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Abstract
Robust regressions allow reducing the influence of one or more values of the sample population during the
mathematical model building. This paper considers the problem of choosing the best segmented regression
model for the specific example of econometric data and analyzing its advantages as a result of comparison with
other options of approximations using higher-order polynomials. The model building consists of several steps.
At the first step, the value of the abscissas of the switching points was optimized using the sliding setsquare
method. Since the data are heteroscedastic, a new procedure of sliding triangles was proposed for its qualitative
identification. This method can be considered as a generalization of the moving average, which is widely used
during the analysis of time series. In general, the sliding triangle procedure makes it possible to quite reasonably
construct the heteroscedasticity equation. The heteroscedasticity equation was used to calculate the confidence
interval of the data variation relative to the final best regression. Thus, the proposed methodology for constructing
mathematical models taking into account heteroscedasticity has the property of robustness in terms of reducing
the influence of samples with large values.
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1. Introduction

The problem of mathematical models building for detection of regularities between natural phenomena,
various processes and parameters is widely used today in different industries [1, 2, 3]. An accurate
mathematical model is the basis for development of new technologies [4, 5], optimization of technological
processes [6, 7], forecasting of possible events and phenomena [8, 9], support of decision-making
regarding control and corrective actions [10, 11], and others.

While mathematical models building, many factors are taken into account. On the one hand, the
model should not be too simple, since in such cases it may have unsatisfactory accuracy [12, 13].
Significant complication of the model may lead to overfitting and unsatisfactory forecasting results
[14, 15]. Therefore, it is necessary to find a trade off between the accuracy of the model in the range of
observed values and the forecasting properties.

One of the main tools for mathematical models building from a statistical point of view is regression
analysis [16]. Well-known and widely used algorithms are least squares regression, lasso, ridge, least
absolute deviation regression, and others [17, 18]. In these cases, a single function for approximation is
usually used.

When approximating using a single general function over the entire range of data variation, the
standard deviation is determined as a result of its averaging. In this case, the assumption is made that the
standard deviation is constant for all dataset. Very often in econometric problems, data are described by
non-stationary random processes, so it is incorrect to assume the constant standard deviation. Usually,
such processes in econometrics have the property of heteroscedasticity [19, 20, 21].
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2. Literature review and problem statement

Regression models give possibility to establish a correlation between an outcome variable and one or
more explanatory variables [22, 23]. Often, these models are used to solve forecasting problems, detect
trends (including changes in the geometric structure of data), assess the information content of the
influence of explanatory variables on the outcome variable, and in some cases, to solve a classification
problem [24, 25, 26]. Regression model is an integral part of machine learning systems and artificial
intelligence [27, 28].

The widespread use of regression models is explained by its main advantages, among which are
simplicity, interpretability, the possibility of using various approximating functions, and ease of imple-
mentation using software [29, 30].

A new direction in the field of regression analysis today is robust regression [31, 32]. This approach
to regression models building is due to the possibility of the presence of highly noisy values, outliers,
and non-stationarities in the analyzed datasets [33, 34]. In addition, robust regression makes it possible
to build models in conditions of non-Gaussian errors and the presence of heteroscedasticity.

Heteroscedasticity occurs when different explanatory variables have different standard deviations
[35, 36]. Failure to take heteroscedasticity into account may result in unsatisfactory forecasting results
due to an erroneous decision about the significance of a particular explanatory variable. The main
methods for mathematical models building in conditions of heteroscedasticity are the weighted least
squares method, variable transformation (including taking the logarithm of the outcome variable), and
other alternative methods of regression analysis.

In case of heteroscedasticity, the first thing to do is to decide on its presence. Today, the literature
provides a large number of tests, including the Goldfeld-Quandt test [37], Breusch-Pagan test [38], White
test [39], and others. In the paper [40], a numerical measure of heteroscedasticity was also proposed.
The next step after detection is the calculation of weighting coefficients, which make adjustments to
the regression model.

