Supporting Development of Software Agents
By Integrating Heterogeneous Repositories
Based on Ontologies

Noriaki lzumi
Dept. Computer Science
Shizuoka University
3-5-1 Johoku Hamamatsu
Shizuoka 432—-8011 Japan

izumi@cs.inf.shizuoka.ac.jp

ABSTRACT

This paper proposes an integrated support methodology for
constructing software agents by using heterogeneous repos-
itories. In order to model agents’ behavior and their in-
ference process and to implement them as software appli-
cations, heterogeneous repositories in different granularities
are integrated based on ontologies. By devising a frame-
work, which picks the main concepts of repositories up and
make correspondence among them, our framework achieves
the unified reuse of existing repositories of modeling libraries
and software components. We have implemented the pro-
totype system by JAVA and confirmed that it supports us
in various phases of agent application development includ-
ing agent-model construction, definition of agents’ inference
process and an implementation of agent software applica-
tions.

Keywords
Ontologies, Common KADS, Process Handbook, Agent de-
velopment

1. INTRODUCTION

Due to the recent development of the Internet computing en-
vironment, it becomes very important to achieve the rapid
adaptation of the agent’s task by adopting new comput-
ing environments and employing new technologies. Further-
more, according to the recent trends of e-business, the roles
of ontologies become very important as the key concepts
not only for the exchange information among people and
computers, but also for employing a variety of heteroge-
neous reusable components such as inference models, agent
resources, software libraries, and so on.

Takahira Yamaguchi
Dept. Computer Science
Shizuoka University
3-5-1 Johoku Hamamatsu
Shizuoka 432—-8011 Japan

yamaguti@cs.inf.shizuoka.ac.jp

Because of the above context, a lot of research and develop-
ment projects, which construct repositories of various con-
cepts and ideas relating to agent activities, have been acti-
vated. Those repositories can be divided into the following
three main types:

e repositories of concepts and activities in order to model
human activities,

e formal repositories corresponding to formalize abstract
concepts,

e software repositories for the construction of applica-
tions.

In the field of MS (Management Science) as the first type,
one of the famous results is the e-business Process Handbook
project[9] carried out by MIT. The e-business Process Hand-
book is a substantial contribution as a business repository,
which contains approximately 4,600 definitions of business
activities from abstract processes to the specialized one to
the business over the Internet. Its formality, however, is not
strict since the most part of the definitions are described by
natural language.

From the viewpoint of the formality on the process spec-
ification, there is the enterprise ontology[12] of Edinburgh
University in the field of artificial intelligence. Its formality
is very strong and it contributes the reuse of business models
nevertheless it covers only so general and abstract concepts
that it is very hard to construct concrete business models
with operability.

On the other hand, a lot of software libraries for building
EC applications have been proposed[10, 15, 16]. Most of
them are originally developed as repositories for the agent
applications and extended to ones for the business applica-
tions[17, 18, 19]. Furthermore, the special platform for the
development of enterprise applications is provided. Those
libraries and platform offer the strong framework for the
construction of real applications. There are, however, no
clear relationships between software components and busi-
ness models.

Owing to the difference of purposes and viewpoints among
those repositories, the integrated support is hardly performed
in the construction and the re-engineering of business appli-
cations on the existing domain.

So, in order to achieve the unified support in the construc-
tion of agent models and applications, the computing frame-
work, which integrates the different sorts of repositories,
should be developed.

From the standpoint of the above-mentioned background,
we propose the development methodology of agent applica-
tions based on ontologies with reusable repositories such as
e-business process handbook and software libraries.

In order to construct the business models and to implement
them on the existing domain, we rebuild the heterogeneous
repositories into two repositories on different-grain-levels:
the agent specification repository on the level of business
activities and the agent software repository on the level of
software applications.

The former one is for modeling agents’ activities from spec-
ification descriptions, and the latter one is for constructing
agent applications from the agent models.

