
Adapting Database Object Models to Knowledge Representation Needs

St�ephane Demphlous

INRIA, BP 93, F-06902 Sophia Antipolis Cedex, France

E-mail: Stephane.Demphlous@sophia.inria.fr

Abstract.

The use of external object-oriented databases to o�er per-

sistence to knowledge bases often induces a problem of hetero-

geneity between the knowledge representation model and the

persistent object model. Most often a translation engine has

to be provided between the two systems and the knowledge

structures are not mirrored in the database schema structures.

We propose an object-oriented database management system,

based on a object-relational couple and a complete metaobject

approach, allowing to customize both its object model and the

translation engine between its two constituting elements. So

the object model of the database can become similar to the

one of the knowledge representation system, and, with our

specializable persistence metaobject protocol, the underlying

relational structures can be adapted.

1 OBJECT-ORIENTED DATABASES

AND KNOWLEDGE

REPRESENTATION NEEDS

One of the �rst aim of our research team is to provide a link

between arti�cial intelligence applications and the database

world. Initially our research topic was to provide persistence

to the Smeci expert system

[

4

]

. This task has been completed

with the Driver system

[

11

]

. However Driver does not limit

itself to the persistence of Smeci. It appears clearly that, as

the knowledge may evolve, the knowledge representation may

have to evolve too. So Driver provides a straightforward way

to use di�erent object modeling to represent identical data. To

summarize the Driver concept, one can say that it is an ob-

ject layer on a relational database. So, �nal data are saved in

a simple and standardized way, when knowledge representa-

tion applications construct appropriate object modeling. The

interest of such an approach has been shown in

[

10

]

and

[

12

]

.

However Driver adaptability has some restrictions. As a

matter of fact, Driver provides ways to link most of object

modelings to persistent data, but the object model stays the

same. We di�er object modeling and object model. The �rst is

the way information is structured, that is, roughly speaking,

the classes used and the relations between them. The second

addresses the internal structure itself of objects and classes.

We center our study on the second one.

Driver can be objectively seen as an object-oriented

database. So we have to follow the evolution of the databases

domain. Now the Object Database Management Group pro-

poses a standard, the odmg one

[

1

]

, that may federate all

object-oriented databases. This standard includes an object

model. So we have to �x whether we only have to set Driver

odmg-compliant, which is, by the way, currently under pro-

cess. From a database viewpoint it may appear as su�cient.

However, from a knowledge representation viewpoint, center-

ing the Driver system on an unique model appears as a mis-

take.

As a matter of fact, it seems obvious that the odmg object

model cannot ful�ll the needs of every knowledge representa-

tion application. Smeci itself , which historically has been the

origin of the works of our team, uses a di�erent object model

than the odmg one. One can �nd many examples where it

may be hard to express fundamental notions in the odmg

model: how to express frames, how to express the point of view

paradigm in the odmg model? Using an odmg database, the

developer would have to implement from scratch a translation

engine between the object model used in his knowledge rep-

resentation application and the database object model. This

problem has been faced in

[

6

]

. A knowledge representation

system has been coupled with an object-oriented database,

or, when needed, with a relational database. Moreover, a way

to open the persistent knowledge representation model is to

o�er persistence to a generic frame protocol

[

7

]

. However the

knowledge representation models that can be inserted are only

the one whose concepts strictly �t in the features provided by

this protocol.

We think that one of the best way to provide extensibil-

ity of object models is to provide a metaclass paradigm, as

shown in

[

8

]

. In this work, the Clos language is taken as an

example, and di�erent ways to introduce a new object model

are shown, creating new metaclasses and specializing on them

the instantiation metaobject protocol. Some object-oriented

databases, like Adam

[

3

]

and Pclos

[

14

][

15

][

16

][

17

]

provide a

metaclass paradigm.

However these systems are more persistent languages own-

ing the metaclass concept than object-oriented databases.

They often consider themselves as the owner of the under-

lying database, so data can be hardly reused outside the lan-

guage or the system. We want a same group of data to be

seen di�erently according the object model used, that is, dif-

ferent meta-instances representing same data, but following

di�erent representations. We want data to be stored in an

elegant way, de�ned by the developer, in the underlying rela-

tional database, and we want them to be accessed by di�erent

translation engines that may coexist upon them. We think

that the \elegance" of the underlying relational schema is an

important goal. We do not want knowledge structures to be

saved in the underlying database in a kind of \bytes string".