The aim of this paper is to justify the use of robust segmented model in conditions of heteroscedasticity,
as well as compare it with classical regression models based on the ordinary least squares method. To
achieve this aim, the paper will solve specific objectives: a) justification of the method for optimizing
the switching points of the regression model segments, b) development of the moving triangle method
as a generalization of the moving average method, c) presentation of the new methodology using a
specific numerical example.

3. Materials and methods

3.1. Sliding setsquare method

Consider methodology on a specific numerical example. The initial data for the analysis are given in
Table 1.

In the book [41] two absolutely different processes (one decreasing and one increasing) were approxi-
mated by a single straight line. This approach is too simplified and gives an overestimated approximation
error.

As a result of visual data analysis, an assumption was made about rationally dividing the data into
four segments. Therefore, approximate values were adopted for the abscissas of three switching points.

To accurately determine the abscissas of the switching points, a heuristic approach was used. In this
case, the dataset was divided into sections, on each of which only one switching point was optimized.
This method can be considered as a sliding setsquare method, which sequentially moves along the
entire range of data.

Let’s consider the step-by-step procedure for applying the sliding setsquare method.
Step 1. We will approximate 9 points using two-segment linear regression. To do this, for five

variants of the abscissa values of the switching point (located from the third to seventh points), data
approximations were performed using the ordinary least squares (OLS) method. The equation of the



Table 1
Initial Dataset

# 𝑥 𝑦 # 𝑥 𝑦

1 8.8 0.36 10 15.5 0.59
2 9.4 0.21 11 16.7 0.9
3 10 0.08 12 17.7 0.95
4 10.6 0.2 13 18.6 0.82
5 11 0.1 14 19.7 1.04
6 11.9 0.12 15 21.1 1.53
7 12.7 0.41 16 22.8 1.94
8 13.5 0.5 17 23.9 1.75
9 14.3 0.43 18 25.2 1.99

Table 2
The Setsquare Parameters at the First Step

The abscissa of switching point Parameter 𝑎 Parameter 𝑏 Parameter 𝑐 Standard deviation

10 2.507 –0.244 0.343 0.045
10.6 1.416 –0.125 0.237 0.057
11 1.129 –0.094 0.224 0.054

11.9 0.553 –0.034 0.199 0.074
12.7 0.035 0.017 0.13 0.121

Table 3
The Setsquare Parameters at the Second Step

The abscissa of switching point Parameter 𝑎 Parameter 𝑏 Parameter 𝑐 Standard deviation

12.7 –0.9092 0.0964 0.0305 0.062
13.5 –0.9786 0.1027 0.0273 0.06
14.3 –0.9088 0.0972 0.0485 0.055
15.5 –0.9749 0.1029 0.0662 0.054
16.7 –1.1478 0.1171 0.0257 0.062

two-segment regression is:
𝑦(𝑥) = 𝑎+ 𝑏𝑥+ 𝑐(𝑥− 𝑥1)+, (1)

where (𝑥− 𝑥1)+ is modular function, 𝑥1 is abscissa of switching point for the sliding setsquare. In
this case

(𝑥− 𝑥1)+ =
(𝑥− 𝑥1)+ | 𝑥− 𝑥1 |

2
. (2)

The results of the calculations of the setsquare parameters are given in Table 2.
Next, we approximate the data from Table 2 (the dependence of the standard deviation on the abscissa

of the switching point) with a second-order parabola using the OLS method. As a result, we obtain an
equation of the following type:

𝜎(𝑥1) = 1.337− 0.25𝑥1 + 0.012𝑥21.

The optimum of this parabola is at the point with the abscissa 𝑥1 = 10.294.
Step 2. We move the setsquare so that its origin is in the next point after the abscissa of the first

switching point. After that, we approximate the obtained nine points using two-segmented linear
regression. The calculation results are given in Table 3.

Next, we approximate the data from Table 3 (the dependence of the standard deviation on the abscissa
of the switching point) with a second-order parabola using the OLS method. As a result, we obtain an



Table 4
The Setsquare Parameters at the Third Step

The abscissa of switching point Parameter 𝑎 Parameter 𝑏 Parameter 𝑐 Standard deviation

17.7 –0.905 0.1 0.0592 0.184
18.6 –0.781 0.0941 0.0759 0.169
19.7 –1.224 0.12 0.0506 0.179
21.1 –1.801 0.153 –0.00714 0.193
22.8 –2.032 0.166 –0.0862 0.173

equation of the following type:

𝜎(𝑥1) = 0.424− 0.0501𝑥1 + 0.00169𝑥21.

