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Abstract
In this paper, an approach for concept extraction from documents using pre-trained large language models
(LLMs) is presented. Compared with conventional methods that extract keyphrases summarizing the important
information discussed in a document, our approach tackles a more challenging task of extracting all present
concepts related to the specific domain, not just the important ones. Through comprehensive evaluations of
two widely used benchmark datasets, we demonstrate that our method improves the 𝐹1 score compared to
state-of-the-art techniques. Additionally, we explore the potential of using prompts within these models for
unsupervised concept extraction. The extracted concepts are intended to support domain coverage evaluation of
ontologies and facilitate ontology learning, highlighting the effectiveness of LLMs in concept extraction tasks.
Our source code and datasets are publicly available at https://github.com/ISE-FIZKarlsruhe/concept_extraction.
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1. Introduction

Concept/Keyword extraction is recognized as a fundamental task in Natural Language Processing
(NLP), crucial for identifying and extracting noun phrases that summarize and represent the main
topics discussed in a document [1]. It has been extensively utilized in various applications, including
information retrieval, text summarization, and text categorization [2].

However, it is not only helpful in those fields of research but also in ontology evaluation methods.
Usually, competency questions (CQs) are created to specify the ontology requirements and are used later
for the evaluation of the ontology [3]. In cases where the ontology is already developed and no CQs
and domain experts are available, other approaches need to be applied. [4] presents four approaches:
(1) Gold Standard-based, (2) Corpus-based, (3) Task-based, and (4) Criteria based. The idea behind
corpus-based methods is to compare the ontology with concepts extracted from a text corpus that
significantly covers the given domain. Thus, a good approach is needed to extract those concepts from
a given text.

The task of concept extraction can be formally defined as follows: Given a document 𝐷 rep-
resented as a sequence of words 𝐷 = [𝑤1, 𝑤2, 𝑤3, ..., 𝑤𝑛], the goal is to extract a set 𝐶 =
(𝑐1, 𝑠1), (𝑐2, 𝑠2), ..., (𝑐𝑚, 𝑠𝑚) where 𝑐𝑖 consists of one or multiple words that best represent the topics
of the document 𝐷. The additional score 𝑠𝑖 ∈ [0, 1] provides a confidence value of the approach to be
able to specify the importance of each extracted concept further. The score can also be used to rank the
phrases and only extract the top 𝑝 concepts.

Concept extraction is typically categorized into two types: (i) extracting present keyphrases (ex-
tractive), which are directly found within the input document such that 𝑘𝑖 ∈ 𝐷, and (ii) extracting
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absent keyphrases (abstractive), which are generated even though they do not appear explicitly in the
document [5].

In this paper, we concentrate on extracting present concepts from documents using large language
models (LLMs) because this approach best fits the task of ontology evaluation. Ontology evaluation [6]
methods are used to judge an ontology’s content with respect to a reference framework throughout its
development lifecycle. Since ontology evaluation includes verification and validation, it’s important to
trace each extracted concept back to where it appears in the original reference framework. Extractive
methods naturally fulfill this requirement by ensuring that all identified concepts are grounded in the
original document, enabling a more accurate assessment of an ontology’s coverage and relevance. The
approaches are evaluated on two common datasets for concept extraction, which are about scientific
publications. We show that with a simple yet powerful and reproducible setup, we can surpass the
state-of-the-art approaches.

Our contributions include:

• Utilizing large language models for effective concept extraction from scientific documents.
• Providing comprehensive evaluations on benchmark datasets.
• Demonstrating improved performance over state-of-the-art techniques in extracting present

concepts.

The paper is structured as follows: Section 1 introduces the problem and outlines the objectives of
this study. Section 2 reviews the existing literature on concept extraction and large language models,
highlighting the gap this study aims to fill. Section 3 details the methodology, the experimental setup,
and the various prompts tested. Section 4 presents the evaluation metrics, the datasets used, and the
results of the experiments, with a detailed analysis of the performance of different models and prompts.
Section 5 concludes the paper, summarizing the key findings and outlining directions for future work.

2. Related Work

Several comprehensive surveys provide a thorough overview of concept extraction techniques [1, 5, 7].
This paper focuses specifically on unsupervised methods, which offer several advantages such as domain
independence and the lack of a requirement for training data. These methods are currently recognized
as state-of-the-art in terms of performance.

Recent advancements in unsupervised concept extraction have led to the development of several
innovative approaches that do not rely on annotated data. Statistical methods, such as TF-IDF [8]
and YAKE [9], identify significant words by calculating statistical features like word frequencies and
co-occurrences, thereby selecting candidates for keyphrases.

