Abstract Slicing To Improve The Speed Of Static Program
Analysis

Sarah Verbelen’, Bram Vandenbogaerde’, Jens Van der Plas’, Noah Van Es’ and Coen De
Roover!

"Vrije Universiteit Brussel, Brussels, Belgium

Abstract

When performing a static analysis, there is a trade-off between the time it takes to run the analysis and the
quality of the results of the analysis. We propose to run the analysis on an abstract slice to reduce the size of the
program to be analysed without impacting the results of the analysis. We adapt an abstract slicing algorithm to
produce executable abstract slices that can be analysed using abstract interpretation. Next, we implement an
intraprocedural abstract slicer for Scheme programs. We evaluate the implementation using a dataset of 1050
randomly generated Scheme programs. We find that abstract slices are in general smaller than their corresponding
concrete slices and that in turn they are analysed faster. Additionally, we find that there is a significant difference
between the abstract slices for two different abstract domains.

Keywords

static analysis, abstract interpretation, abstract slicing, executable slicing

1. Introduction

Static program analysis is able to verify properties of the program without needing to run the program,
making it useful to detect issues at compile-time. An often used technique for static analysis is abstract
interpretation [1], which abstracts the semantics of a program. Part of this abstraction is the use of an
abstract domain that abstracts the concrete values into the properties that are relevant for the analysis.
Because abstract interpretation is very close to the semantics of the program, this technique lends itself
well to mathematical proofs about the semantics and properties of interest [2]. Unfortunately, one of
the main disadvantages of program analysis is that there is a trade-off between the speed of the analysis
and the quality of its results. Developers do not want to wait very long for results of the analysis when
they use the analysis as part of their workflow, but they also do not want to have an analysis that
returns many wrong results as it impacts the usefulness of the analysis [3].

A program slice is a reduced version of a program that contains only expressions that influence
a set of variables at a certain program point. The combination of these variables and the program
point is called the slicing criterion. Program slicing has several use cases. It was originally introduced
by Weiser [4] as a way for developers to intuitively inspect their code during debugging. Other uses
include program comprehension or the automatic generation of tests. Program slicing can also be used
to improve the efficiency of a static analysis [5]. For most of these use cases, it is beneficial that the
computed slice is minimal, meaning that it contains only the expressions that influence the slicing
criterion.

CEUR-WS.org/Vol-3941/BENEVOL2024_TECH_paperl3.pdf

Abstract program slicing is a variant of program slicing where only expressions that influence a
specific property of the variables in the slicing criterion remain in the slice [6]. These properties are
expressed using the abstract domains used by an abstract interpreter, so that an abstract slice removes
all expressions that have no influence on the abstract values of the variables in the slicing criterion. For

BENEVOL24: The 23rd Belgium-Netherlands Software Evolution Workshop, November 21-22, Namur, Belgium

& sarah.verbelen@vub.be (S. Verbelen); bram.vandenbogaerde@vub.be (B. Vandenbogaerde); jens.van.der.plas@vub.be
(J. Van der Plas); noah.van.es@vub.be (N. Van Es); coen.de.roover@vub.be (C. De Roover)

@ 0009-0006-7036-4311 (S. Verbelen); 0000-0003-2924-3420 (B. Vandenbogaerde); 0000-0002-7475-576X (J. Van der Plas);
0000-0003-2507-3970 (N. Van Es); 0000-0002-1710-1268 (C. De Roover)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
B

CEUR
E Workshop
Proceedings

mailto:sarah.verbelen@vub.be
mailto:bram.vandenbogaerde@vub.be
mailto:jens.van.der.plas@vub.be
mailto:noah.van.es@vub.be
mailto:coen.de.roover@vub.be
https://orcid.org/0009-0006-7036-4311
https://orcid.org/0000-0003-2924-3420
https://orcid.org/0000-0002-7475-576X
https://orcid.org/0000-0003-2507-3970
https://orcid.org/0000-0002-1710-1268
https://creativecommons.org/licenses/by/4.0/deed.en

example, when debugging, the developer might only be interested in the statements that modify the
nullity of a variable because the variable was null at a point where it should not be null.

