
EuroPLoP	
 2008:	
 13th	
 Annual	

European	
 Conference	
 on	
 Pattern	

Languages	
 of	
 Programming	

	

Irsee,	
 Germany,	
 July	
 9-­‐13,	
 2008.	

	

Edited	
 by	

Till	
 Schümmer	
 *,	
 till.schuemmer@fernuni-­‐hagen.de	
 	

Allan	
 Kelly	
 **,	
 allan@allankelly.net	

	

*	
 FernUniversität	
 in	
 Hagen	
 	

**	
 Software	
 Strategy	
 Ltd.	

	

	

Table	
 of	
 Contents	

1.	
 Collaboration	
 &	
 Management	

Workshop	
 Leader:	
 Allan	
 Kelly	

1. A	
 Collective	
 Social	
 Learning	
 Pattern	
 Valerie	
 A.	
 Brown	

2. Modifiers:	
 Increasing	
 Richness	
 and	
 Nuance	
 of	
 Design	
 Pattern	

Languages	
 Gwendolyn	
 Kolfschoten,	
 Robert	
 O.	
 Briggs	

3. The	
 Role	
 of	
 Roles	
 in	
 Computer-­‐mediated	
 Interaction	
 Stephan	

Lukosch,	
 Till	
 Schümmer	

4. Sharing	
 Day	
 Lotte	
 De	
 Rore,	
 Monique	
 Snoeck,	
 Guido	
 Dedene	

5. Business	
 Patterns	
 for	
 Product	
 Development	
 Allan	
 Kelly	

	

	

	

	

	

2.	
 Engineering	

Workshop	
 Leader:	
 Dietmar	
 Schütz	

1. Bitstream	
 X-­‐Coder	
 Dietmar	
 Schütz	

2. Modular	
 Hot	
 Spots:	
 A	
 Pattern	
 Language	
 for	
 Developing	
 High-­‐

Level	
 Framework	
 Reuse	
 Interfaces	
 using	
 Aspects	
 André	
 L.	

Santos,	
 Kai	
 Koskimies	

3. Patterns	
 for	
 Managing	
 Data	
 in	
 Complex	
 Automatic	

Identification	
 and	
 Data	
 Capturing	
 Environments	
 Diethelm	

Bienhaus	

4. Intelligent	
 Subject	
 -­‐	
 Adapting	
 Observer	
 with	
 push	
 model	
 and	

filters	
 to	
 handle	
 divergent	
 update	
 needs	
 Paul	
 G.	
 Austrem	

5. Advanced	
 Synchronization	
 Patterns	
 for	
 Process-­‐Driven	
 and	

Service-­‐Oriented	
 Architectures	
 Carsten	
 Hentrich,	
 Uwe	
 Zdun	

	

3.	
 Humans	
 and	
 Engineering	

Workshop	
 Leader:	
 Klaus	
 Marquardt	

1. Developing	
 GUI	
 Applications:	
 Architectural	
 Patterns	

Revisited	
 Alexandros	
 Karagkasidis	

2. Patterns	
 for	
 Licensing	
 Web	
 Services	
 G.R.	
 Gangadharan,	
 Michael	

Weiss,	
 Vincenzo	
 D’Andrea	

3. Using	
 a	
 Profiler	
 Efficiently	
 Tim	
 Wellhausen	

4. Patterns	
 for	
 Robust	
 and	
 Flexible	
 Multimodal	

Interaction	
 Andreas	
 Ratzka	

	

4.	
 Pedagogy	

Workshop	
 Leader:	
 Christian	
 Kohls	

1. Turning	
 me	
 on,	
 turning	
 me	
 off	
 Christian	
 Kohls,	
 Tobias	

Windbrake	

2. Patterns	
 for	
 Supervising	
 Thesis	
 Projects	
 Axel	
 Schmolitzky,	
 Till	

Schümmer	

3. Activating	
 Students	
 in	
 Introductory	
 Mathematics	

Tutorials	
 Christine	
 Bescherer,	
 Christian	
 Spannagel,	
 Wolfgang	

Müller	

4. Didactic	
 Design	
 Pattern	
 "Highlights"	
 Sven	
 Wippermann	

5. Guess	
 my	
 X	
 and	
 other	
 Techno-­‐pedagogical	
 Patterns	
 Yishay	
 Mor	

	

	

5.	
 Systematic	
 Approaches	

Workshop	
 Leader:	
 Uwe	
 Zdun	

1. Choose	
 Your	
 Own	
 Architecture:	
 Interactive	
 Pattern	

Storytelling	
 James	
 Siddle	

2. Patterns	
 and	
 their	
 Impact	
 on	
 System	
 Concerns	
 Michael	
 Weiss	

3. Experiences	
 in	
 Using	
 Patterns	
 to	
 Support	
 Process	
 Experts	
 in	

Wizard	
 Creation	
 Birgit	
 Zimmermann,	
 Christoph	
 Rensing,	
 Ralf	

Steinmetz	

4. Modeling	
 Architectural	
 Pattern	
 Variants	
 Ahmad	
 Waqas	
 Kamal,	

Paris	
 Avgeriou,	
 Uwe	
 Zdun	

	

	

Focus	
 Group	
 Reports	

Junkies	
 Like	
 Us:	
 How	
 the	
 Social	
 Web	
 Influences	
 Our	
 Understanding	
 Of	

Privacy	
 Andreas	
 Rüping	

Collective social learning pattern V A Brown 2008

 1

A Collective Social Learning Pattern

Valerie A. Brown,

Director, Local Sustainability Project
Fenner School of Environment and Society

Australian National University

EuroPLoP Workshop, Klosters Irsee, Bavaria
July 9-13, 2008

Abstract

Human-caused changes to the planet have led to worldwide social and environmental
disruption. Many of the changes so produced are wicked problems: that is, problems
which lie outside the current capacity of the society to resolve them. Resolving such
problems requires comprehensive social change. This in turn calls for collaboration
among the multiple knowledges into which Western thinking has become divided:
individual, community, specialised, organisational and holistic ways of thinking. The
global dominance of Western specialised knowledge acts as a barrier to the collective
social learning involving multiple knowledges needed for significant change. It also
blocks non-Western countries from accessing their own local knowledge.

The collective social learning pattern seeks to re-align the multiple knowledges in a
way that allows for collective thinking and collaborative practice. A meta-pattern
takes the form of a spiral of active intervention that brings the knowledges together on
equal terms at each of the four stages of the social learning cycle. Each of the
knowledges is a pattern in itself. Each of the learning stage requires an integrative
process linking the patterns. As a coordinating framework, the collective social
learning pattern combines the multiple knowledges in answering each of the questions
in turn: What should be? (sharing ideals); What is? (establishing facts); What could
be? (creative ideas); and What can be? (collaborative action). The proposed pattern
has been trialled in over 200 projects for whole-of-community change. Examples
provided here are programs for transformational change in a future-oriented coastal
city, an agricultural region, integrated research policy, and a change management
workshop.

Keywords: wicked problems, knowledge cultures, social learning, collective thinking

Proceedings of the 13th European Conference on Pattern Languages of Programs
(EuroPLoP 2008), edited by Till Schümmer and Allan Kelly, ISSN 1613-0073 <issn-
1613-0073.html>.
Copyright © 2009 for the individual papers by the papers' authors. Copying permitted
for private and academic purposes. Re-publication of material from this volume
requires permission by the copyright owners.

Collective social learning pattern V A Brown 2008

 2

A collective social learning pattern

Valerie A. Brown

A Pattern:
As an element in the world, a pattern is a relationship between a certain context, a certain
system of forces which occurs repeatedly in that context, a problem arising from those
forces and a social re- which allows these forces to resolve themselves in a collective
solution. after Christopher Alexander 2002

1. Context: Societies are being destabilised by the
emergence of wicked problems

For many of the issues of the current century, specialised approaches have proved
highly successful. The green revolution, extraction of fossil fuels, and giant
engineering projects have been achieved through highly specialised, linear inquiry.
Multidisciplinary research has been appropriate here. On the reverse side, there has
been a chronic inability to bring the specialised disciplines together with the other
knowledges necessary for far-sighted decisions on matters that affect the whole of
humanity.

Global social and environmental changes and their accompanying local disruption
have their origin in the successes of the Western scientific tradition . Yet it is within
this same specialised scientific tradition that people continue to look for solutions.
The situation meets the definition of a wicked problem, that is, a problem that cannot
be resolved from within the thinking of the society that produced it. Horst Rittel in
1973 gives the characteristics of a wicked problem as (with the example of climate
change):

1. There is no final solution: since a wicked problem is part of the social
fabric in which it sits, any resolution of the problem leads to social change,
and so generates fresh problems that need new solutions.

Leunig 1995

Collective social learning pattern V A Brown 2008

 3

2. Every problem is unique: a complex social-environmental problem can
only be understood as the product of a society at a given time and place.

3. Using existing solutions can impede essential change: concentration on
what works now restricts the capacity to creatively explore what could be

4. Confusion between facts and values: in complex issues, the distinction
between fact (what is) and value (what should be) becomes confused.

5. Solutions come from unexpected sources: paradoxes are signals of where
a society is unstable, and so offer fruitful areas for social learning and change.

The global institutions charged with addressing the planet's wicked problems have
been pleading for over two decades for community, specialist, government and
industry collaboration as the basis for sustainable solutions (WSSD 2002, Millennium
Development Goals 2001, USA Research Institutes 1999, UNEP 1995, WHO 1986,
WCED 1986). While Web 2.0 allows open, shared communication among the widest
range of individual players, formal organisations and social structures have not been
able to follow suit.

2. Problem: The Western division of knowledge blocks
resolution of wicked problems

The 'Scientific Enlightenment' of the 17th century has led to our addressing complex
problems through a particular problem-solving style. Problem resolution by objective
reasoning and reducing issues to their component parts led to semi-miraculous feats,
such as eliminating smallpox and placing a man on the moon. On the other hand, the
dominance of this way of thinking has blocked the development of other ways of
resolving the many wicked problems that cannot be solved through this process.

Any complex social-environmental issue provides a case in point. A sustainable
resolution of a wicked problem will involve addressing the issue as a whole, thus
requiring collaboration among key individuals, affected communities, relevant
specialists and influential organisations (both government and industry). Persistent
Organic Pollutants (POPs as described in the Wikipedia) are one example. Consider if
Environmental Protection Agencies were to become serious about enforcing licensing
control of discharges containing POPS into their rivers. Even in small concentrations,
POPs are the triggers for a number of cancers and auto-immune diseases. Banning
their use would be expected to be a straightforward decision.

There is an obvious benefit from improving the public's health and lowering the cost
of the health services. Our water agencies would have lower treatment costs.
Communities would avoid the fear of unknown chemicals in their drinking water, pay
less rates and have lower individual health costs. A signal would be sent to global
corporations that these countries were serious about managing global change, and so
stir them to cleaner production. The local natural environment would revert to a self-
managing system, achieving efficiencies at no cost to anyone. Surely a win-win-win.

Collective social learning pattern V A Brown 2008

 4

But polluting industries pay rates and provide local employment, so governments are
not over-zealous on enforcement. Scientists learn where it is better not to bother
placing their research, when there is no uptake of the results. Governments and public
health officials are loath to alert communities to risk, citing a greater risk from public
panic. Organisations arrive at 'gentleman's agreement' on how much community
participation it is politically safe to allow. Even though POPs have blamed for the
worldwide 50% reduction in human male sperm there has been no public outcry on
such a socially sensitive subject. So the status quo persists, even in the face of the
benefits to everyone from a change, and the risks of everyone losing from lack of
change.

Figure 1.

A question we continually need to ask is "Who owns the problem?", leading to "Who
owns your health?" "Who owns the polluting chemicals?" "Who owns the river?"
leading on to "Who owns the planet?" and "Who owns the future?". The questions
are answered quite differently by different players, making it hard to achieve

Collective social learning pattern V A Brown 2008

 5

collaboration on sustainable solutions to the collective problem. It proves to be even
harder to bring the interests together in the first place.
In a five year collaborative action research program, the Local Sustainability Project
(Brown 2008) found significant blocks in the way of collaboration among different
ways of knowing were found to be woven into the social fabric. Individuals,
communities, specialists, organisations and creative thinkers in all of the 200
communities in the study used different languages to describe the same issue, chose
different avenues of action, worked to different action times and were directed
towards different outcomes (Figure 1). Such patterns of difference were not primarily
matters of right and wrong. They were different interpretations of the same reality,
each internally consistent and valid within their own terms. Each produced a different
version of reality, isolating each version in a different knowledge culture. An example
of a two year program in Townsville, a tropical coastal city is at Appendix 1.

The five year program was able to draw several conclusions. First, each of the
contributing knowledges was so self-contained as to form a distinctive knowledge
culture, each with its own version of reality. Each had its own internal structure, tests
for truth, accepted content and form of language, summarised in Figure 1. So-called
collective decisions are usually turned inwards towards integration within each
knowledge culture. Rarely are they aimed at the knowledge cultures connecting to
each other. As a result, it is difficult for whole-of-community decisions to be
achieved in practice (Brown 2008).

The second finding is that, in any collective decision, the familiar trio of community,
specialists and organisation are joined by two further knowledge cultures. The
personal perspectives of the individuals involved, and the creative contributions of
holistic thinkers are rarely recognised as essential contributions to management
decisions. From Figure 1 it can be seen that these are knowledge cultures in
themselves. Across the field studies, the constructions of reality held by key
individuals, and presence of the creative leaps of holistic thinkers, were the variables
that allowed connections to be forged among the other three; bookends to the more
visible knowledge cultures.

The third finding was the experiential learning process identified by David Kolb
forms a thread connecting all of the knowledge cultures (Kolb 1984). One of the
significant differences between the cultures is their mode of learning. Individuals
learn through their personal experience, communities encase their shared history.
Specialists learn through research designs, organizations through strategic planning,
and holistic knowledge by free use of the imagination. In every case, however, the
learning process follows the steps of Kolb’s experiential learning framework (Aslin
and Brown 2005). Although given different titles in each culture, the study found that
learning always goes through the steps outlined in Figure 2.

The study confirmed the findings of Kolb and his colleagues that, for any given form
of management, one of the four stages is given greater emphasis than others (Kolb
1984). Administrators and organizational executives emphasise the reflective, what
should be stage, while specialists remain focused on observations of what is.
Successful managers of social change projects and holistic thinkers make the
imaginative leap of what could be. The skilled professions tend to be concerned with
the pragmatic and objective outcomes of what can be. So although all learning

Collective social learning pattern V A Brown 2008

 6

follows the same pathway, each different knowledge culture tends to contribute to
only one of the learning stages (Kolb, D.A., Lublin, S. and Spoth, J. 1986)..

A fifth finding was that each knowledge culture protected its boundaries by rejecting
the others, perpetuating the myths that separate the knowledges, namely that:

• organisational management is self-serving and untrustworthy;
• specialised knowledge is isolated and impractical;
• individual knowledge is biased and limited;
• local knowledge is anecdotal and unreliable; and
• holistic, or focussed knowledge is too difficult to achieve.

In practice, decisions allocated to any one knowledge culture were found to include
unacknowledged contributions from each of the others. Every manager is an
individual, a community member, has a particular expert training and can think
holistically, at the same time. As an individual, all those constructions of knowledge
inform every decision, explicitly or implicitly. However, each individual learns to
restrict themselves to rely on one aspect of knowledge to the exclusion of the others,
as a manager, a specialist or a community member, whichever is their primary
concern.

Long-term change depends on including all the knowledge cultures in completing the
full learning cycle. Without acknowledgement of these essential aspects of how we
build our knowledge base, integrated decision-making in Western thinking can
become self-defeating. The knowledge cultures at present form a hierarchy.
Organisational and specialized knowledge vie for supremacy, with individual and
holistic knowledge largely discounted. Each knowledge culture is likely to addressed
only one learning stage. Collective decisions are then unable to complete the learning
cycle as a coherent set, and so cannot establish lasting social learning.

In Figure 1 the columns represent the elements which make up each knowledge
culture. The rows describe each knowledge's content, power structure, and tests for
truth, in turn. These are not the problem. They are the powerful parts of a collective
solution. The problem lies in fourth column: the labels with which each knowledge
culture rejects and is rejected by the others. The driving forces which maintain the
problem lie within the current social system built around the divisions. The solution
lies within each of the knowledge cultures. Each needs to develop their own particular
contribution to collective learning, rather than continue to use their skills to maintain
their existing boundaries.

The phrase 'collective social learning' should be a tautology. Under current social
conditions, however, neither standard interactions nor hoped-for collaboration are
collective. The knowledge cultures are at best divided, and at worst generate conflict.

Therefore:

• the solution is to redirect the divided knowledge cultures into a coherent
system of collective social learning, in which each knowledge culture is
respected and contributes towards a larger whole.

Collective social learning pattern V A Brown 2008

 7

3. Forces supporting and impeding the solution

Box 1. Contra-example: One-dimensional organisational knowledge:

An award-winning documentary film, The Corporation is based on a key 19th-
century law that treats companies as persons under law. By bestowing on them the
rights and protections that people enjoy, this allows a firm to act as singularly self-
interested. Its purpose is solely to create wealth for its shareholders. It puts others at
risk to satisfy its profit-maximising goal, harming employees and customers, and
damaging the environment. It has no empathy, refuses to accept responsibility for its
actions and feels no remorse. In short, the corporation is clinically a psychopath.

Lucy Hughes of Initiative Media, an advertising consultancy, is shown musing about
the ethics of designing marketing strategies that exploit the tendency of children to
nag parents to buy things, before comforting herself with the thought that she is
merely performing her proper role in society. Mark Barry, a ‘competitive intelligence
professional’, disguises himself as a head-hunter to extract information for his
corporate clients from rivals, while telling the camera that he would never behave so
deceitfully in his private life. Human values and morality survive the onslaught of
corporate pathology only via a carefully cultivated schizophrenia: the tobacco boss
goes home, hugs his kids and feels a little less bad about spreading cancer.

Company executives and foot soldiers alike will identify instantly with this analysis,
because it is accurate. Source: The Economist print edition, September, 2004

The fictional anecdote in Box 1 illustrates the ethical chasm between individual and
corporation problem-solving. Using the organisational culture as an example, the tale
highlights the extent to which each knowledge culture can eventually become
inwardly turned, servicing its own internal interests, rather than the needs of its
consumers, or the society in general. This has been well-documented for professional
fields as far apart as medicine, economics and education. For communities it gives
rise to the NIMBY (Not IN My Back Yard) syndrome of local responses to global
issues.

The Local Sustainability Project identified the supporting and impeding factors from
30 collective social learning projects that were addressing wicked problems of local
sustainability (Brown 2008). Each knowledge culture carried its own impeding and
supporting forces into the collective enterprise:

Impeding forces: Supporting forces:
Individual

• individuals alienated from society reflexive learning by individuals

Community

• fragmented and dislocated communities unifying sense of place

Specialists

• monodisciplinary investigations transdisciplinary scholarship

Organisations (industry and government)

• compartmentalised organisations learning organisations

Collective social learning pattern V A Brown 2008

 8

Integrators

• lack of skills in holistic focus icons, diagrams, and symbols

Collective thinking

• conflicts of interest shared social learning

Many of the supposedly integrative responses to complex, dynamic issues maintain
the original single-track thinking of each of the knowledge cultures. This means they
deal with only one segment of a whole-of-system change at a time. Human activities
are far more complex than that. The current tendency to frame any wicked problem in
terms of competing interests (say, between local action and government, or between
individuals and organisations) simply preserves the current destructive oppositional
form of debate.

Standard pattern designs often have the same problem. Each pattern is a valuable
exercise in itself. However, one static pattern alone, left without a multi-knowledge
framework which recognises inter-connections and dynamic change, serves to
trivialise a wicked problem. Patterns that address the complex problems associated
with global climate change cannot bring about lasting change unless embedded in an
encompassing framework that all participants can share. Such a pattern needs to take
account of the knowledge construction of the society that produced them, and the
social practices of the society that will implement the solution.

4. Solution: reconnect the divided knowledge cultures
in a collective learning spiral

Many integrative frameworks are being developed to address the challenge of re-
aligning the divided knowledge cultures. Examples are double and triple loop
learning, critical adaptive management systems and resilience thinking. The
integrative pattern described here is derived from the human capacity for social
learning. It seeks to repair the Western society's fragmented construction of
knowledge through a collective learning spiral which incorporates the complexity,
dynamism and cumulative nature of whole-of-system change.

Figure 2 offers details of the contributions of each knowledge culture to a collective
knowledge culture based on collective social learning. All the Western knowledge
cultures are expected to contribute equally to each of the stages of social learning.
Continually repeated, the stages form an on-going learning spiral. This process is
outlined in some detail in the example of A Sustainable Townsville (Attachment 1).

The stages of the collective learning spiral have been derived from Kolb et al, 1984,
who undertook decades of observations of effective adult learning. The result was the
identification of a repeating cycle of four stages: 1. Developing principles (what
should be?), 2. Establishing 'the facts' (what is?), 3. Brainstorming the potential (what
could be?) and 4. Putting the result into practice (what can be?) (Keen, Brown and
Dyball 2005). Unless the full cycle is completed, no long-term learning can occur.
Traditionally the learning cycle is followed through separately, by an individual, or a
group, an expert or an organisation. Moving to collective thinking and action means

Collective social learning pattern V A Brown 2008

 9

that these different interests are reconciled at each stage. Since human learning is
cumulative, in practice the cycle becomes a spiral.

Figure 2.

The same four stages which make up one turn of the collective social learning spiral
(Figure 2) can be identified in the change processes for each of the separate
knowledge cultures. These are individual experiential learning; community
development; action research; strategic planning; and the creative process. The cycle
is thus a consistent pattern found in the learning processes of each of the knowledge
cultures. Ten in-depth action research studies of transformational social change
programs established change programs using the collective learning cycle, therefore
meeting Alexander's criteria for a pattern.

What should be?
IDEALS

What can be?
ACTIONS

What could be?

IDEAS

What is?
FACTS

Local
sustainability

Design

Do

Describe

Develop

Key to nested knowledge content:
individual + local + specialised + organisational
+ holistic knowledges = collective knowledge.

The collective learning spiral (Brown 2008)

What
should

be?
IDE
ALS

What
can
be?

ACT
ION

S

What
could
be?
IDE
AS

What
is?

FAC
TS

Local
sustai
nabilit

y

De
sig
n

Do

Des
crib

e
Dev
elo
p

Collective social learning pattern V A Brown 2008

 10

5. Examples of the solution in practice

Attachment 1 offers a step by step case study of the way in which the multiple
Western knowledge cultures can be brought together within the proposed pattern for
collective social learning. The pattern has been repeated many times in the
collaborative action research program of the Local Sustainability Project. Here we
describe the use of the pattern in developing a behaviour change framework for
regional agriculture, a comprehensive rural research policy, and a debriefing process
for a workshop team applying the pattern.

Case study 1. Sustainable regional resource management
In the case of a region of exhausted agricultural and natural resources, the focus
question was: How can this region change to support sustainable agriculture? Those
who came together to answer the question were drawn from 10 rural industries, five
sub-regions, government agencies, regional opinion leaders, and the coordinating
Catchment Committee who funded the study.
What should be?

Seven characteristics of a good life in the region: managing change, having
accountability systems, using market mechanisms, working with whole supply
chain, establishing collaborations, finding life-work balance, achieving on-
ground sustainability, and making the system work for you.

What is?
Each contributing group described a different reality, bringing a deeper

understanding of the region's strengths and weaknesses.
What could be?

Change strategies that could satisfy the seven characteristics of a good life in
the region:

What can be?
Each industry and region described strategies from their field of interest,
providing a powerful overall program of behaviour change.

Case study 2. National rural research program
For future-oriented rural research, the question was: How can we develop a future
rural research policy based on the findings of our past research programs? This
brought together research interests from city and country, government and industry, a
wide range of specialists and farmers and graziers.
What should be?

Answered almost unanimously as "through greater collaboration among aqll
the members of the policy community".

What is?
This question produced dramatic anecdotes of lack of collaboration and only a
few positive examples.

What could be?
The group developed a comprehensive agenda o unrealised opportunities for
collaboration.

What can be?
A policy proposal was put to government to fund an action research program

promoting collaboration right across the rural research sector. response
pending.

Collective social learning pattern V A Brown 2008

 11

Case study 3.
A team which had used the pattern to run a workshop on local response to climate
change used the pattern process again for their de-briefing:
Focus question: How best for a team to apply the collective social learning pattern in
a social change workshop?
What should be?

Team members answered "Clarity of purpose and shared interest in the
outcome; ensure participants are clear about what they are there for and have
faith in the process. Team members need to establish mutual respect, honesty
in personal aims for the workshop and clear lines of responsibility.

What is?
Each knowledge culture's skills, experiences and goals need to be translated
from conflicts of interest to trust and cooperation. Essentials are rules of
dialogue, a peaceful ambience, and careful mutual listening. Accept that
participants are likely to be competitive, individualised and alienated.

What could be?
A climate of creative imagination, and hopefulness; buzz of exciting new
ideas; people profoundly catalysed to think; the process used as a replacement
for action; individuals angry at having to share their mental space; time needed
for reflection; people confident to express a range of very creative, very
different, alternative, ‘way out” ideas; making unusual links or connections.

What can be?
We can be a fantastic team, each working from our own skills base and at the
same time in a collective team process; together we can bring change. We
need to share our collective techniques/tricks eg ‘learning circles’; strategic
futures planing; learn from what happened but do it better; follow-up with a
second series of vision workshops; do something differently with music and
the arts.

Applications of the social learning spiral follow the same route for each of the widely
varied wicked problems. Resolution requires collective social change, although the
precise problem and outcome goal is quite different in each case. In each case the
collective thinking process brought innovative ideas and integrated programs to put
them into practice.

In Figure 2. the social learning spiral provides a framework for collective thinking and
action. The knowledge cultures are now nested in a (a system of equivalent wholes);
no longer a hierarchy. Each builds on each other. The various symbols reflect the
contribution of each knowledge. Community knowledge is the almost invisible
matrix which underpins each community's construction of reality. Communities are
widely diverse, but link together into governmental regions and nations – hence the
wavy line. Specialist knowledge in its turn draws on community experience by
collecting data for the different specialist frameworks (the ring of boxes).
Administrations and governments use community experience and the collected
knowledge of the specialist disciplines in setting direction (the circle with arrows).
The core or holistic centre of knowledge of the issues is a shared understanding of the
whole.

Collective social learning pattern V A Brown 2008

 12

While it doesn't matter where one enters the nested set, or even in what order they are
drawn into a collective learning framework, it does matter that all the knowledges are
equally respected and involved.

6. Related links

The website http://www.publicsphereproject.org/patterns/ contains several hundred
patterns, making up a pattern language for Liberating Voices: pattern languages for
civic communication (Schuler 2008). The present pattern is No. 519 in that collection
and patterns 48, 7, 35, 6, and 9 give greater depth to the understanding of the
individual, local community, specialised, organisational and holistic knowledge.
Schummer's Supporting social action in NGO' assists social change practitioners from
each of the knowledge cultures to mobilise existing skills and learn from each other
through the rich resources of Web 2.

7. Changed context: collecti social learning brings
transformational change

Figure 3 places the collective knowledge within the collective social learning spiral
The pattern was applied in the examples described above (regional agricultural
development, an integrated research policy, and a social change workshop) and the
context changed in each case.

In the case of sustainable agricultural development, the process brought together the
nine industries of the region in a set of collaborative actions, possibly for the first
time.The project led to acceptance of collective behavioural change framework. In the
policy development project, the collective learning process revealed to the
participants that they were working competitively even though they shared a common

Individual voices
48. Innovation
exchange

Specialist voices
35. Dialectics of
ambivalence Local community

voices
7. Opportunity spaces
 Holistic voices

9. Future design

The collective
voice
519. Collective
decision-making

Organisational voices
6. The paradoxical
organisation

Figure 4. Collective decision-making cluster

Collective social learning pattern V A Brown 2008

 13

goal. This lead to the development of a collaboration policy for the set of research and
development corporations involved.

The information technology world has been changing too. The relational foundation
for Google, the interactive capacity of Facebook and the validated knowledge in
Wikipedia have changed our behaviour with respect to information searches, our
friendship circles, and access to the construction of knowledge, respectively.
Foucault has ably summed up the situation with: until the 20th century access to
knowledge meant power; with the advent of information technology, access to the
construction of knowledge meant power. The collective learning pattern gives the
user access to that power.

But does the collective social change pattern meet the conditions for solving
wicked problems?
1. No final solution: The recognition that learning is cumulative and open-
ended is represented by the spiral of collective social learning
2. Every problem is unique: The collective social learning approach is put
into operation only with a given set of people at a specific time and place.
3. Existing solutions impede essential changes: Existing assumptions ideals,
facts, ideas and actions are called into question at each stage of the learning
cycle. Each sage of the cycle involves double-loop learning.
4. Confusion between facts and values: the distinction between fact and
value is made explicit in following the learning spiral.
5: Solutions bring new problems: The learning spiral assumes that each
turn of the spiral will start afresh, facing the problems generated by and
unsolved in the previous spiral.

In the debriefing of a team applying the collective social learning spiral, each team
member came closer to appreciating the goals, factual basis, visioning processes and
practical skills of the others. This led to a richer, more effective use of the pattern at
each re-iteration.

Reviewing these events, it is becoming apparent that the collective learning pattern
provides a general guideline for collaboratively redefining fragmented issues of long-
standing. The pattern should therefore be of use to any one with responsibility for
resolving a wicked problem, defined here as a complex problem arising from the
actions of the society which produced it. This includes public health, environmental
management, community development, organisational managers and change
management practitioners.

Acknowledgements: I wish to acknowledge the inspired critiques of my shepherd,
Linda Rising and the helpful comments of my writing group at EuroPLoP08

Bibliography:

Alexander, C. 2002b. The nature of order. Book two: the process of creating life. Berkeley,
The Centre for Environmental Structure.
Alexander, C., Ishikawa, S., Silverstein, M. Jacobson, M., Fiksdahl-King, I. and Angel, S.
1977 A pattern language. New York: Oxford University Press.

Collective social learning pattern V A Brown 2008

 14

Brown, VA 2007 Leonardo's vision: a guide to collective thinking and action. Rottterdam,
SENSE Publishers.

Brown VA 2006 Towards the next Renaissance? Making collective decisions combining
organisational, community and expert knowledge. The International Journal of Knowledge,
Culture and Change Management, Vol. 6, Issue 3 pp 43-55.

Brown, V.A. 2001 Planners and the planet: reshaping the people/planet relationship: do
planners have a role? Australian Planner 38 3 67- 73.

Google Search Engine http://www.google.com.au/ [30.2.07]

Haar, Jonathan A Civil Action

Keen, M., Brown, VA., and R. Dyball eds, 2005 Social learning in environmental
management. Towards a sustainable future. Earthscan, London
Kolb, D.A., Lublin, S. and Spoth, J. 1986 Strategic management development: using
experiential learning theory to asses and develop managerial competencies" Journal of
Management Development (5) 3: 13-24.

Kolb, D. A., Rubin, I. M. & McIntyre, J.M. 1974 Organizational psychology: an experiential
approach, Englewood Cliffs, Prentice Hall.

Schuler, D. 2008 Liberating Voices: a pattern language for civic communication. MIT Press,
Massachusetts..

United Nations Conference on Environment and Development (UNCED). Local Agenda 21:

Chapter 28 of Agenda 21. New York: Commission for Sustainable Development, 1993.

United Nations Environment Program (UNEP). 1972 World Conference on Environment

(Stockholm Conference),

WCED (World Commission on Environment and Development) Our Common Future :
Report of the World Commission on Environment and Development. Oxford: Oxford
University Press. 1986

WHO (World Health Organization). The Ottawa Charter for Health Promotion. Int. J. Health
Promotion 1986; 1(4):i-v.

WSSD (World Summit on Sustainable Development) 2002, Concluding recommendations on
partnerships United Nations, Johannesburg
__

Modifiers: Increasing Richness and Nuance of Design
Pattern Languages
Gwendolyn Kolfschoten1 & Robert O. Briggs2

1Department of Systems Engineering
Faculty of Technology Policy and Management
Delft University of Technology
G.L.Kolfschoten@tudelft.nl

2 Department of Business administration
Institute for Collaboration Science
University of Nebraska at Omaha
rbriggs@mail.unomaha.edu

May 7th 2009

Abstract
One of the challenges when establishing and maintaining a pattern language is to balance richness with
simplicity. On the one hand, designers need a variety of useful design patterns to increase the speed of
their design efforts and to reduce design risk. On the other hand, the greater the variety of design
patterns in a language, the higher will be the cognitive load to remember and select among them. A
solution to this is the modifier. The modifier concept emerged in a relatively new design pattern
language called, ThinkLets. When analyzing the thinkLet pattern language we found that many of the
patterns we knew were variations on other patterns. However, we also found patterns in these
variation; we found variations that could be applied to different patterns, with similar effects. We
document these variations as modifiers. In this paper we will explain the modifier concept, and show
how they are not design patterns by themselves, they offer no solution by itself, and yet they produce
predictable variations to a set of design patterns.

Introduction
Design patterns were first described by Alexander [Alexander 1979] as re‐usable solutions to address
frequently occurring problems. In Alexander’s words: “a [design] pattern describes a problem which
occurs over and over again and then describes the core of the solution to that problem, in such a way
that you can use this solution a million times over, without ever doing it the same way twice”[Alexander
1979 p x]. After the gang of four created a pattern language for software engineering [Gamma, Helm et
al. 1995], the concept made its way in a variety of domains including collaboration support. For
example, Lukosch and Schümmer [2006] propose a pattern language for the development of
collaborative software. Design patterns are successfully used in related fields such as communication
software [Rising 2001], e‐learning [Niegemann and Domagk 2005] and for knowledge management [May
and Taylor 2003]. Design patterns have various functions; they offer designers the building blocks for

their design effort, the can be used to capture best practices, they support teaching and training and
they become a shared language among the users of the design patterns.

One of the challenges when establishing and maintaining a pattern language is to balance richness with
simplicity. On the one hand, designers need a variety of useful design patterns to increase the speed of
their design efforts and to reduce design risk. A pattern language with a greater number of design
patterns offers a larger variety for inspiration and choice. With more relevant options, there are more
circumstances where it is possible to establish a good fit between the design problem and design‐
pattern‐based solution. On the other hand, the greater the variety of design patterns in a language, the
higher will be the cognitive load to remember and select among them. A community of practice for a
pattern language must therefore strive for parsimony. The community must attempt to capture useful
and important design patterns, while keeping the design patterns consistent, coherent, interlinked and
perhaps most importantly, non‐overlapping. The need for parsimony conflicts with the need for greater
variety and utility.

Design pattern modifiers provide a useful device for maintaining the parsimony of a pattern language
while adding richness and nuance to its range of possibilities. A modifier is a not a complete pattern, but
rather is a named, documented variation that can be applied to a collection of patterns. Modifiers
create a predictable, useful changes in the solution derived from any pattern to which the modifier is
applied.

The modifier concept emerged in a relatively new design pattern language called, ThinkLets
[Kolfschoten, Briggs et al. 2006; Vreede, Briggs et al. 2006], and the concept is, perhaps, most easily
demonstrated using that pattern language as an example. ThinkLets is a pattern language for designing
collaborative work practices. A ThinkLet is a named, scripted collaborative activity that moves a group
toward its goals in predictable, repeatable ways. As with other pattern languages, ThinkLets are used
as design patterns, as design documentation, as a language for discussing complex and subtle design
choices, and as training devices for transferring designs to practitioners in organizations.

In this paper, we present a formal articulation of the modifier concept. We first explain the thinkLets
concept in more detail. We then explain the origins and nature of the modifier concept, and argue its
utility as an extension to a pattern language. Next we offer examples of modifiers in the context of the
thinkLets pattern language. We illustrate the effect a modifier can have on the execution of thinkLets.
Finally, we discuss the need for and value of the modifier concept in pattern languages in general.

2. The ThinkLets Pattern Language
ThinkLets were originally derived to document the techniques and best practices of expert facilitators.
Facilitators are group‐process professionals who design collaborative work practices and conduct the
processes on behalf of groups. The ThinkLets pattern language became more‐rigorously codified and
refined with the advent of the newly emerging field of Collaboration Engineering. Collaboration
Engineering is specialty within the field of Facilitation. It is an approach to designing collaborative work
practices for high‐value recurring tasks and deploying the designs to practitioners to execute for
themselves without the ongoing intervention of facilitators [Briggs, Vreede et al. 2003]. ThinkLets

therefore serve three different user groups; practitioners, who use thinkLets as scripts to support group
work, Facilitators, who use thinkLets to exchange best practices in facilitation and to transfer them to
novices, and Collaboration Engineers; who use thinkLets to rigorously design collaborative work
practices and supporting technology in order to transfer these to practitioners. For design and
knowledge sharing different aspects of a thinkLet are important. For knowledge sharing it is critical to
have an extensive description of what will happen as an effect of the thinkLet, and a script on how to
create this effect. For design it is (in addition) important to understand the context and situations in
which the thinkLet can be applied and how the thinkLet can be combined with other thinkLets. For both
situations basic design pattern properties such as a catchy name a picture, and an overview of what it
does is important. For more information about the thinkLet set and concept we refer to [Kolfschoten,
Briggs et al. 2006; Vreede, Briggs et al. 2006; Kolfschoten and Houten 2007].

3. The Modifier Pattern

Context: When you are authoring a pattern language with a community and this pattern language
seems to explode in size. New patterns are continuously found but many patterns are similar. Some of
the similar patterns turn out to be just instantiations of other design patterns. Others, however are
clearly not instantiations of other patterns but rather they are deliberate variations made by experts to
create a usefully different solution.

Problem: Your pattern language is growing in size and complexity and new patters show overlap with
existing patterns. You need more consistency and parsimony in your pattern language and you want to
clearly distinguish patterns that you can combine and patterns that are variations of other patterns.

Solution: Modifiers are reusable variations that can be applied to a number of design patterns in order
to create a predictable change or variation to the solutions specified by these patterns. Using modifiers
we can add nuance to a set of basic design patterns without suffering a combinatorial explosion of the
pattern language. When modifiers are distilled from a set of design patterns, the pattern language can
become richer, as more combinations can be made from fewer elements. At the same time the pattern
language becomes more concise as the number of concepts in the patter language becomes smaller.

Early in the life of the ThinkLets pattern language, the utility of the concept gave rise to an explosion of design patterns. Designers quickly
hit information overload, so researchers began work to see whether they could distill the burgeoning collection down to an essential set
[Kolfschoten, Appelman et al. 2004]. This research revealed that a number of the early thinkLets were useful variations on more‐
fundamental patterns. Some of these variations were actually just instantiations of other thinkLets.

An example of a thinkLet that turned out to be only an instantiation of another thinkLet was a thinkLet for SWOT analysis, where
participants brainstorm ideas in four categories; Strengths, Weaknesses, Opportunities and Threats. Although the use of these specific
categories has particular advantages and benefits, it was, in essence, an instantiation of the LeafHopper thinkLet described in the
appendix. Detailed analysis of the newly developing ThinkLets pattern language showed, however, that after the instantiation duplications
had been removed from the pattern collection, there remained a number of cases where the same variation had been applied to a number
of different thinkLets, with the same predictable effect on each thinkLet to which it was applied. These variations involved removing or
adding certain behavior rules to an existing thinkLet to create a predictable variation in its effect. These rule‐changes occurred in a similar
way, across different thinkLets. Researchers captured and named these variations, giving rise to the modifier concept.

Example, simplifying and enriching a pattern language with modifiers:

We compared the underlying rules for 7 idea‐generation (brainstorming) thinkLets [Kolfschoten and
Santanen 2007]. The analysis revealed that, although there were superficial differences. Some of those
thinkLets were, at the level of their rules, virtually identical. Thus, the 7 of thinkLets could be collapsed
to an essential set of four. In that same set of seven thinkLets, however, we found 12 variations that
could be abstracted, and then deliberately added to or removed from some set of thinkLets to create a
specific variation in their effects. These differences we captured as twelve named modifiers. For
example a modifier used for idea‐generation, or brainstorming activities:

• OneUp – each contribution must be arguably better along some specified dimension of quality
than the ideas that have already been contributed.

The OneUp modifier had three predictable effects on any idea‐generation thinkLet to which it was
applied: a) participants generated a greater number of high‐quality ideas and a lower number of low‐
quality ideas; b) participants engaged in less discussion of the ideas of others; and c) participants were
less sure at the end of the activity that others understood the ideas they had contributed.

Modifiers do not alter the general pattern of collaboration that a thinkLet invokes. Rather, they produce
nuanced variations on those patterns. The OneUp modifier, for instance, places an additional constraint
on basic rules of any idea generation activity.

The twelve modifiers we derived could be applied in various combinations to create variations on one
or more of the four basic idea generation thinkLets [Kolfschoten, Appelman et al. 2004; Kolfschoten and
Santanen 2007]. The four thinkLets and twelve modifiers that emerged could be combined in a total of
43 combinations. Without the modifier concept, the pattern language would have therefore required
43 thinkLets to capture those useful variations. With the modifier concept, the same design power can
be obtained with only 16 concepts – the four thinkLets and twelve modifiers. Thus, by distilling out the
thinkLets and modifiers out of the 7 thinkLets, we uncovered 43 new design possibilities, and yet
maintained the parsimony of the pattern language at 16 components.

In one sense, a modifier is to a thinkLet as a virus is to a cell. A virus is not a living organism, because on
its own it cannot respire, digest, or reproduce. A virus, however, invokes predictable changes on the
way the cell performs. In like manner, modifiers are also not complete design patterns, because on their
own, they cannot be used to invoke predictable, repeatable patterns of collaboration. Rather, they can
be applied to thinkLets to create predictable changes in the patterns of collaboration the thinkLet
invokes. Modifiers have less information in their documentation because they are not complete
thinkLets. They are therefore easier to master than a full thinkLet, which further reduces the cognitive
load of mastering the pattern language.

We define modifiers as named changes‐of‐rules that can be applied to one or more thinkLets to create predictable variations to the
pattern of collaboration a thinkLet invokes, and predictable variations in the structure and quality of the outcomes produced by pattern.
Modifier documentation specifies the changes‐of‐rules that comprise the modifier, the thinkLets to which those changes can be applied,
and insights about the effect of the changes‐of‐rules will have on patterns of collaboration and quality of outcomes. To summarize,
modifiers have one or more of the following characteristics:

• They can add new rules or delete existing rules from a thinkLet.
• They can alter a rule in the thinkLet.
• They crate a variation on the emerging pattern of collaboration.
• They alter the structure and quality of group outcomes in predictable ways.

Example- ThinkLets and ThinkLet Modifiers
ThinkLets are design patterns that can be used to create patterns in how people collaborate and the
type of result they will jointly produce. As such they are prescriptive. To explain the modifier concept
we will first introduce a set of different thinkLets with very different effects, next we will describe 3
modifiers and show how they are applicable for the different thinkLets. Table 1 lists six thinkLets that
can be used to invoke a specific effect1. Note that these descriptions are not complete design pattern
documentation, but rather a brief overview of the collaboration technique, sufficient for the reader to
understand the nature of the pattern.

1 The effects of thinkLets are also called patterns of collaboration. These are descriptive patterns and explain how
the group moves from one state to another state, see Briggs, R.O.; Kolfschoten, G.L.; Vreede, G.J. de and Dean, D.L.
(2006). Defining Key Concepts for Collaboration Engineering, Americas Conference on Information Systems,
Acapulco, Mexico, AIS.

Table 1. An Example of a ThinkLet for Each Pattern of Collaboration.

ThinkLet
Example

Brief Summary of ThinkLet Effect

LeafHopper All participants view a set of pages, one for each of several discussion
topics. Each participant hops among the topics to add ideas as inspired
by interest and expertise.

Generate

GoldMiner Participants view a page containing a collection of ideas, perhaps from
an earlier brainstorming activity. They work in parallel, moving the
ideas they deem most worthy of more attention from the original page
to another page

Reduce

Illuminator Participants review a page of contributions for clarity. When a
participant judges a contribution to be vague or ambiguous, s/he
requests clarification. Other group members offer explanations, and
the group agrees to a shared definition. If necessary, the group revises
the contribution to better convey its agreed meaning.

Clarify

PopcornSort Participants work in parallel to move ideas from an unorganized list into
to labeled categories, using a first‐come‐first‐served protocol for
deciding who gets to move each idea into a category.

Organize

StrawPoll Moderator posts a page of unevaluated contributions. Participants are
instructed to rate each item on a designated scale using designated
criteria. Participants are told that they are not making a decision, just
getting a sense of the group’s opinions to help focus subsequent
discussion.

Evaluate

Crowbar After a vote, the moderator draws the group’s attention to the items
with the most disagreement. Group members discuss the reasons why
someone might give an item a high rating, and why someone might give
the item a low rating. The resulting conversation reveals unchallenged
assumptions, unshared information, conflicts of goals, and other
information useful to moving toward consensus.

Build
consensus

We will now describe three modifiers. Modifiers are not complete design patterns, but rather named,
codified changes that can be applied to one or more thinkLets to create predictable changes in the
function of the thinkLet. Modifier documentation includes the name, purpose, and rule‐change for the
modifier, and a short explanation of effects the modifier will create. In the thinkLet documentation we
capture with which modifiers the thinkLets can be combined.

Table 2. Modifier examples

One Up Participants are instructed that each new contribution must be better
than existing contributions according some specified criteria. For
example, “Please give me an idea that is more flexible than those we
already have, Please suggest an idea that would be cheaper…” This
encourages the contribution of ideas with specific desired qualities
[Grünbacher, Halling et al. 2004].

Identification Let participants choose to identify their actions; e.g. author, editor,
voter, deleter. Some thinkLets by default let groups act anonymously,
which, in many cases, has a positive effect on willingness to contribute.
Other times, however, it is useful to allow identification, which enables
participants to receive credit for or be held accountable for their actions,
or to emphasize their stake or role. [Valacich, Jessup et al. 1992].

Chauffeured Instead of working in parallel, participants jointly decide what action
should be taken; e.g. joint organizing, joint clarification/rephrasing, joint
evaluation. One participant serves as chauffeur for the group, actually
taking the action in accordance with the wishes of the group. While
parallel work can be more efficient than chauffeured work, in some
cases it is more valuable to ensure shared understanding and to reach
mutually acceptable agreements than to it is to be more efficient.

Table 3. Implications of modifiers on different patterns of collaboration, and the thinkLets within it

One up Identification chauffeured

Generate Generate contributions that excel on
specified criteria

Authorship of contributions /
Editorship for changed
contributions

People suggest contributions,
a recorder writes them down

Reduce Select /summarize to converge on
contributions that excel on specified
criteria

Authorship of abstractions,
summaries, Identity of those
who select or reject a
contribution

Participants discuss which
ideas are worthy of more
attention, a chauffeur
documents the choices

Clarify Clarify how a new contribution exceeds
others with respect to specified criteria

Lobbying, explanation from
specific author’s perspective

Participants discuss shared
meaning, a recorder
documents their decisions

Organize Identify of those who create,
change, or delete relationships
among contributions

Participants discuss
relationships among
contributions, a chauffeur
documents the relationships

Evaluate Display of polling results by
pseudonym, by role, or by
participant.

Participants discuss the value
of concepts toward goal
attainment. A chauffeur
records their evaluations.

Consensus
building

 Identity of people willing or
unwilling to commit to a
proposal vs. anonymous
indications of willingness to
commit

In the table above we show how each modifier can be applied to thinkLets for each effect of
collaboration. For instance one‐up can be used when generating ideas to stimulate excellence of
contributions on a specific criterion, but can be used for organizing in the same manner to stimulate that
contributions are related based on a specific criterion. Identification can be used in combination with
various patterns to encourage or enable participants to take ownership, and chauffeuring can be used
across patterns to create buy‐in and ownership of choices.

Discussion and Conclusions
We argue in this paper the need for and the value of the modifier concept in pattern languages. We
demonstrate that modifiers can make a pattern language at once both more powerful and more
parsimonious. Modifiers make a pattern language more powerful by extending the variety and nuance
of the solutions the language models. Modifiers make a pattern language more parsimonious by
reducing a tendency toward combinatorial explosion of design patterns. Modifiers by themselves are

not complete design patterns. Rather, they are named revisions that can be applied to a set of design
patterns to create predictable variations in the solutions based on the design patterns.

We have demonstrated the value of modifiers in the ThinkLets pattern language. We found that the idea
of variation exists in software design patterns as the ‘refine’ concept, defined by [Noble 1998] “A
specific pattern refines a more abstract pattern if the specific pattern’s full description is a direct
extension of the more general pattern. That is, the specific pattern must deal with a specialisation of the
problem the general pattern addresses, must have a similar (but more specialised) solution structure,
and must address the same forces as the more general pattern, but may also address additional forces.”
This author, however, describes ‘refine’ , in terms closer to object‐oriented inheritance than to a
variation that can be applied across many patterns. Nonetheless, when multiple refine relations exist
with a single design pattern, there is an opportunity to simplify the pattern language through the use of
modifiers.

A similar phenomenon can be found in the work of Hvatum et al [Hvatum, Simien et al. 2005]. Their
pattern language includes both design patterns and advice for the management of distributed
development teams. Advice patterns are not intended to actually structure the work of team members,
but rather they describe conditions required for the patterns to work. This is similar to the modifier
concept and enables the pattern authors to keep their pattern language simple and yet rich with advice.

Finally we found an example of Modifiers in the famous pattern language of Coplien and Harrison
[Coplien and Harrison 2005] on organizational design patterns. In this pattern language a key
cornerstone is the pattern “community of trust” it explains how trust is the basis for successful teams
and a requirement for various other patterns to work. However, on it’s own trust does not prescribe
how organizations should be designed, the way other patterns in the language prescribe how roles and
tasks and collaboration can be designed to successfully design the organization. Coplien and Harrison
discuss why “community of trust” is a pattern, they explain it has structural impact on the organizational
design and that there is a specific ‘trick’ to build trust described in “community of trust”. The modifier
concept will allow them to further position trust as a variation to other patterns. In this way they can
emphasize it’s critical nature, it’s effect in combination other patterns, and the effect of the absence of
trust in other patterns.

While the use of modifiers may not be obvious or necessary in every domain, modifiers may help to
both enrich and simplify some pattern languages, while offering a wider variety of useful and deliberate
design choices.

Further research is required to evaluate the added value of the use of modifiers from both an expert
perspective (authors of pattern languages) and from a user perspective (communities that use design
patterns). Initial discussions with both were positive; authors see the value of this concept for their
languages and users can give examples of patterns that could be described as modifiers.

Acknowledgements

We thank our shepherd Kristian Elof Sørensen for his insightful reviews. Further we thank Stephan
Lukosch for introducing us to and encouraging our participation in the Plop community.

References

Alexander, C. (1979). The Timeless Way of Building, New York, Oxford University Press.
Briggs, R.O.; Kolfschoten, G.L.; Vreede, G.J. de and Dean, D.L. (2006). Defining Key Concepts for

Collaboration Engineering, Americas Conference on Information Systems, Acapulco, Mexico, AIS.
Briggs, R.O.; Vreede, G.J. de and Nunamaker, J.F. jr (2003). Collaboration Engineering with ThinkLets to

Pursue Sustained Success with Group Support Systems, Journal of Management Information
Systems 19,(4): 31‐63.

Coplien, J.O. and Harrison, N.B. (2005). Organizational Patterns of Agile Software Development, Upper
Saddle River, NJ, Pearson Prentice Hall.

Gamma, E.; Helm, R.; Johnson, R. and Vlissides, J. (1995). Elements of Reusable Object‐Oriented
Software, Addison‐Wesley Publishing Company.

Grünbacher, P.; Halling, M.; Biffl, S.; Kitapchi, H. and Boehm, B.W. (2004). Integrating Collaborative
Processes and Quality Assurance Techniques: Experiences from Requirements Negotiation,
Journal of Management Information Systems 20,(4): 9‐29.

Hvatum, L.B.; Simien, T.; Cretoiu, A. and Hliot, D. (2005). Patterns and Advice for Managing Distributed
Product Development Teams, Euro Plop, Irsee, Germany, EuroPlop.

Kolfschoten, G.L.; Appelman, J.H.; Briggs, R.O. and Vreede, G.J. de (2004). Recurring Patterns of
Facilitation Interventions in GSS Sessions, Hawaii International Conference on System Sciences,
Los Alamitos, IEEE Computer Society Press.

Kolfschoten, G.L.; Briggs, R.O.; Vreede, G.J., de; Jacobs, P.H.M. and Appelman, J.H. (2006). Conceptual
Foundation of the ThinkLet Concept for Collaboration Engineering, International Journal of
Human Computer Science 64,(7): 611‐621.

Kolfschoten, G.L. and Houten, S.P.A. van (2007). Predictable Patterns in Group Settings through the use
of Rule Based Facilitation Interventions, Group Decision and Negotiation conference, Mt
Tremblant, Concordia University.

Kolfschoten, G.L. and Santanen, E.L. (2007). Reconceptualizing Generate ThinkLets: the Role of the
Modifier, Hawaii International Conference on System Science, Waikoloa, IEEE Computer Society
Press.

Lukosch, S. and Schümmer, T. (2006). Groupware Development Support with Technology Patterns,
International Journal of Human Computer Systems 64.

May, D. and Taylor, P. (2003). Knowledge Management with Patterns: Developing techniques to
improve the process of converting information to knowledge, Communications of the ACM
44,(7): 94‐99.

Niegemann, H.M. and Domagk, S. (2005). ELEN Project Evaluation Report, from http://www2tisip.no/E‐
LEN.

Noble, J. (1998). Classifying Relationships between Object‐Oriented Design Patterns, Australian Software
Engineering Conference IEEE Computer Society Press.

Rising, L. (2001). Design Patterns in Communication Software, Cambridge, Cambridge University Press.
Valacich, J.S.; Jessup, L.M.; Dennis, A.R. and Nunamaker, J.F. jr. (1992). A Conceptual Framework of

Anonymity in Group Support Systems, Group Decision and Negotiation 1: 219‐241.
Vreede, G.J. de; Briggs, R.O. and Kolfschoten, G.L. (2006). ThinkLets: A Pattern Language for Facilitated

and Practitioner‐Guided Collaboration Processes, International Journal of Computer Applications
in Technology 25,(2/3): 140‐154.

The Role of Roles in Computer-mediated

Interaction

Stephan Lukosch
Delft University of Technology

Faculty of Technology, Policy, and Management
PO box 5015, 2600 GA Delft, The Netherlands

s.g.lukosch@tudelft.nl

Till Schümmer
FernUniversität in Hagen

Department for Mathematics and Computer Science
Universitätsstr. 1, 58084 Hagen, Germany

till.schuemmer@fernuni-hagen.de

Abstract

Roles coin any social interaction. In this paper, we present basic practices
for designing roles in collaboration settings. These patterns should help the
designer of collaborative systems to reflect roles in the system design and
thereby steer group interaction.