Graph-based methods have also been widely explored. TextRank [10] represents text as a graph,
where words serve as nodes and their co-occurrences act as edges. These methods employ node ranking
algorithms, such as PageRank [11], to rank words and extract the top-k words as keyphrase candidates.
Bougouin et al. [12] introduced TopicRank, which clusters candidate phrases into topics in the initial
phase and subsequently ranks these topics based on their significance within the document. Positionrank
[13] further enhances this approach by incorporating the positional information of words in the text to
improve ranking accuracy.

Embedding-based models have emerged as another effective approach for keyphrase extraction.
EmbedRank [14], for instance, utilizes part-of-speech tagging to identify potential keyphrases from
a document. These keyphrases are then represented as low-dimensional vectors using a pretrained
embedding model and ranked according to their Cosine similarity to the document’s overall embedding
vector. This technique leverages the semantic representations provided by embedding models to improve
keyphrase extraction. MultPAX [15] employs semantic similarity between candidate keyphrases and
an input document using the pretrained embedding of BERT model. AutoKeyGen [16] constructs a
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Figure 1: Overall approach of ConExion.

phrase bank by combining keyphrases from all documents into a corpus, considering both lexical and
semantic similarities for selecting top candidate keyphrases for each input document. PromptRank
[17] is an unsupervised approach based on a pre-trained language model (PLM) with an encoder-
decoder architecture. PromptRank feeds the document into the encoder and calculates the probability
of generating the candidate with a designed prompt by the decoder to rank the candidates. A limitation
of PromptRank is that its performance heavily depends on the design of prompts and may not always
guarantee optimal results.

Recent efforts on pre-trained large language models, such as ChatGPT and ChatGLM, have demon-
strated promising performance using zero-shot prompts, inspiring the exploration of prompt-based
methods for keyphrase extraction [18]. However, these efforts are limited to ChatGPT and ChatGLM
in zero-shot prompts. While these models perform well in various NLP tasks without parameter tun-
ing, experimental results indicate that ChatGPT has significant room for improvement in keyphrase
extraction compared to state-of-the-art models. This gap is attributed to limited resource settings and
basic experimental configurations. More sophisticated methods, including complex prompt designs and
contextual sample construction, are necessary to optimize its performance. A comprehensive study
reports that models like GPT-3, InstructGPT, and ChatGPT show modest improvements in keyphrase
predictions [5]. Furthermore, existing research has primarily focused on two zero-shot prompts (ask-
ing for extraction of keywords and keyphrases from documents) and limited few-shot configurations
(1-shot and 5-shot asking to extract keywords), indicating a need for a more comprehensive study of
open-source LLM models with various prompts.

3. LLMs for Concept Extraction

The concept extraction approach uses various Large Language Models (LLMs) to identify and extract
keywords from input documents. Figure 1 shows the workflow. Initially, an input document is provided
containing the text from which concepts need to be extracted. This document and a specific prompt are
used for the extraction process. The prompts include a system prompt, a user prompt, and an assistant
prompt. The system prompt sets the context for the extraction task. The user prompt directly asks
the model to perform the extraction, and the assistant prompt is where the LLM outputs the extracted
keywords. Before the evaluation, the extracted concepts are further filtered because only concepts
present in the input document should be returned. Thus, it is easily possible to check if each extracted



concept is actually contained in the document and filter those that are not.
The LLM will generate natural language text as an answer. Even though it is asked to only return the

concepts separated with commas, various conversational statements can appear at the beginning of the
generated text, like "Sure, I’d be happy to help! Based on the information provided in the document ...".
Another issue is that the output format does not always need to fit the requested format which should
separate the concepts with commas.

To overcome all these problems, the extraction of the concepts, given the produced text, works as
follows: The text is split by tokens ",", ";", "*", and "\n"(newline). The reason for the first two is that the
LLM might separate the concepts not only by a comma but also by a semicolon. The star is used as a
separator because some models might also return a markdown formatted unordered list. Finally, the
newline is also included because conversational sentences or phrases are suffixed with a newline to
nicely format the output (most probably due to fine-tuning to a chat-style). The keywords that only
appear in the document are selected. Thus also those conversational sentences will be removed.