The optimum of this parabola is at the point with the abscissa 𝑥1 = 14.754.
Step 3. We move the setsquare so that its origin is in the next point after the abscissa of the second

switching point. After that, we approximate the obtained nine points using two-segmented linear
regression. The calculation results are given in Table 4.

Next, we approximate the data from Table 3 (the dependence of the standard deviation on the abscissa
of the switching point) with a second-order parabola using the OLS method. As a result, we obtain an
equation of the following type:

𝜎(𝑥1) = −0.196 + 0.0373𝑥1 − 0.000915𝑥21.

The optimum of this parabola is at the point with the abscissa 𝑥1 = 20.355.
Step 4. For the obtained values of the three switching points, we perform data approximation using

four-segmented regression and OLS method. As a result, we obtain the equation

𝑦(𝑥) = 1.936− 0.181𝑥+ 0.287(𝑥− 10.296)+ + 0.0237(𝑥− 14.754)+ + 0.0401(𝑥− 20.355)+. (3)

A visual representation of the obtained regression is shown in Figure 1.
Visual analysis (Figure 1) and comparison of the coefficients of the regression model allow to make an

assumption about the possibility of combining the second and third segments. Merging the two segments
allows to simplify the mathematical model. As a result, we obtain a three-segmented regression model
based on the OLS of the form:

𝑦(𝑥) = 2.138− 0.204𝑥+ 0.323(𝑥− 10.296)+ + 0.0551(𝑥− 20.355)+. (4)

A visual representation of the obtained regression is shown in Figure 2.

3.2. Calculation of the heteroscedasticity equation

Visual analysis of the data does not provide a clear assumption on the heteroscedasticity presence.
Therefore, it is necessary to conduct a more correct statistical analysis, which can be done using a new
approach.

To assess heteroscedasticity, this paper uses a new approach based on a moving triangle. This method
can be considered as a generalization of the moving average method, which is often used in the analysis
of time series.

The moving triangle method expands the capabilities of statistical analysis, since it makes it possible
to establish the dependence of the change in the standard deviation on the value of the approximated
variable in a local observation area.

The heteroscedasticity equation is the dependence of current standard deviations on the corresponding
values of the approximating function.



Figure 1: Data fitting using four-segmented regression.

Figure 2: Data fitting using three-segmented regression.

The indicator that characterizes the current standard deviation is a segment drawn from the vertex
of the triangle to its opposite side, parallel to the ordinate axis. In this paper, the designated segment
will be called the measure of the triangle.

Visual analysis of the data and constructed triangles shows that in the case of large values of the
approximating variable, the area and dimensions of the triangle will also be large. Accordingly, the
heteroscedasticity indicator will also be overestimated.

The principle of constructing triangles is shown in Figure 3.



Figure 3: The principle of constructing the sliding triangle.

Table 5
The Parameters for Heteroscedasticity Equation Calculation

𝑦 𝜎 𝑦 𝜎 𝑦 𝜎 𝑦 𝜎

0.217 0.001 0.21 0.144 0.64 0.075 1.13 0.092
0.163 0.125 0.343 0.1 0.813 0.114 1.503 0.084
0.127 0.108 0.447 0.08 0.89 0.092 1.74 0.276
0.14 0.075 0.507 0.106 0.937 0.171 1.893 0.213

Some triangles may merge into a line. In this case, the measure of the triangle will tend to zero. To
construct the heteroscedasticity equation, the measures of all triangles were calculated (to estimate
the current standard deviation 𝜎). In this case, to estimate the current value of the ordinate 𝑦, the
ordinates were averaged over the three vertices of the triangle (which is the implementation of the
moving average method). The calculation results are given in Table 5.

We approximate the data presented in Table 5 using a linear function and OLS. As a result, we get
an equation of the type:

𝜎(𝑦) = 0.0684 + 0.0658𝑦.

