Conceptual Modeling Systems: Active
Knowledge Processes in Conceptual Categories

Christopher Landauer! and Kirstie L. Bellman'!

Aerospace Integration Science Center,
The Aerospace Corporation, Mail Stop M6/214,
P. O. Box 92957, Los Angeles, California 90009-2957, USA
{cal,bellman}@aero.org

Abstract. Our application domain is space systems, which are huge
systems containing satellites, ground processing and data distribution
systems, the launch systems that put the satellites into space, and the
manufacturing systems that build and maintain them. Good modeling is
essential to making such a huge system reliable and affordable. A Con-
ceptual Model is the first step towards a specification of such a system.
It is intended to help the designers invent the system-specific concepts
and work out the design decisions and interactions, so that the system
design can be evaluated before it is constructed.

We describe an architecture for a Conceptual Modeling system built
along these principles, based on our earlier work on Wrappings, which is
an integration infrastructure for Constructed Complex Systems, and on
Conceptual Categories, which is a very flexible new Knowledge Repre-
sentation technique, and show how Conceptual Graphs and related tools
can fit into the framework.

1 Introduction

Our application domain is space systems [2] [12], which contain satellites, with
their on-board sensors and communication subsystems, control segments that
are used to manage them remotely, manufacturing systems that build, repair,
and replace them, launch systems that loft them into orbit, and usually also
contain processing and distribution systems in space and / or on the ground.
They are among the most complex systems that we have built, involving hun-
dreds of organizations, thousands of software components, millions of hardware
components, billions of dollars, and decades of development time. Traditional
knowledge management tools simply cannot cope with this scale of problem,
since they are usually oriented towards having individual users.

Good modeling is essential to making such a Constructed Complex System ef-
fective, reliable, and affordable. Conceptual Models help the designers invent the
system-specific concepts and work out the design decisions, so that the system
design can be evaluated before the system is constructed. There is an inher-
ent conflict between the messiness of the environments and worlds that we are
usually trying to model and the neatness required by our modeling methods,

131



especially when they are defined in particular formal spaces. There is also an in-
herent tradeoff between the expressive power available in a modeling method and
the computational complexity of using it (and sometimes even the decidability
of questions about it and its models).

We address both of these problems using multiplicity and context. We de-
scribe a Conceptual Modeling system that has many different modeling styles
and analytic tools that apply in particular contexts, together with explicit knowl-
edge about when different methods and tools may be applied. It contains a large
collection of analysis and display tools and results, technical databases, and pre-
vious designs, and it has a system architecture that makes them easy to use
appropriately, easy to integrate different information coherently, and easy to
modify and evaluate a prospective design.

1.1 Modeling Methods

Conceptual Graphs [22] have been shown to provide a convenient and powerful
method for human users to represent certain kinds of declarative knowledge.
Several tools have been developed to assist human users in creating the graphs,
and there are also some tools that convert between different forms of the graphs.
There has been some recent work in including activities in the graphs [19] [4]
[14] [15], and in studying constraints on the structure of a Conceptual Graph
system [16].

However, Conceptual Graphs, and indeed, any other single modeling mech-
anism, cannot suffice for modeling a complex system [3] [23], since every model
is a simplification that necessarily leaves something out. Moreover, modeling
systems based on any formal logic also cannot suffice, since they are limited
by the logic they use, in several ways: the normal inconsistencies that occur in
early models are either precluded from the outset (limiting flexibility), or they
are not apparent and can remain hidden for too long (limiting implementabil-
ity). Similarly, excess precision interferes with accuracy of modeling, especially
in the early design stages, when not enough is known about the implications of
assumptions.

Also, most computer programs make design decisions about what will be
implemented, and therefore limit what can be implemented. Practicalities of
large-scale design also require a range of precisions and formality, so that they
do not preclude appropriate imprecision and abstraction. Finally, most personal
modeling tools are much too limited in scale for these problems. Imagine, for
example, what your favorite tool will do with the tens of millions of concepts
and components that go into a space system. These elements must be modeled
largely automatically, and with the specific assumptions about their construction
all made explicit, so it can be processed.