Abstract program slicing in general produces smaller slices than concrete program slices, as it is
possible that an expression that influences the value of the variables in the slicing criterion does not
influence the relevant properties. Because of this, abstract program slicing is potentially a more effective
way to improve the efficiency of a static analysis compared to a concrete program slice. As an abstract
slicer uses the abstract domains of an abstract interpreter, the resulting abstract slices are specific to
this abstract interpretation.

In this paper, we make the following contributions:

« We adapt and implement the abstract slicing framework presented by Mastroeni and Zanardini [6]
to create an intraprocedural abstract slicer for Scheme programs

« We adapt the abstract slicing algorithm to produce executable abstract slices, with the goal of
being able to run an abstract interpreter on the executable abstract slices to obtain a speed up of
the static analysis when compared to running the abstract interpreter on the original program or
a concrete slice

The rest of the paper is organised as follows. We first briefly introduce abstract interpretation and
abstract program slicing as defined by Mastroeni and Zanardini [6] in Section 2. In Section 3, we go
over the modifications made to the abstract slicing algorithm to be able to slice recursive programming
languages such as Scheme. In Section 4, we discuss why an abstract slice should be executable to be
analysed using abstract interpretation and we adapt the abstract slicer so that it produces executable
slices. In Section 5, we run benchmarks on abstract slices of randomly generated Scheme programs to
measure the size of the slices when compared to concrete slices, as well as the time it takes to analyse
them. In Section 6, we discuss the limitations of our work and possible future work. Finally, Section 7
concludes our work.

2. Background

In this section, we briefly introduce abstract interpretation, program slicing, and the different kinds of
program slicing, particularly abstract program slicing.

2.1. Abstract Interpretation

Abstract interpretation is a static analysis technique that over-approximates the semantics of the pro-
gram [1, 2]. Abstract interpretation is based on the definition of an abstract semantics as a generalisation
of the concrete semantics of a program, where operations are defined over an abstract domain. These
semantics describe how abstract states are transformed as the program is executed, analogous to how
concrete states change during the actual program execution. The idea is that we only keep the infor-
mation that is strictly necessary for our analysis, even if we need to approximate it in order to make
it decidable. For example, if we want to know the sign of the variables at the end of the program, it
is sufficient to work in an abstract sign domain where the only information kept is the sign of the
variables. We can then run the program with an abstract interpreter, which makes use of these abstract
values and abstract operations to approximate the concrete values that would be outputted by a concrete
interpreter [7].

2.2. Program Slicing

Program slicing is a technique that was introduced by Weiser [4]. In his original definition, slicing is
defined as “starting from a subset of a program’s behaviour, slicing reduces that program to a minimal
form which still produces that behaviour". Over the years, this original definition has seen several
modifications, resulting in the creation of multiple kinds of slices. Tip [8] shows an overview of these
several kinds of slices and slicing methods. Binkley et al. [9, 10] define a mathematical framework to

o

formalise the different forms of slicing in order to compare them, based on the specifics of the slicing
criterion.

Program slices are used in several ways. Weiser initially proposed slices as the intuitive way for
experienced programmers to reason over their programs, for example during debugging [11]. However,
there are also other use cases where slicing can be used. For example, there have been suggested
applications in program comprehension, software maintenance, or testing [12]. In general, we usually
want slices to be as small as possible while keeping all statements that are relevant to the slicing
criterion. The challenge is then to know exactly which statements are safe to be removed without
modifying the slicing criterion, while keeping as few statements as possible.

Mastroeni and Zanardini propose a new form of slicing that they call abstract slicing [6]. Instead
of slicing based on concrete values, they formalise a technique that allows general slicing based on
properties. They argue that this form of slicing, which could in general remove more statements
than concrete slicing, can help programmers discover where the error lies when one of their variables
does not have a desired property (e.g. a variable is null when it should not be) by only returning the
statements that actually have an effect on that property. On the other hand, a concrete slice will contain
all statements that influence the value of the variable, regardless of if they impact the property of interest.
They formally define this abstract slicing in a framework that makes use of abstract dependencies.
Concrete slicing can be defined within this framework as well: if the abstract slicing is done with
regards to the identity property (where the identity property of a value is the value itself) then the slice
corresponds to a concrete slice. The properties used for the abstract slicing are based on the domains of
an abstract interpreter, such that in an abstract slice in regards to a variable x for a specific property p,
x has the same abstract value as in the original program in the state resulting from the execution of an
abstract interpreter using the domain p.

