
Terminological Reasoning and Conceptual Modeling
for Datawarehouse

David Rudloff1

1 ERIC-LIIA (ENSAIS), and Neurone Informatique, Strasbourg, F

24, boulevard de la Victore 67000 Strasbourg

Tel: (33) 88.14.47.43. Email: rudloff@.eric.u-strasbg.fr

Abstract. This paper analyses some useful enhancements required by

datawarehouse systems. This concerns the conceptual modeling

representation and visualisation, the query definition and optimization.

A general framework is proposed to integrate terminological reasoning

and a natural language interface in a flexible knowledge representation

system in order to meet datawarehouse needs.

INTRODUCTION

Nowadays, database access is not exclusively reserved to

computer scientists. Many people want to consult directly

databases and exploit the data. For these reasons,

datawarehouse concerns systems that try to give to non-

specialist end-users a simplified view of complex database.

Such systems involve database abstraction, query formulation

and result analysis. This notion is partially covered by some

other business terms, like Enterprise Information System,

Business Intelligence, Corporate Analysis System, Online

Analytical Processing etc... Let us consider that Datawarehouse

involves all the efforts to give a transparent and natural

database access for non-specialist end-user. Especially, the aim

is to help end-user to search relevant information, to analyze it

and edit it, without having to learn some specific database

syntax. Concerning relational database, usual access is provided

with SQL. It is based on a strong and quite simple theory, the

relational model. However, it implies a good knowledge of the

relational table structure. Furthermore a simple question can

imply a complex query with many joins because of data

scattering across the database. In addition, the user may not

detect a wrong query with a result that seems right. Thus, user

query should be constructable in a natural form, even in natural

language. With datawarehouse, we need to construct an

conceptual layer upon the physical database structure. This

abstract database representation can be customized for each

user with a restricted view and appropriate terminology.

Another datawarehouse front-end concerns multidimensional

information. In this way, hypercubes give the user the ability to

aggregate numeric data among various dimensions. Hypercube

are usually constructed upon an existing relational database.

Then, it could be interesting to explore theoretical aspects of

such an abstract layer and the services required to improve

current datawarehouse developments. Actually, we would like

to integrate the conceptual modeling usually made during the

database design in a datawarehouse system. This presents some

advantages for consistency check, query optimization, database

access improvement and natural language.

The first section of this paper will show some specific lacks in

current datawarehouse systems from the end-user point of view.

Then, we will propose, in the second section, a general

framework that could reach these requirements.

USEFUL REQUIREMENTS FOR
DATAWAREHOUSE

One important datawarehouse requirement concerns the

conceptual model. We will first present some ambiguities

concerning the distinction between concept and relation implied

by naming convention. We will then see that a powerful

conceptual representation should show to the end-user the

connections between database entities in a natural and flexible

form. Next, the subject of query construction and optimization

will be tackled in the natural language perspective. Finally, this

first section will end with data analysis requirements in

datawarehouse systems.

Concepts and Relations

First of all, it is important to note that the meaning of the

words"concept" or "entity" or "object" is not well defined and is

not the same in the litterature though they are largely used in

datawarehouse systems. In the following we will use them

indifferently with the general meaning of complex or structured

piece of information. Sometimes a concept will be exactly

represented by a table in the relational database, and sometimes

it will aggregate information scattered in many tables.

The two first step of the database design process is usually as

follows: the domain analysis and its representation in an Entity-

Relationship model [1].

During the domain analysis, the relevant concepts of the real

world and the relation between these concepts are defined. This

distinction between concepts and relations is in some aspects

arbitrary and usually depends on the Universe of Discourse

(UoD). Briefly, nouns are concepts and verbs are relations.

Then, a relationship could be viewed as a concept if the context

changes, for instance if a new user have another naming

convention. These considerations may seem subtle but it occurs

very often that a same query will be conceived in various form

by several users.