132



1.2 Active Knowledge Representation

A complete knowledge representation system should be more than merely a
way of recording knowledge in some extractable and analyzable form. It should
include the processes that perform all of the manipulations of the representation,
as well as the interpreters of all the declarative knowledge (with extensions [19]
[14] [15] or not [4]). It is often limitations and ambiguities in these interpreters
that render a declarative knowledge representation scheme largely useless; we
want to keep these interpreters separate from the representation, so that we can
change them without changing the representations (for example, the interpreters
of [4], [14], and [15] are different, and we might want to use all of them in a
sufficiently complex problem).

If these modeling systems are to grow in scope and applicability, especially
in our application area, then several kinds of process expansions are needed: (1)
more methods for assisting users in producing and manipulating pictures are
needed, (2) more methods for incorporating different representational styles are
needed, (3) more methods for structuring the data are needed, especially for
scaling up to sizes and complexities that humans are not able to produce or
understand individually, (4) more methods for interpreting the data are needed,
including displays, analyses, comparisons, conversions between graphical and
symbolic forms, etc., and (5) more methods are needed for integration among
different formal representations.

In fact, since every model is a simplification, we know that NO one model
or modeling method can be sufficient to answer all questions about a complex
system [3] [23], so we will need multiple models, multiple modeling languages,
and even multiple modeling methods, to address any complex phenomenon. With
all of these multiplicities, it follows that we also need integration mechanisms to
help us understand whether and how these multiple entities can be fit together,
and this leads to our requirement that a Conceptual Modeling system have access
to descriptions of all of its own components, so that it can reason about how to
apply them.

2 Our Approach

Earlier [11], we described a representational method that is powerful enough
and flexible enough that systems built using it can represent, reason about, and
change their own structure and behavior. We argued that a purely declarative
modeling or programming method does not DO anything, so that something
else has to supply the “spark of agency”, and that a modeling method that does
not specify these interpreters is not complete and is often not well-defined. We
showed before that our Conceptual Categories [7] offer a new way to combine
many modeling methods, including both declarative and procedural knowledge,
into a single coherent framework, and how our Wrapping infrastructure [9] al-
lows us to build Constructed Complex Systems that are themselves knowledge

133



structures, so that they contain all of the interpreters for all of their own declar-
ative knowledge, and that all of those interpreters are explicit and selectable, so
the resulting system has no privileged resources at all.

Conceptual Categories for knowledge structuring and Wrappings for system
structuring support all of these expansions by (1) separating the representations
from the interpretations, so that different interpreters can be chosen in different
contexts, and different construction methods can be used; (2) making all of
the interpreters explicit, so that they can be compared and analyzed, and new
ones more easily integrated; (3) providing a flexible way to define mappings
from problems to be addressed to resources that might be applicable in a given
context; (4) allowing alternative conceptual representation methods in the same
system; and (5) supporting multiple users, cooperating to build the same design.

We showed that this approach provides several advantages for flexible mod-
eling: (1) an explicit place for context and viewpoint in the knowledge structure;
(2) an explicit treatment of modeling assumptions; (3) multiplicity of constituent
structures according to viewpoint (context-dependent flexibility); (4) multiple
interpreters and other procedures for the same declarative knowledge, selected
according to context (situated knowledge); and (5) a Computationally Reflective
knowledge representation [10].

In this paper, we briefly describe both of these structuring mechanisms, and
then describe an architecture for a Conceptual Modeling system, built along
these principles.

2.1 Problem Posing

The Problem Posing Interpretation is a uniform declarative style of interpret-
ing all programming and modeling languages [8] [9] It separates posed problems
from the resources required to study them. This change of attitude greatly sim-
plifies the remaining discussion, and leads to much flexibility in our Constructed
Complex Systems.