1 Introduction

The concept of a role is omnipresent in any interaction. This paper, e.g., has
been written by two humans who took the role of the author. After one author
created an initial draft of one section, the other author took the role of a devil’s
advocate. He questioned the theses of the first author and thereby helped him to
clarify his point. When we submitted the paper, it was received by two people
playing the role of a conference and a programme chair of EuroPLoP 2008. They
checked the formal content of the paper and passed it on to a group of 10 people
who were in the role of a programme committee. These people were expected to
provide an assessment of the paper and judge whether or not it could be raised
to a sufficient quality during a shepherding process. The programme committee

Proceedings of the 13th European Conference on Pattern Languages of Programs (EuroPLoP
2008), edited by Till Schümmer and Allan Kelly, ISSN 1613-0073 <issn-1613-0073.html>.
Copyright c© 2009 for the individual papers by the papers’ authors. Copying permitted for private
and academic purposes. Re-publication of material from this volume requires permission by the
copyright owners.

1

members passed their feedback back to the programme chair who released this
paper for shepherding. At this point another group came into play: A pool of
shepherds scanned this paper and decided whether or not they wanted to play the
role of a shepherd. The shepherd’s responsibility was to point out strong and weak
points of the paper and help the authors to improve the weak points.

We could continue this story for one or two additional pages and thereby out-
line the interaction process that supported the evolution of this paper. From the
example, we can already identify the core of the role concept: A role combines pro-
totypical behavior, rights, capabilities, and obligations. Compared to this, tasks are
expected activities. They are related to roles in workflows: From a rather abstract
viewpoint which is sufficient for this paper, a workflow describes a sequence (or
network) of tasks and relates them with roles. When enacting a workflow, the roles
will be filled by concrete users who are then obliged to perform the task in a given
time frame.

At the beginning of the process of our example, the author is expected to behave
in a way that he writes the text of the paper, he has the right of expressing his
thoughts. This however implies cognitive capabilities (e.g., the ability of formulating
sentences or the capability of synthesizing new lines of thought) as well as technical
capabilities like the access to a word processor or pen and paper. Finally, the author
has the obligation of delivering the text in time with a sufficient quality.

The above example shows that a role owner has a different perception of the
role as persons that are expecting specific activities from the role owner. From a
philosophical perspective, Mead (1934) explored the two sides of the self, the ’me’
as the social self and the ’I’ as a response to the ’me’. In addition to Mead’s theory,
Cronk (2005) points out:

There is a dialectical relationship between society and the individual;
and this dialectic is enacted on the intra-psychic level in terms of the
polarity of the ’me’ and the ’I’. The ’me’ is the internalization of roles
which derive from such symbolic processes as linguistic interaction, play-
ing, and gaming; whereas the ’I’ is a ’creative response’ to the symbolized
structures of the ’me’ (i.e., to the generalized other). (Cronk 2005)

This makes clear that there is always a dialogue between the role that contributes
to the ”me” and the ”I” that constitutes the specific moment and the actions.
Depending on the context of the self, there can be more or less need for creativity.
If the human participates in a strict workflow or production workflow (Borghoff and
Schlichter 2000) as we know it from workflow management systems, creativity is not
desired in the participant’s response. System design for such interaction should thus
codify roles and restrict the capabilities of the user to actions that contribute to the
expected behavior.

Looking at real collaboration scenarios, however, often shows a different style of
interaction. Bardram (1997), e.g., investigated collaboration workflows in hospital
settings and showed that plans are often created in-situ. Patients and doctors
adapt their behavior so that it fits with the current situation. Environments for
ill-structured tasks that are difficult to describe independently of current actions
and that require agile decisions about future actions, often rely on social roles and

2

at the same time provide all users with capabilities that extend the capabilities
of their specific role. This allows participants to diverge from their pre-defined
roles as needed. In the extreme case, technology support for roles is not required
and coordination of expectations is supported by awareness mechanisms (e.g., a
Remote Selection

→P4CMI
that can be used to communicate on which artifacts a

user is currently working).

In this paper, we present patterns for an intermediate understanding of the role
concept: Designs in which roles are explicitly modeled while still providing space
for divergence from the role (at least in some patterns).

Figure 1: Pattern map

The patterns in this paper extend the 72 patterns for computer-mediated in-
teraction that we present in (Schümmer and Lukosch 2007). Figure 1 shows the
relations between the patterns in this paper and the patterns for computer-mediated
interaction. The patterns for computer-mediated interaction follow the assumption
that roles are part of the social agreement between the users of a collaborative sys-
tem. In this paper, we frequently reference these patterns. Such a reference will be
indicated by

→P4CMI
next to a pattern name. Thumbnails of the referenced patterns

can be found at the end of this paper. The four patterns in this paper are:

– Role: Explicitly model the responsibilities and capabilities of a role.

– Role Indicator: Decorate the Virtual Me of a user with a symbol that
represents the user’s current role.

– Ad-hoc Workflow: Communicate dependencies between tasks and roles.

– Spectator: Allow users to observe other users’ actions.

While the first two patterns ease the understanding of the individual’s capabil-
ities and responsibilities, the third pattern supports the group’s reflection on the
interaction process. The last pattern finally helps to gain an outsider’s view of the
group process and is an example of a more concrete Role.

3

2 The Patterns

2.1 Role

Photo: Tyler,

http://www.flickr.com/photos/trp0/406897468/

Model the expected interaction in the collaborative application.Intent

You designed a system for computer-mediated interaction thatContext

shall support a specific group process.

Users have problems to structure their interaction in theProblem

group. Especially, some users act in a way that is not
anticipated by other users. This can hinder the interaction
to reach the intended goal.

John and Paul interact in a software project. They would like toScenario

do an XP session using an application sharing tool, but it is pure
chaos. Both start typing text, both want to program as the inspi-
ration enters their minds. They are in trance and totally ignore the
presence of each other, as there is no group process which struc-
tures the interaction. As a result, no real collaboration takes place
and numerous conflicts evolve.

You should consider to apply the pattern when . . .Symptoms

– collaboration needs supervision and guidance.

– there are administrative tasks to do that require deeper un-
derstanding of the consequences.

– some users are unaware of the group process and do not be-
have according to the other users’ expectations.

– users see features that they should not or cannot use.

– users repeatedly assign a comparable combination of access
rights to different users.

Therefore: Define roles that describe what the owner ofSolution

the role is supposed to do. Also specify in a role which
tools may be used in order to reach the role’s intended

4

goal. Link the roles to users when they engage in the
group process.

Represent Roles in your collaborative system. Each Role has aCollaborations

description and is associated to activities that can be performed
by the person having this role.

Users can perform all activities that are available in their roles
and necessary to complete the assigned task. Before an activity
triggered by the user is executed, the system checks if the user
owns a role that is associated to the activity. If not, no action will
be performed.

There are two special roles: the omnipotent role allows a user
to perform any action (an example is the role of an administrator)
and the empty role is not related to any actions (this is equal to
no role).

Roles can contain other roles. By that, the set of possible roles
is combined. Users can play more than one role at the same time
which means that they can execute any action allowed in any of
their roles.

Roles can be assigned to and withdrawn for a user. In order
to influence the user’s actions, the user has to see what role he
plays. This can be done by means of a Role Indicator

→2.2
or by

sending a message to the users whenever they should switch their
role.

It is most common to assign a default user role to an account
at the moment the account is created. A system administrator
can assign roles with advanced rights to user accounts afterwards
(Quick Registration

→P4CMI
). The system administrator role is

assigned to a user account at the moment of system installation.

The explicit notion of a role helps the users to understand theirRationale

current situation in the group process. Since the role carries a
description that explains what is expected from the person playing
the role, it can help the users to fit their actions with the role.

The connection between role and action explicitly defines how a
user can reach the role’s goal. Assigning a user to the role ensures
that all actions connected to the role can be executed by the user
performing the role.

Assigning the allowed activities for a role instead of specific
users reduces the amount of time spent on tool administration.

When applying this pattern, you should answer these questions:Check

– What is the default or minimal role a user must have to act
in the system?

– What role hierarchy should be implemented?

– Who is the authority to manage the association of roles to

5

users? Can users pass roles on?

– What are the events that give rise to a modification of the
role?

There are many reasons why users may fail to fill their role. TheyDanger Spots

may be absent because of illness or they may lack competencies
required to act in this role. For such cases, the system has to
provide means for reassigning the role to another user.

Users may also abuse the power that is given by the role. Again,
the system needs to provide mechanisms to revoke the role from
such users.

Especially in creative processes, roles cannot be pre-defined.
The definition of roles may be impossible at all, though
Roles might emerge from interaction implicitly. The Ad-hoc

Workflow
→2.3

pattern discusses the role of roles in such contexts.

Known Uses Scripted Exercises in CURE (Haake 2007): In the context of
computer-supported collaborative learning, scripts have been
used to guide students through the exercises. The students
were asked to first brainstorm concepts learned in the course,
cluster the material, and finally write an essay on the topic.
The essay writing process was supported by two roles: The
author was asked to create a draft of an essay. Then, the other
group members took the role of a reviewer and annotated the
initial essay. After receiving the reviews, the author could
modify the text or pass his role on to another group member
and become a reviewer instead.

Blackboard: In Blackboard (Blackboard Inc. 2009), each user
role has a specific set of permission levels:

– Course Builder - has access to all features except Assess-
ments and Course Tools.

– Grader - has access to the grade book and is able to create
and modify assessments.

– Instructor - has access to all course functions. This in-
cludes adding and modifying content, controlling user
and group functions, creating assessments and enter-
ing grades, and controlling discussion boards and virtual
classroom functions.

– Student - has access to all course content but cannot mod-
ify content. This is the only role able to take assessments
and have grades recorded in the grade book.

– Teacher Assistant - shares the same level of access as the
instructor. Although the rights are the same, the name
of the role conjures different expectations regarding the
teacher’s behavior.

6

The admin assigns a new role to the selected user account.

Many other CSCL systems work the same way, e.g. Moodle
(Moodle 2009), ILIAS (ILIAS 2009), and Synergeia (Stahl
2002).

World of Warcraft (http://www.wow-europe.com/) is a dis-
tributed multi-user game in which teams can play together
against other teams. To initiate a team, one user invites other
users to the team. The inviting user will have the role of a
team leader and has special rights such as inviting new players
to the team or deciding on how the goods are shared among
the team members.

SourceForge.net is an open source software development web
site in which project members can have different Roles, e.g.
administrator, developer, translator, etc.

Related Patterns Quality Inspection
→P4CMI

, Mentor
→P4CMI

, Shared

Browsing
→P4CMI

are examples of patterns that rely on
roles. These patterns focus on the group process and show
how specific user roles can be supported.

Floor Control
→P4CMI

describes how roles can be passed on to
other users.

Role Indicator
→2.2

shows which role a user currently has.

Role-Based Access Control (Schumacher et al. 2005) dis-
cusses the issue of access rights in relation to roles.

7

2.2 Role Indicator

Photo: Ron Bird, FreeDigitalPhotos.net

Let each member of a group know which Roles the other membersIntent

have.

You are developing a computer-mediated environment, where usersContext

can have different Roles with different rights.

Users are not aware of capabilities as well as responsibili-Problem

ties of other users.

Consider a globally distributed development project in which aScenario

large team co-constructs a game engine together with some test
users. Molo, one of the African test users, has problems installing
the new version of the game engine. Unfortunately, the water sup-
ply simulation game which he uses for testing does no longer work
on top of the newest game engine. He would have liked to talk
to the test officer in the project, but he does not know who this
person currently is.

You should consider to apply the pattern when . . .Symptoms

– Users want to perform a specific activity but are not allowed
to do this.

– Users frequently ask someone else to perform specific activi-
ties.

– Users do not know who has enough rights to perform specific
activities.

– Users treat other users as if they have a different role.

Therefore: Visualize the Role
→2.1

of the interacting usersSolution

whenever a user is shown in the user interface.

Integrate an element in the User List
→P4CMI

or the InteractiveCollaborations

User Info
→P4CMI

so that the current role of a user is revealed.
Make sure that the role representation is unique and can be under-
stood by all interacting users. When users can change their role,

8

update the role information whenever a user switches to another
role.

As each user’s role is visualized, users can easily lookup their ownRationale

role in the interaction process and also identify the role of their
peer users. This allows users to interact with each other according
their roles.

When applying this pattern, you should answer these questions:Check

– What are the different Roles?

– Where are you going to visualize the Roles?

– How are you going to visualize the different Roles? Are you
going to use different icons for each Role or will you use
textual labels?

Users might not want that their role is revealed. In such cases, youDanger Spots

should allow users to turn their role indicator off.

Users might have different roles at the same time. This makes
it difficult to decide which role is shown to the other users.

Known Uses World of Warcraft (http://www.wow-europe.com/) requires
that each team has one leader. The leader has special rights,
e.g. a leader can decide how rewards are distributed in the
team or a leader may invite new team members. Leaders can
be identified in the User List

→P4CMI
as their representation

is associated with a small crown (cf. Figure 2).

Figure 2: Role Indicators in World of Warcraft

Vitero http://www.vitero.de is a conferencing system which
supports up to two moderators. The moderators can pass

9

a microphone icon to user which want to talk. The micro-
phone is shown to all other users as well so that they stay
aware of who has currently the speaker role.

XPairtise (Lukosch and Schümmer 2007) is a tool for distributed
pair programming. For supporting and teaching distributed
pair programming, XPairtise distinguishes three different
roles, i.e. navigator, driver, and Spectator

→2.4
. Figure 3

shows how the different roles are indicated in the User

List
→P4CMI

.

Figure 3: Role Indicator in Xpairtise

Related Patterns Role
→2.1

: Role Indicator describes where and when to visual-
ize different Roles.

User List
→P4CMI

allows to visualize different Roles by simply ex-
tending the user representation in the list.

Masquerade
→P4CMI

describes how users can control what kind
of personal information they reveal to other users. This can
include information about a user’s Role.

Activity Indicator
→P4CMI

shows for awareness purposes the ac-
tivities of the collaborating users. By analyzing the activities
of a user, it is also possible to identify a user’s role in the
collaboration process.

Interactive User Info
→P4CMI

equips a user representation with
a context menu that allows to start an interaction with the
represented user. It can easily be used to visualize the user’s
current Role.

10

2.3 Ad-hoc Workflow

Interaction ScriptAKA

Communicate and make explicit dependencies between tasks andIntent

roles.

You are interacting in a creative, ill-structured group process.Context

Plans are a good thing. Having well-defined roles andProblem

tasks creates safety in performing tasks. However, ill-
structured group processes are highly non-deterministic
which means that they cannot be pressed in pre-defined
task schemas. Plans will fail in most of these projects.

Consider a typical XP project. Linea, the customer created a setScenario

of task cards and arranged them in a lovely sequence. She created
a picture of the project and believes that the team will be able
to create a good solution by simply implementing the tasks. But
already after the first task was done, the developers feel that the
plan does not fit the context and after her first tests with the
resulting system, Linea also feels the need to change the plan.

You should consider to apply the pattern when . . .Symptoms

– strict workflows are too strict for dynamic/creative group pro-
cesses.

– users are not aware of the intended group process and their
future tasks.

– users expect others to do their work.

– users do not understand the dependencies between tasks.

Therefore: Collaboratively create an explicit representa-Solution

tion of tasks as a shared document and thereby achieve
a shared understanding of ad-hoc plans that dynamically
adapts to the current group process.

In the simplest form, the group members can use a wiki to list theCollaborations

different tasks and responsibilities. For synchronous collaboration,
the group members can also make use of a Shared Editor

→P4CMI
.

11

Users should be supported in creating shared tasks, creating rela-
tions between tasks, and assigning Roles to tasks. Visualize the
representation in a way that users can understand and perform
the workflow. In case of a textual representation the workflow fol-
lows the linear structure of the text, e.g. each task is a list item.
In case of a visual representation, the workflow is represented as
a directed graph. Use the visual workflow to document current
steps and guide the group process but allow the group to adapt
the process as soon as it is necessary.

Wil van der Aalst et al. (1999) described the taxonomy of collabo-Rationale

rative work as shown in Figure 4. They classify collaborative work
along two dimensions: structuredness and the center of attention.

Work can be highly structured as it is the case in optimized
production workflows or it can be inherently unstructured as it
is often the case for collaborative problem solving activities. The
support for the group interaction can focus on making information
available to all group members (and providing the best comprehen-
sible awareness on the group members’ activities) or it can focus
on supporting the interaction process and thus guide the group
members through the required steps.

Figure 4: Situating collaborative work according to the structure and

focus dimensions (inspired by van der Aalst et al. (1999)).

Groupware applications are typically situated in the lower left
corner of the diagram: they support creative interaction and help a
group to interact on shared information spaces. They focus on im-
proving the communication between the group members and make
them aware of each others’ actions.

Workflow management systems on the other hand focus on
guiding the users through the process. The process is pre-defined
and the group members are only required to perform their steps in

12

the process. Communication is pre-structured and in most cases
reduced to the communication acts required for executing the work-
flow.

An Ad-Hoc Workflow helps to structure the implicit pro-
cesses of information-centered unstructured interaction. During
the co-construction of the Ad-Hoc Workflow, the group members
become aware of the required steps for the specific tasks and coor-
dinate their efforts.

During the enactment phase of the workflow, the group mem-
bers document their progress in the process and thereby increase
the awareness of the group’s activities. Since group members are
allowed to deviate from the Ad-Hoc Workflow, they keep the
flexibility of information-centered collaboration.

When applying this pattern, you should answer these questions:Check

– When will you create the workflow in your group process?
Can you distinguish coordination phases from collaboration
phases?

– Will you create a graphical or a textual representation of the
workflow?

– How do you visualize active tasks?

– Can you use the workflow representation to track your work?

Workflows are often not just a a linear sequence. Especially forDanger Spots

iterative processes, workflows may include iterations or parallel
processing streams. The user has to be careful that no circular
dependencies occur that may lead to deadlocks. In a deadlock sit-
uation, user A waits for user B to complete task 1 before A can
start task 2. At the same time, user B waits for user a to com-
plete task 2 before he can start task 1. In general, the groupware
system should highlight potential deadlocks in the workflow. This
can be done by checking the following deadlock conditions that are
common knowledge in operating systems research and visualizing
those tasks for which the conditions apply:

Mutual exclusion: the tasks assume that the performer of the
task has exclusive access to a shared resource (see Pes-

simistic Locking
→P4CMI

).

Hold and wait: tasks require more than one shared re-
source. Once the performers have obtained a Pessimistic

Lock
→P4CMI

, they keep the lock and request another lock to
complete the task.

No preemption: there is no way to force a performer of a task
to give back his resources.

Circular wait: task have a circular dependency as outlined in the
previous paragraph.

13

Changes to the workflow can place another burden on the users.
Once the ad-hoc workflow was changed, the users have to under-
stand the new group process and adapt their behavior to act ac-
cording to their role. Changes to the workflow should thus be
highlighted, e.g., by placing a Change Indicator

→P4CMI
on the

changed sections.

Known Uses Chips / XChips (Rubart et al. 2001) visualized ad-hoc work-
flows as graph structures. The users could define task graphs
and relate tasks with roles. When enacting the ad-hoc work-
flow, the users can assign group members to roles and thereby
express responsibilities of individuals for specific tasks.

Figure 5: Ad-Hoc Workflow in xChips

Figure 5 (Rubart and Haake 2003) shows how XChips was
used to create an Ad-Hoc Workflow for a company spe-
cific meeting (picture reprinted with authors’ permissions).

DigiMod (http://www.teambits.de/) is a meeting facilitation
support system that allows facilitators to structure the dif-
ferent phases of the meeting. Facilitators create tasks that
describe what the participants should discuss and how the
discussion should take place (e.g., as a structured brainstorm-
ing). During the meeting, DigiMod visualized the sequence of
meeting steps and highlights the current task.

Related Patterns Role
→2.1

: Tasks are performed by Roles. In the definition phase
of the Ad-Hoc Workflow, the group members name (or
create) roles and associate them with tasks.

No Agenda, No Meeting argues that all meetings should have
an agenda. The agenda is comparable to a linear Ad-Hoc

Workflow.

Shared Editing
→P4CMI

The workflow representation should be
created using a shared editor. This allows all group members
to participate in the creation of the workflow and contribute
their views of an optimal problem solving path.

14

2.4 Spectator

Photo: Federico Stevanin,

FreeDigitalPhotos.net

Allow users to observe the activities of other interacting users.Intent

Users are interacting in a computer-mediated environment toContext

achieve a shared goal.

Users are interacting in a computer-mediated environmentProblem

but are not familiar with the environment. These users
perform activities which disturb the interaction and col-
laboration of other users.

John and Paul have now managed to work in pair programmingScenario

sessions. Now, their company is growing as it acquires more and
more projects. The new employees are requested to work in pair
programming sessions as well to ensure the high software quality,
but they do not know how to do this. The manager requests John
and Paul to teach the new employees, but their tool has only been
designed to support one driver and one navigator in a pair pro-
gramming session. Thus, John and Paul do not know how they
can show the new employees how to interact in pair programming
sessions.

You should consider to apply the pattern when . . .Symptoms

– Unexperienced users are not accepted by experienced users.

– Unexperienced users disturb the collaboration of other users.

– Users want to communicate their experience with a computer-
mediated environment but do not know how.

Therefore: Allow users to view and follow the interactionSolution

in an ongoing Collaborative Session
→P4CMI

as Spectator.
Ensure that these Spectators cannot influence the inter-
action.

Allow users to select an active Collaborative Session
→P4CMI

Collaborations

from an Interaction Directory
→P4CMI

and to choose whether

15

they want to join the session as a regular participant or as a Spec-

tator. When joining as Spectator users can freely navigate in
the shared artifacts which are used in the session. They can also
view the activities of the other regular participants but they cannot
influence the activities by modifying the shared artifacts as well.

The Spectator Role does not allow that users influence theRationale

activities of other users. However, Spectators can view and un-
derstand the interaction of other users and thereby learn how to
interact in the computer-mediated environment.

When applying this pattern, you should answer these questions:Check

– Are you going to inform regular participants in a Collab-

orative Session about Spectators viewing their interac-
tion?

– Is informing the regular participants enough or should they
in some cases be asked for explicit permission?

– Are Spectators allowed to contact regular participants or
other Spectators?

– Are you going to provide mechanisms for Spectators which
make them aware of the other users’ activities?

Ensure that Spectators cannot access private artifacts of otherDanger Spots

users. You may even consider Role-based Access Control

(Schumacher et al. 2005) to decide which artifacts Spectators

or other roles may access.

Known Uses Counter Strike Source (http://store.steampowered.com/
app/240/) is a multi-user game in which teams compete
with each other in Collaborative Sessions

→P4CMI
. Before

participating in such a Collaborative Session, players
have to decide which team they want to join. As additional
opportunity, players can decide to join as a Spectator.
Spectators can move around like regular participants but
cannot influence the current game. For that purpose, players
can switch their Role

→2.1
and become a regular participant.

Guild Wars is a MMORPG (Massively multiplayer online role-
playing game) which apart role playing supports team com-
petitions. The team competitions can be viewed by Specta-

tors.

XPairtise (Lukosch and Schümmer 2007) is a tool for distributed
pair programming. Apart from the Roles of a driver and nav-
igator, XPairtise also supports Spectators which can follow
an ongoing distributed pair programming session. When join-
ing a pair programming session, users can choose between the
different supported roles (cf. Figure 6).

16

Figure 6: Role-dependent join in XPairtise

Related Patterns Collaborative Session
→P4CMI

: Spectators can view the in-
teraction in a Collaborative Session.

Role
→2.1

: A Spectator has a concrete Role.

Role-based Access Control (Schumacher et al. 2005) dis-
cusses the issue of access rights in relation to roles and can be
used to define which artifacts a Spectator may access.

17

3 Conclusions

The patterns of this papers discussed the role of roles in computer-mediated inter-
action settings. We presented a small selection of proven practices for modeling
roles in such settings. However, we are aware of the fact that these patterns can
only be a starting point towards a larger collection of practices that help groups
to structure their group processes. It still needs to be investigated to what extent
these practices can and should be written as patterns.

In some contexts, more domain-specific patterns have shown to be very helpful
for practitioners of that specific domain. One example is the meeting patterns
collection (Schuemmer and Tandler 2008) that names concrete roles in a group
meeting, such as the role of the facilitator or the presenter. We foresee that more
domain-specific pattern collections will emerge – and if there is no concrete collection
for your specific domain, you may consider taking the role of an author and share
your collaboration experience. May the patterns of this collection help you to
structure your concrete patterns as well as concrete application that support your
domain.

Acknowledgments

We would like to thank our shepherd Andreas Fießer for his excellent and challenging
questions that helped to improve the patterns in this paper.

References

Bardram, J. E. (1997). Plans as situated action: an activity theory approach to
workflow systems. In ECSCW’97: Proceedings of the fifth conference on Eu-
ropean Conference on Computer-Supported Cooperative Work, Norwell, MA,
USA, pp. 17–32. Kluwer Academic Publishers.

Blackboard Inc. (2009, February). Blackboard home.
http://www.blackboard.com/.

Borghoff, U. M. and J. H. Schlichter (2000). Computer-Supported Cooperative
Work. Springer-Verlag Berlin Heidelberg New York.

Cronk, G. (2005). George Herbert Mead – The Internet Encyclopedia of Philos-
ophy. http://www.utm.edu/research/iep/m/mead.htm.

Haake, J. M. (2007). Computer-Supported Collaborative Scripts: Einsatz com-
putergestützter Kooperationsskripte in der Fernlehre. In DeLFI 2007, 5. e-
Learning Fachtagung Informatik, pp. 9–20.

ILIAS (2009, February). ILIAS open source LMS. http://www.ilias.de/.

Lukosch, S. and T. Schümmer (2007, September). Enabling distributed pair pro-
gramming in Eclipse. In 10th European Conference on Computer-Supported
Cooperative Work (ECSCW’07), Workshop ’The Challenges of Collaborative
Work in Global Software Development’.

18

Mead, G. H. (1934). Mind, Self, and Society. The Chicago University Press, Ltd.,
London.

Moodle (2009, February). Moodle.org: open-source community-based tools for
learning. http://moodle.org/.

Rubart, J., J. M. Haake, D. A. Tietze, and W. Wang (2001). Organizing shared
enterprise workspaces using component-based cooperative hypermedia. In
HYPERTEXT ’01: Proceedings of the 12th ACM conference on Hypertext
and Hypermedia, New York, NY, USA, pp. 73–82. ACM.

Rubart, J., W. W. and J. M. Haake (2003). Supporting cooperative activities with
shared hypermedia workspaces on the www. In Alternate Track Proceedings
of WWW 2003. MTA SZTAKI.

Schuemmer, T. and P. Tandler (2008). Patterns for technology enhanced meet-
ings. In Proceedings of EuroPLOP’07, Konstranz, Germany. UVK, Konstanz.

Schumacher, M., E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and
P. Sommerlad (2005). Security Patterns. Chichester, UK: Wiley.

Schümmer, T. and S. Lukosch (2007). Patterns for Computer-Mediated Interac-
tion. John Wiley & Sons, Ltd.

Stahl, G. (2002, September). Groupware goes to school. In J. M. Haake and J. A.
Pino (Eds.), Groupware: Design, Implementation, and Use, 8th International
Workshop, CRIWG 2002, LNCS 2440, La Serena, Chile, pp. 7–24. Springer-
Verlag Berlin Heidelberg.

van der Aalst, W. M. P., T. Basten, H. M. W. Verbeek, P. A. C. Verkoulen, and
M. Voorhoeve (1999). Adaptive workflow-on the interplay between flexibility
and support. In International Conference on Enterprise Information Systems,
pp. 353–360.

Appendix: Pattern Thumbnails

Activity Indicator

Problem: Users need time to perform a task but only the results are shared among
them. In a collocated setting users are accustomed to perceive non-verbal
signals such as movement or sounds when another user is active. If the users
are distributed, these signals are missing. Users are therefore not aware of
other users’ activities, which can result in conflicting work or unnecessary
delays.

Solution: Indicate other user’s current activities in the user interface. To reduce
interruptions, use a peripheral place or a visually unobtrusive indicator.

Change Indicator

Problem: While users works on independent local copies of artifacts, their check-
out frequency for the artifacts may be low. As a result, they may work on old

19

copies, which leads to potentially conflicting parallel changes. The conflict is
worse if two parallel modifications have contradictory intentions.

Solution: Indicate whenever an artifact has been changed by an actor other than
the local user. Show this information whenever the artifact or a reference to
the artifact is shown on the screen. The information should contain details
about the type of change and provide access to the new version of the artifact.

Collaborative Session

Problem: Users need a shared context for synchronous collaboration. Computer-
mediated environments are neither concrete nor visible, however. This makes
it difficult to define a shared context and thereby plan synchronous collabo-
ration.

Solution: Model the context for synchronous collaboration as a shared session
object. Visualize the session state and support users in starting, joining,
leaving, and terminating the session. When users join a session, automatically
start the necessary collaboration tools.

Floor Control

Problem: Synchronous interaction can lead to parallel and conflicting actions that
confuse the interacting users and makes interaction difficult.

Solution: Model the right to interact in the shared collaboration space by means
of a token and only let the user holding the token modify or access the shared
resources. Establish a fair group process for passing the token among inter-
acting users.

Interaction Directory

Problem: Finding existing contexts to start interaction and memorizing older con-
texts to continue an interaction is difficult.

Solution: Provide a shared space that is available to all users in which users can
store and retrieve interaction contexts.

Interactive User Info

Problem: Users are aware of other users in the collaboration space and can identify
them, but they don’t know how to start tighter interaction with a specific user.

Solution: Equip the user representation with a context menu that provides com-
mands for finding out more information on a user and for starting tighter
collaboration with the user.

20

Masquerade

Problem: Your application monitors the local user. The information gathered is
used to provide awareness information to remote users. While this is suitable
in some situations, users often do not act as confidently if they know they
are monitored. Users may feel a need to avoid providing any information to
others.

Solution: Let users control what information is revealed from their personal details
in a specific interaction context. This means that users must be able to filter
the information that is revealed from their personal information. Remember
to consider reciprocity.

Mentor

Problem: Newcomers do not know how community members normally act in spe-
cific situations. They are not used to practices that are frequently applied in
the community.

Solution: Pair newcomers with experienced group members who act as mentors.
Initially let newcomers observe their mentors, and gradually shift control to
the newcomer.

Pessimistic Locking

Problem: You want to ensure that changes performed by the user are definitely
applied, even if more than one user wants to modify the same shared object
at the same time.

Solution: Let a site request and receive a distributed lock before it can change the
shared state. The lock can have different grain sizes. The grain size of a lock
determines how much of a shared data object, or of all shared data objects,
can be modified after getting one lock. After performing the change, let the
site release the lock, so that other sites can request and receive it for changing
the shared state.

Quality Inspection

Problem: Members participate in a community to enjoy high-quality contributions
from fellow members. However, not every contribution has the same quality.
Low-quality contributions can annoy community members and distract their
attention from high-quality gems.

Solution: Select users as moderators and let them release only relevant contribu-
tions into the community’s interaction space. Give moderators the right to
remove any contribution and to expel users from the community.

21

Remote Selection

Problem: Users select artifacts to start an action on the artifact. Selecting an
artifact is considered as taking the artifact under personal control. Whenever
two users select the same artifacts, this leads to coordination problems.

Solution: Show remote users’ selections to a local user. Make sure that other users
who are interested in a specific artifact are aware of all distributed co-workers
who have selected the object.

Shared Browsing

Problem: Users have problems finding relevant information in a collaboration
space. They often get lost.

Solution: Browse through the information space together. Provide a means for
communication, and collaborative browsers that show the same information
at each client’s site.

Shared Editing

Problem: Users are sharing data for collaboration. The need to edit the shared
data simultaneously emerges, but the shared single-user application does not
allow concurrent editing.

Solution: Provide a shared editor in which users can manipulate the shared arti-
facts together. Ensure that state changes are instantly reflected in all other
users’ editors, and provide mechanisms that make users aware of each other.

User List

Problem: Users do not know with whom they do or could interact. Consequently,
they do not have the feeling of interacting in a group.

Solution: Provide awareness in context. Visualize who currently is accessing an
artifact or participating in a Collaborative Session

→P4CMI
. Ensure that

the information is always valid.

Virtual Me

Problem: In a large user community, account names look similar. But users need
to communicate their identity in order to interact with other users.

Solution: Allow the users to play theater! Provide them with means to create a
virtual identity that represents them while they act in the system. Show the
virtual identity when the user is active.

22

 1

Sharing Day

Lotte De Rore, Monique Snoeck, Guido Dedene

LIRIS Group, Faculty of Business and Economics, K.U.Leuven

Naamsestraat 69, 3000 Leuven, Belgium

{Lotte.DeRore, Monique.Snoeck}@econ.kuleuven.be

1 Introduction
In the IT department of a bank and insurance company, when Susan from the loan department

is confronted with a problem, she will ask the members of her team for help or maybe the

colleague sitting next to her. But it will not occur to her that Mike from the insurance

department might have had this same problem before...

Knowledge is a very important asset for a company. Several techniques exist to share

knowledge within a company. This paper introduces one of these techniques: SHARING DAY.

The pattern language first describes why and when to organize a SHARING DAY and

subsequently how to organize such an event.

2 Pattern Language

2.1 Overview of the Patterns

SHARING DAY Create an explicit time to bring people physically

together at the same location in order to encourage

knowledge sharing on a broad basis.

PALLET OF ACTIVITIES Match the form of the SHARING DAY to the kinds of

knowledge and purposes you wish to share.

DRY RUN Perform a DRY RUN of the sessions to see whether the

stories in the different sessions are attuned on each

other and attuned to the audience.

VISIBLE INVOLVEMENT Make visible that the company attaches great

importance to the SHARING DAY and stress the

personal benefit of attending the SHARING DAY.

CENTRALIZED INFORMATION POINT Centralize all communication about the SHARING DAY

in one point to conserve the coherence.

KEEP IT FUN KEEP IT FUN to help people stay involved and alert all

the time during the SHARING DAY.

PROVIDE A BACK-UP PROVIDE A BACK-UP to prevent the SHARING DAY from

falling apart if some of the contributors drop out right

before the planned day.

Proceedings of the 13th European Conference on Pattern Languages of Programs (EuroPLoP 2008),

edited by Till Schümmer and Allan Kelly, ISSN 1613-0073 <issn-1613-0073.html>.

Copyright © 2009 for the individual papers by the papers' authors.

Copying permitted for private and academic purposes. Re-publication of material from this volume

requires permission by the copyright owners.

 2

2.2 SHARING DAY

The hierarchical structure typical in large companies divides employees in several divisions.

In each of these divisions, we find people with the same positions and roles, confronted with

the same problems. Within a group, we have a diversity of knowledge and experience.

Knowledge sharing about the profession only occurs between colleagues in their own

surroundings (within their own team or division); there is no spontaneous knowledge

sharing on a broad base.

Knowledge within a company is a very important asset. In order to share knowledge about the

profession, a discussion forum does not work. The most plausible reason for this is that people

need to find free time to search or contribute to the discussion forum. The communication on

a discussion forum happens in an asynchronous way which is not the most effective way of

communication [1]. A personal and direct way of communication (like face to face) is the

most powerful way of communication [1]. Also, in a culture with high expectations with

respect to quality of solutions and answers, people wonder whether their knowledge is good

enough to share e.g. on a discussion forum.

The project driven way of working in a company does not encourage knowledge sharing

between teams or divisions. Every activity is budgeted and when in need for information,

employees ask themselves whether it is justified to make time to communicate with other

people. In addition they often don’t know who they should talk with. The deadline of a project

is seen as the most important factor and as a consequence, people work in a deliverable driven

way rather than to strive for a uniform way of working across projects.

However, for a company in expansion, the kind of projects will change. When a company is

still small, almost all projects are rather small and limited to the context of a single division.

But when a company expands, projects grow and happen in an organization-wide context,

involving several divisions in one project.

Local networking within the same division is no longer sufficient. Knowledge sharing and

information exchange between divisions is necessary. There needs to be a way to make all the

aspects within a job visible. For example, how to deal with a process, a tool or

communication? What does it mean to fulfill a particular job?

Therefore,

Create an explicit time to bring people physically together to the same location by

organizing a SHARI&G DAY.

The main purpose of the SHARING DAY is to give people a chance to share experiences. But

even more important than sharing knowledge is to encourage networking, to know who

knows what might be more useful than knowing something yourself. It is therefore important

to withdraw the people from their normal work context. By having the event off site, one can

avoid interruptions that disturb the flow of the event (LOCATION, LOCATION, LOCATION [2]).

The practical organization of such a big event as a SHARING DAY should not be

underestimated. It consumes a lot of time to organize a well structured event. To ensure that

the activities are fitting the variety of goals of a SHARING DAY, you should build the program

 3

using a PALLET OF ACTIVITIES. A DRY RUN can help to see whether the stories in the different

sessions are attuned on each other and attuned to the audience. Besides the content, the

practical side of bringing a large group of people together needs preparation too: room

reservations, parking places, printed matters being only some of the issues. Since you would

like as many people as possible to show up for the sharing day, you should ensure a VISIBLE

INVOLVEMENT of a company and communicate effectively using a CENTRALIZED

INFORMATION POINT. While attending the sessions of the SHARING DAY, participants may lose

interest as the day goes on. So KEEP IT FUN to help people stay involved and alert all the time.

And finally, the initial enthusiasm of contributors may fade away when faced with the

preparation work, so you should PROVIDE A BACK-UP to prevent the sharing day from falling

apart if some of the contributors drop out right before the planned day.

A SHARING DAY is a big event and should only be organized when you want to bring a large

group together, i.e. when there is diversity in knowledge and experience within the group and

when there is a diversity of knowledge and experience you want them to pick up. Otherwise,

it is sufficient to encourage knowledge sharing in smaller groups, e.g. by a training course or a

coaching session.

The company KBC ICT organized a sharing day [3] “To WPF or not to WPF” to bring

together the people from their work preparation community (about 140 people) and to share

knowledge about their work preparation framework (WPF): the method, the tool and the

process. The main goal of this sharing day was to share experiences, lessons learned and real

cases with each other.

At ThoughtWorks [4], once or twice a year, they organize Away Days. Employees tend to be

at different client sites and do not necessarily have the opportunity to share everything they

have learned or to meet each other face-to-face. Away Days or Sharing Days give this

opportunity.

 4

2.3 PALLET OF ACTIVITIES

You will organize a SHARING DAY to bring people together to exchange knowledge and

experience and to encourage networking. There exist several forms to organize such a session.

For example, a knowledge fair with different booths where people can walk around to ‘shop’

for information, plenary sessions to reach a large group at once, workshops in smaller groups

to collect and share experiences and ideas with respect to a specific topic or an informal drink

or reception where people can meet and talk with each other. However, not every form is

suitable for each purpose and as all people are different, not every form will work for

everyone.

What is the most effective form for the SHARI&G DAY?

The first purpose of SHARING DAY is exchanging knowledge. However, there are different

kinds of knowledge. There is optional knowledge that is nice to know for the participants and

from which they can choose whether they feel there is a need, but there is also knowledge that

is part of the goals of the SHARING DAY, and you definitely want people to know at the end of

the SHARING DAY. Also, the information can have a general character and be meant for a broad

audience. Or the information can be very specific about a particular topic. Not all forms will

be suitable to transfer each kind of information.

Each form brings the information in a different way. In a presentation there will be only one

way of knowledge exchange namely from the presenter to the audience, while sometimes it

might be advisable to have more interaction with the audience.

Frequently, knowing something is less important than knowing who knows something.

Especially in large company you can not expect everyone to share everything they know but

knowing who does know is more useful. Therefore the other and maybe even more important

purpose of SHARING DAY is networking. Not every form of SHARING DAY lends itself for

networking.

Therefore,

Match the form of the SHARI&G DAY to the kinds of knowledge and purposes you wish to

share.

In a plenary session the whole group is reached at once. Besides presentations about more

general topics, these plenary sessions are also ideal to start and end the day with. An overview

of the day (what can the participants expect), who has contributed to the sharing day and of

course, also practical things as room allocation, timings etc. can be provided in a plenary

session.

A workshop might be more appropriate when interaction with the audience is required. For

more theoretical sessions, where you want to teach the participants a new part of the

methodology or how to use a tool, you need smaller groups to be sure you can pass the

message. These workshops will be more concrete than the general plenary sessions.

Consequently, the danger exists that the target audience for the workshop is not as broad as

the target audience for the SHARING DAY. To avoid this, let the participants choose which

workshops they want to attend.

 5

The knowledge fair can be used to provide information that is ‘nice to know’ rather than ‘need

to know’. People can shop for the information they want by visiting several booths. These

booths can consist of real cases, the education possibilities, contact persons, etc.

Providing information is only one of the goals of a SHARING DAY. Even more important is the

networking aspect. In order to encourage this networking, you need enough time and

possibilities for the participants to meet and talk with each other. More informal sessions as

lunch together or a reception at the end of the sharing day can provide this.

Within one functional domain there are different roles with different competences and

knowledge (business analysts, systems analysts, technical analysts, etc.). The chosen pallet of

sessions should be balanced across general sessions aiming at networking and more specific

sessions offering tailored information for a particular target role or target domain.

The alternation in styles and forms has an advantage that it keeps the participants alert and

interested. KEEP IT FUN is another way to achieve this.

Depending on how broad the audience for the SHARING DAY is, not all sessions might be of

interest for everyone. One option is to let the participants choose which of the sessions they

follow. Another option is to make different tracks where all sessions are mandatory. This last

option might be less complex to organize: participants are divided in several groups and each

group has to follow a prescribed path through the different sessions.

“To WPF or not to WPF” started with coffee and each participant received a documentation

file (which booths at the knowledge fair, which workshops). The plenary session opened with

the results the knowledge management team from the WP community achieved the past year.

After the plenary session, the participants could choose 2 out of 5 workshops to attend. There

was among others a workshop about the new community portal and one about the modeling

tool Mega and how this is related with WP. After a lunch, the participants were invited for the

knowledge fair with 11 booths (KM instruments, best practices: how and where to find them,

education possibilities, real cases,…). After another plenary session with a guest speaker, the

day ended with a reception.

 6

2.4 DRY RUN

You organize a SHARING DAY consisting of several sessions.

You want to bring a clear message with the sessions on a SHARI&G DAY; the participants

should have these right messages at a single glance.

A lot of people cooperate to organize a big event as a SHARING DAY. The different sessions,

workshops and booths in the knowledge fair are prepared by several people, with different

backgrounds, opinions and visions. Varying personal visions should not dominate the agreed

shared overall message you want to have for the SHARING DAY.

One of the aspects of a SHARING DAY is to let people bring their own story and experiences.

However, these people are not always the most experienced speakers and might be not be so

confident to speak in front of a group or to lead a workshop.

Therefore,

Do a DRY RU& of the different sessions to see whether the material in the different

sessions is attuned.

The first purpose of the DRY RUN is to see whether all the material presented at the SHARING

DAY is attuned: attuned with each other (e.g. is there overlap between the sessions? are there

contradicting messages?) and attuned with the target audience (e.g. is the material clear for

the target audience? Will they need more information than delivered in the sessions?). The

SHARING DAY has one general message and this should be visible in all the material. With this

DRY RUN, the organizers can check whether they’ll reach their goals.

Next to attuning the material, this dry run also gives confidence to the people contributing to

the SHARING DAY. The less experienced speakers get a chance to practice the story they want

to tell. The booth keepers get feedback whether their posters and material bring a visible

message. The speakers of the plenary session might not need a test run of their presentation;

often these are the experts in their field and are confident enough about their story. Also in the

one way interaction of such a presentation, there is less chance that hard questions will

interrupt the session compared to an interactive workshop where the audience steers the

session. Nevertheless, it might still be interesting to go through the slides to see whether the

story is concrete enough and the ‘expert’ language is adapted to the audience.

At this DRY RUN, the flyer with the core message of each session given to all participants is

screened.

However, it is not the intention of the DRY RUN to perform a complete test run of all the

sessions, as this might be too time-consuming. In any case, organizing a DRY RUN will add an

extra cost.

 7

2.5 VISIBLE INVOLVEMENT

You are organizing a SHARING DAY.

How to convince people to join the SHARI&G DAY?

Attending the SHARING DAY should be mandatory for all members of the target audience or at

least strongly encouraged. However, the time pressure for other projects might be a reason to

be unable to attend the event.

Therefore,

Make visible that the company attaches great importance to the SHARI&G DAY and stress

the personal benefit of attending the SHARI&G DAY.

Management empowerment is an important fact in a company with a hierarchical structure.

The influence of people in authority in this hierarchical structure should not be

underestimated. Inviting people from management gives a sign about the importance to attend

the SHARING DAY. Also mentioning the number of budget assigned to the event (for example

in the invitation letter) helps to convince them of the importance to attend these sessions.

Although the main goal of the SHARING DAY is a company goal, namely to create a network

for knowledge sharing, one should also pay attention to the personal interests of people. When

people can see an added value in attending the SHARING DAY for their own benefit, interest

and job, they will be more inclined and motivated to attend the SHARING DAY than when they

have the feeling there is only a benefit for the company.

 8

2.6 CENTRALIZED INFORMATION POINT

You want to organize a SHARING DAY. Such a day is not only created for but also by a

community. From the start, a lot of communication about this event needs to be sent to the

participants.

How to conserve the coherence in all the messaging about the SHARI&G DAY?

A sharing day is a large event that needs a long time of preparation and is gradually built. It

starts with an idea, searching for interested people to cooperate, the registration, publishing

the program of the day. When all this communication goes through the mailbox of the whole

community, they will be swamped with emails.

Therefore,

Centralize all the communication in one point, for example the portal of the community.

The SHARING DAY is organized for a particular target audience. Often such a community has

its own portal with all kinds of information. This portal can be used to centralize all the

communication for the SHARING DAY. As this event needs a lot of preparation and some of this

preparation needs input from the community itself, by keeping all information centralized, as

the event is built up step by step, the communication can be given without losing the

coherence between the different steps.

All communication for the WPF-SHARI:G DAY went through the portal of the work preparation

community.

 9

2.7 KEEP IT FUN

You are organizing a SHARING DAY.

How do you keep the audience alert?

Attending the several sessions of the SHARING DAY, it might be a long day to stay alert all the

time.

Therefore,

Insert some frivolous elements.

In a SHARING DAY, you need to care for alternation, dynamics and iterations. Fun is a way to

insert alternation and dynamics into your event which will preserve the energy. By breaking

out of the normal course of the day, you keep the people alert and interested. Additionally,

when you wrap the message in a nice/funny package, people will remember it longer.

However, do not go too extreme with this. Keep your target audience in mind so that the fun

parts don’t come across too childish.

During the WPF-SHARI:G DAY, participants indicated their opinion about several statements

on large thermometers placed outside the auditorium. Additional, instead of normal name

cards, participants wore a card with a statement about WPF.

 10

2.8 PROVIDE A BACK-UP

You organize a SHARING DAY. Part of this SHARING DAY is organized by volunteers, for

example the booths at the knowledge fair.

However, people often underestimate the effort it needs to develop an idea to a session or

booth.

Lots of people will be enthusiastic at the start and come up with nice ideas to bring on the

SHARING DAY. But it takes time and effort to evolve from an idea into a well-organized

workshop or a completely worked-out booth for the knowledge fair. Often people

underestimate this and drop out near the end of the preparation phase and close to the day of

the event.

You bring one story at the SHARING DAY and all the messages in the different sessions build

up to this one story and message. When people drop out, there is a risk that your concept of

the sharing day falls apart.

Therefore,

Always provide some back-up material in case people drop out at the end.

At the start, while brainstorming for ideas, plenty of ideas for sessions and booths will come

up of which only a few will be selected to work out. However, the other ideas can serve as

back-up material. Be aware, as an organizer, to incorporate the required time to work out

these ideas last minute.

Acknowledgements

The authors would like to thank Jason Yip for his very useful remarks during the shepherding

process and also the participants of the ‘Collaboration and Management’ Writers Workshop.

This paper has been written as part of the KBC-research chair on ‘Managing efficiency

aspects of software factory systems’ sponsored by KBC Global Services NV.

References
[1] Kelly Burke and Laku Chidambaram, ‘Do Mediated Contexts Differ in Information Richness? A

Comparison of Collocated and Dispersed Meetings’ Proceedings of the 29th Annual Hawaii

International Conference on System Sciences - 1996

[2] Mary Lynn Manns and Linda Rising, ‘Fearless change: patterns for introducing new ideas’, Addison-

Wesley, 2004

[3] The instrument SHARING DAY was developed and implemented by DNV CIBIT in cooperation with

KBC ICT/ knowledge management team

[4] Direct communication with Jason Yip, ThoughtWorks

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 1 of 24

Business Patterns for Product Development
 (EuroPLoP 2008)

Allan Kelly - http://www.allankelly.net

1 Abstract
This paper introduces four patterns for use by software development
companies, predominantly independent software vendors (ISVs), for growing
their business and creating new products. Starting with a single product
company these patterns describe how product and services are added to the
market offering to create a whole product and then a company with a product
portfolio. The product roadmap is introduced as a planning tool for product
growth and enhancement.
The patterns presented here are:

• SINGLE PRODUCT COMPANY – When time and resources are scarce, focus
all your attention on developing and marketing one product.

• WHOLE PRODUCT– Provide additional products and services so customers
are able to recognize the promised value from the product.

• PRODUCT PORTFOLIO – Managing your products as a portfolio.
• PRODUCT ROADMAP– Create a product roadmap to show a vision for the

future.

2 Audience
These patterns are intended to codify several common business practices in a
pattern language so that they may be better understood, communicated and
studied. Within existing companies many of these patterns already exist,
albeit as tacit knowledge or embedded in operating practices.

The patterns given here are intended for those creating and applying
corporate strategies. This group includes, existing managers, future managers
and entrepreneurs as well as those studying to take on such roles.
In particular it is hoped that those on the receiving end of such strategies and
tactics will find these patterns informative and useful. Understanding what a
company is attempting, why it is acting and the implications can be benefit
everyone in the organization.

Proceedings of the 13th European Conference on Pattern Languages of Programs
(EuroPLoP 2008), edited by Till Schümmer and Allan Kelly, ISSN 1613-0073 <issn-
1613-0073.html>.
Copyright © 2009 for the individual papers by the papers' authors. Copying permitted
for private and academic purposes. Re-publication of material from this volume
requires permission by the copyright owners.

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 2 of 24

The patterns in this paper, and others in the series (Kelly 2005a, b, 2006,
2007a, b) may be read and applied outside the domain of software
companies. They may be applied to technology companies in general and to
non-technology companies in some instances. The author has chosen to
confine the domain and context of these patterns to software companies for
two reasons. Firstly this is the domain the author knows and has experience
in. Secondly, limiting the domain helps maintain the brevity of the patterns.
Despite these deliberate limitations the author believes many of these
patterns may be applied in contexts outside the software domain.
In parts the patterns draw on existing research and literature. Inevitably these
patterns represent the author’s understanding and views on how companies
should go about tackling the problems identified. While there are no right
answers to these problems - indeed some out dispute the problems identified
– it is hoped that these patterns can help expand the understanding of
business strategy in the technology domain.

3 The Patterns

Figure 1 - Pattern sequence

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 3 of 24

SINGLE PRODUCT
COMPANY
Page 4

When a company is starting there are so many things to
do. Focus all your attention on a single product. Get
this product right and get it selling before moving onto
other products.

WHOLE PRODUCT
Page 8

Customers buy your product to solve a problem but
solving the whole problem requires more than just your
product. Therefore sell your product with everything
needed to solve the whole problem.

PRODUCT
PORTFOLIO

Page 15

As a company grows it will offer more and more
products but this makes it difficult to focus. Consider
all your products as a portfolio. Balance the portfolio to
achieve your corporate objectives.

PRODUCT ROADMAP
Page 16

Customer and co-workers need to know what will be in
future versions of the product. But you need to be able
to change what features are included and when. So
create a roadmap that shows future features with
approximate dates. Use the roadmap to solicit views
and revise the roadmap. Keep the roadmap as a living
document.

CORE PRODUCT
ONLY
(Kelly 2005a)

Reduce costs by only supplying the core product,
anything extra should be billed separately.

SIMPLE PRODUCT
VARIATIONS

(Kelly 2005a)

Product variations allow you to differentiate your
product from competitors and provide your customers
with a choice they value. But variations can be
expensive to produce and support; therefore, offer
simple variations on the product, e.g. choice of colours.

CONTINUING
SERVICES FOR
PRODUCT

(Kelly 2005b)

Complex products often require continuing maintenance
and support. The company that makes the product
already knows a lot about it, and so is well placed to
perform this activity too. By sharing knowledge
between services and products operations, both can be
improved.

CUSTOMER PO-
CREATED PRODUCT
(Kelly 2007b)

Ensure your product will do what your customers want
by enrolling customers in your development process.
This gives them an opportunity to influence the product
design and implementation.

SAME CUSTOMER,
DIFFERENT
PRODUCT

(Kelly 2007b)

It is easier to sell to existing customer than it is to find
and sell to new customers. Therefore have additional
products you can sell to your existing customers.

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 4 of 24

3.1 SINGLE PRODUCT COMPANY

Figure 2 - 1908 Model-T Ford

 After several iterations Henry Ford finally found a commercial
success with the Model-T Ford. The Ford Motor Company initially
focused on just producing this one car and, famously, in one colour
only: Black.

Context You have identified a need in the market and have decided to start a
company to address the need. You believe the need is best satisfied
by a product rather than a service, so will not use SERVICES BEFORE
PRODUCT (Kelly 2005b).

Problem When you start a product company what do you do first?

Forces When you start a company the world is our oyster. There are
countless opportunities for new products and vast untapped markets.

Companies are normally brought into being to do something
specific. To address need in the market, an opportunity with a
specific customer or exploit a new technology. But there are many
ways you can go about addressing something, it is hard to know
where to start, and even harder to know whether you are addressing
it in the right way.

There are many things a new company has to do: legal status,
accounts systems, recruitment, customer accounts, etc. etc. but the
company founders only have so much time, energy and money to
devote to all these issues. All companies have limited resources and
new companies are more limited than most.

Solution Decide on one product and focus all your attention on
developing the product, delivering the product and marketing
the one product. Bring this product to market as quickly as
possible.

Ask the question: “What is stopping us from delivering this product
tomorrow?” Direct your time, energy and money at resolving the
issues identified by this question.
Identify your target market and target customers as early as possible.
Engage with them before the product is finished, they may be happy
to offer advice, to beta-test the product, or act as a lead customer -

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 5 of 24

see CUSTOMER CO-CREATED PRODUCT (Kelly 2007b).
Ensure your target customers can pay for the product one way or
another. You may sell the product in a single transaction, or charge a
monthly fee or offer your product for free and sell advertising
around it. However you decide to monetarise your product make
sure the revenue will cover your costs and give enough profit to
justify the investment.
When the chosen market is large, and the problems to be solved are
many, then define your own niche to improve your focus.
Deliberately put some opportunities out of bounds. By defining the
part of the market you will address you will improve your own focus
and reduce the amount of time you need to deliver a product.
Having a clear idea of who your target market is, and what you have
to offer should make it clearer to communicate your marketing
message.
Focus on the core problem the product is solving, limit extra activity
and work on both the product and the company as a whole. Leave
extra functionality out of the product and limit the growth of the
company organization. Defer non-essential activities like setting up
a human resources department, or look to do them differently,
maybe rent services or outsource work.
While developing your product avoid the distraction of offering
services, avoid the temptation to develop additional products. Focus
on your market, focus on the product you are developing, focus on
your potential customers.
When your product is available this advice no longer holds. You
may need to supplement your offering with services or additional
products as described in WHOLE PRODUCT and from there to
PRODUCT PORTFOLIO.
There is no guarantee that your first product will be the right one.
While researching the market, building the product or even after
product launch you might identify a more interesting prospect and
decide to change focus. Consider using EXPEDITIONARY
MARKETING (Kelly 2004), to help refine your product ideas.