1

It has been shown in

[

9

]

that most of the object-oriented con-

cepts can have mirrored relational structures expressing their

semantic. We think that it can be useful to let knowledge rep-

resentation structures be explicitly mirrored in the relational

schema. Moreover, we want to capitalize translation experi-

ence, so we think that a persistence metaobject protocol be-

tween the knowledge representation system and the database

is the best answer. We have discussed this architecture in

[

2

]

.

2 INTRODUCING A NEW

PERSISTENT OBJECT MODEL

2.1 Managing Persistence

We o�er a three-layered architecture. The lower layer is a

relational database. An intermediate level uses a Non-First

Normal Form (NF

2

) paradigm. This level allows the user to

de�ne embedded tables as attributes. So the mapping from

object slots to relational attributes is simplier when the slots

are of list type or structure type

[

13

]

. The upper layer is the

Clos dialect Power Classes

[

5

]

. We have chosen a Clos di-

alect since many works have shown the ability of this language

to integrate new object models. Moreover, Clos structure ap-

pears often appropriate to make evolve an object approach

toward a knowledge representation one. An example can be

found in

[

18

]

.

Between the upper and the medium layer we have de�ned

a persistence metaobject protocol that we present now.

We have pondered on the various mechanisms that succeed

one another during persistence, that is, either when host rela-

tional structures corresponding to object types are created, or

when �nal data are saved. We have brought to the fore \strate-

gic" events inside these mechanisms. Modifying these events

leads to systematically de�ne new coherent correspondence

schemas. This event sequence is the persistence metaobject

protocol (Pmop). We have implemented it in Power Classes.

Its ability to be specialized on new metaclasses allows the

developer to exercise an in
uence on these \strategic places".

We show in �gure 1 a skeleton of our Pmop. It is a se-

quence of multi-method calling one another and specializing

at least on the persistence-devoted metaclass we provide. The

indent between the lines shows the calling relations between

methods.

_pst-SaveObj (<persistent-class> <object>)
 _pst-SaveClass (<persistent-class>)
 _pst-ClassToNF2 (<persistent-class>)
 _pst-LinkedClasses (<persistent-class>)
 _pst-SuperClasses (<persistent-class>)
 _pst-SlotToNF2 (<persistent-class> <slot>)
 _pst-NF2ToRelational (<persistent-class>
 <NF2Table>)
 _pst-NF2AttributeToR (<persistent-class>
 <NF2Attribute>)
 _pst-CreateRelational (<persistent-class>
 <RTable>)
 _pst-CreateNF2 (<persistent-class> <NF2Table>)
 _pst-SaveSlot (<persistent-class> <NF2Table>
 <slot> <object>)
 _pst-DefineRequest (<persistent-class> <object>)

Figure 1: Persistence metaobject protocol skeleton

So we provide Power Classes and the persistence metaobject

protocol. This package includes a persistence-devoted meta-

class <persistent-class> inheriting from the standard meta-

class. The developer has to use it to de�ne persistent struc-

tures. The use of this metaclass is the only constraint added

in the application modeling phase. The developer can send

whenever he wants a persistence message to any object. Then,

using the standard Pmop, underlying NF

2

and relational

schemas corresponding to addressed object types are de�ned;

the metadata of these object types are saved; and, �nally, data

are stored. The retrieve and the storage of data are incremen-

tal. Object defaults are managed, and the user is the master

of the persistence activity: an object is completely created in

memory only when the user wants it to; otherwise, the upper

layer converses with the database.

2.2 Customizing the Object Model

Now, when the developer wants to de�ne a new persistent

object model more suitable to his knowledge representation

needs, he has to follow two steps. First, he has to de�ne

a new metaclass <MC> and to specialize the Power Classes'

metaobject protocol on it. It is the usual way to introduce

or modify an object model, and this way is not altered by

the persistence requirements. Then, when the object model

is consistent with the application needs, the second step to

follow is to de�ne a new metaclass <persistentMC> inherit-

ing from our persistence-devoted class <persistent-class>

and from the metaclass introduced by the developer. Then,

the developer just has to declare his object types as instances

of <persistentMC>: they will persist, of course only when the

�nal user wants them to.

However the relational schema will be the one computed by

our translation protocol. Since the object model is supposed to

have substantially changed, the computed corresponding re-

lational schema would not be very adequate. Moreover it may

re
ect implementation contingencies. If the developer wants

more coherent corresponding relational schemas, he has to

specialize the Pmop on the new metaclass.

