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Abstract
Unmanned Aerial Vehicle (UAV) technology is widely used in military operations, emergency rescue missions,
agriculture, and logistics. An improved sparrow search algorithm is proposed in this paper, inspired by the
cooperative work and distributed search behavior of sparrows. Chaotic mapping is introduced into this algorithm
to initialize a more homogeneous population distribution, which broadens the search space and improves the
chances of finding a globally optimal solution. The biological mechanisms of individual sparrow populations are
improved by introducing competitive starvation behavior to optimize the population performance. An adaptive
differential evolution strategy is incorporated to improve the global search capability and convergence speed.
The algorithm is compared with other classical and new algorithms on benchmark functions and the results show
the superiority of the algorithm. The algorithm is applied to path planning for UAVs and the improved algorithm
is compared with other path planning algorithms in simulation tests, the results show that the improved sparrow
search algorithm achieves better path planning performance in a shorter number of iterations,with convergence
speed improving by approximately 50%. This research is of great significance in improving the efficiency and
quality of UAV path planning and is expected to have a positive impact in practical applications.
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1. Introduction

With the rapid progress and continuous innovation of Unmanned Aerial Vehicle (UAV) technology, its
application potential in many fields has been greatly stimulated, triggering a wide range of in-depth
application interests and explorations, such as military reconnaissance, emergency rescue, agricultural
monitoring, and logistics and distribution [1, 2, 3, 4], and UAVs have become the tool of choice for all
kinds of tasks, and their wide application has brought significant economic and social benefits. In this
trend, UAV path planning plays a crucial role as a core element to ensure mission execution. However,
traditional path planning methods perform poorly when facing problems such as complex environments,
dynamic obstacles, and multi-task collaboration, limiting the potential of UAV applications [5, 6].

Currently, several path planning algorithms have been applied to deal with the UAV route planning
problem, including the A-algorithm [7], the PRM algorithm [8], the artificial potential field method
[9], the Rapidly Exploring Random Trees method [10], and the Dijkstra method [11]. However, these
traditional path planning methods often face challenges in complex, unstructured environments. In
recent years, researchers have continued to delve into new path planning methods, some of which
incorporate bionic population intelligence optimization algorithms, providing new possibilities in
the field. Examples include traditional genetic algorithms [12], particle swarm algorithms [13], and
newly proposed whale optimization algorithms [14], grey wolf algorithms [15], and bat algorithms [16].
However, these algorithms still face a number of challenges, including search efficiency, vulnerability
to local optimal solutions.
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To address these challenges, an improved sparrow-based search algorithm is proposed in this paper.
The sparrow search algorithm [17] is a swarm intelligence algorithm inspired by the behavior of sparrow
groups foraging for food and avoiding natural enemies. It is characterized by distributed search and
cooperative work, where multiple individuals work cooperatively and collaboratively to quickly and
efficiently plan the UAV’s navigational path.

2. Related work

Bionic population intelligence optimization algorithms are widely used in the field of UAVs for their
outstanding capabilities. Xu et al. [18] innovatively integrated the theory of co-evolution into the
ABC algorithm, and developed a new global optimization-oriented artificial bee colony algorithm. The
algorithm demonstrates superior performance in terms of both the effectiveness in finding the optimal
solution and the speed of convergence to the solution compared to the original algorithm. On the
other hand, Phung and Ha [19] extended a traditional particle swarm optimization algorithm by fusing
chemotaxis behavior and relocation strategies, key mechanisms in BFO, with the aim of improving
the algorithm’s ability to explore and exploit optimal solutions in the search space. In addition, Zhang
et al. [20] proposed a UAV trajectory planning algorithm based on improved Harris Hawk Swarm
optimization, which introduces adaptive chaos sums and B-spline curves to improve the performance.
While, Jarray et al. [21] proposed an innovative parallel co-evolutionary strategy combined with the
gray wolf optimization algorithm to intelligently partition the complex search space into multiple
low-dimensional subspaces, which is effective and superior in terms of several performance metrics.