As the main characteristic of this work, we provide the inte-
grated support of modeling and implementation by employ-
ing primitives of PSMs (Problem Solving Method), which
provides the correspondence between the models and appli-
cations. For the purpose on the integration of heterogeneous
repositories obtained over the Internet, we employ Common
KADS inference primitives and WordNet as standard on-
tologies.

We have implemented the prototype system by JAVA and
confirmed that it supports us in various phases of agent ap-
plication development including agent model manifestation,
detailed agent model definition and an implementation of
agent software applications.

2. OVERVIEW OF PROPOSEDDEVELOP-
MENT SUPPORT

In order to achieve the unified treatment of models on dif-
ferent levels such as making agent models clear, implement-
ing them as the detailed inference process, building software
applications and so on, our research aims at the establish-
ment of integrated support from the analysis level to the im-
plementation level. Our standpoint of the integration and
the reuse of heterogeneous repositories is to obtain the key
structure of each repositories, which corresponds to noun
concepts, and to relate them each other to bridge the whole
structure of processes and activities including verb concepts.

The key idea to achieve our aim is how to extract the verb
and noun concepts and their relationship as the common
structure of information from the heterogeneous reposito-
ries. The noun concepts can be divided into two main cat-
egories: higher level concepts and system implementation
level concepts. We call them ‘business objects’ and ‘soft-
ware objects’, for each. The verb concepts can be divided
into three main categories: concepts for human-level be-
haviour, abstract-level primitives for problem solving, and

fine-grain size method for sysmtem implementation. We call
them ‘activity’, ‘PSM: Problem Solving Method’, and ‘ac-
tion’ for each.

The target of development support is the construction of
agent application as a agent models obtained from specifi-
cation documents, which contains the facility such as com-
munication with users through network via E-mail or Web,
and the file system sharing with the users for customer re-
lationships and data management.

For the purpose of the efficient development, we employ the
methodology of software patterns of analysis and design.
Due to a variety of patterns, we also employ the MIT’s e-
business Process Handbook as a standard ontology for clas-
sification and organization of activities.

Brief description of agent application development through
the repositories integration by our framework is as shown in
Figure 1.

At first, in order to pick the key concepts up from specifica-
tion documents, we construct the agent specification repos-
itory including ontologies of noun and verb concepts. Noun
concepts are extracted from the e-business Process Hand-
book and classified into the business object ontology accord-
ing to WordNet[2] as the general concept ontology provided
by Princeton University. Verb concepts of e-business Pro-
cess Handbook are re-arranged by using frequency informa-
tion of noun-concepts-appearance. By making reference to
the history database of the correspondence between words
of documents and ontologies of nouns and verbs, an agent
model is constructed by the agent specification repository.

Next, as a repository for transplantation of the agent model
to an agent software application, we provide the agent soft-
ware repository.

In order to correspond activities of agent models to software
modules, we employ the inference catalogue of Common
KADS[11, 14] as the standard concepts of PSMs. Common
KADS is utilized for analysis and development of knowledge
systems and offers the language and primitives to clarify
conceptual models. Based on the primitives of the inference
catalogue, we construct a library of typical patterns of the
input-output relations and the module structure by rebuild-
ing JAT (JAVA Agent Template)[10] provided by Stanford
University.

In order to standardize the format of patterns, we construct
a software object ontology that provides the classification of
software objects with control and data structures. Each pat-
tern is formalized by the vocabulary of the software object
ontology and Common KADS.

By consulting the software object ontology and REPOSIT][6]
provided by Shizuoka University as a library of the imple-
mentation patterns, the agent model, obtained on the previ-
ous stage, are supplemented with control structures of soft-
ware codes. According to the frequency and history of cor-
responding among three libraries of JAT, Common KADS
and REPOSIT, a detailed model of the software application
are obtained based on the software object ontology.

Proééss andbéok

—

Specification Description Text

.