In other words, the problem is the following: Can a relation be

considered as a concept, and vice versa, can a concept

definition denote the conjunction of other concepts in the same

context and then be regarded as a relation ? By example, the

concept "employee" in a company can be linked to another

employee by the relation "married with". This relation can also

be regarded as a concept named "Marriage" that contains

references to 2 persons, the wedding date, marriage settlement,

etc.

Nowadays, datawarehouse systems show the data model as it

was designed for the database implementation. We think that

this representation should not completely depend on the first

modeling choice but should be customizable to a new user

naming convention. Such a possibility is partially offered with

the NIAM methodology [2].

The distinction between Concept and Relation is not the only

difficult point for an end-user access. The visualisation of the

relations is also important. Indeed, the question is: how to show

the links between two objects selected by the user and at which

detail level ?

Visualization of links

One of the useful aspects of a database front-end is that end-

users do not need to learn SQL for accessing relational

database. Many programs automatically construct query joins

between tables. In this manner, end-users only have to select the

piece of information they want to collect without worrying

about the concerned tables and the required SQL joins.

However, the invisibility of the links between columns during

query definition can lead to misunderstanding of the real

meaning of the query.

For instance, let us consider that an end-user wants to know the

list of clients that have bought one specific article. He may not

see that this query represents the list of clients who sent an

invoice that contains an invoice line that refers to the specified

article reference.

Firstly, it is important to give the user the ability to visualize the

path between client and article in a graphical or a natural

language form.

Secondly, the user may want to name "to buy" the relation

between clients and articles. In this way, the link path between

these two concepts could be recorded in the form of a direct

link with the appropriate end-user naming convention.

In this example, the client relational table usually does not

contain references to article or even to invoice. Only the invoice

table contains a client reference and indirectly an article

reference through the invoice-line table. At the conceptual

level, the link between client and invoice should be present in

both the concept definitions, possibly with different names.

Query management

It is well-known that, for complex nested queries, it can be

difficult to verify that the query the user has in mind is correctly

constructed and thus translated in SQL. It is important to define

a clear representation of the query in a form that allows the

user to verify its correctness.

The internal logical query representation should then be

viewable in a natural language form. At any moment, the user

should be able to see the path link between selected objects or

direct link with the appropriate denomination.

Beside query definition consideration, it is interesting to

examine optimization needs. One important problem with

datawarehouse is that end-users usually may not be aware of the

complexity of SQL query he produces and then risks to

degradate the database performance. Usually, a datawarehouse

system tries to minimize the database access. However

datawarehouse users often have to take a previous query result

to define another one until they obtain the good information.

This interactivity can be very costly for database performance.

That is the reason why the query result is stored on the user

local station and reporting or analyzing activities are made on

the local result. It is then important to store local result in a

comprehensive and reusuable form. Thus, a datawarehouse

system needs optimization during SQL translation and result

management.

Once the data retrieved, the user needs to analyse them to

extract meaningful information. This data analysis phase is a

very important part of datawarehouse.

Data analysis

The datawarehouse market is much concerned with business

activities. Usually data analysis consists of filtering and

examing the retrieved data from different points of view. In this

way much research is pursued on multidimensional structure,

named hypercube. Hypercube can, for instance, contain the

company turnover for many different years, different clients and

different regions. Many datawarehouse systems propose to

navigate through this hypercube with automatic aggregate

results. Typically, you can see the turnover for a certain year,

"drill down" into quarters and then months. The 12 rules of

OLAP (OnLine Analytical Processing) - coined by E.F. Codd in

a White Paper funded by a vendor [3] - enumerate the minimal

requirement for multidimensional systems. Briefly the main

requirements concern accessibility, transparency, and

navigability into hypercube. The OLAP specification is still

rarely integrated in a general datwarehouse system because of

the lack of a theoretical foundation.

In a more general view, data analysis consists of building

various queries, compare queries between each other and

extract meaningful information from the result. It is important

to give the user the tools to caracterize the features of the

searched information and to compare it to previous result or to

target result.