Once established most companies relax their focus on the single
product. They may add additional products and services around the
original product (as in WHOLE PRODUCT) or they may diversify with
new products – see SAME CUSTOMER, DIFFERENT PRODUCT (Kelly
2007b) and PRODUCT PORTFOLIO.

Consequences Knowing what single product you are producing, and what single
problem you are solving will make it easier to focus your resources
and limit distractions.

By keeping features and functionality to a minimum you can reduce
development costs and shorten the development cycle. However
this means the features you do implement need to be the right ones
to make your product attractive.

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 6 of 24

Focusing on the product will detract from building the company
organization and infrastructure. In the short term the company needs
the product – and the resulting revenue – more than it needs the
infrastructure of human resource departments, public relations and
such. But such capabilities too long can have negative
consequences. Companies may work sub-optimally if new business
units and functions are not created when they are needed. For
example, a dedicated technical support desk may be a distraction at
the start but when there are many customers it is more disturbing to
have engineers answer queries directly.

Similarly, once the product is established and revenues are flowing
companies need to consider supplementary and additional products.
Delaying new products may leave opportunities for competitors to
enter the market. Use Whole Product and Product Portfolio, and
product services like PRODUCTS WITH SERVICES (Kelly 2006),
START-UP SERVICES FOR PRODUCTS and CONTINUING PRODUCTS FOR
SERVICES (Kelly 2005b).
Marketing is easier when your (new) company name is associated
with one product, e.g. Hoover in Europe and Q-Tips in the USA.
Companies which do not expand their product portfolio are often
acquired by large companies where they form part of a portfolio.

Variations Companies that do not follow this strategy from the beginning can
still adopt this strategy later. In order to create focus shed additional
products, withdraw from non-core markets and decline customer
business outside the core area. Review employee incentives to
ensure everyone is focused on the same thing. It is no use focusing
on quality if engineers are still given bonuses for solely making
delivery dates.

Focus need not be product related, although for software companies
it usually is. Companies may focus instead on particular customer
and their needs, or specialist activities.
In some markets it customers may expect to buy a set of similar
products. For example, a customer buying a lipstick may expect to
buy matching nail-tarnish, if they cannot then they may by nothing.
Generally this is not the case for software companies.

Examples Most start-up companies pass through a single product period in
their early days. Originally Apple only sold the Apple II computer
while Intuit started with Quicken alone.

Henry Ford is famous for offering his customers “Any colour they
like so long as it is black”. Early Ford operations were totally
integrated and focused on producing one car in one colour. This
helped Ford to enter and dominate the early motor business but also
provided opportunities for competitors. However this strength was
also Ford’s weakness. By offering customers choice in the product
General Motors was able to compete with Ford.

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 7 of 24

Also known
as

-

Related work
& Sources

CORE PRODUCT ONLY and SIMPLE PRODUCT VARIATIONS (Kelly
2005a) describe how to manage costs by focusing on a single
product and how increase revenue with additional sales or variations.

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 8 of 24

3.2 WHOLE PRODUCT

Figure 3 - The whole product doughnut

 In the 1980’s Silicon Graphics (SGI) set out to target the Hollywood

post-production film editing process. Rather than emphasis the raw
power and all-round capabilities of their machines SGI specifically
presented their machines as video image editors. They added
features such as video device interface ports to their machines to
make their product superior to competitors for this specific task.

Context Your first products are in the market and have sold well to early
adaptors. There is more to using the product that plug-and-play.

Problem How do you ensure technical products deliver value to
customers?

Forces New technology is cool in its own right, it may be used in many
ways and produce many benefits. But using the technology to
address real world problems requires work. Some customers (early
adopters) are prepared to buy the core technology and make it work
for them. But many more potential customers are not prepared, or
able, to put in this effort so will not buy your technology.
You wish to expand your market beyond the technical savvy early
adaptors, but your product is complicated, those individuals or
organizations without technical know how will find it difficult to
recognize value from the product.
The value of your product can only be recognised when it is used in
conjunction with specific hardware or additional software; when
people are trained in the system, when the product is integrated with
existing systems, when processes are changed. Each of these
additional requirements put obstacles in the way of sales and
customers seeing the full value of your product.

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 9 of 24

Competitors offer products that can match, or even better, your
products in many tasks. Your competitors may even have
advantages over you, they may have a respected brand name or their
technology may be better.

Some markets may not be aware of how your technology can
improve their work. Even if they are aware they need to bring
together and integrate several technologies to realise the benefits.

Solution Match your technology to your market, identify a market where
your technology can deliver benefits to customers and seek to
solve customer problems completely. To do this bundle your
generic product with any additional products and services are needed
for customers to recognize the promised value from the product.
Market the complete package to customers in your chosen market.

Continually seek to identify the obstacles that stop customers from
maximising their benefit from the product. Remove each obstacle
either by changing the product or supplementing the offering with
extra products or services.

Differentiate yourself from technology peers by addressing the
needs of a specific market. If the product needs additional hardware
then bundle the product with the necessary hardware. If additional
software is needed to interface with other systems then supply the
software. If integration services, training or support are needed then
supply these – use CONTINUING PRODUCTS FOR SERVICES. You may
choose to supply these products and services yourself or you may
enter into partnerships with others who can supply them.

Direct your marketing effort at your chosen market. Advertise to
this industry, attend their shows, sponsor their industry awards – be
part of that industry. Show how your technology is better than
competitors because you cater for the market needs and solve their
problems.
Be clear about the problems your product solves, before adding or
changing anything about the product ask: Will this help solve the key
problem? Rather than think of your product as a set of features
think of it as a single solution.
Creating a whole product and matching customer needs is not about
selling more accessories and services around your product, it is
about making sure your solution solves a customers problem and the
customer recognises value from your product. Taking features out
of your product may help the customer reach these objectives too.
For example, a product cluttered with features for customers outside
the core market may make the interface or installation more
complicated

Consequences Your technology is applied to a specific problem in a specific market
– sometimes called a market vertical. The core technology product

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 10 of 24

is augmented in such a way that it fixes this problem perfectly, you
sell a whole product, not a technology.

The technology is hidden, removed and sometimes simplified so that
the product application represents a complete solution. The benefits
of this solution are available far beyond the technology enthusiasts.
The value of your whole product is clearly spelt out by defining the
tasks it will perform and the benefits it will provide. Focusing on the
benefits and final product you actively set out to remove all barriers
between customers buying the product and seeing the benefits.
You will differentiate yourself from competitors with similar
technology who do not focus on your chosen market. You will be
able to point to similar technology from competitors and explain
why they cannot deliver the benefits you do.
Being the first to bring new technology to a specific market will give
you a head start – so called first mover advantage. It will also give
you a chance to define the market and product offering. Even if you
do not have first mover advantage in the market, or with the
technology, you can still define a niche were you will serve
customers better than any competitors.
Choosing your niche, and focusing your technology into a product
for a specific market vertical limits the size of your market. Instead
of targeting a wide and shallow market you are aiming narrow and
deep. Once you have dominated one vertical market you can repeat
the exercise in another market adjacent to the first one. It is easier to
tackle one vertical at a time than attack on a broad front.
As your product offering grows you will be able to justify a higher
price. Fixing a specific problem in a market will help identify the
value, and thus price, of your product. When your product offering
contains an ongoing element (e.g. technical support or operations
management) you will be able to charge regular fees. The fees are
not only an additional source of revenue they are more predictable.
Such fees will add to your company value because they are
considered ‘high quality’.
Focusing on a specific market or market segment will mean passing
over sales prospects in other area. This is necessary to create true
focus but may lead to some difficult decisions, particularly when the
sale in prospect is big. Continue to chase deals outside your core
market will dilute the focus.

An established company adopting a whole product strategy will need
change its own structure and organization. People working to
support non-core markets may need to be redeployed or even laid-
off. Existing customer in non-core markets also present a problem,
whether it is better to continue supporting them or withdraw your
product will depend on your exact relationship with the customers.

Providing services as part of a product offering can cause conflicts
in product development and quality management. See the

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 11 of 24

discussion in CONTINUING SERVICES FOR PRODUCTS (Kelly 2005b).
Variations It is preferable to stop selling the generic product on its own. This

will help focus your marketing message, simplify pricing and
remove the danger of competing with yourself. But withdrawing
from markets, or not allowing customers to mix and match your
product with other “best of breed” may harm some of your
prospects.

Examples See Crossing the Chasm (Moore 1999) for a longer discussion of
whole product strategy and numerous examples including: Silicon
Graphics, Intuit and Documentum.

Also known
as

-

Related work
& Sources

A WHOLE PRODUCT strategy is the opposite of a CORE PRODUCT
ONLY (Kelly 2005a) approach. Both strategies may lead to SIMPLER
PRODUCT (Kelly 2007b).
Lean Solutions (Womack and Jones 2005) advises suppliers to
“Solve my problem completely.” That is, provide solutions to
customers entire problem not part of the problem. Such an approach
would naturally lead to a WHOLE PRODUCT strategy.

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 12 of 24

3.3 PRODUCT PORTFOLIO

Figure 4 - Nokia Phones

 Few large companies sell just one product, Nokia sell a range of
phones to suit all tastes and budgets. You can choose between a
small 6300, a large N95 with a hard disk or a Blackberry like E61.

Context You have successfully used SINGLE PRODUCT COMPANY and WHOLE
PRODUCT. It is time to grow the company and you are building
SAME CUSTOMER, DIFFERENT PRODUCT.

Problem How do you decide which products to continue selling, which to
introduce and which to discontinue?

Forces Company strategy is no longer synonymous with one product. Your
new strategy needs to encompass multiple products. But your
resources are still limited and your potential products all demand
resources. Some trade-offs and compromises are necessary but
nobody wants to loose resources.

New products need time to demonstrate significant sales but demand
development resources. Old products might be profitable but they
are near the end of their life and vulnerable to competition. Even if
you do not wish to grow the company you still need to consider new
products. Customer needs and tastes change over time. Products
age in the market – competitors enter and new technology change
production options. Introducing new products, changing existing
products and retiring old products all takes time, money and effort.
You need to decide how to allocate your resources between these
activities and how to reduce risks.

Being a single product company has brought you success but you
now need to grow the company. Maintaining focus on one product

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 13 of 24

brought success but, by definition, you cannot focus on too many
things.

What is in the best interests of the portfolio may not be in the best
interest of a specific product, and vice versa. Tension arises
between products serving one market and products serving another
market. More tension will arise because products are build by
different teams, decisions about individuals effect the portfolio and
vice versa.

By following WHOLE PRODUCT you now have a cluster of product
around the original product. But as this cluster grows, and as more
different products are added it is difficult to see the common
elements. Each additional product – or service – requires
management attention; the same managers have more work to do.

Solution Instead of managing each product as a single product manage
the collective product portfolio. Delegate management of
individual products to specific teams and managers. Each product
line can then focus on its product(s) while company management
should then focus on the overall portfolio of products.
This is easier said than done. There are many criteria and conflicts
to manage. The portfolio needs to balance the need for an orderly
introduction of new products and retirement of old products, and
balance the customers need for a range of products to choose from
and switch between.

There are many criteria that may be used in creating a product
portfolio so it pays to define your criteria before evaluating the
portfolio. Criteria need to be based on company goals and
objectives, risk aversion, approach to innovation, cost of producing
new products, customer need and many other factors.
With the right criteria in place the portfolio will reflect company
strategy. If you are driven by near term profits then all your
resources should be put into the most profitable products.
Conversely, if you are looking for growth you may tolerate loss-
making products that may bring in new customers and growth in the
medium term.
For some companies the customer’s need for a selection of products
will dominate, for example Nokia’s mobile phone range. Or
companies may offer customers a range of products for the different
stages of their lives, so Ford Europe offers the small Fiesta car for
young drivers, the Focus for couples with young children and the
Galaxy families.
Other companies may need to balance aging products against new
introductions will be paramount. Stability and continued support
may be important in some sectors while innovation and fresh
products are important elsewhere.

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 14 of 24

Your product portfolio needs a unifying theme, or core competency.
The theme may stem from your capability with some technology, or
from servicing a particular type of customer, or solving a certain
type of problem.

When constructing the portfolio consider how customers needs
differ, why they might change, what they will need (or want) next
and provide a product. By covering a variety of positions you have
multiple products to offer your customers as their needs develop and
change.
Both the criteria used to evaluate products and the methods used to
manage the portfolio are large topics and outside the scope of this
pattern. Two approaches to constructing a portfolio are detailed in
the side-boxes Vertical and horizontal portfolios and BCG Product
Growth Matrix. Many other approaches are possible.

Consequences Setting portfolio criteria and positioning products against each other
will highlight product priorities and inform resources allocation.
The portfolio view will help balance product introduction and
retirement by showing product lifecycles. This in turn will help
reduce risk.
Studying the portfolio as a whole will help identify gaps and
opportunities for new products. You will also see product overlap
where one product is stealing sales from another. You can also see
products that are in decline; these may be revived by further
investment or milked for further sales without investment.

Introducing new products can offset slowing sales of an aging
product. Alternatively you may be able to rejuvenate the aging
product by offering it into a different market segment.
By offering a selection of products you can retain your hard won
customers as the look for new and different products. When you
have a relationship with your customers they will want to do
business with you again; and when you sell them more products you
will strengthen the relationship.

Company strategy is now concerned with a range of products you
offer and how those products relate to one another. Each product
group can continue to focus on their product while you focus on the
portfolio.

Tensions between different products, and between individual
products and the roadmap or company strategy, are easier to
recognise even if they cannot be resolved.
Rather then focusing on a whole product you are looking at the
whole company. Delegation becomes possible and individuals can
be allowed to focus on individual products.

A balanced portfolio will allow you to invest in new products and
take risks with the products you develop and introduce without
jeopardising the security of the company. The portfolio will also

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 15 of 24

allow for the organized retirement of older products so customers
can be migrated to new products and support wound down.

Without a unifying theme your portfolio, and company, will start to
resemble a conglomerate. Although conglomerate’s have advantages
they often trade a discount when listed on a stock market.
Portfolio management can lead to sub-optimal decisions for
individual products. Some products may be held back for fear of
damaging others or cannibalising sales. Competitors may be able to
exploit such gaps by introducing their own products. For example,
IBM initially held back the PC so as not to damage sales of mini-
computers but competitors raced to enhance the capabilities of the
PC.

Variations The BCG matrix is a widely cited and critiqued example of a
portfolio management technique (see sidebar).

Examples Product portfolio abound, most large companies offer a range of
products.

Also known
as

-

Related work
& Sources

Use Product Roadmap for each product then synchronise the
roadmaps.

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 16 of 24

Vertical and horizontal portfolios
Portfolios may be vertically or horizontally, or a mix for both. In a
horizontal portfolio the products fulfil a similar need. For example, Dell’s
laptop portfolio, is arranged horizontally. The laptops are broadly
comparable but are alternatives aimed at different users: Inspiron is aimed at
home users and Latitude at business users. A buyer will choose the laptop
that best meets their needs but are unlikely to buy more than one.
Vertical portfolios are made up of products which link together. Buyers are
likely to buy several products from the portfolio to work together. For
example, IBM offers the Z Series mainframe, Figure 5, this runs the Z/OS
operating system, on which can be run the DB2 database and on top of that
Office Vision office automation software. In a vertical portfolio one product
leads to the next.
A WHOLE PRODUCT strategy creates a horizontal portfolio of products that
serve a specific need. The layers of the stack are unimportant to the final
customer who wants a solution to some problem. Each generic product will
have its own mini-portfolio of related products and services. Some of these
may be products in their own right if developed right.

Figure 5 - IBM offers a vertical portfolio of mainframe products

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 17 of 24

BCG Product Growth Matrix
The horizontal and vertical view of the product portfolio describe how a
portfolio is presented to customers. Another way of looking at a portfolio is
the Growth Share Matrix, Figure 6, from the Boston Consulting Group
(BCG). This approach looks to maximise the return for the whole company.

Figure 6 - Boston Consulting Group's Growth Share Matrix

The matrix divides products into one of four categories based on whether the
company has a high or low market share, and whether the market as a whole
is experiencing high or low growth.
Companies that follow the matrix are advised to maximise their returns from
Cash Cows while minimising investments because the market is not growing.
Companies are advised to discontinue Dogs – low sales and little potential
growth - and invest in Stars that will produce profits in future. There is not
standard advice for Question Marks, those products which have potential but
are currently performing poor. These products require closer attention.
Such advice can be simplistic, particularly for small technology companies.
More detailed analysis may consider the profitability of products and their
role in providing for a Whole Product. An unprofitable Dog product may in
fact be providing vital support to another product.

One problem with the growth matrix can be defining the market. Crossing
the Chasm (Moore 1999) advise companies to define the market as narrowly
as possible in order to focus action and present the company as the market

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 18 of 24

leader. Following this advice renders half the matrix pointless because we
have defined our market as a market we dominate. Thus there are no Dogs
or Question Marks. Conversely an expanding company may redefine its
market more broadly in a search for growth. At a stroke a Star product can
be turned into a Dog.
The question of market share and market definition can have a profound
effect on company action. During the 1980s General Electric famously
pursued a strategy of being ‘number one or number two’ in every market it
operated in. The company exited those markets were it could not achieve
first or second place market (Welch 2001). However one way to achieve
leadership was to define the market narrowly. In doing so the company
could miss profitable opportunities in a wider market.

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 19 of 24

3.4 PRODUCT ROADMAP

Figure 7 – Near term product roadmap

 “It's tough to make predictions, especially about the future.” Yogi
Berra, American baseball player and philosopher
”One of the biggest roles of science fiction is to prepare people to
accept the future without pain and to encourage a flexibility of
mind.” Arthur C. Clarke, science fiction writer
You can’t predict the future for your product but you need to base
your activities around a map everyone can agree on.

Context You have an existing product in the market. Now you have to tell
customers and staff how the product will develop.

Problem How do you plan for a product’s future, and communicate this
to customers, employees and partners when the world changes
so much?

Forces Without new products, and new versions of existing products the
company will not advance. Without a vision of what will be in
future products it is difficult to plan for the future and impossible for
your engineers to start building.
It is always difficult to foresee the future, but lots of people want to
know what your product will do in future. Your customers want to
know what your product will do in future. Your organization needs
to plan for the future, what resources will it need? When will it have
a new product? But you cannot answer their question with absolute
certainty.
Lots of disparate groups have an interest in knowing and suggesting
what the product should do in future, but how do you incorporate
their ideas? And how do you explain the result? The product will

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 20 of 24

need to meet future customer needs, it needs to take advantage of
new technology, the product needs to fit with the company strategy
and will help shape future strategy.
A plan can be formulated from these ideas and opinions but plans
take time to develop and even longer to implement. During that
time things change, and some things take longer than expected.

Different groups might feel the need to create different visions of the
future. The Product Management group might create a roadmap
which addresses customer needs while research and development
create on that looks at future technology development. But multiple
roadmaps will fragment your future vision, they might even conflict
and may confuse customers.

Figure 8 - Roadmap creation

Solution Create a product roadmap to show a vision for the future. The
roadmap does not contain a lot of detail, it is more about vision than
execution, it shows where you are going rather than a detailed route.
Before building the roadmap decide who the stakeholders are and
find out what they want from the product in the future. Customers
are the most obvious (and important) stakeholders, the actual users
of the product are important too – often, but not always, customers
and users are the same people. People in the company will also have
needs and suggestions that will be useful.
Divide the roadmap into time-buckets, perhaps by year quarters or
by ‘next three months, 1 year, 5 years’ – whatever division works
for you. Put different objectives in different buckets and keep
timescales vague.
When there are lots of enhancements, features and changes to make
group them into themes. Each theme should address a specific
aspect of the customers problems.

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 21 of 24

Mark key events and dates on the roadmap too. For example, trade
shows you wish to exhibit at, legislation changes, important
financial reporting dates, anticipated competitor actions and dates
important to your customers.

Show the roadmaps back to the stakeholders and listen their
feedback. Present the roadmap to the whole company and listen
again. Use their feedback to change the roadmap. Roadmaps are
living documents and subject to change. Expect to update your
roadmap at least quarterly, certainly not just for the annual report.
Incorporating different groups and listening to feedback will help to
bring everyone in the company to agreement on a single roadmap.
Technology development and customers needs can – and should –
be shown on a single map which is simple to understand. Careful
attention needs to be given to timelines so technology introductions
and changes can be made.
Avoid making commitments based on the roadmap, you will need to
commit to some things, for some dates, but the majority of the
roadmap needs to be flexible. (Work might take longer than
expected or needs may change.) The closer something is on the
roadmap the more definite it is. Items that are further away (e.g. five
years out) may be removed long before the date shown.
It may not be wise to show customers your full roadmap. Such a
roadmap may contain information you don’t want them to have, e.g.
features for their competitors. You may wish to show customers
versions of the roadmap which emphasis the things they are
interested in, and hide other elements. Avoid these problems by
never letting a sales person conduct a roadmap presentations alone.

Consequences The roadmap provides the future vision for people to work towards.
It is always a best efforts map because things always change.
A roadmap describes one version of the future and provides a base
for further discussion. Some psychologist call this a transient
object. You cannot tell the future exactly but the roadmap allows
you to talk about and plan.
The roadmap, the picture, accompanying documentation and verbal
description are the result of many inputs. Some people will
immediately see their suggestions, others will need to be shown.
Some suggestions will be absent from the roadmap because it is not
possible to satisfy everyone. The roadmap will allow you to explain
what was left out and why. If every idea is included the roadmap
will be impossibly large and complicated. What you leave out is
may be more important than what you include; there are always
some requests which are best turned down.

Creating a single roadmap which reconcile different departments –
such as marketing and R&D – will create a unified vision across the
company.

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 22 of 24

Developers can start work on developing the products and features
on the roadmap. Although items on the roadmap will change there
will be enough certainty at the start of the map to start work.
Regular updates between roadmap owners and developers will be
needed to accommodate changes on both sides.
Salespeople can use the roadmap to sell products by promising
features. This can help improve sales but can be problematic when
sales people sell features that are later delayed or removed.

A roadmap will raise expectations and perhaps inevitably form the
basis of commitments and when a roadmap changes some
commitments will be broken. Sometimes this is difficult to avoid
but when commitments are being broken on a regular basis it is a
sign something is wrong. Look for the underlying reason: perhaps
the roadmap is being interpreted too literally, perhaps sales people
are over stepping their authority, perhaps you planning and roadmap
creation process needs to be improved, perhaps the development
team needs more resources, or perhaps you too optimistic.
Roadmaps can be used to sow fear, uncertainty and doubt and to
retain customers with promises of new features. This should not be
the primary use of a roadmap.

Roadmaps show priorities so adding a new theme or feature means
deciding its priority relative to other items. Conversations about the
roadmap quickly turn into conversations about relative priorities –
and shows there is no free lunch.

Variations
Examples

Also known
as

-

Related work
& sources

The author has worked with several ISV who have successfully used
product roadmaps.

Creating the roadmap is a learning exercise, as it is created you will
be forced to think about the future. Once created the roadmap is also
a learning tool to help stakeholders learn about the future and
consider options. A roadmap may be considered a scenario for the
future.
Scenario planning (Schwartz 1991) is a well developed field and you
might borrow some techniques. For example, try creating several
roadmaps and select the most promising, Once a roadmap is
selected the organization sets out to build the product described.
If you also following Product Portfolio remember to synchronise
your various roadmaps where necessary. It may also be useful to
produce a high-level portfolio roadmap.

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 23 of 24

Acknowledgements
Many thanks to Klaus Marquardt for shepherd this paper to EuroPLoP 2008
– one would think after two of these papers he would have had enough but he
came back for a third. Thanks too to the participants of Workshop C at
EuroPLoP 2008: Valerie Brown, Gwendolyn Kolfschoten, Stephan Lukosch,
Lotte De Rore, Dinesha Koravangala, Birgit Gruber and Andreas Fiesser.
Figure 1 - Pattern sequence: author’s own illustration.

Figure 2 - 1908 Model-T Ford: from Wikimedia, copyright expired, public
domain image

Figure 3 - The whole product doughnut: Wikipedia, version 1.2,
http://en.wikipedia.org/wiki/Image:Marketing-whole-product.png. Published
under GNU Free documentation license
Figure 4 - Nokia Phones: Copyright Nokia 2008, taken from nokia.com press
section, pictures for media use.
Figure 5 - IBM offers a vertical portfolio of mainframe products: author’s
own illustration.
Figure 6 - Boston Consulting Group's Growth Share Matrix: author’s own
illustration based on Wikipedia illustration, GNU Free Documentation
License.

Figure 7 – Near term product roadmap: author’s own illustration.
Figure 8 - Roadmap creation: author’s own drawing, includes images from
iStockPhoto (purchased) and Inspiration software.

History
Date Event

August 2008 Workshop comments incorporated

July 2008 Workshop review at EuroPLoP 2008

March – June 2008 Shepherding revisions

January 2008 Revisions for submission to EuroPLoP 2008

December 2007 First draft

References
Kelly, A. 2004. "Business Strategy Patterns for the Innovative Company." In
VikingPLoP 2004. Uppsala, Sweden.

Kelly, A. 2005a. "A few more business patterns." In EuroPLoP 2005, eds. A.
Longshaw and W. Zdun. Irsee, Germany: UVK Universitassverlag Konstanz GmbH.

Kelly, A. 2005b. "Business Strategy Patterns for Technology Companies." In
VikingPLoP 2005. Espoo, Finland.

Kelly, A. 2006. "Patterns for Technology Companies." In EuroPLoP, eds. L. Hvatum
and W. Zdun. Irsee, Germany: UVK Universitassverlag Konstanz GmbH.

Business Design Patterns for Product Development 12-May-09

(c) Allan Kelly 2007 – www.allankelly.net Page 24 of 24

Kelly, A. 2007a. "More patterns for Technology Companies." In VikingPLoP 2007.
Bergen, Norway.

Kelly, A. 2007b. "More patterns for Technology Companies." In EuroPLoP, eds. L.
Hvatum and T. Schümmer. Irsee, Germany: UVK Universitassverlag Konstanz
GmbH.
Moore, G.A. 1999. Crossing the Chasm. Capstone publishing.

Schwartz, P. 1991. The art of the long view. New York: Bantam Doubleday Dell.
Welch, J. 2001. Jack: what I've learned leading a great company and great people.
London: Headline Book Publishing.
Womack, J.P. and D.T. Jones. 2005. Lean Solutions. London: Simon & Schuster.

Dietmar Schütz
Siemens AG, CT SE 2

Otto-Hahn-Ring 6
81739 München

Germany
eMail: dietmar.schuetz@siemens.com

Phone: +49 (89) 636-57380
Fax: +49 (89) 636-45450

BITSTREAM X-CODER
Version 1.0, EuroPLoP2008 Final

This pattern provides an efficient solution for decoding densely packed bit-
streams into properly aligned data structures. This conversion problem is
typical for communication scenarios, where limited bandwidth and
processing speed require strong optimization, and hence motivate different
structures for both tasks. The proposed solution operates on bigger chunks
instead of single bits, and prevalent shift operations are replaced by a finite
state machine and lookup tables, thus yielding formidable throughput.

Summary

Context Software applications dealing with dense coding of information, for
example communication protocols of embedded systems.

Example Consider an application scenario where wireless communication and
transponders are used to exchange information with objects passing at
significant speed. The contact duration is very short, and due to
transmission reliability, the bandwidth is rather low too.
In order to pass as much information as possible, the telegrams transmitted
are packed densely, not wasting any bits.
For efficient processing in the target environment, the telegrams need to be
“unpacked” into word-aligned data structures.

Proceedings of the 13th European Conference on Pattern Languages of Programs (EuroPLoP 2008),
edited by Till Schümmer and Allan Kelly, ISSN 1613-0073 <issn-1613-0073.html>.
Copyright © 2009 for the individual papers by the papers' authors. Copying permitted for private and
academic purposes. Re-publication of material from this volume requires permission by the copyright
owners.
Copyright granted to Hillside Europe for use at the EuroPLoP2008 conference.

1

Inflating a dense stream of bits into a word aligned data structure

The figure below is a concrete example taken from the European Train
Control System (ETCS) “language” [UNISIG]. The left part shows the
structure of a “static speed profile” telegram, containing two nested iterative
subsections, each controlled by a counter value N_ITER. The right part
shows the corresponding word-aligned data structure.

2

struct sPACKET_27 {
 int packetId; //NID_PACKET
 int direction; //Q_DIR
 int packetLength; //L_PACKET
 int scaleFactor; //Q_SCALE;

 int nSpeedData; //N_ITER +1
 struct sSpeedData {
 int staticDistance; //D_STATIC
 int staticSpeed; //V_STATIC
 int frontIndicator; //Q_FRONT

 int nCategory; //N_ITER(k)
 struct sCategory {
 int categoryId; //NC_DIFF
 int cateorySpeed; //V_DIFF
 } aCategory[33];
 } aSpeedData[33];
};

Telegram structure definition
(with two nested iterative
subsections)

Corresponding target data structure definition
(in C)

Another (simpler) example is base64 [Base64], a popular binary-to-text-
encoding scheme used to transmit binary data across media that only
support ASCII-printable characters (who’s most significant bit equals zero).
In this scheme, three in-bytes are inflated to four out-bytes, where every
out-byte holds six of the 24 in-bits.

Problem Processing units usually operate on aligned data (such as bytes and words)
much faster compared to addressing and working on single bits, thereby
dealing space for time. On the other hand, from the communication
perspective, time is directly related to space. Hence, data structures are
packed densely for faster transmission, and unpacked again for quicker
processing. This artifice relieves the operational code from handling single
bits, but nevertheless the non-productive packing routines burn CPU

resources by shifting bits back and forth. How can the packing/unpacking be
done in an efficient way?

The following forces influence the solution:
• Sequence of bytes. Low level drivers usually operate on a sequence

(stream or array) of bytes when transferring binary data, e.g. via a
serial interface (UART). Hence, this is an appropriate representation
of the “raw” bit stream.

• Performance and Granularity. Operating on a fine granularity (such
as bits) automatically raises the number of objects to handle, with
negative consequences for the performance of the overall operation.
In addition, extracting bits from words requires additional effort.

• Telegram format. A telegram is a (nested) sequence of single
elements, sometimes containing control content (e.g. length, number
of consecutive elements, etc.) that have to be taken into account
during processing the telegram. The single elements often adhere to
a “processable” format (e.g. two’s-complement), but might offend
them too, especially in heterogeneous environments.

• Telegram types. Typically, there are various types of telegrams.
Each of them comes with its own syntax, and needs to be handled
accordingly.

• Ease of code. The telegram structure and corresponding data
structures should be clearly visible in the code, not obscured by
incomprehensive activities.

Solution Although your granularity is bits, operate on words: read and convert
information in chunks as big as possible, at least bytes.
To this end, transform the bit reading functionality into a finite state
machine (FSM), where each state represents distinct values for the bits not
processed yet in the “head” byte of the input stream. A transition from on
“state” to another one processes as many bits as possible at once, and
accumulate these chunks into the aspired result. Embed this state and its
handling into a function that is responsible to read a single element of the
telegram (unpack a short sequence of bits from the input into a word). Use
this function to assemble the structure of the whole telegram.

Structure The Input Stream is a densely packed sequence of bits, typically stored as a
sequence of bytes or words. The first bit of the input stream is not
necessarily the most significant bit (MSB) of the first word or byte. Instead,
there might by some leading junk bits that must be ignored1.

1 This situation can arise for example when receiving data from a transponder. Typically,
such messages are repeated in a cyclic manner, and the continuous data stream must be
inspected first to detect a position that fits the start condition of the telegram.

3

The target structure is a memory location where the decoded telegram
should be stored into. Typically for embedded environments, this is a “flat”,
memory section with fixed size, and can be addressed via a structure
definition. In other, less restrictive environments, tree structures build from
several nodes and leafs might be an option too. All elements in the target
structure are available in an optimal format: they can be used “as is” for
further processing.

The core element of this pattern is the head buffer, a small buffer that is
responsible to store the next bits of the stream for further processing. It
contains an aligned snippet from the stream, as well as the information how
many bits of that are remaining for processing. Both pieces are coded
together in a State variable.

A finite state machine (FSM) specifies the behaviour when decoding single
elements out of the stream. Input values are the actual state, and the number
of bits missing to complete the current telegram element. A transition
“consumes” as much bits as possible from the state, yielding the new state,
the remaining length, and the decoded data, properly aligned. The output
values are taken from transition tables, that look-up the result using indexed
access based on the inputs.

Since decoding an element might require more that one transition of the
FSM, an accumulator is necessary to store and combine the partial results
until the whole element is completed.

The structural parts listed above are managed and orchestrated together into
a readBits function that is responsible to decode an Integer (a word) by
consuming a given number of bits from the input stream.

Last but not least, a structure parser is responsible to process the sequence
of single elements in the input stream and extract the corresponding
telegram structure in the aspired output format. This task incorporates
parsing optional, iterative, and nested structures based on control data
embedded in the stream. In addition, some adaptations on the data might
become necessary, such as scaling of values or conversions to the “local”
representation (e.g. big-endian number formats).

Dynamics There are two important dynamic scenarios that characterize this pattern,
initialization and decoder loop.

For initialization, the state as well as the input stream must be set into a
defined condition. Usually, the input stream can be used as provided by the
corresponding environment (either as a quasi-infinite source of bytes/words
that can be read consecutively, or as a continuous memory region with fixed
length). More care might be necessary on initializing the state. If the first bit
of the input stream is not the MSB of the first word, the valid bits must be
mapped correctly into the state variable.

The decoder loop covers the scenario if a single element spreads across two
or more consecutive bytes/words in the input stream. Since the head buffer

4

can only contain data from one byte/word, it will be emptied on the first
pass, and hence must be reloaded until the element is complete.

Implementation The implementation of this pattern incorporates at least the five steps
described below.

1 Decide on the chunk size. The chunk size should correspond to the size of
an operatable unit (byte, word) of the CPU. Bigger chunk sizes yield better
performance (linear ratio), but dramatically rise the size of the lookup
tables. For most environments, one byte is an appropriate choice. Two bytes
are an option if space is nothing to worry about. Four bytes are too much to
be handled with lookup tables, thus only applicable for the calculation
approach (see step 3 for details).

 In the example implementation, the chunk size is a byte. □

2 HeadBuffer, coding of state. The state must reflect the remaining valid bits
of the chunk, and is stored in the head buffer.

 Given that the first 3 bits have been processed previously, there are 5
remaining bits in the head buffer, hence 25 = 32 different states are
necessary to reflect the possible variants. This sums up to 511 states for zero
to eight remaining bits with distinct values. □

A simple approach uses a byte variable to store the bit values, and an integer
variable indicating the number of valid bits (the rightmost bits in the byte).
Using both values as lookup index, the table contains n* 2^n entries, with n
as the number of bits in the “chunk” sizeof(chunk)*8. Unfortunately, this
wastes a lot of space, since for small numbers of remaining bits the leading
bits in data are irrelevant.

A more effective approach is to combine both variables into one by using a
simple coding scheme:
Bits consumed already (in the example below indicated by a dash -) are set
to “0”, a single “1” indicates the start of the “valid” part, and is followed by
the values of the valid bits.

 State is stored in the head buffer as an integer, coded as concatenation of
'0'* + '1' + ”remaining bits”. The state “values” range from 1 to 511. The
following table shows examples for concrete state codings.

Scenario Logical state Coded state
(content of head buffer)

five remaining bits,
values 0 1 0 1 1

---0 1011 0000 0000 0010 1011 = 4310

no remaining bits ---- ---- 0000 0000 0000 0001 = 110

eight remaining bits, all 1 1111 1111 0000 0001 1111 1111 = 51110

5

 □

3 Transition function and lookup tables. Consuming a specific number of bits
from the head buffer causes a transition from one state to another. The
maximum number of bits that can be consumed at once is limited by the
number of remaining bits in the head buffer. If the buffer runs empty, the
missing bits will be read later after reloading the buffer.

For each pair of (state, bitsToConsume) the subsequent state can be easily
computed. The same is true for the value of the extracted bits, and the still
missing bits to be read later.

For optimal performance on most processors, these functions are not
computed at runtime. Instead, the results are stored in appropriate lookup
tables. These tables may consist of previously calculated constants, or can
be initialised at runtime.

Note: The look-up approach might be suboptimal for modern processors
with data caches. In such cases, there is a high probability for cache misses
when accessing the lookup tables, causing a much slower access to (un-
cached) memory, which results in significant performance drops. In such
environments, calculating the “lookup” value at runtime can be quicker than
real lookup, providing more speed and less memory consumption.

4 Implement the bit-reading function. The following code describes the core
of the read routine.
readBits(byte &buf; // pointer to input stream
 unsigned n; // number of bits to consume
 unsigned &result // resulting value
) {

 static unsigned z = 0; // „empty“ byte as start state
 unsigend accu = 0; // accumulated result

 while(n > 0) { // there is something to read
 if(z == 0)
 z = *(buf++); // „refill“ state from input stream

 z_save = z;
 accu |= value(z_save, n); // look-up (part of) value
 z = z_new(z_save, n); // look-up new state
 n -= used(z_save, n); // look up number of missing bits
 }

 result = accu;
 }

This core routine might be extended with handling of error conditions (e.g.
premature end of input stream). Another add-on might be an explicit
initialization of the “state” to a value different than 0, in order to cope with
bit streams that do not start at a byte boundary in the input buffer.

The following show the values for z, n, and accu for two examples. The first
example consumes only a part (4 bits) of the input stream (buffered in z,
containing 6 bits), processed in on step. The second example consumes 11
bits, and hence needs to iterate through the loop and to refill the buffer.

6

 z n accu new z n’

Example 1:
 --011011 4 + 0000000000000110 ------11 0
 0000000000000110
 = 610

Example 2:
 --011011 11 0000001101100000 -------- 5 // refill z
 10011110 5 + 0000000000010011 -----110 0
 0000001101110011
 = 88310

5 Implement the structure parser. The structure parser might be implanted in
two different ways: either hard-coded or by means on an Interpreter (see
[GOF94] for details).

A hard-coded parser might be more efficient, but can (depending on the size
and number of telegram structures) result in a huge amount of code.

The probably smarter way is an interpreter, with data structures that controls
the behaviour: a sequence of read operations processes the input stream, and
writes the resulting values through a “write pointer” (base plus offset) into
the target structure, while a small stack automaton keeps track of nested
telegram structures.

Example
Resolved

The thousands of line of code of hard coded structure parsers are obsolete,
replaced by a small read function and the structure interpreter, both fitting
on a single page. They are complemented by declarative code that provides
the parser “programs”, reflecting the telegram structures, automatically
generated from XML-based structure definitions. Execution times are
significantly improved, and maintenance is eased up.

Consequences BITSTREAM X-CODER provides the benefits depicted below:

• Speed. The method described above is ten to a hundred times faster
compared to a bitwise reading and recombination of the encoded values.

• Code reduction. Especially in conjunction with an interpreting structure
parser, the required active code is rather small. In addition, it does not
depend on the number and complexity of different telegram structures.

On the other hand, the pattern carries the following liabilities:
• Complexity. Less obvious than the “straight forward” implantation, not

easy to understand.

• Memory Consumption. The transition tables are getting quite big,
especially when choosing bigger chunks for processing (exponential
growth in size for linear increase in speed).

Variants The pattern can be applied “the other way around” to implement the
encoder. Accordingly, the tail buffer is extended until it is full, and then
flushed to the output stream.

7

Some compression algorithms share many commonalities with encoding
and decoding bitstreams. For example, zip uses Huffman codes (the length
of the “code” relates to the relative frequency of the corresponding
character.

Credits Thanks to my shepherd Peter Sommerlad, for his patience and supportive
suggestions. I also thank the participants of the writers workshop at
EuroPLoP2008 (André L. Santos, Carsten Hentrich, Diethelm Bienhaus,
Jürgen Salecker, Paul G. Austrem) for their valuable feedback. Thanks to
my working student Omar Farooq, he implemented the core of this pattern
in the context of the “ETCS language” defined in [UNISIG].

References [GOF94]
E.Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns,
Elements of Reusable Object-Oriented Software;
Addison-Wesley 1994

[POSA96]
F. Buschmann, R. Meunier, H. Rohnert, M. Stal, P. Sommerlad:
Pattern Oriented Software Architecture, A System of Patterns;
Wiley 1997

[UNISIG]
UNISIG SUBSET-026
http://www.era.europa.eu/public/Documents/ERTMS%20Documentat
ion/Mandatory%20Specifications/SRS%20230.zip

[Base64]
Wikipedia article on Base64
http://en.wikipedia.org/wiki/Base64

8

http://www.era.europa.eu/public/Documents/ERTMS%20Documentation/Mandatory%20Specifications/SRS%20230.zip
http://en.wikipedia.org/wiki/Base64

Modular Hot Spots: A Pattern Language for
Developing High-Level Framework

Reuse Interfaces using Aspects

André L. Santos1 and Kai Koskimies2

1 Department of Informatics
Faculty of Sciences, University of Lisbon

Campo Grande, 1749-016 Lisboa
PORTUGAL

andre.santos@di.fc.ul.pt
2 Institute of Software Systems

Tampere University of Technology
P.O.BOX 553, FIN-33101 Tampere

FINLAND
kai.koskimies@tut.fi

Abstract. Applications based on an object-oriented framework can be
built by programming against the framework’s reuse interface. Mastering
a framework is typically a time-consuming and difficult task. This paper
presents a pattern language for developing higher level reuse interfaces
for an existing framework. When applying the patterns that constitute
the language it is implied that the framework becomes enhanced with
an additional layer of reusable modules that rely on aspect-oriented pro-
gramming. These modules are referred to as Modular Hot Spots. They
modularize existing hot spots, enabling a framework-based application
to be built in a stepwise way and at a higher abstraction level than if us-
ing the conventional reuse interface. By raising the abstraction level, it is
intended that the development of framework-based applications becomes
facilitated.

Proceedings of the 13th European Conference on Pattern Languages of Programs
(EuroPLoP 2008), edited by Till Schmmer and Allan Kelly, ISSN 1613-0073 <issn-
1613-0073.html>. Copyright c�2009 for the individual papers by the papers’ authors.
Copying permitted for private and academic purposes. Re-publication of material
from this volume requires permission by the copyright owners.

1

1 Introduction

An object-oriented framework [4] (hereinafter, simply framework) embod-
ies the abstract design and implementation of a family of related appli-
cations. Framework-based applications are developed against the frame-
work’s reuse interface, i.e. the classes, interfaces, and methods, which an
application developer has to deal with in order to build an application.
Depending on the framework nature, an application may be developed
by specialization (white-box reuse) or polymorphic composition (black-box
reuse). Most often, an application has to be developed using both means,
given that most frameworks have a gray-box nature.

A hot spot is a fragment of the reuse interface that enables the adap-
tation of a certain variation point in framework-based applications. A
hot spot typically involves more than one framework class, while on the
other hand, a same framework class may be involved in more than one
hot spot. Therefore, there is a many-to-many mapping between variation
points and framework classes that support them (illustrated in Figure 1).

variation
points

framework
class

hot spot

...

Fig. 1. Many-to-many mapping between variation points and framework classes.

The described many-to-many mapping implies that there are classes
of a framework-based application that will be tangled with respect to the
adaptation different variation points, while the adaptation of certain vari-
ation points is going to be scattered among more than one class of the
framework-based application. Tangling implies that modifying the adap-
tation of a variation point in a framework-based application requires to
cope with code statements that pertain to other variation points, whereas
scattering implies that the modification may involve more than one class.

The work in [8] proposes a technique based on aspect-oriented pro-
gramming (AOP) [5] for developing framework reuse interfaces using spe-

2

cialization aspects (see Figure 2). These are reusable modules that mod-
ularize hot spots and enable to build framework-based applications on a
higher abstraction level than if using a conventional reuse interface. A
framework-based application is implemented in application aspects which
inherit from the specialization aspects.

This paper presents design patterns for enhancing a conventional reuse
interface with specialization aspects, in the form of a pattern language
that we refer to as Modular Hot Spots. The patterns can be used
together for solving the problem of developing the several modules which
form the higher level reuse interface. By having Modular Hot Spots
it is intended that the new reuse interface has:

– Modular reuse interface. Framework-based applications can be devel-
oped in a stepwise way. Each application module is the adaptation
of a Modular Hot Spot and implements an increment that does
not require modifications or knowledge about the internals of existing
modules. The capability of developing application increments with-
out having to modify or understand existing code is beneficial with
respect to evolution.

– Less hook methods. Through the adaptation of Modular Hot Spots,
framework-based applications can be developed without dealing with
as many hook methods as in conventional solutions. This contributes
to have a narrow inheritance interface, a principle that states that
only a few hook methods should be required to be given per each ap-

Object-Oriented Framework

SA SA

SA

framework development

AA AA AA

application development

SA

SA

Fig. 2. Specialization aspects (SAs) and application aspects (AAs).

3

plication class [11].

– Less application-relevant methods. Framework-based applications are
able to be built without using as many framework methods as in
conventional solutions. This may imply that whole framework class-
es/interfaces will become irrelevant to applications when having the
Modular Hot Spots. Having a reduction in the number of frame-
work elements that an application developer has to deal with, reduces
the size of the reuse interface, and therefore, facilitates the task of
learning it.

Given the above points, the abstraction level is raised with respect to
the development of framework-based applications. Frameworks tend to
evolve from white-box to black-box [7]. When developing Modular Hot
Spots, a framework is transformed in this direction, too. However, the
framework reuse interface can become more high-level than the one of a
conventional black-box framework.

The knowledge embodied in the language results from developing
Modular Hot Spots using AspectJ [1], for the frameworks JHotDraw
[9] and Eclipse Rich Client Platform (RCP) [6]. The former is a frame-
work for building editors for structured graphics, while the latter is a
framework for building GUI applications based on the Eclipse’s dynamic
plugin model and UI facilities.

The target audience of this pattern language are framework developers
that seek for solutions to provide higher level reuse interfaces, enabling
framework-based applications to be built more easily.

Section 2 introduces a simple framework that is used as a running
example in the description of the patterns, and several scenarios where
specialization aspects can be beneficial. Section 3 presents an overview of
the pattern language. Section 4 presents an AspectJ idiom that is used
on the implementation of the patterns. Sections 5-10 present the pat-
terns that constitute the pattern language. Section 11 revisits the exam-
ple framework taking into account the new reuse interface that resulted
from all the examples given throughout the patterns. Finally, Section 12
concludes the paper.

2 Example Framework

This section introduces a simple example of a framework, which can be
used to build GUI applications. An GUI application has actions that can

4

be triggered by the UI elements. The action can be either application-
specific or provided by the framework. An application may have menus,
which may contain submenus. The menus may contain either items that
trigger application actions or other menus (i.e. the submenus). Implemen-
tation-wise there is no distinction between a menu and a submenu (i.e.
they are represented by the same class). Figure 3 contains an UML class
diagram depicting the classes of the framework’s reuse interface (in gray),
and an example application (in white) based on the given reuse interface.
Below we present Java code that implements the example framework-
based application.

createActions(ActionBar)
createMenus(MenuBar)
...

<<abstract>>
AbstractApplication

add(IMenu)
MenuBar

addAction(IAction)
addSubMenu(IMenu)

MenuImpl

register(IAction)
ActionBar

run()
ExitAction

run()

<<interface>>
IAction

...

addAction(IAction)
addSubMenu(IMenu)

<<interface>>
IMenu

createActions(ActionBar)
createMenus(MenuBar)

ExampleApplication

run() : void

ExampleAction

Fig. 3. Reuse interface of the example framework (gray), example application (white).

pub l i c c l a s s Examp l eApp l i c a t i on extends Ab s t r a c tA pp l i c a t i o n {
p r i v a t e I A c t i o n myact ion ;

p r i v a t e I A c t i o n e x i t a c t i o n ;

pro tec ted vo id c r e a t eA c t i o n s (Act ionBar a ba r) {
myact ion = new ExampleAct ion () ;

a ba r . r e g i s t e r (myact ion) ;

e x i t a c t i o n = new Ex i tA c t i o n () ;

a ba r . r e g i s t e r (e x i t a c t i o n) ;

}

pro tec ted vo id createMenus (MenuBar m bar) {
IMenu menu1 = new MenuImpl (”Menu1”) ;

menu1 . addAct ion (e x i t a c t i o n) ;

IMenu menu2 = new MenuImpl (”Menu2”) ;

menu2 . addAct ion (myact ion) ;

menu1 . addSubMenu (menu2) ;

m bar . add (menu1) ;

}
}

5

pub l i c c l a s s ExampleAct ion implements I A c t i o n {
vo id run () {

// do something
}

}

The main class is a subclass of AbstractApplication. Application de-
velopers must be aware that createActions() is executed before create-

Menus(). The sample framework-based application has two actions, an
application-specific one, ExampleAction, and the framework-provided Ex-

itAction. It has a “Menu1”, which has the exit action and a submenu
“Menu2” that has the application-specific action.

Usage scenarios

The following list presents a set of scenarios where application developers
(i.e. the ones who use the framework) may be faced with difficulties. Each
of these scenarios is associated with a goal of application developers.

– Scenario 1, plugging menus. The application concept menu is repre-
sented directly by the interface IMenu, which MenuImpl implements.
Therefore, it should be easy for an application developer to locate it.
However, once the interface/class is known, it is necessary to find out
how to plug the menu in the application. Given that the application
concept is represented abstractly by the AbstractApplication class, one
would go to inspect that class, and then, to realize that there is a hook
method for the intended purpose (i.e. createMenus(...)). Plugging the
menu involves modifying the method body, which may have existing
statements. Therefore, in order to implement the goal of plugging a
menu, one has to “interfere” with statements pertaining to other goals
(i.e. other menus and their contents).

– Scenario 2, menu context. The application concept menu can be used
in two different contexts, either as an application menu or as sub-
menu of another menu. As explained in Scenario 1, by knowing IMenu

and MenuImpl one does not know where and how the menus can be
plugged. If one has an existing application menu m1 and wants that
menu to become a submenu of another menu m2, besides understand-
ing the subclass of AbstractApplication (Scenario 1) to remove the
statement that plugs the menu, there is need to locate where m2 is
instantiated and to know its interface to add m1 to it. Therefore,
changing the context of an existing menu requires changes both in

6

statements pertaining to the original context and in statements per-
taining to the new context.

– Scenario 3, associating actions. The application concept action is rep-
resented by the interface IAction. Actions may be associated to menus.
Suppose that there is an existing application with an action a and a
menu m, and that one wants to associate a to m. In order to do so,
one has to inspect the hook method createActions() of the subclass of
AbstractApplication to find out the instance of a, and then, to mod-
ify the hook method createMenus() by finding the instance of m and
adding a statement that associates a to it. Therefore, an association
between two application elements involves two parts of a module (the
subclass of AbstractApplication) which is not directly related to those
elements.

Each of the given scenarios can be improved by applying the Modu-
lar Hot Spots pattern language. When addressing a scenario by apply-
ing a pattern, it might happen that a scenario with a new problem arises.
In these cases, there are other patterns for overcoming the new problems.

3 Pattern Language Overview

Figure 4 gives an overview of Modular Hot Spots. The diagram con-
tains related patterns and idioms represented in white, while the actual
patterns/idioms of the language are represented in gray. Design patterns
are represented in ellipses, whereas AspectJ idioms are represented in
circles.

Hot spots based on Template Method [2] are typical starting points
for applying the pattern language. It is common that an application
framework applies at least one Template Method on the main class
that initializes the application. A Template Method has one or more
hook methods, which have to be overridden by application developers. A
Composition Hook Method (Section 5) is a hook method that exposes
an object instantiated by the framework as a parameter, with the purpose
of enabling applications to plug objects in the exposed object. While this
pattern is not related with the development of Modular Hot Spots
directly, it describes a common solution that hints where it is suitable
to have a Self-Pluggable Object (Section 6). As we will see, Com-
position Hook Methods are “predictable” and can be completed by
a Self-Pluggable Object, after which the application developer no

7

longer has to deal with those hook methods. In the context of the example
framework given in Section 2, this pattern is suitable for improving the
plugging menus scenario.

A Self-Pluggable Object is a hot spot that enables its adapta-
tions to localize both the creation of an object representing an application
element and its composition with another application element. It may be
plugged in another Self-Pluggable Object and it may have Compo-
sition Hook Methods itself. It can be implemented using a Template
Pointcut (Section 4). A Template Pointcut is an AspectJ idiom that
combines the idioms Abstract Pointcut and Composite Pointcut
[3].

A Multi-Context Self-Pluggable Object (Section 7) is a spe-
cial kind of Self-Pluggable Object that is suitable in cases when
the object can be plugged in different application contexts (elements).
The Multi-Context Self-Pluggable Object pattern is suitable for
improving the menu context scenario. An Abstract Self-Pluggable

 Association
Object

Self-Pluggable
Object

Self-Pluggable
Type

Hierarchy

Composition
Hook Method

may have

organized in

participant in

completed by

may have

Template
Pointcut

Idiom

implemented

implemented

Abstract
Self-Pluggable

Object

is a

applies

Composite
Pointcut

Idiom

Abstract
Pointcut

Idiom

applies

applies

Template
Advice
Idiom

implemented

Template
Method

Factory
Method

Multi-Context
Self-Pluggable

Object

is a

may plug in

may have

alternative

may be

Fig. 4. Modular Hot Spots pattern language (in gray). The elements depicted in
white are patterns or idioms previously described by other authors.

8

Object (Section 8) is a module suitable for structuring a set of related
Self-Pluggable Objects, so that the behavior that plugs those ob-
jects can be reused. It applies Factory Method [2] and can be im-
plemented using the Template Advice idiom [3]. An alternative to
structure a set of related Self-Pluggable Objects is to have a Self-
Pluggable Type Hierarchy (Section 9), which merges the imple-
mentation of types and the plugging of objects in the applications. The
patterns Abstract Self-Pluggable Object and Self-Pluggable
Type Hierarchy are two alternatives that are suitable for solving a
design problem that can emerge from applying either Self-Pluggable
Object or Multi-Context Self-Pluggable Object.

Finally, an Association Object (Section 10) enables to establish as-
sociations between Self-Pluggable Objects. This pattern is suitable
for improving the associating actions scenario.

The examples of applying the patterns are given in Java, using As-
pectJ as the AOP language. Although the patterns were only experienced
in AspectJ, they are not necessarily specific to it. An AOP language for a
base object-oriented language, that features method execution pointcuts,
abstract aspects, and abstract pointcuts, should be suitable for imple-
menting the patterns. For instance, the patterns should be applicable to
AspectC++ [10], AspectJ counterpart for C++.

In the figures that illustrate the solutions, the framework modules are
always represented in gray, whereas the white classes represent application
modules. Aspects are depicted with a class with stereotype �aspect�.
Pointcuts and advices are represented in the method’s placeholder us-
ing the stereotypes�pointcut� and�advice�, accordingly. Stereotyped
dependencies represent pointcut definitions, where the stereotype name
represents the pointcut name.

4 Template Pointcut: an AspectJ Idiom

This section presents an AspectJ idiom referred to as Template Point-
cut. Its name results from an analogy with the Template Method pat-
tern. In a Template Method we have a partially implemented method
which uses abstract methods that are given by subclasses. In the case of
a Template Pointcut, we have a partially defined pointcut within an
aspect module that uses abstract pointcuts that are given by the sub-
aspects.

