
Designing A Distributed Information System for Collaborative

Statistical Computing

�

Oliver G�unther

y

Rudolf M�uller

y

Peter Schmidt

y

Hemant Bhargava

z

Ramayya Krishnan

x

Abstract

The World Wide Web has been extremely successful as a tool for distributed publishing

and sharing of information among large dispersed groups. This raises the question whether

the distributed authoring and execution of software modules can be supported in a similar

manner. We study this problem by �rst developing the requirements of a group of developers

and users of statistical software at a German national research laboratory. We then propose

a conceptual framework to guide the design of an information system in order to meet these

requirements and report on MMM, a prototype implementation.

1 Introduction

The World Wide Web (WWW) [BCL

+

94], a distributed information system on the Internet,

is a successful example of the use of information technology to facilitate authoring and sharing

of hypermedia information among large dispersed groups. It has not only brought millions of

new users to the Internet, but also made it easy and desirable to publish information content

for dissemination to this worldwide audience. This success of the Web, as well as the fact that

it is mostly limited to the dissemination of static information, raises the question whether the

distributed authoring and execution of computational software modules can be supported in a

similar manner. This paper studies this problem

� by examining the requirements of a group of researchers who need to collaborate in the

implementation and use of software modules and packages for statistical data analysis at

the German National Research Center on the Quanti�cation and Simulation of Economic

Processes (SFB 373),

�

This research has been supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 373.

y

Institut f�ur Wirtschaftsinformatik, Humboldt-Universit�at zu Berlin, Spandauer Str. 1, 10178 Berlin, Germany,

fguenther,rmueller,pschmidtg@wiwi.hu-berlin.de

z

Naval Postgraduate School, Monterey, CA 93943, USA, bhargava@cs.nps.navy.mil

x

The Heinz School of Public Policy and Management, Carnegie Mellon University, Pittsburgh, PA 15215, USA,

rk2x@cmu.edu

1



2 COLLABORATION IN STATISTICAL COMPUTING 2

� by developing a conceptual framework to guide the implementation of an information

system designed to meet these requirements, and

� by describing a prototype system, MMM, which implements the conceptual framework as

middleware services that facilitate WWW-based interaction between users and developers

of statistical software at the center.

The rest of the paper is organized as follows. In Section 2, we present an illustrative scenario

of interaction with statistical methods. We use this scenario to motivate the requirements for a

distributed information system that supports collaboration in statistical computing. In Section

3, we present a conceputal framework for such a system. In Section 4, we brie
y describe the

MMM system that implements the conceptual model as middleware services using the Ypsilon

software environment [MM94].

2 Collaboration in Statistical Computing

This section presents a scenario, set in the German National Research Center SFB 373, to

illustrate collaborative statistical computing. The scenario is used to motivate the requirements

for an information system that can facilitate this type of resource sharing in a large dispersed

group.

2.1 Background

The research center SFB 373 conducts research on the development, adaption, and application

of statistical methods for empirical economics. Its members are mathematicians, statisticians,

econometricians, economists, and computer scientists. One of the major objectives of the center

is to promote interdisciplinary projects.

Collaboration in this setting entails both publishing one's own statistical methods, i.e., making

them available to other team members, and using methods developed by other teams. A key

objective of these statistical methods is data analysis: Given a set of observations, how to �nd

an appropriate statistical model (e.g., a linear autoregressive process), and to �t it to the given

data set. Interaction with such a method is typically performed in a three-step loop: (i) choose

the model, (ii) estimate the model parameters, and (iii) visualize results. Statistical methods

are implemented using either specialized scienti�c computing software, such as Mathematica,

Matlab, Gauss, and SAS, or software developed in-house at the center, such as XploRe [HKT95].

Re
ecting the corresponding programming paradigm, the software modules are often referred

to as scripts.

While each of these statistical software packages supports this kind of data analysis, the

heterogeneity in data formats, scripting languages, etc. presents challenges when models imple-

mented in di�erent systems have to be used together. This is a serious problem in a collaborative

laboratory environment where di�erent \traditions" of doing scienti�c computing need not only

to coexist but to cooperate.