— Agent Specification Repository =

Business Object Ontology

— O

co-occurence DB History DB

CommonCADS

Agent Application

REPOSIT

WordNet

—— Agent Software Repository =

SW Object Ontology

Jo
o0
O

Agent Model

History DB
J

Figure 1: Overview of Development Support

3. CONSTRUCTION OF AGENT MODELS

In this work, we employ the e-business Process Handbook of
MIT, called Process Handbook for short, as a library clas-
sifying agents’ activities on their inference processes. There
still remains an issue in the extraction of a required process
due to the difference of the viewpoints between specification
descriptions and process repositories. In order to bridge
the difference, we construct the agent specification reposi-
tory by employing WordNet as a general lexical repository.
First, the agent specification repository is provided as a key
structure bridging the specification documents and Process
Handbook. Then, the wrapper framework is constructed as
an extract method of required activities from a repository
of Process Handbook.

3.1 Building Object Ontology

In order to classify the noun concepts extracted from Process
Handbook, we employ the WordNet as a general ontology
that contains over 17,000 concepts. However, if we utilize
WordNet as it is, the number of candidate explodes because
of the variety of the word’s meaning and the ambiguity of
the word in a document. When the abstraction degree of a
requirement is high, a verb concept of an activity in the goal
is often vague for specification makers due to the difference
of viewpoints on the definitions. In contrast, a noun concept
of the activity is comparatively clear and appears regularly
in the document.

So, in order to classify the noun concepts appearing in Pro-
cess Handbook, we choose the major concepts with respect
to the degree of abstraction and frequency by using Word-
Net. As the criteria to select a major noun concept, we pay
attention to roles of input-output objects in the definition

of Process Handbook. Based on the above standpoint, we
construct the object ontology in the following way:

e concentrating a substructure for each verb concept from
the process hierarchy,

e extracting a noun hierarchy from the concentrated sub-
structure,

e counting the number of the appearance of each noun
concept,

e adding the number counted for the upper concepts,

e merging all the noun hierarchy by introducing the ab-
stract concepts according to the WordNet.

According to the WordNet’s structure, we define the sub-
structure of concepts obtained above as an upper ontology,
provided that the priority of the meaning is given to the
application domain over the relation of WordNet. Further-
more, when we fix the upper ontology for constructing the
domain ontology, concept drift, that is a kind of semantic
shift on a specific domain, often occurs and causes ineffi-
ciency on building ontologies. Due to reduce the cost of
construction, we employ the methodology for resolving the
concept drift[13]. Figure 2 shows the structure of the object
ontology obtained.

3.2 Determining Agent’'s Activities

When obtaining the definition of the business activity corre-
sponding to a requirement document, it is difficult to utilize
the hierarchical structure of the process handbook because

business
process
transportation

activi transaction

tual

management
labore—————temporary labor

inital desiga———inital process design
des\g"‘<detai\ed ‘design
product design

data
reference information
graphic information

written_communicati

NounConcej

product
sery

5 @

money
asse(< aine———income
cost
os%ﬂaymem

infrastructural resource

financial resource
physical resaurc’éangcmg fesource

internal resource

resourc

human resour

-enterprise
lorganizatior——_g 1 P15

business strategy
slra(egyéhuman resource strategy
organization strategy
program plan
plar process plan
resource plam——information resource plan
experiment plan

physical torage location
/ data ife cycle
t i terprise system
\ enterprise support system
financial structure——capital structure
o et
documen«——book g catalo
e e s
custom report
statement
web page
product order
purchase order
0“’5<man order
purchase offer
temporary service
chargee—————""%
e e lect store
v local software
older employee
part-time employee
emf"f’ye’%mufume employee
sales force
supplier
-customer
supply chain partner
Figure 2: Business Object Ontology (a part of it)
2 [XX]

of the gap between words of actual documents and process
handbook. On this account, we employ the object ontology,
as an upper ontology, which bridges the variety of words
in documents and nouns in Process Handbook. In order to
identify an agent’s activities from a sentence given by a user,
we devise an extraction mechanism as a wrapper for Process
Handbook based on the object ontology.