This formal framework is an extension of the formal framework defined by Binkley et al. [9, 10].
They extend the slicing criterion into an abstract slicing criterion by adding the criterion abstraction
A, which defines the abstract domains we are interested in for each variable in X. A is defined as a
mapping of variables from X’ to abstract domains. In Figure 1, an example of the difference between
concrete and abstract slices is given. In this example, we see the slices for slicing criterion (d, 5), where
the abstract slice is taken for the property ppagrry-

(define a 1) 1 (define a 1) 1
2> (define b 2) 2> (define b 2) 2 (define b 2)
3 (define c 3) 3 (define c 3) 3
(define e 4) 4 4
(define d (- (+ (* 2 c) a 5 (define d (- (+ (* 2 ¢c) a 5 (define d (- (+ (¥ 2 ¢c) a
b) a)) b) a)) b) a))

Figure 1: Left: the original program; middle: a concrete slice; right: an abstract slice

To compute abstract slices, Mastroeni and Zanardini [6] propose an algorithm based on two rule
systems: the PpP-sysTEM and the G-sysTEM. The PP-sYSTEM is used to infer property preservation. If an
expression preserves a property of a variable, then this means that the expression could be removed
in the abstract slice. The G-SYSTEM is used to propagate agreements backwards through the program,
where an agreement of a program point defines which properties for which variables are relevant
at that program point. At the end of the program, the relevant properties are those defined in the
slicing criterion. Using the rules of the G-sysTEm, we can then decide based on the expression and
the previous agreement what properties are relevant at the previous program point. When a relevant
variable is reassigned, the rules of the G-sysTEM make use of a notion of ‘abstract dependencies’ to
decide which properties of the variables used in the assigned expression are relevant to the property in
the agreement. Finally, we can use this information to infer using the pp-sysTEM which statements can
be safely removed from the program to create the abstract slice.

3. An Abstract Slicer for Scheme

We start by adapting the abstract slicing algorithm presented by Mastroeni and Zanardini [6] to work
for languages with a recursive structure, such as Scheme. In order to do this, we need to modify the rule
systems for property preservation and agreement propagation as described in the original paper so that
they recursively check subexpressions. These modified rule systems can be found in Appendix A and B
respectively. Additionally, we modified the slicing algorithm so that the algorithm will first recursively
remove subexpressions. To ensure that subexpressions without side-effects but whose value is relevant
for the superexpression are not sliced, we only slice subexpressions that are not in a position where
their value is potentially used.

An example is shown in Figure 2. We see a program and an abstract slice of this program where
the relevant property is the sign of z at the end of the program. For every expression in the program,
a postcondition is given that defines the relevant properties at this point in the program in the form
of an ‘agreement’. The first expression on line 2 can be sliced away, as its postcondition is the empty
agreement, meaning that no variables are relevant at this point. However, the definition on line 3
has to remain. For the binding of the let-expression, it gets slightly more complicated as we have a
nested begin-expression. In this begin-expression, we cannot slice away the (set! z y) expression,
but we can slice away the set!-expression after that. Although the sign of y is relevant before this
expression, y is not used after this expression so the postcondition of the expression no longer contains
y and the set ! -expression can be sliced away. The third expression in the begin-expression is simply
z, which does preserve its postcondition, so we could argue that it could be sliced away. However,
this z is the return value of the begin-expression, which is an expression in the right-hand-side of
an assignment. This means that we cannot slice the expression z. Finally, we take a look at the body
of the let-expression. The only expression in the body is x, which preserves the properties of its
postcondition. Although at first sight it looks like this could be a similar situation to the z expression
of before, as this is the return value of the 1et-expression, we can actually slice away this expression.
This is because the 1et-expression is not in the right-hand-side of an assignment or a nested expression
as the operator of a function application, so its return value is unused.