The study of 3D path planning for multi-UAV collaboration is more complex and challenging, Kumar
et al. [22] proposed an innovative reinforcement learning-enhanced variable weight gray wolf optimiza-
tion algorithm for efficient path planning challenges in complex scenarios. Simulation experiments
verify that the algorithm generates safe and efficient path planning strategies for UAVs. Li et al. [23]
proposed an optimization algorithm that combines a bio-inspired neural network with an augmented
Harris hawk optimization algorithm. After experimental validation, the algorithm demonstrates sig-
nificant superiority during dynamic obstacles. Tan et al. [24] proposed an optimized artificial bee
colony algorithm for the multi-objective path planning problem. Through simulation experiments, the
algorithm successfully demonstrates its optimization ability in time efficiency and priority processing
in a multi-UAV path planning application in a mountainous scenario. Oyana et al. [25] proposed a
moth-flame optimization algorithm, which was improved based on reverse learning, and the exper-
imental results showed that the proposed algorithm had good stability. Shi et al. [26] proposed an
innovative multi-population Drosophila optimization algorithm for UAV trajectory planning in complex
threat environments, which is a nonlinear and constrained optimization problem, and incorporated the
offspring competition mechanism, and the experiments verified that it had excellent results. He et al.
[27] proposed a timestamp segmentation model to reduce the cost of multi-UAV coordination, and then
improved the combination of particle swarm optimization and symbiotic organism search to effectively
combine exploration and exploitation capabilities, and experiments verified the good performance of
the proposed algorithm.

In general, these algorithms still face some problems, including search efficiency, the effect of local
optimal solutions, and at the same time, 3D path planning in multi-UAV cooperative scenarios is
more complicated, in order to solve these problems, this paper proposes an improved sparrow search
algorithm based on the multi-individual cooperative work and distributed search behaviors of sparrows
in order to improve the efficiency and quality of UAV path planning, and to plan the UAV path planning
quickly and efficiently navigation path of UAV.

3. Methods

Xue and Shen [17] proposed the sparrow search algorithm as a new intelligent optimization method. The
algorithm simulates the sparrow’s food-seeking mechanism, feeding strategy, and antipredator behavior,
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which has been widely used in different fields [28, 29, 30]. The main advantages of the algorithm are that
it is easy to implement, has fewer parameters, and has a strong global search capability. Nevertheless,
the algorithm still has some drawbacks, including the tendency to fall into local optimal solutions when
facing complex, high-dimensional problems, the relatively simple communication foraging strategy
among individual sparrows, and the lack of dynamic adjustment mechanism. To cope with these
challenges, we introduce chaotic mapping, competitive starvation mechanism, adaptive differential
evolution and other strategies into the proposed ISSA algorithm.

3.1. Chaotic mapping-based population initialization

In the preliminary stage of the sparrow search algorithm, the initial location distribution of individuals
exerts a significant influence on the algorithm’s global search performance. In order to overcome the
search limitations due to the inhomogeneity of the initial position distribution, chaotic sequences are
introduced as the initialization strategy. Chaotic sequences are characterized by randomness, uniformity
and orderliness, and do not easily fall into a repetitive state, so they can provide more random and
uniform initial positions of individuals for population initialization [31].

The generation process of chaotic sequence involves initial individual positions, chaos parameters
and random vectors. First of all, the initial individual position 𝑥0 can be initialized by generating a
random vector with dimension dim, rand(1, dim) means to generate a random vector with dimension
dim, as shown in equation (1).

𝑥0 = rand(1, dim) (1)

Then, the new chaotic sequence values are obtained by iteratively using the chaotic sequence
generation rule. 𝑥0 is the current value of the chaotic sequence and 𝜇 is the chaos parameter as shown
in equation (2).

𝑥0 = 𝜇 · (1− 𝑥0) · 𝑥0 (2)

Finally, the individual position 𝑥new is updated by mapping the chaotic sequence to the specified
search space range, as shown in equation (3).

𝑥new = 𝑥0 · (ub− lb) + lb (3)

where ub and lb are the upper and lower limits respectively.
The use of chaotic sequences ensures a rational distribution of individual sparrows and increases

population diversity.

3.2. Biological improvements based on competitive hunger mechanisms

In the predatory behavior of sparrows, joiners tend to jump directly to the best position near the
finder in order to compete for food. However, resources in nature are always limited, and even the
best position occupied by the discoverer has a food supply that cannot satisfy the demand of a large
number of joiners, and this scarcity of food resources leads to competition among sparrows. In addition,
when sparrows face food shortage or encounter unforeseen circumstances that prevent them from
obtaining food, they are exposed to the risk of starvation, which may ultimately lead to the death of
individuals. To address this biological problem, a model for the mechanism of competitive starvation is
proposed in this paper. We set the amount of food found by each finder to be limited, and this amount
is determined by the finder’s fitness value. Discoverers with higher fitness values usually find more
food. Joiners make choices based on the amount of food they find, prioritizing those with the most food
to compete for it. Lower-ranked joiners will turn to finders with less food in order to avoid starvation.
This selection strategy reflects the flexibility and adaptability of sparrows during foraging. When an
individual encounters an unexpected situation and dies of starvation due to long-term unavailability
of food, the original sparrow individual is discarded and a new sparrow individual is generated, and
this renewal strategy helps to simulate the turnover of individuals and the dynamic balance of the
population in the natural environment in order not to fall into local optimality [32].
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The starvation death mechanism is divided into two cases: first, it counts the number of predators of
the discoverer and selects the discoverer that is most favorable to it. The second is to generate a new
individual sparrow when it encounters an accident that prevents it from obtaining food.

