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Abstract

Self-Admitted Technical Debt (SATD) refers to instances where developers knowingly introduce suboptimal
solutions into code and document them, often through textual artifacts. This paper provides a comprehensive
state-of-practice report on the development and adoption of SATD detection tools. Through a systematic review
of the available literature and tools, we examined their overall accessibility. Our findings reveal that, although
SATD detection tools are crucial for maintaining software quality, many face challenges such as technological
obsolescence, poor maintenance, and limited platform compatibility. Only a small number of tools are actively
maintained, hindering their widespread adoption. This report discusses common anti-patterns in tool development,
proposes corrections, and highlights the need for implementing Findable, Accessible, Interoperable, and Reusable
(FAIR) principles and fostering greater collaboration between academia and industry to ensure the sustainability
and efficacy of these tools. The insights presented here aim to drive more robust management of technical debt
and enhance the reliability of SATD tools.
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1. Introduction

Technical Debt (TD) broadly refers to suboptimal code or design choices that compromise long-term
software maintainability [1]. Within this domain, self-admitted technical debt (SATD) refers to instances
where developers knowingly document suboptimal code implementations, often through comments
in the source code [2]. Detecting and managing SATD has become increasingly important due to its
significant impact on long-term software maintainability [3]. Over the past decade, various tools and
approaches have been proposed to automate the detection of SATD, reflecting a growing recognition of
its importance to software maintainability. However, despite theoretical advancements, the transition
from proposed solutions to widely accessible, practically implementable tools remains a significant
challenge in the field.

Several studies have developed automated approaches to identify SATD in source code comments,
with tools such as SATDBailiff [4] and DebtHunter [5] enabling more effective tracking and management
of SATD instances. These tools are critical for managing technical debt, as SATD is prevalent in software
projects, affecting 2.4% to 31% of files. SATD can persist for extended periods, with a median lifespan
ranging from 18 to 172 days and, in some cases, surviving for over 1,000 commits [6]. The availability
of reliable tools facilitates better identification and management of SATD, helping developers address
technical debt and improve overall software quality.

This paper presents a state-of-practice report on the current landscape of SATD detection tools.
Based on a recently completed systematic literature review [7], it provides an evaluation of the available
software tools, assessing their functionality and limitations across various dimensions, including acces-
sibility, platform compatibility, and performance in real-world applications. In addition to examining
the practical aspects of these tools, this paper identifies recurring anti-patterns—such as poor main-
tenance, lack of interoperability with modern platforms, and inadequate documentation—that hinder
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their broader adoption and effectiveness. Based on this analysis, we propose actionable corrections
to these anti-patterns to improve the sustainability, usability, and future-proofing of SATD detection
tools. Our findings offer insights into the current gaps in the state-of-practice and suggest practical
improvements that can drive more robust and reliable SATD management in software development.

This paper is articulated as follows: Section 2 presents the related work and reviews existing research
on SATD detection tools, focusing on their development, adoption, and challenges. Section 3 summarizes
the methodology and categorises the tools based on their functionality and availability. Section 4
identifies common anti-patterns in SATD tools availability, while Section 5 proposes actionable strategies
for combating these anti-patterns. Finally, Section 6 concludes the paper.

2. Related work

Research software plays a crucial role in modern science, but its unavailability or malfunction can
have serious repercussions. Lack of access to software and data hinders replication of studies, wastes
resources on reinventing existing tools, and limits research opportunities [8]. Many published papers
fail to provide accessible data or documentation on outlier handling, impeding reproducibility [9]. At the
same time, insufficient software engineering practices in research can undermine Findable, Accessible,
Interoperable, and Reusable (FAIR) principles [8], and the absence of source code compromises peer
review and may bias subsequent work [10]. To address these issues, experts have long recommended
adopting reproducible research practices, which involve publishing both papers and their computational
environments [11, 12]. This approach can serve as a minimum standard for evaluating scientific claims
when full independent replication is not feasible, ultimately enhancing the reliability and transparency
of computational research [12].

Researchers have shared tools to identify SATD to facilitate empirical studies and improve software
maintenance. These tools, such as SATDBailiff [4] and SATD Detector [13], use text mining and machine
learning techniques to automatically detect SATD in source code comments, commit messages, pull
requests, and issue trackers [14]. Studies have shown that SATD is common in software projects,
affecting 2.4%-31% of files [2], and can be effectively identified using automated approaches with high
precision and recall [15, 16]. Researchers have also explored specific types of SATD, such as “on-hold"
SATD [17], and investigated the gap between admitted and measured technical debt [18]. These tools
and studies contribute to better understanding and managing SATD, improving software quality and
maintenance practices.

