Taxonomy for Patent Classification: A Step Towards
Intelligent Patent Analytics

Flham Motamedi’*, Inna Novalija® and Luis Rei’

! University of Primorska, Koper, Slovenia

! Jozef Stefan Institute, Ljubljana, Slovenia
?Jozef Stefan Institute, Ljubljana, Slovenia
3Jozef Stefan Institute, Ljubljana, Slovenia

Abstract

In this study, we proposed a knowledge taxonomy for patents, called KnowMap, which aligns with the CPC
schema and reduces the number of classes to 83 at the lowest hierarchical level. We classified patents into these
fine-grained classes within a multi-label setting, fine-tuning a distilled version of the RoOBERTa model for this
purpose. We employed two sampling techniques: (i) random sampling and (ii) conditional random sampling, and
found that conditional random sampling led to less pronounced class imbalance, resulting in more generalisable
outcomes. Additionally, our results showed higher F1-Macro scores for minority classes, which will be further
explored in future work.
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1. Introduction

Exploring and leveraging patent-related data is a key task in both scientific and industrial domains.
Patent analytics offers a comprehensive view of emerging innovative technologies across various fields.
Consequently, business and research initiatives, including European projects, depend on analysing and
enhancing patent datasets with specialised innovation-related taxonomies.

One such initiative, the enRichMyData project [1], provides an open software toolbox with practical,
robust, and scalable components. This toolbox supports organisations in enriching their data with
reference information they may not fully understand and aids data providers in making their data
reusable and accessible for data enrichment processes.

In this paper, we propose a novel hierarchical knowledge taxonomy that aligns with the widely
used Cooperative Patent Classification (CPC) schema. The CPC classification system organises patents
into hierarchical taxonomies, which helps streamline internal processes and enhances the efficiency of
search queries. In the first level of the CPC hierarchy, there are nine sections, which are divided into
classes, subclasses, groups, and subgroups. Each level of this hierarchy can have several codes ending
in approximately 250,000 classification labels [2]. Our taxonomy merges several class entities within
the CPC schema based on the scope of the knowledge field and the number of patents associated with
each class. This approach addresses the challenge of reducing the large number of class entities in the
CPC schema in a way that differs from previous works and provides a benchmark taxonomy for future
research. In this study, we also classified patents into the fine-grained classes defined by our proposed
taxonomy in a multi-label setting.
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2. Related Work

Patent documents contain various types of information, including text [3]. The textual content of a
patent is divided into several sections, such as the title, abstract, claim, and description [2]. The title
and abstract are shorter than the description but still provide relevant information for classification. Li
et al. [4] evaluated various lengths of the abstract and title, finding that using the first 100 words of title
and abstract resulted in the best classification performance in their study.

Various classification systems exist for organising patents [5]. In this work, we focus on the CPC
schema. Kamateri et al. [2] discussed several potential challenges that artificial intelligence technologies
face in patent classification. One such challenge is the extensive number of class labels. As an example,
the CPC has around 250,000 labels.

Patent classification is a multi-label classification problem since every patent can belong to several
knowledge fields [6, 7]. Given the large number of classes at the lowest level of the taxonomy tree,
the performance of automatic models in predicting such fine-grained categories is limited [4, 8, 9].
Several previous studies have focused on higher levels of the hierarchy, limiting classification to broader
categories such as sections, classes, or subclasses within the taxonomy [10]. Bekamiri et al. [10] fine-
tuned the SBERT model to predict labels at the subclass level (i.e., 663 class labels) using a multi-label
formulation. Aroyehun et al. [11] similarly truncated the IPC hierarchy at the subclass level and
predicted these labels by transferring knowledge from two higher levels (section and class) to the lower
level (subclass). While it remains valuable to use an automatic model that can narrow down applications
to higher levels of the taxonomy tree, this approach has limitations. One such limitation is that the
choice of target class labels does not depend on the scope of the knowledge area. More established and
expansive areas may benefit from directing experts to detailed groups, while less developed areas may
be adequately served by broader classifications.

3. Methods and Materials

In this work, we developed a knowledge field taxonomy using CPC schema labels. We also classified
patents into KnowMap’s fine-grained classes by fine-tuning some pre-trained models.