Functional, imperative, relational, object-based, and dynamic approaches to
programming and modeling, all have a notion of information service, with in-
formation service requests and information service providers. In most of these
languages nowadays, we connect the two of them by using the same names, but
there is no real need for them to be even in the same name space (as long as we
have some mechanism for connecting them). We have shown that we can make
the connection differently and much more interestingly. Similarly, computer-
based modeling languages have notions of structuring services, relation services,
and activity or action services for manipulating the structures or elaborating
them in time, and the same names are used for the service and for the results
of using the service. These languages are defined with a particular “preferred
interpretation”, which is left implicit in the models.

Once we have made the separation between problems and resources explicit,
we can connect them in very flexible and even heterogeneous ways, not only by

134



using the same name (as we generally do now), but we can even include context
criteria in mapping (e.g., different resources for the same problem in different
contexts). We come back to this point in the next subsection, since it is funda-
mental to the flexibility of our architecture. The Problem Posing interpretation
changes the semantics of programming and modeling languages, not the syntax.
It makes a program an organized collection of posed problems, instead of an
organized collection of solutions without problems. That difference makes pro-
grams easier to understand, because the problems at all levels of detail remain
in it.

2.2 Conceptual Categories

Conceptual categories are intended to model our notion of categories of concepts
[7] [11]. They generalize sets in four directions [7]: our collective objects have
(1) indefinite boundaries; (2) indefinite elements; (3) they allow leakage from
context; and (4) the elements have multiplicity of structure.

We have argued these points elsewhere, but the gist of our argument in this
paper rests on the last property: multiplicity of structure corresponds to consid-
ering the same object or class from different points of view, so that we can use
different models of the same phenomena for different purposes. Making view-
point explicit also allows us to model the modeling decisions explicitly, and to
keep track of the modeling simplifications so we can relate them to each other
and to the processes that create, change and use them. The fundamental orga-
nizational entity is the category, which represents anything that can be labeled
by a symbol. Categories are descriptions of all phenomena. In fact, we want our
notion of category to be co-extensive with the notion of “concept” and the no-
tion of something that we can describe and reason about. Categories work by
separating element membership from structure, so that we can define different
element structures for different explicit viewpoints. The fundamental organiza-
tional relation is the division, which is a model of the structure of the elements of
the category according to an associated viewpoint. Relationships and actions are
also categories, whose divisions are relationships among divisions or programs.

The hierarchical relationships that define categories are simple: a category
has viewpoints that distinguish divisions which contain roles for other categories
and define relationships among them. The constituent categories participate in
the relationship, each with a particular role. Filling a role in a model (identifying
an appropriate category) is a fundamental operation, analogous to the use of
“surrogates” in [17]. In particular, this means that divisions are relationships for
categories, and we insist that that ALL structuring devices are in the divisions.
This is how we represent our modeling choices, since we can describe what is
and is not modeled in the category to get a representation in the viewpoint
description.

We use viewpoints to emphasize certain distinctions among entities in a cate-
gory. Distinctions can be differences in content, structure, available information,

135



or intended use. They are often explicit, but sometimes unknown at first. This
illustrates a major point about these categories; we can assert information about
categories that we cannot compute with the information at hand. This feature
is important, because not everything we know about a complex situation can be
computed from a description of it.

2.3 Wrapping

In along series of papers originally aimed at the software and systems engineering
community [6] [8] [9] [10], we defined and developed a Computationally Reflec-
tive integration infrastructure for Constructed Complex Systems that we called
Wrapping. It is based on processing explicit qualitative information about all of
the system components and their interconnection architecture. These systems
are complex collections and interactions of components. They often contain het-
erogeneous processes, difficult and possibly unknown requirements, and function
in complex environments. Designing and building such systems requires explicit
models of the system, its architecture, and the environment in which it is ex-
pected to operate [21], and suitably flexible computer-based design support [2]
[12].

The Wrapping approach to integration has four essential features [6] [8] [9],
that underlie its flexibility and power of expression:

1. ALL parts of a system architecture are resources that provide some kind of
information service.

2. ALL activities in the system are problem study, (i.e., all activities apply a
resource to a posed problem in a problem context).