9

Context

An aspect module transforms (by weaving) other modules, which can be
either classes or other aspect modules. A reusable abstract aspect is a
module from which other aspects inherit (the subaspects), reusing its
implementation. The scope of applicability of a reusable aspect may be
restricted to a certain kind of base modules. The advantage of doing
so is that the reusable aspect may assume certain characteristics of the
modules which are going to be transformed. For instance, the reusable
aspect may be applicable to all subclasses of a certain class, an therefore
the common inherited methods may be safely used by the aspect.

Problem

How to implement a reusable abstract aspect so that its advice can only
take effect in a partially defined set of join points, while being able to
generalize the commonalities between those join points?

Forces

– The information factored out to the reusable aspect should be maxi-
mized.

– The more “black-box” the reusable aspect is, the better.
– The simpler the pointcut definitions in the subaspects are, the better.
– The less one needs to know about the modules that an aspect trans-

forms, the better.

Solution

Implement an abstract aspect containing a Composite Pointcut (the
template) that is defined as the intersection of certain join points with
another Abstract Pointcut (the hook). The advice takes effect on the
Template Pointcut (Figure 5). Subaspects of the abstract aspect have
to define the hook pointcut.

Example

Consider a reusable aspect that can be used to transform classes that
inherit from the following abstract class.
pub l i c a b s t r a c t c l a s s Ab s t r a c tC l a s s {

/∗ . . . ∗/
pub l i c S t r i n g method () ;

}

10

<<pointcut>> template() : ... && hook()
<<pointcut>> hook() : ...
<<advice>> template()

<<aspect, abstract>>

AbstractAspect

ConcreteAspect

<<hook>>
...

Fig. 5. Template Pointcut idiom.

The following is a reusable aspect with a Template Pointcut defined
as the intersection between the execution of method() within subclasses
of AbstractAspect and a hook class, which is to be given by the abstract
pointcut hook(). The definition of hook() is intended to match a particular
subclass of AbstractAspect, which the aspect will transform.
pub l i c a b s t r a c t aspect Abs t r a c tAspec t {

p r i v a t e po i n t cu t t emp la t e () :

wi th i n (Ab s t r a c tC l a s s+) && hook () && execut i on (S t r i n g method ()) ;

pro tec ted ab s t r a c t po i n t cu t hook () ;

a f t e r () r e t u r n i n g (S t r i n g s) : t emp la t e () {
/∗ do something , e . g . ∗/
System . out . p r i n t l n (s) ;

}
}

Although the pointcut template() is declared separately, it could be in-
corporated directly in the advice. Assuming the existence of a subclass
of AbstractClass named SomeClass, the code below shows how the aspect
could be used for activating the transformation of SomeClass.
pub l i c aspect Conc re teAspec t extends Abs t r a c tAspec t {

pro tec ted po i n t cu t hook () : t a r g e t (SomeClass) ;

}

A Template Pointcut is particularly useful to relieve the one who
reuses the aspect from understanding details of the modules where the
aspect takes effect.

5 Composition Hook Method

Context

Template Method is an elementary and common pattern for enabling
framework specialization, where adaptation is achieved by subclassing.

11

The role of the hook methods that have to be overridden is often to plug
objects on the application.

Problem

How to define hook methods for the purpose of enabling object plugging,
so that they are intuitive to use?

Forces

– Reuse interfaces should be as simple as possible. By reading a hook
method signature, it should be intuitive what the method has to do
and how.

– The less framework methods that one has to know for building an
application, the better.

Solution

Define hook methods that expose in their parameters objects that are
instantiated by the framework. These exposed objects are accessed by
applications for composing other objects. The intent of a Composition
Hook Method (Figure 6) is intuitively given by the method signature,
while the way how to plug objects on the exposed object is given by its
interface.

compositionHookMethod(Obj)
templateMethod()

-object : Obj

<<abstract>>

AbstractClass

compositionHookMethod(Obj)

ConcreteClass

// ...
object = new Obj();
compositionHookMethod(object);
// ...

compositionHookMethod(Obj o) {
 o.add(new OtherObj());
 // ...
}

Fig. 6. Composition Hook Method pattern.

Example

Considering the example framework, the abstract class AbstractApplica-

tion could be something like shown below. The class constructor is the

12

template method, and there are two Composition Hook Methods for
plugging actions and menus.
pub l i c a b s t r a c t c l a s s Ab s t r a c tA pp l i c a t i o n {

p r i v a t e Act ionBar a ba r ;

p r i v a t e MenuBar m bar ;

pro tec ted Ab s t r a c tA pp l i c a t i o n () {
a ba r = new Act ionBar () ;

c r e a t eA c t i o n s (a ba r) ;

m bar = new MenuBar () ;

c reateMenus (m bar) ;

}

pro tec ted ab s t r a c t vo id c r e a t eA c t i o n s (Act ionBar a ba r) ;

pro tec ted ab s t r a c t vo id createMenus (MenuBar m bar) ;

/∗ . . . ∗/
}

Resulting Context

– There is no need for additional methods whose purpose is to do the
object compositions, which are done through the interface of the ex-
posed objects.

– The way how to use hook methods is intuitive by reading their signa-
ture.

Known Uses

The main class of a JHotDraw-based application has to override Com-
position Hook Methods for plugging menus and the tools that create
the figures. A viewpart of an application based on Eclipse RCP has a
Composition Hook Method for plugging GUI elements.

Related Patterns

The reader may indeed find a Template Method and this pattern very
alike. However, the purpose of a Template Method is more generic,
and the hook methods may have purposes other than enabling object
composition.

By overriding a Composition Hook Method the variation is achieved
through the exposed object. The type of objects that can be composed
in the exposed objects is known, and there are methods in the objects’
interface specifically for that purpose. Therefore, the body of an overrid-
den Composition Hook Method is predictable in what respects to the

13

method invocations on the exposed object. For instance, the only pur-
pose of the exposed object of type ActionBar in the given example is to
perform register() calls with objects of type Action as arguments. All the
implementations of this Composition Hook Method will be similar
across framework-based applications.

A Composition Hook Method may become hidden from applica-
tion developers, so that they will not need to deal with it when building
an application. In order to do so, a Self-Pluggable Object is capable
of dismissing the need of overriding the Composition Hook Method.

6 Self-Pluggable Object

Context

Framework classes have Composition Hook Methods.

Problem

How to hide a Composition Hook Method from the reuse interface,
so that there is one less framework element that application developers
have to know about?

Forces

– Usually the type of the objects we want to plug is easy to find. Finding
the way how to plug the objects is the most difficult part, since the
framework user has to understand the interface of the object where
plugging takes place.

– The less hook methods that have to be known and dealt by application
developers, the better.

– The lack of documentation may cause application developers to plug
objects in wrong locations, resulting in incorrect uses of the frame-
work.

Solution

Develop an abstract aspect that encapsulates the behavior that creates
and plugs the object in a Composition Hook Method. Use a Tem-
plate Pointcut where the fixed part defines the Composition Hook
Method and the variable part (hook) is intended to match a subclass
of the template class that owns that method. Application developers use
a Self-Pluggable Object (Figure 7) by extending the aspect and
defining the hook pointcut on the desired context.

14

<<pointcut>> context() : AbstractContext
<<advice>> AbstractContext.hookMethod() && context()

<<aspect, abstract>>

SelfPluggableObject

<<aspect>>

Object

~ <<final>> hookMethod()

<<class/aspect, abstract>>

AbstractContext

<<class/aspect>>

Context
<<context>>

Fig. 7. Self-Pluggable Object pattern.

Example

This pattern is illustrated by presenting a solution for improving the
plugging menus scenario given in Section 2. The Composition Hook
Method is AbstractApplication.createMenus(). Since this method will not
need to be overridden by applications, it may have reduced visibility and
be locked for overriding, as shown below.
pub l i c a b s t r a c t c l a s s Ab s t r a c tA pp l i c a t i o n {

/∗ . . . ∗/
f i n a l vo id createMenus (MenuBar m bar) { }

}

The following is a reusable aspect for plugging menus. The menu name is
given in the constructor, while the menu is created by createMenu() us-
ing that name. The hook pointcut is application(). The advice creates the
menu and plugs it on the MenuBar object parameter of createMenus(..).
Using an independent method for creating the menu facilitates the col-
laboration with other aspects.
pub l i c a b s t r a c t aspect Menu {

p r i v a t e S t r i n g name ;

pub l i c Menu(S t r i n g name) {
t h i s . name = name ;

}

pro tec ted ab s t r a c t po i n t cu t a p p l i c a t i o n () ;

a f t e r (MenuBar mb) :

wi th i n (A b s t r a c tApp l i c a t i o n +) && a p p l i c a t i o n () &&

execut i on (vo id createMenus (MenuBar)) && a rgs (mb) {
mb. add (createMenu ()) ;

}

IMenu createMenu () {
r e t u r n new MenuImpl (name) ;

}
}

15

The main class of an application (subclass of AbstractApplication) does
not need to override createMenus(..). ExampleApplication would be given
like shown below.

pub l i c c l a s s Examp l eApp l i c a t i on extends Ab s t r a c tA pp l i c a t i o n {

}

In order to plug a menu, a subaspect of Menu has to be defined. The
following is an example of how to plug a menu (“Menu1”) in ExampleAp-

plication.

pub l i c aspect Menu1 extends Menu {
pub l i c Menu1 () {

super (”Menu1”) ;

}

pro tec ted po i n t cu t a p p l i c a t i o n () : t a r g e t (Examp l eApp l i c a t i on) ;

}

In case the order of multiple Self-Pluggable Objects of the same
type is relevant, precedences have to be used to explicitly declare the order
in which the several objects are plugged. The following example shows
how it could be declared that Menu1 is to be plugged before MenuX.

pub l i c aspect MenuOrder {
d e c l a r e p r e c edence : MenuX , Menu1 ;

}

The precedence declaration may be given in an independent module as
shown, but it can also be given together with the other modules.

Resulting Context

– Application developers no longer have to deal with the Composi-
tion Hook Method. Instead, they implement an independent as-
pect, which defines the hook pointcut.

– Objects can be plugged in other objects incrementally, without the
need of modify, inspect, or understand, code related to the object
where composition takes place.

– Changing the context where the object is composed can be done only
by changing the hook pointcut definition.

– Framework-based applications are adaptable without the need of un-
derstanding or modifying source code. Removing a Self-Pluggable
Object can simply be done by recompiling the application without
its module (e.g. deactivating Menu1 as a compilation unit).

16

Known Uses

Self-Pluggable Objects in JHotDraw can plug menus, tools, and
undo on tools. Self-Pluggable Objects in Eclipse RCP can plug the
toolbar, perspectives, and viewparts (an application can have several view-
parts, which are organized in different perspectives).

Related Patterns

The Decorator pattern [2] is related to Self-Pluggable Object,
in the sense that also allows to add behavior to a class modularly. A
Decorator adds behavior dynamically to an object by wrapping it. This
implies that when adding a Decorator one has to modify the module
that instantiates the wrapped object. A Self-Pluggable Object does
not require modifying nor inspecting the module where behavior will be
added.

A Self-Pluggable Object can be plugged in another
Self-Pluggable Object. This can be done by intercepting the cre-
ation of objects in order to plug other objects in them, or by completing
Composition Hook Methods, which Self-Pluggable Objects may
have. A Self-Pluggable Object may be a Multi-Context Self-
Pluggable Object if the object can be plugged in different application
contexts. A Self-Pluggable Object may be based on an Abstract
Self-Pluggable Object if there are multiple subtypes of the plug-
gable object. A Self-Pluggable Type Hierarchy merges the type
implementations with their abstract composition (i.e. plugging). An As-
sociation Object enables the establishment of associations between
Self-Pluggable Objects.

7 Multi-Context Self-Pluggable Object

Context

A Self-Pluggable Object is an object that plugs itself in a certain
application context. However, there are objects which can be plugged in
different application contexts.

Problem

How to develop a Self-Pluggable Object that can be plugged in more
than one application context?

17

Forces

– It is appealing to have everything what is possible to do with an object
represented in a single module. By knowing about that module, an
application developer knows all that can be done with the object.

– If we would have a Self-Pluggable Object for each application
context, there would be multiple modules for addressing a single con-
cept.

Solution

Develop an aspect similar to a Self-Pluggable Object, which has one
advice for each Composition Hook Method related with an applica-
tion context. The hook pointcut is used in the different advices. When
using the Multi-Context Self-Pluggable Object (Figure 8), the
context is given by the module that is matched by the hook pointcut, im-
plying that only the advice related to that application context will take
effect.

<<pointcut>> context() : AbstractContext1 || AbstractContext2
<<advice>> AbstractContext1.hookMethod1() && context()
<<advice>> AbstractContext2.hookMethod2() && context()

<<aspect, abstract>>

MultiContextSelfPluggableObject

<<aspect>>

ObjectOnContext2

~ <<final>> hookMethod2()

<<class/aspect, abstract>>

AbstractContext2

<<class/aspect>>

Context2

~ <<final>> hookMethod1()

<<class/aspect, abstract>>

AbstractContext1

<<aspect>>

ObjectOnContext1
<<class/aspect>>

Context1
<<context>><<context>>

Fig. 8. Multi-Context Self-Pluggable Object pattern.

Example

This pattern is illustrated by evolving the previous example, while ad-
dressing the improvement of the menu context scenario given in Section
2. Besides the application, a (sub-)menu can also be composed in another
menu. Therefore, a menu can be used in more than one application con-
text. The following is a new version of Menu, containing two advices. The
first is like in the previous example, while the second is for addressing the
composition of menus and sub-menus.

18

pub l i c a b s t r a c t aspect Menu {

/∗ to match an ex tens ion o f e i t h e r Abs t rac tApp l i ca t i on or Menu ∗/
pro tec ted po i n t cu t con t e x t () ;

a f t e r (MenuBar mb) :

wi th i n (A b s t r a c tApp l i c a t i o n +) && con t e x t () &&

execut i on (vo id createMenus (MenuBar)) && a rgs (mb) {
mb. add (createMenu ()) ;

}

a f t e r () r e t u r n i n g (IMenu m) :

wi th i n (Menu+) && con t e x t () &&

execut i on (IMenu createMenu ()) {
m. addSubMenu (createMenu ()) ;

}
/∗ . . . ∗/

}

The following module would plug the menu “Menu1” in ExampleApplica-

tion (very similar to the example given previously).
pub l i c aspect Menu1 extends Menu {

pub l i c Menu1 () {
super (”Menu1”) ;

}

pro tec ted po i n t cu t con t e x t () : t a r g e t (Examp l eApp l i c a t i on) ;

}

The following module would plug the menu “Menu2” in the “Menu1”.
pub l i c aspect Menu2 extends Menu {

pub l i c Menu2 () {
super (”Menu2”) ;

}

pro tec ted po i n t cu t con t e x t () : t a r g e t (Menu1) ;

}

Resulting Context

– Everything that can be done in an application with an object is
achieved through the same module.

– Changing the context where the object is composed, including differ-
ent context types, can be done just by changing the hook pointcut
definition in the object’s module.

Known Uses

A Multi-Context Self-Pluggable Object in Eclipse RCP can plug
menus, whose context may be (a) the application menu bar (conventional

19

menu), (b) a certain viewpart (only shown in there), and (c) a certain
viewer (appears as a pop-up menu).

Related Patterns

A Multi-Context Self-Pluggable Object is a special kind of Self-
Pluggable Object.

8 Abstract Self-Pluggable Object

Context

Objects are plugged using Self-Pluggable Objects. A common case
in frameworks is that objects of a certain type (e.g. represented by an in-
terface) may be plugged in an application, and therefore, several subtypes
of that type can be plugged in the same way.

Problem

When having a hierarchy of types whose objects can be plugged in an
application, if we would have a Self-Pluggable Object for each one,
there would exist duplicated code, given that all the objects are plugged
in the same way. How to generalize the common behavior that is necessary
to plug objects of a certain type?

Forces

– Code reuse should be maximized.
– A Self-Pluggable Type Hierarchy is also suitable to structure

Self-Pluggable Objects, but this option is not always viable.

Solution

Develop an aspect similar to a Self-Pluggable Object, but with
a Template Advice where the creation of the object to be plugged
is done by a Factory Method (abstract method). This Abstract
Self-Pluggable Object (Figure 9) should not be visible to applica-
tions. Develop one abstract aspect inheriting from it for each type to be
plugged, where the implementation of the Factory Method returns the
proper object. If application-specific objects of that type are allowed to
be plugged, develop also an abstract aspect that implements the type but

20

which does not implement the methods of the type, so that they can be
given in application modules. An application developer may use one of
the visible aspects by extending it and defining the hook pointcut. In case
the application-specific type is intended to be implemented, the applica-
tion developer extends the aspect for that purpose, and in addition to the
hook pointcut definition, the type’s methods have to be implemented.

factoryMethod() : SubType1

<<aspect, abstract>>

SelfPluggagleSubType1

<<pointcut>> context() : AbstractContext
 <<advice>> : ... && context()
factoryMethod() : Type

<<aspect, abstract>>

AbstractSelfPluggableObject

factoryMethod() : SubType2

<<aspect, abstract>>

SelfPluggableSubType2

<<aspect>>

ObjectOfSubType1

method() : ...

<<interface>>

Type

method() : ...
SubType1

method() : ...
SubType2

 factoryMethod() : Type
method() : ...

<<aspect, abstract>>

SelfPluggableType

...

method() : ...

<<aspect>>

ObjectOfType

<<class/aspect>>

Context

...

factoryMethod() {
 return this;
}

Type object = factoryMethod();
/* plug object */

<<context>>
<<context>>

Fig. 9. Abstract Self-Pluggable Object pattern.

Example

This pattern is illustrated with the plugging of actions in the example
framework. The case of actions is very similar to the plugging menus sce-
nario described in Section 2. Applications may include actions by plugging
objects of type IAction. The following is an Abstract Self-Pluggable
Object for this purpose. Except for the Template Advice, the solution
is analogous to a Self-Pluggable Object.
ab s t r a c t aspect Abs t r a c tAc t i o n {

pro tec ted ab s t r a c t po i n t cu t a p p l i c a t i o n () ;

a f t e r (Act ionBar ab) :

wi th i n (A b s t r a c tApp l i c a t i o n +) && a p p l i c a t i o n () &&

execut i on (vo id c r e a t eA c t i o n s (Act ionBar)) && a rgs (ab) {

21

ab . r e g i s t e r (c r e a t eA c t i o n ()) ;

}

pro tec ted ab s t r a c t I A c t i o n c r e a t eA c t i o n () ;

}

The above aspect can be extended by Self-Pluggable Objects, which
can be used by application developers. The following is an example Self-
Pluggable Object, based on the Abstract Self-Pluggable Ob-
ject, for addressing the exit action. The aspect overrides createAction()

for returning an instance of the framework class ExitAction.

pub l i c a b s t r a c t aspect Ex i t extends Abs t r a c tAc t i o n {
pro tec ted I A c t i o n c r e a t eA c t i o n () {

r e t u r n new Ex i tA c t i o n () ;

}
}

The following module illustrates how Exit could be used, by plugging
the exit action in ExampleApplication.

pub l i c aspect ExitOnExample extends Ex i t {
pro tec ted po i n t cu t a p p l i c a t i o n () : t a r g e t (Examp l eApp l i c a t i on) ;

}

The aspect that allows the plugging of application-specific actions could
be implemented like shown below. The aspect implements IAction, but it
is up to applications to implement the interface methods (run() in this
case).

pub l i c a b s t r a c t aspect Act ion extends Abs t r a c tAc t i o n

implements I A c t i o n {

pub l i c a b s t r a c t run () ;

pro tec ted I A c t i o n c r e a t eA c t i o n () {
r e t u r n t h i s ;

}
}

The following module illustrates how Action could be used. In addition
to the hook pointcut definition, the method implementation is given.

pub l i c aspect ExampleAct ion extends Act ion {
pub l i c vo id run () {

/∗ app l i ca t i on−s p e c i f i c ac t ion implementation ∗/
}

pro tec ted po i n t cu t a p p l i c a t i o n () : t a r g e t (Examp l eApp l i c a t i on) ;

}

22

Resulting Context

– The plugging of objects of a certain type is generalized. Support for
new types can be added simply by developing an aspect module that
overrides the Factory Method (e.g. as in Exit).

– The code of the modules that extend the Abstract Self-Pluggable
Object still has some redundancy given that the implementation of
the Factory Methods across the several modules is very similar
(only the name of the class changes).

– The number of subaspects grows along with the number of framework-
provided type implementations, implying one more framework module
for each one (i.e. the aspect).

Known Uses

In Eclipse RCP, an Abstract Self-Pluggable Object can gener-
alize the plugging of actions, which may be either chosen from a set
of framework-provided actions or implemented by applications. In JHot-
Draw there is an analogous case for plugging commands.

Related Patterns

An Abstract Self-Pluggable Object serves the purpose of struc-
turing a set of related Self-Pluggable Objects, and consists of an
alternative to a Self-Pluggable Type Hierarchy.

9 Self-Pluggable Type Hierarchy

Context

An Abstract Self-Pluggable Object is capable of generalizing the
plugging of objects of a certain type, implying that there will exist an
aspect for each type. All these subaspects are similar and only differ in
the object instance returned by the Factory Method.

Problem

How to avoid the existence of all the similar subaspects, and therefore,
to reduce the number of framework modules?

23

Forces

– In solutions based on an Abstract Self-Pluggable Object, the
number of subaspects grows along with the number of framework-
provided type implementations. The disadvantage is that the solution
implies one Self-Pluggable Object for each pluggable type.

Solution

Merge the implementation of a type hierarchy of default components with
the Self-Pluggable Objects that implement the composition of ob-
jects of that type. In order to do so, develop an aspect similar to a Self-
Pluggable Object that is of the top-most type of the hierarchy (i.e.
it declares that it implements that type), while it does not implement
the type’s methods. Develop a subaspect for each subtype, where the
type methods are implemented. These aspects may represent partial type
implementations by implementing a subset of the type methods, while
leaving the remaining methods to applications. Application developers
can use the appropriate member of the Self-Pluggable Type Hier-
archy (Figure 10) that implements the type they wish to use. If an
application has to include its own implementation of the type, it extends
the top-most aspect.

Example

This pattern is illustrated with the same case of the actions in the example
framework, as it consists of an alternative solution to the one given in
Section 8.

The following is a new version of Action that can be used in the same
way by application developers (exemplified in Section 8). The aspect is
of type IAction, and registers itself as an action.
pub l i c a b s t r a c t aspect Act ion implements I A c t i o n {

pro tec ted ab s t r a c t po i n t cu t a p p l i c a t i o n () ;

a f t e r (Act ionBar ab) :

wi th i n (A b s t r a c tApp l i c a t i o n +) && a p p l i c a t i o n () &&

execut i on (vo id c r e a t eA c t i o n s (Act ionBar)) && a rgs (ab) {
ab . r e g i s t e r (t h i s) ;

}

pub l i c a b s t r a c t vo id run () ;

}

The following is a new version of Exit that can be used in the same way
by application developers (as given in Section 8).

24

<<pointcut>> context() : AbstractContext
<<advice>> ... && context()

<<aspect, abstract>>

SelfPluggableAbstractType

method1() : ...
method2() : ...

<<interface>>

Type

method1() : ...
method2() : ...

<<aspect, abstract>>

SelfPluggagleSubType1

method1() : ...
method2() : ...

<<aspect, abstract>>

SelfPluggableAbstractSubType2

<<aspect>>

ObjectOfSubType1

...

method2() : ...

<<aspect, abstract>>

SelfPluggagleSubType3

method2() : ...

<<aspect>>

ObjectOfSubType2

<<class/aspect>>

Context

...

method1() : ...
method2() : ...

<<aspect>>

ObjectOfType

Type object = this;
/* plug object */

<<context>>

<<context>>

<<context>>

Fig. 10. Self-Pluggable Type Hierarchy pattern.

pub l i c a b s t r a c t aspect Ex i t extends Act ion {
pub l i c vo id run () {

/∗ the e x i t ac t ion implementation ∗/
}

}

Resulting Context

– Less framework modules when comparing with a solution based on an
Abstract Self-Pluggable Object, and more elegant given the
nonexistence of all the similar subaspects for each pluggable type.

– The types addressed by the Self-Pluggable Type Hierarchy
cannot be instantiated independently.

Known Uses

In JHotDraw, a Self-Pluggable Type Hierarchy is capable of or-
ganizing the framework-provided figures and connection figures. In order
to use an application-specific figure, application developers may extend a
member of the hierarchy, which may be the top element for implementing

25

a completely new figure, or a lower one in case if the figure is intended to
be based on an existing one.

Related Patterns

If merging the implementation of the types with Self-Pluggable Ob-
jects is not possible due to some constraint, a solution based on an
Abstract Self-Pluggable Object can be used instead.

10 Association Object

Context

Objects are plugged in an application using Self-Pluggable Objects
or Multi-Context Self-Pluggable Objects. The objects plugged
in an application may need to have other associations between them.

Problem

The plugged objects are not visible to application developers, so that they
can define the associations. How to establish an association between two
Self-Pluggable Objects?

Forces

– Having the possibility of managing object associations independently
is advantageous because application features relying on associations
may be plugged and unplugged without modifying other modules.

– Given that the objects are handled by Self-Pluggable Objects,
it makes sense to define associations in terms of these modules.

Solution

Develop an abstract aspect, which when made concrete encapsulates an
association between two objects — an Association Object (Figure 11).
Use two Template Pointcuts to capture the creation of the objects,
each one with its own advice. One advice captures and stores a refer-
ence to one of the objects, while the other advice uses that reference to
establish the association with its captured object. Application develop-
ers can establish an association by defining the hook pointcuts on the
modules representing the two objects to be associated. An Association

26

Object can be defined in terms of an Abstract Self-Pluggable Ob-
ject or the top-level aspect of a Self-Pluggable Type Hierarchy.
This enables that the association can be established between any object
whose type is a subtype of the type addressed by either the Abstract
Self-Pluggable Object or the Self-Pluggable Type Hierarchy.

<<pointcut>> object1() : SelfPluggableObject1
<<advice>> SelfPluggableObject1.constructor() && object1()

<<pointcut>> object2() : SelfPluggableObject2
<<advice>> SelfPluggableObject2.constructor() && object2()

-obj1 : Type1

<<aspect, abstract>>

AssociationObject

...
constructor() : Type1

<<aspect, abstract>>

SelfPluggableObject1

...
constructor() : Type2

<<aspect, abstract>>

SelfPluggableObject2

...

<<aspect>>

Object1

...

<<aspect>>

Object2

<<aspect>>

Association

/* store returned object */
obj1 = ...

/* get returned object */
Type2 obj2 = ...
obj2.compose(obj1);

<<object1>>

<<object2>>

compose(Type1) : void
...

<<interface>>

Type2

Fig. 11. Association Object pattern.

Example

This pattern is illustrated by presenting a solution for improving the as-
sociating actions scenario given in Section 2. Below we present the aspect
that enables the encapsulation of such associations, assuming the special-
ization aspect Action from Section 9 and the specialization aspect Menu

from Section 7. The first advice captures the instantiation of a subaspect
of Action, which is itself an object of type IAction, while the second advice
includes the captured action in a menu captured from the execution of
createMenu() within a subaspect of Menu.
pub l i c a b s t r a c t aspect MenuAction {

pro tec ted ab s t r a c t po i n t cu t a c t i o n () ;

pro tec ted ab s t r a c t po i n t cu t menu () ;

p r i v a t e I A c t i o n a ;

a f t e r (IA c t i o n a) :

wi th i n (Act i on+) && ac t i o n () &&

execut i on (Act i on . new (. .)) && t h i s (a) {
t h i s . a = a ;

27

}

a f t e r () r e t u r n i n g (IMenu m) :

wi th i n (Menu+) && menu () &&

execut i on (IMenu createMenu ()) {
m. addAct ion (a) ;

}
}

Assuming the Self-Pluggable Objects Menu1 and ExitOnExample

given previously, the following aspect implements the association that
places the exit action on “Menu1”.
pub l i c aspect ExitOnMenu1 extends MenuAction {

pro tec ted po i n t cu t a c t i o n () : t a r g e t (ExitOnExample) ;

pro tec ted po i n t cu t menu () : t a r g e t (Menu1) ;

}

Resulting Context

– Associations can be encapsulated and managed independently.
– In order to establish an association there is no need to understand

the context where the objects are plugged nor any details about their
type implementation.

Known Uses

In JHotDraw an Association Object can define the valid source and
target figures which a connection figure may connect. However, the solu-
tion is a bit different than the one in the example, since the valid con-
nections are given by overriding a hook method of the connection figure.
In Eclipse RCP, Association Objects may link the actions and the
toolbar, the actions and the menus, or the viewparts and the perspectives.

Related Patterns

An Association Object may be adaptable by having Composition
Hook Methods, which in turn can be completed by Self-Pluggable
Objects.

11 Example Framework Revisited

This section revisits the example framework, taking into account the
Modular Hot Spots pattern language given throughout sections 6-10.

28

Figure 12 depicts the new reuse interface after applying the patterns. We
can see the several abstract modules (gray) and their abstract pointcuts.
Regarding the menus, the example of Section 7 is considered (Multi-
Context Self-Pluggable Object), instead of the one given in Sec-
tion 6. Regarding the actions, the examples of Section 9 are considered
(Self-Pluggable Type Hierarchy), instead of the ones of Section 8.

<<abstract>>
AbstractApplication

<<poincut>> context() : AbstractApplication || Menu

<<aspect, abstract>>
Menu

<<poincut>> action() : Action

run() : void

<<aspect, abstract>>
Action

<<aspect, abstract>>
Exit

<<poincut>> menu() : Menu
<<poincut>> action() : Action

<<aspect, abstract>>
MenuAction

<<aspect>>
Menu1

Example
Application

<<aspect>>
Menu2

<<context>>

<<aspect>>
ExitOnExample

<<application>>

run() : void

<<aspect>>
ExampleAction

<<application>>

<<aspect>>
ExitOnMenu1

<<menu>>

<<action>>

<<context>>

Fig. 12. Modular Hot Spots for the example framework (in gray) and example
application (in white).

Figure 12 also depicts the framework-based application based on Mod-
ular Hot Spots that was given throughout the patterns. We can see
the several application aspects (inheriting from the specialization aspects)
and their pointcut definitions. The following topics briefly compare this
solution with the conventional one given in Section 2.

1. Each of the application concepts (i.e. application, menu, action, exit,
and menu action) can be used incrementally, where each concept in-
stance is implemented in an independent module. Throughout the
pattern examples a framework-based application was given in the
modules ExampleApplication (Section 6), Menu1 and Menu2 (Section
7), ExitOnExample and ExampleAction (Section 8), and ExitOnMenu1

(Section 10).
2. Without source code modification, the application may be compiled

with subsets of the modules enumerated in (1), obtaining variants of

29

the application. This issue is particularly important in the context of
software product-lines. For instance, one could have a variant of the
application without the “Menu2”, just by not including that module
in the compilation.

3. Application features can be removed without understanding source
code, as far as one knows which application elements the modules
are representing (a fairly basic information that is easy to maintain).
This issue facilitates the maintenance and reengineering of framework-
based applications. For instance, suppose that the application imple-
mented by the modules enumerated in (1) needs to be changed for
a new version without the ExampleAction. If the task is given to a
programmer that was not the one who developed the application in
first place, his or her task becomes facilitated, given that only that
module has to be identified and removed, while no understanding of
the existing code is necessary.

4. The associations between menus and actions can be independently
and non-invasively defined.

5. The two hook methods of AbstractApplication, plus the two methods
of Menu, of the conventional reuse interface, no longer have to be dealt
with by applications. Instead, there are pointcuts that assume their
role. The advantages of the latter is that compositions can take place
without modifications and inspection of the target modules.

6. The two classes MenuBar and ActionBar are no longer relevant for the
application developer.

The items (1), (2), and (3) are related with the improvement of the
plugging menus and menu context scenarios given in Section 2. Item (4)
is related with the improvement of the associating actions scenario also
given in Section 2.

12 Conclusion

This paper presented Modular Hot Spots, a pattern language for help-
ing on the task of developing framework reuse interfaces with a higher
abstraction level concerning the development of framework-based appli-
cations. The application of the given patterns relies on aspect-oriented
programming primitives. However, the required knowledge of this pro-
gramming paradigm is small, if we consider the whole set of primitives
that these languages offer.

Modular Hot Spots can form a black-box reuse interface with a
higher level of abstraction than conventional black-box reuse interfaces.

30

Black-box frameworks are pointed out as adequate for having an accompa-
nying Visual Builder [7] for generating framework-based applications
from high-level domain-specific descriptions. We argue that such Visual
Builders can be developed more easily if Modular Hot Spots are
adopted, given that the code of the applications is able to resemble more
closely the concepts and relationships of a given domain.

Acknowledgements

We would like to thank our EuroPLOP’08 shepherd Uirá Kulesza, and
the Writer’s Workshop participants Paul G. Austrem, Dietmar Schütz,
Diethelm Bienhaus, and Jürgen Salecker, for the valuable suggestions for
improving this paper.

References

1. Eclipse Foundation. AspectJ programming language.
http://www.eclipse.org/aspectj, 2007.

2. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of

reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
1995.

3. S. Hanenberg, A. Schmidmeier, and R. Unland. Aspectj idioms for aspect-oriented
software construction. In 8th European Conference on Pattern Languages of Pro-

grams (EuroPLoP), 2003.
4. R. E. Johnson and B. Foote. Designing reusable classes. Journal of Object-Oriented

Programming, 1:22–35, 1988.
5. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,

and J. Irwin. Aspect-Oriented Programming. In Proceedings European Conference

on Object-Oriented Programming, 1997.
6. J. McAffer and J.-M. Lemieux. Eclipse Rich Client Platform: Designing, Coding,

and Packaging Java(TM) Applications. Addison-Wesley Professional, 2005.
7. D. Roberts and R. E. Johnson. Evolving frameworks: A pattern language for

developing object-oriented frameworks. In Pattern Languages of Program Design

3. Addison Wesley, 1997.
8. A. L. Santos, A. Lopes, and K. Koskimies. Framework specialization aspects. In

AOSD ’07: Proceedings of the 6th International Conference on Aspect-Oriented

Software Development, 2007.
9. SourceForge. JHotDraw framework. http://www.jhotdraw.org, 2006.

10. O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: An aspect-oriented
extension to C++. In Proceeding of the 40th International Conference on Tech-

nology of Object-Oriented Languages and Systems (TOOLS Pacific 2002), 2002.
11. A. Weinand, E. Gamma, and R. Marty. Design and implementation of ET++, a

seamless object-oriented application framework. Structured Programming, 1989.

31

Patterns for Managing Data in Complex Automatic
Identification and Data Capturing Environments

Diethelm Bienhaus

Institute of Nanostructure Technologies and Analytics / Technological Electronics

University of Kassel, D-34132 Kassel, Germany

and

Department of Systems Engineering

University of Cooperative Education Nordhessen, D-35066 Frankenberg, Germany

bienhaus@uni-kassel.de, d.bienhaus@ba-nordhessen.de

Keywords: Automatic Identification and Data Capture (AIDC), Automatic Identification (Au-
toID), Radio Frequency Identification (RFID), Internet of Things, Unique Identifiers, Data-On-
Tag, Data-On-Network, Middleware, Edgeware

1. Introduction

Nowadays production and distribution processes are controlled to a large extent by information
processes. Interconnecting the flow of material and information promises to increase efficiency
and quality of business activities while reducing costs. Production planing and control systems
and enterprise resource planning systems can optimize processes within companies.

Supply chain management comprises the whole process of planning, implementing, and control-
ling the operations within a supply chain. The overall goal is to satisfy customer requirements as
efficiently as possible while saving time and resources on the other hand. Controlling all logistic
processes from raw materials suppliers to manufacturers and retailers to the consumer needs
transparency of the process steps. Managing the whole product life cycle from point-of-origin to
the point-of-consumption and disposal or recycling needs accurate information about products
in each process state and at the appropriate location.

Automatic Identification and Data Capture (AIDC) or Automatic Identification (AutoID) com-
prise techniques to automatically identify objects, to collect associated product data, and to
propagate that data to back-end software applications like Enterprise Resource Planning sys-
tems. Typical automatic identification technologies are bar codes, Radio Frequency Identifica-
tion (RFID) and smart cards. These techniques identify assigned properties while biometrics,
optical character and voice recognition utilize natural properties.

RFID has its origins more than fifty years ago. But due to recent developments this technique
is now available with higher quality and more functionality at lower costs. Especially in logistics
a large-scale commercial application is expected. In [Hen09] an worldwide market increase of
25% p.a. is expected.

RFID technology comprises several aspects: infrastructure and architecture, hardware like tags
or transponders and readers, integration on the physical layer up to IT system integration: SCM,
ERP, MES and warehouse management systems.

System architects, technology integrators, process designers and engineers in charge of implemen-
tation and system integration face several challenges. On the physical level first of all ”material
things” have to be identified. Then the captured data can be processed, filtered and forwarded
to applications which perform planning and controlling tasks. Questions concerning appropriate
data formats, efficient data transfer, data integration, lookup mechanisms, and others arise in
AutoID environments. This pattern collection introduces patterns dealing with aspects of those
problems.

This collection is a continuation and extending of a work starting with ”A Pattern Language
for Process Optimization with Smart Object Identification“ at EuroPLoP 2005 [Bie05] and
“Patterns for Unique Product Identification” [Bie08].

2. Overview

Figure 1 illustrates the relationships among the patterns presented in this collection. Starting
point of this collection is the need for centralized product data management as a basis for
planning and controlling systems. The pattern Identifiers Point To Data introduces a
solution to that problem. Applying the pattern may result in situations where new challenges
arises: capturing identification data of each individual product at many process steps and at
several times bears the risk of producing a large amount of data at low information level. A
solution for that problem is described in the pattern Business Events.

A decentralized data storage has benefits in applications where access to a network infrastructure
is temporarily or in principle not available. In such scenarios Data Accompanying Products
is an appropriate solution. Storing product data decentralized attached to the product and at
the same time centralized on servers can easily result in data inconsistencies. Synchronised
Data Location explains how to cope with that problem.

Identifiers Point To Data

Need for centralized
product data management

Data Accompanying Products

Need for decentralized
data access

Business Event Manager

Cope with large
amount of raw data

Synchronized Data Location

Avoid inconsistency when
storing data centralized

and decentralized

Production automation and logistic processes

Pattern

Problem

Figure 1 – Overview Graph

Identifiers Point To Data

Context Identifiers Point To Data is necessary to enable seamless access to product
data within a single company's internal production processes as well as in case of
supply chains where several companies are involved.

Problem How to give access to detailed product data in distributed production and
logistic networks while only an identifier is attached to the product?

Forces � In production and distribution processes several partners needs to gain access
to detailed product data. If the product data representation is attached to the
product itself the describing information can only be obtained when the product
is present.

� Product data not only has to be accessible but also has to be updated and main-
tained during the whole product life cycle from raw material suppliers to customers
and finally to disposal or recycling. Optical data representations are printed once
and afterwards unchangeable. Modifications can only be done by replacing an old
label or product accompanying description by a newer one.

� Machine readable data has to be stored in such a way that it is assigned to the
describing product. Typically a label is fixed on a product or it’s packaging.
Alternatively the product itself is marked (Direct Part Marking) e.g. by means of
laser engraving. Relatively cheap RFID transponders store about a hundred Bits
(EPC specifies a 96 Bit encoding) up to one or two kBits. The amount of data is
restricted.

� An unique identifier allows distinction of product types or even individuals. But
this is not sufficient if a detailed product description is necessary e.g. for customers
or due to documentation reasons.

� Increasing complexity of several companies spanning production processes and
deep supply chains raise the demand for product data accessible beyond company
internal and isolated IT systems like Production Planing Systems (PPS) and
Enterprise Resource Planning (ERP) Systems.

Solution Establish a network-based infrastructure that consists of components pro-
viding services for registering resources with an associated data lookup
service which enables storage and query of data along with their iden-
tifiers (keys). The services may be be folded into one single piece of
software or can be distributed over the Internet.

In real world physical objects populate the environment. Products or transport units
are a specific type of physical objects as results of planed and controlled production
processes or as part of such processes or as elements of transportation and storage.

Information technology supports controlling of technical or administration processes.
Processing and storing data about the real world needs abstract model of reality.
Objects of the real world are abstracted in the information systems through the use
of symbols (names, labels).

Abstraction is necessary because the real world cannot be represented in each detail,
but relevant sections of reality have to be chosen. Data describing properties of the
physical objects may be extensive. Often several parts of organisations or individuals
especially customers and users are interested in the data belonging to a product or
transport unit, even if the physical object itself is not present.

Rationale Accessibility to product data can be gained by saving and processing the data in
decentralized databases. If these databases can be accessed over the Internet most
of the involved partners will find the data easily. An identifier has to be assigned
to products or transport units and to be carried along with them which works as a
”pointer” to it’s belonging data. In this sense the identifier externalises the identifier
that is necessary internally in databases to mark each entry uniquely. RFID is seen
as an enabler so that things of the real world have a representation in the “virtual”
world of the Internet [KBM+00], [Bie05].

Consequences

Benefits � Product data can be accessed independently of the products presence.

� Only the identification number has to be represented or stored. Hence printed
labels or inexpensive passive RFID tags are sufficient.

� Generation, representation and assignment of identifiers for products or transport
units is well standardized. The standards specified for reading devices, middle-
ware, and data manipulation grant compatibility and ensure a long-term use of
AIDC technologies like barcode, two-dimensional symbologies and in an increas-
ingly regarding RFID.

Liabilities � Data accessibility is highly dependent on the availability of network infrastructure.

� Centralized data storage and processing has to be reachable from every decision
point within the production or logistic processes. Failure of the centralized IT
system or network components result in a stop of the process. Redundancy can
reduce the risk of system standstills, but raises costs.

� Network traffic increases with the number of items which are stored and have
to been searchable. The effort of resolving identifiers, searching the data and
delivering it to the requester grows proportional to the amount of item records.

� Centralized data processing induces demands for data access regulations. Secu-
rity issues may be raised by producers and customers as well: To avoid business
espionage producers need to hide product details from their competitors. On
the other hand customers have concerns that their consumer’s behaviour may be
recorded and then misused by unauthorized parties.

Known Uses

A well known use are cash registers at checkout points in supermarkets which scan
the bar code on products to obtain data like price or weight. The data can be stored
decentralized at the cash register itself or is stored on a centralized system for the
reason of easier updates.

In logistics nearly each returnable transport item like pallets or containers are as-
signed a global shipping item number such that the transport units can be tracked.
Interoperability and ease of use need standardisation. Global Standard 1 (GS1) has
defined a scheme for globally applicable identifiers for trade items (products and
services), the Global Trade Item Number GTIN. A whole family of data structure
are specified for different application areas. In case of consumer products the EAN-
13 bar code is very popular especially in Europe [GS1]. The symbol encodes 13
numbers and is divided into four parts:

� System code: two or three digits representing the country where the manufacturer
is registered. To cover the International Standard Book Number ISBN and the
International Standard Serial Number ISSN the starting three numerals 978 resp.
979 are used.

� Manufacturer code: four or five digits such that system code and manufacturer
code are 7 numerals in sum.

� Product code: five digits given by the manufacturer (normally the serial number).

� Check digit: one digit for the check sum.

Figure 2 gives an example of a EAN bar code (code generator available on the
Internet: http://www.barcoderobot.com)

Figure 2 – Example of an EAN-13 Bar Code

The EAN identifier can be scanned to look up product information especially a
description and the product price in a database. As a service for consumers GS1
provides a web site on the Internet (http://directory.gs1.org/gtin/search)
where the product code owner and item information can be searched for.

Figure 3 shows the result of looking up the EAN number 4006381105262 which
the author found on a pen. (The Look-up tool is available on the Internet: http:
//directory.gs1.org/gtin/search)

http://www.barcoderobot.com/
http://directory.gs1.org/gtin/search
http://directory.gs1.org/gtin/search
http://directory.gs1.org/gtin/search

Figure 3 – EAN-13 Item Number Resolved

Several courier-, express- and parcel (CEP) service provider offer customers freight
tracking services. In each relevant step in the logistic chain from sender to handler
and finally the the recipient is documented by capturing identification data and asso-
ciating it to the fulfilled transaction. As a service customer can look up information
about their shipments.

Data Accompanying Products

Also Known As: Data-on-Tag

Context Application of Data Accompanying Products enables process automation where
data about physical objects like products or pallets is necessary.

Problem How to provide machines access to product data without presence of a
network infrastructure?

Forces � A centralized data storage allows data access from several distributed decision
points in production and logistic processes. If the necessary network is not avail-
able or if the centralized data storage and processing system fails the whole process
stops.

� Identifiers attached to physical objects in the real world operate as pointers to
resource in the “virtual ” world. If the only information carried along with a
physical object is the identifier then no detailed data can be obtained between
points with no network access.
But in case of unplanned events more detailed data like product contents may be
necessary which cannot be obtained abroad from the normal process paths.

� Network traffic and lookup times increase with the amount of items for which
detailed data is requested.

Solution Use a machine readable representation or storage technique carried along
with the product itself such that product related data accompanies the
physical object.

In order to attach data to a physical object in a machine readable manner an ap-
propriate representation is necessary which is capable to store data and allows at
least a reading access.

Read only techniques can be distinguished due to the used storage media and com-
munication method. The most common solutions are:

� Optical representation with transfer in the frequency range of visual light. Data is
encoded as linear or two dimensional arranged geometrical patterns like rectangles,
squares or circles. The encoding is based on the shape of the geometrical element
and/or it’s location.
Typically the patterns are printed on adhesive labels which are then attached
to the physical object. Alternatively a direct part marking by means of Laser
engraving or other surface processing is applied to prevent removing of the data.

� Data storage in digital memories and communication devices on chips. Data
transfer is performed via radio frequencies. On principle, storage capacities of
digital memories can be very large but data transfer then is time consuming. While
printed or directly marked symbologies are immutable except for replacing the
label or modifying the marked surface, digital memories provide the opportunity
of not only reading from but also writing to the chip.

Rationale Product data accompanying the the product itself grant access to information with-
out a network infrastructure and a centralized data processing [DMS07].

Attaching human readable information to products is well established for decades.
Examples are product sheets or instructions for use which are printed separately
and packaged together with the product. Shorter instructions and descriptions are
printed on labels and fixed on the product. Textual representations are not obsolete
and to be replaced by machine readable data. In fact machine readable information
augments the “audience” such that devices can get read the data which is then
can be exploit to automatically control process steps or is displayed to humans.
Attachment of data beyond simple identifiers raise the demand for higher storage or
representation capacities. In case of optical identification techniques data capacity
was stepwise enhanced in the evolution from linear codes – bar codes – to stacked
codes and then to two-dimensional symbologies. A widely used two-dimensional
symbology is the Data Matrix code which can contain up to 3116 numeric or 2335
alpha-numeric characters.

The digital memory integrated in RFID transponders feature a capacity of typically
about 100 Bit sufficient for identifiers up to several kBit. It is guessed that Moore’s
Law just begins regarding RFID transponders.

Consequences

Benefits � Access to product data can be accessed independently of the products presence.

� In case of re-writeable data storage labels like RFID transponders relevant data
can be collected on the path a product is undergoing.

� Object related data allows managing of processes without a centralized controlling
system.

� Data is available without an IT infrastructure and without the need for a central-
ized storage and processing system.

Liabilities � Detailed data is only accessible when the described physical object is present.

� Data storage capacities limit the amount of information. The level of details hence
is restricted and not all relevant data might be kept.

Known Uses

Automation of Production Processes

Siemens Amberg produces transformers which can be individually customized. Fig-
ure 4 shows a transport unit used in the transformer production process at Siemens
Amberg. Individual configuration data and necessary production steps are stored
in the transponder at the beginning of the production line. After that the trans-
port unit is directed through the production and the specified steps are performed
automatically without a centralized production execution system.

Figure 4 – Transponder storing configuration and production related
data attached to transport unit. (Source: Siemens)

Further applications of RFID in process automation are Ford’s manufacturing pro-
cess at the Essex Engine Plant in Windsor, Ontario, and the aircraft maintenance
at Boeing and Airbus [ZGYP03], [ZGP03].

Tracking and Tracing of Pharmaceutical Products

In the United States the Food and Drug Administration (FDA) forces the intro-
duction of a so called ePedigree for pharmaceutical products. In California by law
prescription drugs have to be accompanied by an electronic pedigree.

In the US RFID is the preferred tracking technology. Due to problems of wide spread
application of RFID transponders, hybrid pedigree systems incorporating paper and
automatic identification technologies like RFID or optical codes are in use as shown
in figure 5.

Figure 5 – RFID label attached to a pharmaceutical package

Synchronized Data Location

Context Synchronized Data Location is needed if data is alterable at both the data
carrier attached to the product and in centralized storage.

Problem How to avoid data inconsistencies if product data accompanying a physi-
cal object itself and the mirrored data on centralized servers are changed
independently?

Forces

� A centralized data storage allows data access from several distributed decision
points in production and logistic processes. But if the infrastructure is not avail-
able or if the centralized data storage and processing system fails the whole process
stops.

� Carrying product data along with the product itself provides access to that infor-
mation independently from a network infrastructure – stand-alone reader devices
are sufficient. But due to the decentralized storage technique necessary informa-
tion is not permanently and accurately available for tasks on a system wide level
like production planning and controlling.

� Integration of all reader devices in a network infrastructure can help to forward
product related data to centralized processing services. In this case data is pushed
forward each time a physical reading process happens. On the level of business-
logic applications the need for information about the status of physical compo-
nents is triggered by software execution. Hence, data generation and information
processing are not synchronized. But the ability to react immediately to physical
events needs accurate process data.

� Storing product data in both ways – attached to the product itself and on central-
ized servers – often results in data inconsistency. E.g. updating the product data
attached to the product at each process steps provides detailed information about
a product's history at any time and anywhere just having a mobile reader device
at hand. But that information tends to differ increasingly from the centralized
stored data.

Solution Synchronize product data carried along with the product and the central-
ized stored data by means of synchronization rules.

Such rules define actors and execution details of data interchange processes. Impor-
tant actors are data producer and consumers who are assigned updating and writing
access rights. Synchronisation with the centralized system is mostly based on data
versioning and event-based rules.

Rationale

In automation and logistics planning and controlling applications need data related
to products and process progress. Modern AutoID technologies support those ap-
plications. The overall aim is efficiency based process transparency: to know as
much as needed about state and location of products or transport units. Tradi-
tional identification data like Barcode labels or imprints are unchangeable. Hence
no data inconsistency can occur (expect in case of damage or replacement of the ID).
Radio-frequency identification allows storage of data far beyond simple identification
numbers. Data Accompanying Products explains benefits of decentralized data
storage. The resulting risk of inconsistent contents between separately located data
not only arises in the case of modern automated identification and data capturing
technologies: it is a general problem that occurs in backup scenarios and distributed
systems. Hence AutoID infrastructures can benefit from solutions established in
other IT application areas.

Consequences

Benefits � Centralized stored data can more accurate represent the actual state of physical
things within the monitored process.

� Decision and controlling systems can react more promptly to occurring changes
within processes.

� In case of writeable storages attached to products like writeable RFID transpon-
ders central data updates can be downloaded and deployed to the de-centralized
memories on-site.

Liabilities � Data consistency is determined by the completeness of the synchronization rules.
Unaccounted exceptions may still result in data inconsistencies.

� If the necessary network infrastructure is not available no synchronisation can
be performed. Data accuracy and hence quality on the centralized storage is
dependent on refresh periods.

Known Uses

Based on [Sch02] researchers at University of Bremen / BIBA developed the concept
of “Data Contracts” for AutoID applications. Data Contract specify how to update
and match data between locally and centralized stored data during a product's life
cycle.

Updating and synchronisation of product data during its whole life cycle is the aim
of Product Lifecycle Management PLM. From production to distribution, reselling,
consumption and recycling all generated and necessary data about the products of a
company have to be managed consistently and have to be provided to controlling and
planning systems [AG06]. Automatic identification techniques contribute to PLM
on the narrow layer of plant automation and production or distribution logistics.

Business Event Manager

Context Business Event Managers bridge the gap between streams of raw sensor data
and applications on the business-logic level.

Problem How to perform process controlling efficiently while on-site reading de-
vices can only deliver raw sensor data which might even be redundant?

Forces � Automatic identification techniques sense physical properties of things like given
properties or attached identifiers. Controlling of production and logistic processes
is based on logical rules which determine control flows.

� Auto-ID technologies will enable businesses to move from linear and manual sup-
ply chain planning and execution to an event-driven, adaptive supply network.
But devices like bar code scanner and RFID readers can generate multiple read-
ings of the same physical object.

� The occurrence of a reading event is not necessarily a business relevant event.

� Propagation of each single reading event to the planning system may result in
high network traffic.

Solution Augment the automatic identification and data capturing infrastructure
by additional on-site software that performs a preprocessing of the raw
data and propagates business relevant events to the process controlling
applications. Such software components act as business event managers.

Business event managers have to react on real-time events and information, to prop-
agate alerts, and to provide services for essential reading and - if applicable – writing
of information to other information systems. As shop-floor near components they
have to provide interfaces for reader devices like scanners or RFID readers and
other devices like sensors. To be easily integrable those components need standard-
ised network interfaces. To be accessible from the business-logic level business event
managers have to support standard communication protocols like Simple Object
Access Protocol (SOAP).

Possible field of applications raise with abilities of general-purpose event routing,
collating, and filtering.

Rationale Business event extractors and managers hide hardware specific interfaces and exten-
sive streams of raw data. Furthermore, they can accomplish hardware configuration
tasks and maintenance related services.

From the physical layer consisting of hardware devices like scanners and readers only
physical signals can be obtained. Devices on this layer have to been managed e.g.
by providing appropriate software like drivers.

Signals have to be transformed into data due to specific protocols and grammars
in order to be transferred to the next layer. So at least two tasks have to be done
on the hardware layer: device management and data extraction and communication
[GH06].

The top layer of business process management can be seen as the opposite of
the hardware related layer on the bottom. Back-end systems like Enterprise Re-
source Planning (EAI) solutions, Manufacturing Execution Systems (MES) or Sup-
ply Chain Management (SCM) systems need to know the status of the underlying
processes from a business perspective. Hence business process relevant events or
alerts are necessary for decision making and then commands are sent down to the
active process elements to control progress. So extraction of business relevant events
and command propagation are the tasks to link the business controlling layer and
the layer of process near sensors like readers and actors.

Consequences

Benefits Assignment of specific tasks and functionality to specialized components supports
flexibility and re-usability. Especially in case of multi-tier architectures the necessary
processing power is at the point where the relevant data has to be captured and pre-
processed.

Liabilities The increasing amount of components and communication overhead are time costly
and decrease performance. Since more processing power is allocated at distributed
hardware components the installation costs of the whole infrastructure grow.

Known Uses

In case of complex production processes or supply chains several distributed and
heterogeneous components have to be integrated. This is the task of middleware
which is referred to as Enterprise Application Integration (EAI). In between of those
layers several functionality is necessary:

� Preprocessing of the raw data received from devices,

� data filtering and aggregation,

� context-based event extraction,

� propagation of business relevant events and

� connectivity components for communication.