Let us take a simple example. Let us imagine that the de-

veloper introduces an object model similar to the standard

one except the �eld structures. He may want to add facets to

the slots. Facets add informations on slots. Now, when a per-

sistence message is sent to a class, corresponding NF

2

and

relational structures are created and metadata about these

structures are saved. With the standard objet model, these

metadata are saved in NF

2

and relational tables whose skele-

ton is brie
y shown in the �gure 2. A table of slots, whose

keys are the class and slot identi�cators, keeps various infor-

mations about slots, like its type.

Now, there may be various facets linked to one slot. To

o�er persistence to these facets, the way the metadata are

organized must be changed. To keep coherent underlying re-

lational structures, the user would probably need structures

like the ones shown in the �gure 3. We can see in the rela-

tional layer that metadata dealing about basic structures of

slots stay in a main table while metadata of facets are stored

in an auxiliary relational table. This table is joined to the

main one considering the class and the slot identi�cators as a

foreign key. This new schema is useful since it can be reused

with an object model not owning the facet concept. We see

that the evolution of the object model structure has no de-

structive consequence on the underlying relational data.

To systematically provide these corresponding schemas, the

developer has to specialize only the part of the Pmop gener-

ating persistent metadata describing slots. The rest of the

Pmop, dealing, for example, with classes, inheritance, ref-

erence or aggregation relations, stays unchanged. Hence the

only method to be specialized are the one shown in bold in

2

ClassId

SlotId Type

NF2 Representation of Slots

Slot

SlotTable

TypeClassId SlotId

SlotTable

Relational Representation of Slots

Figure 2: Standard storage structures

Relational Representation of Slots

SlotId Type ClassId SlotId Facet Type ValueClassId

SlotTable FacetTable

ClassId

SlotId Type

ValueTypeFacets

Slot

Facets

NF2 Representation of Slots

SlotTable

Figure 3: Altered storage structures

the �gure 4. The �rst one manages the generation of NF

2

structures corresponding to slots; the second one links rela-

tional structures to NF

2

attributes; the last one deals with

slot storage, which may have side e�ect on metadata since

facets default may be dynamically changed.

_pst-SaveObj (<persistent-class> <object>)
 _pst-SaveClass (<persistent-class>)
 _pst-ClassToNF2 (<persistent-class>)
 _pst-LinkedClasses (<persistent-class>)
 _pst-SuperClasses (<persistent-class>)
 _pst-SlotToNF2 (<persistentMC> <slot>)
 _pst-NF2ToRelational (<persistent-class>
 <NF2Table>)
 _pst-NF2AttributeToR (<persistentMC>
 <NF2Attribute>)
 _pst-CreateRelational (<persistent-class>
 <RTable>)
 _pst-CreateNF2 (<persistent-class> <NF2Table>)
 _pst-SaveSlot (<persistentMC> <NF2Table>
 <slot> <object>)
 _pst-DefineRequest (<persistent-class> <object>)

Figure 4: Persistence metaobject protocol skeleton

The Pmop o�ers a \open translation engine". When the

developer customizes the object model, he can customize the

translation engine with a weak cost. As a matter of fact, he

can reuse the most part of the engine, customizing only the es-

sential parts. Whatever the new object model used for knowl-

edge representation may be, the rewriting cost is lighter than

using a \black box" odmg database.

CONCLUSION

O�ering persistence to a knowledge representation application

often leads to a hard problem: the use of a common object

model, since the object models used in knowledge representa-

tion are often di�erent than the object databases one. Most

often the only application has to move toward the underly-

ing database. We think that the database must move as far as

possible toward the application. The Pmop we have described

is a way to �ll the gap between them. The application object

model becomes the database's one. Our system gives a way

to derive a knowledge representation model from a persistent

object model. Our object-oriented database is based on an

object-relational couple. With the Pmop, when a knowledge

representation model is introduced, the evolution of semantic

can be mirrored on the underlying database. Hence knowledge

can be more easily accessed and shared from a lower layer

than the knowledge representation system itself. Finally we

will conclude highlighting two key points. First, introducing

a new persistent object model may appear as a hard activity.