2 COLLABORATION IN STATISTICAL COMPUTING 3

link=Install["sqlmath"]

sybaseconnect["MMM","Password","SYBASE","boerse"]

ts=Transpose[List[First[Transpose[sybaseSQL["select deutscherendite, jahr,

monat from bank en1 order by jahr, monat"]]]]]

sybasedisconnect[]

Figure 1: A Mathematica script that encapsulates a query to a relational database system

2.2 A Case Study

The objective of the following short case study is to motivate the speci�c requirements for a

system that supports the distributed publishing and execution of statistical methods. The case

study is based on three scripts written by three di�erent teams in the center. The scripts have

been implemented using three di�erent software packages: Mathematica, Matlab, and XploRe.

They had to be tied together to perform the following complex task:

1. Given a relational database that contains monthly return on capital for major German

companies, �nd the monthly return on capital of Deutsche Bank between 1957 and 1991.

We assume that a Mathematica-SQL connection has been implemented, such that the

query can be performed using the Mathematica method shown in Fig. 1.

2. Compute the time series of estimated residuals of the time series of the Deutsche Bank

returns. This estimation uses the Matlab implementation of a function that estimates

a feed-forward neural network using Levenberg-Marquardt Approximation (see [LT96]).

Fig. 2 lists parts of the Matlab script.

3. Based on the result of the last computation, perform an analysis of the conditional second

moments using GARCH models. An XploRe macro is available to perform this computa-

tion (Fig. 3).

What kind of computing infrastructure does this require? All three functionalities require ac-

cess to computers with the appropriate software environment preinstalled. The modules shown

in Fig. 1{3 have to be in place on these machines, including all functions that are referenced

directly or indirectly (e.g., the function sybaseconnect in the Mathematica script). In addi-

tion, variables that need to be initialized before execution need to be identi�ed and initialized

appropriately. For example, before the Matlab script from Fig. 2 is executed, the variable xraw

has to be initialized with the time series. The Matlab script generates multiple outputs. Of

these, only err o containing the estimated residuals after calling the Levenberg-Marquardt ap-

proximation is used as input to the XploRe script. Identifying those variables that are used in

this manner to link scripts is important since their values need to be stored before the script

execution terminates | for example, by adding commands that write their values into a �le. In

addition to saving values, data format conversion may be required. For example, the result of

the SQL query (Fig. 1) is a Mathematica vector (variable ts), which has to be converted into a



2 COLLABORATION IN STATISTICAL COMPUTING 4

% parameters used for Levenberg-Marquardt Approximation

min_grad = 0.00001;

min_grad = 0.00001;

mu = 0.01;

mu_inc = 10;

mu_dec = 0.1;

xraw = log(xraw);

[Ztrain,wnnew_o,epochsmin_o,wncvnew_o,n_par_o,sc_o,aic_o,hq_o,Atrain_o,

errdat_o,Acv_o, errcvdat_o,W1_0,b1_0,W2_0,b2_0,W1_1,b1_1,W2_1,b2_1,W1_2,

b1_2,W2_2,b2_2,W1_3,b1_3,W2_3,b2_3,W1_4,b1_4,W2_4,b2_4,W1_5,b1_5,W2_5,b2_5]

= nnselc(lags,xraw,S1max,trans,disp_freq,max_epoch,epochsec,sin_epoch,

err_goal,lr,initcmax,Ztrain,min_grad,mu,mu_inc,mu_dec);

err_o = [errdat_o' errcvdat_o']'; % estimated residuals for total data set

Figure 2: This Matlab routine initializes several parameters and calls the function nnselc, which

implements a Levenberg-Marquardt approximation.

format that is readable by Matlab. If the machines running, say, Mathematica and Matlab do

not share a common �le system, the data has to be moved within the network, e.g. by using

FTP.

2.3 Requirements

Two trivial solutions come to mind in order to overcome the heterogeneity problems discussed

above. First, authors could be required to make their modules available in multiple formats.

Second, users could be required to translate the required programs such that they can be ex-

ecuted in their local hard- and software environment. Both alternatives are cumbersome and

time-consuming. All this e�ort could be avoided if there were a system in which researchers

can publish their modules in their original form (i.e, the one in which they had implemented

them for their own purposes), and users can use them as if they were operating on a personal

desktop-based environment. This vision led to the design of the MMM system based on the

following set of requirements.