;[1

> (define z 5) ;[2
(define y -6) ; [y -> sign] 3 (define y -6)
(let ; [x -> sign] . (let
((x ; [x -> sign] 5 ((x
(begin (set! z y) ; [z -> sign] 6 (begin (set! z y)
(set! y 8) ; [z -> sign] 7
z))) ; [x -> sign] 8 z)))
X) ; [x -> sign] 9)

Figure 2: Example of a sliced Scheme program

4. Executable Abstract Slicing

In order to run an abstract interpreter, it is important that the abstract slice is at least as executable
as the original program so that it does not introduce new errors. However, an abstract slice is not
necessarily executable.

Figure 3 depicts an example program and its abstract slice for the PARITY property of the variable
2. We see that even though the original program is able to be executed without errors, the resulting
abstract slice would throw an error because the variables x and y are undefined. The definitions of these
variables were removed because their values are irrelevant to the properties of interest of the variable x
at the end of the program. The original definition of the variable z in line 1 is irrelevant because the

1 (let ((x 1) 1 (let (

2 (y -7) 2 (v -7)
3 (z 42)) 3)
4 (set! x (+y (* z 2)))) 4 (set! x (+y (* z 2)))))

Figure 3: Original program and its non-executable abstract slice

value is overwritten by the set ! -expression in line 4. The variable z is used in the set ! -expression on
line 4, but its value is not relevant because the expression (* z 2) will always be even, so the abstract
slicer deems it not necessary to keep the definition of z.

To ensure that we do not introduce extra errors, we need to know when a variable is used in an
expression that remains in the slice. We can then use this information to keep define-expressions that
would otherwise be sliced away only if necessary. However, this removes part of the advantage that an
abstract slicer has over a concrete slicer. A concrete slicer always keeps these definitions, as variables
are a dependency of the expressions they are used in, unrelated to whether or not their value influences
the value of the expression. On the other hand, in an abstract slicer we know when the value of the
variable is not relevant, meaning that we can potentially slice away a lot more expressions; especially if
the definition of the variable was a complicated expression with many subexpressions. If we need to
keep this entire computation when the value is not relevant, then we are knowingly keeping a lot of
unnecessary computations in the abstract slice. For this reason, we can instead replace this computation
by a ‘dummy’ value of the right type, so that we do not introduce type errors. In this way, we can still
take advantage of the more aggressive slicing of an abstract slicer, while ensuring that the abstract
slices remain executable.

4.1. Labelling Irrelevant Expressions

Because we do not want to keep every variable definition, we need to first compute what variables
are used in expressions that are not sliced away. For this, we can make use of a live variables analysis.
However, we need to take into account that not all expressions of the original program are in the slice,
so when we check when a variable is live we need to do this for the expressions that remain in the slice.
On the other hand, we do not want to run the live variables analysis on the slice itself, because the
definitions that were already removed in the abstract slice could change the output of the live variable
analysis. To deal with this problem, we work with an intermediate program representation where the
expressions are annotated with whether or not they are sliced away, so that we can run a live variables
analysis on the unsliced program while still taking the future removals into account. In Figure 4, we see
an example program where the expressions that will be removed by the abstract slicer are labelled.

i (define z 5) ; irrelevant

2 (define y -6)

3 (let

4 ((x

5 (begin (set! z y)

6 (set! y 8) ; irrelevant
z)))

8 X) ; irrelevant

Figure 4: Example program labelled with the irrelevant expressions

{3

» (define y -6) ;o vy}
5 (let ; O
((x ;o {x}
(begin (set! z y) ; {z}

(set! y 8) ; {z}

z))) ; 3

X) ;{3

4.2. Live Variables Analysis

The next step is to perform a live variables analysis on this intermediate representation. The analysis
returns a mapping of expressions to the variables that are live for that expression. Because we only
consider programs without loops, the live variables analysis is a simple data flow analysis that can be
done in a single iteration, starting at the end of the program with an empty list of live variables. It then
traverses the program from back to front. For most kinds of expressions, the algorithm simply recurses
deeper into the subexpressions. For if-expressions, the variables used in the condition expression are
added to the list of live variables. The most interesting expressions are the assignment expressions, as
these can potentially remove variables from the list of live variables.