The task of concept extraction involves not only to extract the concepts themselves but also an
attached confidence score to finally rank the extracted concepts. An LLM usually does not provide a
confidence score in the generated output even though it is asked for it because, on the one hand, it is
difficult to generate numbers that reflect the confidence of the tokens previously generated, and on
the other hand, the training data usually prevent the model from generating such numbers (the model
often outputs sentences such as "As an LLM, I’m not able to provide confidence scores"). Therefore we
implemented another approach to extract the confidence scores of the model. When generating a new
token, the model computes a probability distribution over their entire vocabulary, where each token is
assigned a likelihood based on the model’s internal scoring function. To extract a confidence score for a
generated concept, we retrieve the probability assigned to each token in the phrase during generation
and compute the geometric mean of these probabilities, providing a single aggregated confidence value.
There are several generation strategies for how the next token is then generated. Greedy search, for
example, always selects the token with the highest probability such that the results are always the same
(given the same input tokens). Other approaches like multinominal sampling or contrastive search [19]
are non-deterministic because they sample the next token based on the computed distribution and thus
could generate different results. For reproducibility reasons, we selected the greedy search and finally
computed a confidence score for each extracted concept by multiplying the probabilities of all tokens
that form this concept.

For the prompt design, we chose to make a systematic analysis. To design the prompt configurations,
various search terms, and prompt setups were explored for effective concept extraction. We first started
with a simple prompt (see ZS Keywords in Table 1) but modified the search term to identify the most
suitable terminology. The search term is the word that is used to describe the task, e.g., "give me the
keywords/concepts/entities in this document," where keywords, concepts, and entities are the search
terms. Overall, five of those search terms are tried out, and the best-performing word is selected.

All other prompts are based on the previously selected prompt but extended in various ways. This
includes prompts with more precise domain information, situational contexts, and detailed task descrip-
tions. For example, the ZS + Domain prompt includes more precise domain information, guiding the
model to extract keyphrases related to specific fields such as Computer Science, Control, and Information
Technology (which are the topics of the selected datasets). The ZS + Extracting Context prompt
asks the model to act as a helpful assistant specifically for extracting keyphrases. The ZS + Expert
Context prompt requires the model to take on the role of an ontology expert to extract keyphrases.
Lastly, the ZS + Task Context prompt provides a detailed description of the extraction task, outlining
the description of keyphrases, and asking the model to identify these keyphrases within the document.
All previously mentioned prompts do not use any training example and are thus also called zero-shot
(ZS) prompts.

Few-shot (FS) prompts, on the other hand, utilize a specific number of examples from the training
data to guide the extraction process. This study uses prompts with one, three, and five examples. These
examples can be fixed, randomly selected, or chosen based on the closest embeddings to the training
data. The n-Fixed prompts use n training examples sampled from the training data and those are



Table 1
Prompt templates for extracting concepts.

Name Prompt
Zero-Shot (ZS)

ZS Keywords
User: Please give me the keywords that are present in this document and separate them with commas:
Assistant:

ZS Keyphrases
User: Please give me the keyphrases that are present in this document and separate them with
commas: Assistant:

ZS Concepts
User: Please give me the concepts that are present in this document and separate them with commas:
Assistant:

ZS Entities
User: Please give me the entities that are present in this document and separate them with commas:
Assistant:

ZS Topics
User: Please give me the topics that are present in this document and separate them with commas:
Assistant:

Zero-Shot with more domain information

ZS + Domain
User: Please give me the keyphrases related to the domains of Computer Science, Control, and
Information Technology that are present in this document and separate themwith commas: Assistant:

Zero-Shot with situational context

ZS + Extracting Con-
text

System: You are a helpful, respectful and honest assistant for extracting keyphrases from the provided
document. User: I have the following document: [DOCUMENT] Please give me the keyphrases that
are present in this document and separate them with commas: Assistant:

ZS + Expert Context
System: You are an ontology expert in extracting keyphrases from the document. User: I have the
following document: [DOCUMENT] Please give me the keyphrases that are present in this document
and separate them with commas: Assistant:

Zero-Shot with task description

ZS + Task Context

System: You are an expert in extracting keyphrases from documents. Keyphrases are important
multi- or single noun phrases that cover main topics of the document. User: I have the following
document: [DOCUMENT] Please give me the Keyphrases that are present in this document and
separate them with commas: Assistant:

Few-Shot (FS)

FS n-Fixed
For each training document 𝐷𝑖 and groundtruth keyphrases 𝐾𝑖 (𝑖 = 1 to 𝑛):

User: I have the following document: 𝐷𝑖

Please give me the keyphrases that are present in this document and
separate them with commas:
Assistant: 𝐾𝑖

User: Please give me the keyphrases that are present in this document and
separate them with commas:
Assistant:

FS n-Random

FS n-Closest

fixed during all test examples whereas n-Random prompts use n randomly selected examples from the
training data for each document in the test set. The n-Closest prompts select the top n examples in the
training set based on the topical similarity of the document that needs to be predicted. Computing the
similarity measure is done by embedding the training corpus using Sentence-BERT [20] and retrieving
the top-n closest documents given the embedded prediction document using cosine similarity. The
model ’all-mpnet-base-v2’ is used because of its superior quality across 14 diverse tasks from different
domains1. These categorically different prompts allow for a flexible and comprehensive approach to
concept extraction, accommodating varying levels of context and specificity required for different tasks.