The equation of heteroscedasticity is shown in Figure 4.
To calculate the coefficients of heteroscedasticity, we use the formula

𝑊𝑖 = (
𝑦𝑎𝑣
𝑦(𝑥𝑖)

)2, (5)

where 𝑦𝑎𝑣 is expected value of outcome variable, 𝑦(𝑥𝑖) is the current value calculated by the best
regression model (4) obtained using OLS. Each point is determined by the value of the abscissa of the
current empirical value, after which it is substituted into the equation (4). Since weights are calculated
for the OLS method, the obtained fraction is squared.

The values of the weight coefficients of heteroscedasticity are given in Table 6.



Figure 4: The heteroscedasticity equation.

Table 6
The Weight Coefficients of Heteroscedasticity

𝑖 𝑊𝑖 𝑖 𝑊𝑖 𝑖 𝑊𝑖 𝑖 𝑊𝑖 𝑖 𝑊𝑖 𝑖 𝑊𝑖

1 1.425 4 1.018 7 0.731 10 0.504 13 0.358 16 0.243
2 1.266 5 0.952 8 0.653 11 0.438 14 0.321 17 0.222
3 1.132 6 0.824 9 0.586 12 0.393 15 0.281 18 0.2

After that, we can get the final regression model with taking into account heteroscedasticity:

𝑦(𝑥) = 2.0798− 0.197𝑥+ 0.3134(𝑥− 10.296)+ + 0.0663(𝑥− 20.355)+. (6)

A visual representation of the obtained regression model (4) and (6) is shown in Figure 5.
Although a visual analysis of the results of approximation, taking into account and without taking

into account heteroscedasticity, does not give a big difference, the accounting of heteroscedasticity still
improves the quality of the model.

For the resulting version of approximation, a confidence interval was obtained. The calculation of
the boundaries of the variation was based on the equation of heteroscedasticity. For each signature
value, the double value of the current standard deviation was used. The result of the construction of
confidence interval is shown in Figure 6. As can be seen, all points are inside the confidence range.

3.3. Calculation of the polynomial regressions

Let us consider the approximation variant using a fourth- and sixth-order polynomial. Using the OLS
method, we obtain the following equations:

𝑦(𝑥) = 3.667− 0.808𝑥+ 0.0605𝑥2 − 1.598 · 10−3𝑥3 + 1.412 · 10−5𝑥4. (7)

𝑦(𝑥) = 89.553− 32.899𝑥+ 4.878𝑥2 − 0.3737𝑥3 + 0.156𝑥4 − 3.385 · 10−4𝑥5 + 2.912 · 10−6𝑥6. (8)

A visual representation of the obtained regression model (7) and (8) is shown in Figure 7.
Although the sixth-order polynomial provides better adequacy in the data variation range, it is

absolutely unsuitable for forecasting purposes. Its unsuitability for forecasting is especially evident in
the area on the left side.



Figure 5: The comparison of models (4) and (6).

Figure 6: The regression models (6) and confidence interval.

The paper conducted a comparative analysis of all approximation options according to the standard
deviation (SD) criterion, as well as according to the criterion of the maximum range (MR) of the
cumulative residual curve. The calculation results are given in Table 7.



Figure 7: The polynomial regression models (7) and (8).

Table 7
The Regression Models Comparison

Parameter Model (4) Model (6) Model (7) Model (8)

SD 0.132 0.133 0.144 0.129
MR 0.4326 0.4412 0.4403 0.2808

4. Conclusions

The main goal of this paper is to construct the best segmented regression model of the studied econo-
metric data and to substantiate its advantages as a result of comparative analysis in comparison with
alternative approximations by higher-order polynomials.

At the first stage, the value of the abscissas of the switching points was optimized using the sliding
setsquare method. In this case, the use of three segments was substantiated. Since the data are
heteroscedastic, a new procedure of sliding triangles was proposed for its qualitative identification.
This method can be considered as a generalization of the moving average, which is widely used in the
analysis of time series. In general, the sliding triangle procedure makes it possible to quite reasonably
construct the heteroscedasticity equation. The heteroscedasticity equation was used to calculate the
confidence interval (band) of the data variation relative to the final best regression. Thus, the proposed
methodology for constructing mathematical models taking into account heteroscedasticity has the
property of robustness in terms of reducing the influence of samples with large values.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] D. Montgomery, G. Runger, Applied Statistics and Probability for Engineers, 4th ed., Wiley, New
York, USA, 2007.