The wrapper tool is composed of the databases of the fol-
lowing information. First, the co-occurrence information of
noun concepts in the definition of an agent’s activity is ob-
tained and classified with respect to the structure of the
object ontology. Then, the information is made accessible
as the database of the co-occurrence. At the same time,
the frequency information is also available in collecting the
co-occurrence one. By using both of the co-occurrence and
frequency information, the wrapper tool help us to search
the definition of activities in the space of Process Handbook.
The proto-typing tool is shown in Figure 3.

4. BUILDING SUPPORI OF AGENT APPLI-
CATIONS
4.1 Building Data Structur eOntologyfor Reuse

of Libraries

In the same way of building the object ontology, the data
structure ontology (Figure 4) is constructed as a domain in-
dependent ontology from the libraries intended to employ.
The software object ontology gives words for expanding do-
main ontologies such as building a set, picking up an atom
of a set, indicating a calculation stage, data structures for
implementation details and so on.

On the purpose of the developing agent applications from
the agent model obtained above, a detailed definition of each

File Edit Run Help

(menufy Process rcnnslrucl Appnca(inn‘
Text Area

inputting into the computer a conditional purchase offer which

includes an offer price;

Object List Object Ontology- Process List
@ 7 computer
& Jinternet
[local software
& Jactivity
& human group
® Cinformation
& Tplan
@ Tdesian

internet [Obtain order over internet]

order [Obtain order in electronic store]

[Place order over internet]

Figure 3: The Wrapper Tool

activity of the model is required. In order to give the activi-
ties the operational information that is used for application
development, we prepare the library of the application tem-
plate, which defines the structure of the part of application
in the fashion of the knowledge system development with
respect to the data structure ontology. By constructing the
business software repository with the reusable template of
REPOSIT, Common KADS, JAT and historical databases,
the agent application is obtained.

4.2 Model RefinementBasedon Application

Templates
We consider the structure of agent applications based on the
agent architecture to be composed by the inference engine
to attain a task, the sensor to get the information of the
outside and the effector to carry out their task. The sensor
is characterized by the following three functions:

world i state—— model
action — dtate_transition
element
entity< st

alu

i significance
(rjnLajﬁlvee_vd ue cy

rav daa oul range
truth__value ‘ﬁ%ﬁt_

condition < %ae%ijarrd eim conitoroll ability

) id
index < kev
congtraint
sentence

depdion
If_osrlmula‘equauon
I

atom
string best

e
- bad
equation (gb)

knowledge <<_ advice
worst

(value) <~ \r;ngﬁ\églrieable

of
(set) § %JTstTe(_of
aj ece_of
initial
final
next

all data

qualifier
(time)
major
minor
man
detail
universal
middle

Figure 4: Data Structure Hierarchy

(bs)

last
developed
current

(1) the function that accesses the inside and the outside
resources of the agent,

(2) the function that examines the place and the contents
of resources,

(3) a function to acquire a message from the user and to
interpret the message.

The effector is defined by two of the next:

(a) the function to form and modify the inside and the
outside resources of the agent,

(b) a function to make and to send a message to the user.

The framework of the combination with the above functions
and the inference engine is organized as agent templates by
referring to JAT (JAVA Agent Template) of the Stanford
University. Furthermore, detailed templates, corresponding
to eight types of communication models given by Common
KADS, are formed as interaction templates with the user
and resources (Figure 5).