3. Methodology

To evaluate the current state-of-practice of software tools designed to detect SATD, we conducted a
systematic literature review (SLR) of academic literature and available tools [7]. The review employed
search terms such as: (“self-admitted technical debt" OR SATD) OR (“technical debt" AND NLP) AND (detect*
OR identif”™ OR predict*) AND (“software engineering" OR “software development"). We intentionally
used a broad search string without specifically including the term “tool" This approach was intentional
to capture as many SATD detection approaches as possible, ensuring a comprehensive review and
minimizing the risk of overlooking relevant studies.

This study builds upon the SLR that identified 68 papers on SATD detection approaches. While the
SLR provided a detailed analysis of these approaches, the focus of this paper is narrower, centering
specifically on tools identified through the review. We analyze their accessibility and practical utility,
highlighting gaps and proposing actionable solutions to address identified anti-patterns. By presenting
these contributions, this paper complements the SLR by emphasizing practical insights that can guide
the development and improvement of SATD detection tools.

From these 68 studies, we carefully reviewed each paper to determine which ones not only proposed
an approach but also offered a prototype or ready-to-use tool. We attempted to access each tool through
the links or repositories provided in the papers. Tools were classified into three categories:



+ Accessible and functional: Tools that could be successfully accessed and run.
+ Inaccessible or broken link: Tools with dead or missing links, making them unavailable.

+ Obsolete or non-functional: Tools that could be accessed but were incompatible with modern
platforms or could not be run successfully.

Out of the 68 papers, 60 primarily focused on methodologies, frameworks, or approaches without
providing prototypes or implemented tools. These papers enriched our understanding of SATD detection
but did not meet the criteria for tool evaluation in this study.

Table 1
SATD detection tools proposed from 2014-2024 - | stands for ‘Identification’, and C for ‘Categorization’
Name Ref. Year Task Description Category
DebtViz [14] 2023 C A tool that detects, classifies, visualizes, and monitors Accessible
SATD, categorizing several debt types on a single platform
A browser  [19] 2022 C A browser extension using an ML model to automatically  Inaccessible
extension classify SATD types in rOpenSci R packages.
SATDBailiff [4] 2022 | A tool designed to mine, identify, and track SATD Accessible
FixMe [20] 2021 C A GitHub bot that is developed to detect, monitor, and no-  Broken link
tify developers about On-hold SATD in their repositories
DebtHunter [5] 2021 1,C A machine learning-based tool for detecting SATD Accessible
SATD De- [13] 2018 | A Java library and Eclipse plug-in that automatically de- Obsolete
tector tects SATD in comments and integrates with an IDE for

easier management

eXcomment [21,22] 2015 | A tool designed to parse Java source code and fetch code  Broken link
comments to identify SATD

As shown in Table 1, three tools, namely DebtViz [14], SATDBailiff [4], and DebtHunter [5], are cur-
rently accessible. However, two tools, FixMe [20] and eXcomment [21, 22], have broken links. Another
tool, described as “A browser extension” in its paper [19], does not provide a valid link (inaccessible).
Additionally, SATD Detector [13] is obsolete due to incompatibility with newer environments.

4. Anti-patterns in SATD tools availability

The state of SATD detection tools presents significant implications for researchers and practitioners.
Many tools are outdated or incompatible, limiting the reliability of empirical studies and real-world
applications [23]. Below, we isolate the implications of the unavailability of SATD detection tools.

« Reliability of findings - A limited number of functional SATD tools restricts the generalizability of
experimental results. Using only a few tools can fail to capture the variety of SATD identification
techniques, increasing the risk of non-representative findings and affecting reproducibility across
different programming languages and projects [24].

« Bias in analysis - SATD tools employ unique algorithms, which may introduce bias in analyses.
If only a few tools are used, researchers risk favoring certain types of SATD while neglecting
others, limiting comprehensiveness. Access to a diverse range of tools is essential for balanced
detection [25].

« Incomplete coverage of SATD - SATD encompasses various debt types, including code, design,
and documentation debt [4]. Each type presents unique challenges and implications for software
quality and maintainability. However, many existing SATD detection tools are designed to target
specific debt types, often focusing narrowly on code-level debt. This limited scope can result in
critical aspects of SATD—such as architectural design flaws or insufficient documentation—being



overlooked. Such gaps in detection not only skew research conclusions but also hinder effective
debt management practices in real-world projects [26].

« Technological obsolescence - Outdated tools and broken links highlight issues regarding software
maintenance in the SATD detection community. Obsolescence hampers usability and sustainabil-
ity, making it difficult for practitioners to adopt these tools. Continuous updates and adherence
to best practices are crucial for maintaining relevance and accessibility [23]. Technological obso-
lescence is particularly evident in tools like SATD Detector, which became incompatible with
modern platforms after its initial release.