Since each LLM model is trained on datasets specifically formatted as a chat history with user and
assistant roles, each model needs a different chat template e.g. a prompt for Llama2 model needs to
start with a special token "<s>" and each user prompt is encapsulated in instruction tokens "[INST]"
and "[/INST]". Thus, only the system, user, and assistant phrases are defined, and the final prompt is
generated by applying the correct chat template for the model currently being executed. This is done
by executing the apply_chat_template function of the Huggingface tokenizer2.

1https://www.sbert.net/docs/pretrained_models.html
2https://huggingface.co/docs/transformers/chat_templating

https://www.sbert.net/docs/pretrained_models.html
https://huggingface.co/docs/transformers/chat_templating


Table 2
Statistics of publicly available datasets used for evaluation. The columns are defined as follows: 𝑁𝑑𝑜𝑐: Number of
documents, 𝐴𝑣𝑔𝑑𝑜𝑐: Average document length (words), 𝑀𝑎𝑥𝑑𝑜𝑐: Maximum document length (words), 𝑀𝑎𝑥𝑐𝑜𝑛:
Maximum number of concepts per documents, 𝑀𝑖𝑛𝑐𝑜𝑛: Minimum number of concepts per documents, and
𝐴𝑣𝑔𝑐𝑜𝑛: Average number of concepts per documents.

Dataset Set 𝑁𝑑𝑜𝑐 𝐴𝑣𝑔𝑑𝑜𝑐 𝑀𝑎𝑥𝑑𝑜𝑐 𝑀𝑎𝑥𝑐𝑜𝑛 /
𝑀𝑖𝑛𝑐𝑜𝑛 /
𝐴𝑣𝑔𝑐𝑜𝑛

Concepts Distribution

1 2 3 4 ≥5

Inspec
Train 976 143.35 557 24 / 1 / 5.38 14.3 55.3 23.9 5.3 1.1
Test 486 135.73 384 25 / 1 / 5.55 14.3 58.3 22.5 3.9 1.0

SemEval2017
Train 350 160.51 355 28 / 2 / 9.44 24.8 34.9 18.9 8.8 12.6
Test 100 190.40 297 23 / 1 / 8.72 29.1 44.5 13.4 6.4 6.5

4. Evaluation

In this section, the ConExion approach is evaluated on two common datasets. All experiments are
executed on a server running RedHat with 256 GB of RAM, 2x64 CPU cores (2.6 GHz), and 2 Nvidia
A100 (40GB) graphics cards (depending on the model size, only 1 GPU is used).

4.1. Dataset

This study utilizes two publicly available datasets: Inspec [21], and SemEval2017 [22]. For each dataset,
documents without ground truth keyphrases were filtered out, and the statistics presented in Table 2
are based on the filtered documents used in our approach. The Inspec3 dataset comprises abstracts from
2,000 English scientific papers in the domains of Computers, Control, and Information Technology,
published between 1998 and 2002. The SemEval-20174 dataset contains abstracts from 500 English
scientific papers from ScienceDirect open access publications. The papers topics span computer/material
science and physics. Concepts were annotated by student volunteers and subsequently validated by
expert annotators. The training and testing split was included to ensure a fair comparison with other
traditional models. Additionally, examples from the training data were utilized in the prompts for
few-shot learning purposes, where the model generates outputs based on contextual examples provided
during prompting.

4.2. Evaluation Metrics

This section outlines the metrics used for evaluating concept extraction systems and presents the results
on commonly-used datasets. The performance of our concept extraction approach is assessed using
standard metrics: Precision, Recall, and 𝐹1-score [16]. Precision is calculated as the proportion of
correctly predicted concepts out of all predicted concepts. Recall measures the proportion of correctly
predicted concepts relative to the total number of concepts in the ground truth. 𝐹1-score is the harmonic
mean of Precision and Recall.