4.3 Building Reusable Templatesfor Imple-

mentation of Applications
From the importance of a unified language for the reflection
of the change on a business model, we rebuild and extend in-
ference primitives of Common KADS into “REPOSIT (REusable
Pieces Of Specification-Implementation Templates)” which
combines declarative semantics employed in Common KADS
and procedural semantics like Prolog. A unit of a descrip-
tion in REPOSIT, defined as a relationship among input,
output and reference knowledge, is called a “unit function”.

gend'Maié ;
. eceive Even
Receive File Receive

. Send Messagei Send Mail
Message Handl|r< Event Output

ake Messag
rite to a File

Interaret Messaﬁ ommand Execution’

Flle Upload
Recelve Malls
Load Data Base

- Unload Local Resour
Upload Resourceé Upload Remote Resource

Download Local Resource
Download Resource D%ﬂload Remote Resource

Modify Local Resource

Modify Remote Resource

Format Text=—" Format Plane Text
Format Strings Format HTML Text

Resource Acces(

odify Resource
Resource Managem

Generate Resource-—— Generate Text

Inference Pattern Generate Stings

Figure 5: Primitives of Application Templates

A set of unit functions is rebuilt into the method ontology by
abstracting knowledge types of input, output and reference.

Furthermore, patterns of a combination of unit functions,
which appear frequently in the development process, are
gathered, sorted out and constructed as a method library
based on the following standpoint:

(1)
2)

providing refinement policies,

standardizing a way of the knowledge (data) manage-
ment,

®3)

classifying the adding patterns of control structures
given to specifications.

In order to keep a correspondence between descriptions of

specifications and implementations, REPOSIT supports step-
by-step operationalization of an abstract description into a

detailed implementation model, as the following way (Figure

6):

a. selecting a pattern of the method library according to
a task type of a knowledge system,

b. concreting knowledge type of input, output and ref-
erence by using the software object ontology and the
obtained business model as the requirement specifica-
tion,

c. adding a control structure to the description with the
obtained information of knowledge type,

d. selecting a pattern for each unit function of the de-
scription and continuing the above process.

Finally, we’ve provide 22 methods on the abstract-pattern
level, 92 methods including prolog-build-in functions on the
program-code level, and 69 methods on the middle-level.

5. EXPERIMENT AL STUDY

5.1 Personal Agent Construction
In order to consider the validness and usability of proposed
framework, we’ve implemented the above mechanism by JAVA

method_library
-

a. selecting a pattern §

b.co knowledge

g

& _/c.adding control structu;

domain_ontology

standard_data_hierarchy

Figure 6: Overview of a Development Process

into the proto-typing tool and applied it into case studies of
constructing agent applications from description documents.
We take an agent’s task to support the management of the
large-scale lecture held all together as this case study.

We suppose the agent to act like a human secretary; there-
fore he is personified as in the same conditions as human
users on UNIX OS who have their own home directory on
UNIX, an E-mail address and URL. The agent is made start
to perform by receiving E-mails on his address or by spe-
cial commands via GUI of JAVA applets. In this case, we
provide the following functions as the input/output mecha-
nisms: reading/writing function of the file system including
HTML files, sending/receiving function of E-mails, exchang-
ing function of data on JAVA applets, general UNIX com-
mands and so on (Figure 7).

Developers selected as users couldn’t make the software sys-
tem, which satisfied the requirement in advance with the C
language or JAVA.

The outline of the task that the agent, developed by a user
with the agent wizard’s help, has done and the contents of
a class subject where the agent was actually used are shown
in the followings:

A use result in advanced programming is as follows: Class
size: 100 people * 1 class, Main task carried out: Reports
reception via E-mails (15 exercises 1382 mails for total),
Evaluation of the reports received (same as above), Mak-
ing records of submission, evaluation, marks and so on (15
exercise for 100 students; Updated averagely five times.),
Information presentation to Web (10 exercises, updated 5
times averagely) ,

— oy E— o —
— Mail ._* — Mail ™

Communication
; s Tnterfacems

Product
Ontology

Figure 7: An Overview of the Agent Development

A use result with computer literacy is as follows: Class size:
50 people * 4 classes, Main tasks carried out: Reports recep-
tion via E-mails (5 subjects 1935 mails for total), Evalua-
tion of the reports received (same as above), Making records
of submission, evaluation, marks and so on (3 exercises for
200 students; Updated averagely 3 times for each exercises).
Information presentation to Web (10 exercises, updated 5
times averagely).