To ensure long-term sustainability, it is vital to foster community collaboration in tool develop-
ment, incorporating FAIR principles to enhance the usability of SATD detection tools [27].

« Sustainability and reproducibility - Maintaining SATD tools through academic-industry partner-
ships can align development with real-world needs. Regular benchmarking and case studies
will help sustain tool accuracy and reliability [4]. By promoting open-source collaboration, the
community can mitigate technological risks and enhance the longevity of SATD tools [28].

5. Combating the anti-patterns

The sustainability of SATD detection tools is crucial for both academia and industry. Many tools become
unavailable or outdated shortly after publication, hindering long-term technical debt management [23].
Below we discuss some practical actions that the SATD community should discuss for the sustainability
of its SATD detection tools.

Promoting diverse tools Promoting a diverse range of SATD detection tools is vital for improving
technical debt identification. By leveraging multiple tools that employ varied detection techniques, it
becomes possible to minimize the occurrence of false positives and false negatives, thereby improving
the reliability of the results. Studies indicate that combining diverse static analysis tools enhances
detection coverage while maintaining manageable false alarm rates [25].

Additionally, creating comprehensive, centralized archives for SATD tools is crucial for ensuring
their long-term availability and accessibility [29]. These archives serve as repositories where tools
can be preserved and maintained, preventing them from becoming inaccessible or forgotten over time.
Furthermore, developing adaptable tools enhances resilience against obsolescence [24]: adaptable tools
should evolve alongside changing software environments, ensuring that they remain relevant and
effective in detecting SATD even as programming languages, frameworks and methodologies advance.

Implementing FAIR principles Adherence to FAIR principles is crucial for the sustainability of
SATD tools. Guidelines from other fields, such as biomedical research, offer valuable insights into
how FAIR principles can be applied [26]. Tools like FAIRshare and OpenEBench can support FAIR
compliance in SATD detection tool development [26, 30]. The FAIR-USE40S guidelines extend these
principles to include User-Centered, Sustainable, and Equitable aspects, ensuring tools are reusable,
reproducible, and equitable [27].

Building on these principles, a key strategy involves hosting SATD tools on reliable, long-term
repositories. For example, using GitHub' and preserving scientific research outputs (including tools) on
platforms like Zenodo? helps maintain accessibility, sustainability, and adherence to FAIR principles.
These platforms not only safeguard the tools from obsolescence, but also enable widespread sharing,
thereby maintaining accessibility and sustainability. Features like version control are vital for tracking
changes and maintaining historical records of tool development [31]. This level of transparency
encourages collaborative improvement and strengthens the reproducibility of results—both crucial
aspects of research and software engineering.

'https://github.com
*https://zenodo.org
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Explicit versioning further enhances the traceability and clarity of tools [32], making it easier for
developers and researchers to locate and identify specific releases. As a result, replicating experiments,
addressing issues, or building upon existing work becomes more straightforward. Documenting how a
tool has evolved over time allows users to choose the version that best fits their needs. For instance,
GitHub integrates versioning seamlessly with common workflows, ensuring consistency in updates
and deployments, while Zenodo assigns Digital Object Identifiers (DOIs) to each version, providing
persistent and reliable references [33].

Open-source practices for SATD tools Open-source practices are essential for the sustainability
and continued evolution of SATD detection tools. By adopting open-source models, developers can
encourage active maintenance and community involvement, significantly reducing the risk of tool
obsolescence [28]. Open-source ecosystems provide a foundation for collective innovation, where
developers, researchers, and practitioners can contribute to the evolution of SATD tools.

One of the core benefits of integrating open-source practices with FAIR principles is the enhancement
of transparency and collaboration. This transparency facilitates peer review and validation and acceler-
ates innovation by enabling developers to build upon each work. Adopting the FAIR-USE40S guidelines
further strengthens this approach by emphasizing User-Centered, Sustainable, and Equitable aspects
[27]. These guidelines ensure that SATD tools address diverse user needs, support long-term usability,
and promote equitable access to software, enhancing their cross-domain relevance and societal impact.

A cornerstone of open-source best practices is straightforward and comprehensive documentation.
This includes user guides, developer instructions, and metadata detailing the tool’s purpose, dependen-
cies, and functionalities. Well-maintained documentation empowers both novice and experienced users
to effectively utilize and contribute to the tool’s development [11, 34, 35].

Furthermore, adopting licenses that support open-source distribution, such as MIT, GPL, or Apache
licenses, is essential [36]. These licenses clarify usage rights, encourage reuse, and protect intellectual
property, fostering trust among users and contributors. Encouraging the use of standards and modular
architectures can also improve interoperability and integration with other tools, making SATD detection
solutions more versatile and adaptable to various contexts.