3.1. Data Acquisition and Pre-processing

We used the Google Patents Public Datasets on BigQuery ! and applied preprocessing and sampling
techniques. The dataset contains various information, with the abstract offering a brief overview of the
patent’s novelty and the description providing more detail. For classification, we concatenated the title,
abstract, and description, filtering out documents with fewer than 100 words, as prior studies suggest
this improves classifier performance [4].

In developing the taxonomy, we considered both the shared knowledge across fields and the distribu-
tion of documents within each defined class. To have sufficiently abstract classes, we set a threshold for
the minimum number of patents in each detailed group at the lowest level of the hierarchy. Prior to
counting the documents in each class, we applied a deduplication step as part of the preprocessing to
remove duplicate and near-duplicate texts, which may refer to the same patent [12, 13, 14].

Deduplication was performed using Locality Sensitive Hashing (LSH) [15, 16, 17]. In particular,
we used MinHash to approximate the similarities between the documents. Each document was first
transformed into a set of n-grams (i.e., in our case 1-grams, 2-grams, and 3-grams). LSH then grouped
documents with similar signatures into the same buckets, ensuring that only documents within the
same bucket were compared in detail. A Jaccard similarity threshold of 0.9 was set, meaning documents
with a similarity score greater than 0.9 were considered duplicates. After deduplication, we generated
a dataset sample using two techniques: (i) random sampling and (ii) conditional random sampling,
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which included documents in the sample only if their class had fewer than 20,000 documents. Random
sampling resulted in 1,092,991 samples, and conditional random sampling, resulted in 1,244,469 samples.

3.2. Knowmap Taxonomy Generation

We developed the KnowMap taxonomy by refining the CPC hierarchy and its class entities to create a
more abstract representation of patents. Starting from the highest level, we manually merged groups
at each level based on shared knowledge and document counts. While all major CPC sections were
retained at the first level, groups with fewer than 40,000, 20,000, and 9,000 documents were merged at
levels 2, 3, and 4, respectively.

3.3. Patent Classification Method and Experimental Setup

We formulated the classification problem as a multi-label problem, in which each document is assigned
to one or multiple knowledge fields. In this study, we aimed to classify the patents into the fine-grained
classes in the lowest level of the proposed taxonomy (i.e., 83 classes). We used the pre-trained language
model distilroberta-base, a distilled version of RoOBERTa [18, 19]. To adapt this model for our classification
task, we fine-tuned it by adding a classification head using the AutoModelForSequenceClassification
class from the Hugging Face library 2. This classification head processes the hidden state of the first
token through a fully connected dense layer. Given that our task is multi-label classification, we applied
a sigmoid function to the output logits for each class to obtain probabilities. The implementation of
classification method is available online .

For model training, we used a learning rate of 4e-5 with a linear scheduler, a weight decay of 0.1, and
trained for up to 5 epochs with early stopping. The best checkpoint was selected to prevent overfitting,
based on validation accuracy. The sampled datasets were split into training, validation, and test sets
with ratios of 0.8, 0.1, and 0.1, respectively. To maintain the class distribution across these sets, we used
stratified splitting * proposed by Sechidis et al. [20].

4. Results and Analysis

In this section, we first present the KnowMap taxonomy and then evaluate the performance of classifiers
in categorising patents into fine-grained classes of the taxonomy.

4.1. KnowMap Taxonomy

Following the methodology described in Sec. 3.2, we established a hierarchy with the root node as
level 0 and level 4 as the lowest level. There are nine classes at level 1 and 83 classes at the lowest level
of the hierarchy.

Our hierarchical labels, including merged classes and document counts, are available online °. The
taxonomy retains the nine CPC sections at the first level, while subsequent levels include merged CPC
groups, all detailed in the shared online source.

4.2. Classification Results

In this study, we classified patents into the fine-grained classes at the lowest level of the hierarchical
taxonomy, which includes 83 labels. To gain further insights into the datasets generated by the two
sampling techniques, we analysed the number of samples per class in each dataset. Fig. 1 illustrates this
information through box plots for both sampling techniques. The plots highlight the first quartile (Q1),
median, third quartile (Q3), minimum, and maximum values for each sampling method.