Additionally, the live variables analysis has to take into account what expressions will be sliced away,
as the variables used in these expressions are not considered live. If an expression was labelled to be
sliced away and it is not a definition-expression, we do not modify the list of used variables for this
expression. This is because this expression is removed, so any variable used in it is not used in the slice.
However, when we have a def ine-expression that is labelled to be sliced away but the variable being
defined is in the set of live variables that is being propagated during the analysis, then this means that
the variable is used in later parts of the program and we are not able to slice away its definition. In
this case, we need to update the set of live variables as if the define-expression was not labelled to be
sliced. Figure 5 depicts an example program labelled with the variables that are live in the abstract slice
after each expression.

(define z 5) ;

Figure 5: Example program labelled with the live variables after each expression

4.3. Dummy Values

To ensure that we do not necessarily need to keep the entire computation for the definitions of variables
that are only necessary for syntactic purposes, we introduce the concept of ‘dummy values’. These
dummy values are values that replace the right-hand-side of define-expressions or bindings of let-
expressions. We need to make sure that they are of the same type as the original expression, so that
no type errors are introduced. However, we cannot evaluate the expression to find out what kind of
value it returns. The solution is to use the abstract interpreter: this returns an abstract value for the
expression, which we can then convert into a concrete value using the concretisation function of the
abstract domain.

In order to do this, we introduce ‘dummy’ expressions. A dummy expression evaluates to a value
with the same properties as the original value of the expression e as decided by the abstract interpreter.
We do this by first running the abstract interpreter and getting the abstract value, and then converting
this to a random concrete value that abstracts into the same abstract value. For example, if we are
in the pgey domain and the abstract value is NEG, then a possible dummy value could be -1. If the
abstract value is T, then we can choose an arbitrary number as the dummy value. The actual value of
the dummy value is not relevant, as the abstract slicer has already established that its value could be
sliced away.

For example, Figure 6 depicts how the introduction of dummy values results in an executable slice.
For both the variables x and y, we know from the labelling of the irrelevant expressions that their value

1 (let (1 (let ((x (dummy 1))

(y -7) 2 (y -7)
:) 3 (z (dummy 1))
4 (set! x (+y (* z 0)))) 4 (set! x (+y (* z 0)))))

Figure 6: Example executable slice using dummy values

does not influence the properties of interest. However, during the live variables analysis they are said
to be live at the expression that defines them, therefore we cannot slice away these definitions. Instead,
their value is replaced by a dummy value of the right type.

5. Evaluation

For our evaluation, we formulate the following research questions:

« RQ1: Does our approach using abstract slicing result in smaller slices when compared to concrete
slicing?

« RQ2: What is the impact of the abstract domain on the size of an abstract slice?

« RQ3: Are the abstract slices generated by our abstract slicer analysed faster than concrete slices?

We implemented our approach using Monarch', a Haskell framework for creating modular static
analyses using abstract interpretation. Our implementation of the abstract slicer can be found in
an online source code repository?.

Because our abstract slicer is a prototype that only supports intraprocedural slicing using numeric
domains, it is hard to find enough suitable programs to test. For this reason, we generate a dataset
of random expressions to ensure that we have examples representing variable amounts of set!-
expressions. The more set ! -expressions a program contains, the greater the likelihood that the slicing
criterion is modified, meaning that potentially more expressions are relevant to the final abstract value
of the variables in the slicing criterion. We created a set of 1050 programs by generating 50 programs
for every set ! -percentage ranging from 0% to 20%. Using this dataset, we ran benchmarks on the size
of the slices, which is discussed in Section 5.1, and on the time it takes to analyse them, discussed in
Section 5.2.

5.1. Slice Size (RQ1 & RQ2)

We plot the sizes of the resulting abstract and concrete slices in a boxplot, depicted in Figure 7. In this
plot, we see the sizes of the slices for both of the different domains, as well as the sizes of the concrete
slices. The sizes are expressed as a percentage of the original program size to normalise them. In this
boxplot, we clearly see that the median size of the concrete slices is larger than the median size of the
abstract slices. This is especially clear when we compare the sizes of the slices for the ppsp;ry domain
with the sizes of the concrete slices, where we see that the concrete slices are approximately 10% larger
than the abstract slices using the ppapry domain. Additionally, we see that the slices for the ppapiry
domain are on average approximately 5% smaller than the slices for the pgey domain. This could be
because there are less operations that modify the parity of a variable, so that there are more expressions
that preserve the parity property and can be sliced away.

