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Abstract. Some applications require high-speed encryp-

tion even at the expense of reduced security. With a �xed

secure, but slow cryptographic algorithm, there still is an

appealing possibility for encryption speedup by encrypting

only some portion of data. In this paper we analyze the

ciphertext security obtained this way. We show that it is

not possible to exclude from encryption even a small con-

stant fraction of data without signi�cantly compromising

security.

1 Motivation, assumptions, goals

Volume of data is nowadays bigger than ever. Multi-
media are a typical example. Fast real-time on-demand
encryption of multiple multimedia streams requires
specialized powerful hardware.

It is sometimes not possible (or economical) to
use powerful enough hardware solution. Then we can
replace the encryption algorithm with a faster � al-
though maybe less secure one. Another possibility is
to use selective encryption with the original secure al-
gorithm. In this case we encrypt only some fraction
of plaintext. Let p denote the fraction of encrypted
plaintext. The parameter p ranges between 0 (no en-
cryption) and 1 (full encryption) and is used to control
the balance between the encryption speedup and the
security.

For example, selective encryption is used for on-
line encryption of MPEG video [1]. In this case, the
knowledge of the internal data structure is exploited
in order to encrypt only DC coe�cients and sign bits
of motion vectors. Similar techniques are also used for
pictures [2]. For overview of selective encryption meth-
ods see [3]. Security of these algorithms is not formally
proved.

We formally analyze security of selective encryp-
tion in this paper. As we are interested in a general
case, we make no assumptions on the internal data
structure or on statistical properties of the plaintext.

We originally hoped that it could be possible to se-
lectively encrypt portion of plaintext while maintain-
ing reasonable security. However, we show that this
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does not work. Since we prove a negative result, it is
only better if assumptions are more disadvantageous
for the attacker than in practical usage:

1. One-time pad is used as the encrypting algorithm.

One-time pad is the �rst and only encryption algo-
rithm for which there is a proof of perfect secrecy if
the key is truly random, never reused, and kept se-
cret. We choose this cipher to abstract from even-
tual weaknesses of the actual cipher which can be
exploited by attacker. Theoretical results obtained
this way can be used in practice as upper bounds
for security of any other selected encryption algo-
rithm.

2. Attacker can manage no more than ciphertext-only

attack.

The attacker is assumed to have access only to
a ciphertext and full description of selective en-
cryption algorithm. This means that the attacker
knows the enciphering algorithm and also the method
of bit selection for enciphering.

3. Attack is peformed using brute force.

Key space is searched from the most probable key
to the least probable key omitting impossible keys
to minimize the attacker's work. We assume that
the selection algorithm chooses bits for encrypting
independently from plaintext content (besides its
length). In general it cannot be expected that a
better attack is possible. However in actual situa-
tion speci�c properties1 of plaintext can lead to a
more e�cient attack.

4. Attack complexity measure is de�ned as a fraction

of key space that attacker has to search in average

to �nd the key.

Attacker tries every possible key until he �nds
one that deciphers to the desired plaintext. We
ignore the complexity of verifying whether deci-
phered plaintext is the original one. For selective
encryption with p = 1 (one-time pad), the ex-
pected attack complexity is 1/2. For selective en-
cryption with p = 0 expected complexity is 0. We

1 E.g. high redundancy of plaintext poses an even greater
risk for selective encryption then for full text encryption.



consider every cipher for which attack complex-
ity approaches 0 as plaintext length goes to +∞
insecure.

We assume that encrypting p percent of plaintext
bits with selective encryption reduces sender's work
to p percent omitting overhead necessary for selecting
those bits. In this situation we will be satis�ed with
(and accept this as reasonable degradation of secu-
rity) reduction of attack complexity from 1/2 to p/2,
because this means that attacker's work is in average
also reduced to p percent but no more.

2 Selectors

In this paper we will assume that plaintext is a bit se-
quence � sequence of zeros and ones. Let n > 0 denote
plaintext sequence length. If we want to selectively en-
crypt p ∈ (0, 1) percent of plaintext, then we have to
choose k = np bits of plaintext for encryption. In [4]
we analyzed di�erent ways of bit selection for selec-
tive encryption. We introduced the notion of selector
� algorithm which performs selection of the k bits for
encryption based on n and p. The output of selector
on input n and p is a bit sequence of length n with
k = np ones � indicating positions of bits chosen for
encryption. Selective encryption algorithm proceeds in
the following way:

1. The selector selects k = np bits for encryption.
2. Encrypt only selected bits with one-time pad2.

As it can be seen our model was limited to selections
which have exactly k = np bits selected. In [4] we
proved that among the analyzed selectors only fully
random selection of exactly p percents of bits provides
reasonable security for p ≥ 1/2. In this place it is nec-
essary to mention that in [4] we measured the attack
complexity by the number of possible plaintexts3.

Because we are interested in the values of p < 1/2
we relax the assumption that exactly k = np bits have
to be selected, and we only require that in average
k bits have to be selected. This relaxation allows for
using a selector which for every bit �ips a biased coin
� one falls with probability p, zero with probability
1− p. Lets call this selector coin �ipping selector. We
hope that this step allow us to go with p below 1/2
because it introduce more uncertainty to attacker as
all plaintext are now possible. For that reason we have
to also change our attack complexity measure and we
choose one mentioned in previous section.