3. Wrapping Knowledge Bases (WKBs) contain Wrappings, which are explicit
machine-processable descriptions of all of the resources and how they can be
applied to problems to support the five Intelligent User Support functions
[1]:, Selection (which resources can be applied to a particular problem), As-
sembly (how to let them work together), Integration (when and why they
should work together), Adaptation (how to adjust them to work on certain
kinds of problems), and Explanation (why certain resources were or will be
used or not used). That is, the Wrappings describe not only “how”, but also
“why”, “when”, and “whether” the use of a resource is appropriate for a
given problem in a given context.

4. Problem Managers (PMs), including the Study Managers(SMs) and the Co-
ordination Manager (CM), are active integration processes that interpret the
Wrapping descriptions to collect and select resources to apply to problems.

The first two features provide a kind of consistency of expression at the
meta-level to support heterogeneity of content and behavior in the system: the
uniformity of treating everything in the system as resources, and the uniformity
of treating everything that happens in the system as problem study. The entire
system is made Computationally Reflective by treating the PMs as resources

136



themselves: since the programs that process the Wrappings are also resources,
and are also Wrapped, all of our integration support processes apply to them-
selves, too [10]. In particular, the same flexibility of resource use occurs in the
system internals, and, in fact, there are NO privileged processes or data sources
at all: every part of the system is selectable at run time (provided of course
that the resources that do the work have been made available to the system).
Therefore, the system has a complete model of its own behavior (to some level
of detail), so we can retain design decisions and rationale in the code, and the
system can examine and evaluate them. It is this ability of the system to analyze
its own behavior that provides some of the power and flexibility of resource use.

Wrapping Processes The heartbeat of the system is in the Coordination
Managers (CMs), which repeatedly cycle through a loop of getting a problem
posed and using a Study Manager (SM) to study it:

Coordination Manager Steps
Find context : determine containing context from user or by invoca-
tion
indefinite loop :
Pose problem : determine current problem and problem data
Study problem : use an SM to do something about problem
Present results : to user

There are alternative CMs, including ones that manage the interactions among
a number of users, in addition to the simple default CM described in the figure.
The default Study Manager (SM) is the main problem solving algorithm. It runs
through a default SM step sequence:

Default Study Manager Steps
Interpret problem :
Match resources : get list of candidate resources
Resolve resources : reduce list via negotiation, make some bind-
ings
Select resource : choose one resource to apply
Adapt resource : finish parameter bindings, use defaults
Advise poser : describe resource and bindings chosen
Apply resource : go do it
Assess results : evaluate

The SM process begins with a problem poser, a problem defined by its name
and associated data, and the context in which the problem was originally posed.
The default SM step sequence represents a basic inline planner.

We get a much more powerful system by making these functions recursive
in the “meta-direction” [8]: each step above is also a posed problem, which is
interpreted by the same kind of selection process to choose resources to apply

137



to those problems. In each case, there is a simplest resource that applies (for
example, the default SM is the simplest resource that applies to the problem
“Study Problem”). What we get by using Wrappings is a very flexible way to
assign resources to problems, by a kind of “Knowledge-Based Polymorphism”
that we have found very useful in our Constructed Complex System designs.
It maps problems to resources, from the problem specification in its context to
the computational resources that will organize or provide the solution. In par-
ticular, Wrappings allow a much more flexible assignment process for matching
categories to roles in divisions than would normally be used.

Implementation Considerations The machinery we describe is not too ex-
pensive computationally. Flexibility costs, but it does not have to cost very
much. Since the processing of Wrappings and the reflective selection of Program
Managers is determined by the collection of resources available, we can use a
kind of “Partial Evaluation” [8] [9] to take decision processes out of the run-
time code, if the results will not change during the execution lifetime of the
program. We can even imagine a kind of “Partial Composition” to combine pro-
gram aspects into programs to analyze and modify the corresponding knowledge
structures. We can use the Problem Posing interpretation to select interpreters,
taking the declarative structures as problems, with the interpreters as resources.
We can also use it for the use of roles in divisions as problems, with categories
as resources, and make the basic connection between Conceptual Categories also
computed with the same kind of Knowledge-Based Polymorphism.