3.2.1. Competition mechanism

The amount of food that each finder finds during its search determines whether other individuals choose
to follow it. The amount of food reflects the fitness of the finder: the more food means the less fitness.
Joiners tend to choose the finder that finds more food. Define 𝐺𝑧 as the amount of food found by the
𝑧-th finder as shown in equation (4):

𝐺𝑧 =
1

𝑓 (𝐷𝑧)
, 𝑧 = 1, 2, . . . , 𝑁𝑛𝑢𝑚 (4)

where 𝑁𝑛𝑢𝑚 represents the number of discoverers and 𝐷𝑧 represents the 𝑧-th discoverer.
The joiner chooses to follow the discoverer according to the selection probability. Denote 𝑝𝑧 as the

probability that the 𝑧-th finder is selected, and the selection probability is proportional to the number
of food items found by each finder, as shown in equation (5):

𝑝𝑧 =
𝐺𝑧∑︀𝑁𝑛𝑢𝑚

𝑧=1 𝐺𝑧

(5)

Define 𝐽𝑧 as the joiner of the 𝑧-th finder as shown in equation (6):

𝐽𝑧 = round (𝑝𝑧 ·𝐾) (6)

where 𝐾 is the scale factor and is the rounding operation.
The improved joiner position update formula is shown in equation (7):

𝑋𝑡+1(𝑖, 𝑗) =

{︃
𝑄 · exp

(︁
𝑋𝑡(𝑖,𝑗)

worst −𝑋𝑡(𝑖,𝑗)

)︁
, if 𝑖 > 𝑁/2

𝐷𝑡+1(𝑧, 𝑗) +𝑋𝑡(𝑖, 𝑗)−𝐷𝑡+1(𝑧, 𝑗) · cos(𝜃) ·𝐴+ 𝐿, otherwise
(7)

Equation (7) illustrates that the lower ranked will select the discoverer who identifies a lesser quantity
of food and the top ranked joiner will prioritize the discoverer with the most food. Where 𝜃 is a random
angle and 𝑄, worst, 𝐴, 𝐿 are constants.

3.2.2. Hunger mechanism

Sparrows die when they encounter accidents and cannot obtain food or when they are imprisoned for
an extended duration. 𝑡𝑖 denotes the number of iterations without updating the position of individuals.
When the individual in the population exceed the critical threshold 𝑇𝑐 and no updates are made to their
positions, the sparrow is deemed to be in an accidental state. At this point, the sparrow will starve to
death. At this juncture, the original sparrow individual is discarded and a novel sparrow individual is
generated to achieve the purpose of resurrection from the dead and better population foraging. The
position update is shown in equation (8):

𝑋𝑖,𝑗
𝑡+1 =

{︃
𝑋𝑖,𝑗

𝑡 +𝑋𝑖,𝑗
𝑡 · randn() if 𝑡𝑖 ≥ 𝑇𝑐

𝑋𝑖,𝑗
𝑡 otherwise

(8)

where 𝑋𝑖,𝑗
𝑡 denotes the current position at moment 𝑡; randn() is a random number that conforms to

a normal distribution, and 𝑡𝑖 denotes the 𝑖th moment; 𝑇𝑐 is a threshold for determining whether to
trigger the state update.
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3.3. Global search based on adaptive differential evolution

In order to enhance the global and local search capabilities of the basic sparrow search algorithm, an
adaptive scaling factor 𝐹𝛼 is proposed in this paper, which adaptively and dynamically adjusts the
magnitude of the variation operation according to the current population fitness. If the distribution of
population fitness is more consistent, 𝐹𝛼 tends to be close to 1, which reduces the population variability
and helps stabilize the local search. If the distribution of population fitnesses is widely different, 𝐹𝛼

tends to be close to 0, which enhances the population variability and helps to search the whole solution
space more extensively [33, 34].