Many other works only report precision, recall, 𝐹1-score at 𝑘 whereas 𝑘 is usually set to 5, 10,
and 15 [23, 2, 7, 5, 15]. Given that the datasets usually contain less than nine keywords on average,
those measures do not represent meaningful information (especially 𝐹1@15 does not make any sense).
Nevertheless, we provide the values for 𝐹1@5 and 𝐹1@10 only for comparison possibilities to related
work and to estimate the quality of the attached confidence scores. Again, due to compatibility with
other works, the extracted concepts are further stemmed (but only for the scores at 𝑘) using the Porter
Stemmer from NLTK library5.

3https://huggingface.co/datasets/midas/inspec
4https://huggingface.co/datasets/midas/semeval2017
5https://github.com/nltk/nltk/blob/develop/nltk/stem/porter.py

https://huggingface.co/datasets/midas/inspec
https://huggingface.co/datasets/midas/semeval2017
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Precision, recall, 𝐹1-score at 𝑘 are computed as follows given a list of predicted concepts 𝐶 =
(𝑐1, 𝑐2, . . . , 𝑐𝑚) and target concepts 𝐶 ′ = (𝑐′1, 𝑐

′
2, . . . , 𝑐

′
𝑛):

The Precision at top-𝑘 (𝑃@𝑘) is defined as:

𝑃@𝑘 =
|𝐶 : 𝑘 ∩ 𝐶 ′|

|𝐶 : 𝑘|

Recall (𝑅@𝑘) measures the proportion of correctly matched concepts among all ground truth concepts:

𝑅@𝑘 =
|𝐶 : 𝑘 ∩ 𝐶 ′|
|𝐶 ′ : 𝑘|

The 𝐹1-score at top-𝑘 (𝐹1@𝑘) is the harmonic mean of 𝑃@𝑘 and 𝑅@𝑘:

𝐹1@𝑘 =
2 · 𝑃@𝑘 ·𝑅@𝑘

𝑃@𝑘 +𝑅@𝑘

whereas (𝐶 : 𝑘) represents the top 𝑘 concepts according to the confidence score.
Especially for the use case of ontology evaluation, not the top-𝑘 concepts are of interest but all

concepts that are relevant to the document. Thus, we cannot rely on methods that only do the ranking
of potentially many concepts but leave the decision of a good threshold to the user. As a result, only
precision, recall, and 𝐹1 are important and meaningful measures in this context.

4.3. Selected Large Language Models

In these experiments, we evaluated a diverse set of large language models to ensure coverage across both
open and closed models, varying in scale and architectural design. Specifically, we selected: Llama-2-
7b-chat-hf6, Llama-2-13b-chat-hf7, Llama-2-70b-chat-hf8, Llama-3-8B-Instruct9, Llama-3-70B-Instruct10,
Mistral-7B-Instruct-v0.311, Mixtral-8x7B-Instruct-v0.112, as well as GPT-3.5 Turbo13.

4.4. Evaluation Results

The evaluation of our approach was conducted using various types of prompts and different large lan-
guage models (LLMs) to extract concepts from the Inspec dataset. The performance metrics considered
are Precision, Recall, 𝐹1-score, 𝐹1@5, 𝐹1@10. The average number of extracted concepts (𝑁𝐸𝑋 ) is
included as well. This metric provides insight into how well the model aligns with the expected number
of concepts typically found in the dataset. By comparing the average number of extracted concepts to
the average number of present concepts in the dataset, we can better understand the model’s extraction
behavior and its tendency to over-extract or under-extract concepts. In the Inspec test dataset, the
average number of concepts is 5.55. Therefore, reporting 𝑁𝐸𝑋 helps in evaluating whether the model’s
output is consistent with this benchmark, ensuring a meaningful comparison of extraction performance
across different models and prompts.

Table 3 presents the results for different zero-shot (ZS) prompts on the Inspec dataset. In these
experiments, we tested several variations of the search terms (e.g., keywords, keyphrases, concepts,
entities, topics) to see how different prompt wordings affected performance. These were selected based
on their frequent appearance in prior literature on keyphrase and concept extraction. The results
indicate that the Llama3 70B model, when used with the search term keyphrases, achieved the highest

6https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
7https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
8https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
9https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
10https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
11https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
12https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
13https://platform.openai.com/docs/models/gpt-3-5-turbo

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://platform.openai.com/docs/models/gpt-3-5-turbo


Table 3
Precision, Recall, 𝐹1, 𝐹1@5, 𝐹1@10, and Average Number of Extracted Concepts (𝑁𝐸𝑋 ) for Inspec dataset. Best
results are highlighted in bold.