Execution services: For each statistical computing package at least one execution service

has to be made available. Each such service has to be accessible by all members of the

research center and by authorized outside users. Execution services have to be extensible

by authors, i.e., authors can make available libraries with modules, which can then be used

in other modules by other authors. The challenge of realizing execution services is to make



2 COLLABORATION IN STATISTICAL COMPUTING 5

; This function estimates the function of conditional second

; moments of a univariate time-series, using GARCH models.

; The output is a matrix d

r = r'

n = rows(r)

t = 1957.5 + (0:n-1)/12

n = rows(r)

library("mmmlib")

d = archest (r, 1, 1)

xt = var(r)|d[2,1]*r[1:n-2]^2

st = genar (xt, d[#(1,3),1], n-1)

Figure 3: This XploRe macro implements a GARCH model by calling XploRe standard func-

tions.

the speci�cs of interacting with di�erent packages transparent. For example, the di�erent

ways of executing a module within a package, such as writing a batch job, or entering a

command in a line-oriented command interface, have to be hidden. Independently of the

package speci�cs, the interface of the execution service should consist of three principal

steps: specify input, start execution, and access output.

Interface de�nition: Modules that are authored to be executable in this manner need inter-

faces that specify which input variables have to be provided, how they should be invoked,

and which results are available when execution is complete. This presents a major chal-

lenge, since statistical methods are typically authored in declarative, interpreted languages

rather than imperative, object-oriented languages (such as C++), which greatly facilitate

interface de�nition.

Interoperability: As demonstrated in the case study, this is where users lose most of their

time. Assistance is particularly necessary for (i) data transport and format conversion

between all statistical software systems involved, (ii) system-speci�c combination of data

and methods, and (iii) invocation and execution control across the network.

State maintenance: In general, statistical analysis is exploratory with multiple passes on the

methods and parameters. In an interoperable setting, a user has to keep track of inputs

to methods and intermediate results. Assistance needs to be provided in the form of state

maintenance services, which store the inputs and results of intermediate computations

during a session. This facilitates exploratory work with multiple methods.

Scripting: Assuming that the infrastructure is set up in a way that a single user has access to all

distributed resources, this user might want to automate the execution of a computational

plan by bundling together all the steps (e.g., the three operations in the case study) into

a single executable script. This script could then even be authored as a \new" service.



3 CONCEPTUAL FRAMEWORK 6

Documents 

User Agent

Database

Services

Method Base Module Execution

Services

Messages

Broker

Data Translation

ServicesServices

Figure 4: User Agent, Broker and Services

Internet/WWW: From a pragmatic perspective, the information system for authoring and

sharing of statistical methods should have wide reach. WWW-based interfaces o�er such

a wide reach on multiple platforms. This cross-platform support is needed in a center

such as the SFB where platforms and operating systems proliferate. Thus, interfaces for

authoring and using methods should be based on Web technology.

Possible additions to this list of requirements include a meta-information system that supports

users in the appropriate usage and information retrieval, or visualization and interactive graphics

even when working with remote services. These features are subject to future work; they will

not be discussed further in this article.

3 Conceptual Framework

Based on the requirements speci�ed above, this section presents a conceptual framework for an

information system to perform collaborative statistical computing. The principal components

of our system are agents responsible for di�erent types of services. Users of statistical modules

communicate with the system via a user agent. This agent connects them to a brokerage agent

or broker, which mediates transactions between several types of service agents and the user (see

Fig. 4). We �rst describe the functionality of service agents, then the user agent, and �nally the

role of the broker.

3.1 Database Services

The analysis of data sets is fundamental to statistical computing. Database services maintain

data sets for the users of the system. In statistical computing, the structure of data sets is

mostly restricted to real-valued vectors and matrices. Only recent developments in statistical

packages add the concept of records including alphanumeric data, such as names and dates



3 CONCEPTUAL FRAMEWORK 7

Figure 5: An HTML form to edit a matrix with the MMM user agent. The select button speci�es

the language. The matrix is in Matlab format, a language-speci�c ASCII representation.

of observations [SKKH96]. Given the declarative, interpreted nature of statistical computing

languages, data sets are usually represented as formatted strings containing the numerical values

in ASCII notation. Details of the format (separators, use of parentheses, etc.) vary between

systems.

The interface of a database service provides operations to create, update, access, and delete

data sets. A database service treats data sets as black boxes in the sense that it does not provide

operations to manipulate, for instance, parts of a matrix. Such tasks have to be performed by

execution services using suitable modules. Also, there are no operations speci�c to the format

in which the data is expressed as a character string. Necessary conversions of the format are

delegated to special data translation services (see Section 3.2).