For each individual 𝑥(𝑖) in the current population, two individuals 𝑝𝑋𝑟1 and 𝑝𝑋𝑟2 are randomly
selected from the current population, and the difference between these two individuals is calculated
and summed with the current individual to produce a new individual as shown in Equation (9):

𝑥0(𝑖) = 𝑥(𝑖) + 𝐹𝛼 · (𝑝𝑋𝑟1 − 𝑝𝑋𝑟2) (9)

where 𝐹𝛼 is the adaptive scaling factor.
In the differential evolution operation of global difference enhancement, the historical best position is

globally perturbed. Two individuals 𝑋𝑟1, 𝑋𝑟2 , which will be used to introduce differences, are randomly
selected from the current population. Introducing the adaptive scaling factor 𝐹𝛼, the variance-enhanced
position 𝑥0(𝑖) is calculated by the differential evolution formula as shown in equation (10):

𝑥0(𝑖) = 𝑝𝑥(𝑖) + 𝐹𝛼 · (𝑋𝑟1 −𝑋𝑟2) (10)

Evaluate the adaptive performance of the new location, if it demonstrates superior adaptability,
update the location of the individual to 𝑥0(𝑖), otherwise keep it unchanged, which helps to cope better
with the optimal solution in complex problems.

4. Experiments

4.1. Experiments on benchmark functions

4.1.1. Experimental settings

The ISSA algorithm is compared with other heuristic algorithms, including PSO [13], WOA [14], GWO
[15], and SSA [17], on six basic test functions, which are shown in table 1, where F1-F3 represent high-
dimensional single-peak benchmark functions, F4-F5 depict high-dimensional multiple-peak benchmark
functions, and F6 exemplifies a low-dimensional multiple-peak benchmark function.

Table 1
Benchmark functions.

Functions Dimension Range fmin

𝐹1(𝑥) =
𝑛∑︀

𝑖=1

𝑋2
𝑖 30/100 [-100,100] 0

𝐹2(𝑥) = max
𝑖

{|𝑥𝑖| , 1 ≤ 𝑖 ≤ 𝑛} 30 [-100,100] 0

𝐹3(𝑥) =
𝑛∑︀

𝑖=1

𝑖𝑥4
𝑖+ random [0, 1) 30 [-1.28,1.28] 0

𝐹4(𝑥) =
𝑛∑︀

𝑖=1

[︀
𝑋2

𝑖 − 10 cos (2𝜋𝑥𝑖) + 10
]︀

30 [-5.12,5.12] 0

𝐹5(𝑥) = −20 exp

(︃
−0.2

√︃
1
𝑛

𝑛∑︀
𝑖=1

𝑋2
𝑖

)︃
− exp

(︂
1
𝑛

𝑛∑︀
𝑖=1

cos (2𝜋𝑥𝑖)

)︂
+ 20 + 𝑒 30 [-32,32] 0

𝐹6(𝑥) = −
10∑︀
𝑖=1

[︁
(𝑥− 𝑎𝑖) (𝑥− 𝑎𝑖)

𝑇
+ 𝑐𝑗

]︁−1

4 [0,10] -1
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4.1.2. Experimental results and analysis

Table 2 presents a comparison of the results obtained from each algorithm following 30 independent
runs. The population size was fixed at 30, with a maximum of 500 iterations permitted for each
algorithm. Additionally, the optimal, mean, and standard deviation values for each algorithm are
provided. Subsequently, each algorithm was assigned a rank based on the mean value, with the standard
deviation serving as a tiebreaker in the event of identical means. As illustrated in the table, the ISSA
algorithm exhibits exemplary optimization characteristics. The ISSA algorithm identifies the optimal
solution within the F4 range, indicating that the algorithm demonstrates robust optimization search
capabilities. All evaluation indices are closely aligned with the optimal value, and the comprehensive
ranking is also at the forefront, suggesting that the method exhibits superior performance in terms
of optimization search accuracy and stability. The experimental results demonstrate that the ISSA is
more effective than the standard SSA when compared with SSA, indicating that the ISSA algorithm is
superior to the original algorithm.

Table 2
Results of experiments.