To confirm these findings, we do a statistical analysis of the data. We use a one-sided paired Wilcoxon
signed-rank test [13] to compare the slice sizes. We first apply the Wilcoxon test to the sizes of concrete
slices and the sizes of slices for the psoy domain, so that the null hypothesis is that there is, in general,
no significant difference between the sizes of concrete slices and abstract slices of the pg gy domain.

'https://github.com/softwarelanguageslab/monarch
*https://github.com/sarahverbelen/maf-hs

Size After Slicing

100%
|

[R
i i

80%
1

60%
1

40%
1

Slice size (% of original program)

20%
1

' | '
R — R —

0%

Sign Parity Concrete

Domain of slice

Figure 7: Boxplot showing the size of the slices as a percentage of the original program size

The alternative hypothesis is that the median size of the concrete slices is larger than the median size of
the abstract slices of the ps ey domain. The test yields a W statistic of 4173 and a p-value that is less
than 2.200 x 10716, Since the p-value is much less than the chosen significance level of 0.05, we reject
the null hypothesis. This indicates that the median size of concrete slices is larger than the median size
of abstract slices using the pggy domain.

Next, we apply the Wilcoxon test to the sizes of concrete slices and the sizes of slices for the ppapiry
domain, so that the null hypothesis is that there is, in general, no significant difference between the
sizes of concrete slices and abstract slices of the ppapiry domain. The alternative hypothesis is that the
median size of the concrete slices is larger than the median size of the abstract slices of the ppariry
domain. The test yields a W statistic of 2164.5 and a p-value that is less than 2.200 x 10716, Since the
p-value is much less than the chosen significance level of 0.05, we can again reject the null hypothesis.
This indicates that the median size of concrete slices is also larger than the median size of abstract slices
using the ppapiry domain.

Answer RQ1. The median slice size of the concrete slices is larger than both the median slice
sizes of the abstract slices for the ppspiry domain and of the pggy domain. According to Figure 7,
the concrete slices are approximately 10% larger than the slices using the ppapiry domain and
approximately 5% larger than the slices using the pgcy domain.

Finally, we apply a two-sided paired Wilcoxon signed-rank test to discover if there is a significant
difference between the sizes of the slices for the ppp;ry domain and the pg;gy domain. The null hypothesis
is that there is no significant difference between the sizes of the abstract slices for these two domains,
while the alternative hypothesis is that there is a significant difference. The test yields a W statistic of
26798 and a p-value that is less than 2.200 x 10716, As the p-value is less than 0.025, we can reject the
null hypothesis and conclude that there is a significant difference between the sizes of slices for the two
different domains. This indicates that the domain used for the abstract slicing is relevant.

Answer RQ2. The slices using the ppapiry domain and the slices using the pg gy domain have
a significant difference in size. According to Figure 7, the slices using the ppapiry domain are
approximately 5% smaller than the slices using the pg ¢y domain.

5.2. Analysis Time (RQ3)

Analysis Time After Slicing (Parity Analysis)

100% 120%
| |

80%
|

40%
|

Analysis time (% of original time)
60%
|

20%
|

0%
L

Concrete slice Abstract slice

Domain of slice

Figure 8: Boxplot showing the analysis time of the slices as a percentage of the analysis time of the original
program

First, we plot the results of the benchmarks in a boxplot. For every program, we computed the relative
analysis time for concrete and abstract slices by dividing them by the analysis time of the corresponding
original program. This normalises the data by showing it as a percentage of the original analysis time. In
the boxplot in Figure 8, we see that, in general, the abstract slices using the ppap;ry domain are analysed
approximately 20% faster than the concrete slices. To confirm this, we do a statistical analysis to see
the difference in the time it takes to analyse the concrete slices compared to the abstract slices. For all
following statistical tests, we select a significance level of 0.05.

We use a one-sided paired Wilcoxon signed-rank test [13] to compare the analysis times of the slices,
so that the null hypothesis is that there is no significant difference between the analysis time of abstract
and concrete slices and the alternative hypothesis is that the median of the analysis times of the concrete
slices is higher than the median of the analysis times of the abstract slices. We observe a W statistic
of 482174 and a p-value of 2.200 x 10716, As the p-value is extremely low, it is below the chosen
significance level of 0.05 and we reject the null hypothesis. We accept the alternative hypothesis and
can conclude that the median analysis time of the concrete slices is greater than the median analysis
time of the abstract slices for the ppagiry domain, confirming the results of the boxplot in Figure 8.

