
Flexible query-answering systems modelled in metalogic programming

Troels Andreasen and Henning Christiansen

Roskilde University

P.O. Box 260, DK-4000 Roskilde, Denmark

ftroels, henningg@dat.ruc.dk

Abstract. Metaprogramming adds new expressive power to logic

programming which can be advantageous to transfer to the field

of deductive databases. We propose metaprogramming as a way to

model and develop new, flexible query-answering systems.

A model is shown, extending deductive databases by a classifi-

cation of the clauses in the database, an integration of nonstandard

inference rules, and a notion of proof constraints in which a vari-

ety of flexible ways of evaluating database queries can be expressed.

Furthermore, it is indicated how techniques developed in metalogic

programming for abduction and induction may be applied for mod-

elling knowledge discovery and data mining.

1 Introduction

Deductive databases have never reached a widespread acceptance in

practical applications of databases, but at the conceptual level, they

are acknowledged for their simplicity combined with high express-

ibility. As such, the field of deductive databases has proved to be an

important research platform and in many ways setting the standard

for future database technology. The deductive database formalism is

a subset of first order logic, for which the logic programming scheme,

predominantly in the shape of Prolog, provides implementations that

are sufficient for many applications and also may show the way to

fullscale database systems.

Metaprogramming, which has been studied extensively in the re-

cent years, provides an extended expressibility to logic programming

and in the present paper, we suggest to use metaprogramming as

a methodology in deductive database research with a bias towards

flexible query-answering systems. We believe that modelling and ex-

perimenting in this way with new database formalisms and query-

answering mechanisms is useful, leading from early and vaguely un-

derstood proposals to proper formalizations.

In this paper, we propose an extended model for deductive

databases and query evaluation characterized by

� a classification of the database clauses into separate spaces of

domain knowledge,

� a parameterization by the inference rules, which may be instan-

tiated into a collection of nonstandard rules, and

� a reification of the proof, which we recognize as an important

part of the answer to a query, and on which a variety of natural

constraints in a database query can be expressed.

We indicate also how techniques developed in metalogic program-

ming for abduction and induction can be applied for modelling con-

struction and maintenance tasks such as view updates, knowledge

discovery and data mining.

1.1 Background

Metaprogramming can be defined as “treating programs as data” and

as such, it has always been a central notion in computer science, from

the first compilers or even before that, regarding, e.g., the seminal

works by Gödel, Turing and Church in the thirties and forties. With

the advent of symbolic programming programming languages such

as Lisp and Prolog, metaprogramming has been recognized as a pow-

erful and useful programming technique of its own right despite the

slight increase in complexity. In logic programming, we may sum-

marize the advantages of metaprogramming as follows,

� it is possible to write generic code, e.g., rules that goes for a

group of predicates,

� flexibility in interpretation, the programmer can interfere with

the semantics of the language, e.g., adding nonstandard infer-

ence rules or controlling the application of inference rules, and

� enhanced functionality, in the simplest case, adding, say, trac-

ing capabilities to an interpreter and more radically, having an

interpreter to “run backwards” in order to create programs.

Meta-programming can be viewed as a way to simulate features nor-

mally related to higher-order logics, but staying in a first-order setting

and as such keeps open the perspectives for efficient implementation.

We summarize the possible contributions of metalogic programming

to the field of deductive databases by the following commuting cube.

"

"

"

"

"

�

�

Deductive
databases

First-order
logic

Extended
knowl.repr.

“Higher-order”

logics

Logic

programming

Metalogic

programming

Deduct. db
system

Flexible, coop., etc.

db system

The front of the cube represents theoretical settings on which the

implemented technology, shown in the back, is founded. The point

of view we defend in the present paper is that the extended power

of metaprogramming is higly relevant for the development of new

and more flexible knowledge representation formalisms and imple-

mented systems.

Most work concerning metaprogramming in logic takes its origin

in the extremely simple self-interpreter for Prolog known as Vanilla.

1

prove(true).

prove((A,B)):- prove(A), prove(B).

prove(A):- clause(A,B), prove(B).