PSO WOA GWO SSA ISSA

Best 1.3413 1.30 · 10-74 2.06 · 10-27 5.61 · 10-8 1.77 · 10-99

F1 Mean 2.05155 8.73 · 10-75 1.05 · 10-27 1.12 · 10-7 1.41 · 10-94

Std 1.004445 6.06 · 10-75 1.43 · 10-27 7.94 · 10-8 1.99 · 10-94

Best 1.6895 47.1786 7.82 · 10-7 11.89 1.27 · 10-66

F2 Mean 1.98 62.4542 7.98 · 10-7 12.78 1.99 · 10-44

Std 0.24875 14.7851159 4.24 · 10-7 1.24 3.45 · 10-44

Best 2.4036 0.00055161 0.001225 0.085361 6.26 · 10-5

F3 Mean 26.121133 0.00217907 0.0024123 0.19202 0.00017
Std 29.94828 0.002348 0.00108917 0.124449 0.000106

Best 149.638 0 5.68 · 10-14 39.7983 0
F4 Mean 178.0989 3.78967 · 10-14 3.26 56.7125 0

Std 28.925 6.56 · 10-14 4.802073 24.3103 0

Best 1.9203 4.44 · 10-16 9.99 · 10-14 2.0133 4.44 · 10-16

F5 Mean 2.35 4.00 · 10-15 1.03 · 10-13 3.053433 4.44 · 10-16

Std 0.5611 3.55 · 10-15 6.15 · 10-15 0.90246 0

Best -10.5364 -10.1167 -10.5353 -3.8354 -10.5364
F6 Mean -10.5364 -6.7897 -10.53443 -3.171033 -10.5364

Std 0 2.88126 0.00080829 0.57626 0

4.2. Path planning experiment

4.2.1. Experimental settings

A 100 km × 100 km × 80 km digital elevation map is used to build a 3D mountainous terrain in this
paper, as shown in Fig. 1. Comparison with other heuristic algorithms, including PSO [13], GWO [15],
IGWO [35], SSA [17], and HEGOGWO [36], is made through experiments.

7 obstacle areas with center coordinates (40,20), (20,40), (60,80), (80,60), (20,50), (70,20), (10,20) are
set up in this experiment. The starting points of the 4 UAVs are set to coordinates (20,10,5), (10,20,5),
(15,20,5), (20,20,5), (20,20,5), and end at coordinates (90,90,5). The dimension is set to 30, the number of
runs is 20, and the maximum number of iterations is 100.
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Figure 1: Original map.

4.2.2. Fitness evaluation function

Minimizing the path length is to ensure that the path is as short as possible. 𝐷(𝑖) denotes the path
length of the ith UAV, 𝑁𝑛𝑢𝑚 denotes the current number of path segments of that UAV, (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)
denotes the starting point of the ith segment of the path, and (𝑥𝑖+1, 𝑦𝑖+1, 𝑧𝑖+1) denotes the starting
point of the 𝑖 + 1th segment of the path which is also the end point of the ith segment of the path
by calculating the sum of Euclidean distances between neighboring points on the path. As shown in
equation (11):

𝐷(𝑖) =

𝑁𝑛𝑢𝑚−1∑︁
𝑖=1

√︁
(𝑥𝑖+1 − 𝑥𝑖)

2 + (𝑦𝑖+1 − 𝑦𝑖)
2 + (𝑧𝑖+1 − 𝑧𝑖)

2 (11)

Path smoothness is to ensure that the path is smooth. Minimizing the number of path segments
helps to reduce the zigzagging of the path, thus making the UAV flight smoother, which is essential for
improving the stability and navigation efficiency of the whole system. 𝑛 denotes the number of UAVs,
and 𝑁𝑛𝑢𝑚 denotes the number of path segments of the current UAV, the number of different parts the
path has been divided into. The overall form of the objective function is a linear combination of the
path length and the number of path segments, and the final fitness value 𝑓𝑖𝑡 is obtained by summation,
as shown in equation (12):

𝑓𝑖𝑡 =

𝑛∑︁
𝑖=1

𝐷(𝑖) +

𝑛∑︁
𝑖=1

𝑁𝑛𝑢𝑚 (12)

By minimizing the objective function, a solution can be obtained that makes UAV path planning more
reasonable and optimal while considering multiple factors. The multi-UAV system realizes efficient,
safe and cooperative 3D path planning.

4.2.3. Experimental results and analysis

The results of the experiments are presented in table 3, and ISSA was the best and stable in each
experiment.

The threat region path planning is shown in figure 2, where (a) is SSA path planning and (b) is ISSA
path planning. By observing the threat region path planning graph in figure 2, both the improved sparrow
search algorithm and the sparrow search algorithm realize the path planning from multiple UAVs to the
target point. However, the trajectory of the improved sparrow search algorithm is smoother and the
trajectory of the initial sparrow search algorithm is more tortuous. In terms of terrain fluctuations, the
enhanced sparrow search algorithm fits the terrain fluctuations more closely and shortens more paths.
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Table 3
UAV track planning results.