Answer RQ3. In Figure 8, we see that the abstract slices are analysed approximately 20% faster
than the concrete slices. From our statistical analysis, we can confirm that the median analysis time
of the concrete slices is greater than the median analysis time of the abstract slices for the ppagiry
domain.

6. Limitations & Future Work

The first limitation of our work is that our abstract slicer is an intraprocedural slicer. In real world
scenarios, programs typically consist of multiple procedures. Future work could focus on extending the
abstract slicer to slice interprocedurally, which would be more applicable for real use cases. Additionally,
an interprocedural abstract slicer has the potential to slice large parts of the program, as procedures

that do not influence the properties of the slicing criterion could be sliced away completely. This would
likely significantly improve the speed of the static analysis that we want to run on the abstract slices.

Another limitation of our work is that our implementation is limited to numerical domains. This
limited the kind of programs that we could use to evaluate our abstract slicer. Future work could
investigate if the improvements that we measured on numerical domains would hold for complex
domains that might be influenced by most operations, or if abstract slicing is only useful for simple
domains where it is clear that many operations do not influence the property.

Finally, if we want to speed up static analysis by first creating an abstract slice for the program,
we should take into account that the slicing itself also takes time. Ideally, the time it takes to slice
combined with the time it takes to analyse the abstract slice should be less than the time it takes to
analyse the original program. Otherwise, the overhead caused by the abstract slicing would negate the
improvement in analysis time. We did not test how long it takes to slice a program using our abstract
slicer, as the implementation is not optimised for efficiency. Future work could focus on creating an
optimised implementation of an abstract slicer to investigate if abstract slicing is a good preprocessing
step to improve the efficiency of static analyses.

7. Conclusion

In this paper, we presented an intraprocedural abstract slicer for Scheme programs by modifying
an existing abstract slicing framework with the goal of using these abstract slices to improve the
efficiency of static analyses by abstract interpretation. For this reason, we adapted the abstract slicer to
produce executable abstract slices that can be analysed by an abstract interpreter. Next, we provided
an implementation of the abstract slicer for Scheme programs in the Monarch framework. We used
the implementation of abstract domains and the abstract interpreter from the framework to make the
abstract slices specific to the static analyses defined in the framework. Finally, we ran benchmarks on a
data set of randomly generated programs with a varied amount of set!-expressions. We found that
in general, the abstract slices are smaller and faster to analyse than the corresponding concrete slices.
Additionally, we discovered that there is a significant difference in the sizes of the slices of the pggy and
Prarrry dOmains.

References

[1] P.Cousot, Abstract interpretation, ACM Computing Surveys (CSUR) 28 (1996) 324-328.

[2] P.Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints, in: Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL ’77), Association for Computing
Machinery, 1977, p. 238-252. d0i:10.1145/512950.512973.

[3] M. Christakis, C. Bird, What developers want and need from program analysis: an empirical
study, in: Proceedings of the 31st [EEE/ACM International Conference on Automated Software
Engineering (ASE ’16), Association for Computing Machinery, 2016, p. 332-343. doi:10.1145/
2970276.2970347.

[4] M. D. Weiser, Program Slices: Formal, Psychological, and Practical Investigations of an Automatic
Program Abstraction Method, Ph.D. thesis, 1979.

[5] N. Allen, B. Scholz, P. Krishnan, Staged points-to analysis for large code bases, in: B. Franke (Ed.),
Compiler Construction, Springer Berlin Heidelberg, 2015, pp. 131-150.

[6] L Mastroeni, D. Zanardini, Abstract program slicing: An abstract interpretation-based approach to
program slicing, ACM Transactions on Computational Logic 18 (2017). doi:10.1145/3029052.

[7] P. Cousot, Abstract interpretation: From 0, 1, to oo, Intelligent Systems Reference Library 238
(2023). d0i:10.1007/978-981-19-9601-6_1.