[2] J. Andre, Industry 4.0: Paradoxes and Conflicts, Wiley, New York, USA, 2019.
[3] I. Ostroumov, N. Kuzmenko, An area navigation (rnav) system performance monitoring and alert-

ing, in: 2018 IEEE First International Conference on System Analysis and Intelligent Computing
(SAIC), 2018, pp. 1–4. doi:10.1109/SAIC.2018.8516750.

[4] Z. Hu, Y. Khokhlachova, V. Sydorenko, I. Opirskyy, Method for optimization of information
security systems behavior under conditions of influences, International Journal of Intelligent
Systems and Applications 9 (2017) 46–58. doi:10.5815/ijisa.2017.12.05.

[5] Z. Poberezhna, Comprehensive approach to the efficiency assessment of the business model of the
aviation enterprise based on business process innovation, Eastern-European Journal of Enterprise
Technologies 5 (2021) 44–57. doi:10.15587/1729-4061.2021.243118.

[6] O. Solomentsev, M. Zaliskyi, O. Holubnychyi, I. Ostroumov, O. Sushchenko, Y. Bezkorovainyi, et al.,
Efficiency analysis of current repair procedures for aviation radio equipment, in: I. Ostroumov,
M. Zaliskyi (Eds.), Proceedings of the 2nd International Workshop on Advances in Civil Aviation
Systems Development. ACASD 2024. Lecture Notes in Networks and Systems, vol. 992, Springer
Nature Switzerland, Cham, 2024, pp. 281–295. doi:10.1007/978-3-031-60196-5_21.

[7] M. Zaliskyi, O. Solomentsev, O. Holubnychyi, I. Ostroumov, O. Sushchenko, Y. Averyanova,
Y. Bezkorovainyi, K. Cherednichenko, O. Sokolova, V. Ivannikova, R. Voliansky, B. Kuznetsov,
I. Bovdui, T. Nikitina, Methodology for substantiating the infrastructure of aviation radio equip-
ment repair centers, CEUR Workshop Proceedings 3732 (2024) 136–148.

[8] O. Zaporozhets, V. Isaienko, K. Synylo, Trends on current and forecasted aircraft hybrid electric
architectures and their impact on environment, Energy 211 (2020). doi:10.1016/j.energy.
2020.118814.

[9] O. Solomentsev, M. Zaliskyi, Method of sequential estimation of statistical distribution parameters
in control systems design, in: IEEE 3rd International Conference on Methods and Systems of
Navigation and Motion Control, 2014, pp. 135–138. doi:10.1109/MSNMC.2014.6979752.

[10] J. Stark, Product Lifecycle Management, Volume 1: 21st Century Paradigm for Product Realisation,
Springer, London, 2019.

[11] D. Gujarati, Econometrics by Example, Red Globe Press, London, 2014.
[12] D. Himmelblau, Process Analysis by Statistical Methods, Wiley, New York, USA, 1970.
[13] I. Ostroumov, N. Kuzmenko, Accuracy estimation of alternative positioning in navigation, in:

2016 4th International Conference on Methods and Systems of Navigation and Motion Control
(MSNMC), 2016, pp. 291–294. doi:10.1109/MSNMC.2016.7783164.

[14] K. Chowdhary, Fundamentals of Artificial Intelligence, Springer, New Delhi, 2020.
[15] M. Zaliskyi, I. Ostroumov, N. Kuzmenko, V. Ivannikova, Algorithms of reliability data processing for

navigation systems, in: 2025 Integrated Communications, Navigation and Surveillance Conference
(ICNS), 2025, pp. 1–9. doi:10.1109/ICNS65417.2025.10976784.

[16] M. Ezekiel, K. Fox, Method of Correlation and Regression Analysis. Linear and Curvilinear, Wiley,
New York, USA, 1959.