Gaasterland, Godfrey, and Minker [17] has used an extension of

Vanilla for describing cooperative answering based on relaxation by

taxonomy, i.e, generalizing the query in case of an insufficient an-

swer. In our own work [2; 3], we have taken this approach further

allowing (in principle) arbitrary nonstandard inference rules kept in

order by constraints on the proof produced by the prove predi-

cate. Reflective Prolog [12] is a proposal for a programming lan-

guage that integrates this programming-by-modifying-the-semantics

style, making clear the reflections between the object and meta layers

that take place. In [13], this framework is extended with a notion of

metalevel negation which makes it possible to characterize aspects

of nonmonotonic reasoning in an elegant way.

The metainterpretation approach can be taken further by making a

representation of the object program an argument of the interpreter as

is the case for the demo predicated which was suggested by Kowal-

ski [22]. This means that a metavariable can represent an unknown

“hole” in the program and in principle, demo should be able gen-

erate the remaining parts of the program as to make the goal argu-

ment provable. However, it took more than a decade before logically

satisfactory implementations of demo appeared in two simultane-

ous results by [26; 7]; our own constraint-based Demo system [8; 9;

10] seems to be the first implementation which makes demo avail-

able as a general metaprogramming tool capable of handling ar-

bitrary uninstantiated metavariables. Experiences with this systems

shows that alternative reasoning patterns, e.g., abduction, induction

and default reasoning, can be implemented in quite straightforward

ways having demo to run in parallel with additional metalevel con-

straints defining the kinds of novel fragments that are allowed.

For an overview of the field of metaprogramming, we refer to the

series of workshop proceedings [1; 6; 25; 16], two survey papers [20;

5] and a recent book [4]. We may also refer to the following entries

for earlier work on flexible query-answering mechanisms [14; 18;

15; 23; 11].

1.2 Overview of this paper

Section 2 describes our prototype for experimenting with nonstan-

dard inference rules and constraints on the proof realized by a few

straightforward extensions to the Vanilla interpreter. We indicate ap-

plication of this framework to model user requirements, extended

answering capabilities as well as a new form of semantic optimiza-

tions.

In section 3, we sketch the overall principles in the Demo system

and indicate its use for modelling dymanic aspects of databases such

as view update, knowledge discovery and data mining.

We give a summary and some ideas for future work in section 4.

2 Flexible query-answering by extensions to

the Vanilla interpreter

Our model for query-answering systems is presented as an extension

of the vanilla interpreter, parameterized by a set of inference rules

and with a reification of the proof, which makes possible the principle

of having constraints on the proof as a way to direct the application

of the inference rules. As shown by a picture, the introduction of new

inference rules extend the answer whereas proof constraints reduce

it.

Proof
constraints

�

�

�

�

Non-standard
inference

'

&

$

%

Standard
interpretation

'

&

$

%

It should also be stressed that for certain types of queries, that the

proof contains information that is highly relevant for the user as part

of the answer given by a system. Consider as an example a database

for travel planning. A traditional deductive database system (or Pro-

log interpreter) can only answer whether or not a certain travel is

possible, whereas the actual travel plan consisting of the subdistances

making up the whole trip, is what is expressed in the proof.

2.1 Classification of the database clauses

The facts and rules in the database are represented by Prolog facts of

the form

klause(class , clause).

Each clause is given a classification that determine the way it can be

used by the interpreter.

The following database, which we use below to illustrate proof

constraints, consists of clauses all classified as db indicating that they

are to be understood as database clauses in the usual way.

klause(db, (rich:- steal)).

klause(db, (rich:- earn)).

klause(db, (earn:- true)).

klause(db, (steal:- true)).

Other relevant classifications can be tax to indicate taxonomy

clauses intended also for widening a query or subgoal or ic for in-

tegrity constraints.

In this way, the database can be considered divided into separate

knowledge bases of different kinds of domain knowledge. A classi-

fication may also be used to distinguish between the knowledge of

different agents.

2.2 The interpreter

The Vanilla metainterpreter has been extended by an extra argument

in order to collect the proof; notice also that the normal rewriting

of an atom by a sequence of other atoms has been replaced by a

predicate derive which we discuss below.

prove(true,E):- dempty(E).

prove((A,B), ProofAB):-

dappend(ProofA, ProofB, ProofAB),

prove(A, ProofA), prove(B, ProofB).

prove(A, ProofA):-

derive(A, B, StepA),

dadd(StepA, ProofB, ProofA),

prove(B, ProofB).