Roughly speaking about the result, 52 methods of the implementation-

level are used averagely for each task. Implementation has
been completed around 18 hours after receiving the speci-
fications on the advanced programming. At this time, the
agent wizard interacted with a user about the task-specific
requirement such as evaluation of programs. Furthermore,
Implementation has been completed around 3 hours after re-
ceiving the specifications on the computer literacy. It seems
that an experience of the agent development at the former
lecture has been propagated to the next lecture.

5.2 e-BusinesApplication Construction

As another experimental study, in each case study, some
patent texts obtained from the Internet are used as a spec-
ification document. We have compared between the models
of case studies provided by Process Handbook and the ones
built by the proto-type tool (Figure 8).

Roughly speaking about the result, approximately 70 % ac-
tivities of each case study model are determined from patent
texts, and, each implementation has been completed around
18 hours after receiving the patent text of claims and details
as specifications.

The above means that the cost of the application devel-
opment has been reduced more than 50% as compared with
by hand, that reuse of the system has been performed about
the common structure of agent applications, and that main
agent structure could be reused if we have stacked and open
some experience to the public at our library. Now, we are
analyzing and investigating about the deeper experimental
studies on the development on heterogeneous systems and

[Com [reer]

Figure 8: Execution of Supporting Tool

the result will be open until the conference.

6. DISCUSSIONS

The above result of the experimental study means that the
cost of the application development has been reduced more
than 50% as compared with by hand, that reuse of the sys-
tem has been performed about the common structure of
agent applications, and that main agent structure could be
reused if we have stacked and open some experience to the
public at our library. Now, we are analyzing and investigat-
ing about the deeper experimental studies on the develop-
ment on heterogeneous systems and the result will be open
until the workshop.

As comparison with related work, there are three main fields
of research areas: clarifying specifications, building an ap-
plication and reusing existing libraries.

First, as discussed in Introduction, numbers of work on an-
alyzing business specification has been done by MIT, Edin-
burgh University and so on. Their work is very significant as
a fundamental research; however, most of them are around
abstract and general framework. Recently, Process Hand-
book is revised into e-Business Process Handbook and pro-
vides a hundred of specification as case studies. But most
of them are just defined by natural language text. So, our
work can be regarded as the integrated work to utilize the
related work.

Second, a lot of works are carried out on building appli-
cations Including software engineering field[1, 3], but they
use the different type of tool and languages on the different
phases of development. So, models and languages should be
unified into on framework as we proposed.

Our framework is based on a standpoint that it is difficult
to automate the whole agents’ activities, but possible to do
many part of it. Recently, a few of the researchers consider
the modeling methodology of the whole enterprise structure
as a multi-agent system|[8]. It is worth paying attention but
still remain on the abstract structures of defining agent roles.

Finally, a lot of projects concentrate on reusing libraries,
ontologies and applications and provide a number of repos-
itories. One of our previous works is on interoperation of
the heterogeneous expert systems[5]. Because each expert

INDIES ENVIRONMENT

x
e >

Send a message to
Recipient

R
Send messages
> back to Originator
_—

Ve gﬂﬁ‘r?eoﬁm\ogy
Figure 9: An Overview of INDIES

system is modeled by its own vocabulary, it needs a conver-
sion facility so that it can understand the messages sent from
other expert systems. In the work, we employ a specification-
sharing(SS)-based cooperation, called assisted coordination[4].
The shared specification comes from REPOSIT library which
serves as a common structure of noun and verb concepts
named the common domain ontology and the common task
ontology. As the methods of modeling, operationalizing,
cooperating and communicating (wrapping) distributed ex-
pert systems come up, we put them together into an inter-
operation environment for distributed expert systems IN-
DIES(Figure 9).