[17] S. Weisberg, Applied Linear Regression, Wiley, New York, USA, 2005.
[18] G. Seber, C. Wild, Nonlinear Regression, Wiley, New York, USA, 2003.
[19] R. Kostyrko, T. Kosova, L. Kostyrko, L. Zaitseva, O. Melnychenko, Ukrainian market of electrical

energy: Reforming, financing, innovative investment, efficiency analysis, and audit, Energies 14
(2021). doi:10.3390/en14165080.

[20] S. Smerichevska, Z. Poberezhna, O. Mykhalchenko, Y. Shtyk, Y. Pokanevych, Modeling and
evaluation of organizational and economic support for sustainable development of transport
enterprises: innovative and ecological aspects, Financial and Credit Activity: Problems of Theory
and Practice 4 (2023) 218–229. doi:10.55643/fcaptp.4.51.2023.4121.

[21] I. Ostroumov, N. Kuzmenko, M. Zaliskyi, Changes in the eastern european air transportation
system caused by war in ukraine, in: 2025 Integrated Communications, Navigation and Surveillance
Conference (ICNS), 2025, pp. 1–7. doi:10.1109/ICNS65417.2025.10976884.

[22] F. Mills, Statistical Methods, Pitman Publishing, New York, USA, 1965.
[23] P. Filzmoser, K. Nordhausen, Robust linear regression for high-dimensional data: An overview,

http://dx.doi.org/10.1109/SAIC.2018.8516750
http://dx.doi.org/10.5815/ijisa.2017.12.05
http://dx.doi.org/10.15587/1729-4061.2021.243118
http://dx.doi.org/10.1007/978-3-031-60196-5_21
http://dx.doi.org/10.1016/j.energy.2020.118814
http://dx.doi.org/10.1016/j.energy.2020.118814
http://dx.doi.org/10.1109/MSNMC.2014.6979752
http://dx.doi.org/10.1109/MSNMC.2016.7783164
http://dx.doi.org/10.1109/ICNS65417.2025.10976784
http://dx.doi.org/10.3390/en14165080
http://dx.doi.org/10.55643/fcaptp.4.51.2023.4121
http://dx.doi.org/10.1109/ICNS65417.2025.10976884


WIREs Computational Statistics 13 (2021) e1524. doi:10.1002/wics.1524.
[24] G. Snedecor, W. Cochran, Statistical Methods, Iowa State University Press, Iowa, USA, 1989.
[25] I. Ostroumov, V. Ivannikova, N. Kuzmenko, M. Zaliskyi, Impact analysis of russian-ukrainian

war on airspace, Journal of Air Transport Management 124 (2025). doi:10.1016/j.jairtraman.
2025.102742.

[26] A. Popov, E. Tserne, V. Volosyuk, S. Zhyla, V. Pavlikov, N. Ruzhentsev, et al., Invariant polarization
signatures for recognition of hydrometeors by airborne weather radars, in: O. Gervasi, B. Murgante,
D. Taniar, B. O. Apduhan, A. C. Braga, C. Garau, A. Stratigea (Eds.), Computational Science and
Its Applications – ICCSA 2023. Lecture Notes in Computer Science, vol. 13956, Springer Nature
Switzerland, Cham, 2023, pp. 201–217. doi:10.1007/978-3-031-36805-9_14.

[27] O. Holubnychyi, M. Zaliskyi, I. Ostroumov, O. Sushchenko, O. Solomentsev, Y. Averyanova,
et al., Self-organization technique with a norm transformation based filtering for sustainable
infocommunications within cns/atm systems, in: I. Ostroumov, M. Zaliskyi (Eds.), Proceedings of
the 2nd International Workshop on Advances in Civil Aviation Systems Development. ACASD
2024. Lecture Notes in Networks and Systems, vol. 992, Springer Nature Switzerland, Cham, 2024,
pp. 262–278. doi:10.1007/978-3-031-60196-5_20.