The proof is a list of descriptions of proof steps, each generated by

derive. The list predicates dempty, dappend, and dadd cov-

ers over an abstract data type of difference lists; the implementation

is shown in the appendix. This representation is convenient for the

following practical reasons,

2

� concatenation of subproofs is done in constant time, without

recursion, and

� proof constraints can be defined orthogonally to the inference

rules and still execute in a lazy-evaluation style by means of

coroutines in Prolog during the construction of the proof.

The derive predicate in the metainterpreter should be understood

as a parameter which represents the set of inference rules available.

The usual modus ponens rule is defined as follows.

derive(A,B,Step):-

klause(db, (A:- B)),

Step = step(mp, (A:- B)).

This defines the standard interpretation of a database; nonstandard

inference can be introduced by additional derive rules.

2.3 Implementing constraints on the proof

For illustrating the notions of the proof as part of the answer and

constraints on the proof, we consider the query rich to the database

shown above with modus ponens as the only rule; dmake is a coer-

cion from normal lists to difference lists.

?- dmake(Proof, ProofD), prove(rich, ProofD).

This yields the following two values of Proof as answers.

Proof = [step(mp,(rich:- steal)),

step(mp,(steal:-true))]

Proof = [step(mp,(rich:- earn)),

step(mp,(earn:-true))]

We can identify two sorts of relevant proof constraints, posed by the

user in the query language, and system constraints that characterize a

particular query-answering system. A given query-answering system

defined by a set of inference rules, a query language, and a set of

system constraints may be implemented as follows.

answer(Q/Con, Proof):-

system_constraints(Proof),

user_constraints(Con, Proof),

dmake(Proof, ProofD), prove(Q, ProofD).

The two constraint predicates should be implemented as coroutines

that resume execution each time a step is added to the proof. We

illustrate the principle by the following example.1

:- block honest(-).

honest([step(_, (X :- _)) | Steps]):-

dif(X, steal),

honest(Steps).

honest([]).

With this as a constraint to the query shown above, only the second

proof will be produced as answer.

2.4 Relaxation by taxonomy

As an example of a nonstandard inference rule, we consider relax-

ation by taxonomy which can be realized adding the following meta-

level rule to the interpreter.

derive(Sub,Super,Step):-

klause(tax, (Super:-Sub)),

Step = step(relax_by_tax, (Super:-Sub)).

1We use Sicstus Prolog (SICS, 1995). dif is a logically correct imple-
mentation of syntactic nonidentity. It delays until the arguments have been
sufficiently instantiated. The block directive causes honest to delay until
its argument gets instantiated. This control device does not affect the declar-
ative meaning.

I.e., the taxonomy clause can be used in reverse compared with a

normal modus ponens step. Taxonomy clauses should be classified

in the database is such, e.g.:

klause(tax, (subdist(X,Y):-flight(X,Y))).

When queried for a travel composed recursively from one or more

flights, the interpreter may additionally suggests alternative travels

in which one or more subdistances is replaced by another means of

transportation, e.g. using another taxonomy rule in the normal modus

ponens direction.

klause(tax, (subdist(X,Y):-bus_ride(X,Y))).

Our approach, here, is inspired by earlier work of Gaasterland, God-

frey, and Minker [17] who performed similar transformations on the

initial query, but without going into derived subgoals as we do.

We can illustrate the difference between the two by an example.

Having submitted a query for a flight travel from Copenhagen to Bu-

dapest, the typical traveller may accept as an answer giving a flight

from Copenhagen to Vienna followed a bus ride from Vienna to Bu-

dapest if for some reason the all flights into Budapest have been can-

celled. The travel agent who only can modify the top level query

would not suggest this solution, but instead go directly to suggesting

a bus ride all the way from Copenhagen to Budapest. Our traveller is

likely not to consider this travel agent very cooperative.

The flexible use of relaxation by taxonomy of arbitrary subgoals,

creates another problem, which motivates our notion of proof con-

straints. If taxonomy clauses can be used also in modus ponens steps,

this may immediately “undo” the relaxation and it is easy to see that

the interpreter is condemned to loop. The following will cure the

problem.

PROOF CONSTRAINT: A given instance of a taxonomy rule cannot

be used in a relaxation as well as in a modus ponens step.

Referring still to the travel planning example, proof constraints may

also be used to express natural requirements such as “No intermedi-

ate station should be passed more than once” or that the prize and/or

travelling time should be minimized.