However it is an uniform activity. As a matter of fact, the

developer has to specialize two orthogonal metaobject proto-

cols: the �rst one to create his object model, the second one

to adapt its persistence ability. So there is only one concept to

consider: the specializable metaobject protocol one. Moreover

we have seen that all the persistence activity is protocolized.

Hence, whatever the knowledge representation application is,

the amount of code to write in order to o�er persistence to it,

is minimal. Since the developer can reuse parts of our trans-

lation engine, the rewrited code is alway less or equal than

the one done for a complete translation engine.

References

[

1

]

Tom Atwood, Joshua Dubl, Guy Ferran, Mary Loomis,

and Drew Wade. The Object Database Standard: ODMG-

93. Morgan Kau�man, 1994, 176 pages.

3

[

2

]

St�ephane Demphlous and Franck Lebastard. Persistence

of Multiple Object Models. OOPSLA'95 Workshop on

Metamodeling in OO, pp 32-37 October 1995.

[

3

]

Oscar Diaz and NormanW. Paton. Extending OODBMSs

Using Metaclasses. IEEE Software, pp 28-39, May 1994.

[

4

]

ILOG. SMECI Version 1.65, Manuel de r�ef�erence. Gen-

tilly (France), May 1990.

[

5

]

ILOG. Ilog Power Classes Reference Manual, version 1.3.

BP85, 2 av. Galli�eni, 94253 Gentilly Cedex, France, 202

pages, 1994.

[

6

]

Peter D. Karp and Suzanne M. Paley. Knowledge Rep-

resentation in the Large. IJCAI'95 Proceedings volume 1

{ International Joint Conference on Arti�cial Intelligence,

pp 751-758, August 1995.

[

7

]

Peter D. Karp, Karen L. Myers, and Tom Gruber. The

Generic Frame Protocol. IJCAI'95 Proceedings volume 1

{ International Joint Conference on Arti�cial Intelligence,

pp 768-774, August 1995.

[

8

]

Gregor Kiczales, Jim des Rivi�eres, and Daniel G. Bobrow.

The Art of the Metaobject Protocol. The MIT Press, 1991.

[

9

]

Franck Lebastard. DRIVER : Une couche objet persis-

tante pour le raisonnement sur les bases de donn�ees rela-

tionnelles. PhD thesis, INSA de Lyon/INRIA/CERMICS

Sophia Antipolis, 380 pages, March 1993.

[

10

]

Franck Lebastard. An Object Layer on a Relational

Database more Attractive than an Object Database?

KRDB-95 { Reasoning about Structured Objects: Knowl-

edge Representation Meets Databases, September 1995.

[

11

]

Franck Lebastard. DRIVER V1.56 : Reference Manuel.

CERMICS/INRIA, F-06902 Sophia Antipolis, France, 103

pages, February 1995.

[

12

]

Franck Lebastard. Some Generic Correspondences

to De�ne Object Databases on Top of Relational

Databases. OOPSLA'95 Workshop on Objects and Rela-

tional Databases, Austin, Texas, October 1995.

[

13

]

Franck Lebastard. DRIVER: Toward a Three-Layered

Architecture. Technical report, INRIA/CERMICS, F-

06902 Sophia Antipolis, 1996. To be published.

[

14

]

Andreas Paepcke. Pclos: A Flexible Implementation

of Clos Persistence. ECOOP/European Conference on

Object-Oriented Programming - Lecture Notes in Computer

Science, pp 374-389, Springer Verlag, 1988.

[

15

]

Andreas Paepcke. Pclos: A Critical Review. In Nor-

man Meyrowitz, editor, OOPSLA'89 Conference Proceed-

ings, volume 24/10, pp 221-237, SIGPLAN Notices, Octo-

ber 1989.

[

16

]

Andreas Paepcke. Pclos: Stress Testing Clos. In Nor-

man Meyrowitz, editor, OOPSLA { ECOOP '90 Proceed-

ings { Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications { European Conference

on Object-Oriented Programming, volume 25/10, pp 194-

211, SIGPLAN Notices, October 1990.

[

17

]

Andreas Paepcke. Object-Oriented Programming { The

Clos Perspective, chapter 3, pp 65-101. The MIT Press {

Massachusetts Institute of Technology, 1993.

[

18

]

Christian Rathke. Object-oriented programming and

Frame-based knowledge representation. In Proceedings of

the 1993 IEEE { International Conference on tools with

Arti�cial Intelligence, pp 95-98, Boston, Massachusetts,

November 1993.

4