This intermediate layer, which might be subdivided, is known as “edgeware”. On
the edgeware layer several tasks have to be done. Devices are distributed at decision
relevant points of the process. Often inhomogeneous hardware components are in
use. Software components specialized in those different tasks and adapted for the
different hardware devices are the constituent parts of the edgeware layer.

Edgeware software is a good example where to apply the Layers [BMR+96] and
Pipes and Filters [BMR+96] architectural patterns.

Distinct parts work different levels and specific protocols can be used to access the
services contained at each layer.

In case of a single tier architectural approach all software functionality for data
and device management is integrated as a single software component with a layered
internal structure. Figure 6 illustrates a single-tier edgeware architecture.

Reader 1

Routing / Middleware Connectivity

Context-based Event Extraction

Hardware Connectivity

Data Filtering and Aggregation

Middleware Connectivity

Command
Interpretation

Hardware Connectivity

Device
Management

Middleware

EAI / ERP MES Application 1 Application n

Device and Data Management

Events Commands

Reader n

Raw Data Raw Commands

Command
Transformation

Figure 6 – Single-tier Edgeware Architecture

In production plant automation and in logistic applications reading devices are dis-
tributed. In such a setting a multi-tier architecture is more appropriate, as shown
in figure 7. In this architecture an additional service bus separates command in-
terpretation and event extraction from hardware specific functionality. The latter
consists of command transformation into device specific formats as well as data fil-
tering and aggregation. In [Lea04] several industrial applications of one-tier and
multi-tier architectures are introduced.

Routing / Middleware Connectivity

Context-based Event Extraction

Middleware Connectivity

Command Interpretation

Middleware

EAI / ERP MES Application 1 Application n

Device and Data Management

Events Commands

Service Bus

Domain Specific Protocol

ConnectivityConnectivity

Domain Specific Protocol

Reader 1

Routing / Middleware Connectivity

Hardware Connectivity

Data Filtering and Aggregation

Connectivity

Hardware Connectivity

Device
Management

Raw Data Raw Commands

Command
Transformation

Reader n

Routing / Middleware Connectivity

Hardware Connectivity

Data Filtering and Aggregation

Connectivity

Hardware Connectivity

Device
Management

Raw Data Raw Commands

Command
Transformation

Figure 7 – Multi-tier Edgeware Architecture

GS1 aims on a standardisation of integration architectures. That standardisation
defines the The Savant Architecture [LNE05], [CTAO03] where interface compo-
nents on the hardware near layer perform simple data processing in order to extract
Application Level Events from raw sensor data.

Figure 8 – Event Manager Software Components in RFID Middleware
Left: Sun’s RFID Middleware (Source: Sun Microsystems)

Right: Microsoft’s BizTalk Architecture (Source: Microsoft)

The architectural approach of extracting business events is implemented in middle-
ware platforms like Microsoft BizTalk [Sch06] or Sun's RFID middleware [Sun05].
In both architectures specialized software components (“Event Managers”) gather
information from the RFID Readers, filter the information, and provide information
as messages to systems on the business layer like ERP systems. Figure 8 illustrate
how the Event Manager and Information Server fit into a network-based AutoID
architecture.

3. Acknowledements

I'd like to thank my EuroPLoP 2008 shepherd Christian Kohls for his helpful feedback and
inspiring suggestions.

References

[AG06] Abramovici, M. and M. Ghoffrani: PLM - ein Thema auch für KMUs. Digital
Engineering, 2006.

[Bie05] Bienhaus, Diethelm: A Pattern Language for the Network of Things. In Pro-
ceedings of 10th European Conference on Pattern Languages of Programs (EuroPlop
2005), Irsee, Germany, 2005.

[Bie08] Bienhaus, Diethelm: Patterns for Unique Product Identification. In Proceedings
of 12th European Conference on Pattern Languages of Programs (EuroPlop 2007),
(to be published) 2008.

[BMR+96] Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad and M. Stal:
Pattern-Oriented Software Architecture: A System of Patterns. Wiley, New York,
1996.

[CTAO03] Clark, Sean, Ken Traub, Dipan Anarkat and Ted Osinski: Auto-ID Savant
Specification 1.0, 2003. http://www.nepc.gs1.org.sg/epcglobal/stdsdocs/WD_
savant_1-0_20030911.doc (17.02.2009).

[DMS07] Diekmann, Thomas, Adam Melski and Matthias Schumann: Data-on-
Network vs. Data-on-Tag: Managing Data in Complex RFID Environments. In
HICSS ’07: Proceedings of the 40th Annual Hawaii International Conference on
System Sciences, page 224a, Washington, DC, USA, 2007. IEEE Computer Society.

[GH06] Gillert, Frank and Wolf-Rüdiger Hansen: RFID für die Optimierung von
Geschäaftsprozessen: Prozess-Strukturen, IT-Architekturen, RFID-Infrastruktur.
Hanser, München, 2006.

[GS1] GS1: EAN Specification. Available on the internet: www.gs1.org.

[Hen09] Heng, Stefan: Heng, Stefan,RFID Chips: Enabling the Efficient Exchange of In-
formation(February 6, 2009). Deutsche Bank Research Paper. Available at SSRN:
http://ssrn.com/abstract=1339543. Deutsche Bank Research Paper, February 6
2009. Available at SSRN http://ssrn.com/abstract=1339543.

[KBM+00] Kindberg, Tim, John Barton, Jeff Morgan, Gene Becker, Debbie
Caswell, Philippe Debaty, Gita Gopal, Marcos Frid, Venky Krishnan,
Howard Morris, John Schettino and Bill Serra: People, Places, Things:
Web Presence for the Real World. WMCSA 2000, Monterey, USA, December 2000.

[Lea04] Leaver, Sharyn: Evaluating RFID Middleware. Technical Re-
port, Forrester Research, Inc., 2004. Available on the Internet:
http://www.bauer.uh.edu/rfid/ForresterRFIDwave.pdf (18.02.2008).

http://www.nepc.gs1.org.sg/epcglobal/stdsdocs/WD_savant_1-0_20030911.doc
http://www.nepc.gs1.org.sg/epcglobal/stdsdocs/WD_savant_1-0_20030911.doc
http://ssrn.com/abstract=1339543

[LNE05] Leong, Kin Seong, Mun Leng Ng and Daniel W. Engels: EPC Network Ar-
chitecture. Technical Report, Auto-ID Labs, Massachusetts Institute of Technology
and Adelaide, 2005.

[Sch02] Schichtel, M.: Produktdatenmodellierung in der Praxis. Carl Hanser Verlag,
München et al., 2002.

[Sch06] Schwartz, Karen D.: BizTalk RFID: Making RFID Deployments Easy, Sim-
ple and Economical, June 2006. http://msdn.microsoft.com/en-us/library/
aa479354.aspx (17.02.2009).

[Sun05] Sun Microsystems: The Sun Java System RFID Software Architecture - A Tech-
nical White Paper, March 2005. http://www.sun.com/solutions/documents/
white-papers/re_EPCNetArch_wp_dd.pdf (17.02.2009).

[ZGP03] Zhekun, Li, Rajit Gadh and B.S. Prabhu: A Study of RFID Smart Parts.
Technical Report, University of California, Los Angeles, Wireless Internet for the
Mobile Enterprise Consortium, 2003.

[ZGYP03] Zhekun, Li, Rajit Gadh, Fan Yujin and B.S. Prabhu: Study of potential of
Wireless Internet Technologies in Manufacturing. In The Third International Con-
ference on Electronic Commerce Engineering (ICeCE2003), 2003.

Copyright © 2009 Diethelm Bienhaus

http://msdn.microsoft.com/en-us/library/aa479354.aspx
http://msdn.microsoft.com/en-us/library/aa479354.aspx
http://www.sun.com/solutions/documents/white-papers/re_EPCNetArch_wp_dd.pdf
http://www.sun.com/solutions/documents/white-papers/re_EPCNetArch_wp_dd.pdf

E-5-1

INTELLIGENT SUBJECT – adapting OBSERVER with push
model and filters to handle divergent update needs

Paul G. Austrem

Dept. of Information Science and Media Studies
University of Bergen, Norway

paul.austrem@infomedia.uib.no

Abstract
The OBSERVER design pattern is one of the most widely used patterns from the original GoF
book [1]. With the proliferation of mobile devices in worklife and information systems
serving data to such devices is paramount to maintaining data integrity in a work process. The
idiosyncracies of mobile devices have placed new requirements on the mechanisms for
updating resource limited clients1 with an OBSERVER style solution. This work provides an
adapted pattern named INTELLIGENT SUBJECT that allows for a SUBJECT side filtering
mechanism to avoid propagating all updates to all OBSERVERS if the cost of notification is
high. This cost could be either due to resource or network constraints. OBSERVERS define
threshold values, and are only notified when the data value is changed beyond their individual
threshold. The pattern introduces slightly more complexity, but allows for a separation of
concerns on the SUBJECT side and a life of blissful ignorance on the OBSERVER side.

Introduction
Currently mobile devices are being increasingly used as integral parts of day-to-day
operations in many business areas, being employed by healthcare workers [2], ticket takers on
trains, as well as suggested uses for construction workers [3]. This is complimented by the
increased development of mobile devices supporting constant network connectivity (through
technologies such as Wi-Fi and/or HSDPA) for broadband data transfer speeds, along with
GPS technology for location data[4] . These technologies pave the way for mobile knowledge
workers to utilize information on-the-go to improve their workday, as they can now access a
centralized information system or data source through their network connectivity, and enrich
information retrieval techniques with contextual information through the use of GPS location
data. This work uses the definition of a mobile knowledge worker as a person who does not
have a stationary workplace and who is dependant on updated information in order to perform
their work tasks. Note however, that the domain of mobile knowledge workers is not
normative for the pattern, it is exemplary. The pattern may of course be used in other
situations and contexts, the specific domain is applied here because it brings forth many of the
benefits of this adaptation of the original OBSERVER pattern.

How data is used by different applications on a mobile device may vary. For instance maybe
you are running several different applications simultaneously on your mobile device. On a
mobile device (hereafter referred to as a Client) with constrained resources, there should
be an aim to minimize unneccessary inter-process calls such as with applications actively
polling a shared resource on the Client[5, 6].

Both [5] and [6] offer an alternative to making the Client responsible for retrieving location
data in a data pull-manner. In this paper, the OBSERVER pattern [1] is used to allow Client
applications to register with, for example, a LocationManager and receive either periodic

1 Devices that are battery powered, have limited memory or have reduced processing power.

E-5-2

updates [5], or updates whenever the user has moved beyond a set proximity [6]. The pattern
has also been applied in the Symbian OS for mobile devices as part of the MVC pattern. It is
in this context used to notify views of updates/changes to the model.

The OBSERVER pattern is used to offer this functionality. The pattern is one of the most
widely applied patterns in software today. It allows a system to achieve consistency among
objects whilst maintaining loose coupling between them. This gives you a system that is
flexible and extendable with loose coupling without breaking the OPEN-CLOSED PRINCIPLE [7]
(page 57).

The purpose of this paper is to present a filtering mechanism to avoid propagating all updates
to all observers. To help illustrate this, we may use an analogy to a news publisher within a
niche market. The news publisher charges his subscribers on a per news update delivered
basis. Suffice to say not all subscribers wish to receive all the niche market news updates, thus
the publisher has decided to offer custom subscription packages, where one can subscribe and
receive all news updates, or only headline / breaking news updates depending on the
individual needs of the subscribers.

Offering this functionality introduces a new challenge, the GoF [1] state this as the ”Push or
Pull” model. In the ”Pull” model the Subject merely issues a notification of change without
providing any extra information to the Observers. This means the Observers
themselves must discover what has changed, and whether it is relevant for them. Conversely
in the ”Push” model the Subject ”pushes” extra data to the Observers. Essentially the
Observers get the change information served directly to them parametrically2.

The example of the news publisher being the Subject, whereas all the customers are the
Observers shows how to place responsibility onto the Subject, This goes beyond just
using a push model, in addition the Subject must deal with what is analogous to the
”subscription type” of the Observer. The reason for using this model is to avoid
unneccessary memory usage if dealing with ”heavy-objects”. A different pattern that resolves
similar issues locally in an application is the VIRTUAL PROXY [1] and the ”Lazy” family of
patterns (LAZY INITIALIZATION [8], LAZY LOAD [9]) for datalayer to businesslayer retrieval.

If the Subject is a provider of large and/or complex objects this will naturally take up
significant amounts of memory on the Observer devices and induce performance issues if
transferred over a network. If these complex objects are not necessarily needed by the
Observers then this is a waste of resources.

On mobile, resource limited devices, a design should strive to constrain the memory footprint
and inter-process calls of an application to a minimum. The initial memory footprint is
affected by how many classes are loaded at initialization; for instance, loading entire libraries
such as System.Graphics.* is wasteful if you do not actually need all the classes in the
package. Secondly, the number of objects initialized and allocated will affect the memory
footprint. Thirdly, all method calls will incur some overhead; although this is barely
noticeable in intra-process calls it may have an effect on inter-process calls. These should
therefore be minimized.

2 A variation of this is the ”Event Listener” pattern wherein an Observer when registering with the Subject
passes in a reference to an object that implements a pre-agreed method signature. The method signature contains
a subclass of an abstract Event Class as an in parameter. This way the Event information is pushed to the
Observer. This approach is used extensively in the Java.AWT and Swing components.

E-5-3

INTELLIGENT SUBJECT Object Behavioral

The original pattern of the GoF is named OBSERVER, this pattern has been named
INTELLIGENT SUBJECT to emphasize the dominating role played by the Subject.

Intent
Relieve the Observer of all duties and avoid unnecessary resource usage when dealing
with solutions where data passing from Subject to Observer is costly and
Observers have divergent update needs by extending the Subject and giving it
added responsibility.

Problem
You are faced with multiple clients each with differing needs for updates. Their needs
may be based on limited resources, etc. thus they may only require updates when changes
have gone beyond a certain level, or threshold. These requirements are individual. How
do you accommodate varying needs in update frequencies in clients but still make this
transparent for both the subject and the observers?

Motivation
If we break down the previously defined phrase ’mobile knowledge workers’, we can
tentatively motivate the use of the pattern. Mobile devices may imply limitations on
resources in terms of capabilities or performance, or due to the cost of use or portability.
Knowledge implies that the workers are dependant on information in order to do their job;
for example, a healthcare worker or train ticket collector. The workers must have timely
information available in order to do their job correctly, or the results could be less than
agreeable. However, depending on the accuracy needs of the application the data may not
need to be updated constantly. For instance, not all Observers, whether they be
applications or different Clients, may require the same accuracy or timeliness.

Applying our real-world analogy, a person who is a news subscriber may choose to
subscribe to only the headline news if the cost of the subscription is too high for a full
news subscription. Similarly, an application on a resource limited device could opt to only
receive updates when the data has changed by a pre-defined amount if notifications are
costly. Note that although the example of a mobile knowledge worker motivates the
pattern, it does by no means limit the applicability of the pattern to resource limited
devices of the domain of mobile information systems.

An example of this could be in a financial application wherein certain Clients
(Observers) are so resource limited that they cannot receive updates too frequently
seeing as the updates are costly. Thus they only desire updates when values change
beyond a certain limit or threshold.

This implies that the INTELLIGENT SUBJECT pattern gives the Subject additional
responsibilities. Due to the fact the Subject must actively handle which Observers
are to receive notifications anytime the data changes.

E-5-4

Forces
You are dealing with situations where there is a real need to provide updated information
to different observers with varying requirements to data freshness. The solution must be
stable in its interface and easy to bind to for observers, but at the same time it must be
flexible and capable of accommodating differing needs. This creates an overarching force
of providing a static interface while allowing for dynamic behaviour.

Applicability
The INTELLIGENT SUBJECT pattern can be applied in the following scenarios:

• Use the pattern when a Subject object needs to notify a dynamic list of
unknown Observer objects without inducing strong coupling between the
objects and the Subject must handle divergent update needs from the
Observers.

• You need to utilize a ”push” model3, however the cost of passing the eventData
is too high to justify it being passed when the value of the data is of no
significance to the receiver; for instance, because the data value change is too fine.
Frequently pushing the eventData will lead to unacceptable performance. The
performance cost can reside with the Subject or the Observers, or even both.
On the Subject side, the cost may be associated with network constraints; for
instance, messages fail to reach the intended Object, forcing the Subject to
resend the message even though the eventData in the message is of no interest
to the Observer. Contrarily, the cost may reside with the Observer if the cost
of processing the received eventData is high in terms of computational power
(which on a battery-powered device would translate directly into draining the
battery). In which case it would be preferable for the Observer to only receive
updates that are relevant.

• The Observers need to do cascading updates to many different aspects / objects
upon receiving eventData. This is costly. Avoid this by defining upfront
limits/thresholds for when to receive updates.

Solution
Create a separate class that handles the notification to only those observers that require it
based on their individual thresholds. The Subject does not know, nor does it care, which of the
observers actually receive its updates. Similarly the Observers do not know whether there
have been sent out updates that they have not received, they are only notified whenever a
change happens that exceeds their personal threshold. The Observers are thus able to create
their own universe of state, or sphere if you will; which is not intruded or “contaminated”
with unnecessary or uninteresting data. The following sections present the solution in more
detail, starting with a structural view. This is followed by a behavioural view and a
presentation of the participants, before finally a code sample and implementation guideline is
provided.

3 Perhaps because the client devices do not have pull capabilities.

E-5-5

Structure

Figure 1: Class diagram of the INTELLIGENT SUBJECT.

The difference between the original OBSERVER pattern, and INTELLIGENT SUBJECT is in
the addition of the DispatchFilter class. Though we previously stated that more
responsibility is placed on the Subject, in that context, the term Subject was only
considered conceptually. As we can see from the class diagram in figure 1, the pattern
uses ”part-whole” composition because the DispatchFilter is contained within the
ConcreteSubject. A filter could per se exist without the ConcreteSubject,
however there would be little point in this since the DispatchFilter is uniquely
associated with the eventData values of each individual Subject.

Another shift of responsibility is that the ConcreteSubject no longer invokes
methods on the Observers directly. This task is delegated to the DispatchFilters
contained in the ObserverList attribute. This accomplishes two things; the
ConcreteSubject now has no knowledge of the specific needs of any Observers,
nor should it. The ConcreteSubject knows only how many Observers are
registered at any given time in its list, but that is all the knowledge it has. Additionally,
this separation enforces the LAW OF DEMETER4.

4 Essentially, the law of Demeter states that a method M of object O may only invoke the methods of closely
connected/related objects.

E-5-6

The separation of DispatchFilter into a separate class is crucial to avoiding
DIVERGENT CHANGE, one of the many malodorous symptoms described by Fowler [10].
We are dealing with two distinct behaviors, lumping them both in with the Subject
class is unattractive. The Subject class deals only with receiving notifications from the
Client (assuming this is the notification model used), wrapping the whole event up in
an eventData object, and notifying each of the members in the ObserverList.
Only a reference to the eventData is passed to the DispatchFilter objects which
save the load of a possibly large eventData object being unneccesarily transfer. This
leads us on to the second behavior, namely the evaluation and propagation of
eventData to the registered Observers. The task of evaluation is closely tied into the
threshold values of the individual Observers, thus it should be performed by the
DispatchFilter which is object that is composed of the Observer and threshold
value. Additionally, the DispatchFilter must handle the computation of the
difference between the new eventData value and the lastValue of the Observer.
If the difference is greater than the threshold then an update will be initiated.

As a comment on Figure 1, it is plausible to create the object observerList class as a
generically derived class parameterized with <Filter>, which the Subject class
would then bind to. In such a case, we would be using an association between
DispatchFilter and Subject instead of composition between
ConcreteSubject and DispatchFilter. The advantages of this would be that a
layer of indirection would be removed (the ConcreteSubject class) and we would
enforce type-checking, and also ensure that the addObserver and removeObserver
methods are correctly implemented by the DispatchFilter class. However, this is
only applicable in certain strongly typed languages (although many languages do now
support it with Java Generics and C# Templates), and does have consequences in terms of
”code bloat in [for example] C++” p. [11] .

The INTELLIGENT SUBJECT adaption of the original OBSERVER is reminiscent of the
MEDIATOR pattern as described in the GoF book [1]. However, whereas the MEDIATOR
pattern is concerned with centralized control of complex interactions between objects, in
order to decrease the coupling between them, the INTELLIGENT SUBJECT is concerned
with centralized control of divergent update needs. Concisely stated; MEDIATOR handles
centralized control of cascaded / dependant updates, INTELLIGENT SUBJECT handles
divergent update needs.

Participants
• Subject

- knows of its Observers and offers all the method signatures needed by
Observers, to add and remove themselves.

• Observer
- Is an interface used by concrete Subject objects to update the registered
Observers.

• ConcreteSubject
- This participant extends the Subject base class. It also stores the state that is the
basis for all Observer updates.

• ConcreteObserver
- Knows of the ConcreteSubject so that it can attach itself and remove itself
from the Subject’s list of Observers. Implements / Extends the Observer
supertype to stay synchronized with the methods and signatures used for updates.

E-5-7

• DispatchFilter
- This class is delegated the task of directly invoking the update method of all
Observers where the eventData value exceeds their threshold value. It is also
responsible for retrieving the state from the ConcreteSubject.

Collaborations

Figure 2: Sequence diagram of the object interactions during an update.

The sequence diagram shows the interactions between the objects during an update event.
Initally the object aConcreteSubject will receive a message call to its notify (this is
not shown in the above diagram). This will prompt the object aConcreteSubject to
invoke its iterateList method. Essentially this is where the responsibility of the
concreteSubject object ends. It invokes the update method on each
DispatchFilter object in its observerList, it is then the DispatchFilters
responsibility to decide whether or not the Observer object contained in the Filter
object is to be updated with new eventData. This is depicted as the self-call of
doUpdate the aDispatchFilter object-lifeline in figure 2. The doUpdate returns a
boolean value after having compared the difference between the specific Observer
object’s lastValue attribute and the new eventData value against the threshold
attribute value of that Observer. This is accomplished through operator overloading,
since depending on the type of the eventData the operator symbols of greater than and
less than may not natively be supported. In which case the Observer must overload
those operators to function with the eventData type.

Code Sample and Implementation Guidelines
The following code samples show a C# skeleton implementation and the mechanisms
behind the INTELLIGENT SUBJECT pattern.

Below is the IObserver interface which all classes that wish to observer the Subject must
implement. For simplicity’s sake, we are merely using an int object5 as the eventData

5 since the example is written in C# where all types ultimately derive from System.Object, as opposed to Java
where int is an immutable primitve disconnected from the object model.

E-5-8

parameter that gets passed to the observers. Note that in a real implementation the
eventData object would be more complex, and consequentially could be passed as a struct
which is slightly more efficient as reported by [12].

public interface IObserver

 {void Update(Object state);}

The class below is the ConcreteObserver which implements the IObserver interface.

public class ConcreteObserver : IObserver
{

public void Update(Object state)
{ Console.WriteLine(id + " updated with " + state.ToString());}
. . . .

}

The following (partial) abstract class is the Subject supertype, correlates to the Subject in
the participant list. It also has methods for allowing observers to remove themselves and
for notification.

public abstract class Subject
{
 private const int arrayno = 10;

protected static DispatchFilter[] observerList = new
DispatchFilter[arrayno];

private int counter = 0;

public void addObserver(IObserver observer, int threshold)
{
 if(counter < arrayno)

{
observerList[counter] = new DispatchFilter(observer,
threshold);

 counter++;
}
else
{//throw an exception here}

}
}

public class ConcreteSubject : Subject
{

private int State;

public void setState(int s)
{

this.State = s;
notify();

}

private void notify()
{

for (int arrayIterator = 0; j < counter; arrayIterator++)
{observerList[arrayIterator].update(ref State);}

}
}

Listing 1: Code sample showing skeleton of the Intelligent Subject pattern.

E-5-9

The code snippet above, ConcreteSubject is the class which extends the abstract
class Subject. As we can see it offers no method for getState() as the original
OBSERVER pattern does, this is because INTELLIGENT SUBJECT enforces a push model,
thus there is no need for Observers to be able to programmatically retrieve state since it is
pushed to them as a parameter in the Update method.

Whenever the state is set, the notify() method is called. Note that a caveat about the
sample above is that calling the notify() method sequentially with the state setting
operation is not advisable. This is because in a real-life implementation the state setting
procedures may be complex involving many steps, and multiple calls to the
setState() method. Therefore the Client would not want to call the notification
notify()until after the setState() method had been called for the last time. In
practice, this is easy to implement; simply extract the call to notify() and place it in an
overridden notify() method call. Thus the Clients could call notify() to run the
updates. The only reason we didn’t was to simplify the example.

Below in listing 2, the code that handles the filtering and Update() calls to observers is
presented.

E-5-10

public class DispatchFilter
{

private IObserver Observer;
private Object Threshold;
private Object LastUpdateValue;

public Filter(IObserver observer, Object threshold) {

this.Observer = observer; this.Threshold = threshold;
LastUpdateValue = 0;

}

public void update(ref Object state) {doUpdate(ref state);}

private void doUpdate(ref Object state) {
if (LastUpdateValue != 0 && beyondThreshold(state))

Observer.Update(state);

else if(LastUpdateValue == 0)
{

LastUpdateValue = state;
Observer.Update(state);

}
}

public bool beyondThreshold(Object state) {
return (getDifference(state) > Threshold);

}

public int getDifference(Object state) {
 return state - LastUpdateValue; }

}

Listing 2: Code for the Filtering class which handles the Update() calls to the conditioned Observers

The DispatchFilter class encapsulates the behavior required to update the Observers
and handle the task of filtering out which Observers are to receive updates. The
ConcreteSubject class will invoke the update() method, of DispatchFilter
objects maintained in its ObserverList, and pass in the eventData object (in our
vanilla example this is just a simple Object) as a reference. Note that the
ConcreteSubject does this for all the DispatchFilter objects in its list. It must
be done this way to enforce the separation of concerns, and encourage the high cohesion
of the Subject and DispatchFilter classes. Note that this approach (in certain languages) is
not costly since passing eventData as a reference in-process is performance wise
economical, and allows a higher cohesion in the ConcreteSubject class. This pass-
by-reference approach is idiomatic to the C# programming language, and is also doable in
C++, however it will not be possible in for example the Java language. In which case
there might be a slight performance penalty, but in-process passing-by-value is not overly
costly, so the message passing architecture is not bound to any specific programming
languages.

The DispatchFilter object will then check whether the new eventData difference
value exceeds the threshold of the individual Observer. If so, then the Observer’s
Update() method is called.

Note that this design lends itself well to Meyer’s NON-REDUNDANCY PRINCIPLE [7] in the
constructor of DispatchFilter and in the addObserver() method of Subject.

E-5-11

The NON-REDUNDANCY PRINCIPLE states that ”under no circumstance shall the body of a
routine ever test for the routine’s precondition” [7] (page 343). We see that although the
addObserver method in Listing1 does do a check on the size of the array, it does not do
any checks on the integrity on the parametric data passed in. This affects the
responsibility distribution, essentially the code sample operates with ”demanding pre-
conditions” [7] (page 343).. The responsibility is to a larger degree shifted to the
Observer which must ensure that any data passed when registering is correct, in this
code sample if the data is not correct and the registration fails the Observer will not
receive any notification of this. This approach goes against the paradigm of ”defensive
programming”, and Meyer argues that the NON-REDUNDANCY PRINCIPLE allows for
reduced complexity and increased reliability; this is called ”the zen-style paradox…: that
to get more reliability the best policy is often to check less” [7] (page 345).

Consequences
A consequence of the INTELLIGENT SUBJECT pattern is the shift of responsibility between
the Subject/DispatchFilter dyad. The Subject becomes a class that holds a list
of all registered Observers under the guise of DispatchFilter objects, which
handle the tasks of adding and removing Observers. However, the Subject no longer
has the responsibility of communicating with Observers to Update them, this is now
delegated to the DispatchFilter class. Compared to the original OBSERVER pattern,
this variation is more complex as you use delegation to provide the filtering mechanism
through a separate filter object. Additionally, there is transparency between the classes;
for instance, the Observers do not know that there is a separate DispatchFilter
class that updates them with new eventData. If they at times are bypassed, it is because
the eventData change is below their threshold value, causing them to remain
completely oblivious to the change. Therefore a chance of data disalignment between
Observers can occur. This can be troublesome if the Observers in a different part of
the system cooperate or collaborate and their data is not the same because they have
different threshold values registered with the Subject. Thus they may have received a
different number of updates, in which case one of the Observers would have more
accurate and more timely data than the other. This could be solved by timestamping the
eventData so that the Observer with the freshest data would trump the Observer
with stale data.

Known uses
The traditional OBSERVER pattern (and minor variations on it) have been widely used in
object-oriented event driven software designs. In the .Net and Java frameworks, the
traditional OBSERVER pattern is utilized extensively in their delegate-event models [13,
14]. It is also used in the architecture of Symbian S60 platform for mobile devices [15].
The traditional OBSERVER has been used in the Java packages java.awt and javax.swing
for handling notifications between graphical artefacts, event-triggers and the event
listeners which handle the business logic.

The adoption presented here is viable in domains of resource limited devices, or in
systems where any eventData is propagated over a network with limited bandwidth.
Propagating this data to Observers who do not need it should be avoided. Concepts
from the INTELLIGENT SUBJECT pattern have been used as part of Google’s Android
Location API framework [16] wherein it is possible to register (an Observer) with a

E-5-12

LocationProvider (Subject) with a set ProximityAlert (conceptually a
threshold), thus the Observer will not receive updates all the time, only when the
proximity alert is triggered.

Related patterns
The original OBSERVER and INTELLIGENT SUBJECT are high-level design patterns. It
would be feasible to use other patterns such as FACTORY METHOD to create Filters, or to
use SINGLETON to ensure there is only one list object containing the Observers. As
mentioned previously, the MEDIATOR pattern is similar to INTELLIGENT SUBJECT in its
functional aims. Concisely stated, MEDIATOR handles centralized control of cascaded /
dependant updates, whereas INTELLIGENT SUBJECT handles divergent update needs. The
SASE OBSERVER [17] variation is similar, it allows the Observers to register with the
subject, and at registration time identify themselves, register which events they care about,
and register what event data they request when the event fires, and also possibly what they
should do with the event data. Although very similar in many of its intents, the SASE
pattern gives a different distribution of responsibility. It allows the Subject to dictate
the Observers response and processing of events, whereas INTELLIGENT SUBJECT
enforces an opaqueness between the Subject and its Observers; thus, the Subject
does not know and does not care what happens to the data after it has been pushed to the
Observers.

Another option is that the DispatchFilter could implement the STRATEGY pattern
allowing for interchangeable algorithms to be applied to handle the filtering. Thus, the
mechanisms that go into differentiating between which Observers receive updates
could be run-time pluggable. This could allow the DispatchFilter to take on a
policy-enforcer approach to notification, thus information could be disseminated not only
based on which Observers that have registered for it, but also based on internal policies
set forth by the Subject as to which Observers qualify as recipients (maybe based on
the sensitivity of the information).

Finally, Niblett and Graham propose in the IBM Systems journal [18] a pattern called the
NOTIFICATION PATTERN, also known as the SOA NOTIFICATION PATTERN. This pattern
is manifested in the WS-Base Notification specification. The pattern is an alternative to
INTELLIGENT SUBJECT as it allows for a filter to determine which Observers are
to receive messages, thus not all notifications are propagated to all registered
Observers. However the main difference is in INTELLIGENT SUBJECT dealing with
compounded results, in the form of triggering thresholds as a mechanism for filtering. The
NOTIFICATION PATTERN is more concerned with direct conditional limitations, such as
topic based limitations. Furthermore INTELLIGENT SUBJECT is closer to the original
OBSERVER [1] in that detachment can only be done by direct OBSERVER initiation,
whereas NOTIFICATION PATTERN allows for temporal subscription based detachment so
that an Observer may detach at a predefined time in the future.

Acknowledgements
I would like to thank my shepherd Maurice Rabb for his insights and contributions to
improving this pattern. He provided strong technical advice, and many pointers to relevant
materials, along with encouragement and support. I would also like to thank Jim Siddle for his
oversight and suggestions, and also Andreas L. Opdahl for his comments on early versions of
the paper. Finally I would like to thank my group at Euro-PLoP for their great feedback. .

E-5-13

References

1. Gamma, E., et al., Design Patterns: Elements of Reusable Object-Oriented Software.

1994: Addison-Wesley Professional. 416.
2. Christensen, C.M., J. Kjeldskov, and K.K. Rasmussen, GeoHealth: a location-based

service for nomadic home healthcare workers, in Proceedings of the 2007 conference
of the computer-human interaction special interest group (CHISIG) of Australia on
Computer-human interaction: design: activities, artifacts and environments. 2007,
ACM: Adelaide, Australia.

3. May, A., et al., Opportunities and challenges for location aware computing in the
construction industry, in Proceedings of the 7th international conference on Human
computer interaction with mobile devices \& services. 2005, ACM: Salzburg,
Austria.

4. Patel, N. Mobile World Congress Roundup: Cellphone Mania. [Webpage] 2008 11/2-
2008 at 10:16pm [cited 2008 11/2-2008]; Webpage summarizing all the cellphones
released during the first week of Mobile World Congress 3GSM in Barcelona].
Available from: http://www.engadget.com/2008/02/11/mobile-world-congress-
roundup-cellphone-mania/.

5. Mahmoud, Q.H. J2ME and Location-Based Services. 2004 [cited 2008 10/1-2008];
Available from: http://developers.sun.com/mobility/apis/articles/location/.

6. Android, G. Location-based Service APIs. 2007 [cited 2008 10/1]; Available from:
http://code.google.com/android/reference/android/location/LocationManager.html.

7. Meyer, B., Object-Oriented Software Construction. 2nd Edition ed. 1997, Upper
Saddle River, New Jersey: Prentice Hall PTR. 1254.

8. Beck, K., Smalltalk Best Practice Patterns. 1996: Prentice Hall PTR. 240.
9. Fowler, M., Patterns of Enterprise Application Architecture. 11th printing ed. The

Addison-Wesley Signature Series. 2003, Boston: Pearson Education. 530.
10. Fowler, M., Refactoring: Improving the design of existing code. Object Technology

Series, ed. J. Booch, Rumbaugh. 1999, Reading, Massachusettes: Addison-Wesley.
431.

11. Fowler, M. and K. Scott, UML Distilled Second Edition: A Brief Guide to the
Standard Object Modeling Language. Second Edition ed. Object Technology Series,
ed. J. Booch, Rumbaugh. 2000: Addison-Wesley.

12. Kayun, C. and S.-a. Chonawat, Energy conscious factory method design pattern for
mobile devices with C\# and intermediate language, in Proceedings of the 3rd
international conference on Mobile technology, applications \& systems. 2006, ACM:
Bangkok, Thailand.

13. Richter, J. An Introduction to Delegates. MSDN Magazine The Microsoft Journal for
Developers 2004 [cited 2008 22/1]; Available from:
http://msdn.microsoft.com/msdnmag/issues/01/04/net/.

14. Microsoft. Implementing Observer in .NET. Microsoft Patterns and Practices 2003
[cited 2008 20/1]; Available from: http://msdn2.microsoft.com/en-
us/library/ms998543.aspx.

15. Developer Community Wiki, N. Design Patterns in Symbian. Developer Community
Wiki 2008 [cited 2008 15/1]; Available from:
http://wiki.forum.nokia.com/index.php/Design_Patterns_in_Symbian#Observer_Patter
n.

16. Google. Google Android android.location.LocationManager. 2007 [cited 2008 22nd
of March 2008]; Available from:
http://code.google.com/android/reference/android/location/LocationManager.html.

17. Brown, K. Understanding inter-layer communication with the Self-Addressed Stamped
Envelope (SASE) pattern. [Webpage] 1998 18th of March 1998 [cited 2008 27/3-

E-5-14

2008]; Available from:
http://members.aol.com/kgb1001001/Articles/SASE/sase2.htm.

18. Niblett, P. and S. Graham, Events and service-oriented architecture: The OASIS Web
Services Notification specifications. IBM Systems Journal, 2005. 44(4): p. 17.

1

Advanced Synchronization Patterns
for Process­Driven and Service­

Oriented Architectures

Carsten Hentrich

CSC Deutschland Solutions GmbH
Abraham‐Lincoln‐Park 1

65189 Wiesbaden, Germany
chentrich@csc.com

Uwe Zdun

Distributed Systems Group
Information Systems Institute

Vienna University of Technology
Argentinierstrasse 8/184‐1
A‐1040 Vienna, Austria

zdun@infoysys.tuwien.ac.at

In a process­driven and service­oriented architecture, parallel
and independently running business processes might need to be
synchronised according to dependencies of complex business
scenarios. In this paper we describe three software patterns
that address such rather advanced synchronisation issues
between business processes running in parallel. The patterns
focus on coordinating the parallel and principally independent
business processes via architectural solutions allowing
architects to model the flexible synchronisation of the processes.

Introduction

Service‐oriented architectures (SOA) are an architectural concept in which all functions, or
services, are defined using a description language and have invokable, platform‐independent
interfaces [Channabasavaiah 2003 et al., Barry 2003]. In many cases services are called to
perform business processes. Each service is the endpoint of a connection, which can be used to
access the service, and each interaction is independent of each and every other interaction.
Communication among services can involve simple invocations and data passing, or complex
activities of two or more services. In a process‐driven SOA the services describe the operations
that can be performed in the system. The process flow orchestrates the services via different
activities. The operations executed by activities in a process flow thus correspond to service
invocations. The process flow is executed by the process engine.

A process is a behavioural model expressed in a process modelling language, such as BPEL, that
is instantiated and managed by a process engine. On a process engine multiple process instances

Proceedings of the 13th European Conference on Pattern Languages of Programs (EuroPLoP 2008), edited by
Till Schümmer and Allan Kelly, ISSN 1613-0073 <issn-1613-0073.html>.
Copyright © 2009 for the individual papers by the papers' authors. Copying permitted for private and academic
purposes. Re-publication of material from this volume requires permission by the copyright owners.

2

of one or more processes are typically running in parallel. Processes usually work on business
data that is stored in business objects. Usually each process instance has its own private data
space of business objects it creates, in order to limited problems of concurrent data access, such
as data inconsistencies, deadlocks, or unnecessary locking overhead.

In this paper we describe three patterns that address advanced synchronization issues of
parallel business processes. In this context synchronization means that execution in terms of the
progression through the different activities of a process needs to be synchronized with other
business processes running in parallel. The synchronization issues reflect requirements of
complex business scenarios, and the synchronization dependencies cannot be modeled directly
in the business processes via static control flow dependencies. As a result, conflicting forces
arise due to the need for loosely coupling the synchronization concerns with the business
process models. Besides technical forces, such as the problems of concurrent data access,
supporting business agility is central. Business processes are subject to constant change. Hence,
any suitable synchronization mechanism must be loosely coupled in order to support changes in
the connected business processes.

The three patterns presented are:

• The REGISTER FOR ACTION pattern describes how to synchronize the execution of
functionality of a target system with business processes running in parallel.

• The BUNDLE PROCESS AGENT pattern describes how business objects being generated by
different parallel processes can be processed in a consolidated way.

• The PROCESS CONDUCTOR pattern addresses how to enable designers to model
dependencies between parallel business processes by flexible orchestration rules.

Consider a simple example to illustrate the use of the patterns: various business processes of a
company require contacting the customer via phone, but the company wants to avoid
contacting the customer too often in a specific period of time. Hence, the phone calls should be
consolidated. In such business scenarios that require synchronization of multiple process
instances, the patterns described in this paper can be applied.

If only a specific action, like “put phone call into a task list” needs to be performed after
synchronization has taken place, the REGISTER FOR ACTION pattern should be applied. However, the
phone call might also require a business process preparing the phone call and this business
process then usually needs access the private business objects of the synchronized processes. In
this more complex scenario, the BUNDLE PROCESS AGENT pattern can be applied. Finally, if the need
for synchronizing occurs within the processes and requires each of the processes to be stopped
until the synchronizing action (which might be yet another business process) has happened,
then PROCESS CONDUCTOR is applicable.

This simple scenario should illustrate: which of the patterns is chosen depends on the design of
the business processes that need to be synchronized. In some scenarios, the patterns are
mutual alternatives, in others combining them makes sense.

3

Register for Action

Business processes are executed on process engines. Sometimes the execution of an action is
depending on the states of multiple business process instances running in parallel. When this is
the case, the action can only be executed if those parallel business process instances have
reached a certain state represented by a specific process activity.

As business processes are created and changed while the system is running, it is not advisable to
define synchronization dependencies statically in the models. Instead it should be possible to
define and evaluate the synchronization dependencies at runtime while still allowing business
process to change independently.

How can multiple, dynamically created process instances be synchronized with
minimal communication overhead and still be kept independently changeable?

Business processes are dynamically instantiated on process engines and at different points in
time. For this reason, there are usually several instances of one or more business processes
running in parallel. Each of them has a different state of progression in terms of the process
activity they have reached so far during execution.

When a specific action, such as a business function, service, or another business process, has a
logical dependency to multiple business process instances, synchronization with all the process
instances can be difficult. First of all, the action might not know which business process
instances of the many possible parallel instances it is dependent on. But even if it knows the
instances that it is dependent on, polling them for synchronization would incur a communication
overhead. The same problem of a communication overhead for synchronization would also
occur, if the process instances would run a synchronization protocol, for instance before
triggering a callback that executes the action.

In addition, before the action can synchronize with the process instances, it needs to know that
it must wait for one or more instances. That is, a mechanism is required to communicate that
there is a new dependent process instance to wait for.

Business processes can change over time and new processes are constantly created, while the
overall system is running. This includes that a state at which an action must be executed might
change, gets added to a process, or gets removed from the process. The actions that are
depending on business processes must be able to cope with such process changes. The effects
of these changes should be minimized and should not impact other components in order to be
manageable. A consequence is that the synchronization dependencies of the actions cannot be
statically modeled in the models of the business processes or the actions, but must be defined
and evaluated at runtime. In other words, a loose coupling between the action and the business
processes it is dependent on is required.

4

Use a REGISTER FOR ACTION component that offers registration and de‐registration
services to be invoked from business processes. The registration informs the
REGISTER FOR ACTION component to wait with the desired action to be initiated
until a specific process instance has de‐registered itself. When all registered
processes have de‐registered themselves the action will be executed.

The REGISTER FOR ACTION component offers two services:

• A registration service, where a process instance can register itself with its instance ID.

• A de‐registration service that allows a process instance to de‐register itself via its
instance ID.

Invocation of the de‐registration service means that the process has reached the state that is
relevant for the action. The two services are invoked by process activities. Each registration
invocation must have one corresponding de‐registration invocation in a business process. This
design has the consequence that the place of invocations can change as the business processes
change over time. In other words, the REGISTER FOR ACTION component and the business processes
are loosely coupled.

The REGISTER FOR ACTION component waits until all registered business processes have de‐
registered themselves. After the last de‐registration, the action is executed by the REGISTER FOR
ACTION component.

An important detail of a REGISTER FOR ACTION design is to determine the point in time when
registration ends. As most scenarios of the pattern concern long running business processes, a
registration delay is a practical solution that works in many cases. The registration delay runs a
certain amount of time from the point in time when the first registration to the REGISTER FOR
ACTION instance happens. For instance, if a registration delay of one day is chosen, then all
registrations that accumulate throughout that day will be included. Of course, the length of the
delay can be adjusted based either on previous experiences and experimentation. An alternative
to a registration delay is introducing a specific registration type that ends the registration
process for one REGISTER FOR ACTION instance.

5

Modeling the de‐registration service invocation might be an issue for some business processes:
de‐registration should often be invoked as early as possible in order not to produce unnecessary
delays for the action to be executed. If the business process contains complex decision logic
there may be various paths that may lead to a de‐registration service invocation at many
different positions in the process. As the process execution may follow only one case specific
path, de‐registration must be found on all possible paths if a registration has been previously
performed.

To place the de‐registration service invocations at the right positions and to avoid multiple
invocations of the de‐registration service in case of loops in the process is sometimes not trivial,
if the business process is of higher complexity. The easiest way might be to put de‐registration
simply at the end of the business process and thus to avoid the possible complex logic that is
initiated by the different possible paths or loops. However, this is not always possible or optimal
if de‐registration as early as possible is required.

The service invocations from the business processes might be realized as SYNCHRONOUS SERVICE
ACTIVITIES or FIRE AND FORGET SERVICE ACTIVITIES [Hentrich et al. 2008]. The realization using
SYNCHRONOUS SERVICE ACTIVITIES is usually better suited as it is important for the business process
to get informed whether the registration and de‐registration was successful. If the target action
is related to a more complex business process, then this consolidation can be achieved by using
a BUNDLE PROCESS AGENT.

The ACTIVATOR pattern [Schmidt et al. 2000] has a similar structure as REGISTER FOR ACTION. It,
however, solves a different problem, the on‐demand activation and deactivation of service
execution contexts to run services accessed by many clients without consuming resources
unnecessarily. The patterns can be used together with REGISTER FOR ACTION using a shared
structure. That is, the registration and deregistration services could be used for on‐demand
activation and deactivation.

Also, PUBLISH/SUBSCRIBE [Buschmann et al. 2000] has a similar structure, as it includes
registration/deregistration of publishers and subscribers. This pattern can also be combined
with REGISTER FOR ACTION using a shared structure. That is, the registration and deregistration
services could be used to subscribing and unsubscribing to events for the time of being
registered. This way, the REGISTER FOR ACTION component can communicate with its currently
registered processes.

Example: REGISTER FOR ACTION example configuration

The following figure shows on the left‐hand side a business process that invokes a register
service. At the end of the business process, an activity invokes a deregister service. Both services
are interfaces to a REGISTER FOR ACTION component, which maintains an instance list. When all
instances are removed from this list, the action is invoked.

6

Example: Saving Costs of Postal Mail Sending

In the context of business processes that create information that must be send by mail to
recipients, the pattern provides significant potential to save postal costs. If each business
process produces its own letters to be sent to recipients a lot of postal costs will be created. It
would be better to gather all the information created from the business processes and to wrap
them in one letter. The idea of sending fewer letters will save significant postal costs. However,
the problem is how to gather all the information and when is the point in time to pack all the
gathered information in one letter and send it out to a recipient.

Applying the REGISTER FOR ACTION pattern it is possible to control and coordinate sending out
letters to various recipients. The action associated in this context is sending a letter out to a
recipient. This can be coordinated by registering all business processes that will create
information to be packed in one letter for a specific recipient. Thus, the registration service can
be designed to capture an additional parameter to specify the recipient. That way it is possible
to pack all the information created for one recipient on one letter as the letter will be sent out
when all registered business processes have de‐registered themselves for a recipient.

The logic associated to the registration service and the REGISTER FOR ACTION component might be
even more complex, e.g. to distinguish different priorities for the information to be sent out
quickly or to send it out later. As a result there may be more complex rules to control and
synchronize the business processes. However, the basic pattern represented by REGISTER FOR
ACTION will always be the same.

+add(in instanceID)
+remove(in instanceID)

- instances : List

Register for Action

invoke(in instanceID)

Register Service

Activity

Register Activity

Activity

invoke(instanceID)

invoke(in instanceID)

De-Register Serviceinvoke(instanceID)

Activity

+action()

Target-target

1

1-register

-register
1

1

De-Register Activity

invoke(in instanceID, in input-Params)
{

register.add(instanceID);
}

invoke(in instanceID)
{

register.remove(instanceID);
}

add(in instanceID)
{

instances.add(instanceID);
}

remove(in instanceID)
{

instances.remove(instanceID);
if(instances.isEmpty())
{

target.action();
}

}

7

Especially in a customer order or service management context the pattern is useful for these
kinds of purposes, as to control communication towards recipients. It is suitable not only for
postal communication but for various communication channels, e.g. fax, e‐mail, or even
telephone. The general purpose of gathering relevant information first, before initiating the
communication, generally applies to all those channels.

Even as far as the telephone communication is concerned, it becomes clear that calling the
recipients only once to discuss a whole bunch of open questions that stem from different
parallel clearing business processes, for instance, will be better for customer satisfaction than
contacting the customer several times to clarify one single issue at a time, which might even be
of minor importance. The pattern provides flexible means to capture all these business
scenarios and to automate significant parts of the business logic.

Known Uses

• The pattern has been used in projects to control batch processing of larger transactions.
Each business process generates transactions to be made but the actual commit of the
all gathered transactions needs to be done at a point in time when all related
transactions to be made are identified. That way transaction costs can be saved by
putting related transactions, addressed to the same account, in one larger transaction.

• The pattern has also been used to control the point in time when consolidated
outbound communication to one concrete party needs to be performed in an order
management context.

• The above purposes of the pattern have been used in projects in the telecoms industry
in the context of order management, in the insurance industry in the context of claims
handling. The pattern has also been used in banking as far as the mentioned transaction
processing issues are concerned.

8

Bundle Process Agent

Business processes are executed on a process engine, and during their execution business
objects are created and manipulated by the business process instances. Each business process
instance creates and manages its own set of business objects in order to avoid data
inconsistencies, locking overheads, deadlocks, and other problems created by concurrent data
access. Business scenarios, such as consolidated sending of postal mail in batches, require
consolidating the business objects being generated by many different process instances and
then process them using a central but parallel running business process. Hence, the usual
mechanisms of a process engine, in which each process instance keeps its business objects in a
private data space, are not sufficient to support such scenarios.

How to gather the business objects from various business process instances and
process them in a consolidated way without causing unwanted effects of
concurrent data access?

Business process instances running on a process engine have their own data space and are thus
disjoint entities. When business objects are created during the execution of a business process,
only the business process instances creating the objects know about their existence. That is, the
business objects created by a business process instance are per default private to the business
process instance. This helps to avoid unwanted effects, such as data inconsistencies, locking
overheads, or deadlocks, when business process instances are running in parallel because the
actions of the business process instances control all accesses to these business objects.

This technical concept can be applied to implement most business scenarios. However, there is
a special case, where this technical solution does not work well alone: Consider that the
business objects created by many different parallel business process instances are input objects
to be processed by a central business process that logically gathers all these business objects
and then processes the consolidated set of business objects. A typical example is that the
business requires this business objects to be handled in a consolidated way, such as sending one
letter per postal mail for a number of parallel transactions with a customer, instead of sending
multiple letters. In this case, the parallel running consolidation process instance must gather the
objects and process them. Unfortunately, usually process engines do not directly support such
scenarios.

It is necessary to only centrally process those business objects that actually should be processed
in a consolidated way. It might be that this is only a subset of business objects owned by a
process instance. A process instance should still have control what business objects should be
processed in a consolidated way and should thus be able to publish only those objects that it
considers to be relevant.

Each of the involved business processes can potentially change over time. Hence, the
consolidation architecture should not impose restrictions on the business process design that
would hinder rapid changeability.

9

Send the business objects to be processed centrally to a BUNDLE PROCESS AGENT via
a dedicated service, specified in the model of the business process. The BUNDLE
PROCESS AGENT creates an instance of a bundle (consolidation) process, if no
instance exists yet, and for each bundle it makes sure that only one instance of
the consolidation process is running at a time. The business object bundle is
gathered from different business processes invoking that dedicated service for
sending the business objects. When a specified end criterion is reached, such as a
deadline or a specified number of business objects in the bundle, then the
bundle is centrally processed by the bundle process.

Design an architectural component that serves as a BUNDLE PROCESS AGENT, which offers a service
to be invoked by business processes to send business objects that need to be processed
centrally. The BUNDLE PROCESS AGENT stores the business objects being sent to it in a container
that serves as a temporary repository. The container is not intended as the actual persistence
mechanism of the business objects—it is rather intended to capture only what objects need to
be processed centrally.

For this reason, this container might only keep BUSINESS OBJECT REFERENCES [Hentrich 2004] rather
than the business objects themselves. However, it is also possible to send copies of actual
business objects and not just references. Often these objects then only contain a subset of the
business data of the original business objects, i.e. the subset of data that is relevant for
processing the business objects centrally. In this case, it is advisable to introduce special types of
business objects designed for these purposes.

The BUNDLE PROCESS AGENT waits until a specified end criterion is reached. For instance, this can be
a deadline or specified maximum amount of business objects that can be bundled in one bundle.
When the end of bundling is reached, the BUNDLE PROCESS AGENT instantiates a bundle process
that processes the business objects centrally. The container with the business objects is cleared

10

after the processing has been initiated to be ready to store new objects for the next iteration.
Only one instance of the bundle process is running at a time for each bundle, i.e. the processing
of a set of business objects must be finished before the next instance of a bundle process can be
started. Of course, different bundles can be assembled in parallel. Consider for instance,
business objects for postal mail communication with customers are bundled, to send them
together. Then there is one bundle per customer.

During the execution of the bundle process new business objects are sent to the BUNDLE PROCESS
AGENT by business processes running in parallel for the next iteration. These objects are again
stored in the container. This way, only business objects relevant for the next iteration are kept in
the container, as the container is emptied when a new iteration, i.e. a new instance of the
bundle process, has been started. The BUNDLE PROCESS AGENT repeats this process in a loop.

The BUNDLE PROCESS AGENT is implemented as a COMPONENT CONFIGURATOR [Schmidt et al. 2000] to
allow controlled configuration of the agent at runtime. When it is initialized it performs the
following functions:

1. It is checked whether there are new business objects in the container to be processed
by a bundle process

2. If there are new objects it checks whether an instance of the bundle process is still
running. Only if there is no instance running, a new instance is created that processes
the new objects in the container. The container is cleared to be empty for new objects
after the process instance has been started. If an existing instance is still running then
no action is performed, i.e. no new bundle process is created nor is the business object
container being emptied.

3. The agent loops back to step 1 until the loop is aborted by some event to finalize the
execution or to suspend the execution.

There is one concurrency issue involved in this algorithm. The service that allows business
processes to send new business objects to the container might conflict with the clearing action
of the container that is initiated by the algorithm described above. That means a new instance
of the bundle process might be created with the given objects in the container at that point in
time. After the instance is created, the algorithm prescribes to clear the container. If there are
new objects added to the container while the creation of the new instance is still in progress,
then these objects will be deleted from the container with the clearing action without being
processed by the bundle process. In order to avoid such a situation the container must provide
locking and unlocking functions that are used for the time a new instance of a bundle process is
created.

The BUNDLE PROCESS AGENT pattern thus resolves issues according to complex bundling of business
objects that need to be centrally processed and offers a general architectural solution that is
both flexible and extensible. Different bundle processes can be used for different purposes,
though this will increase the complexity of the architecture. However, there might be larger
effort involved to design a BUNDLE PROCESS AGENT component. For this reason, the pattern may
only be suitable in projects and programs that have a larger strategic perspective.

The pattern can be combined with the REGISTER FOR ACTION pattern in order to dynamically
identify what business processes need to be considered by the bundling. As far as the service
invocation from business processes is concerned the SYNCHRONOUS SERVICE ACTIVITY pattern or the
variation of the FIRE AND FORGET SERVICE ACTIVITY including acknowledgement [Hentrich et al. 2008]

11

is usually recommended to achieve some level of security that the business objects being sent
have arrived at the initiated target. According to the MACRO‐MICROFLOW pattern [Hentrich et al.
2007] the bundle process can be implemented as a macroflow or microflow.