As a matter of fact, such requirements concerning

datawarehouse systems imply a strong theoretical base. We will

see in the following section a datawarehouse architecture. This

framework will propose reasoning capabilities upon a

conceptual modeling and query representation system. Natural

language will be integrated as an useful interface component.

A FRAMEWORK FOR DATAWAREHOUSE

In this part, we propose some ideas to handle the presented

datawarehouse requirements. We have decided to integrate

description logics capabilities in the conceptual layer

representing relational database information. This may be also

useful for natural language processing in a query construction

interface. Another interesting consequences of a classification-

based system will be semantic query optimization.

Description logics for conceptual modeling

Usually, relational database design is based on the Entity-

Relationship model. This model is very suitable for relational

database but it lacks of expressivity concerning the kind of

relation. Indeed, it is not easy with this model to define is-a

relationships or aggregation relationships.

We have decided to describe our model with a frame language

associated to terminological reasoning [4] [5]. Briefly,

description logics or terminological reasoning associate

structural classification capabilities to a logical knowledge

represention formalism . Structural classification works on the

intensional definition of concepts. The subsumption algorithm

realises this classification by inducing generalisation-

specialisation relation between concepts. For instance, the

concept A is subsumed by the concept B if its intensional

definition represents a subclass of the instances defined by the

intensional definition of B.

In the context of datawarehouse, classification capabilities may

lead to some enhancements. Hence, we would like to handle the

possible ambivalence between concept and relation. In this

manner, in the client-invoice-article example, we want to define

a direct link between client and article as a generalisation (is-a

relationship) of the client->invoice->invoice line->article path

link. Thus, a subsumption algorithm should be developped to

classify such path link.

In the E-R model, certain relationships contain attributes. For

instance, Invoice-line may be considered as relationship

between Invoice and Article with a Quantity attribute. Actually,

this choice depends on naming convention during the design

process. If in current use, end-user manipulates a relationship

more usually as a concept, the relationship will be objectified

and then placed in the concept hierarchy. In this way, we will

study logical consequences of such objectification. It is

important to note that these considerations take place in the

context of natural language. The aim is to allow the system to

adapt its own knowledge representation to the user preferences

and especially naming convention.

By the way, other particularities from relational database will

influence the specification of our description logics-based

conceptual modeling formalism. We can quote key values,

specific domain restriction, inverse relation, nested queries.

Hypercubes, that concern aggregation relationships for numeric

values, could also be represented by this formalism [6].

A Natural Language interface

We argue that if natural language is only considered in the

restricted context of database with a compact grammar, it can

lead to powerful improvements for datawarehouse systems and

more generally for database front-ends. Let us present our

natural language interface project integrated in a description

logics-based conceptual modeling system.

Actually every datawarehouse software system has a natural

language layer. This is usually restricted to renaming columns

and tables from the database with more comprehensive words

for end-users. Several commercial systems propose to name the

relation links (that is foreign key columns in relational tables)

with verbs and create inverse relation names. We would like to

go further and to name a path link like a normal simple link.

For instance, let us consider the following textual query

representation:

"List of the client

that have bought the article

 named X".

If some links have already been defined, a datawarehouse

system will be able to calculate the path between client table

and article table, that is:

client->invoice->invoice line>article.

If the buy verb is used for the first time, it would be interesting

that the system proposes:

"Do you mean that:

a client that have bought an article

 is a client

 that issued an invoice

 containing an invoice line

 containing an article ?".

If the user agrees, the system will record the buy direct link

between client and article. This new link will be a

generalisation of the long path link. Note that the new direct

link will not have immediate correspondance with a SQL join

but only through its specialized path link.

The natural language interface will be integrated in a multi-

modal interface that will involve natural language input and

graphical object view for the query construction. The aim is to

incrementally build a query in natural language with the

assistance of the conceptual model to handle ambiguities and to

propose choice lists. At any moment of the query construction,

the system should be able to know possible following words

and to verify the query consistency.

Query optimization

One useful feature for a modern datawarehouse system

concerns query optimization. We have explained above that an

end-user does not know the complexity of the SQL query he

produces and then risk to degradates the database performance.