Prompt Model P R 𝐹1 𝐹1@5 𝐹1@10 𝑁𝐸𝑋

ZS Keywords

Llama2 7B 0.162 0.358 0.208 0.164 0.220 13.889
Llama2 13B 0.273 0.475 0.324 0.274 0.331 9.340
Llama2 70B 0.178 0.487 0.239 0.235 0.297 17.675
Llama3 8B 0.208 0.473 0.270 0.199 0.257 19.056
Llama3 70B 0.295 0.561 0.362 0.298 0.366 10.282
Mistral 7B 0.188 0.463 0.246 0.218 0.261 10.811
Mixtral 8x7B 0.255 0.616 0.333 0.267 0.331 13.551
GPT 3.5-turbo 0.272 0.71 0.369 0.291 0.354 15.146

ZS Keyphrases

Llama2 7b 0.207 0.419 0.256 0.230 0.278 9.154
Llama2 13b 0.193 0.297 0.214 0.200 0.220 4.821
Llama2 70b 0.235 0.492 0.293 0.283 0.355 11.619
Llama3 8B 0.297 0.597 0.373 0.313 0.379 10.922
Llama3 70B 0.354 0.591 0.414 0.362 0.422 8.582
Mistral 7B 0.216 0.464 0.272 0.238 0.286 12.883
Mixtral 8x7B 0.276 0.568 0.342 0.296 0.349 11.516
GPT 3.5-turbo 0.289 0.686 0.383 0.312 0.378 13.521

ZS Concepts

Llama2 7b 0.144 0.261 0.173 0.166 0.203 5.977
Llama2-13b 0.061 0.077 0.062 0.092 0.100 2.093
Llama2 70b 0.226 0.437 0.274 0.255 0.318 10.331
Llama3 8B 0.292 0.609 0.371 0.309 0.369 11.918
Llama3 70B 0.292 0.504 0.349 0.306 0.361 8.362
Mistral 7B 0.037 0.033 0.026 0.024 0.029 0.971
Mixtral 8x7B 0.274 0.563 0.344 0.282 0.346 11.665
GPT 3.5-turbo 0.301 0.630 0.384 0.321 0.386 11.498

ZS Entities

Llama2 7b 0.179 0.371 0.224 0.201 0.250 11.432
Llama2 13b 0.102 0.149 0.111 0.125 0.144 3.889
Llama2 70b 0.173 0.407 0.226 0.201 0.273 12.553
Llama3 8B 0.195 0.414 0.250 0.177 0.244 11.944
Llama3 70B 0.192 0.348 0.233 0.192 0.235 9.068
Mistral 7B 0.144 0.252 0.165 0.140 0.167 5.889
Mixtral 8x7B 0.231 0.519 0.298 0.236 0.296 12.469
GPT 3.5-turbo 0.263 0.662 0.356 0.282 0.351 14.195

ZS Topics

Llama2 7b 0.092 0.144 0.100 0.114 0.131 3.967
Llama2 13b 0.106 0.109 0.095 0.114 0.126 2.469
Llama2 70b 0.193 0.336 0.221 0.230 0.276 8.401
Llama3 8B 0.323 0.601 0.394 0.328 0.399 10.247
Llama3 70B 0.187 0.239 0.195 0.199 0.225 4.156
Mistral 7B 0.024 0.010 0.012 0.011 0.012 0.566
Mixtral 8x7B 0.266 0.496 0.322 0.270 0.332 9.947
GPT 3.5-turbo 0.214 0.416 0.267 0.236 0.282 8.377

Precision, 𝐹1, 𝐹1@5, and 𝐹1@10 scores. This suggests that this particular combination is highly effective
for concept extraction in this context. On the other hand, the GPT-3.5 Turbo model with the search term
keywords showed the highest Recall. This result may be due to the GPT-3.5 Turbo model being trained
on datasets similar to Inspec, which could impact the generalizability and fairness of the evaluation
when compared to other open-source models.

Based on the results of Table 3, the Llama3 70B model was fixed, and term keyphrases is selected.
Table 4 evaluates the effect of different zero-shot and few-shot prompt designs. For the ZS + Domain
prompt (adding information to only extract keyphrases related to a domain), the Precision, Recall, and
𝐹1 scores decreased. This shows that the model focuses on keyphrases specific to the given domain,
leading to the exclusion of some relevant keyphrases present in the ground truth but not directly related



Table 4
Precision, Recall, 𝐹1, 𝐹1@5, 𝐹1@10, and Average Number of Extracted Keyphrases (𝑁𝐸𝑋 ) for Inspec dataset
and Llama3 70B model. Best results are highlighted in bold.