PSO GWO IGWO HEGOGWO SSA ISSA

Best 845.0922 832.5414 830.5136 837.6544 833.7588 830.1961
Mean 846.0614 833.4184 832.3312 841.1024 835.3796 830.3023
Std 0.9639 0.8106 1.6546 5.6769 1.5641 0.1364

(a) SSA path planning (b) ISSA path planning

Figure 2: Path planning with threats.

In the course of devising a route to the desired destination, the initial sparrow search algorithm plans a
path for the UAV that is more affected by the obstacle environment, and has a larger left-right deviation
in the movement toward the target point. And the improved sparrow search algorithm successfully
circumvents the obstacle influence.

(a) Top view of SSA path planning (b) Top view of ISSA path planning

Figure 3: Top view of path planning contour.

The top view of the path planning profile is shown in figure 3, where (a) is SSA path planning and (b)
is ISSA path planning. By observing the trajectory projection in figure 3, the sparrow search algorithm
planning the UAVs to go to the target point faces the obstacle influence and multi-copter coordinated
planning, where one of the UAVs deviates from the shorter distance of traveling in a straight line and
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travels around the road. The improved sparrow search algorithm coordinates the traveling routes of
multiple UAVs extremely well, and the traveling routes of multiple UAVs are roughly kept in the shortest
distance. The routes of the improved sparrow search algorithm are smoother compared to the sparrow
search algorithm, greatly reducing the traveling distance.

Figure 4: Objective function convergence grap.

The convergence diagrams of the different algorithms are shown in figure 4. ISSA has the best
initialization, and in the iteration process, the search efficiency is also better than SSA, and the final
iteration is optimal.

When considered in conjunction with figures 2-4, it becomes evident that SSA reaches a local
optimum, while ISSA is capable of effectively circumventing the threat range and devising a trajectory
with optimal outcomes, enhanced precision, and accelerated convergence. As evidenced in table 3, all
indexes of ISSA are optimal, indicating that the algorithm exhibits robust optimization seeking and
stability performance. The efficacy of the ISSA algorithm is substantiated, demonstrating its capacity to
swiftly and accurately navigate beyond the constraints of the danger zone and plan the UAV’s optimal
trajectory.

5. Conclusion

This paper proposed an improvement to the performance of 3D path planning for UAVs in an obstacle
environment through the implementation of an enhanced version of the sparrow search algorithm. In
order to overcome the limitations of the sparrow search algorithm, which is susceptible to converging
on a local optimum and uneven distribution of initialized population when searching for the optimum,
various improvement strategies, such as chaotic sequence, starvation death mechanism and adaptive
differential evolution, were introduced. The initialization stage of the population was augmented with
additional randomness to guarantee a more uniform distribution of the initial positions of sparrow
individuals, thereby enhancing the diversity of sparrow populations. It was necessary to enhance
the biological mechanisms of sparrow populations in order to optimize population performance and
circumvent local optima. The objective was to overcome the limitations of traditional search methods,
accelerate the search for optimal solutions, and enhance the algorithm’s global search capability. To
ascertain the efficacy of the algorithm, the algorithm is tested and compared with other meta-heuristic
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algorithms on the benchmark function, and the experimental results show that the algorithm has better
accuracy and robustness, which verifies its feasibility and effectiveness. The algorithm is applied to
UAV path planning and simulated in a simulated environment, considering path length and safety, and
the experimental results show that compared with other algorithms, the algorithm outperforms the
comparative algorithms in terms of accuracy, smoothness, convergence speed and stability. Specifically,
the algorithm achieves better path planning performance in shorter iterations, with convergence speed
improving by approximately 50%. The algorithm significantly improves the convergence performance,
effectively avoids potentially dangerous paths, obtains superior navigation trajectories, and improves
convergence accuracy.

While the algorithm offers significant improvements in accuracy and search efficiency, it does
introduce some computational overhead due to the merging of multiple strategies. In addition, it remains
to be seen how it will scale and perform in more diverse and complex environments. Consequently,
future work will focus on two aspects: first, optimizing the multi-UAV collaborative route planning
scheme to enhance the overall efficiency; second, researching the real-time route replanning strategy in
dynamic environments.

Declaration on Generative AI: The authors have not employed any generative AI tools.
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