[28] M. Gopal, Applied Machine Learning, McGraw Hill Education, India, 2018.
[29] Z. Hu, S. Gnatyuk, T. Okhrimenko, S. Tynymbayev, M. Iavich, High-speed and secure prng for

cryptographic applications, International Journal of Computer Network and Information Security
12 (2020) 1–10. doi:10.5815/ijcnis.2020.03.01.

[30] O. Solomentsev, M. Zaliskyi, O. Shcherbyna, O. Kozhokhina, Sequential procedure of change-
point analysis during operational data processing, in: 2020 IEEE Microwave Theory and Tech-
niques in Wireless Communications (MTTW), 2020, pp. 168–171. doi:10.1109/MTTW51045.
2020.9245068.

[31] T. Ryan, Modern Regression Methods, 2nd ed., Wiley, New York, USA, 1997.
[32] O. Sushchenko, Y. Bezkorovainyi, O. Solomentsev, M. Zaliskyi, O. Holubnychyi, I. Ostroumov,

et al., Algorithm of determining errors of gimballed inertial navigation system, in: O. Ger-
vasi, B. Murgante, C. Garau, D. Taniar, A. M. A. C. Rocha, M. N. Faginas Lago (Eds.), Compu-
tational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes
in Computer Science, vol. 14816, Springer Nature Switzerland, Cham, 2024, pp. 206–218.
doi:10.1007/978-3-031-65223-3_14.

[33] D. Birkes, Y. Dodge, Alternative Methods of Regression, Wiley, New York, USA, 1993.
[34] Z. Poberezhna, Comprehensive assessment of the airlines’ competitiveness, Economic Annals-XXI

167 (2017) 32–36. doi:10.21003/ea.V167-07.
[35] R. L. Kaufman, Heteroskedasticity in Regression, SAGE Publications, 2013.
[36] H. Barreto, F. Howland, Introductory Econometrics, Cambridge University Press, 2012.
[37] S. Goldfeld, R. Quandt, Some tests for heteroscedasticity, Journal of the American Statistical

Association 60 (1965) 539–547. doi:10.1080/01621459.1965.10480811.
[38] T. S. Breusch, A. R. Pagan, A simple test for heteroscedasticity and random coefficient variation,

Econometrica 47 (1979) 1287–1294. doi:10.2307/1911963.
[39] H. White, A heteroskedasticity-consistent covariance matrix estimator and a direct test for

heteroskedasticity, Econometrica 48 (1980) 817–838. doi:10.2307/1912934.
[40] M. Zaliskyi, O. Solomentsev, O. Shcherbyna, I. Ostroumov, O. Sushchenko, Y. Averyanova, et al.,

Heteroskedasticity analysis during operational data processing of radio electronic systems. lecture
notes in networks and systems, vol. 290, in: S. Shukla, A. Unal, J. V. Kureethara, D. K. Mishra,
D. S. Han (Eds.), Data Science and Security, Springer Singapore, Singapore, 2021, pp. 168–175.
doi:10.1007/978-981-16-4486-3_18.

[41] C. Leser, Econometric Techniques and Problems, Lubrecht and Cramer, NY, USA, 1974.

http://dx.doi.org/10.1002/wics.1524
http://dx.doi.org/10.1016/j.jairtraman.2025.102742
http://dx.doi.org/10.1016/j.jairtraman.2025.102742
http://dx.doi.org/10.1007/978-3-031-36805-9_14
http://dx.doi.org/10.1007/978-3-031-60196-5_20
http://dx.doi.org/10.5815/ijcnis.2020.03.01
http://dx.doi.org/10.1109/MTTW51045.2020.9245068
http://dx.doi.org/10.1109/MTTW51045.2020.9245068
http://dx.doi.org/10.1007/978-3-031-65223-3_14
http://dx.doi.org/10.21003/ea.V167-07
http://dx.doi.org/10.1080/01621459.1965.10480811
http://dx.doi.org/10.2307/1911963
http://dx.doi.org/10.2307/1912934
http://dx.doi.org/10.1007/978-981-16-4486-3_18

	1 Introduction
	2 Literature review and problem statement
	3 Materials and methods
	3.1 Sliding setsquare method
	3.2 Calculation of the heteroscedasticity equation
	3.3 Calculation of the polynomial regressions

	4 Conclusions