*https://huggingface.co/

*https://github.com/elmotamedi/KnowMap-Taxonomy
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Figure 1: Distribution of sample counts per class for test sets generated by the two sampling techniques:
(i) random sampling and (ii) conditional random sampling.

Based on Fig. 1, random sampling resulted in a broader range of document counts per class, with a
minimum of 59 samples and a maximum of 128,417 samples per class. The conditional random sampling
technique produced a narrower range, with a minimum of 1,086 samples and a maximum of 81,241
samples per class. For our analysis, we categorise classes into three groups: small classes (those in
the first quartile), medium classes (those in the second and third quartiles), and large classes (those
above the third quartile). With this categorisation, conditional random sampling appears to offer more
balanced class distributions compared to random sampling, potentially enhancing the generalisability of
classification models trained on this dataset. We present the classification results on both the validation
and test sets, applied to the datasets generated by the two sampling techniques in Tab. 1.

Table 1
Classification Results for two sampling techniques: (i) random sampling and (ii) conditional random sampling.
Metric Dataset (Random Sampling) Dataset (Conditional Random Sampling)
Micro-F1 (Val) 0.76 0.77
Macro-F1 (Val) 0.86 0.83
Micro-F1 (Test) 0.77 0.77
Macro-F1 (Test) 0.90 0.88

As observed from the results, the Macro-F1 score is higher than the Micro-F1 score, which may show
that the model performs better for minority classes compared to majority classes. To gain more insights
into these results, we generated a plot (see Fig.2), showing the F1 scores compared to the number of
documents in each class.

The plot shows that the Macro-F1 score is higher for minority classes compared to majority classes
for both sampling techniques. The gap between the line plots for random sampling and conditional
random sampling (Fig. 2b) highlights the presence of larger classes in the dataset created by conditional
random sampling. To provide further insights into the F1-macro scores for small, medium, and large
classes across each sample, we have created box plots summarising these scores for each class group
and sampling method. The minimum, median, and maximum F1-macro scores for each class group are
presented in Fig. 3. Although the increasing trend in F1-macro scores for smaller classes is still visible,
it is less pronounced compared to the random sampling technique.
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Figure 2: Relation of F1 scores and class sizes in the test set for two different sampling methods.
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Figure 3: Box plots of F1-Macro scores for small, medium, and large classes under both random and conditional
random sampling techniques.

5. Discussion and Conclusions

In this work, we proposed a knowledge taxonomy that aligns with the CPC schema, reducing the
number of classes to 83 at the lowest level while ensuring a minimum number of documents for each
class in the studied dataset.

We created two datasets from the preprocessed original data using two sampling techniques: (i)
random sampling and (ii) conditional random sampling. The conditional random sampling technique
resulted in class entities with a minimum of 1,086 samples, substantially more than the minimum
sample size achieved through random sampling. This suggests that the results from conditional random
sampling may be more generalisable compared to those from random sampling.

In terms of performance, classifiers showed comparable results with both sampling techniques. Both
datasets were unbalanced, with the imbalance being less pronounced in the dataset created through
conditional random sampling. The classification results exhibited higher F1-Macro scores compared
to F1-Micro scores, likely due to the unbalanced nature of the datasets. We conjecture that the lower
F1-Macro scores for larger classes may result from the varied nature of documents within those classes,
possibly due to imprecise patent assignments in the CPC system or the broader scope of these knowledge
fields. Our future research will focus on analysing the classes that the classifier struggles with.

To improve classification performance, we plan to address the dataset imbalance using techniques
specifically designed for multi-label classification with long-tailed distributions. Additionally, we aim to
explore the use of a larger or alternative pre-trained model to potentially enhance classification results.
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A. Online Resources

The sources referenced in this paper, including the proposed taxonomy and the classification imple-
mentation, are available at:

+ KnowMap taxonomy and classification implementation
+ Multi-label stratified K-fold implementation

+ Google Patents Public Datasets on BigQuery

« Hugging Face library
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