Such a system is a complex recursive hierarchy of structure and behavior de-
scriptions, contained in our Conceptual Category web, described by Wrappings,
and therefore managed by the PMs. Our framework allows almost anything to be
used, since we believe that whatever method is appropriate to the computational
problem should be used, from binary executables to our Wrapping expression
notation wrez, which is our choice for resources that will frequently need to
be customized, since it supports Partial Evaluation [8] as well as our Problem
Posing Programming Paradigm [9] (it is our attempt to produce a semantically
neutral language).

3 Architecture

In this section, we describe the architecture of our Conceptual Modeling system.
We start by describing how it works, and then how that behavior is implemented
using the Wrapping processes. In particular, the Coordination Manager provides
a basic loop, which poses problems and calls on the Study Managers to address
them, after calling on an initial “Find context” resource, as described above.
Among these “Pose problem” resources are command line collectors, menu selec-
tors, and graphical input tools. The selected Study Manager gets posed problems
and applies selected resources to them, as described above. It uses the Wrapping

138



Knowledge Bases to determine the mapping from problem to resource, and to
find out exactly how to apply the selected resource. Among the generic resources
are structure building operations such as Conceptual Graph construction tools,
Conceptual Category construction tools, Wrapping Knowledge Base definition
tools, etc..

In order to build a conceptual model using this system, a user starts with an
application domain (the system initially has one application domain, for domain
modeling, and the use of the system gradually builds up a set of them). The
overall storage architecture of our Conceptual Modeling system is as follows:
the entire system is one Conceptual Category hierarchy, with data structures
defined in the divisions and interpreters attached to some of the divisions through
the Wrappings. Some of the data structures are for Wrappings, others are for
Conceptual Graphs, and others may be defined in other modeling languages (as
long as the requisite interpreters have been provided). The interpreters include
the Wrapping processes, the Conceptual Graph tools, and programs that can
produce, transform, and analyze expressions in whatever modeling languages
are used.

We can define categories using any expression notation for the divisions, in-
cluding any kind of information modeling notations [22], as long as we remember
that their use is for each division (because the divisions are the structure-defining
entities), and not for the entire category description. Anything that we wish to do
with or to a category is a posed problem, and the Wrappings map that into the
use of a resource (or a combination of resources) that performs the appropriate
operation. So, for example, the initial “Find context” in the Coordination Man-
ager can read in an entire Conceptual Category hierarchy after getting a user
selection of which one to use. In order to do this, the initial program needs only
the default CM, Study Manager, CM and SM step resources, and the simplest
Wrapping Knowledge Base.

3.1 Application Domains

An application domain is distinguished by a collection of assumptions, abbrevia-
tions, conventional notations, theories, methods, and tools. They are essentially
never completely defined, since using them often leads to further distinctions
and new concepts. We hope to have most of the assumptions made explicit, but
of course, that is also very hard, since it is hard for anyone to identify their own
assumptions.

An application domain modeling language is a domain-specific language for
constructing, elaborating, displaying, analyzing, comparing, and evaluating mod-
els in a particular domain. Each of these languages contains some basic entities,
relationships, and some basic operations and their effects, together with one or
more conventional notations for expressing all of these aspects. The mappings
from expressions to evaluations go through the Wrappings to find appropriate
interpreters.

139



An application domain contains

— concepts, including definitions and relationships (defined as Conceptual Cat-
egories)

— assumptions and requirements (these are identifications and other relation-
ships among the concepts, and constraints on properties of the concepts)

— conventional notations (references to particular notations whose interpreters
are resources)

— abbreviations (combinations of concepts that are frequently used together)

— problem contexts (collections of assumptions and assertions defining partic-
ular contexts)

— problem spaces (domains in which particular classes of problems can be
defined)

— problem specifications for significant classes of problems

— situations (which are partially specified contexts), with motivating applica-
tions

— phenomena (these are less well structured items, containing some common-
alities and explanations)

— resources, including examples, methods, and tools (one kind of method is to
use a tool).