2.5 Introducing a fragment of linear logic to
databases

One of the motivations behind the development of linear logic [19]

is to make it possible to reason about aspects of process and time in

a logical setting. Linear logic differs from first order logic in the way

that some formulas are considered as resources in the sense that they

are consumed when used in a proof. This can implemented in our

framework as follows.

PROOF CONSTRAINT: A clause classified as resource can only

occur once.

We have not made any systematic investigation of this option yet or

developed interesting examples, but we believe it to be a relevant

extension to deductive databases.

2.6 Counterfactual exceptions

It may often be relevant in a query to suppress part of the database,

which we so to speak counterfactually deny. For example, asking for

a travel without flights can be thought of as asking for a travel in a

world similar to the real world, but with all flights cancelled, despite

the fact that the real world as well as the database include flights. The

example in section 2.3 above, about getting rich in an honest way, is

also a very simple special case of the principle, we introduce here.

We developed the notion of counterfactual exceptions in order to

express such queries using the general interpreter described above

3

and based on the knowledge gained from it, we have been able to

describe model-based and completion semantics for this device as

well as giving a specialized metainterpreter for it; this is described in

our ECAI paper [3].

Here we need only the standard inference defined by modus

ponens2 and consider queries of the form

9 � � � (�!!)

with

� = (8 � � � :�

1

) ^ � � � ^ (8 � � � :�

n

)

where �
1

; : : : ; �

n

are atoms, a conjunction of atoms; each sub-

formula 8 � � � :�
i

is called a counterfactual exception. Any variable

quantified at the outermost level is said to be global, all other vari-

ables in the �
i

’s are local. For a given user query 9 � � � (�!!),

is made the goal argument of the metainterpreter whereas � is trans-

lated into proof constraints as follows.

PROOF CONSTRAINT: A clause instance A:- B is only allowed in

the proof if A and � are consistent.

This consistency condition corresponds roughly to a condition of

non-unifiability which can be implemented using the lazy dif pred-

icate described earlier.

The treatment of negative hypotheses as exceptions is computa-

tionally much easier to handle than the possible world counterfactual

implication suggested by Lewis in [24] and adopted in most studies

of counterfactual reasoning. Although the latter view may be philo-

sophically more pleasing in many context, our simplified version

seems appropriate in database queries as shown by the following ex-

amples. We assume a database of travel information where a travel

between two points is composed of one or more links, which may be

either train, boat, or flight.

The query “I want to travel from a to d, but I refuse to sail from b

to c on my way”, is formalized

(:boat(b; c))!! travel(a; d).

“I want to travel from a to d, but I refuse to fly”:

(8X;Y :flight(X;Y))!! travel(a; d).

We can show the use of global variables in the query “I want to travel

from a to a place where I do not arrive by train”.

9X((8Y :train(Y;X)) !! travel(a;X))

These examples show that many natural requirements in a query

which cannot be expressed in any traditional query language fits quite

well with constraints on the proof, here in the special fitting called

counterfactual exceptions.

2.7 Semantic optimization by proof constraints

Semantic optimization is a method to restrict the search space by ex-

tending the query by means of intensional knowledge, e.g., contained

in integrity constraints.

Assume, for example, an integrity constraint

8X(p(X) ^ q(X) ! r(X)):

In case the extension of r is know to be small compared with the

rest of the database, the query s(X); p(X); q(X) can be extended

to r(X); s(X); p(X); q(X) without changing the answer but with a

much faster evaluation of the query.

We can go a step further extending a query with counterfactual

exceptions. Assume, for example, the following integrity constraint,

8X(s(X)! :r(X) ^X 6= a):

2However, it is clear that the principle can be combined with nonstandard
inference and other proof constraints as well.

This means that we can extend the query 9X s(X) with exceptions

as follows without changing the answer.

9X((:r(X) ^ :s(a))!! s(X)):

This affects the execution in the following ways,

� whenever the subgoal r(X) appears for an X sought, it fails

immediately,

� whenever the subgoal s(a) appears, it fails immediately without

consulting the extension of s.

In certain cases this can lead to a drastic reduction of the search space

and it should be compared with the fact that the processing of coun-

terfactual exceptions only amounts to a constant slowdown of each

proof step performed.

We consider another example with an integrity constraint

8X(p(X) ^ q(Y)! X 6= Y):

Here the query 9X p(X) can be extended to

9X(:q(X)!! p(X)):

3 Using a complete demo predicate to model

dynamic aspects of databases

In this section, we take up a different theme in metalogic program-

ming which seems to be relevant when modelling dynamic properties

of databases such as updating and knowledge discovery.