Example: BUNDLE PROCESS AGENT example configuration

The following figure provides an overview of the conceptual structure how the BUNDLE PROCESS
AGENT might look like including the service that provides the functionality to add business
objects to the container. The structure also resolves the described concurrency issues by
providing locking functionality of the container.

12

The figure shows business processes that invoke a special Send Bundle Object Service to send
business objects. The processes may run in parallel and the services might be invoked at
different points in time in the processes, i.e. the service invocation might be modeled several
times in one process and might be used in various process models. The service simply adds the
objects to the container. To resolve the concurrency issue, explained above, it uses locking and
unlocking mechanisms. The class Bundle Process Agent implements the COMPONENT CONFIGURATOR
[Schmidt et al. 2000] and invokes the run method of class Bundle Process in a loop. The run
method of class Bundle Process retrieves the business objects from the container and creates a
new bundle process if no instance is running and the container is not empty. It also uses the
locking and unlocking mechanisms to prevent the concurrency issue.

The class Process Engine provides an interface to the API of the process engine being used to
implement the business processes—in this case especially the bundle process. The execute
method instantiates a bundle process with the given input data, which are the business objects
from the container in this case. The exists method allows to check whether an instance of the
bundle process, identified by a unique ID, is still running in the engine.

Example: Handling Complex Orders

The following example shows how two distinct strategic goals (mentioned in the known uses)
have been realized using the pattern. In one larger project in the telecoms industry two
important issues occurred in the context of processing complex orders from larger customers.
Complex orders consist of a number of sub‐orders that are processed in parallel business
processes by different organizational units in the telecoms company. These sub‐orders are
independent to a certain degree from an internal perspective of the company. For this reason,
the business processes for these sub‐orders run in parallel to speed‐up the completion of the
overall order. However, in order to improve customer satisfaction and to reduce costs, issues
that occur during the processing of sub‐orders need to be clarified with the customer, whose
perspective is on the overall order.

If each business process is implemented with its own issue resolution process the customer
needs to be contacted for each single issue that might occur in a sub‐order, or issue resolution
might only be structured according to sub‐orders. As a result, each process needs to implement
its own issue resolution procedure in some way. To reduce the number of customer interactions
and to save communication costs, the issue clarification process needs to be consolidated and
treated as an own concern. That way, different processes can use the same clarification
procedure and changes to these business processes associated to processing of sub‐orders can
remain independent.

Moreover, each customer has its own communication preferences, i.e. some want to be
contacted by letter, others prefer e‐mail or fax, and other customers rather prefer direct
telephone communication. Additionally, some serious issues required written communication.
Consequently, it was required to treat issue resolution as an own concern and to centralize the
rules around the communication preferences. A concept for classification of occurring issues
and a central processing of those occurring issues was required. The actual issue clarification
process needed to be implemented as a rather complex business process itself that gathers all
the occurring issues from those various parallel running sub‐order processes. The rather
complex rules for communication needed to be implemented by the issue clarification process.

13

The BUNDLE PROCESS AGENT pattern has been applied to deal with these requirements. A
classification scheme for possible occurring issues has been designed in a business object model.
The parallel running sub‐order processes have just sent a type of issue that occurred during the
process to the BUNDLE PROCESS AGENT. The agent created an issue clarification process that
processed the issues centrally according to communication preferences. For instance, a list of
issues that resulted from various sub‐orders could thus be clarified in a single telephone call
with the customer, or have been communication in a single letter. Direct communication via
telephone of a consolidated list of issues has thus speeded‐up the clarification process or has
saved mailing costs, as a number of relevant issues have been gathered in a single letter.

The overall clarification process could be implemented in a controlled way considering the
customer view and preferences of the overall order, while still having the ability to process the
sub‐orders according to different specialized internal departments. A special team to improve
the clarification process as a separate concern could thus be implemented without affecting
actual order processes. In that way, it has been possible to design the business process models
according to different levels of expertise and to assign dedicated resources with expertise on
issue resolution.

The issue classification scheme via the special business object model and the service for sending
occurring issues via a service provided a clear interface that allowed new or improved sub‐order
processes to use it in a flexible way. The service has provided a defined interface for handing
issues for clarification in a universal way. Customer satisfaction has been improved by
classification of the issues and reducing the number of necessary interactions with the
customers.

Known Uses

• The pattern has been used in several projects for the purpose of consolidating outbound
communication to the same party in order to save costs by putting the communication
content resulting from various business processes running in parallel. in one bundled
communication. The bundle process controls the actual generation of the
communication including format and media, i.e. letter, e‐mail, fax, or even telephone,
and the procedure to control the outcome of the communication. The purpose in the
context was also to improve customer satisfaction via the consolidation of the
communication via reducing the number of interactions and applying preferred
communication mechanisms.

• The pattern has also been used to gather issues to be clarified with customers that
result from various business processes running in parallel associated to a complex order.
The issues are collected first and are then clarified with the customer rather than
discussing each issue separately with the customer. That way issues could be clarified in
relation to each other. The bundle process controls the clarification procedure in terms
of a dedicated business process.

• The above two purposes of the pattern have been used in the context of order
management in the telecoms industry and in the context of claims handling in the
insurance industry. The pattern has served in this context as an architectural solution to
the consolidation issues mentioned in larger strategic architecture projects.

Process Conductor

Interdependent processes are in execution on a process engine. The interdependency implies
that execution of the processes needs to be synchronized at runtime. When business processes
are executed on a process engine there are often points in these processes where dependencies
to other processes need to be considered. That means a process may only move to a certain
state, but can only move on if other parallel processes have also reached a certain state. Further
execution of these parallel running processes need to be orchestrated at runtime, as it cannot
be decided at modeling time when these states are reached or what these states are due to the
separate execution of the processes and the fact that each process is a component that may
change individually over time. In most cases, the rules for the orchestration need to be flexibly
adaptable.

How can the interdependencies between processes be flexibly captured without
tightly coupling the processes?

At some point in a process it might be necessary that the process is only allowed to move on if
other processes have also reached a certain state. However, each individual process does not
know what these states of other processes are and when they are actually reached, as each
process runs at its own speed within its own data space. Moreover, each business process needs
to be treated as a separate component and may change individually over time. Thus, processes
need to be very loosely coupled as far as this aspect is concerned.

The reason for this is that it is very hard to specify in a single process model what states of other
processes are relevant from an individual process’s point of view and when these states are
reached, nor what the relevant dependent processes are. If this is statically modeled in a
process somehow the implementation will be very inflexible and changes to orchestration rules
usually impact all involved processes. That means, the actual orchestration appears to be a
complex concern of its own and the rules for orchestration cannot be defined attached to an
individual process model. Consequently, the orchestration rules should not be captured as some
types of static relationships of a process to other processes. The dependencies that will be
generated if each process should know the rules for orchestration will be very hard to manage.
If the rules change then each individual process needs to be changed as well. For this reason a
tight coupling of the rules to each individual process is an inappropriate approach.

As a result, each process needs to be treated as an encapsulated component that does not know
anything about the orchestration rules or the processes that it has dependencies to. Each
process must only know its own points in the process where the dependency occurs but not
what this dependency is about. New processes might be created over time, which create new
dependencies and this must not affect existing process models to make the changes
manageable. Each process model itself may also change, e.g. new steps are added without
affecting the actual rules for orchestration as they need to be treated as a separate concern. The
very problem is thus that the processes are standing in dependency but must actually not know

very much about each other, as the dependency needs to be separated out of the process to
treat it as a separate concern and to make the processes and the complexity generated by these
dependencies manageable.

Introduce a PROCESS CONDUCTOR component that offers configurable orchestration
rules to conduct a number of business process instances. The PROCESS CONDUCTOR
offers a service that is only invoked synchronously by the business process
instances. Each process instance provides its current state in terms of the activity
it currently performs as an input parameter to this service. The service returns a
result to a specific process instance only when the orchestration rules allow the
process to move to the next step. This way the order of the process instances to
proceed is determined via the orchestration rules of the PROCESS CONDUCTOR.

A central aspect of the PROCESS CONDUCTOR pattern is that the central conductor is only invoked
synchronously. That is, when a business process reaches a critical state where it may only move
on if certain other dependent processes have also reached a certain state, then a SYNCHRONOUS
SERVICE ACTIVITY [Hentrich et al. 2008] is modeled at this point in the process that invokes a
service. At this point, the process to be conducted blocks on the synchronous invocation until
the conductor returns a result. The PROCESS CONDUCTOR service reports the state of a process
instance and the ID of the instance to the PROCESS CONDUCTOR component. The states and
corresponding process IDs are stored in a container. The PROCESS CONDUCTOR component applies
orchestration rules which are configurable to determine the order of events that need to be
fired to initiate dedicated process instances to move on.

The PROCESS CONDUCTOR applies its orchestration rules to the states and corresponding process
IDs in the container. The orchestration rules simply define an order of the process states, i.e. an
order of terminating the corresponding process activities. The conductor then fires events to the
process instances identified by their IDs in the order that is determined by the orchestration
rules. Hence, the service implementation to report the state and the process ID can be
implemented as an EVENT‐BASED ACTIVITY [Köllmann et al. 2007]. The process engine receives the
events and terminates the activities in the order directed by the conductor. As a consequence

Process
Conductor

Process Instance 1

Process Instance 2

Process Instance 3

5. Send
current
state

1. Send
current
state

Orchestration
rule:
P1 -> P2 -> P3

2. Move to state P2
4. Move to state P3
6. Move to state END

3. Send
current
state

the processes move on to the next step in the right order. The conductor repeats this process in
a loop, as new processes may have registered for the next iteration.

The triggers to start one iteration of this procedure to apply the orchestration rules and to fire
events to the processes can be twofold. It can happen repeatedly in defined time intervals, or it
can be initiated by other dedicated event triggers, e.g. a master process has invoked the service
of the PROCESS CONDUCTOR to register an initiation state that triggers the orchestration rules.

The registration of the state and process ID and the waiting position for the actual termination
event to occur can also be designed as an ASYNCHRONOUS RESULT SERVICE [Hentrich et al. 2008]. In
this case the business process needs to model two activities: one that places the request and a
second one that gets the result, i.e. waits for the termination event.

The EVENT‐BASED PROCESS INSTANCE [Hentrich 2004] pattern can also be used in conjunction with a
PROCESS CONDUCTOR in case it might take a long time until the termination event occurs and it
makes sense to split‐up the process in two parts. That means if the termination event occurs the
second part of the process will be instantiated rather than modelling a waiting position.

One must note that the pattern generally assumes that the process engine processes the
terminate events in the sequence that they are fired. This implies that the activities will
terminate in the intended order, i.e. the order the terminate events have been fired, and the
processes will correspondingly move on in the right order. If this cannot be assumed then it
might be that the activities of the processes do not terminate in the right order and
consequently the processes do not move on in the right order as well. To resolve this issue the
implementation can be extended by an additional service that is invoked from a business
process. This additional service confirms that the activity has terminated. This is modelled as a
second SYNCHRONOUS SERVICE ACTIVITY right after the first one. The next process, according to the
rules, is only notified after the confirmation from the preceding business process has been
received.

This may only be necessary if the order of termination is important within one iteration of
notification. In many cases this is not important as it is rather the whole iteration that
represents the order, i.e. all processes of one iteration may literally move on at the same time
and slight differences do not matter. This also depends on the underlying rules and what these
rules are further based on. According to the MACRO‐MICROFLOW [Hentrich et al. 2007] pattern this
may also depend on whether we are at microflow or macroflow level. Transactional microflows
usually run in much shorter time (sometimes milliseconds) and even slight time differences
might matter while these slight time differences might not matter at all at the macroflow level.

The pattern provides a flexible solution to determine the order of process steps that need to be
synchronized by configurable rules. New processes and rules can be added without changing the
architecture. Existing rules can also be modified without changing the implementation of
running business processes. However, this flexible concept requires additional design and
implementation effort. The design might be quite complex depending on the requirements
regarding the complexity of the synchronization. For this reason, the pattern is most suitable in
larger projects where architecture evolution and business agility is required.

The PROCESS CONDUCTOR pattern is a central bottleneck and it also incurs the risk of deadlocks in
case the PROCESS CONDUCTOR’S orchestration rules are misconfigured or a business process fails to
signal its state. In such cases, usually manual intervention is required. It makes sense to monitor
the PROCESS CONDUCTOR component for such events.

Example: PROCESS CONDUCTOR example configuration

The following figure shows an example of the general architectural concept of the solution using
the OBSERVER pattern [Gamma et al. 1994] to notify the EVENT‐BASED ACTIVITY of a process that
waits for a terminate event to occur. The very order of sending these terminate events, i.e. the
order of invoking the notify method of the observer class, is defined by the orchestration rules
of the conductor. The orchestration rules just order a list of states associated to process
instances and deliver those process instances that need to be informed in the next iteration. In
the example in the figure this logic is hidden in the runOrchestrationRules method. That method
takes a list of states associated to process instance IDs, runs the rules over them and delivers the
list of process instances that apply to the rules for the next iteration. Those process instances
are removed from the list given as an input parameter. The Process Conductor class itself is
implemented using the COMPONENT CONFIGURATOR [Schmidt et al. 2000] pattern. In the figure, the
class Process Conductor is the observable that is observed by a Report State Service. This service
is invoked by activities from business processes as a SYNCHRONOUS SERVICE ACTIVITY [Hentrich et al.
2008]. The service notifies the process engine about terminating an activity when it receives a
corresponding TerminateEvent from the conductor. Read and write operations on the container
are synchronized using locking and unlocking mechanisms.

A variation of the pattern is that the registration of the state and process ID and the waiting
position for the actual termination event to occur can also be designed as an ASYNCHRONOUS
RESULT SERVICE [Hentrich et al. 2008].]. To model this variant, the Report State Service offers two
methods: one that places the request and one that gets the result. The combination of state and
ID may serve as a CORRELATION IDENTIFIER [Hohpe et al. 2003] for the second method invocation.
The architectural concept then needs to change slightly according to the description of the
ASYNCHRONOUS RESULT SERVICE pattern. Using this design principle the terminate event is rather
captured by a pull mechanism from the perspective of the process conductor. The pull
mechanism is represented by the second service invocation from the business process that
actively asks for a result and the termination event might thus not be immediately reported to
the process engine, i.e. in case the second method is invoked after the event has actually
occurred.

On the contrary the original solution in the figure above seems rather to use a push‐mechanism
while following the EVENT‐BASED ACTIVITY pattern, as the event is fired and reported to the process
engine as soon as it occurs. However, from the viewpoint of the business process both scenarios
follow a pull‐mechanism, as all services are actively invoked and represent blocking calls. In the
second scenario it is just two method invocations instead of just one. The second method to get
the result represents the EVENT‐BASED ACTIVITY in this second scenario.

The second variation of the solution can be used when sending the request needs to be
decoupled from capturing the termination event. For instance, in case other process steps can
be undertaken in the meantime but the conductor needs to be informed early. Doing it that way
creates more time for the conductor to calculate the order of the terminate events, e.g. in case
complex time consuming rules need to be applied and/or it is not necessary to report the
termination event to the process engine as soon as possible.

The following figure illustrates the variation of the pattern using ASYNCHRONOUS REPLY SERVICE.

Example: Just­in­time Production Optimization

In a just‐in‐time (JIT) production scenario in the automotive industry the order of a car needs to
be processed. The order arrives with given ordering details of the car model that needs to be
manufactured in a JIT process. The parts for the car are delivered by different suppliers and the
order details related to the parts delivered by a certain supplier are forwarded to each of the
suppliers via a service interface. The manufacturing process in terms of the internal ordering,
delivery, and assembly of the parts from those different suppliers needs to be coordinated. To
coordinate the processes a MACROFLOW ENGINE [Hentrich et al. 2007] is used. The selected tool to
implement the MACROFLOW ENGINE is WebSphere MQ Workflow.

The processes for ordering, delivering and assembling the parts need to be coordinated, as a
parallel process instance is created for each supplier. Appropriate coordination of the process is
crucial to optimize the manufacturing costs, e.g. reducing stock costs by agreeing service levels
with suppliers in terms of delivery times and to place the order to the suppliers at the right point
in time. In order to allow coordination of the processes and to allow optimization the PROCESS
CONDUCTOR pattern has been applied. The timely coordination of orders to suppliers, parts
delivery and assembly can thus be implemented using flexible orchestration rules. The rules can
be modified according to improved service level agreements and to optimize the overall
manufacturing process over time. The rules have been implemented and flexibly configured
using the ILOG JRules [ILOG 2008] rules engine. The rules have been accessed by the PROCESS
CONDUCTOR via a Java interface.

Known Uses

• The pattern has been used in projects in the telecoms industry to control technical
activation of dependent products in larger orders. Each product can be processed in
parallel to improve efficiency up to a certain point. Further technical activation of the
products is then controlled by product rules, as certain products are dependent on each
other, e.g. an internet account can only be activated if the physical DSL connection has
been established.

• The pattern has been used to design synchronization points in parallel claims handling
processes in the insurance industry. That is, a set of parallel sub‐claims processes that
belong to an overall claim is triggered off and can only move to a certain point. At this
point the parallel processes need to be synchronized, i.e. the first process that reaches
the point must wait until all others have reached their synchronization point too. What
processes need to be synchronized is defined by configurable rules.

• In logistic processes in the transportation industry the pattern has been used to flexibly
coordinate the transportation of goods delivered by different suppliers and parties.
Orchestration rules have been used to allow flexible packaging and to coordinate
between different types of transportation, e.g. trucks, planes, ships, and trains. That
way it is possible to rather easily configure modified types of packaging and
transportation due to changed conditions or different transportation criteria, e.g.
security, delivery speed, and costs, which apply to different types of goods.

Conclusion

In this paper we have presented three patterns for synchronization of parallel and
independently running business processes in a process‐driven and service‐oriented architecture.
These patterns focus on coordinating the parallel and principally independent business
processes via architectural solutions allowing architects to model the flexible synchronisation of
the processes. The patterns are part of an ongoing effort to mine and document a pattern
language for process‐driven and service‐oriented architecture. Previous parts of this pattern
language have been published in [Hentrich 2004, Hentrich et al. 2007, Köllmann et al. 2006,
Hentrich et al. 2008].

Acknowledgments

The authors would like to thank our shepherd Stephan Lukosch and the EuroPLoP 2008 writers’
workshop for their valuable comments.

References

[Barry 2003] D. K. Barry. Web Services and Service‐oriented Architectures, Morgan Kaufmann
Publishers, 2003.

[Buschmann et al. 2000] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal: Pattern‐Oriented Software Architecture – A System of Patterns, John Wiley & Sons, 1996.

[Channabasavaiah 2003 et al.] K. Channabasavaiah, K. Holley, and E.M. Tuggle. Migrating to
Service‐oriented architecture – part 1, http://www‐106.ibm.com/developerworks/
webservices/library/ws‐migratesoa/, IBM developerWorks, 2003.

[Gamma et al. 1994] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object‐Oriented Software. Addison‐Wesley, 1994.

[Hentrich 2004] C. Hentrich. Six patterns for process‐driven architectures. In Proceedings
of the 9th Conference on Pattern Languages of Programs (EuroPLoP 2004), 2004.

[Hentrich et al. 2007] C. Hentrich, U. Zdun. Patterns for Process‐Oriented Integration in
Service‐Oriented Architectures, In Proceedings of the 11th Conference on Pattern Languages of
Programs, (EuroPLoP 2006), 2006.

[Hentrich et al. 2008] C. Hentrich, U. Zdun. Patterns for Invoking Services from Business
Processes. In Proceedings of European Conference on Pattern Languages of Programs (EuroPloP)
2007, Universiätsverlag Konstanz, 2008.

[Hohpe et al. 2003] G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison‐
Wesley, 2003.

[ILOG 2008] ILOG. JRules. http://www.ilog.com/products/jrules/index.cfm, 2008.

[Köllmann et al. 2007] T. Köllmann, C. Hentrich. Synchronization Patterns for Process‐Driven
and Service‐Oriented Architectures, In Proceedings of the 11th Conference on Pattern
Languages of Programs, (EuroPLoP 2006), 2007.

[Schmidt et al. 2000] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Patterns for
Concurrent and Distributed Objects. Pattern‐Oriented Software Architecture. J.Wiley and Sons
Ltd., 2000.

[Völter et al. 2004] M. Voelter, M. Kircher, and U. Zdun. Remoting Patterns ‐ Foundations of
Enterprise, Internet, and Realtime Distributed Object Middleware, Wiley Series in Software
Design Patterns, J. Wiley & Sons, October, 2004.

Appendix: Overview of Referenced
Related Patterns

There are several important related patterns referenced in this paper, which are described in
other papers, as indicated by the corresponding references in the text. The following table gives
an overview of thumbnails of these patterns in order to provide a brief introduction to them for
the reader. For detailed descriptions of these patterns please refer to the referenced articles.

Pattern Problem Solution

ASYNCHRONOUS RESULT
SERVICE

[Hentrich et al. 2008]

A communication between a service
and a process flow needs to be
modelled that is not a synchronous
communication, but rather just places
the service request and picks up the
service result later on in the process
flow, analogous to the well‐known
callback principle.

Split the request for service execution
and the request for the corresponding
result in two SYNCHRONOUS SERVICE
ACTIVITIES and relate the two activities
by a CORRELATION IDENTIFIER [Hohpe et
al. 2003] that is kept in a control data
object.

BUSINESS OBJECT
REFERENCE

[Hentrich 2004]

How can management of business
objects be achieved in a business
process, as far as concurrent access
and changes to these business objects
is concerned?

Only store references to business
objects in the process control data
structure and keep the actual business
objects in an external container.

COMPONENT
CONFIGURATOR

[Schmidt et al. 2000]

How to allow an application to link
and unlink its component
implementations at runtime without
having to modify, recompile, or relink
the application statically?

Use COMPONENT CONFIGURATORS as
central components for reifying the
runtime dependencies of configurable
components. These configurable
components offer an interface to
change their configuration at runtime.

Pattern Problem Solution

CORRELATION IDENTIFIER

[Hohpe et al. 2003]

How does a requestor that has
received a response know to which
original request the response is
referring?

Each response message should contain
a CORRELATION IDENTIFIER, a unique
identifier that indicates which request
message this response is for.

EVENT BASED PROCESS
INSTANCE

[Hentrich 2004]

How can a process instance be
automatically created in case an event
based activity occurs in a business
process that implies automatic
process instantiation, e.g. a customer
placing an order?

Externalise event based activities to an
external event handler component and
split the process model in several
parts.

EVENT‐BASED ACTIVITY

[Köllmann et al. 2006]

How can events that occur outside the
space of a process instance be handled
in the process flow?

Model an event‐based activity that
waits for events to occur and that
terminates if they do so.

FIRE AND FORGET SERVICE
ACTIVITY

[Hentrich et al. 2008]

A communication between a service
and a process flow needs to be
modelled that is not a synchronous
communication, but rather just
placing the service request without
waiting for any result to be returned
from the service.

Model a FIRE AND FORGET SERVICE
ACTIVITY that decouples the request for
execution of a service from the actual
execution of the service.

MACROFLOW ENGINE

[Hentrich et al. 2007]

How is it possible to flexibly configure
macroflows in a dynamic environment
where business process changes are
regular practice, in order to reduce
implementation time and effort of
these business process changes, as far
as the related IT issues are concerned
that are involved in these changes?

Delegate the macroflow aspects of the
business process definition and
execution to a dedicated MACROFLOW
ENGINE that allows developers to
configure business processes by
flexibly orchestrating execution of
macroflow activities and the related
business functions.

MACRO‐MICROFLOW

[Hentrich et al. 2007]

How is it possible to conceptually
structure process models in a way
that makes clear which parts will be
depicted on a process engine as long
running business process flows and
which parts of the process will be
depicted inside of higher‐level
business activities as rather short
running technical flows?

Structure a process model into
macroflow and microflow.

SYNCHRONOUS SERVICE
ACTIVITY

[Hentrich et al. 2008]

A synchronous communication
between a service and a process flow
needs to be modelled such that the
process is able to consider the
functional interface of the service and
may react on the possible results of
the service.

Model a SYNCHRONOUS SERVICE ACTIVITY
that depicts the functional input
parameters of the associated service in
its input data objects and the
functional output parameters of the
service in its output data objects.

Developing GUI Applications:
Architectural Patterns Revisited

A Survey on MVC, HMVC, and PAC Patterns

Alexandros Karagkasidis

karagkasidis@gmail.com

Abstract. Developing large and complex GUI applications is a rather difficult task.
Developers have to address various common software engineering problems and
GUI-specific issues. To help the developers, a number of patterns have been
proposed by the software community. At the architecture and higher design level,
the Model-View-Controller (with its variants) and the Presentation-Abstraction-
Control are two well-known patterns, which specify the structure of a GUI
application. However, when applying these patterns in practice, problems arise,
which are mostly addressed to an insufficient extent in the existing literature (if at
all). So, the developers have to find their own solutions.

In this paper, we revisit the Model-View-Controller, Hierarchical Model-View-
Controller, and Presentation-Abstraction-Control patterns. We first set up a general
context in which these patterns are applied. We then identify four typical problems
that usually arise when developing GUI applications and discuss how they can be
addressed by each of the patterns, based on our own experience and investigation of
the available literature.

We hope that this paper will help GUI developers to address the identified
issues, when applying these patterns.

1 Introduction

Developing a large and complex graphical user interface (GUI) application for displaying,
working with, and managing complex business data and processes is a rather difficult task. A
common problem is tackling system complexity. For instance, one could really get lost in
large number of visual components comprising the GUI, not to mention the need to handle
user input or track all the relationships between the GUI and the business logic components.
Without proper system design, GUI code and business logic may get deeply intertwined with
each other, which leads to another important issue: The code organization. A general
requirement is that the source code be understandable, maintainable, and reusable. Clear code
organization and coding principles are essential as regards communication among the
developers within the whole system lifecycle.

Given these challenges, a (now) common approach in software engineering is to start with
defining the system architecture. Iterative refinement leads then to the low-level design,
where the detailed system structure is obtained. Separation of concerns is a basic principle
underlying this process.

With time, a number of patterns for GUI applications have been proposed by the software
community. The well-known Model-View-Controller (MVC) with its variants and, to a much
lesser extent, the Presentation-Abstraction-Control (PAC) patterns provide a good starting
point for the developers. However, when applying these patterns in practice, a number of
problems arise both at the design and the implementation levels. For instance, an essential
constraint is the GUI platform (or toolkit) used. It often assumes a specific way of how GUI
applications are, or should be, developed (a path of least resistance), which may not comply
with the pattern used. This should be taken into account when applying a particular pattern.

In large and complex GUI applications other issues become apparent as well, such as how the
application�’s GUI part is constructed, how user input is handled, or how user-system dialog
(interaction) is managed. Most of these problems are addressed to an insufficient extent (if at
all) in the existing literature.

In this paper we revisit three well-known patterns for GUI applications �– MVC, HMVC
(Hierarchical MVC) and PAC �– by identifying four typical problems in the development of
GUI applications and discussing how they are, or could be, addressed by these patterns.

The paper is organized as follows. In the Background section we give a brief description of
the MVC, HMVC, and PAC patterns, as well as present the four problems, which are then
discussed one by one in the subsequent sections. The discussion is illustrated with numerous
examples. Some implementation specifics for Java programming language and Java Swing
toolkit are provided as well. We conclude our paper with a brief summary. Throughout the
paper, we assume that the object-oriented approach is used.

2 Background

Patterns are usually applied within a systematic approach to system development, where the
system architecture is first defined given the system requirements. Through the system
design, following the separation of concerns principle, it is then refined into a set of classes,
representing the detailed system structure. Each class is assigned specific responsibilities. At
runtime, the system can be seen as a network of interacting objects.

Let�’s consider a typical usage scenario of a GUI application: A user wants to accomplish
some (business) task. He/she selects the corresponding menu item, and an input dialog is
displayed. The user types some data in and submits the dialog. The data is processed by the
application, and results are displayed to the user.

Implementing such a scenario, we get a number of interacting objects with different
functions. For instance, presentation (or GUI) objects comprise the GUI, display data to the
user, and process user input. Other objects could be responsible for transforming between
GUI- and application-specific data types. The input data is passed to the application logic
objects and processed there. The results are then returned to the GUI part, and the visual state
of the presentation objects is updated.

In a large application, with dozens of usage scenarios, the system design may contain
hundreds of classes with intensive interaction among objects at runtime. The more features a
GUI application provides, the tighter the relationships among objects are.

This makes the developing of GUI applications a rather difficult task. Typical questions
would be:

How to identify classes? How to assign specific functionalities to each class and
design their interaction (as this can be done in different ways)?
How to map classes onto implementation-level constructs (such as GUI toolkit
widgets or Java classes)?
How to initialize the resulting object network at runtime, instantiating particular
objects and establishing relationships among them, i.e., initializing object references
(known also as the visibility problem [Marinilli06])?

Apparently, we do not have to start from scratch when tackling these issues, since these seem
to be in the realm of the patterns for GUI applications, such as Model-View-Controller or
Presentation-Abstraction-Control (and their variations).

Here, we briefly review the patterns that are discussed in this paper. A detailed description
could be found, e.g., in [POSA I] (see also the References section).

2.1 Patterns for GUI Applications

Model-View-Controller

Model-View-Controller (MVC) is probably the most popular and frequently cited pattern
stemming from the Smalltalk environment ([POSA I], [KP88], [Burbeck92]). In MVC, a GUI
application is built from components (objects) of three types: models, views, and controllers.
The model represents the application logic �– functions and data. The view displays the model
data to the user (there can be several views connected to the same model component). The
controller handles user input and forwards it to the model by calling the corresponding
function(s). The model processes input and changes the application state. Such changes need
to be communicated to the views depending on the model, as well as to the controllers, since
the way they handle user input may also depend on the system state (e.g., enabling/disabling
buttons or menu items in certain states). For this purpose, the Observer pattern is used. The
views and controllers register themselves with the model. Upon state changes, the model
notifies all the registered components, which then retrieve the required data from the model.

Figure 1. MVC and a hierarchy of MVC-triads

This is basic MVC. The whole application is then built as a hierarchy of MVC-triads
organized around the view components, i.e., this hierarchy reflects the hierarchy of visual
components (such as main window, menu bar, menus, panels, widgets) within GUI
[Burbeck92].

View

Model

Controller

V C

M

V C

M

V C

M

Hierarchical Model-View-Controller

Hierarchical Model-View-Controller (HMVC) is an extension of basic MVC [CKP00]. A
GUI application is modeled as a hierarchy of MVC-triads connected through the controllers.

There are some essential differences as compared to MVC. First, user input is handled now in
the view component, which forwards it to its controller. The controller, in its turn, transforms
user events into method calls on the model. Upon a state change, the model updates the view
supplying it with the new state to be displayed (recall that in MVC the model only notifies its
views upon state change, and the views retrieve then the data).

Another role of the controller is to enable communication with other MVC-triads. Such a
communication is achieved through a hierarchy of controllers, thus providing a kind of the
dialog control logic.

Figure 2. HMVC

Presentation-Abstraction-Control

Presentation-Abstraction-Control (PAC) organizes a GUI application as a hierarchy of
cooperating agents ([Coutaz87], [POSA I]).

An agent (usually, it is a bottom-level agent) represents a �‘self-contained semantic concept�’
[POSA I] and is comprised of three components responsible for various aspects of the agent
(that is, of the corresponding semantic concept). The presentation component is responsible
for interaction with the user: It displays data and handles user input. The abstraction
component represents agent-specific data. The control component connects the agent�’s
presentation and abstraction parts with each other and is responsible for communication with
other agents. When an agent wants to send an event to another agent, it forwards it its parent
(intermediate-level) agent. The parent agent either sends the event to one of its other children,
or it forwards the event to its parent, if it does not know what to do with it, and so on.

V

C

MV

C

M

V

C

M

Intermediate-level agents serve two purposes. First, it is composition of lower-level agents.
This is needed when we have a complex semantic concept represented by other concepts,
which are then implemented as lower-level agents. Second, it is communication among
agents, as described above.

The top-level agent implements the business logic and is responsible for the application-level
GUI elements, such as menus or tool bar. It also coordinates all other agents.

Figure 3. PAC

2.2 Typical Problems in GUI Development

The patterns presented above are similar to each other in that they all identify basic
application components and assign certain functionalities to these components, such as
displaying data to the user, handling user input, and processing the data in the application
logic. These are, however, only some of common functionalities inherent to each GUI
application. A number of other typical problems usually arise both at the design and
implementation level, which becomes especially apparent when developing large and
complex GUI applications.

In this paper we consider the following four of these problems:

Creating and assembling GUI (Content): The application�’s GUI part is comprised
of visual components, or widgets, which are usually organized in a hierarchical
manner into panels, menus and/or other containers within the main window or
dialogs. Main problems here are how widgets are instantiated (in particular, regarding
their relationships with other objects) and how they are assembled into the whole GUI
(this is especially inherent to large GUIs).

AC P

Agent

A CP

Agent

ACP

Agent

Handling user input: The GUI provides various input means to the user. Primary
user input handling is usually implemented through callback methods, which are
called by the GUI platform when the corresponding event occurs. In large and
complex GUIs, with dozens of widgets, the code that handles user input may become
rather large. Yet user events must be forwarded to the business logic for application-
specific processing, which implies additional design-level issues.
Dialog control: Dialog control is about managing user-system interaction scenarios,
which may be rather complex involving several interaction steps. Roughly speaking,
at each step the user provides some input (through the GUI), which is processed in the
business logic, and the results are displayed (again, through the GUI). From the
design viewpoint, this involves interaction among a number of objects from GUI and
business logic, and the problem is to design and control such interactions.
Integrating GUI and Business Logic: Eventually, the GUI must be coupled with the
business logic. The way the business logic is designed is important with respect to
how this coupling could be implemented.

The first two problems presented above are rather implementation-level ones. In this regard,
an essential constraint is the GUI platform (toolkit) used, which assumes a specific way of
how the application�’s GUI part should be developed (a path of least resistance). This should
be taken into account when applying a particular pattern. The last two problems are more or
less independent from the GUI platform.

The available literature on the patterns for GUI applications does not provide enough
information (if any) on these problems leaving many questions open. So, the developers have
to find their own solutions.

In the second part of the paper, we give a detailed consideration of these problems and
discuss how they are (or could be) addressed by the MVC, HMVC, and PAC patterns,
respectively. This work is based on our own experience and on the analysis of the existing
literature.

2.3 The Smart UI Approach

The pattern-based approach to system development is not the only way the applications can
be developed. Here we present the Smart UI approach, which will be used in the subsequent
sections to illustrate the GUI development problems we discuss in this paper.

Consider a calculator GUI application having about 20-25 buttons, a text field, a few menus,
and some other widgets. We can implement it just as one single class, which contains the
GUI and user event handling logic, as well as mathematical operations.

In such simple applications developers can easily go without paying much attention to the
system architecture and design. The point here is that there is no need to complicate things
unnecessarily. Such a one-class solution is a particular case of what is known as the Smart UI
approach [Evans03].

The main characteristic of the Smart UI, in general, is mixing business and presentation logic
(like GUI creation and event handling). As Evans points out, �“this happens, because it is the
easiest way to makes things work, in the short run�” [Evans03].

The Smart UI is a straightforward way to implement GUIs, which is very simple to
understand. It is widely applied by developers, especially when working with popular visual
programming tools (GUI Builders), which let the developers design the GUI with a kind of
visual editor and automatically generate the source code, including empty callback methods
to handle user input. The developers often directly implement the required business logic in
these callback methods. Such a programming style can also be found in many books and
articles on GUI programming.

However, as an application gets more complex, a solution based on the Smart UI approach
degrades quickly �– in the absence of any clear system architecture and design, with
intertwined business and GUI logic, the system and the code become difficult to understand,
maintain, reuse, or modify (turning the Smart UI into the Smart UI �‘anti-pattern�’ [Evans03]).

3 Creating and Assembling GUI (Content)

A GUI typically consists of a main window, and a number of dependent secondary windows
(basically, for output purposes) and/or dialogs (for user input). Windows and dialogs are
composed of various visual components (widgets) that are organized into visual containers in
a hierarchical manner. Hence, a window or a dialog can be seen as a hierarchy of visual
components. A typical main window would contain the following areas ([CKP00],
[Marinilli06]):

Main working area (e.g., a drawing pane)
Navigation (or Selection) area (e.g., a tree-based browser)
Menu bar
Tool bar
Status line

As it could be seen, GUI may have a rather complex hierarchical structure. In this respect, we
identify the following problems, which are especially inherent to large GUIs:

How and where is each particular widget created (i.e., which object is responsible for
creating and initializing a given widget)?
How and where is the whole GUI assembled from particular widgets (i.e., which
object (or objects) establishes relationships among widgets within the hierarchical
GUI structure)?

From the implementation viewpoint, GUI platform (or toolkit) is the major constraint, since it
provides widgets from which the GUI is constructed.

Regarding the GUI patterns, GUI toolkit implies another important issue. Each GUI pattern
has elements (classes) that are responsible for the GUI (presentation) concerns. These
elements have eventually to be implemented with the given GUI toolkit. As a consequence,
this may require that we extend standard toolkit widgets to provide the pattern-related
functionality. The widgets are then used in a specific way, which differs from the standard
way intended by the toolkit, as expected by the developers (path of least resistance). This, in
its turn, implies additional implementation effort.

This section is organized as follows. We start with the Smart UI approach to illustrate typical
problems when creating and assembling the GUI. We then consider how MVC, HMVC and
PAC address the identified problems.

3.1 Creating and Assembling GUI in the Smart UI Approach

Within the Smart UI approach, it is typical to implement the main window as a single class
that instantiates all the widgets, initializes and composes them into visual containers, and
eventually assembles the whole GUI. GUI builders �– popular tools for GUI programming �–
encourage this way of creating GUIs, which is therefore often used in practice, especially by
non-experienced GUI developers.

Let�’s see what the GUI creation code within the main window class includes. First, we would
have a class instance variable (field) for each widget (both simple widgets and visual
containers). Then, each widget must be instantiated and its properties must be set up. For
instance, a menu item could be given a name, an accelerator key, a mnemonic key, an icon,
and a tip text, and its state could be set to enabled or disabled. All this requires several lines
of code. Listing 1 illustrates possible implementation in Java Swing.

At last, the main window class has to establish all the relationships among widgets within the
visual component hierarchy, i.e., assemble the GUI. For instance, menu items must be added
to their menus, which themselves must then be added to the menu bar.

Imagine now how the main window class would look like just with a hundred of menu items.
It gets quickly very large, even if we take into account just the GUI creation and assembly
code (without event handling or business logic, which the main window class would most
likely contain in the Smart UI approach). And as it seems, the menu bar with all its menus
and the tool bar (to a lesser degree) are the main contributors in this respect.

The code size and code organization problems can be solved by a number of well-known
refactoring techniques ([Fowler99], [Marinilli06]). With the Extract Method refactoring
technique, we can organize the code within the main window class, so that, e.g., the menu bar
and all its content are completely created within a separate method. If this method becomes
large, too, we can extract methods from it, which create particular menus within the menu
bar, as it is illustrated in the Listing 2.

Listing 1: Initializing a menu item in Java Swing

// JMenuItem saveMenuItem;
...
saveMenuItem = new JMenuItem("Save");
saveMenuItem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_S,
 ActionEvent.CTRL_MASK));
saveMenuItem.setMnemonic(KeyEvent.VK_S);
saveMenuItem.setIcon(new ImageIcon("resources/images/save.gif"));
saveMenuItem.setToolTipText("Save");
saveMenuItem.setEnabled(false);

Listing 2: Extract Method

public class MyMainWindow extends JFrame {
 ...
 private void createMenuBar(){
 ...
 this.createFileMenu();
 ...// create other menus
 }

 private void createFileMenu(){
 // code that creates the File Menu
 }
 ... // methods creating other menus
}

The code size problem can be solved then by applying the Extract Class [Fowler99] or
Extract Panel [Marinilli06] refactorings. With this technique, we extract all the GUI code for,
say, menu bar into a separate class. The same can be done for tool bar, a specific panel or
other containers within the main window.

3.2 Creating and Assembling GUI in MVC and HMVC

In MVC, GUI (presentation) concerns are handled by the view component. Logically, it is
responsible for presenting application (business) data to the user. Eventually, each view has
to be implemented with the given toolkit. Several designs are possible here.

Widget-level MVC

In the widget-level MVC approach, a view is a visual component (widget) from the toolkit.
More precisely, each toolkit widget in the GUI is considered as a view component (which
results in an MVC-based framework [POSA I]). Each widget has its model and controller
components. Together, they form a simple MVC triad. The application is then created by
instantiating such MVC triads for each GUI widget and assembling them together.

This approach originates from the Smalltalk environment, which provides predefined view,
model, and controller classes for standard GUI widgets, like buttons, menu items, text fields,
etc. ([KP88], [Burbeck92]). Java Swing is also an MVC-based toolkit: Each widget has its
standard model and controller classes.

Widget-level MVC seems to work rather well, if an MVC-based toolkit is used and the
application is simple. Let�’s consider potential problems that might arise when developing
large and complex GUIs.

First, as in the Smart UI approach, it is the large main window class problem, if the whole
GUI creation and assembly work is done in one class. Again, a solution would be to apply the
Extract Method and Extract Class refactorings (see also the discussion in the previous
section). For instance, with the Extract Class refactoring, we implement certain view
components in separate classes. Each such view class instantiates all its child MVC triads and
assembles its GUI part from the child view components.

Another problem concerns the model component associated with each widget. In MVC, the
model is responsible for business logic and uses its own data type(s) to represent the business
data to be displayed to the user. On the other hand, the view component uses, in general,
another (usually toolkit-specific) data type(s) for the data it displays. So, we need to provide
data type transformation. Let�’s consider this on the Java Swing example.

In Java Swing, each widget has its standard Swing model class, which maintains data
displayed by the widget. However, this data is kept in Swing-specific format, which implies
the following design problem: What if you want to implement your business data using other
data types? In that case, the standard model class provided by Swing cannot be used directly.
For instance, the JTree component requires a class that implements the Swing-specific

TreeModel interface as the associated model, which represents a hierarchical structure.
And you�’d most likely not want to model your business objects and relationships between
them (which you want to display with the JTree) by implementing the TreeModel
interface, but rather choose your own data structures.

So, how should we then connect a widget to the corresponding business data?

Extend Widget
One way is to extend the widget class associating it with our own model class that represents
business data in its internal toolkit-independent format. The standard model class provided by
Swing is no needed then. The extended widget retrieves the data to be displayed from the
model and transforms it into its own format. The model has still to implement change
notification mechanism (through the Observer pattern).

Extend Model
Another alternative would be to extend the Swing model class to connect it to our specific
business object class. In this case, the extended model class can implement the required data
type transformation as well.

As we can see, in both alternatives the developers have to extend the standard Java Swing
functionality.

Consider now the situation when the toolkit does not support MVC, and we are going to
apply MVC at the widget level, as described above. In this case, we would have to extend all
the toolkit widgets we use to provide the MVC-specific functionality, such as connection to
the controller and model components (see also the MVC liabilities section in [POSA I]).

This has some important implications for large and complex GUIs. First, for each widget in
the GUI, we would have a separate class extended from the corresponding toolkit widget
class. As a result, we would get a large number of new classes in our application (even for
simple widgets, such as buttons or menu items), which need to be maintained. Second, the
developers have to use the extended widgets in the MVC-specific way, which may differ
from that the developers are familiar with (as suggested by the toolkit �– path of least
resistance). This means for the developers a new way of thinking about the widgets. The
main window assembly problem is present here as well.

Concluding, we can say that for both cases we face the problem of being forced to extend
standard toolkit functionality through implementing new classes in order to provide �‘true�’
MVC nature of our application (especially for the toolkits that do not support MVC). Another
problem is that applying MVC for each widget is a rather low-level and fine-grained
approach with too many pattern-specific details (imagine having a separate MVC triad for
each menu item!). This makes things unnecessarily complex and may discourage the
developers, especially if a large GUI application is developed (see also the MVC liabilities
section in [POSA I]).

Container-level MVC. HMVC Approach

This approach tries to avoid the problems of widget-level MVC we have discussed above.
The key idea here is to move from the level of particular widgets to higher levels in the visual
component hierarchy representing the application�’s main window (or any other window).
Namely, MVC is applied at the level of visual containers �– parts within GUI that group
together other (usually related) visual components. Typical containers are panels, dialogs,
menu bar and its menus, and tool bar, which are considered now as MVC views.

Each container-level view is implemented as a separate class through extending the
corresponding container widget from the toolkit (recall again the Extract Class refactoring
technique!) and adding the required functionality. In particular, it is responsible for handling
its content, such as creating, initializing, and assembling together the visual components it
contains. The key point here is that all the GUI-specific work for all the child widgets within
a container-level view is done in standard toolkit way (Listing 3). We have no more to treat
each child widget in the MVC way and create (a large number of) new classes for this
purpose. Thus we avoid all the low-level details and complexity of the widget-level MVC.
This is particularly important for toolkits that do not support MVC. And the developers can
now work with the toolkit as they used to. Only the container classes must be adapted to
MVC.

This approach is used in HMVC [CKP00], where main GUI parts, such as menu bar,
navigation pane, main content pane (working area), and status pane, are modeled as views.
These views are assembled then within the main window, which is the root view component.

Listing 3: Container-level MVC

public class MyXYZPanelView extends JPanel {
 // Child widgets are used in standard Java Swing way
 private JTextField myTextField;
 private JTextField myAnotherTextField;
 private JLabel myLabel;
 private JLabel myAnotherLabel;
 private JButton myButton;
 ...
 private JCheckBox myCheckBox;
 ...
 public MyXYZPanelView (){
 ...
 this.myTextField = new JTextField(10);
 this.myAnotherTextField = new JTextField(10);
 this.myLabel = new JLabel(�“My Label�”);
 this.myAnotherLabel = new JLabel(�“My Another Label�”);
 this.myButton = new JButton(�“My Button�”);
 ...
 this.myCheckBox = new JCheckBox();
 ...
 // other initialization code
 }
 ...
 // other code
}

The main design issue with the container-level MVC approach is the granularity level, i.e.,
which containers should be modeled as MVC views. In the hierarchy of visual components
representing the structure of the main window there could be several layers of intermediate
containers, depending on the GUI complexity. For instance, the menu bar (container) is
usually comprised of several menus (containers), where each menu consists of either menu
items (leaf nodes) or other submenus (containers), and so on. Complex forms are often
composed from a number of panes (e.g., tab panes), where each pane may have its own sub-
panes.

Another aspect is that sometimes we have to extend the functionality of particular widgets to
provide some specific behaviour not supported by the toolkit used. Naturally, we would have
a separate class for such a widget. We can then regard it as a separate view component and
provide the corresponding model and controller components. Alternatively, we can treat it as
a new �“standard�” widget just as other child widgets within a container.

So, we can put a more general question: Which visual components within GUI should be
considered as MVC views?

The following two rules-of-thumb could be suggested in this regard:

If a child container within a given container has complex structure (contains many
widgets), then implement this child container as a separate view.
(Optional) If a widget (visual component) within a container must provide some
specific functionality, then implement this widget as a separate view.

The key point here is to find a balance between the one-class solution and applying MVC for
each particular widget. With this, we are trying to avoid the two extremes: having a single
monster class that implements everything or having too many classed with low-level details
and unnecessarily complex design.

The following examples illustrate the idea. Consider first a menu bar. If is has two or three
menus, each consisting of a couple of menu items, then we could model the whole menu bar
as a single view component. If, however, some menu has, say, more than 5-7 menu items, it
would be a candidate for a separate view. The same applies then to each particular menu.
Until a menu remains simple, it is modeled as one view. When it becomes more complex,
with large submenus added, then it is time to think about extracting submenus into separate
views.

Consider now a navigation pane with two navigation trees. It could be implemented as a
tabbed pane, with two tabs each containing a tree component. Though we have few widgets
here, we would rather have a separate view for each tree, because each implements a specific
behaviour and we must customize the tree widget from the toolkit. Another view would be
the navigation pane itself.

As a counter example, consider a pane comprised of, say, 20 child panes, each having few
(e.g., 3-5) simple widgets like buttons and text fields. For instance, this could be a pane
representing various parameters of some physical process, with a couple of controls to
regulate each parameter. So, what to do in this case? The whole pane having dozens of
widgets is rather large to put all its content into just one view (i.e., class), but each of its child
panes is rather simple to be considered as a separate view.

3.3 Creating and Assembling GUI in PAC

The way the GUI creation and assembly problem is addressed in PAC is logically quite
different from, and more complicated as, that of MVC. So, we give first some details from
[POSA I] regarding the presentation in PAC before we discuss the implementation issues.

First, an application is organized as a hierarchy of agents, which represent �‘self-contained
semantic concepts�’ (see also PAC description in Section 2.2). Each agent has the presentation
component, which handles agent�’s GUI aspects (input and output) and interacts with the
agent�’s control component. What the presentation component actually is depends on the
agent�’s type. The presentation of the top-level agent �‘includes those parts of the user
interface that cannot be assigned to particular subtasks, such as menu bars�…�’ [POSA I]. The
presentation of the bottom-level agents �‘presents a specific view of the corresponding
semantic concept, and provides access to all the functions users can apply to it�’ [POSA I].
There are also intermediate-level agents. Some of them represent complex abstractions
(concepts) from the business domain, which are comprised of other abstractions. In this case,
the presentation of an intermediate-level agent handles the visual aspects of the
corresponding compound abstraction.

Well, a little bit complicated as compared to MVC�… An important aspect to note here is that
the design of the whole application and its GUI part in particular is driven by agents.
Regarding GUI issues, this means that we take, roughly speaking, a business object from the
business model and then devise how it should be displayed to the user. This differs from
MVC and HMVC where the view components represent widgets or containers within the
main window, i.e., the application design is strongly influenced by the visual design of the
GUI.

More insight on what is hidden behind the agent�’s presentation component could be deduced
from the following statement: �‘�… All components that provide the user interface of an agent,
such as graphical images presented to the user, presentation-specific data like screen
coordinates, or menus, windows, and dialogs form the presentation part�’ [POSA I].

This helps in reasoning about the implementation issues of the presentation component. First,
for a simple agent, its presentation part could be implemented as a single class, which handles
output, user input, and interaction with the agent�’s control component. Such a class could be
derived from the toolkit widget class suitable to handle agent�’s visualization. For instance, for
an agent representing some value label or text field widgets could be used. As it can be seen,
this approach is very similar to applying MVC at the widget level. Therefore, if we have a
large number of simple agents, we�’ll face similar problems. Namely, we have to extend
standard toolkit widgets to provide PAC-specific functionality and we get unnecessarily
complex design with too many low-level details. These issues are also discussed in the PAC
liabilities section in [POSA I], and a good example is provided �– a graphical editor where
each graphical object is implemented as an agent.

A potential solution would be to choose the appropriate granularity level of agents to control
their number. With this, the concepts from the business domain implemented by simple
agents are handled within more complex agents. Note that this approach is similar to the
container-level MVC and HMVC, where container-level views handle all their child widgets,

instead of having an MVC triad for each particular widget. The difference is that in MVC and
HMVC we deal with the hierarchy of visual components, while in PAC it is the hierarchy of
agents. Regarding the graphical editor example [POSA I], we would have an agent for the
graphical editor only, but not for each graphical object. The editor agent then handles all the
graphical objects internally.

In such complex agents, the presentation part gets also more complex. As mentioned above, it
may include menus, window, dialogs, etc., which could be implemented as a set of
(interacting) classes. For the interaction with the outside world through the agent�’s control
component, the Façade pattern could be used [POSA I]. In this case, the Façade object hides
the internals of the presentation part from the control component and is the only PAC-aware
object of the agent�’s presentation. An essential consequence of this design solution is that it
allows the developers to implement the visual components within the agent�’s presentation
part in the toolkit-specific way, using standard toolkit widgets, which might need to be
customized to meet some domain-specific requirements. But we do not have to implement
any PAC-related functionality in the visual components (recall the containers-level MVC and
HMVC!).

To illustrate these ideas, consider the graphical editor example with an agent representing the
editor�’s drawing pane. Suppose that the agent�’s presentation part includes the drawing pane
itself, various dialogs and popup menus, and a tool palette. Each of these visual components
could be implemented in a separate class (probably with a number of additional helper
classes). We would also have a Façade class. Another alternative would be to have only the
drawing pane in the presentation, while the tool palette, dialogs, and popup menus are
implemented as child agents of the drawing pane agent. Note that none of the visual
components implements any really PAC-specific functionality.

The next problem may arise in the top-level agent. As stated above, its presentation part is
responsible for the menu bar. Again, if menus comprising the menu bar have many items, this
would result in a very large presentation component. A potential solution is to implement
menus as separate agents, which is equivalent to the Extract Class refactoring technique.
However, these new agents would imply additional interaction issues, which are discussed
below (Section 5.3).

So far, we have considered how and where GUI parts are created in PAC. Now we need to
assemble them. PAC does not address this issue explicitly (as given in [POSA I] or
[Coutaz87]). In general, agents should be extended to provide functionality for GUI
assembly. For instance, a parent agent may require its children for visual components from
their presentation parts to construct its part of GUI. The major problem here is that the PAC
agent hierarchy does not fully match the hierarchy of visual components. Consider again the
drawing editor example. Suppose the tool palette is implemented as a child agent of the
drawing pane agent, but is presented visually as a tool bar, which is a child visual component
of the main window and should therefore be initialized by the top-level agent. For this
purpose, the top-level agent must require the drawing pane agent for the tool palette. The
drawing pane agent, in its turn, forwards the request to the tool palette agent, its child. All
this just increases coupling among agents and their complexity.

4 Handling User Input

The user interacts with the system through the GUI using various input devices. Events from
these devices are delivered by the operating to the application. In the application, user input
events are usually handled in the callback methods. The details of how this is done are
toolkit-specific.

After a callback method has intercepted a user event, it must be processed in an application-
specific way. A typical way, which is often used in practice (Smart UI approach!), is to
implement application-specific event processing logic in the callback methods. This works
rather well in simple cases. However, application-specific event processing may be rather
complex and involve components from business and/or presentation logic. So, we believe that
a better design would be to just intercept the user events in the callback methods (we call this
primary event handling) and forward them to other application components for application-
specific processing.

In large GUIs, comprised of dozens of widgets and providing rich interaction features to the
user, primary event handling code implemented in the callback methods may become rather
large. A proper organization of this code is therefore an important task.

Let�’s look at how the patterns address this issue.

4.1 Handling User Input in MVC and HMVC

In MVC, user input is handled by the controller component, which translates user input into
the method calls on the model or view components. As with the GUI creation and assembly
problem, concrete implementation depends on at what level MVC is applied.

Consider first the widget level MVC approach. The controller component handles events on
the corresponding widget (the view). We first create the widget. We then create its controller
and associate the controller with the widget. From the implementation viewpoint, we have to
provide event handling callback methods in the controller class and register these event
handlers with the widget. This is rather straightforward to implement in many toolkits and
platforms (like Java Swing and SWT, or .NET Windows Forms in C#, or Qt), if you write the
code yourself. If you work with an IDE or a visual programming tool, you can get the event
handling code (empty callback methods) generated automatically for you by the IDE.
However, modifying this code to get pure MVC design would be a bad idea.

As for the GUI creation and assembly, we get similar problems with event handling. The
main issue is that having a separate class for each controller results in a large number of small
classes each providing probably only one or a couple of callback methods. This unnecessarily
complicates the design. The main source of such controller classes would be menu items, tool
bar buttons, and widgets of complex dialogs.