Apart from the black box conceptualization of a data set, each data set in a database service

is combined with slots for meta-information. The simplest, but most important example of

such meta-information concerns the format of the data set; see Fig. 5 for an example. Further

information could be added, depending on the particular application in mind.

Database services should also be able to integrate data sets from other sources. This includes

simple remote access via standard protocols, such as FTP and HTTP, but also the more complex

execution of database queries, possibly followed by some format translation. Alternatively, data

integration could be done with the help of an execution service, as illustrated by the �rst module

in the case study.



3 CONCEPTUAL FRAMEWORK 8

3.2 Data Translation Services

Data translation services perform the required conversions between di�erent data formats. Typ-

ical formats include character string representations or relational representations coming in from

the database services, as well as the package-speci�c \statistical" formats. Conversion has to be

supported between all formats required by the module execution services of the system.

3.3 Method Base Services

In analogy to database services, method base services treat modules as black boxes. Inside those

boxes are character strings that represent the implementation of some method. A method base

service supports similar operations as a database service: It provides an interface to add, delete

and change modules, and it provides an interface for an execution service to access a module.

As with data sets, an instance of a module provides slots for meta-information. Again, the

language of a module is an important piece of meta-information. But more is required. Usage

of a module requires that it can be moved to an execution service and combined with data from

the database service. Results have to be moved to the database service after the execution is

completed. Both operations require that meta-information about input and output of a module

be provided. An analysis of several packages showed that a list of names of input and output

variables, i.e., a signature, su�ces to perform these operations (see Section 3.4). In addition,

meta-information about a module may have to list other modules from the method base that

have to be installed at the execution service prior to execution.

3.4 Module Execution Services

Module execution services encapsulate the execution of statistical methods by implementing

connections to execution engines for the supported packages. This is done in three phases:

First, the service accesses a module from a method base service and data from a database

service. It concatenates data and module in a way speci�c to the package. Second, it instructs

the engine to execute the module. Third, when execution is complete, it obtains the output

data from the engine. This last step may require the addition of package-speci�c commands to

the module in the �rst phase. Finally, outputs are forwarded to the database service.

The details of implementing the three phases vary considerably from package to package. In

Mathematica, for example, a library can be used to create a stateful link to a Mathematica

engine using a C program. With XploRe, on the other hand, no such support exists, and the

implementation uses a stateless connection to an XploRe server listening on a telnet port on a

UNIX machine. In the �rst case, variables can be initialized in a stepwise manner by appropriate

function calls. In the second case, the XploRe module has to be combined with the data by

string concatenation.

As mentioned in Section 3.3, the phases have to be supported by meta-information that is

provided by the author when submitting a module to the method base service. Thus, names

of input and output variables have to be listed. Furthermore, the module implementation must



4 THE IMPLEMENTATION OF MMM 9

not contain any initializations of input variables, nor instructions that store results in �les.

Corresponding commands are generated by the execution service and depend on the way the

package is connected with the service.

3.5 User Agent

Our design assumes an interaction with the system that is based on the exchange of documents,

such as an HTML form (Fig. 5). Document content, such as HTML form variables, is translated

into a message. In case of using a Web browser and HTML forms, form submission results in

the invocation of a CGI application that communicates with the broker using a system-speci�c

protocol. In this scenario, the Web browser and the CGI application together make up the user

agent. Alternatively, the user agent could consist of a series of downloadable Java applets or

Active-X applications.

3.6 Broker

Services cooperate with each other in order to allow providers to author modules and data sets

and to allow consumers to use them. Such requests are formulated by the user agent. The broker

mediates between the user agent and the other services. On request from a user, the broker

gathers information about the operations that could be performed by the services. It translates

this information into a document which is sent as response to the user interface (usually a Web

browser). The user uses this document to select the next operation (see Fig. 6). Again, the

broker could be a Java applet running inside the Web browser of the user, thus combining the

user agent and the broker in one application.

4 The Implementation of MMM

We have presented a conceptual framework for a system to publish software modules for remote

access. This section gives a brief overview of MMM, a system that implements this design

by combining Web technology with distributed object technology. Web technology is used

to implement user agents and to integrate resources like data repositories and computational

services on telnet ports. Distributed objects are used to realize agents that provide services for

authoring and executing statistical methods, and for the maintenance and format conversion of

data sets. For a more detailed description of the MMM implementation see [GMS

+

96].