— theories (this includes the usual notion of theories in logic)

The resources in a domain are defined in the Wrappings as resources that address
particular problems in particular problem contexts. They need to be supplied
with the domain, unless they are already available from other domains, or from
the domain-independent utilities.

In addition to these components, an application domain usually has some
applications to and from other domains. These are fairly complicated entities
that include a domain map and its inverse, both generally expected to be only
partially defined, that show when and how to transfer concepts, constructs and
resources between the domains, which provides a collection of connections be-
tween resources in one domain and resources in the other.

Many of these components are differently significant for different domains, so
they may have different definitions or even remain empty. These differences are
all different divisions of the corresponding categories. It is therefore important
to relate these different domains with their application components or even a
notion of simplification and refinement.

Operations on application domains include adding or changing any of these
components, mapping an expression or operation from one domain to another,
or checking to see if a problem from one domain can be stated in another (so
that corresponding resources can be applied). A common operation is the sim-
plification of expressions based on new assumptions or new context conditions,
which is an important kind of specialization.

140



3.2 Structure of System

The Conceptual Modeling system has three parts: the Wrapping infrastructure,
the Conceptual Category Knowledge Base, and the application domain defini-
tions.

The Wrapping infrastructure has four layers. At the bottom is the Wrap-
ping Kernel Layer, which contains the default CM, SM, and their default step
resources and Wrappings (including the default WKB reader). The next layer is
the Infrastructure Layer, which contains other CMs, SMs, steps, WKB readers,
an interpreter for our Wrapping expression notation wrez, and their Wrappings.
These two layers together are called the Wrapping Core. Other layers may define
other readers or interpreters for these Wrappings, but the default ones are here.

The next two layers are essentially independent of each other, and together
are sometimes called the Resource Layer. The first one is the Utility Layer, which
contains all of the domain-independent tools, such as mathematical functions,
computational utilities such as graphical display functions, and other language
interpreters, as well as their WKBs (and, of course, the readers and interpreters
for whatever special notations are used in these Wrappings). The other one is
the Application Domain Layer, which contains the resources and WKBs that
are specific to the application domains (we might instead consider these to be
several different layer entities, one for each different application domain). These
Wrapping infrastructure Layers define the execution processes of the system.

The second part of the system is the Conceptual Category Knowledge Base
(ccKB), which includes one Conceptual Category hierarchy, containing defini-
tions for several categories at the top, and a collection of resources and the
corresponding Wrappings (we call this part of the WKB the ccWKB). For each
of these categories, there is a viewpoint “generic constituent”, which gives our
default structure for each one, as we describe next. In addition, for the category
“cat”, there is a “generic example” viewpoint, and every one of these categories
is in the corresponding division (this is what defines the top of object hierarchy).

For the category “cat”, the “generic constituent” division is a collection of
pairs “(vp, div)”. For the category “vp”, the division is a pair “(foc, cxt)”. For
the category “foc”, the division is a tuple “(scope, res, units)”, each of which
has a division that is just a label for now. For the category “cxt”, the division is
a set of pairs “(notation, interpreter)”, each of which has a division that is just
a label for now (the “interpreter” label is assumed to be a problem name).

Finally, for the category “div”, the division is a set of alternative structure
representation styles, including “product” (a cartesian or direct product that
might be partial), “sum” (a direct sum or coproduct that might be partial),
“subcat” for subcategories (a special case of direct sum) or “proj” for projections
(a special case of direct product), and a few other relationships. All of these
structuring relationships refer to roles for other categories, and may contain
constraints on those roles. They are matched to categories through part of the
WKB devoted to roles as problems (these links are also part of the ccWKB).

141



Every operation on a category is a posed problem, for which resources are
selected through the ccWKB. This is how resources are attached to divisions and
filtered through the context in its viewpoint. Among these operations are “read
a ccKB”, which allows many different specification notations to be used for it.
Our default style is a series of “(keyword, value)” pairs (just like the default
WKB entries), which is extremely easy to read and interpret.