Therefore, we find it more reasonable to shift to the layer of visual containers, as it is done
for the GUI creation and assembly problem (container-level MVC). There, certain visual

containers within the GUI are implemented as container-level views. For each such view, we
have to define the controller component. Such a controller handles all the events that occur on
the visual container itself, as well as on all the child widgets of the container. Thus, we avoid
having a separate controller class for each particular widget.

This idea is also used in HMVC [CKP00]. The difference is that in HMVC user input
handling is assigned to the view component (presumably stemming from the PAC pattern),
while the controller component of an MVC-triad is responsible for communication with other
MVC-triads. Thus, we get two slightly different approaches. Pure MVC separates
presentation from user input handling, resulting in two different logical components (the view
and the controller), while HMVC handles both issues in one component (the view).

As an illustration, let�’s consider how a container-level controller could be implemented in
Java Swing. A common way to handle a user input event on a widget is to provide a class that
implements the corresponding Listener interface, where event handling callback methods
are declared. Such a listener class is then registered as an event handler with the widget by
calling the corresponding addXXXListener(XXXListener l) method on that widget.

Suppose we are implementing event handling for a dialog with, say, a text field and a couple
of buttons among other widgets.

Consider first pure MVC approach. Here, we have a separate controller. The first
implementation alternative is when the controller class implements the required Listener
interfaces. In our example these would be ActionListener and KeyListener (if we
want to handle each particular keyboard input event on the text field), as shown in Listing 4.

Listing 4: Controller class implementing Listener interfaces

public class MyDialogController implements ActionListener,
 KeyListener {
 ...
 // ActionListener interface
 public void actionPerformed(ActionEvent ae){
 // event processing code
 // Note! We must identify here on which widget the event has occurred!
 }

 // KeyListener interface
 public void keyPressed(KeyEvent ke){
 // event processing code
 }

 public void keyReleased(KeyEvent ke){
 // event processing code
 }

 public void keyTyped(KeyEvent ke){
 // event processing code
 }
 ...
}

The next step is to register the controller as listener on all the widgets of the dialog class.
Here, we have two options, depending on who performs the registering. An easier way is to
pass an object of the controller class to the dialog (the view), which registers the controller as
event listener on all its widgets (Listing 5).

The second option is to perform the registration in the controller class, which implies the
controller to have access to the dialog�’s widgets. As the widgets are class members in the
dialog class, at least package access must be provided. If we want to keep them private, we
should add the corresponding getter methods to the dialog class. So, the first alternative looks
more elegant.

Note that the controller is registered as listener on several widgets, which may produce the
same types of events (e.g., both buttons and text field in the example above fire
ActionEvents). Hence, the controller must be able to find out in its callback methods on
which widget a particular event has occurred. This could be done with the getSource()
method called on the event passed as a parameter to the callback method. The
getSource() method returns an instance of the Object class, which is then compared to
each widget of interest to find out the event source. With this, we get conditional if-else-�…-
else blocks within callback methods, which may get rather large for complex views (imagine,
for instance, such an if-then-else construct for a menu bar with all its content!). But it also
means that the controller class must have access to the widgets of the dialog class!

The second alternative is to implement the MVC controller with Java anonymous inner
classes. Using this feature of Java language, the controller does not need to implement
Listener interfaces anymore, but needs to have access to the view�’s widgets. Listing 6
illustrates this approach (we assume that myButton and myTextField class members are
defined with package access in the MyDialog class, see also Listing 5). Thus, we do not
have anymore to work with cumbersome if-else-�…-else constructs. All the event handling
code for a particular widget is now localized within few (usually one) inner classes. If we

Listing 5: Registering controller on widgets

public class MyDialog extends JDialog {
 ...
 JButton myButton;
 JButton myAnotherButton;
 JTextField myTextField;
 // Other widgets
 ...
 public void registerController(MyDialogController controller){
 ...
 this.myButton.addActionListener(controller);
 this.myAnotherButton.addActionListener(controller);
 this.myTextField.addActionListener(controller);
 this.myTextField.addKeyListener(controller);
 ... // and so on
 }
 ...
}

need to change something in that code, we don�’t have to run through all the if-else-�…-else
blocks looking for the code to be changed.

We can also use �‘normal�’ inner classes as event handlers for particular widgets inside the
controller class. They would have to implement then the corresponding Listener
interfaces.

Consider now the HMVC approach. In this case, we implement event handling in the view
class. First, we avoid the visibility problem inherent to MVC where the controller is

Listing 6: Implementing controller with anonymous inner classes

public class MyDialogController {
 MyDialog dialog;
 ...
 public void registerControllers(){
 this.dialog.myButton.addActionListener(
 new ActionListener(){
 public void actionPerformed(ActionEvent ae){
 // event processing code
 }
 }
);

 this.dialog.myAnotherButton.addActionListener(
 new ActionListener(){
 public void actionPerformed(ActionEvent ae){
 // event processing code
 }
 }
);

 this.dialog.myTextField.addActionListener(
 new ActionListener(){
 public void actionPerformed(ActionEvent ae){
 // event processing code
 }
 }
);

 this.dialog.myTextField.addKeyListener(
 new KeyListener(){
 public void keyPressed(KeyEvent ke){
 // event processing code
 }

 public void keyReleased(KeyEvent ke){
 // event processing code
 }

 public void keyTyped(KeyEvent ke){
 // event processing code
 }
 }
);
 ... // and so on
 }
 ...
}

implemented as a separate class. The two alternative solutions described above can be applied
here as well. In the first, the view class must implement all the required Listener
interfaces. This solution is used in [CKP00]. The view registers itself as a listener with each
of its child widgets, which results again in if-else-�…-else blocks within the callback methods
to find out the source of an event.

The second alternative is to have anonymous inner classes within the view class that
implement callback methods (see also Listing 6). We find this solution more elegant, as we
do not have to do with the if-else-�…else blocks.

In general, the view in HMVC is more complex than in MVC, since it is responsible for GUI
creation and assembly, as well as for user input handling.

4.2 Handling User Input in PAC

In PAC, user input handling, along with the GUI concerns, is assigned to the agent�’s
presentation component. As for the GUI creation and assembly problem, the details of how
event handling could be implemented are left open. In general, it would depend on how the
GUI is implemented, which has been discussed in Section 3.3. So, the implementation is
completely up to the developers, and we just give some general ideas.

If agent�’s visualization is simple, we implement the agent�’s presentation component as a
single class. Event handling is provided in this class through callback methods. In more
complex cases, the presentation may include several visual components, like windows,
dialogs, menus, etc., which are responsible for various visual aspects of an agent. Each
complex visual component is implemented in a separate class, probably with some additional
helper classes (see also Section 3.3). So, we need to provide event handling for these
components. As PAC does not specify how this should be done, we can, for example, apply
the solutions for MVC and HMVC discussed in the previous section. Namely, we can either
put event handling logic (callback methods) into the visual component class itself (HMVC
approach), or implement it in a separate class (MVC approach). Using Java Swing, this could
be done either by implementing the corresponding Listener interfaces or by using
anonymous inner class, as shown above. The callback methods process the events and send
them to the agent�’s control component, or to the Façade object that could be used to hide the
inner structure of the agent�’s presentation from the agent�’s control component.

4.3 Application-specific Processing of User Input

So far, we have discussed the design and implementation of the primary user input handling
logic, which only intercepts user events in callback methods. Application-specific event
processing logic is provided in other parts of the application (separation of concerns). Thus,
we have to couple our callback methods with that logic. In MVC, the controller transforms
user events into the calls on the model. In HMVC, the view forwards user input to the
controller, which decides then what to do with it. The same is done in PAC. Details are
discussed in the following sections.

5 Dialog Control

The problems discussed so far pertain to the presentation logic and its main responsibilities �–
user input and output. The application�’s presentation, or GUI, part has to be coupled with the
business logic, where the user input is processed and the output is provided that is then
displayed to the user. A number of issues may arise in this regard.

Consider a UML graphical editor. It would most likely have a tree-like navigation area
representing UML diagrams and their elements, and a drawing pane to create UML diagrams.
A typical usage scenario within such an editor would be to change some properties of a UML
element. This can be done in the following manner: The user selects the required UML
element in the navigation tree, gets a popup menu by clicking the right mouse button, and
then selects the Properties menu item in the popup menu. Upon this action, the Properties
dialog is displayed, where the user can edit various data related to the selected element. When
the user clicks the OK button, the input is forwarded to the business logic and processed
there. After the input has been processed, the GUI is updated to reflect the changes made on
the selected element. In particular, these changes are visible both in the navigation tree and in
the drawing pane.

Note how many things are done before user input is sent to the business logic: We need to
display first the popup menu and then the Properties dialog, which must be populated with
the data (state) of the selected UML element. After the input has been processed, we must
communicate state changes to several parts within the GUI.

How could such an interaction be designed and implemented? And where should the
corresponding logic reside, i.e., how do we assign responsibilities among our components?
For instance, an interesting question in the above scenario is who (which object) creates and
displays the popup menu and the Properties dialog?

The logic responsible for user-system interaction is often put into the event handling callback
methods (the Smart UI approach). This works rather well in small applications with simple
interaction scenarios (such as the calculator example from Section 2.3).

However, for complex GUIs we�’ll face certain difficulties. Consider again the UML editor
example and implementation of the popup menu. We may create and display the Properties
dialog in the callback method for the Properties menu item. The problem is that we must
populate this dialog with the data of the selected UML element. As this data is obtained from
the business logic, we have to access the business logic from the callback method. Another
solution would be to provide the Properties dialog with a kind of identifier of the selected
element and let the dialog obtain itself the required data from the business logic. The dialog
also needs access to the business logic to send the user input when the OK button is pressed.
After the input has been processed, the state changes to the navigation tree and the drawing
pane. This could be done either by the dialog or by the business logic. In both cases, we get
additional dependencies among different parts of the application, which need to be initialized
and maintained (the visibility problem [Marinilli06]).

Another problem is to provide data type transformation, since in general, the data types used
in the GUI toolkit widgets and the business logic are different.
To address these issues, the dialog control logic is provided, which controls and manages
complex user-system interactions and performs data type transformations. The dialog control
decouples, and glues together, the presentation and the business logic. In this section, we
discuss how the patterns address the dialog control problem.

5.1 Dialog Control in MVC

In the MVC literature (e.g., in [POSA I]), simple (basic input-process-output) interaction
scenarios are mainly considered, where user input is first handled by the controller, which
transforms it into the method call(s) on the model. The model changes the system state and
notifies all the dependent views and controllers upon that change (using the Observer
pattern). The views retrieve the data from the model and display it to the user. Alternatively,
the controller forwards user input directly to the view, if it is about changing the GUI visual
state only and doesn�’t relate to the business logic (e.g., zooming).

The dialog control functionality is therefore distributed between the controller, model, and
view components (in addition to their main responsibilities as defined in MVC):

The controller transforms low-level toolkit-specific user input events into
application-specific method calls.
The model implements notification of the dependent view(s) and controllers, while
its basic concern is business logic.
The view retrieves data from the model and performs data type transformation, while
its main responsibility is displaying data to the user.

This implies that separation of concerns is not completely achieved. As a result, the view is
tightly coupled to the model and its data types [POSA I]. So, any change in the model implies
changes in the dependent view(s).

Despite these shortcomings, such an interaction mechanism works rather well in simple
cases, where interaction is confined within a model and its dependent view(s) and
controller(s). However, MVC does not address more complex interactions, where several
GUI and business logic elements are involved. As a result, the developers have to find their
own solutions.

Let�’s take the above scenario with the Properties dialog in the UML graphical editor, which is
rather complex. How could we implement it with MVC? First, consider what GUI parts we
have in this scenario, which we would model as MVC-triads. Most likely, these are the tree-
like navigation area MVC, the drawing pane MVC, the Properties dialog MVC, and the
popup menu MVC (in the latter case, the corresponding model component could be the
business object implementing the UML model element, which is represented by the selected
element in the navigation area).

The scenario could be implemented as follows:

1. The controller of the navigation area MVC handles mouse events. Upon clicking the
right mouse button, the controller should first identify the element in the navigation

area to which the right click relates, and then create and show the popup menu for this
type of elements (there are usually several types of elements, each having specific
popup menu or at least some specific menu items within the popup menu). The popup
menu (the view) must be associated with the corresponding business object (the
model). The controller for the popup menu is created and associated with the popup
menu here as well (alternatively, the popup menu could create its controller itself).

2. When the user selects the Properties menu item, the event is handled in the controller
of the popup menu. The controller�’s event handling callback method must create and
display the Properties dialog (the view) and associate it with the corresponding
controller and model, which is the same business object as for the popup menu.

3. As the Properties dialog is displayed, the user performs the required changes and
presses the OK button. This event is handled in the controller of the Properties dialog
MVC, which gathers user input and sends it to its associated business object (the
model) by calling the corresponding method on it.

4. Upon this, the business object validates the user input and changes the object�’s state.
The next step is to communicate this change to the views. These are the dialog itself,
the drawing pane, and the navigation area. Moreover, if the model state has been
saved prior to this state change, the File menu and the tool bar should be notified as
well to enable the Save menu item and the Save button, respectively.

In order to implement the state change notification in Step 4, we need to register all the GUI
components (views) being notified with the model component of the Properties dialog MVC.
And this should be done in the controller (namely, in the corresponding callback method) of
the popup menu MVC, which creates and initializes the MVC-triad representing the
Properties dialog (Step 1). This implies that the popup menu controller should keep all these
logical relationships, which is actually not its concern, and be also initialized with the
references to these GUI components (the visibility problem!).

Another problem is that registering the drawing pane view on the model of the Properties
dialog MVC would violate the MVC design, since we get the drawing pane view associated
with two models �– one is the drawing pane�’s own model and the other is the model of the
Properties dialog. This raises a more general question of what the models in MVC actually
are. In particular, how many model objects should we have in our application? Should we
have a separate model component for each business object or just one model that hides all the
business logic? This is an important design issue, which is discussed in section 6.1.

In general, the problems arise in scenarios where interaction involves several MVC-triads. In
complex GUIs this leads to tight coupling among objects and to cumbersome and involved
code, which is hard to write and understand, because it is very difficult to follow all the
relationships among objects and provide reference initialization.

5.2 Dialog Control in HMVC

HMVC tries to address the dialog control issues inherent to MVC by providing a means for
communication among different GUI parts. MVC-triads in HMVC are organized
hierarchically according to the hierarchy of visual components, with the main window as the
root (see also Section 3.2). The triads are connected through the controller components. The
resulting controller hierarchy is responsible for the communication among different MVC-

triads, thus providing a solution to the dialog control problem. Presumably, this mechanism
has been adapted from the PAC pattern and is discussed below.

5.3 Dialog Control in PAC

PAC explicitly addresses the dialog control problem. The application is modeled as a
hierarchy of interacting agents. Within each agent, the control component is responsible for
the agent�’s interaction with other agents. The control also mediates the agent�’s presentation
and abstraction components. In particular, it performs data type transformation. Hence, each
control component has two basic roles �– it provides internal interaction between agent�’s parts
and external interaction with other agents [POSA I].

Interaction between agent�’s components is rather simple. The presentation part forwards user
input to the control and receives the data to be displayed (already in presentation-specific
format) from it. The control obtains this data from the abstraction part, where it is kept in the
application-specific (business logic) format.

For complex presentation parts, we have to provide interaction among visual components that
comprise the agent�’s presentation. Recall the graphical editor example from Section 3.3. The
presentation part of the drawing pane agent includes the drawing pane, the tool palette,
maybe several dialogs and popup menus, which interact with each other. For instance, upon
selecting a menu item in the popup menu, certain dialog has to be displayed, while when the
user submits this dialog, the drawing pane might need to be updated. A straightforward way
would be to implement the interaction functionality within the visual components themselves.
However, this may result in a tight coupling among them, if the interaction is intensive. The
Mediator pattern could be applied to decouple the visual components from each other. As an
option, the mediation role could be assigned to the Façade object, which is used to hide the
visual components from other components of the agent (as discussed earlier in Section 3.3).
A potential problem here is that the Façade object may get rather complex. Basically, it is
again the agents�’ granularity issue, where the developers have to find balance between the
agent number and agent complexity.

Interaction among agents is more complex. In general, it is about exchanging command, data,
and state change events. For example, upon selecting a menu item, the top-level agent, which
is responsible for menus, must send the command message to the corresponding lower-level
agent(s). Regarding data exchange, the entire application model in PAC is implemented in
the abstraction component of the top-level agent [POSA I]. Abstraction components of other
(basically, bottom-level) agents keep agent-specific data, which is part of the application
model. Therefore, this data is obtained from the top-level agent. So, in general, the agent�’s
local data must be kept synchronized with the application data in the top-level agent. As a
consequence, when the user provides some input to a bottom-level agent, this input is first
sent up to the top-level agent, which processes the input and changes the system state in its
abstraction component. The state change is notified back to the bottom-level agent (and all
other agents depending on this data). And only then retrieves the bottom-level agent the data
from the top-level agent and updates its own abstraction and (most likely) presentation
components.

[POSA I] specifies two basic mechanisms for inter-agent interaction. We give here brief
descriptions thereof:

Composite Message Pattern. Agents provide two methods to send and receive
messages, containing the information about what is sent, like message type and
content. For incoming messages, the developer must implement the logic that
analyses the content of a message and decides what to do with it �– process locally by
sending it to the agent�’s presentation or abstraction components, or forward the
message to another agent. From the implementation point of view, this may result in
large and complex if-then-else blocks within the message processing methods.
Another issue is identifying appropriate event types and introducing new ones.
Agent-specific Interfaces. Each agent implements its specific interface used by other
agents to interact with it. With this, we can avoid having complex if-then-else
constructs inherent to the Composite Message pattern, but the agents become tightly
coupled to, and dependent on, each other.

The drawbacks of both approaches are tolerable per se. However, they may become a real
nightmare when applied in PAC. The reason is that PAC agents do not interact with each
other directly, but through the agent hierarchy organized around the control components. For
instance, the bottom-level agent in the data exchange scenario does not interact with the top-
level agent, but rather with its parent agent, which, in its turn, forwards the request to its
parent, and so on, until the request arrives the top-level agent. This means, however, that all
the intermediate agents participate in this interaction and each of them must provide the
corresponding logic, which is basically the request forwarding logic. For a Composite
Message approach, we�’ll get large if-then-else decision-making block within the message
receive method. When using the agent-specific interfaces approach, each intermediate agent
must expose interfaces of all the agents below it (the child agents) to the agents above it (in
particular, to the top-level agent), and vice versa.

We find both approaches completely unsuitable for large and complex GUIs. Again, the
reason lies, to a greater extent, in the hierarchy-based agent interaction. It is a huge effort to
implement such an interaction mechanism, which is also difficult to adapt and extend. For
instance, if you have to extend the interaction logic between two agents, all the intermediate
agents must be adapted to provide it, either through changing the message forwarding code in
the if-then-else constructs, or through extending the agents�’ interfaces.

It is also not a very nice solution from the software design in general, and separation of
concerns in particular, viewpoint. Indeed, why should we make the intermediate-level agents
lying between two interacting agents in the agent hierarchy be aware of, and participate in,
the interaction between these two agents? Why can�’t these agents interact directly with each
other? One possible answer is that direct interaction among agents would break the tree-like
agent hierarchy.

Given these problems, other approaches have been proposed. [POSA I] specifies also an
agent interaction mechanism based on the Publisher-Subscriber [POSA I] or Observer [GoF]
patterns. All the agents (subscribers, or observers) that depend on data or events of a specific
agent (publisher, or subject) register themselves on that agent, which notifies them when
changes occur. Upon a notification, the dependent agents update their states by retrieving the
data from the publisher agent. Therefore, agents interact directly with each other. The
Composite Message pattern or agent-specific interfaces approach could be applied here. The

only problem is the registration, as the interacting agents may reside in different parts of the
hierarchy and we have to make them aware of each other.

[Wellhausen] provides a solution that solves this problem. It uses the Event Channel variant
of the Publisher-Subscriber pattern, which decouples publishers and subscribers. Event
channels are given as a system service. Publishers provide events of certain type for a specific
channel. Subscribers register themselves with this event channel for events they want to
receive. So, the subscribers must know only the event type.

[HO07] proposes a Hierarchical Service Locator mechanism. First, each agent (using PAC
terms) implements the Service Locator interface and registers its interface for interaction with
other agents. When an agent needs to communicate with another agent, it performs lookup. If
the required agent interface is not found locally, the lookup request is forwarded to the parent
agent (which also implements the Service Locator interface), and so on, until the required
interface is found somewhere in the hierarchy. After that, the agents interact directly with
each other through interfaces, which results in tight coupling among agents. Another issue is
that the agents have to implement the Service Locator functionality.

Simple Service Locator mechanism could be used as well. In this case, it should be provided
as global system service to all agents.

6 Business Logic

As the dialog control logic glues together the application�’s presentation and the business
logic, it is important to know how the latter is designed, and how it can be accessed. . For
example, Domain Model or Transaction Script patterns [Fowler02] could be applied when
implementing the business logic. In this section we discuss how it is treated by the patterns
for GUI applications.

6.1 Business Logic in MVC

Business logic is handled in MVC by the model component(s). In section 5.1 on the dialog
control issues in MVC, we have outlined the problem of what the model actually is. Here, we
discuss this issue in details.

In small applications with simple business logic, we may have just one model component.
View(s) and controller(s) work with this single model.

In large applications, the underlying business logic is usually rather complex, and involves
various business objects and relationships among them. With the Domain Model pattern
[Fowler02], a business object is implemented as a separate class or a set of related classes.
The following questions arise in this regard:

What are the MVC model components in applications with complex business logic?
How do the business objects relate (or could be mapped to) the model components?

A straightforward way of applying MVC is to consider each business object that is displayed
to the user as an MVC model and associate it with the corresponding view(s) and
controller(s). The main problem with this approach is that we have to design business logic in
the MVC way. In particular, we have to put the change notification mechanism (using the
Observer pattern) into the business objects, thus mixing the concerns. In some case, business
logic may already exist, so it could be highly expensive or even not feasible to add the MVC-
specific functionality. We might also have views that display a number of business objects
(e.g., trees or lists) implying that these views depend on several models (see also section 5.1).
Technically, we must extend the change notification mechanism for such views, so that they
are able to find out which of the associated models has fired a change notification event.

In order to avoid having MVC specifics being implemented in the business logic, we can add
a layer of indirection. For instance, we can have a separate model component for each
business object. In this case, the model holds the data to be displayed, while the business
object implements the corresponding business logic. The model forwards user input to the
business object. It also performs data type transformations between the presentation and
business logic and implements change notification mechanism. Thus, we decouple the
business logic from the presentation and (part of) dialog control issues.

Business logic is often hidden behind Façade objects, where each Façade is responsible for
one or several (usually related) use cases. In such a case, we can consider Façades as MVC
models. In particular, they have to implement the change notification functionality. As
Façades are more coarse-grained that particular business objects, each one will have more

views (and controllers) associated with it. So, we might need to introduce event types and let
the views subscribe only for events they are interested in. Otherwise, a Façade would notify
all its associated views upon each single state change.

6.2 Business Logic in HMVC

HMVC does not assume business logic be implemented in the model components (in contrast
to pure MVC). In general, the developers are free in how they implement the models. For
instance, the model within an MVC triad can keep the data to be displayed and retrieve data
from an application server or a database. Hence, the models decouple the presentation from
the business logic (acting as Façades). As an important consequence, the developers are not
forced to incorporate HMVC specifics into the pure business logic, which could be
implemented the way the developers like.

6.3 Business Logic in PAC

In PAC, the application�’s business logic is implemented in the abstraction component of the
top-level agent, which provides an interface to retrieve and change business data. Hence, we
can see it as a Façade to the business logic. On the other hand, bottom-level agents usually
represent �‘self-contained semantic concepts�’ [POSA I], that is, business objects from the
business logic. The state of the business object is then kept in the agent�’s abstraction
component and is a duplication of the business object�’s state from the business logic
implemented in the top-level agent. Therefore, the abstraction component of the bottom-level
agent just holds the data, but does not provide any business operations on the corresponding
business object. It must therefore be kept synchronized with the abstraction of top-level agent
(see also section 5.3 on the dialog control problem in PAC).

The design of the business logic itself is left to the developers.

7 Summary

The complexity of GUI development is sometimes underestimated in software community, as
compared to the server-side programming. In this paper, we have tried to specify common
problems when developing GUIs, and how these problems are, or could be, addressed by
existing patterns for GUI development. We have also tried to identify the problems when
applying these patterns for large and complex GUI applications and to illustrate all this with
various examples. A detailed discussion of really complex (and therefore interesting)
examples deserves, however, a particular paper.

We do not want to give here any conclusions regarding each particular pattern we have
discussed or compare the patterns with each other, but rather end this paper with some
general observations.

First, separation of concerns is the main principle underlying each pattern. Second, each
pattern works rather well in simple cases. On the other hand, pattern descriptions give only
basic considerations, without going much into details. The more complex the GUI application
is, the more questions will arise, which are not answered by the patterns, and the more design
alternatives the developers will have. Identifying visual component classes in the container-
level MVC approach and designing complex presentation parts in PAC are examples of the
problems the developers have to solve themselves. Another example is designing the dialog
control to provide interaction among different application parts.

For us, the main result of our work on applying and analyzing patterns for GUI development
is that there is always place for creative work �– to go beyond the pattern descriptions and
investigate new design alternatives. And this is in patterns�’ nature �– they do not (and
probably must not) provide ready solutions, but rather give an advice on what to start with.

8 References

[Arch92] A Metamodel for the Runtime Architecture of an Interactive System.

The UIMS Developers Workshop, SIGCHI Bulletin 24 (1), 1992.

[Burbeck92] S. Burbeck. Application Programming in Smalltalk-80: How to use

Model-View-Controller (MVC), 1992.

[CKP00] J. Cai, R. Kapila, G. Pal. HMVC: The Layered Pattern for

Developing Strong Client Tiers. www.javaworld.com, 2000.

[Coutaz87] J. Coutaz. PAC: An Object Oriented Model for Implementing User

Interfaces. SIGCHI Bulletin, 19 (2), pp. 37-41, 1987.

[Evans03] E. Evans. Domain-Driven Design: Tackling Complexity in the Heart

of Software. Addison Wesley, 2003.

[Fowler99] M. Fowler et al. Refactoring: Improving the Design of Existing

Code. Addison Wesley, 1999.

[Fowler02] M. Fowler et al. Patterns of Enterprise Application Architecture.

Addison Wesley, 2002.

[GoF] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns.

Elements of Reusable Object Oriented Software. Addison Wesley,
1994.

[HO07] M. Haft, B. Olleck. Komponentenbasierte Client-Architektur.

Informatik Spektrum, 30 (3), 2007 (In German).

[Holub99] A. Holub. Building User Interfaces for Object Oriented Systems.

www.javaworld.com, 1999.

[KP88] G. Krasner, S. Pope. A Description of the Model-View-Controller

User Interface Paradigm in the Smalltalt-80 System. Journal of
Object Oriented Programming, 1 (3), pp. 26-49, 1988.

[Marinilli06] M. Marinilli. Professional Java User Interfaces. John Wiley & Sons,

2006.

[POSA I] F. Buschmann et al. Pattern-Oriented Software Architecture.

A System of Patterns. John Wiley and Sons, 1996.

[Wellhausen2005] T. Wellhausen. Ein Client-Framework für Swing. JavaSPEKTRUM,

2005 (In German).

Patterns for Licensing Web Services∗

G.R. Gangadharan, University of Trento, Trento, Italy
Michael Weiss, Carleton University, Ottawa, Canada

Vincenzo D’Andrea, University of Trento, Trento, Italy

Abstract

The trend towards providing software as a service has required us to rethink the way
software is licensed. There are different types of proprietary and open source licenses
for software. However, the nature of web services differs significantly from traditional
software and software components, which prevents the direct adoption of their respective
licenses. As web services can be accessed and consumed in a variety of ways, there is a also
spectrum of licenses for web services. We have mined existing licenses for web services
for commonalities, and present the different licensing options in the form of patterns.

1 Introduction
Increasingly, software is provided as a service. Specific examples include the Google web
services, the Amazon cloud computing service, or the StrikeIron data services. Though web
services are software, they differ from traditional software in many ways:

• Services are executed in a hosted infrastructure. Consumers do not install applications,
and a new class of issues is created by the accessing the service over a network.

• Services are designed to facilitate reuse. Services abstract from language and platform-
specific aspects of the underlying software (loose coupling).

• Services encourage composition. Service composition allows consumers to build coarse
grained services by combining finer grained services to any level of hierarchy.

• Services are data-driven applications (“data is the next Intel Inside” [1]). We need to
distinguish between the use of a service as software, and the use of the data it provides.

These differences prevent the direct adoption of licenses for traditional software and soft-
ware components [2]. By a license, we refer the terms and conditions that accompany a piece
of software or a service. The party defining those terms is known as the licensor. Licensing
principles reflect the overall business value of software to its producers and consumers. Licens-
ing is often also used to provide protection to software producers for their intellectual property
rights, and thereby becomes a source of revenue and a tool for business strategy. Licenses for
web services reflect the differences between traditional software and web services: they govern

∗This work is distributed under a Creative Commons Attribution-Share Alike (CC-SA) License. It can be
incorporated into other work as long as attribution is given, and the work is distributed under the same terms.

H-2 – 1

the execution, reuse and composition of the services. Although of great practical relevance,
licensing of the data provided by services is out of scope for this paper.

In this paper, we classify web service licenses as proprietary or open [3]. Proprietary soft-
ware licenses allow the execution of the software (including components) in the licensee’s
computing environment. Open source licenses allow consumers to view, modify, and share the
source code and redistribute the software either for commercial and/or non-commercial pur-
poses. However, for web services, we also need to consider their execution/usage. Execution
of a web service refers to access/use (invocation) of the web service by another service.

A web service has an interface part, which defines the externally visible functionality (and
typically some non-functional properties), and an implementation part, which realizes the in-
terface. The opaque nature of services often hides the details of operations from service con-
sumers. A consumer can be restricted from either seeing anything beyond the interface, or
understanding how a service is composed from other services. Which parts of a service are
made accessible to the consumer in addition to the (always accessible) interface, and which
additional rights the consumer is given, is determined by the terms of the license.

Below, we describe patterns for licensing proprietary services and open service. The re-
lationship between these patterns is shown in the pattern roadmap in Figure 1. The diagram
uses circles to represent the common context shared by a group of patterns, and rounded rect-
angles to represent patterns. This gives us a way to refer to a group of patterns which solve
related problems, for example, all the patterns relating to limiting execution. The audience for
these patterns includes managers of companies who offer software as a service, and developers
who need to understand the business impact of those licenses. Our focus is, therefore, on the
strategic aspects of licensing web services, not on the underlying technology.

Proprietary
Service?

Open Service?

Separate Terms

Limit Execution

Limit Requests

Limit Results

On Same Terms

Limit Quality

Figure 1: Roadmap for web service licensing patterns

H-2 – 2

2 Separate Terms

2.1 Example
Banca Indica offers a Daily Exchange Rate web service through which consumers can calcu-
late foreign exchange rates based on the daily rates offered by Banca Indica. It also keeps a
historical data record of exchange rates based on Daily Exchange Rate, which can be accessed
via another web service, Historical Exchange Rate. Banca Indica offers Daily Exchange Rate
as a free service and the Historical Exchange Rate service at 1 euro per use.

2.2 Context
A service provider that offers web services.

2.3 Problem
How can a service provider use the terms and conditions of a service license to attract
consumers of its free service to subscribe to its premium service?

2.4 Forces
Free services provide an incentive to users to upgrade to paid-for services. They allow con-
sumers to evaluate the service, before they make a decision to purchase the service. However,
the free services should not be sufficient for power users, who would be willing to pay for a
more advanced service. It must be beneficial for those users to upgrade. Providing free ser-
vices is also generally not free for the service provider itself (development costs, hosting fees,
sublicenses). Hence, the cost of providing the free service must be carefully balanced against
any potential revenue from premium services, and non-monetary benefits (reputation).

2.5 Solution
License free and premium services under separate terms and conditions. For example,
free web services can be licensed under one set of terms that specify which services (or service
operations of a single service) are offered for free, and under what restrictions they are provided
(see also Limit Execution). Paid-for services can be offered under terms that define their usage
terms (which are more attractive to power users) and pricing terms.

2.6 Example Resolved
Banca Indica offers the Daily Exchange Rate service under the following terms and conditions:

1. The service cannot be composed with other services.1

2. The service can be used without a fee.

Banca Indica also provides an Historical Exchange Rate service under a different set of
terms and conditions, which are more attractive to power users:

1This example should not suggest that, in general, free services cannot be integrated into other applications.
The payment and composition terms of a license are orthogonal to one another.

H-2 – 3

1. The service can be composed.

2. The service requires a payment of 1 euro per use.

2.7 Consequences
Providing different versions of a service under separate terms gives the service provider con-
trol over how the service is used. The restrictions of the free service will not satisfy more
demanding consumers, who will want to upgrade to the premium version. Yet, while they
are evaluating the service, these same restrictions (eg non-commercial use) may be accept-
able. However, when providing a version of the service for free, there is a risk that the service
provider overestimates the potential demand, and its offering is satisfactory to all consumers.

2.8 Known Uses
The general Amazon Web Services (AWS) Licensing Agreement2 states:

The services covered by this Agreement include both free services that AWS and its affili-
ates (referred to together herein as “we” or “us”) make available for no fee, for the purpose
of promoting sales on the Amazon.com website and related websites and for other purposes
(the “Free Services”), and services that we make available for a fee (the “Paid Services”).

The Amazon Simple Queue Service (SQS) is a premium service provided by Amazon that
offers a reliable, scalable and hosted queue for storing messages as they travel between com-
puters. Below, we quote from the pricing options for the Amazon SQS service:

Pay only for what you use. There is no minimum fee.

Requests

USD 0.01 per 10,000 Amazon SQS Requests (USD 0.000001 per Request)

Amazon SQS requests are CreateQueue, ListQueues, DeleteQueue, SendMessage, Re-
ceiveMessage, DeleteMessage, SetQueueAttributes and GetQueueAttributes.

Data Transfer
USD 0.10 per GB - all data transfer in
USD 0.18 per GB - first 10 TB / month data transfer out
USD 0.16 per GB - next 40 TB / month data transfer out
USD 0.13 per GB - data transfer out / month over 50 TB

Data transfer “in” and “out” refers to transfer into and out of Amazon SQS. Data trans-
ferred between Amazon SQS and Amazon EC2 is free of charge (i.e., USD 0.00 per GB).

Hence, the general AWS Licensing Agreement lists the terms and conditions common to
all free and paid services. Pricing terms for premium services are listed separately.

2http://www.amazon.com/AWS-License-home-page-Money/b?ie=UTF8&node=3440661

H-2 – 4

2.9 See Also
Separate Terms is not specific on how the service provider should select the terms for the
different versions of the service. The Limit Requests, Limit Responses, and Limit Quality
patterns discuss ways how the service provider can limit service execution.

License patterns for proprietary software have been described by Kaminski and Perry [5].
They can be used by developers to select an appropriate license type for their software.

Segmenting customers into free and premium is an application of Segmented Customer [4].

H-2 – 5

3 Limit Execution
Rather than a pattern, this section describes a common context for the following three patterns.
The common starting point for these patterns is a service provider that uses Separate Terms to
attract users to its service by offering different licenses for high-end and low-end versions of
the service. Now, the provider needs to devise license restrictions that create an incentive for
users to upgrade the service, once they have had a chance to evaluate the service. The service
may also not be ready for real deployment, but the provider wants to create attention around
the service without creating a wrong impression of the potential capabilities of the service.

The solution involves imposing constraints on the execution of the web service. The pat-
terns in the next three sections suggest different ways how this can be done: Limit Requests,
Limit Results, and Limit Quality. These strategies could also be applied in combination.

H-2 – 6

4 Limit Requests

4.1 Example
A foreign currency exchange service Xenon provides buy and sell rates of large-value transac-
tions in global currency markets. Any registered service consumer can make requests (invoca-
tion to the Xenon service) up to 10 times per day.

4.2 Context
A service provider that uses Separate Terms for free and premium versions of its service.

4.3 Problem
How can a service provider use license terms to control the execution a web service?

4.4 Forces
The number of times a service can be “freely”3 executed should be more than sufficient for
light use or use during development, but it should not allow heavy use of the service.

4.5 Solution
Impose constraints on the number of invocations of the web service. These restrictions may
include the number of times a web service can be executed, predefined purposes for which it
can be used, the type of user (e.g. free to academic institutions), or the level of payment.

4.6 Example Resolved
The Xenon service includes the following terms to restrict the invocation to no more than 10
times per day:

You should not use more than 10 invocations per day to the Xenon service.

4.7 Consequences
A user who wishes to execute the service under regular load conditions will need to subscribe
to a premium version of the service. During development the limited version is sufficient. A
possible drawback of the pattern is that, because it is “free”, the limited version may attract so
much attention that the provider does not have enough capacity to handle the requests.

4.8 Known Uses
StrikeIron offers different payment schedules for its web services: monthly subscription, annual
subscription, or one-time purchase. Its service agreement4 states:

3Instead of considering free vs. paid-for version of service, we can apply the same reasoning to a tiered pricing
scheme.

4http://www.strikeiron.com/info/faqs.aspx

H-2 – 7

A paid subscription is an agreement between consumers and StrikeIron to pay a specified
amount of money over a specified amount of time, in exchange for a specified amount
of accesses (or hits) to the web service. [...] A ‘hit’ is the term used in the StrikeIron
Marketplace to refer to a counter that is decremented every time a subscriber invokes an
operation by accessing and activating the web service.

4.9 See Also
This pattern can be used in combination with other patterns that Limit Execution.

H-2 – 8

5 Limit Results

5.1 Example
GelPub provides access to a set of online articles in the field of Computer Science. Any users
can access the service, but for a given query, the number of results displayed are limited to 10
articles. The remaining search results will be available only to paid subscriptions.

5.2 Context
A service provider that uses Separate Terms for free and premium versions of its service.

5.3 Problem
How can a service provider use license terms to control the execution a web service?

5.4 Forces
The amount of data returned by a service for “free” should be sufficient to evaluate the service.
However, as the value of the service lies in its data, it should be difficult to replicate the data
that the service has. While the dynamic nature of the data could ensure that obtaining the full
data is of limited value, even under these circumstances we would like to be able to charge a
premium for more complete results than are available for free, or at a low charge.

5.5 Solution
Specify constraints that restrict the amount of data returned by the web service.

5.6 Example Resolved
The free version of the GelPub service restricts the number of results per query:

You cannot access information beyond the 10th result for any given query.

5.7 Consequences
The number of results returned by the service are sufficient for light use. However, it is not
possible for the user to obtain the full data. Hence, the value of the data is maintained. One
possible drawback is that limited results may not give potential consumers the impression that
the service is also of limited use. These user will not return, or upgrade to the full version.

5.8 Known Uses
The Google Web Services Licensing Agreement5 is specified as follows:

You can retrieve a maximum of 10 results per query, and you cannot access information
beyond the 1000th result for any given query.

5http://code.google.com/apis/soapsearch/

H-2 – 9

5.9 See Also
This pattern can be used in combination with other patterns that Limit Execution.

H-2 – 10

6 Limit Quality

6.1 Example
MicroSync offers a on-demand financial web services. It delivers real-time stock quotes to paid
subscriptions. MicroSync also provides stock quotes with a 20 min delay to anyone for free.

6.2 Context
A service provider that uses Separate Terms for free and premium versions of its service.

6.3 Problem
How can a service provider use license terms to control the execution a web service?

6.4 Forces
Some consumers may require a service to deliver high quality data. Others may prefer to
trade lower quality data for a lower cost of the service. A provider that offers the same high
quality service to all its consumers at one price, foregoes the opportunity to charge demanding
consumers a premium, and will be perceived as too expensive by less demanding users.

6.5 Solution
Specify constraints that impose different levels of service quality. You can also impose
restrictions that affect the quality of the resulting composed service. For example, you may
want to restrict the right to publish the results of the service, as a means of protecting your data.

6.6 Example Resolved
MicroSync delivers real-time (high quality) stock quotes to consumers for a higher fee. The
license clauses of these service may differ from the license clauses for a MicroSync service
that provides delayed (low quality) data. For example, a MicroSync web service delivering
real-time stock quotes may deny composition of this web service with other services.

6.7 Consequences
To be able to provide high quality data (for example, on-time delivery of critical data that
changes continuously), a provider may have to make considerable investments. Naturally, this
creates an incentive to offer those services at a higher price. These services may attract and
retain consumers for whom quality is a top priority. However, this also creates a risk that the
demand for the service may not be high enough to justify the investments.

6.8 Known Uses
Xignite offers two versions of its stock quote service: XigniteRealTime which provides real-
time stock quotes for U.S. equities, and XigniteQuotes which delivers delayed quotes. The

H-2 – 11

XigniteRealTime service is offered at a higher price (both require subscription). However,
XigniteRealTime also imposes a restriction on how the stock quotes can be used:6

You cannot display real-time information on public web sites.

On the other hand, XigniteQuotes can be displayed on a public web site.7

6.9 See Also
This pattern can be used in conjunction with other patterns that Limit Execution.

6http://preview.xignite.com/xRealTime.asmx
7http://preview.xignite.com/xQuotes.asmx

H-2 – 12

7 On the Same Terms

7.1 Example
Spells is an open web service providing a spell checking operation for words. A new in-
dependently executable web service Spells Mirror is created by modifying the interface and
implementation of Spells. Spells Mirror provides a functionality to split a given sentence and
another functionality to spellcheck a word by reusing the operation of Spells. Spells Mirror is
derived from Spells and is value-added as it provides its own additional functionality. Since
Spells is an open web service, its license clauses determine the amount of control its creators
can exercise over value-added services that are derived or modified from Spells.

7.2 Context
A service provider that offers web services.

7.3 Problem
How do we prevent proprietary lockup of open web services when they are composed?

7.4 Forces
Users should be able to modify a service, or derive new services from the service. However,
in order to avoid license forking, we would like to prevent that the new service is licensed
differently from the parent service. In this way, the value-added by the changes can benefit the
whole community created around the web service. This benefit needs to be balanced against
the need of service providers to generate profit from their service offerings.

7.5 Solution
Include a condition in your license that derivations of the service or modifications must
be licensed under the same terms (a sharealike clause). A web service license with a clause
similar to the “ShareAlike” clause of the Creative Commons license requires value-added web
services to be licensed under the same terms and conditions. These clauses prevent others from
turning value-added web services into closed services, if the parent web service is open.

Opening a web service means making the source code of the service implementation avail-
able in addition to the source of the service interface.8 Inspired by how open source software
is licensed, an open web service allows access to the source code of its interface as well as its
implementation, allowing freely distributable composite and derivative services.

An open web service can expect another web service that uses ths service to reflect the
same terms and conditions. Though open source software licenses do not discriminate among
the uses of a software, the dynamic binding and execution of web services can enforce certain
restrictions on the execution/usage of open services similar to Limited Execution.

7.6 Example Resolved
If Spells is released with a license clause that includes a sharealike clause, then

8A web service interface is, in a trivial sense, always available.

H-2 – 13

• Spells Mirror should be an open web service.

• Spells Mirror should be licensed under the same license as the one that Spells has.

Under this scenario, any value additions to the open web service Spells remains open, thus
benefitting the community and avoiding forking of the license.

7.7 Consequences
Sharealiking (ie specifying a sharealike clause in the service license) prevents license forking,
and benefits the community by returning user contributions to the community. However, an-
other service provider could build a value-added web service based on a different open web
service with more or less similar functionality. In this case, the parent web service may fail to
retain users. Hence, using a sharealike clause carries the risk that it is perceived as too strong,
and it may motivate others to derive from services that are less restrictive.

7.8 Known Uses
The GNU Affero General Public License9 (AGPLv3) is a free, copyleft license for software and
other kinds of works, specifically designed to ensure modifications or derivations of software
are returned to the community in the case of network server software (ie a service).

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under the
terms of this License, in one of these ways:

[· · ·]
d) Convey the object code by offering access from a designated place (gratis or for a
charge), and offer equivalent access to the Corresponding Source in the same way through
the same place at no further charge. You need not require recipients to copy the Corre-
sponding Source along with the object code. If the place to copy the object code is a
network server, the Corresponding Source may be on a different server (operated by you
or a third party) that supports equivalent copying facilities, provided you maintain clear
directions next to the object code saying where to find the Corresponding Source. Regard-
less of what server hosts the Corresponding Source, you remain obligated to ensure that it
is available for as long as needed to satisfy these requirements.

WikiDot10, a farm of Wiki sites, uses the GNU AGPLv3. It requires releasing any changes
to the service implementation. Funambol11, a leading provider of mobile 2.0 messaging soft-
ware built on open source stacks, offers its services under a GNU AGPLv3 license.

7.9 See Also
Open source license patterns for traditional software have been described by Kaminski and
Perry [6]. The rights granted in an open source software license range from basic access to the
source code of the software to the rights to make copies and distribution of the software.

9http://www.fsf.org/licensing/licenses/agpl-3.0.html
10http://www.wikidot.com
11http://www.funambol.com

H-2 – 14

8 Acknowledgements
Our sincere thanks go to our shepherd, Tim Wellhausen, for his probing comments.

References
[1] Musser, J., O’Reilly, T.: Web 2.0 Principles and Practices. O’Reilly Radar. O’Reilly (2007)

[2] D’Andrea, V., Gangadharan, G.R.: Licensing Services: The Rising. In: Proceedings of the
IEEE International Conference on Internet and Web Applications and Services (ICIW’06),
Guadeloupe, French Caribbean. (2006) 142–147

[3] Merges, R., Menell, P., Lemley, M.: Intellectual Property in The Technological Age. Aspen
Publishers, New York (2003)

[4] Kelly, A.: More Patterns for Technology Companies Product Development. In: Proceed-
ings of the European Conference on Pattern Languages of Programs (EuroPLOP). (2007)

[5] Kaminski, H., Perry, M.: Pattern Language for Software Licensing. In: Proceedings of the
Tenth European Conference on Pattern Languages of Programming (EuroPLoP). (2005)

[6] Kaminski, H., Perry, M.: Open Source Software Licensing Patterns. In: Proceedings of
the Sixth Latin American Conference on Pattern Languages of Programming (SugarLoaf-
PLoP). (2007)

H-2 – 15

Using a Profiler Efficiently
Strategies that Help you to Find Performance Problems

and Memory Leaks

Tim Wellhausen

kontakt@tim-wellhausen.de
http://www.tim-wellhausen.de

May 24, 2009

Proceedings of the 13th European Conference on Pattern Languages of
Programs (EuroPLoP 2008), edited by Till Schümmer and Allan Kelly,

ISSN 1613-0073.
Copyright © 2009 for the individual papers by the papers' authors.

Copying permitted for private and academic purposes. Re-publication of
material from this volume requires permission by the copyright owners.

Abstract: Sooner than later most software development projects suffer from
severe runtime problems. When features are given top priority, caring for
non-functional requirements such as performance or stability is most often
postponed during the initial development phase. Once a system is in produc-
tion, however, performance problems and memory leaks quickly catch more
attention. A Profiler is a very useful development tool to find the causes of
these problems. Using a Profiler is not that easy; you need good strategies to
detect the actual causes. This paper gives you advice how to use a Profiler effi-
ciently.

Introduction
Performance problems and memory leaks are encountered in many software development
projects. Unfortunately, they often have subtle causes that are not apparent by introspect-
ing the code. In particular, complex, multi-layered software systems are hard to debug to
find these causes.

Just as a Debugger is the tool at hand to track down problems that affect the correctness
of a software system, a Profiler tool can be very useful to trace performance problems and
memory leaks. Only a Profiler gives you an accurate view on what's happening inside the
system either over a period of time or at a specific point of time.

A Profiler supports the analysis of a software system at runtime: (1) by finding the causes
of real or perceived slowness of a system, i.e. those parts of the system that consume more
time to fulfill a functionality than they should take or (2) by finding the causes of memory
leaks that exhaust the available memory until the application runs very slow or stops run-
ning at all.

This paper presents usage patterns that cover both aspects of using a Profiler. The patterns
are independent of a specific Profiler product. However, there are some products that
support all usage patterns, whereas other products only support some of them. This paper
neither gives you an overview of the available products nor explains their completeness
regarding the patterns.

Note that this paper assumes that you are already familiar with the Profiler tool of your
choice, i.e. that you know how to start a Profiler session and how to take a memory snap-
shot, for example. Also note that this paper only addresses Profiler products with a rich
graphical user interface; Profilers that only record data in text form are out of scope.

Although the patterns are not dependent on specific technologies, they are based on ex-
periences in profiling object-oriented, single- or multi-layered software systems that are
developed on a technological platform that involves garbage collection at runtime (for ex-
ample Java and .NET). It has not been deeply analyzed yet how valid the patterns are if
applied to other programming languages and platforms, in particular to the area of embed-
ded software.

The patterns are presented one by one. Each patterns has a short problem and a short
solution statement, written in bold font. To get an overview of the pattern, you may first
just read these statements for each pattern. Then, you may read the patterns one after an-
other or you may start by reading the first pattern, Think about it first, and then follow
the recommendations as given in the patterns' descriptions.

At the end of the paper, you can find an Examples section that shows how the patterns
can be applied in sequence, illustrated by real world applications. After that, you can find
references to other resources about profiling.

- 2 -

Think About it First
You are responsible to analyze a software system to detect the cause of its severe perform-
ance problems or memory leaks. Maybe you always have a good gut feeling of possible
causes for such problems; but so far, you don't know the causes yet.

How do you start solving the performance or memory problems of a software system?

As a software developer you are accustomed to find solutions for given problems. If you
don't know the exact reason for a problem, you might, for example, be tempted to start
developing a solution that incorporates well-known design patterns to improve the per-
formance of your software system in general, such as an object cache or a resource pool.

But without knowing the actual causes, you cannot be sure that any changes you perform
on the software system actually improve the performance or remove the memory leaks.
Whatever you are doing might simply add complexity to your software system but may
not improve it. Or even worse: may introduce new bugs to previously running code.

Therefore:

Don't guess what the causes of the problems might be because quite often you're go-
ing to be wrong. Instead, use a Profiler to analyze your software system!

What sounds like a mundane advice already is the single most important advice this paper
has to offer. If you don't know the actual reason for a performance problem, don't be in-
duced to prematurely start coding a solution, even if you believe that this solution might
solve the problem. More often than not, the real troublemaker is more subtle than you
might think on first sight.

By using a Profiler you can double-check whether your assumptions are right. If are are
right, go on and develop the solution you had in mind. If you are wrong, however, be re-
lieved that you have spared yourself from unnecessary work and that you have saved the
system from unnecessarily adding complexity.

If you are not the developer who has originally written the software system, chances are
that you do not know the complete functionality of the system. In this case, there are
hopefully test documents that contain step-by-step instructions for each essential use case
or process of the system. Having such instructions at hand, you can more easily profile
the system to understand both its functionality and runtime behavior.

Naturally, there are cases when your gut feeling is right. If you never trust your guesses
but always check first, you might lose time fixing your software system. So there is a
trade-off to make when time is the most limited resource at hand. In this case, it may help
to time box any efforts following your gut feeling. Additionally, learning and applying
tools is much effort that you need to afford in your project.

If the system runs slow, you should begin the profiling session by Finding Performance
Anomalies. If you guess that the system suffers from memory leaks, Check for
Memory that the software system consumes at runtime.

- 3 -

Find Performance Anomalies
Your software system runs slower than you think it should. The normal workflow seems
to be okay but some deviations happen. You don't know yet why.

How do you start tracking down performance problems?

Some performance problems may materialize at places and at times that are not obviously
connected to their real causes. If you delve down into details at once, you may miss the
actual causes and get lost in too much information that does not lead you anywhere. Get-
ting lost in such a way often is frustrating and may make you stop profiling and start
guessing what the reasons might be.

If you don't know the software system very well, you might not easily distinguish
between acceptable and unacceptable performance. Some parts of the system behave bet-
ter than others. How do you know which behavior is good enough and which is not ac-
ceptable any more?

Randomly trying to perform some actions to get an impression of the system performance
is like looking for a needle in a haystack. You can easily spend a lot of time without get-
ting any hints where to look closer.

Therefore:

First get a general impression of how fast typical operations execute. Then try to find
anomalies by comparing more specific actions with these numbers.

Only seldom do all parts of a software system suffer equally from performance. Skimming
over many parts of a system should give you a good impression of the overall characterist-
ics you might expect. You could, for example, set the fastest non-trivial operation as a
benchmark for all other operations. Those operations that differ considerably from this
benchmark are the best candidates for closer inspection.

The more often you try to find performance anomalies, the better you get to know the
performance characteristics of your system. By doing this on a regular basis, chances are
better to more quickly spot and improve performance problems.

Always observe the size of the data set that your system operates on. For a realistic com-
parison, the data set size of several operations should be roughly equal.

Getting a good general impression may be difficult if the software system behaves incon-
sistently, i.e. differently at different times, in particular if there are active background
threads running. Also, if the system contains several performance problems at the same
time, it may be very complicated to judge how fast typical operations should execute.

By comparing performance characteristics you should be able to identify at least some
parts of the software system that you need to inspect more closely. As next step, you
should Isolate Actions.

In case the system does not reveal performance problems under normal load: Stress it.
Because using a Profiler slows down the machine on which the Profiler and maybe also
the system itself are running, you should try to Minimize the Profiler's Overhead of
using the Profiler.

If it is difficult to reproduce performance problems on a local workstation, Profile the
Real Thing; if you are not allowed to profile in a production environment, Clone
Production. In both cases, try again to Find Performance Anomalies.

- 4 -

Check for Memory
Your software system behaves unreliably. You don't know yet why.

How do you find out whether the software system suffers from memory leaks?

There might be many reasons why a software system does not behave as it should. Some
reasons are internal to the system (e.g. a memory leak), some are external (e.g. hardware
failure). Before you make any changes to your system you need to be sure that the prob-
lem is caused by an internal error.

A memory leak may manifest itself by an obvious system event like an
OutOfMemoryException in case of Java. But in particular if the system has a lot of
memory available, it may take a while until the memory has run up and such obvious mes-
sages are shown.

If your system is interactive, use the software application as a user would do. If the
system executes batch jobs, manually trigger jobs as they would normally run. In
both cases, closely watch the system's memory consumption.

If the system actually has a memory leak, you should notice that the memory consump-
tion of the system increases over time. Be aware that a Profiler typically shows the
memory consumption as the size of all objects that are currently alive. Some of these ob-
jects may not be in use any more. Therefore, you should watch the activity of the garbage
collector and, if necessary, regularly trigger a garbage collector run to watch the size of
objects in use over time.

Even if the memory consumption increases over time, this must not necessarily indicate a
memory leak. Other causes might be data caches that fill up over time, additional code
that is loaded at runtime, data that is stored in a session as long as a user is logged in, or
data sets whose size increase.

You therefore need to have a good general knowledge about the software system to be
able to distinguish between acceptable and unacceptable memory increases.

Once you know that the system has a memory leak, you need to Isolate Actions that
are responsible for the memory leak. If the memory leak causes a proliferation of objects,
chances are that the Profiler puts your local system under heavy load while keeping track
of what's happening inside your system. In that case, Minimize the Profiler's
Overhead.