[8] F. Tip, A survey of program slicing techniques., 1994.

http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/2970276.2970347
http://dx.doi.org/10.1145/2970276.2970347
http://dx.doi.org/10.1145/3029052
http://dx.doi.org/10.1007/978-981-19-9601-6_1

[9] D. W. Binkley, S. Danicic, T. Gyiméthy, M. Harman, A. Kiss, B. Korel, A formalisation of the
relationship between forms of program slicing, Science of Computer Programming 62 (2006)
228-252.

[10] D. W. Binkley, S. Danicic, T. Gyiméthy, M. Harman, A. Kiss, B. Korel, Theoretical foundations of
dynamic program slicing, Theoretical Computer Science 360 (2006) 23-41.

[11] M. Weiser, Program slicing, IEEE Transactions on Software Engineering 10 (1984) 352-357.
doi:10.1109/TSE. 1984.5010248.

[12] J. Krinke, PROGRAM SLICING, 2005, pp. 307-332. doi:10.1142/9789812775245_0011.
[13] F. Wilcoxon, Individual Comparisons by Ranking Methods, Springer New York, New York, NY,
1992, pp. 196-202. doi:10.1007/978-1-4612-4380-9_16.

A. Property Preservation Rule System for Scheme Programs

————— PP-SKIP
PPA(G, s)

PPP(G, e) Yool =Gx)(o(x) =G(z)([e]’(0))
PP?(G, (define x e))

PP-ASSIGN-DEFINE

PP(G, e) Vool f=G(x)(o(x) =G(z)([]’ (o))
PP?(G, (set! x e))

PP-ASSIGN-SET

PP%(G,e1) .. PPeilal®(g e,
PP-CONCAT
PPA(G, (begine; ... e,))
PPN (G, e) PP (G, ey)
PP-IF
PPP(Gi |Gy, (ifbesey))
PPP(G, (define x1 e1)) PPen-1e1B)(G (define z, e,)) PPA«(G, e) I
PPB(Q, (Iet ((331 61) (xn en)) €b))
PRIMITIVE(Op) PP3(G, e1) Ppen-1(-e(B)(G e,)
PP-APP

PP?(G, (op ey ... €3))

Figure 9: The pp-sysTEM for Scheme

http://dx.doi.org/10.1109/TSE.1984.5010248
http://dx.doi.org/10.1142/9789812775245_0011
http://dx.doi.org/10.1007/978-1-4612-4380-9_16

B. Agreement Propagation Rule System for Scheme Programs

PPA(G, e)

Geigr O

{g}B €1 {gl} {971—1}en71("el(ﬁ)) €n {gn}
{G}? (begin e; ... €,) {Gn}

G-CONCAT

g, ¢'(x)

Vy. ~(y ~mnnpr €)f Vy # 2.G(y) = G'(y) G-ASSIGN-DEFINE
{G}? (define z e) {G'}
g, g'(x)

Vy. ~(y ~menpar € Wy #2.G(y) = G'(y)
{G}P (set! z e) {G'}

G-ASSIGN-SET

{9} s 05 {G'}

G-IF1
{G}7 (ifbes ep) {G')
Wy oy S 07 G s G (G s 4G
{Go GG} (ifbes ep) {G'}
{g}ﬁ (define T 61) {gl} {gn—l}enil(”el(ﬁ)) (dEﬁne T en) {gn} {gn}en(“el(ﬁ)) €p {g/} G-LET
{g}ﬁ (let (z1 €1) ... (T, €5)) €1) {g/}
prmirveop) (G)' e (1) . (G}t e (@)

{G}° (op €1 ... €,) {G'}

Figure 10: The G-sysTem for Scheme

	1 Introduction
	2 Background
	2.1 Abstract Interpretation
	2.2 Program Slicing

	3 An Abstract Slicer for Scheme
	4 Executable Abstract Slicing
	4.1 Labelling Irrelevant Expressions
	4.2 Live Variables Analysis
	4.3 Dummy Values

	5 Evaluation
	5.1 Slice Size (RQ1 & RQ2)
	5.2 Analysis Time (RQ3)

	6 Limitations & Future Work
	7 Conclusion
	A Property Preservation Rule System for Scheme Programs
	B Agreement Propagation Rule System for Scheme Programs