We �rst show how the Ypsilon system [MM94], a C++-environment for model-based software

development, has been applied successfully to implement the conceptual framework. After giving

a short overview of Ypsilon, we illustrate how we used this environment to implement a generic

client/server topology for the exchange of formatted messages over TCP/IP. Finally, we describe

the implementation of the agents and their communication protocol.



4 THE IMPLEMENTATION OF MMM 10

Figure 6: An HTML form to select the appropriate form for the next operation at an MMM

service.

4.1 The Software Development System: Ypsilon

Ypsilon was developed as a toolbox for model-based software development. It provides an

infrastructure to encapsulate services into objects implemented in C++. The original focus

of Ypsilon was the implementation of libraries with e�cient algorithms for project scheduling

[MS95]. Ypsilon objects inherit a rich set of functionalities from Ypsilon core libraries, including

graphical user interfaces, representations of instances as ASCII streams, and memory handling.

This makes it a useful toolbox for rapid prototyping of C++ software systems. The system

consists of

1. a generator that produces C++ class implementations from (class) models;

2. compiled C++ and X11/Motif libraries that provide generated classes with programming

and user interfaces;

3. a generic runtime environment to instantiate and work with instances of Ypsilon classes.

Each Ypsilon instance has a representation as an ASCII character string that contains the

complete type information. Together with the instance value, this information can be used to

de�ne the protocol between MMM services. Messages are modeled as Ypsilon classes. Sending

a message translates to sending an instance of an Ypsilon class. If the same channel is used to

send messages of di�erent types, i.e., instances of di�erent Ypsilon classes, the type information

de�nes the type of the message. This enables the implementation of generic communication



4 THE IMPLEMENTATION OF MMM 11

services. Jeusfeld and Bui [JB95] have proposed a similar type of data representation as a basis

for interoperable decision support system components on the Internet.

Ypsilon function models are all those Ypsilon models (i.e., classes) which have �elds input

and output. A function model encapsulates an (external) function call as a C++ class. The

typical usage of a function model in a C++ program is illustrated below, where F is a C++

class implementing a function model:

...

F f;

f.input() = a;

f.evaluate();

b = f.output();

...

The implementation of the member function evaluate encapsulates not only the call of the

external function, but also format conversion from and to the external function's data structures.

Furthermore, function models implement a standardized interface for function calls that can be

used in a simple manner by other applications.

4.2 The Communication: MMM Client and Server Models

While Ypsilon function models encapsulate services, the two Ypsilon models MmmFClient and

MmmFServer encapsulate the communication of services. They implement the protocol layer of

MMM by using functionalities of the ACE library [Sch94]. This library contains C++ wrapper

classes for interprocess communication; it runs on a broad variety of operating systems.

MmmFClient is a function model that encapsulates the communication with servers via Internet

stream sockets. As a function model, it contains the �elds input and output. Both �elds are of

type GCData, a wrapper class whose objects can be initialized dynamically with all other Ypsilon

models. Together with the typed ASCII representation, this allows a generic handling of Ypsilon

model instances. MmmFClient also has a �eld server, a record that gets initialized with a DNS

name (or an IP address) and a port number. The member function evaluate of MmmFClient

opens a stream socket connection to the address speci�ed in the �eld server, takes the GCData

object from the �eld input, and sends it to this address. The received reply is assigned to the

�eld output, followed by closing the connection to the remote address.

The model MmmFServer contains a �eld port and a �eld service. Its task is to receive

messages from MmmFClient objects, process the message with the �eld service, and send a

reply back to the client.

Setting up a MMM service requires the implementation of an Ypsilon function model and a

program that initializes the service component of an MmmFServer object with an object of the

function model. Calling such a service out of a C++ program requires the initialization of an

MmmFClient object, the initialization of its input with the request and the receipt of the reply

from output.



5 DISCUSSION 12

4.3 Agents and Messages: MMM Service Models

The last section showed how services are embedded in the server model MmmFServer, which

implements their communication. A service thus waits for an instance of a speci�c message

model, processes the request encoded in that instance, and generates as result an instance of a

reply model. MMM services implement all types of services discussed in Section 3.