2 Xor them with truly random noise.
3 For example, let p = 1/2. For a random bit selector
there are 2n−1 possible plaintexts for every ciphertext.
If the selector do not use randomness and deterministi-
cally selects every even bit, there are only 2n/2 possible
plaintexts.

3 The coin �ipping selector analysis

In the rest of the paper we will show the behavior of
the attack complexity for the coin �ipping selector for
large messages (we will assume that n goes to in�nity).

3.1 Average fraction of key space equation

Firstly we need to determine the probability of the
key of length n with exactly k ones on �xedly chosen
positions if in the selective encryption the coin �ip-
ping selector is used. Let denote this probability as
PK(n, k, p), where p is probability of encrypting.

Theorem 1.

PK(n, k, p) =
(p

2

)k (
1− p

2

)n−k
Proof.

PK(n, k, p) =
n−k∑
i=0

(
n− k
i

)
pk+i(1− p)(n−k)−i 1

2k+i
,

because we can get the key with exactly k ones on
�xedly chosen positions from any selection with ex-
actly k + i ones with k ones on those �xedly chosen
positions and i ones arbitrarily chosen from remaining
n − k positions. Also one-time pad has to select for
those k positions bit 1 and for remaining i positions
bit 0 (thus we get 2−(k+i)). We can simplify the last
equation as follows:
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ut

Derivative of the function PK(n, k, p) with respect
to k is:

PK(n, k, p) ln
(

p

2− p

)
.

Since for all studied n > 0 and 0 < p < 1 expres-
sion ln( p

2−p ) is negative and PK(n, k, p) is positive we
know, that PK(n, k, p) is strictly decreasing function
with respect to k ∈ 〈0, n〉. Thus e�ective attacker will
start searching key space from the most probable 0n

key to the least probable 1n key in direction of increas-
ing number of ones in the key. Sort all 2n keys in this
order4 in an array with indexes from 1 to 2n. Then
denote L(n, k) index of �rst key of length n with k

4 Ordering of keys with equal number of ones is irrelevant
since all have the same probability. It can be arbitrary
but �xed.



ones and U(n, k) will denote index of the last key of
length n with k ones. It can easily be seen that:

L(n, k) = 1 +
k−1∑
i=0

(
n

i

)
, U(n, k) =

k∑
i=0

(
n

i

)
.

Theorem 2. Let I(n, p) be a position in the above

mentioned array where attacker �nds the key in av-

erage case. Then I(n, p) equals to:

1
2

+
1
2

(
2− p
p

)n n∑
k=0

[(
p

2− p

)k (
n

k

) k∑
i=0

(
n+ 1
i

)]
.

Proof. Let Pr(n, p, i) be probability that attacker �nds
key in position i. Then:

I(n, p) =
2n∑
i=1

iPr(n, p, i).

Since Pr(n, p, i) is constant for all i between L(n, k)
and U(n, k) we can write:

I(n, p) =
n∑
k=0

 U(n,k)∑
i=L(n,k)

iPK(n, k, p)


Since PK(n, k, p) does not depend on i we can move it
in front of inner sum. The inner sum then reduces to:

U(n,k)∑
i=L(n,k)

i = [U(n, k)− L(n, k) + 1]
L(n, k) + U(n, k)

2

Thus equation for I(n, p) changes to:

n∑
k=0

PK(n, k, p)
1
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)[
1−

(
n

k
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+ 2
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(
n
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Mark this term as x(n, k).

.

It is obvious that x(n, 0) = 2 and x(n, k+1)−x(n, k) =(
n+1
k+1

)
. So x(n, k) = 1+

∑k
i=0

(
n+1
i

)
. After substituting

x(n, k) and PK(n, k, p) we can write I(n, p) as:
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Then after factoring out
(
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we get:

1
2

(
1− p

2

)n n∑
k=0

(
p

2− p

)k (
n

k

)[
1 +

k∑
i=0

(
n+ 1
i

)]
.

By expanding summand and using binomial theorem

for
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ut

Let us denote average fraction of key space which
attacker has to search before he �nds the key as F (n, p).
Now, when we have I(n, p), equation for F is obvious:

F (n, p) =

1
2 + 1

2

(
2−p
2

)n n∑
k=0

(
p

2−p

)k (
n
k

) k∑
i=0

(
n+1
i

)
2n + 1

.

Although we have assumed that p < 1 we can ver-
ify, that F (n, 1) = 1/2 as expected. We can not use
F (n, 0) because Pr(n, 0, k) is not a valid probability
distribution over keys of length n.