A proof predicate such as the two-argument demo is well-suited

for specifying such problems, and thus it is obvious to use our im-

plemented version of it for experimental purposes. Our metalogic

programming system called Demo differs from earlier implementa-

tions by providing a fully logical treatment of metavariables standing

for unknown parts of the object program interpreted by demo. The

demo predicate can be specified as follows.

demo(P 0

; Q

0

) iff P

0 and Q0 are names of program and

query, P and Q, such that there exists

substitution � with

P ` Q�

A meta-variable in P 0 will thus stand for a piece of program text

and demo will produce program fragments which make Q provable.

The implementation is fairly efficient due to the use of constraint

techniques and the usefulness of the approach comes from the ability

to have user-defined conditions to the program fragments sought run

interleaved with the actions of demo.

The full description of Demo is given in [10]; here we give a brief

overview focusing on potential database applications.

3.1 View update by abduction

We use an example from [21] as an introduction the use of Demo

for database application. We have retouched away a few technical

details, that are unnecessary for the points we want to illustrate here;

all details can be found in [10].

We consider a database with extensional predicates father and

mother and view predicates sibling and parent. We assume an

initial database with the following contents; the object_module

directive recognized by the Demo system associates the database

with the name db0, the backslash is a quotation operator that in-

dicates a ground representation.

:- object_module(db0,

\[(sibling(X,Y):- parent(Z,X),parent(Z,Y),

4

dif(X,Y)),

(parent(X,Y):- father(X,Y)),

(parent(X,Y):- mother(X,Y)),

father(john,mary),

mother(jane,mary)]).

The father and mother predicates being the only extensional

predicates means that new knowledge has to be absorbed in the

database solely by facts about these predicates, also if the knowledge

is reported in terms of the view predicates. We formalize as follows

— at the metalevel — what it means for a database (extension) to

consist such facts.

extensionals(\ []).

extensionals(\ [(father(?A,?B):-true)

| ?More]):-

constant_(A), constant_(B),

extensionals(More).

extensionals(\ [(mother(?A,?B):-true)

| ?More]):-

constant_(A), constant_(B),

extensionals(More).

The question mark is an unquote operator that indicates the pres-

ence of a metavariable, so together with the indicated syntax con-

straints, it is expressed above that the arguments, whose names are

given by A and B must be constants (i.e., not variables or arbitrary

Prolog structures). Co-routine control is assumed for delaying this

metalevel predicate, exactly as described for proof constraints above

in section 2.

Integrity constraints for a knowledge base also needs to be defined

at the metalevel.

integrity_check(DB):-

% You can only have one father:

for_all(

(constant_(A),constant_(B),constant_(C),

demo(DB, \\ (father(?A,?C),father(?B,?C)))),

A=B),

% You can only have one mother:

for_all(

(constant_(A),constant_(B),constant_(C),

demo(DB, \\ (mother(?A,?C) mother(?B,?C)))),

A=B),

% A mother cannot be a father:

for_all(

(constant_(A),constant_(B),

demo(DB, \\ (mother(?A,?_),father(?B,?_)))),

dif(A,B)).

We have now what is needed to implement a predicate for updating

the database properly so new knowledge can be explained.

update(DB, Obs, NewDB):-

extensionals(UpdateFacts),

NewKB = \ (?DB & ?UpdateFacts),

demo(NewDB, Obs),

integrity_check(NewDB).

Given a data DB and some observed facts Obs, a new knowledge

base NewDB is produced. The knowledge base is extended with new

extensional facts without violating the integrity constraints. The ex-

pression P
1

&P
2

denotes the program consisting of the union of the

clauses of P
1

and P
2

.

The following test queries show the overall behaviour of the

update predicate defined above.

?- update(\kb0, \\sibling(mary,bob), N).

N = \ (kb0 & [(father(john,bob):-true)]) ? ;

N = \ (kb0 & [(mother(jane,bob):-true)]) ?

?- update(\kb0, \\ (sibling(mary,bob),

mother(joan,bob)), N).

N = \ (kb0&[(father(john,bob):-true),

(mother(joan,bob):-true)]) ?