Each service accepts a set of message models, where di�erent messages initiate di�erent opera-

tions at the service. These operations may change the state of the service. Certainly, it depends

on the state of an object, whether some operation makes sense or not. In other words, the state

of an object de�nes whether a message is acceptable [BKM95b]. For example, at the beginning

of each interaction with a service, an authentication operation has to be performed. Only after

valid authentication, other messages become acceptable. For example, browse meta-information,

a message to the method base, becomes acceptable only after authentication.

The MMM broker implements middleware between user agent and services. It is a stateful

service, whose state consists essentially of information about the interface of connected services.

The connection between Web browser and broker is established by the user agent. Depending

on the message from the user, the broker consults one or several services to process the user

request. Each consultation is performed by using one of the acceptable messages of that service.

The result from the service is a reply message that is sent back to the user agent. In addition,

the broker receives from the service an update of the set of acceptable messages for that service.

As a part of the reply to the user, the broker o�ers an HTML form by which the user may

choose one of the acceptable messages of any of the services (Fig. 6).

5 Discussion

In this paper we proposed a conceptual framework for collaborative statistical computing. We

also described the MMM system, a prototype implementation to make software modules acces-

sible on the World Wide Web. The key features of MMM are:

� It implements stateful services, motivated by the exploratory nature of statistical data

analysis.

� By using middleware services, it enables interoperability between proprietary statistical

computing packages.

� It provides publishing support by helping authors in interface de�nition.

The combination of these features distinguishes MMM frommost other work that is concerned

with the collaborative usage of software modules in distributed environments. The �rst mile-

stone towards enabling access to computational services on the Web was the Common Gateway

Interface (CGI) [McC94]. CGI de�nes a standard of passing data from a Web browser to an ap-

plication program. While thousands of CGI applications are now available on the Web (including

many with scienti�c software), each of them provides a singular solution. There is no support



REFERENCES 13

to connect several such services into a pipeline, as is required, for example, in the case study

presented above. Java applets also lack comfortable support for this kind of interoperability.

Due to security considerations, browsers prevent Java applets that were downloaded from some

site A to download other applets from some other site B. While this constraint may disappear

in time, as the related security problems can be solved in a more sophisticated manner, Java

has another major disadvantage: It requires the reimplementation of software already available.

Switching to an object-oriented, imperative programming language like Java, however, is simply

not a valid alternative for our typical users, who make considerable use of the mathematical

expressiveness and richness of mathematical libraries in scripting languages like Mathematica

or Matlab.

There is considerable overlap between the MMM concepts and middleware architectures

[Ber96], in particular concerning the idea of the object request broker [OHE96]. While these

technologies tend to be strong in providing reliable services in distributed computing (e.g., by

enforcing transaction management), they do not emphasize support for publishing as much as

MMM does. Interface de�nition languages support only imperative, object-oriented languages

(e.g. C ++). So it may be a while before the intergalactic object bus [OHE96] will stop at our

type of statistical computing services. However, we expect that parts of the MMM functionality

that are currently implemented in Ypsilon can soon be replaced by ORB implementations fol-

lowing standards like CORBA or COM/OLE. These implementations were simply not available

at the time when MMM started.

Another enhanced system for Internet access to software modules has recently been presented

by Becker [Bec96]. Other than MMM, however, the system follows a functional design. Values

are �ltered through stateless services that encapsulate solvers for combinatorial optimization

algorithms. The system lets a user state computational plans in the system's own scripting

language. From the electronic commerce point of view, Bhargava et al. have surveyed emerging

electronic markets for accessing software modules [BKM96a] and investigated business transac-

tions [BKM96b]. We believe that the results of the MMM project could guide the creation of a

new generation of electronic markets for statistical methods, as they are currently investigated

for decision support technologies [BKM95a, BKC

+

96].

References

[BCL

+

94] T. Berners-Lee, R. Cailliau, A. Luotonen, H.F. Nielsen, and A. Secret. The World-

Wide Web. Communications of the ACM, 37(8):76{82, 1994.

[Bec96] P. Becker. An embeddable and extendable language for large-scale programming

on the Internet. In Proceedings of the 16th International Conference on Distributed

Computing Systems (ICDCS'96), 1996.

[Ber96] P. Bernstein. Middleware: A model for distributed system services. Communications

of the ACM, 39(2):86{98, 1996.