Prompt P R 𝐹1 𝐹1@5 𝐹1@10 𝑁𝐸𝑋

Zero-Shot
ZS + Domain 0.299 0.350 0.291 0.286 0.308 5.274
ZS + Extracting Context 0.367 0.600 0.428 0.372 0.432 8.558
ZS + Expert Context 0.360 0.618 0.429 0.373 0.434 8.881
ZS + Task Context 0.367 0.606 0.431 0.377 0.439 8.560

Few-Shot
FS 1-Fixed 0.407 0.564 0.442 0.400 0.446 7.091
FS 3-Fixed 0.400 0.568 0.440 0.394 0.446 7.189
FS 5-Fixed 0.415 0.481 0.416 0.396 0.420 5.796
FS 1-Random 0.413 0.575 0.451 0.406 0.453 7.327
FS 3-Random 0.411 0.506 0.422 0.398 0.428 6.150
FS 5-Random 0.416 0.478 0.415 0.395 0.422 5.790
FS 1-Closest 0.410 0.569 0.445 0.397 0.446 7.340
FS 3-Closest 0.411 0.499 0.421 0.392 0.429 6.185
FS 5-Closest 0.426 0.497 0.429 0.402 0.435 5.879

to the specified domain. For example, when using simple keyphrase extraction, keyphrases such as
"graphical user interface" and "scanning data" were extracted. However, when the domain-specific
prompt was used, these keyphrases were not extracted. However, this approach ensures that the
extracted keyphrases are highly relevant to the specified domain, which can be advantageous depending
on the application requirements.

Table 4 illustrates the impact of different context prompts on the evaluation metrics. The incorporation
of context into the zero-shot prompts improved the evaluation results. The zero-shot prompt with the
task description showed the highest 𝐹1, 𝐹1@5, and 𝐹1@10 scores. This suggests that providing the
model with a clear task description enhances its ability to extract relevant keyphrases more accurately.

Additionally, Table 4 presents the evaluation results for different few-shot prompts. The use of random
examples improved 𝐹1, 𝐹1@5, and 𝐹1@10 scores, suggesting that variability in the examples enhances
the model’s generalization and keyphrase extraction performance. The effect of increasing the number
of examples was also analyzed. While incorporating one example generally improved performance,
adding more examples beyond three did not result in significant improvements. Furthermore, the impact
of using the closest documents based on embeddings was evaluated. The few-shot 5-closest prompt
achieved the highest Precision score, indicating that carefully selected examples can lead to better
precision in keyphrase extraction. Overall, the differences between the different few-shot prompts are
not huge. This shows that it is important to provide an example, but the main advantage is that the
model can train on how the output should look and which words are of interest.

Table 5 presents the overall evaluation results, showing the Precision, Recall, 𝐹1, 𝐹1@5, 𝐹1@10, and
an average number of extracted keyphrases (𝑁𝐸𝑋 ) for each dataset. The evaluation covers a broad
spectrum of models, including EmbedRank [14], MultPAX [15], Pyate [24], RAKE [9], FirstPhrases [25],
KPMiner [26], Kea [27], MultipartiteRank [28], PositionRank [13], SingleRank [29], TextRank [10], TfIdf
[8], TopicRank [12], and YAKE [9]. These models were tested on the Inspec and SemEval2017 datasets.
Among them, the few-shot 1-Random prompt using the Llama3 70B model achieved the highest scores
in 𝐹1, 𝐹1@5, and 𝐹1@10 metrics. This outcome highlights the crucial role of prompt design and the
strategic selection of examples in significantly improving the efficacy of keyphrase extraction. The
comprehensive comparison underscores how tailored prompts and example configurations can optimize
performance across different datasets and extraction tasks. However, it is noteworthy to mention
that our best-performing approach shows lower Recall compared to PositionRank. This suggests that
while our method achieves higher precision and top-𝑘 performance, it may miss a portion of relevant
concepts that graph-based extractors like PositionRank are better at capturing. One possible reason is



Table 5
Precision, Recall, 𝐹1, 𝐹1@5, 𝐹1@10, and Average Number of Extracted Keyphrases (𝑁𝐸𝑋 ) for each dataset. In
the last row, the Few-Shot 1-Random prompt with Llama3 70B model is used as our best ConExion model. Best
results are highlighted in bold.