This list of constituents of a Conceptual Category is one particular division
that is useful enough to provide initially. When we add new constituents, we can
either use a different division with a different context (when its applicability is
limited to a particular context), or we can change the definition of the division,
and define what it means when the constituent is empty (for the categories
defined earlier using the previous definition). This ability to change the basic
ccKB in different ways leads to great flexibility in the representations.

The connection between the first two parts of the system is maintained in
the ccKB: “Wrapping” is also a generic example of a category, as are all of the
Wrapping components (context criteria, etc.), and the component descriptions
we use are particular divisions (with context defined by the particular Layer or
application domain, and whatever other information is needed to distinguish the
formats of the various subsets of the WKB). Similarly, “problem” and “resource”
are also generic examples of a category (i.e., they are in the “generic example”
division of the category “cat”), and whatever structuring we define for parts of
the space of problem specifications will be a division of one of the categories, as
are the various classes of resources.

At this point, we have a system that stores everything in a Conceptual Cate-
gory hierarchy, interacts with its users using the resources, and transforms prob-
lems to resources through the Wrappings, but it has no application domains in
which to do any work.

The third part of the system is the application domain, which includes our
default definition of what an application domain is and a number of tools that
make it easier to define new application domains and change existing ones. All
of these resources are in the Application Domain Layer. As we have described
before, “application domain” is a category (recall that this means that it is a
“generic example” of a category), for which our generic division is a tuple that
contains a number of different kinds of entries. These have been described in
the previous subsection and will not be repeated here. All of those components
are also categories, and have one or more divisions in the hierarchy (different
divisions are usually separated according to application domain assumptions).

The initial application domain contains resources for constructing and ana-
lyzing application domains, which allows users to build up their own collection
of domains. As this Conceptual Modeling system is used, we will build and can
make available domain models for various application domains, starting with our
original ones of space systems and autonomous agents.

142



4 Conclusions

We have shown how the Wrapping integration infrastructure and the Concep-
tual Category knowledge representation mechanism can be used to organize a
Conceptual Modeling system so it can use any available tools and methods, and
can accommodate any available knowledge bases and other information sources.
Since the domain models will contain their context assumptions and require-
ments, it will be possible to move them to other instances of this Conceptual
Modeling system, and maybe even to other Conceptual Modeling systems.

We have started to implement this system architecture, to help us in our
own study of the use of ontologies and problem solving methods in Constructed
Complex Systems. We are also examining the expressive power of Conceptual
Categories, and relating it to their computational complexity, and showing how
they relate to the usual categories of Mathematics, so we can have formal un-
derpinnings for our notions of simplification and elaboration.

Many research issues remain, of course, such as what identity and individu-
ality should mean for these systems that will be used in the real world, because
they will have to know what the “current situation” is, as opposed to the myr-
iad hypothetical situations that they are prepared to consider, what particular
individual items are, as opposed to the classes of items that they are prepared
to consider, and who certain individual users are, so that they can manage (for
example) whatever authorizations or translations are needed.

Similarly, we need to study how much context is actually needed for medium-
size structures, and how the context and other parts of viewpoint are to be
expressed (in other words, what are some useful divisions for these categories).

References

1. Kirstie L. Bellman, “An Approach to Integrating and Creating Flexible Software
Environments Supporting the Design of Complex Systems”, pp. 1101-1105 in
Proc. WSC’91: 1991 Winter Simulation Conf., 8-11 December 1991, Phoenix,
Arizona (1991)

2. Kirstie L. Bellman, April Gillam, and Christopher Landauer, “Challenges for
Conceptual Design Environments: The VEHICLES Experience”, Revue Interna-
tionale de CFAO et d’Infographie, Hermes, Paris (September 1993)

3. Richard Bellman, P. Brock, “On the concepts of a problem and problem-solving”,
Amer. Math. Monthly, Vol. 67, pp. 119-134 (1960)

4. Walling R. Cyre, “Executing Conceptual Graphs”, pp. 51-64 in [18]

5. Bernhard Ganter, Guy W. Mineau (eds.), “Conceptual Structures: Logical, Lin-
guistic, and Computational Issues”, Proc. ICCS’00: 8th Int. Conf. Conceptual
Structures, 14-18 August 2000, Darmstadt, Germany, Springer LNAT 1867 (2000)