So the update predicate reasons in an abductive way in order to

explain the observed facts and in this way suggests the possible ways

the extensional database can be updated in order to become consis-

tent with the world. If there is only one possible update, it can be

executed right away, otherwise more information may be required

from the user.

3.2 Using induction for data mining or knowledge
discovery

Under this headline, we consider the general problem of identify-

ing appropriate rules in order to identify automatically a structuring

inherint in a large set of data given in an unstructured way, in this

context, typically in terms of a set of facts.

To exemplify this, we modify the example above by deleting the

rule defining the sibling relation and introduce a few more exten-

sional facts.

:- object_module(db1,

\[(parent(X,Y):- father(X,Y)),

(parent(X,Y):- mother(X,Y)),

father(john,mary),

mother(jane,mary),

father(john,bob),

mother(jane,pedro),

father(manuel,pedro)]).

Assume now, a new property named sibling is reported with the

facts

F = sibling(mary bob), sibling(mary pedro).

We do not accept any new extensional predicates added to the

database, so the only way to assimilate the new facts will be by a

new rule defining the sibling predicate in terms of other predi-

cates in the database. The problem can be stated as follows, where

we will discuss the possible choices of the metalevel predicate

simple_rule below.

?- simple_rule(R), demo(\ (db1 & ?R), F).

It may be the case that the only rules we allow should correspond to

either a natural join, a union or intersection of two existing predicates

defined in a suitable way (in the first place, if this fails, we may ex-

tend the scope to cover more complicated rules). With this, the query

to demo above will suggest the rule

sibling(X,Y):- parent(Z,X),parent(Z,Y).

With more sophisticated metalevel rules it may even be possible to

have the condition dif(X,Y) added to the rule.

It should be stressed, however, that the Demo system only have

been used for small induction problems as the one shown above.

5

In [10] we have also shown how induction can be made with Demo

under assumption corresponding to default logic, so that Demo in-

vents the rule “all birds fly, except penguins” from a suitable collec-

tion of facts.

4 Concluding remarks

We have advocated the use of metalogic programming as a power-

ful tool suited for experimenting with new mechanisms in deductive

databases, ranging from the design of query languages to “flexible”

or “cooperative” ways of answering queries.

We showed a straightforward extension of the Vanilla interpreter

which served as a generic model for flexible query-answering sys-

tems using nonstandard inference combined with proof constraints.

We are not aware of any earlier work that uses constraints on the

proof in this way, and we have intended to show that this notion is

highly relevant in the statement as well as the evaluation of database

queries. As a special case, we considered the notion of counterfac-

tual exceptions and which also gave rise to a novel kind of semantic

optimizations.

Furthermore, we sketched how our Demo system, with its log-

ically complete demo predicate, might be used to model dynamic

properties related to the construction and maintenance of databases.

With our current experience with Demo for abductive and inductive

problems, we believe that it is useful for formulating and experiment-

ing with new models for these aspects. However, it needs more work

before we can conclude anything about whether it is relevant to use

it as a platform for implementation methods that can be scaled up to

realistic problems. A possible next step will be to try to integrate the

two paradigms we have shown.

Appendix, difference lists

The following Prolog unit clauses defines the abstract data type used

for difference lists

% Append two diff. lists

dappend(L1/L2, L2/L3, L1/L3).

% Add element to front of list

dadd(E,L1/L2,[E|L1]/L2).

% Normal list to diff. lists

dmake(L, L/[]).

% Empty diff. list

dempty(L/L).

References
[1] Abramson, H., and Rogers, M.H., eds., Meta-programming in

Logic Programming. MIT Press, 1989.

[2] Andreasen T., Christiansen H. An experimental prototype for

flexible query-answering mechanisms, A metainterpretation

approach. In: [11], 1996.

[3] Andreasen, T., Christiansen, H. Counterfactual exceptions in

deductive database queries. Proc. ECAI’96, 12th European

Conference on Artificial Intelligence pp. 340–344, 1996.

[4] Apt, K.R., Turini, F., eds., Meta-Logics and Logic Program-

ming, MIT Press 1995.

[5] Barklund, J., Metaprogramming in Logic. In: Encyclopedia of

Computer Science and Technology, Vol. 33 (eds. A. Kent and

J. G. Williams), pp. 205–227, Marcel Dekker, New York, 1995.

[6] Bruynooghe, M., ed., Proc. of the Second Workshop on Meta-

programming in Logic. April 4–6, 1990, Leuven, Belgium.