Furthermore, for data analysis, the user wants to have quick

answer in order to easily navigate through data and eventually

formulate a new query.

As end-users build query at a conceptual level, the maximum of

semantic optimization should be done. If an inconsistency is

detected in the query formulation, the system should indicate

the source of error and help the user to correct the query.

Inconsistency can come from invalid object association or from

value constraint violation.

The subsumption algorithm provided by a terminological

reasoning system is one possible way to semantically optimize

database queries [7]. We consider two queries semantically

equivalent if they represent the same result, that is for a

relational database, the same set of rows. The result set of the

query is then the extensional set of required columns that verify

the search conditions. The aim of semantic query optimization

is to convert the intensional description of the query into the

conceptual model formalism and to simplify the description

according to the concept hierarchy. The integrity constraints of

each database concept can be propagated to reduce the number

of possible instances. If it can be logically deduced that the

result set will be empty, the database will not unnecessarily

accessed. Furthermore, in the case of inconsistent query, the

system may help the user to understand why the result is empty,

due to logical inconsistency or lack of information. This

correction phase will of course involve the natural language

interface.

Another domain of query optimization concerns result local

storage. A query can be considered as an intensional concept

definition of possible instances. Since we define our conceptual

model formalism on description logics, we can define a query in

this formalism. In such a way, each query can be structurally

compared with each other and then classified in a query

hierarchy. Then if a query Q1 subsumes a query Q2, the result

set of Q2 will be contained in the result of Q1. Therefore, query

classification implies query result classification. In a relational

database context, suppose you have locally stored the result of

Q1, you do not need, in certain conditions, to submit Q2 to the

database since you can restrict your search in the Q1 result

table. As a matter of fact, it is possible to construct a local table

hierarchy of query results, indexed by the description logics-

based query definition. This mecanism may be especially useful

for multidimensional data that imply local hypercube storage.

CONCLUSION

In this paper, we have presented some useful requirements for

datawarehouse. Indeed, it is important to improve end-user

access facilities and to avoid some difficulties during query

construction and result exploitation.

We have argued that a database front-end based on a conceptual

model with terminological reasoning services can give some

enhancements in this direction. Since the modeling phase is

compulsory for information system design, it is useful to reuse

this model during the database exploitation. We have decided to

integrate terminological reasoning in the conceptual modeling

formalism. In this way, semantic query optimization and local

result storage method will be studied. Furthermore, we would

like to give flexibility for the representation of conceptual

information with customizable end-user naming convention

concerning concepts and relations. As a matter of fact, a natural

language interface will directly participate to query definition.

REFERENCES

[1] P. Chen. The Entity-Relationship Model - towards a unified

view of data. ACM Transactions on Database Systems, 1, 1

(1976), pp.9-36.

[2] G.H.W.M. Bronts, S.J. Brouwer, C.L.J. Martens and H.A.

Proper. "A Unifying Object Role Modelling Approach."

Information Systems Vol.20, n°3 (1995) pp.213-235.

[3] E.F. Codd, S.B. Codd and C.T. Salley. Providing OLAP

(On-line Analytical Processing) to User-Analysts: An IT

Mandate. White Paper funded by Arbor Software. 1993.

[4] T. Kessel, O. Stern and F. Rousselot. "From frames to

concepts: building a concept language on a frame-based

system." Int. Workshop on Description Logic (DL-95) (Rome,

1995) pp. 140-142.

[5] P. Bresciani. "Querying Databases from Description

Logics." KI'95 Workshop in KRDB'95 (Bielefeld, Germany,

1995) pp.1-4.

[6] S. Bergamaschi and C. Sartori. "On Taxonomic Reasoning

in Conceptual Design." ACM Transactions on Database

Systems Vol.17, n°3 (1992) pp.385-422.

[7] D. Benevenato, S. Bergamaschi, S. Lodi and C. Sartori.

"Using Subsumption in Semantic Query Optimization." (CIOC-

CNR, Bologna, Italia, 1993).