Inspec SemEval2017
Model P R 𝐹1 𝐹1@5 𝐹1@10 𝑁𝐸𝑋 P R 𝐹1 𝐹1@5 𝐹1@10 𝑁𝐸𝑋

MultPax 0.051 0.057 0.049 0.052 0.052 5.000 0.150 0.091 0.107 0.103 0.103 5.000
EmbedRank 0.194 0.369 0.232 0.209 0.247 8.760 0.143 0.154 0.139 0.102 0.145 9.330
PyateBasics 0.090 0.743 0.155 0.008 0.017 47.716 0.076 0.521 0.127 0.013 0.016 62.290
Rake 0.093 0.690 0.158 0.128 0.202 46.167 0.072 0.562 0.124 0.056 0.091 72.290
FirstPhrases 0.164 0.586 0.242 0.193 0.227 18.457 0.139 0.331 0.186 0.086 0.146 20.0
KPMiner 0.048 0.066 0.049 0.063 0.057 6.006 0.121 0.107 0.100 0.116 0.115 7.260
Kea 0.088 0.384 0.134 0.128 0.143 20.0 0.104 0.251 0.138 0.136 0.154 20.0
MultipartiteRank 0.172 0.603 0.253 0.224 0.246 18.158 0.152 0.344 0.199 0.149 0.190 20.0
PositionRank 0.166 0.755 0.260 0.247 0.287 26.543 0.143 0.617 0.224 0.130 0.199 39.980
SingleRank 0.193 0.682 0.285 0.231 0.291 18.457 0.182 0.425 0.242 0.141 0.197 20.0
TextRank 0.195 0.685 0.287 0.221 0.292 18.457 0.174 0.403 0.230 0.135 0.195 20.0
TfIdf 0.099 0.435 0.152 0.129 0.154 20.0 0.114 0.277 0.151 0.146 0.167 20.0
TopicRank 0.169 0.531 0.242 0.230 0.241 17.074 0.145 0.340 0.192 0.152 0.187 19.870
YAKE 0.089 0.398 0.137 0.121 0.142 20.0 0.097 0.242 0.131 0.073 0.114 20.0
FS 1-Random (ours) 0.413 0.575 0.451 0.406 0.453 7.327 0.301 0.372 0.311 0.214 0.302 10.840

the conservative behavior of LLMs, especially when using prompts that prioritize correctness, which
can lead to under-generation. Future research could explore methods for recall enhancement, such as
hybrid models that combine LLM outputs with graph-based methods, or prompt tuning strategies that
encourage broader concept retrieval.

4.5. Reproducibility

To ensure reproducibility, the versions of datasets and models from HuggingFace were fixed, ensuring
that the results could be reproduced. The source code and detailed instructions for running the
experiments can be found in our GitHub repository14.

For the baseline models, various models including MultPAX [15], PyATE [24], RAKE [30] were
employed, alongside several models using the PKE library [25], including FirstPhrases, KPMiner, Kea,
MultipartiteRank, PositionRank, SingleRank, TextRank, TfIdf, TopicRank, and YAKE. The use of these
libraries ensured that all model versions were fixed, facilitating precise replication of our results.

5. Conclusion

In this paper, an approach for concept extraction from abstract documents using pre-trained large
language models (LLMs) was presented. Our method addresses the challenging task of extracting
all present concepts related to a specific domain, rather than just the keyphrases summarizing the
important information discussed in a document. Comprehensive evaluations of two widely used
benchmark datasets demonstrate that our approach performs better than state-of-the-art models. Our
emphasis on reproducibility has ensured that the findings have been reliably replicated across various
models. One limitation of this work is its reliance on exact lexical matching to filter concepts from
the generated output. While this approach ensures that only terms present in the input document are
retained, it fails to account for situations where an LLM generates semantically accurate concepts that
do not have an exact match in the text. As a result, relevant concepts that capture the meaning are
going to be discarded, negatively affecting recall and the overall evaluation.

In the future, we plan to create datasets annotated by domain experts in the field of Materials Science
and Engineering (MSE). This will allow us to further test and refine our ConExion models, ensuring
they are robust and effective across a broader range of scientific domains. We also want to explore more
methods on how to restrict the LLM models to only produce specific tokens (those that appear in the

14https://github.com/ISE-FIZKarlsruhe/concept_extraction

https://github.com/ISE-FIZKarlsruhe/concept_extraction


document). Additionally, we are interested in investigating the effects of continued pre-training and
task-specific instruction tuning of LLMs on concept extraction performance. This could provide further
insights into how domain adaptation influence model behavior on this task.
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