance. After that, construct a hypersphere with the center and radius 
that is equal to the maximum distance from the center to the images of the points. Perform inverse 
transformations (translation, rotation and stretching) and obtain the Petunin ellipsoid mE  . Hill s 

assumption 
( )mA   is true, so  ( )1

1.
1m

mP x E
m+ =
−


+

 

Since at the last stage of construction of the Petunin ellipsoid we obtain the concentric spheres 
with one unique point at the surface, using the Petunin ellipsoids we can arrange the points by 
their statistical depth. The median point of the set (the most probable point) is the point nearest to 
the center of the Petunin ellipsoid and the outlier is the point at the boundary of the Petunin 
ellipsoid. 

 

4. Numerical results 

In this section testing results are described. First, we generate a chosen distribution-based set of 
1000 points and build ellipses through each point. Then we generate 1000 more points with the 
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same distribution and check the number of points inside the largest ellipse. Statistical 
characteristics of these results are shown below for three different distributions. 

4.1. Normal distribution 

The first test was performed on normal distribution testing, 3 to 1. We generate 12 random 
numbers from 0 to 1, calculate their sum and subtract 6. Then we modify values by multiplying the 
result and adding value so that horizontal and vertical coordinate values can be generated in 
proportion 3 to 1.  
  

Expected probability 0.99762 
Mean 0.99762 
Mean Deviation 0.001873 
Mode 0.996477 
Median 0.998 
Standard Deviation 0.0022867 
Variance 0.0000052279 
Kurtosis 3.24629  
Skewness -0.892779 
Range 0.01 
Maximum 1 
Minimum 0.989 
Geometric Mean 0.9976174 
Harmonic Mean 0.9976148 
 

 
Figure 6: Average ellipse areas  Normal distribution, 100 tests 

As we can see, the largest ellipse contains almost all points and areas slowly grow until last 50 
points defining largest ellipses. 
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4.2. Exponential distribution 

Exponential with parameters -17, -50 as multipliers for logarithm from random value from 0 to 1. 

Expected probability 0.998158 
Mean 0.998158 
Mean Deviation 0.00138457 
Mode 0.99943 
Median 0.999 
Standard Deviation 0.0018747 
Variance 0.00000351465 
Kurtosis 5.98476568 
Skewness -1.5228786 
Range 0.01 
Maximum 1 
Minimum 0.989999 
Geometric Mean 0.998 
Harmonic Mean 0.998 

 

 
Figure 7: Average ellipse areas  Exponential distribution, 100 tests 

 
Here the largest ellipse contains almost all points, but ellipse areas grow much faster. 

4.3. Gamma distribution 

Gamma distribution was used here based on pseudorandom numbers with parameters 50 and 90 
for horizontal and vertical values respectively. 
 
Expected probability 0.997760000000000 
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Mean 0.997760000000000 
Mean Deviation 0.0017616 
Mode 0.998438 
Median 0.998 
Standard Deviation 0.002399 
Variance 0.0000057599 
Kurtosis 5.95855 
Skewness -1.65869 
Range 0.012 
Maximum 1 
Minimum 0.987999 
Geometric Mean 0.997757 
Harmonic Mean 0.997754 

 

  
Figure 8: Average ellipse areas  Gamma distribution, 100 tests 

In this test ellipse contains almost all points and ellipse areas increase very fast after ellipse 
based on 800 points. 

More tests were performed for these distributions with other parameters and results were alike. 
Ellipse areas increased smoothly at first, but for the last 100-200 most distant points faster increase 
was reported. As for accuracy, we expected values to be approximately 0.998 and received alike 
results. 

distribution with rectangular area covered.  

5. Conclusion 

Constructing Petunin ellipsoid is a useful approach for arranging data and detecting anomalies 
using statistical depth. According to obtained results, the algorithm leads to effective prediction 
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sets based on Petunin ellipsoid. The confidence level reached is theoretically precise for tested 
distributions. It allows us to compute statistical depth based on every point and detect outliers of 
the set.  Experimental results approved theoretical properties of the Petunin ellipses.  
 

Declaration on Generative AI 

The authors have not employed any Generative AI tools. 
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