[7] Christiansen, H., A complete resolution method for logical

meta-programming languages. Proc. of META-92, Third In-

ternational Workshop on Metaprogramming in Logic. Ed. Pet-

torossi, A., Lecture Notes in Computer Science 649, Springer-

Verlag, pp. 205–219, 1992.

[8] Christiansen, H., Efficient and complete demo predicate. for

definite clause languages. Datalogiske skrifter 51, Roskilde

University, 1994.

[9] Christiansen, H., On proof predicates in logic programming.

A.Momigliani and M.Ornaghi, eds. ’Proof-Theoretical Exten-

sions of Logic Programming’, CMU, Pittsburgh, PA 15231-

3890, USA. Proceedings of an ICLP-94 Post-Conference

Workshop, 1994.

[10] Christiansen, H., Automated reasoning with a constraint-based

meta-interpreter. To appear 1996.

[11] Christiansen, H., Larsen, H.L., Andreasen, T., Eds. Flexi-

ble Query-Answering Systems, Proc. of the 1996 workshop

(FQAS96), Roskilde, Denmark, May 22–24, 1996. Datalogiske

skrifter 62, Roskilde University, 1996.

[12] Costantini, S., Lanzarone, G.A., A metalogic programming lan-

guage, Logic Programming: Proc. of the Sixth International

Conference, pp. 133–145, MIT Press, 1989.

[13] Costantini, S., Lanzarone, G.A., Metalevel negation and non-

monotonic reasoning. Methods of Logic in Computer Science

1, pp. 111–140, 1994.

[14] Cuppens F. and Demolombe R. Cooperative Answering : a

methodology to provide intelligent access to Databases. in Pro-

6

ceedings Proc. of the Second International Conference on Ex-

pert Database Systems. 1988.

[15] Demolombe, R., Imielinski, R., eds., Nonstandard Queries and

Nonstandard Answers, Studies in Logic and Computation 3,

Oxford Science Publications, 1994.

[16] Fribourg, L., Turini, F., Eds. Logic Program Synthesis and

Transformation — Meta-Programming in Logic. 4th Interna-

tional Workshops, LOBSTR’94 and META’94. Lecture Notes

in Computer Science 883, Springer-Verlag, 1994.

[17] Gaasterland T., Godfrey P., and Minker J., Relaxation as a Plat-

form for Cooperative Answering. Journal of Intelligent Infor-

mation Systems, 1, 3/4, pp. 293-321, 1992.

[18] Gaasterland T., Godfrey P., and Minker J., An Overview of Co-

operative Answering. Journal of Intelligent Information Sys-

tems, 1, 2, 1992. p. 123–157.

[19] Girard, J.Y., Linear logic. Theoretical Computer Science 50, pp.

1-101, 1987.

International Logic Programming Symposium, 1991.

[20] Hill, P.M. and Gallagher, J.P., Meta-programming in Logic Pro-

gramming. To be published in Volume V of Handbook of Logic

in Artificial Intelligence and Logic Programming, Oxford Uni-

versity Press.

Currently available as Research Report Series 94.22, University

of Leeds, School of Computer Studies, 1994.

[21] Kakas, A.A., Kowalski, R.A., Toni, F., Abductive logic pro-

gramming. Journal of Logic and Computation 2, pp. 719–770,

1993.

[22] Kowalski, R., Logic for problem solving. North-Holland, 1979.

[23] Larsen, H.L., Andreasen, T., Flexible Query-Answering Sys-

tems, Proc. of the 1994 workshop (FQAS94), Roskilde, Den-

mark, Nov. 14–16, 1994. Datalogiske skrifter 58, Roskilde Uni-

versity, 1995.

[24] Lewis, D, Counterfactuals. Harward University Press, 1973.

[25] Pettorossi, A., ed. Proc. of META-92, Third International

Workshop on Metaprogramming in Logic. Lecture Notes in

Computer Science 649, Springer-Verlag, 1992.

[26] Sato, T., Meta-programming through a truth predicate. Logic

Programming, Proc. of the Joint International Conference and

Symposium on Logic Programming, ed. Apt, K., pp. 526–540,

MIT Press, 1992.

[27] SICStus Prolog user’s manual. Version 3.0, SICS, Swedish In-

stitute of Computer Science, 1995.

7