3.2 Asymptotics

Based on Figure 1 we will now try to show that for all
p < 1 holds limn→∞ F (n, p) = 0. This will be unwel-
come result. It means that even if we encrypt nearly
the entire plaintext up to some small fraction, this
small fraction is still su�cient to reduce attack com-
plexity to a negligible fraction compared to full text
encryption.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 10 20 30 40 50 60 70 80 90 100
n (length of ciphertext)

F (n, 0.25)
F (n, 0.50)

F (n, 0.75)
F (n, 0.90)

Fig. 1. This graph indicates that lim
n→∞

F (n, p) = 0.

Since we want to prove that the limit goes to zero,
it is possible to simplify the proof by realizing that



F (n, p) ≥ 0 and show that some simpler upper bound
f0(n, p)+f1(n, p)+f2(n, p) ≥ F (n, p) goes to zero too.
We choose fi(n, p) as follows

f0(n, p) =
1

2n+1
,

f1(n, p) =
1

2n+1

(
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)n α∑
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k ,
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where Sn+1
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∑k
i=0

(
n+1
i

)
and α is n

2 −
1
2n

5
8 . To

prove the main limit it is su�cient to show that for all
i ∈ {0, 1, 2} limn→∞ fi(n, p) equals to zero. For i = 0
it is trivial so we move to i = 1. In the proof we will
use following lemma.

Lemma 1 (for proof see [5]). Let ϕ(n) be any func-
tion satisfying limn→∞ ϕ(n) =∞. Then

lim
n→∞

∑n/2−ϕ(n)
√
n

k=0

(
n
k

)
2n

= 0.

Theorem 3. Let p < 1. Then limn→∞ f1(n, p) = 0.

Proof. Firstly we replace f1(n, p) with even simpler
upper bound:
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1
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Now we can set ϕ(n) = (n−1)
5
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and use lemma 1:
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Becase f1(n, p) ≥ 0 the theorem is proved. ut

In the proof for i = 2 we will utilize another two
lemmas.

Lemma 2 (for proof see [6] equation 9.98). Let

|k| ≤ 1
2n

5
8 . Then binomial coe�cient around center

for n→∞ can be aproximated as follows:(
n

n
2 − k

)
=

2n√
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e−2 k2

n

(
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Lemma 3. Let ak =
(

p
2−p

)k (
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)
for k ∈ {0, 1, . . . , n}.

Then the following inequality holds:

∀p ∈ (0, 1) ∃m ∀n > m ∀k ≥ n

2
− 1

2
n

5
8 : ak > ak+1.

Proof. We rewrite theorem inequality as a fraction. So
we get ∀p ∈ (0, 1) ∃m ∀n > m ∀k ≥ n
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Because n−k
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By solving this inequality we get that it holds for every
k > p

2n. Because we start with k = n
2 −

1
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5
8 , we will

now solve for which n holds:
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Now we have showed that for all p ∈ (0, 1), if we set

m to
(

1
1−p

) 8
3
, then

∀n > m ∀k ≥ n

2
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2
n

5
8 : ak > ak+1.
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Now we are able to proof the last theorem on the
limit of function f2.

Theorem 4. Let p < 1. Then limn→∞ f2(n, p) = 0.

Proof. Again we replace f2(n, p) with even simpler up-
per bound:

1
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ak

Now we use lemma 3 and the fact that we are inter-
ested in limit for n→∞. Thus for large enough n we
can upper bound the last equation by(
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=
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Fig. 2. These graphs illustrate how value of ak starts to de-

crease from k = n
2
− 1

2
n

5
8 if large enough n is used (n > m).

For p = 0.8 based on lemma 3 we get that m approximately
equals to 73.1.

≤
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In the sequel we get rid of binomial coe�cient by ap-
plying lemma 2. We omit the 1 +O(n−

1
8 ) factor from

following equations to save space.

[(2− p)p]n
2
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(
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) 1
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5
8

n
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8√
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2
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We want to prove now that the last equation goes to
zero as n approaches ∞. We will do so by showing
that logarithm of the equation goes to −∞. We also
omit constant factor

√
2/π as it is irrelevant in this

context.

n

2
ln(2−p)p+1

2
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5
8 ln
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)
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1
2

lnn−1
2

4
√
n+O

(
n−

1
8

)
Since n

2 ln(2 − p)p is most in�uencing summand as n
goes to in�nity and ln(2−p)p < 0 we have proved that
the equation goes to −∞. If we again omit the 1 +
O(n−

1
8 ) factor from the right-hand side of inequality

we get for large enough n that

0 ≤ f2(n, p) ≤
√

2
π

[(2−p)p]n
2

(
2− p
p

) 1
2n

5
8√
n e−

1
2

4√n.

As we have proved that the right-hand side goes to
zero as n goes to in�nity, we are done. ut

4 Conclusion

In this paper we have showed that even the coin �ip-
ping selector tremendously decreases the security of
selective encryption for any p < 1. In other words it
means that even if we encrypt nearly the entire plain-
text up to some small fraction, this small fraction is
still enough to reduce attack complexity to negligible
fraction compared to full text encryption. The same
result holds for random bit selector from [4] if the at-
tacker and the attack complexity from this paper is
assumed. As a conclusion we can say, that every stud-
ied selector signi�cantly degrades security even if the
encrypted fraction is closed to 1 for large enough mes-
sages.
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