6. Christopher Landauer, “Wrapping Mathematical Tools”, pp. 261-266 in Proc.
1990 SCS Eastern MultiConf., 23-26 April 1990, Nashville, Tennessee, Simulation
Series, Vol. 22(3), SCS (1990)

143



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Christopher Landauer, “Conceptual Categories as Knowledge Structures”, pp.
44-49 in A. M. Meystel (ed.), Proc. ISAS’97: 1997 Int. Conf. Intelligent Systems
and Semiotics, 22-25 September 1997, NIST, Gaithersburg, Maryland (1997)
Christopher Landauer, Kirstie L. Bellman, “Generic Programming, Partial Eval-
uation, and a New Programming Paradigm”, Chapter 8, pp. 108-154 in Gene
McGuire (ed.), Software Process Improvement, Idea Group Publishing (1999)
Christopher Landauer, Kirstie L. Bellman, “Problem Posing Interpretation of
Programming Languages”, Proc. HICSS°99: 32nd Hawaii Int. Conf. System Sci-
ences, 5-8 January 1999, Maui, Hawaii (1999)

Christopher Landauer, Kirstie L. Bellman, “Reflective Infrastructure for Au-
tonomous Systems”, in Proc. EMCSR’2000: 15th European Meeting on Cybernet-
ics and Systems Research, Symp. Autonomy Control: Lessons from the Emotional,
25-28 April 2000, Vienna (April 2000)

Christopher Landauer, Kirstie L. Bellman, “Relationships and Actions in Con-
ceptual Categories”, pp. 59-72 in G. Stumme (Ed.), Working with Conceptual
Structures - Contributions to ICCS 2000, Auziliary Proc. ICCS’2000: Int. Conf.
Conceptual Structures, 14-18 August 2000, Darmstadt, Shaker Verlag, Aachen
(August 2000)

Christopher Landauer, Kirstie L. Bellman, April Gillam, “Software Infrastruc-
ture for System Engineering Support”, Proc. AAAI’93 Workshop on Artificial
Intelligence for Software Engineering, 12 July 1993, Washington, D.C. (1993)
Dickson Lukose, Harry Delugach, Mary Keeler, Leroy Searle, John Sowa (eds.),
Proc. ICCS’97: 5th Int. Conf. Conceptual Structures, 3-8 August 1997, Seattle,
Washington, Springer LNAI 1257 (1997)

Graham A. Mann, “Procedural Renunciation and the Semi-automatic Trap”, pp.
319-333 in [18]

Guy Mineau, “From Actors to Processes: The Representation of Dynamic Knowl-
edge Using Conceptual Graphs”, pp. 65-79 in [18]

Guy Mineau, “The Engineering of a CG-Based System: Fundamental Issues”, pp.
140-156 in [5]

Guy Mineau, “The Extensional Semantics of the Conceptual Graph Formalism”,
pp. 221-234 in [5]

Marie-Laure Mugnier, Michel Chein (eds.), Proc. ICCS’98: 6th Int. Conf. Con-
ceptual Structures, 10-12 August 1998, Montpellier, France, Springer LNAT 1453
(1998)

Ryszard Raban, Harry S. Delugach, “Animating Conceptual Graphs”, pp. 431-445
in [13]

Myriam Ribiere, Rose Dieng, “Introduction of Viewpoints in Conceptual Graph
Formalism”, pp. 168-182 in [13]

Mary Shaw, David Garlan, Software Architecture: Perspectives on an Emerging
Discipline, Prentice-Hall (1996)

John F. Sowa, Knowledge Representation: Logical, Philosophical, and Computa-
tional Foundations, Brooks/Cole (2000)

Donald O. Walter, Kirstie L. Bellman, “Some Issues in Model Integration”, pp.
249-254 in Proc. SCS FEastern MultiConf., 23-26 April 1990, Nashville, Tennessee,
Simulation Series, Vol. 22, No. 3, SCS (1990)

144