Enhancing academia-industry collaboration Fostering collaboration between academia and
industry is crucial for aligning SATD tools with real-world needs and challenges. Academic research
often focuses on theoretical advancements and experimental frameworks, while industry seeks practical
solutions that can be seamlessly integrated into existing workflows. Bridging this gap ensures that
SATD tools address academic research questions and provide tangible benefits to practitioners managing
technical debt in live software systems. Tool benchmarking is a critical step in this process, offering a
way to validate the effectiveness, scalability, and usability of SATD tools across diverse scenarios. By
utilizing real-world datasets and conducting case studies, researchers can demonstrate the practical
applicability of their tools, building trust and interest within the industry [4]. These collaborative efforts
also help identify gaps between research innovations and industry requirements that will enable the
iterative refinement of tools to better serve both domains [37].

Continuous evaluation through practical use cases is key to ensuring that SATD detection tools remain
adaptable and valuable over time [38]. By integrating these tools into actual software development
and maintenance environments, both researchers and industry stakeholders can observe how the tools
perform under varying conditions, such as different programming languages, team sizes, or project
complexities. This hands-on feedback allows developers to refine features, optimize performance, and
improve user experience. Academia and industry partnerships can also lead to the development of
shared benchmarks, datasets, and metrics, fostering standardization and comparability across tools.
These efforts promote robust and sustainable tool development practices that directly address industry
pain points. Ultimately, such collaboration enhances the effectiveness of SATD detection tools and
contributes to improving software quality, reducing technical debt, and fostering innovation in software
engineering.



Table 2
Mapping between anti-patterns, practical actions and tools affected

Anti-pattern Practical Action Tool Affected

Reliability of findings Promoting diverse tools DebtViz, A browser extension, SAT-
DBailiff, FixMe, DebtHunter, SATD
Detector, eXcomment

Bias in analysis Promoting diverse tools DebtViz, A browser extension,
FixMe, DebtHunter

Incomplete coverage of SATD  Enhancing academia-industry collabo-  DebtViz, A browser extension, SAT-
ration DBailiff, FixMe, DebtHunter, SATD
Detector, eXcomment

Technological obsolescence  Implementing FAIR principles, SATD Detector
Open-source practices for SATD tools

Sustainability and repro- Open-source practices for SATD tools A browser extension, FixMe, eXcom-
ducibility ment

Table 2 further elaborates on these challenges by mapping anti-patterns to specific practical ac-
tions and the tools affected. To combat reliability of findings and bias in analysis, the promotion of
diverse tools is emphasized. Tools such as DebtViz, SATDBAailiff, FixMe, DebtHunter, SATD Detector,
eXcomment, and browser extensions are highlighted as solutions, as leveraging multiple tools reduces
inconsistencies and minimizes false positives and negatives. For incomplete coverage of SATD, fostering
academia-industry collaboration is proposed to align tool development with real-world needs and ensure
comprehensive detection. Tools such as DebtViz, SATDBailiff, FixMe, DebtHunter, SATD Detector, and
browser extensions can benefit from this collaboration, resulting in improved validation and effective-
ness. To address technological obsolescence, the implementation of FAIR principles and open-source
practices is recommended, particularly targeting tools like the SATD Detector. Finally, sustainability
and reproducibility can be ensured through open-source practices, which encourage community-driven
maintenance and accessibility. Tools such as browser extensions, FixMe, and eXcomment are cited
as examples that can benefit from these practices, promoting longevity and reproducibility in SATD
detection.

6. Conclusion

The analysis of SATD detection tools reveals several challenges that hinder their practical adoption and
usefulness in research and practice. Many tools suffer from accessibility issues, such as outdated or
broken links, reducing their availability for developers and making empirical research more difficult.

To address these issues, the SATD community should adopt strategies that ensure the long-term
sustainability and usability of these tools. Applying the FAIR principles can help maintain the relevance
of SATD tools and foster stronger collaboration between academia and industry. Such cooperation
ensures that tools evolve alongside real-world software development needs and remain accessible for
ongoing research.

In addition, open-source practices should be adopted to encourage community-driven maintenance
and development, making tools publicly available and encouraging collaborative contributions. Further-
more, regular benchmarking and real-world case studies should be implemented to ensure the relevance
and reliability of these tools in diverse settings.

By focusing on sustainability, accessibility, and collaboration, the SATD detection community can
create a more diverse and robust ecosystem of tools, better suited to managing technical debt. This
will enhance software quality in both academic research and industrial practice, ensuring that SATD
remains manageable as software systems grow in complexity.
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