In our previous work, a number of significant lessons ob-
tained in exchanging the messages among the heterogeneous
expert systems. However the way to construct the common
ontologies is still remain as the future work. Our current
work can be regarded as a new approach to reuse heteroge-
neous repositories based on ontologies.

7. CONCLUSION

As conclusion, the computing environment, which supports
dynamic construction of agent models and applications from
specification document, should be developed for the purpose
to perform the re-engineering agents’ inference processes
according to the changes of situations in their computing
environments and their tasks. From standpoint that the
heterogeneous repositories should be integrated to achieve
the unified support of the application development, we have
proposed the framework of the extraction of the required
information based on ontologies with reusable repositories
such as e-business process handbook, Common KADS and
REPOSIT. In order to construct the agent models and to im-
plement them as the actual agent including software appli-
cations, we develop two repositories on different-grain-levels:
the agent specification repository on the level of agent ac-
tivities and the agent software repository on the level of
software applications. For the purpose on the integration
of heterogeneous repositories obtained over the Internet, we
employ Common KADS inference primitives and WordNet
as standard ontologies.

We have implemented the prototype system by JAVA and
confirmed that it supports us in various phases of agent
application development including agent model manifesta-
tion, detailed agents’ inference process and an implemen-
tation of agent software applications. Furthermore, we are

re-organizing our product in order to open it to the public.

8. REFERENCES

[1] P.Code, D.North, M.Mayfield, “Object
Models:Strategies, Patterns, & Applications”, Yourdon
Press, 1997.

[2] C.Fellbaum ed: “Wordnet”, The MIT Press, 1998.

[3] M.Fowler, “Analysis Patterns: Peusable Object
Models”, Addison-Wesley, 1997.

[4] M.R.Genesereth and S.P.Ketchpcl: Software Agents,
CACM.ol.37.No.7. (1994) 48-53.

[5] N.Izumi, A.Maruyama, A.Suzuki, T.Yamaguchi: “An
Interoperative Environment for Developing Expert
Systems” Proc. EKAW’99 LNAI 1621, pp.335—340,
Springer—Verlag (1999).

[6] N.Izumi, A.Maruyama, A.Suzuki, T.Yamaguchi:
“Design and Implementations of Reusable Method
Library for Development of Expert Systems”, Journal
of JSAI, 14, 6, 1061-1071, (1999), in Japanese.

[7] N.Izumi, T.Yamaguchi: “Developing Software Agents
Based on Product Ontology and Process Ontology”,
Proc. ECAI-00 Workshop on Applications of Ontologies
and Problem—Solving Methods (2000) 8-1—S8-6.

[8] E.A.Kendall, “Role Models: Patterns of Agent Analysis
and Design”, British Telecom Journal Special Issue on
Decentralized Business Systems, (1999).

[9] The MIT Process Handbook Project:
http://ccs.mit.edu/ph

[10] C.J.Petrie: “Agent-Based Engineering, the Web and
Intelligence” IEEE Expert, 1996. URL:
http://java.standord.edu/

[11] Guuns Schreiber, et al: Knowledge Engineering and
Management: The CommonKADS Methodology, MIT
Press (1999).

[12] M.Ushold, et al: The Enterprise Ontology, Knowledge
Engineering Review,Vol.13,Special Issue on Putting
Ountologies to Use(1998).

[13] T.Yamaguchi: Constructing Domain Ontologies Based
on Concetp Drift Analysis, [JCAT Workshop on
Ontologies and Problem-Solving Methods: Lessons
Learned and Future Trends , 13-1 - 13-7, (1999.8)

[14] See http://www.commonkads.uva.nl
[15] See http://www.trl.ibm.com/aglets/
[16] See http://java.sun.com/j2ee/

[17] See http://www.ftp.com/

[18] See http://www.genmagic.com/

[19] See http://www.objectspace.com/