[BKC

+

96] H.K. Bhargava, R. Krishnan, M. Casey, D. Kaplan, S. Roehrig, and R. M�uller. Model

management in electronic markets for decision technologies: A software agent ap-



REFERENCES 14

proach. SFB Discussion Paper, Sonderforschungsbereich 373, Humboldt-Universit�at

zu Berlin, 1996.

[BKM95a] H.K. Bhargava, A.S. King, and D.S. McQuay. DecisionNet: An architecture for

modeling and decision support over the World Wide Web. In Tung X. Bui, editor,

Proceedings of the Third International Society for Decision Support Systems Confer-

ence, Vol. II, pages 541{550, Hong Kong, 1995. International Society for DSS.

[BKM95b] H.K. Bhargava, R. Krishnan, and R. M�uller. On parameterized transaction mod-

els for agents in electronic markets for decision technologies. In Sudha Ram and

M. Jarke, editors, Proceedings of the Fifth Workshop on Information Technologies

and Systems, Amsterdam, Holland, December 1995, 1995.

[BKM96a] H.K. Bhargava, R. Krishnan, and R. M�uller. Decision support on demand: Emerging

electronic markets for decision technologies. Decision Support Systems, 1996. to

appear.

[BKM96b] H.K. Bhargava, R. Krishnan, and R. M�uller. Electronic commerce in decision tech-

nologies: A business cycle analysis. SFB Discussion Paper, Sonderforschungsbereich

373, Humboldt-Universit�at zu Berlin, 1996.

[GMS

+

96] O. G�unther, R. M�uller, P. Schmidt, H. Bhargava, and R. Krishnan. MMM: AWWW-

based model management system for using software modules remotely. Discussion

paper 32-1996, Sonderforschungsbereich 373, Humboldt-Universit�at zu Berlin, 1996.

[HKT95] W. H�ardle, S. Klinke, and B. A. Turlach, editors. XploRe: An interactive statistical

computing environment. Springer-Verlag, Berlin, 1995.

[JB95] M. Jeusfeld and Tung Bui. Interoperable decision support system components on the

Internet. In Sudha Ram and M. Jarke, editors, Proceedings of the Fifth Workshop on

Information Technologies and Systems, Amsterdam, Holland, December 1995, pages

56{67. RWTH Aachen, Fachgruppe Informatik, 1995.

[LT96] H. L�utkepohl and R. Tschernig. Nichtparametrische Verfahren zur Analyse und

Prognose von Finanzmarktdaten. In G. Bol and G. Nakhaeizadeh und K.-H. Vollmer,

editors, Finanzmarktanalyse und -prognose mit innovativen quantitativen Verfahren.

Physica-Verlag, Heidelberg, 1996.

[McC94] Rob McCool. The Common Gateway Interface. http://hoohoo.ncsa.uiuc.edu/-

cgi/overview.html, 1994.

[MM94] D. M�oller and R. M�uller. A concept for the representation of data and algorithms. In

N. Dean and G. Shannon, editors, Computational Support for Discrete Mathematics,

DIMACS Workshop March 12-14, 1992. AMS, 1994.

[MS95] R. M�uller and D. Solte. How to make OR results available: a proposal for project

scheduling. In W. Gaul, F. J. Radermacher, and D. Solte, editors, Data, Expert

Knowledge and Decisions, volume 55 of Annals of Operations Research, pages 439 {

452. J.C. Baltzer Science Publishers, 1995.



REFERENCES 15

[OHE96] R. Orfali, D. Harkey, and J. Edwards. The Essential Distributed Objects Survival

Guide. John Wiley & Sons, Inc., New York, 1996.

[Sch94] D. C. Schmidt. The ADAPTIVE Communication Environment: Object-Oriented

Network Programming Components for Developing Client/Server Applications. In

Proceedings of the 12

th

Annual Sun Users Group Conference, pages 214{225, San

Francisco, CA, June 1994. SUG.

[SKKH96] Swetlana Schmelzer, Thomas K�otter, Sigbert Klinke, and Wolfgang H�ardle. A new

generation of a statistical computing environment on the net. In Albert Prat, edi-

tor, Proceedings in Computational Statistics: 12th COMPSTAT Symposium held in

Barcelona, Spain, 1996, pages 135{148. Physica-Verlag, 1996.