- 5 -

Minimize the Profiler's Overhead
You intensively use a Profiler on a local workstation to track down performance or
memory problems.

How can you avoid that the Profiler itself negatively affects the application?

In a real-world application, many operations are executed in a short period of time. With-
in a couple of seconds, millions of objects may be created and disposed, and thousands of
operations may be called. Because the Profiler cannot guess the reasons of the problems at
hand, it has to collect all available information to present to you the most accurate view of
the internals of the software system.

To monitor a software system in every detail, the Profiler itself consumes many resources,
i.e. it needs a lot of memory and takes a considerable amount of time. Using a Profiler
may therefore consume so many system resources that the software system to analyze is
negatively affected. Connections may time out, network packets may be dropped, or the
graphical user interface may become too slow to use.

Therefore:

Before you start a profiling session, reduce the amount of information gathered by the
Profiler to the absolute minimum.

Most Profiler products provide a multitude of options to control the behavior of the Pro-
filer itself. As most Profiler products support both the analysis of memory consumption
and the analysis of runtime performance, they also support selectively turning these fea-
tures on and off.

Some more sophisticated Profilers give you detailed control of the granularity with which
the Profiler acts. This means, for example, if you need only a general impression of the
memory usage, it may not be necessary for the Profiler to record every object creation but
to take snapshots of the memory consumption every now and then.

Quite a few Profiler products provide the possibility to start and stop the collection of
data at runtime. This means, you are able to initially turn off most options to let the soft-
ware system start without interference by the Profiler. As soon as the system is ready for
profiling, you can selectively turn on the collection of required information.

The more settings the Profiler product provides the better you may thus minimize the
overhead of monitoring the software system. But this also mandates that you are aware of
what exactly you need to know about the software system. If you turn off some options
to gather information, maybe you miss exactly those information that would help you to
understand the cause of the problems. In particular, if changing these settings dynamically
is not possible, it may be cumbersome to restart the Profiler to change the settings and try
again.

Another way to minimize the impact of the Profiler itself may be to Isolate Actions
and to turn on the profiling only for performing the actions that you would like to ana-
lyze isolated from all other actions.

- 6 -

Isolate Actions
Your application has performance problems or memory leaks and you've got a good gen-
eral impression of the runtime behavior of the whole software system.

How can you track down the reasons for the problems at hand after you got first in-
dications of what they are?

Because a Profiler can give you a wealth of information, you may easily get lost. In partic-
ular, if you more or less randomly execute some functions of the software system, you
will have a hard time to isolate the problems.

Therefore:

Follow a Divide and Conquer strategy, i.e. perform distinct actions, preferably small
steps at a time, and check the outcome of the Profiler after each action or step.

You first need to come up with a sequence of actions during which you assume that the
problem takes place, i.e. during which the memory consumption increases significantly or
the execution time of the operations is far too long. After each step, check the data the
Profiler presents to verify that the step performs as it should be.

By pursuing a divide and conquer strategy, you may start with more coarse grained steps
until you find a peculiar step. Then split this step into several smaller steps and repeat
these steps until you find that step that is responsible for the problem.

Be aware that caches and background threads may alter the results of successively per-
forming the same operations. If that is possible, disable these caches and background op-
erations while trying to isolate the actions that cause the actual problems.

This pattern can only be applied for actions that can easily be executed repeatedly. In par-
ticular if some problems only appear during the system's startup or in the last seconds be-
fore the system crashes, it is very difficult to isolate them.

You should also always be aware that you may drill down into the software system at the
wrong location. If you realize that you analyze the wrong part of the system, track back
and start over. If you do this several times in a row, stop the Profiler and think over your
assumptions. It may help to either Find Performance Anomalies or Check for
Memory again.

If you are tracking down a performance problem, it may help to Repeat Actions to get
more significant numbers. If you need to analyze a memory leak, try to Come Full
Circle to more accurately compare memory snapshots.

- 7 -

Repeat Actions
The software system to profile has subtle performance problems. You have some candid-
ate actions in mind that probably cause the problem.

How can you clarify the cause of performance problems?

Even if you are able to isolate suspicious actions, those operations that are actually too
slow may not be obvious. It could be, for example, that some operations have a big up-
front initialization overhead that tamper the results. It could also be that some operation
have a higher intrinsic complexity than others, which does not stick out clearly.

Some software systems do not behave the same every time the same operation is executed.
Depending on a lot of different factors, a software system may be slowed down temporar-
ily. The reasons may be worker threads in the background such as the garbage collector,
event processing, etc.

Therefore:

Execute the candidate actions multiple times in a row to suppress side effects and to
magnify the actions' effects on the system's performance.

If you execute the same action several times in a row, side effects such as background
work or initialization effort diminish against the actual complexity of an operation. The
more often you repeat an action, the less weight statistical mavericks have.

Repeating an action may be achieved by manually starting the same action over again or
by letting the action be executed automatically. If a software system needs to evaluate
lines of a text file, for example, you could provide a bigger input file. In particular repeat-
ing an algorithmic operation often gives you a good view on its intrinsic complexity.

This pattern can easily be applied if the software system has a graphical user interface with
which you may start and restart an operation without significantly changing the state of
the system. If you need to perform heavy-weight actions to reset the system and execute
again the action, this may already tamper the performance evaluation too much to get
meaningful results. This pattern can also not be applied successfully if the cause of the
performance problem is part of the initialization work or if the problem cannot be repro-
duced because it relies on side-effects.

If you repeat actions but still cannot clearly identify the reasons for the performance
problems of the software system, you could Stress it or try again to Find Performance
Anomalies. It may also help to drill down into the actions that you have repeatedly ex-
ecuted and try to Isolate Actions again.

- 8 -

Come Full Circle
The software system to profile has a memory leak and you have been able to isolate the
action that causes the leak.

How can you identify the actual objects that cause a memory leak?

A memory leak appears when some memory has been reserved but not set free after its us-
age. This means, every memory leak is caused by an operation that reserves memory,
holds it, and does not set it free when it is no longer needed. You must therefore find this
operation.

Every operation that the software system executes may change the memory consumption.
By analyzing an arbitrary snap shot of the memory consumption, it is hard to tell which
objects are in regular use and which objects should have been given free earlier.

Therefore:

Find a sequence of actions that includes the offending action and that leaves the soft-
ware system in the same state as before. Then compare the number of living objects of
the same classes and identify those that have been increased but should not have.

If the software system has a graphical user interface you may be able to open a dialog, ex-
ecute an operation and close the dialog again to free all resources needed by the dialog. If
the memory leak appears in a part of the software system for which no graphical user in-
terface exists, you may trigger system jobs that execute the actions and leave the system in
the same state as before.

In each case, you need to mark the state of memory consumption of the software system
as reference before you start to execute the sequence of actions. After the sequence of ac-
tions is executed, you may compare the state of the memory consumption to that refer-
ence. Many Profiler tools provide a function to set a marker against which the memory
consumption is permanently compared.

To be successful, you need a close understanding of the objects involved in the actions be-
cause you need to find those objects that do still exist at the end of the sequence but
should not exist any more. Depending on the platform, the programming language, and
the settings of the Profiler, you may need to explicitly trigger a garbage collector run to
remove all unused objects before you can analyze the memory consumption in detail.

Applying this technique is very difficult if the software system changes its internal state
and therefore changes its internal memory consumption during the execution of actions
that come full circle. You then need to check very closely which objects may still exist and
which objects may not. It might also be necessary to stop any work done in parallel on
background threads or by asynchronously started jobs.

If you have found the objects that actually cause the memory leak, you may still not know
the reason for their existence. Try to Trace the Roots to find the reason why they have
not been removed from memory. If you're stuck because your assumptions about the
memory leak have mislead you, try again to Check for Memory.

- 9 -

Trace the Roots
You have found a memory leak, i.e. identified objects that still exist in memory when they
should not exist any more.

How do you find the reason why offending objects are still in memory?

It may be straightforward to find objects that are still alive but should not. But the pure
existence of these objects does not explain why they still exist. There may be many places
in the source code where these objects have been created, they may have been passed as
parameters to many methods, and they may be referenced from many other objects.

Even if you have identified the objects by coming full circle, maybe many steps were ne-
cessary to return the system to the same state as in the beginning. Manually introspecting
the source code that has been executed by all of these steps may just not be feasible.

Therefore:

Create a snapshot that includes all living objects and pick a single object that should
not exist any more. From this object on follow the incoming object references until
you reach the root object that is responsible to hold the whole chain of objects.

To apply this pattern, you need a Profiler tool that has a graphical view on the network of
interconnected objects of a memory snapshot. This means, you should be able to choose
any living object and expand all of its incoming object references graphically. You need to
recursively check the incoming references of all referring objects until you find an object
that is valid to exist.

If your technological platform incorporates a garbage collector there are always garbage
collector roots, i.e. static objects that may never be removed. All objects that can be
reached by object reference chains from these roots are also never removed from memory.
You therefore first need to identify the chain of object references from the offending ob-
ject backwards to a garbage collector root. Then you need to analyze this chain from the
garbage collector root on to find the first object reference that should not exist any more.
For example, on the object reference chain, there may be a list that should be empty but
still contains object references. The actual cause of the memory leak in this case is the code
that has not properly emptied or disposed the list.

Manually searching for garbage collector roots may be a very challenging task. Some Pro-
filers provide an option that performs the search for the garbage collector roots automat-
ically. Using such an option, the Profiler tool presents the chains of object references you
are looking for. Note that quite often there is not only one such chain but several such
chains. You should therefore always first search for a single chain, analyze it, discover the
actual bug, fix the bug, and restart both the application and the Profiler to determine
whether there were multiple causes that need to be fixed separately.

The fewer connections the software system has at runtime, the easier it is to use this tech-
nique. Having a clearly structured system with defined dependencies between internal
layers helps a lot to cut down on the number of interconnected objects and therefore sig-
nificantly reduces the effort to find garbage collector roots. Some software systems, in
particular rich or fat client applications typically have a huge number of object references.
Manually searching for garbage collector roots is very difficult in these cases.

- 10 -

Stress it
Your software system behaves well when you test it but loses performance under high
load.

How do you find performance problems that do not appear when your software sys-
tem runs in normal operation?

Some performance problems are caused by ill-designed algorithms. These problems can
typically be found more or less easily by Repeating Actions. Once you have picked
these low-hanging fruits you need to address performance problems that do not always
manifest because they may be the results of many interconnected causes that only appear
under high load.

You could try to Profile the Real Thing to find the performance problems in the real
production system. But quite often this is not feasible: The system may not be ready for
production yet, or it is too critical to risk profiling it in the production environment. But
without real users, the system may still behave nicely.

Therefore:

Employ a tool that artificially creates a high load on your software system by simulat-
ing multiple simultaneous user actions while you profile the system.

There are many tools available to stress test a software system, may it be a rich-client or a
web-client application or a system without a graphical user interface. The common de-
nominator of all of these tools is that they are able to simulate the behavior of typical
users and that they provide the option to easily scale the number of simultaneous user re-
quests on your system.

Using such a tool, you must first try to identify the typical behavior of the users of your
software system. Analyzing the logs of the system or just asking some users may give you
an impression of their typical usage. Then you need to simulate and automate the user ac-
tions so that they can be replayed by the tool. By slowly increasing the number of simu-
lated simultaneous users you may find the threshold from which on the system does not
behave as desired any more.

This technique may reveal performance problems that only manifest in the production
system otherwise. However, it cannot reproduce all problems. Some problems are caused
not only by a high system load from many users in parallel but by specific properties of
the production environment such as the operation system or the server hardware. In these
cases, you should Profile the Real Thing or Clone Production and stress test the
software system running in a production environment.

If you simulate too many distinct user actions at once, it may be difficult to track down
the causes of the problems under high load. In that case you could Isolate Actions and
Stress It again, now executing fewer actions at the same time.

- 11 -

Profile the Real Thing
Your software system suffers from performance problems in the production environment.

How do you find performance problems that you cannot reproduce on a local de-
veloper's machine?

Setting up a Profiler on a local developer's machine is easy and straightforward in most
cases. Still, most often a local machine is configured differently from a production envir-
onment, i.e. on the production environment a different operation system may be installed,
operation system settings may differ, or there may be more memory or disk space avail-
able.

Furthermore, some problems may be caused by the environment in which the production
machine runs, in particular causing slow network connections, latency problems, or
blocked reverse DNS lookups. All of these differences may be the reason for performance
problems that do not manifest elsewhere.

Therefore:

Take on the effort to install and set up a Profiler tool in the production environment
and run your tests there.

There are two options to perform profiling tests on the production environment. The
more intrusive option is to locally start a Profiler tool and to let it remotely connect to the
productive software system. This allows you to deeply analyze the behavior of the soft-
ware system while it is running.

The less intrusive option is to install a Profiler tool on the production machine that runs
there locally, measures the productive software system, and stores information about the
runtime behavior in the local file system, for example in flat files. This means, the profil-
ing information is not evaluated at runtime. Instead, you need to periodically get the pro-
filing information and start the graphical user interface of your Profiler tool on your local
machine to analyze the collected information. While this option is easier to sell to operat-
ors, it prevents you from selectively performing actions and analyzing the systems' beha-
vior.

This advice probably is the most difficult to follow because in many companies there is a
strict separation between developing and operating a software system. You may need to
convince managers from other teams to allow you to profile your software system in their
production environment and you may need to convince the operators whose support you
need to actually run any tests. Both tasks may be impossible to achieve. Still, only in the
production environment you may be able to analyze problems that appear exclusively
there.

After successfully setting up the Profiler tool in the production environment, you should
Find Performance Anomalies to get an impression of the runtime behavior of your
software system on the production environment. As alternative to profiling the software
system in the production environment, in particular if you are not allowed to install a
Profiler tool there, you may try to Clone Production. If the performance problems are
caused by high load rather than by specific settings of the production environment, stay
with profiling a development system and Stress it.

- 12 -

Clone Production
Your software system suffers from performance problems in the production environment.

How can you profile the software system when you must not install a Profiler tool in
the production system?

Some problems only appear in the production environment and cannot be reproduced on
a local developer's machine. Profiling the software system locally therefore does not help,
profiling in the production environment, on the other hand, is not allowed.

You could try to use profiling techniques that do not depend on a Profiler tool, for ex-
ample gathering as many information as possible in log files. Although it is generally a
good idea to write as many relevant information as possible into log files, you cannot re-
trieve everything of interest from inside the application itself. Besides, changing existing
code that has been tested to gather profiling information may not be a good idea as you
may have to test again the complete software system. Also, you may not be able to deploy
changed code at will but only according to a release plan.

Therefore:

Set up a dedicated test environment that is a clone of the production environment, i.e.
that runs on the same hardware and uses the same operation system settings, and pro-
file the software system there.

To set up a test environment, you probably need management support. Typically, the test
environment cannot be set up by the development team and setting up a clone of the pro-
duction environment is expensive, in particular if exactly the same hardware should be
used as in the production environment.

To reduce the costs of cloning the production environment, you could try to scale down
the test environment without changing the overall characteristics of the system. You could
achieve this, for example, by using fewer processors (but still having more than one) or by
reducing the available memory.

A clone of the production environment has many benefits other than easier profiling.
Most development projects already have distinct environments for development, test, and
production. In that case, you should employ the existing test environment for profiling.
You probably need to coordinate any profiling tests efforts with functional test efforts
carried out by the test team.

A common problem in cloning the production system is the availability of production
data. As this data must often be protected from public access, it might be necessary to cre-
ate an anonymous clone of production data that obfuscates the original context.

The biggest disadvantage of cloning the production system is the effort of keeping the
clone in sync. After the initial effort to set up the cloned environment, you need to reflect
all changes applied to the production environment. If not, you may not be able rely on the
results from testing on the cloned system any more.

After successfully setting up the Profiler tool in the cloned environment, you should Find
Performance Anomalies. Cloning the production system alone may not reveal the
problems of the software system if these problems do only appear under high load. In that
case, Stress it.

- 13 -

Unfinished Patterns
There are more patterns on how to efficiently profile a software system than have been
presented so far in this paper. This section gives an overview of patterns that have not yet
been elaborated in detail.

Reduce Moving Parts
How do you reliable measure the current
performance of your software system?

Stop all background threads and schedulers
that might start new threads.

Design for Profiling
How do you facilitate profiling your soft-
ware system?

Design the system in such a way that pro-
filing parts of it independently becomes
possible, for example by employing a
layered and component-based architecture
and by making it possible to stop back-
ground work.

Have a Mental Map
How do you improve your ability to
quickly find performance problems and
memory leaks?

Try to always have a mental map of the
complete system and compare the results of
all profiling operations with your expected
outcome.

Let the System Warm Up
How do you avoid side-effects when meas-
uring the system performance?

Let the system warm up before you start
any measurements so that, for example, all
caches are filled with data.

Act as a User Would Do
How can you increase the chance to detect
performance problems and memory?

Operate the system as a real user would do,
i.e. execute complete use cases without fol-
lowing shortcuts.

Bring Real Users in
How can you increase the chance to detect
performance problems and memory leaks if
you don't know what the users are doing?

Bring in real users and let them operate on
your test system while you closely watch
the system's behavior.

Strangle the System
How can you stress your system if it still
works quite well under high load or if you
cannot produce a very high load?

Limit the resources that are available to
your software system, for example, by re-
moving memory or CPUs.

- 14 -

Examples
To relate the given patterns to the real world, this section gives some examples of how the
patterns can be applied. The first example shows how to track down memory leaks, the
second how to find performance bottlenecks.

Both examples are based on real, open-source applications. Please note that the bugs that
are going to be found in these applications have been artificially introduced for the pur-
pose of this section. They have never existed in the original distributions.

Tracking down a Memory Leak

The first example is based on the application FreeMind (freemind.sf.net), which is a free
and open-source mind mapping tool. FreeMind is a fat client application, developed in
Java.

Assume that you are the developer of FreeMind and that you've just got a bug report
from a user. The user complains that the application crashes after editing a mind map for
some time. This seems to be a serious problem, so you decide to track down its cause.

The user also sent you a stack trace of the application that shows an OutOfMemoryError,
which is an indication that the application probably suffers from a memory leak. You
know that there are some cases where you have not properly cleaned up objects before
disposing them. But instead of guessing, you decide to start the Profiler to have a closer
look to avoid introspecting and maybe changing code that is not responsible for the prob-
lem at hand.

As the user did not report a specific action that he or she performed just before the crash,
you decide to first get a general impression of the runtime behavior of the application.
Started under the control of the Profiler, the application comes up and you begin to draw
a mind map.

You haven't noticed any problems so far, the application runs smoothly; the problem does
not seem to appear immediately. However, a look at the memory consumption reveals
that something went wrong.

- 15 -

Check for
Memory

Think
about it
first

For a reason you don't know yet, the memory consumption grew steadily. The garbage
collector ran several times, freeing resources that were not needed any more, but after
each run, the used memory increased. To get any further, you need to understand better
which action causes the leak.

Therefore, you start to selectively perform actions to edit the mind map and closely check
the memory consumption after each step. To check the actual memory consumption at a
time, you trigger the garbage collector after each step. After a short time you suspect that
editing an existing node of the mind map might cause the problem. But you need to verify
this assumption.

You assume that the dialog to edit a node might be the cause of the problem. To reliably
check the memory consumption of editing a node, you decide to measure the difference
before opening and after closing that dialog.

In order to compare the memory consumption, you first trigger another garbage collec-
tion run and then mark the current values. After that you open the dialog, edit some text
and close it. After triggering another garbage collection run, you have a close look at
which objects do now exist that did not exist earlier on.

Among many other objects that don't look suspicious you discover that there are still ref-
erences to the dialog class that you've just used to edit the node.

In particular, there is now one object more of the class than before. Now you know the
reason for the memory leak: a dialog object has not been removed from memory after the
dialog window has been closed. Nevertheless, you don't know yet why this happens.

To further understand the problem, you decide to analyze the object graph to find out
which objects still hold references to the dialog object. Instead of manually checking all
incoming object references to a dialog object, you utilize the Profiler's function to search
for garbage collector roots. After a short time, the Profiler shows the first path to such a
root.

The graph tells you that the dialog still exists in memory because it is referenced by its
native peer object. Because you know the basics about developing a dialog with Java's
GUI library Swing, you are sure that somewhere in your code, you forgot to properly
dispose the dialog after it is closed.

- 16 -

Isolate
Action

Come
Full
Circle

Trace the
Roots

You switch back to your IDE, open the source code of the dialog class into an editor and
find the right spot where you made the dialog invisible instead of properly disposing it.

You are relieved to have found the bug so quickly, immediately create a new version of
the application and send it to the user that reported the bug.

Discovering Performance Bottlenecks

The second example is based on the application blojsom (blojsom.sf.net), which is a free
and open-source blog software. Blojsom is a web application, developed in Java.

Once again, please assume that you are a developer of blojsom. You have worked hard to
finish a new version and are almost ready to publish it. As a last step, you use the software
as a normal user would do to find any obvious bugs that have gone unnoticed before.

The application seems to be slower than usual. Maybe some changes you did have deteri-
orated the performance. Maybe it's just because of the new features that you implemen-
ted. One feature in particular could be improved by adding a cache to prevent some unne-
cessary database calls from happen. But because you want to avoid unnecessary work, you
decide to have a closer look before making any changes.

You set up a new and clean database without any prior blog entries and start up the web
server. Still without using the profiler, you create a few categories on the admin pages and
then write some blog entries and comments.

- 17 -

Think
about it
first

Find
Perfor-
mance
Anomalies

You realize that while the administration pages work as usual, blog pages seem to load
slower than before.

Because the Profiler tool may affect the runtime performance of the application, you want
to minimize the side effects of using the Profiler tool. You start the tool and change set-
tings so that the Profiler only records performance data and nothing else. You are quite
sure that the problems are not caused by the initialization of the application; therefore
you start the server with no profiling at all and wait until the application is properly ini-
tialized.

You don't want to get lost in too many details too soon and therefore decide to perform
several distinct actions in a row and to then look at the information the Profiler has collec-
ted meanwhile: you create a new blog entry, look at the entry, and write a comment. After
these operations, you open a view in which the Profiler tool shows those methods that
took the most execution time.

On the first look, everything seems right. You are wondering however why the database
calls (Criteria.list) from the method findEntriesBetweenDates took to long. You
know that this method is called from the calendar view on the right hand side of the blog
page.

To verify your assumption, you reload the main blog page a couple of times by constantly
pressing F5 in the browser. The rendering of a blog page is not affected by any data cach-
ing so that each call should cause the same number of database calls. Then, you have an-
other look at the same view of the Profiler tool.

- 18 -

Minimize
the
Profiler's
Overhead

Isolate
Action

Repeat
Action

You notice that the amount of time spend in Criteria.list has relatively increased a
lot. You also notice that for each page request, this method is called once from
fetchEntries but much more often from findEntriesBetweenDates. This does not
seem to be right.

You start your IDE, open the respective source file, navigate to the method
findEntriesBetweenDates, and immediately find the following code:

Suddenly you realize that you began to implement a feature for which you needed to visit
the category objects of all blog entries. You did not finish developing this function but the
code that you left causes another database round trip for each blog entry. Besides the fact
that this code is written very inefficiently, it does not even make any sense right now.

So you remove the code and take another look at the performance measures from your
Profiler tool. Now that everything seems right you publish the new version of the applic-
ation.

- 19 -

Acknowledgements
I would like to thank Sachin Bammi who gave important feedback as my shepherd for the
EuroPLoP 2008 conference. I'd also like the thank the participants of the EuroPLoP 2008
workshop for their well thought-out and constructive comments and suggestions. In par-
ticular the section with unfinished patterns is based on their input. I hope to write a fol-
low-up with the new material in more detail soon.

Resources
As far as the author is aware of there is no related work in pattern form that explains how
to profile a software system. This section therefore presents references to other resources
that explain the usage of Profilers in a more general form.

[1] List of profiling tools for Java:
 http://www.javaperformancetuning.com/resources.shtml

[2] Jim Patrack, Handling memory leaks in Java programs:
 http://www.ibm.com/developerworks/java/library/j-leaks/

[3] Brian Goetz, Java theory and Practice: Plugging memory leaks with weak references,
 http://www.ibm.com/developerworks/java/library/j-jtp11225/index.html

[4] Tess Ferrandez: If broken it is, fix it you should. A blog about debugging and profiling
 .NET applications, http://blogs.msdn.com/tess/default.aspx

- 20 -

Patterns for Robust and Flexible Multimodal
Interaction

Andreas Ratzka
Institute for Media, Information and Cultural Studies

University of Regensburg
D-93040 Regensburg, Germany

Andreas.Ratzka@sprachlit.uni-regensburg.de

Abstract
Multimodal interaction aims at more flexible, more robust, more efficient and more natural in-
teraction than can be achieved with traditional unimodal interactive systems. In order to achieve
this, the developer needs some design support in order to select appropriate modalities, to find
appropriate modality combinations and to implement promising modality adaptation strategies.
This paper presents a first sketch of an emerging pattern language for multimodal interaction
and focusses on patterns for “flexible interaction” and patterns for “robust interaction”. This
work is part of a thesis project on pattern-based usability engineering for multimodal interac-
tion.

1 Introduction
Multimodal interaction means interaction via several interaction channels such as speech, point-
ing device, graphics and the like. An interaction modality is defined by its interaction channel
(acoustic, visual, haptic/tactile) and the interaction “language” (pointing, naming, emulating).
Example modalities are pointing gestures, keyboard input, speech input, speech output, graphic
output, and tactile output (e.g. vibrating steering wheels).

Although every interactive system combines at least two interaction modalities (one for
input, another one for output) not everyone is necessarily multimodal. Multimodality implies
the use of at least either more than one input channel or more than one ouptut channel. Although
mouse-based pointing and keyboard input are different modalities, typical WIMP1 and desktop
applications are not classified as multimodal systems. Only when different channels (acoustic,
visual, haptic/tactile) are used for either input or output, a system can be called multimodal.

According to Oviatt & Kuhn (1998) goals of multimodal interaction are

• flexibility and adaptability of the system with respect to users and context of use,

• high interaction robustness due to mutual disambiguation of input sources,

• interaction efficiency because of better integration into the work situation, and
1Windows, Icons, Menus, Pointing device

H-4-1

• the possibility to interact with the system in a natural way.

This work is related to a thesis project about usability engineering of multimodal interactive
systems. One assumption of this thesis project is that, although multimodal interaction is a
relatively new field with very little market penetration, there exists already a corpus of well
founded research results and successful system implementations in which recurring patterns
can be found (Ratzka & Wolff 2006).

The usability engineering lifecycle (Mayhew 1999) comprises the phases of requirements
analysis, work reengineering, design standards, detailed design and implementation. All of
these lifecycle steps need both specification formalisms and knowledge-based design support.
Traditional approaches for multimodal interaction design provide implementation frameworks
(Niedermaier 2003) or formalisms for specifying detailed design (Dragičević 2004, Duarte &
Carriço 2006). Other work provides knowledge-based design support in the phases of require-
ment analysis and work reengineering (Bernsen 1999, Bürgy 2002, Obrenović et al. 2007).

The application of patterns can complement these approaches since they seem to be an
appropriate tool for providing knowledge-based design support accross all lifecycle phases.

This pattern collection is based on a thorough literature review of multimodal interaction in
industrial and research projects. The following questions helped to find an adequate categorisa-
tion of question-solution pairs and thus a basis for pattern mining:

• When should certain interaction modalities (speech input or pointing input, speech output
or graphic output) be used?

• How should multiple interaction modalities (speech and pointing, speech and graphics
etc.) be combined?

• How can modalities be adapted according to context of use (user, environment, or situa-
tion)?

2 Pattern Overview
This paper focusses on usability design patterns for robust and accessible multimodal interac-
tion. Two pattern sub-collections are presented. The first one, Flexible Interaction, focuses on
accessibility and cross-context usability. The abstract principle lying behind this sub-collection
is giving the user the possibility to select appropriate interaction modalities according to context
factors. In order to achieve this goal, this pattern group has to make use of suitable adaptation
strategies which are described in the patterns Multiple Ways of Input, Global Channel Configu-
ration and Context Adaptation.

The second sub-collection Robust Interaction focusses on avoiding and corroborating recog-
nition errors as well as assuring communication between user and system. It contains the two
general patterns Redundant Input and Redundant Output which present its abstract principle
consisting in exploiting several interaction channels. The pattern Important Message, which
has been described by Tidwell (1999, view section 5 in this paper) can be seen as concretisation
of Redundant Output. The patterns Multimodal N-best Selection and Spelling-based Hypothesis
Reduction are specializations of the pattern Redundant Input. They can be used in connection
with the pattern Speech-enabled Form (Ratzka 2008, view section 5 in this paper), a specializa-
tion of the pattern Form (Tidwell 1999) which can be itself enriched with the patterns Dropdown
Chooser and Autocompletion (Tidwell 2005). The patterns Dropdown Chooser (Tidwell 2005)

H-4-2

and Continuous Filter (van Welie & Trætteberg 2000) are used to implement Multimodal N-best
Selection and Spelling-based Hypothesis Reduction respectively.

A short outline of patterns referenced in this paper but described elsewhere can be found in
section 5.

Redundant
Input

Multi-modal
N-best

Selection

Spelling-
Based

Hypothesis
Reduction

Redundant
Output

Global Channel
Configuration

Context
Adaptation

Multiple Ways
of Input

Abstraction uses Traditional patterns
existing in literature

Important
Message

Dropdown
Chooser

Continuous
Filter

Speech-
enabled

Form

Flexible Interaction Robuste Interaktion

Form

Autocompletion

Alternatives

Figure 1: Pattern Map

H-4-3

3 Patterns for Flexible Multimodal Interaction
The patterns for flexible interaction focus on accessibility and usability across changing sit-
uations, environmental and other context factors. The three patterns described here provide
each one different runtime modality adaptation strategies, i.e. ways of dynamically allocating
interaction modalities:

• Multiple Ways of Input offers the user several alternative interaction techniques. The user
is free to select the interaction modality that is most appropriate in the current context.
He need not perform additional configuration steps.

• Global Channel Configuration provides several interaction profiles with each different
configurations of input and output channels. This way, the system can be tailored to
typical contexts of use. The user can switch the interaction profile in just one interaction
step using an always-on-top widget or function button. Thus, the user can switch on/off
audio output or speech recognition when appropriate.

• Context Adaptation requires the system to evaluate interaction history and environment
data to adapt system behaviour accordingly. In contrast to Multiple Ways of Input and
Global Channel Configuration, Context Adaptation provides system-initiated adaptation
strategies.

These patterns try to resolve following forces:

• Typing is powerful for a lot of tasks but if the target user group includes typing-unskilled
or even illiterate people other alternatives have to be used.

• Speech input is well suited for both text input and item selection. But in loud environ-
ments, speech recognition will be very error prone because the background noise masks
the proper signal or is interpreted as input where there is none.

• Mechanical input via keyboards or pointing devices is widely applicable. But if the user’s
hands are occupied, wet, or dirty, there is no way to operate the systems.

• Graphic output and feedback is useful in a lot of situations but cannot be perceived in bad
lighting conditions or by blind people. At the same time, speech output might be difficult
to understand or even be overheard in loud environments.

• Speech output and input can make mobile interaction more comfortable. But confidential
data must not be read out loudly in public environments.

• Environmental factors can be controlled via special installations such as specially mounted
lamps, phone booths, directional speakers, earphones, or view shields, but these measures
are not viable in every case such as mobile interaction.

H-4-4

Multiple Ways of Input
Context Context factors are not always predictable. This holds especially for mobile inter-
action in changing environments or public information kiosks that should be usable for quite
different user groups.

Problem How can input modalities be adapted to the context of use without burdening the
user with additional configuration tasks?

Forces

• The user should be able to interact with the system using preferred and task appropriate
interaction styles. However, disabilities, or changing environmental conditions such as
lighting or background noise may affect the usability and robustness of task-optimized
interaction modalities.

• If background noise is low, speech input and output provide a valid interaction style.
However, in public environments, bystanders might feel annoyed by persons conversing
with an interactive system.

• Environmental factors can be controlled via special installations:

– Specially mounted lamps help to overcome bad lighting conditions.

– Phone booths reduce background noise and help to assure privacy.

– Earphones and directional speakers avoid to annoy bystanders and enhance privacy.

– View shields help to assure privacy.

But these measures are not viable in every case such as mobile interaction.

• Users might differ according to preferences, language, reading, typing skills etc. The
system can provide alternative interaction styles and adapt to the user. However, the
system is not able to predict precisely which input modalities are most likely to be selected
by the user in the current situation.

Solution Enable each system function to be operated via several alternative interaction modal-
ities differing in the interaction channel.

Enable the user to select his preferred interaction channel, be it speech, typing or pointing.
This modality should be active, i.e. the user should not have to switch the system configuration
to use it.

The system has to be designed in a way, that the user can change interaction modalities
wherever sensible, even for single interaction steps while performing a certain task.

Labels, help messages, prompts, console and speech commands should share a uniform
vocabulary in order to minimise habituation and learning efforts.

H-4-5

Consequences

• Providing several alternative interaction styles, the system supports access for physically
disabled or illiterate people.

• As the user can select from a set of complementary modalities which are each differ-
ently affected by environmental factors, the system can be used in varying environmental
conditions.

– In loud or public environments the users can simply sidestep to pointing / text input.

– When background noise is low users can opt for speech interaction.

• Expert users can estimate whether speech input or pointing gestures are possible or desir-
able at the current moment.

• Interaction can be assured even though no special installations such as view shields or
directional speakers are available.

• It is up to the users to select their preferred interaction style. They do not need to rely
on mystic autoadaptation mechanisms. Instead, they gain self-confidence as they are
controlling the system which leads to higher user satisfaction.

• First time users might not know which interaction styles are available at all. The system
must provide effective help and prompting strategies that reveal alternative interaction
modalities.

• The more flexible a system is, the more planning, testing and reviewing is needed during
design as the number of error sources increases rapidly with system complexity.

Rationale According to user characteristics, preferences, environment and situation, different
interaction modalities are preferable (Oviatt et al. 2000, Bürgy 2002, Obrenović et al. 2007).

Users can judge better than the system, which interaction modality and style is appropriate,
e.g. whether background noise or bad lighting impedes the use of speech or graphics, whether
surrounding people might feel annoyed because of spoken interaction or whether private infor-
mation is being conveyed.

Ibrahim & Johansson (2002) have shown for their multimodal TV guide, that users prefer,
when they can choose to use direct manipulation and speech either unaccompanied or combined
in order to adapt to the current context of use.

Users learn to estimate and select the most context-appropriate modality. After recognition
errors, users tend to switch the interaction modality (Oviatt et al. 2000, Oviatt & vanGent 1996,
Oviatt et al. 1999, Oviatt 1999).

Known Uses In the SmartKom system (Reithinger et al. 2003) the user can interact either via
pen or speech.

Mobile systems such as Microsoft’s MiPad (Miyazaki 2002, Microsoft) and IBM’s Personal
Speech Assistant (Comerford et al. 2001) are good examples of systems allowing users to flexi-
bly select input modalities. The same holds for driver assitance system such as the ones decribed
in Neuss (2001) and Pieraccini et al. (2004).

Further examples of this pattern can be found in the interactive TV guide by Ibrahim &
Johansson (2002), and MICASSEM (McCaffery et al. 1998).

H-4-6

Related Patterns This pattern is on the one hand an alternative to Global Channel Configu-
ration and Context Adaptation. On the other hand these patterns can be combined.

Whereas Global Channel Configuration requires an additional interaction step to select the
input / output profile of the system, Multiple Ways of Input offers a wider spectrum of input
modalities which can be used without additional configuration steps. In contrast to Global
Channel Configuration, this pattern is restricted to the adaptation of user input.

That’s why this pattern should be used with Context Adaptation. This way, system output
can be adapted according to the user’s input behaviour.

In contrast to system-driven Context Adaptation, Multiple Ways of Input offers, similarly to
Global Channel Configuration, user-driven system adaptation.

H-4-7

Global Channel Configuration
Context Interactive devices that offer several alternative and complementary interaction chan-
nels such as audio input and output, typing and graphic manipulation have to be adapted to the
context of use.

Problem How can interaction (input and output) be adapted to the current context of use,
while giving the user control over the system without burdening him with too much configura-
tion tasks?

Forces

• One can keep several input channels active and leave it up to the user to select the most
appropriate interaction modality for the current context. However, the system might try
to interpret input from unused distorted channels, e.g. because of background noise. This
might lead to false positives, that is the system misinterprets background noise as input.

• Redundant output via several channels can assure information perception by users. How-
ever, in public environments, bystanders might feel annoyed by persons conversing with
an interactive system. In the same way, it is not desirable, that private data be read out
loudly by the system.

• The system may analyse interaction behaviour, lighting conditions, background noise,
movement and position changes and adapt to the user and context of use. However, the
system does not find out as fast as the user does which interaction modalities are most
appropriate in the current context of use or for the current user.

• Even if automatic adaption works quite well, many users will prefer being able to control
the system.

Solution Provide several interaction profiles with input and output channel configurations
tailored to each context of use. Enable the user to select the interaction profile with only one
additional interaction step.

Display for instance always on top buttons with self explaining icons or provide physical
push-to-talk and mute buttons etc. so that the user can select the interaction profile (speech
input, audio output), the notification profile of a mobile phone (ringing, vibrating, mute) with
one click.

Consequences

• The user can quickly react to context changes and reconfigure the system accordingly in
one interaction step:

– Input channels such as speech input can be deactivated when necessary (in loud
environments) without great effort by simply clicking the necessary button.

– In order not to disturb bystanders in public environments, the user can deactivate
speech output with one click.

H-4-8

• Users feel better when exercising control over the system instead of being delivered to its
“caprices”.

• Users have to do at least one additional interaction step which might be annoying anyway.

• Users might by fault select an inappropriate interaction profile.

• The users might not be able to rembember the current configuration state of the system
and that they have to reconfigure the system at each situation change.

Rationale According to user preferences, abilities, environment and situation, different in-
teraction modalites are appropriate and have to be preferred (Oviatt et al. 2000, Bürgy 2002,
Obrenović et al. 2007).

Users learn to estimate and select the most context-appropriate modality. After recognition
errors, users tend to switch the interaction modality (Oviatt et al. 2000, Oviatt & vanGent 1996,
Oviatt et al. 1999, Oviatt 1999).

Known Uses The multimodal map-based system SmartKom Mobile covers the use cases of
pedestrian and automotive navigation as well as map-based queries (Malaka et al. 2004) and
allows the user to switch between several interaction modes (cf. Wasinger 2006, p. 59):

• Default: All input and output modalities are supported.

• Listener: Speech+graphics are supported for output, for input only pen gestures are pos-
sible.

• Silent: Only graphics for output and pen gestures for input are supported.

• Speech Only: Only speech interaction is active.

Some mobile phones such as Nokia E71 offer the user to select profiles such as office or home.
In addition to different startup screens, these profiles can be set to an appropriate context-
dependent notification mode (ringing, vibrating).

With some restrictions, desktop applications, operating system environments, and multime-
dia applications that provide an audio icon in the system tray for setting the system’s audio
characteristics can be seen as examples for this pattern.

Push-to-talk buttons in some speech based driver assistance systems are examples, too:
When operated once, speech output is stopped and speech input activated. Operated once more,
speech interaction can be deactivated and, lateron, reactivated.

Related Patterns This pattern is an alternative to Multiple Ways of Input and Context Adap-
tation but can be used in combination with them, too.

In contrast to Multiple Ways of Input, which offers the user to select among several alter-
native input modalities without having to perform additional configuration actions, this pattern
requires one additional interaction step. Furthermore, it comprises, in contrast to Multiple Ways
of Input, the adaptation of system output.

In contrast to system-driven Context Adaptation, Global Channel Configuration and Multi-
ple Ways of Input are forms of user-initiated system adaptation.

H-4-9

Context Adaptation
Context Examples for this pattern can be found in interactive devices that support different
alternative and complementary interaction channels such as audio output and input, typing and
graphic manipulation.

Problem How can interaction (input and output) be adapted to the current situation, environ-
ment and user without the user having to perform additional interaction steps?

Forces

• Redundant output via several channels can assure information perception by users. How-
ever, superfluous spoken output might disrupt or slow down the user’s secondary task or
annoy third persons.

• One can keep several input channels active and leave it up to the user to select the most
appropriate interaction modality for the current context. However, the system might try
to interpret input from unused distorted channels. This might lead to false positives, that
is the system misinterprets background noise as input.

• Alternatively, one could let the user configure system input and output according to the
current context of use. But, as long as sufficient information is available to the system
additional configuration steps should be avoided.

• Letting the user configure the system himself seems not to be a problem at first. But the
user might not be able to rembember the current configuration state of the system and to
reconfigure the system at each situation change.

Solution The system should analyse as much assured context information as available to setup
system configuration autonomously.

One information source that can be used is the interaction history:

• If the user interacts via speech, it is not clear where the user looks. In this case speech
output should complement display updates.

• If the user does not want to annoy surrounding people, he will avoid speech interaction.

• If the user interacts with pointing device or keyboard – might be in order to avoid annoy-
ing surrounding people – he is usually looking at the display such that speech output is
superfluous.

Other aspects of system state can be exploited for adaptation, too: A driver assistance system
should disable touch screen input while the car is driving – the driver should keep his hands on
the steering wheel. Smartphones should disable touch screen input while the user is making a
telephone call – the ear of the user should not lead to unwanted actions.

H-4-10

Consequences

• Information output can be restricted according to the context of use.

• False positive recognitions can be avoided via context dependent recogniser activation.

• The user does not need to reconfigure the system repeatedly where this can be done by
the system itself.

• The user need not remember configuration states and reconfigure the system at each situ-
ation change.

• Automatic adaptation can fail or be unappropriate. That’s why the user should always
have the possibility to carry over control and perform interaction configuration himself.

Known Uses In the SmartKom system (Reithinger et al. 2003) the user can interact either
via pen or speech. System feedback is adapted in a way that fits to the user’s attention: The
TV-guide subsystem of SmartKom presents the TV-program usually as a listing but reads out
spoken feedback to spoken queries. When the user is watching TV, the system presents the
program list verbally, too, because it supposes that the visual channel is occupied.

Driver assistance system such as the ones decribed in Neuss (2001) and Pieraccini et al.
(2004) offer the user to interact using speech or manual input devices. System output is adapted
acordingly.

Smartphones disable touch screen input during telephone calls.

Related Patterns This pattern is an alternative to Global Channel Configuration and Multiple
Ways of Input but may be used complementarily to these ones. In contrast to these user-driven
adaptation strategies, Context Adaptation implements a system-initiated adaptation strategy.

This pattern can be used as complement to Multiple Ways of Input in order to update system
output according to user input.

In addition to Context Adaptation, Global Channel Configuration should be used, to give
the user control over the system.

H-4-11

4 Patterns for Robust Multimodal Interaction
This subcollection comprises a set of four patterns: two abstract two concrete. Both abstract
patterns Redundant Output and Redundant Input go back to the same basic principle of mutual
disambiguation of redundant signals. Whereas the pattern Redundant Output is used to present
redundant data to the user such that the user is more likely to understand or at least perceive the
information conveyed by the system, the pattern Redundant Input fuses user input coming from
several channels in order to reduce recognition and interpretation errors.

The pattern Redundant Output has no concretisation within this collection. Tidwell’s pattern
Important Message (Tidwell 1999, view section 5 in this paper) can be seen as a concretisation
of this one, as it suggests the usage of several modalities (visual and auditive signals) to attract
the user’s attention and convey urgent information.

For the pattern Redundant Input two refining patterns are given:

• Multimodal N-best Selection combines several interaction modalities for input and dis-
ambiguation dialogs. The user first speaks a word or command. As speech recognition is
not a sharp but rather statistical process a list of n best hypotheses is returned. The user
can now directly select from this list e.g. via pointing. When this step has to be done via
speech, too, alternatives to simply re-speaking the item – e.g. naming the row number –
should be supported and prompted for in order to avoid endless loops of repeated errors
due to intrinsic acoustic confusability.

• Spelling-based Hypothesis Reduction combines several input modalities to reduce recog-
nition errors. Typically, the user first inputs some letters via typing in order for the system
to reduce the set of possible alternatives. Then, the user speaks the desired entry which
can be properly recognised by the system. Spelling can be done after spoken selection,
as well. Then, the system has to recalculate the recognition hypotheses according to the
updated list of available alternatives.

These pattern, although focusing on robust interaction, are closely linked to patterns for efficient
multimodal interaction, especially the patterns Voice-based Interaction Shortcut and Speech-
enabled Form (Ratzka 2008, view section 5 in this paper) as well as to traditional user interface
patterns such as Continuous Filter (van Welie & Trætteberg 2000, cf. section 5), Form (Tidwell
1999, cf. section 5), Autocompletion (Tidwell 2005, cf. section 5) and Drop-down Chooser
(Tidwell 2005, cf. section 5).

H-4-12

Redundant Output
Context Communication channels might be unpredictably distorted due to bad lighting con-
ditions, background noise, technical (network) problems or disabilities such as speech, motor
or perception disorders.

Public systems that should be accessible for everybody should use this pattern especially
during the first interaction steps when it is not clear which interaction channels are appropriate
for the current user.

Problem How to assure information output when communication channels are distorted in an
unforseeable way?

Forces

• The system can be configured or adapted to output information using modalities that are
less affected by channel disorders. However, in some cases several interaction channels
are distorted to some degree. Examples are:

– Visually impaired people or illiterate people that want to interact in loud environ-
ments.

– Deaf people that want to interact in bad lighting conditions or while moving around.

• Potential channel distortions might be circumvented by selecting alternative interaction
channels. However, if the potentially distorted channel were otherwise the best candidate,
abandoning this channel cannot be justified.

• The system can use those modalities that are most appropriate in the current environmen-
tal context. However, when the user’s attention does not fit to the situation he might miss
important notifications. E.g. when the system uses purely visual output due to high back-
ground noise level but the user’s visual attention is focused elsewhere the system fails to
notify the user.

Solution Combine several output channels in order to make use of redundancy. Information
should be output both visually and acoustically and possibly even in a haptic way (e.g. using
vibration) to raise the probability that it is perceived and can be understood by the user.

Consequences

• The use of several channels raises the probability that the user is able to perceive the in-
formation conveyed to him by the system. Visually impaired people in loud environments
or deaf people in bad lighting conditions can process more data when output is presented
redundantly to them.

• You don’t need to abandon an output channel totally, only because it might be distorted.
Visually impaired people might have problems reading a text and recognise each letter.
After hearing the spoken variant and knowing what the text is about the visual represen-
tation can be used as memory hook. The same might be true for dark environments or
mobile scenarios, when it is difficult to fix visual attention to the text.

H-4-13

• It is more likely to attract the user’s attention when information is output via several
channels, e.g. both audio and sight, than when only one output modality is used.

Rationale Independent disturbances of different channels rarely affect the same aspects of the
content.

Multi-channel feedback of written and spoken text has proven to be effective for elderly
(Emery et al. 2003) and visually impaired users, especially those suffering from AMD2 (Vitense
et al. 2002, Jacko et al. 2003, 2004, Edwards et al. 2004).

In the context of language understanding, it has been proven that users understand language
better when they can read the lips of their interlocutor simultaneously to hearing (Sumby &
Pollack 1954, Neely 1956, Binnie et al. 1974, Erber 1969, 1975, Summerfield 1979, Schomaker
et al. 1995). This holds especially in loud environments.

Plosives ([p], [t], [k], [b], [d], [g]) sound similar and are likely to be confused when sound
quality is low. At the same time these phones have distinctive lip shapes such as open lips (in
the case of [g] and [k]) vs. initially closed lips (in the case of [b] and [p]). Lip shapes may differ
for some similar sounding vowels, too.

Known Uses Some interactive systems such as PPP (André et al. 1996), NUMACK (Kopp
et al. 2004), COMIC (Foster et al. 2005) and SmartKom (“Smartakus” Wahlster et al. 2001)
display talking heads, in order to exploit the advantages of audiovisual language understanding
(Benoı̂t et al. 1998).

Mobile phones combine visual (blinking), auditive (ringing) and haptic (vibrating) signals
in order to notify the user about phone calls or incoming short text messages.

Related Patterns Tidwell’s Important Message (Tidwell 1999) is a concretisation of this pat-
tern. In this case, information is output multimodally in order to attract the user’s attention.
Beyond attention attraction and raising perception probability, the generic pattern Redundant
Output tries to overcome comprehension problems caused by context factors such as bad light
or background noise.

2Age-related Macular Degeneration

H-4-14

Redundant Input
Context Communication channels might be unpredictably distorted due to bad lighting con-
ditions, background noise, technical (network) problems or disabilities such as speech, motor
or perception disorders.

Problem How to assure input when communication channels are distorted in an unforseeable
way?

Forces

• The system can be configured or adapted to recognise and interpret that modality that is
less affected by channel disorders, but in some cases all available interaction channels are
distorted to some degree.

– In loud environments users with motor disabilities or illiterate people have problems
to interact with the system.

– In dark environments or in hands-free scenarios (e.g. while carrying a bag, wan-
dering around, driving a car) people with speech disorders have problems to input
data.

– In exerted conditions, both speech input and pen gestures are problematic.

• Interaction can be alleviated if passive modalities for data input (gaze input, free ges-
tures) or authentication (voice recognition, face recognition) are used. However, these
interaction channels are error prone so that they cannot be applied directly.

Solution Combine several interaction channels in order to make use of redundancy. Input
coming from several channels (visual: e.g. lip movements, auditive: e.g. speech signal) should
be interpreted in combination in order to reduce liability to errors.

Consequences

• The use of several channels raises the probability that the system is able to recognise and
interpret the information input by the user in the desired way.

• Even if several channels are distorted the distortion rarely affects exactly the same pieces
of information. Fusion mechanisms allow for reconstructing of at least some part of the
input information.

• “Imperfect”, error prone interaction channels can be combined to mutually disambiguate
recognition errors.

Rationale Independent disturbances of different channels rarely affect the same aspects of the
content. That’s why for instance audio-visual speech recognition, which combines acoustic sig-
nals and lip movement analysis, leads to better recognition performance than unimodal speech
recognition (cf. Benoı̂t et al. 1998, S. 24 f.):

Plosives ([p], [t], [k], [b], [d], [g]) sound similar and are likely to be confused when sound
quality is low. At the same time these phones have distinctive lip shapes such as open lips (in

H-4-15

the case of [g] and [k]) vs. initially closed lips (in the case of [b] and [p]). Lip shapes may differ
for some similar sounding vowels, too.

Channel distortions rarely affect both the recognition of a specific phoneme in the acoustic
signal and of the corresponding viseme in the visual signal in the same way. Fusion algorithms
allow to combine sound pieces of information from several channels such that some distorted
parts can be reconstructed.

Studies conducted by (Oviatt 1999) revealed that an appropriate recogniser architecture that
combines gesture and speech recognition can reduce recognition errors. This was shown for
non-native speakers, in loud environments (Oviatt 2000a, b, c) and for exerted conditions (Ku-
mar et al. 2004).

Known Uses This pattern is manifested in very different application areas including data
input (audio-visual speech recognition), scene analysis (Wachsmuth 2001), person identification
(Yang et al. 1998, 1999, Hazen et al. 2003, Jain 2003, Snelick et al. 2003), emotion recognition
(Nasoz et al. 2002, Lisetti & Nasoz 2002, Busso et al. 2004, Gunes et al. 2004, Zeng et al. 2004)
and the like. Following modality combinations are used:

• virtual reality and speech (Kaiser et al. 2003),

• gaze direction and speech (Zhang et al. 2004, Tan et al. 2003, Tanaka 1999, Campana
et al. 2001),

• lip-reading in loud environments (Saenko et al. 2004), e.g. to filter out simultaneous
speakers (Patterson & Gowdy 2003),

• speech and gesture (Holzapfel et al. 2004, Chai & Qu 2005),

• voice, ink and touchtone (Trabelsi et al. 2002),

• biometrics, voice and face to identify persons (Yang et al. 1999, Hazen et al. 2003).

Related Patterns Spelling-based Hypothesis Reduction as well as Multimodal N-best Selec-
tion are refinements of this pattern.

H-4-16

Multimodal N-best Selection
Context This pattern can be used in multimodal systems that offer speech input of uncon-
strained text or speech-based selection of items from very large sets such as timetable or navi-
gation systems.

Problem Speech recognition is a statistical process. The recognition of input phrases results
in a set of several recognition hypotheses. It is frequently the case that the original input phrase
is included in the n-best set but does not coincide with the system’s best estimate.

Forces

• When a speech input attempt fails the user can be prompted to repeat or to switch to
another interaction modality. But it is inefficient to throw away input data which has
failed the goal just by a hair.

• Playing back the n best recognition hypotheses, prompting for (spoken) selection and
reducing the speech recognition vocabulary to this reduced list of n items can correct the
error in just one further interaction step. However, items contained in the n-best list are
likely to have some acoustic similarity so that they might be mixed up repeatedly by the
recogniser.

• Playing back just the item on top of the n best recognition hypotheses and prompting for
accepting or rejecting may resolve this problem in a few steps, but if the desired item
is only the fifth (sixth, seventh ...) best recognition hypothesis five (six, seven ...) error
corroboration steps are needed.

Solution Provide the user a means of selecting the correct result from a set of recognition
hypotheses via pointing or key presses.

In order to satisfy cases where the desired item cannot be found in the n-best list there has
to be a way of explicitly leaving the list selection dialog and to start over the input attempt.

Consequences

• Imperfect recognition results are not thrown away but reused in subsequent interaction
steps.

• Recurring recognition problems due to confusability are avoided through alternative se-
lection techniques. Instead of re-speaking the misrecognised item, the user can point to
the item displayed in the list.

• Frequently, instead of endless error correction loops, this pattern helps to correct recog-
nition errors in just one additional interaction step.

Rationale Suhm et al. (2001) point out that re-speaking the same word or phrase after recog-
nition failure, although natural, is not the most promising form of error recovery in interactive
systems. Changing the input modality to list selection seems to be more promising and has been
suggested by Ainsworth & Pratt (1992) and Murray et al. (1993).

H-4-17

Known Uses Directory assistance, timetable information systems, speech-based driver assis-
tance systems support n-best selection.

Related Patterns This pattern can be used in conjunction with Speech-enabled Form, Drop-
down Chooser (Tidwell 2005) and Autocompletion (Tidwell 2005) to alleviate error handling in
speech-enhanced input forms.

This pattern and Spelling-based Hypothesis Reduction are refinements of Redundant Input.
Multimodal N-best Selection makes use of Drop-down Chooser (Tidwell 2005) to provide the
user a non-speech alternative for selecting from a list of the n most likely recognition hypotheses
and to avoid repeated errors.

Variant The solution described in this pattern is not restricted to strictly multimodal inter-
action. Speech-only systems provide similar speech-based approaches of selecting the desired
item from a list of hypotheses.

If n-best selection via speech is supported, it is important to offer input modifications to
avoid repeated errors. The user should be given the possibility to select the desired option via
speaking the line number or re-speaking the item in combination with some distinctive attribute
such as the first letter(s).

In these cases, the user has to be prompted in a way that reveals alternative selection strate-
gies apart from simple re-speaking, e.g.: “Did you mean one Jonathan Smith, two John Griffith,
three Joseph Reddish or new input”.

While the list is being read out the user should have the possibility to interrupt the playback.
In full-duplex systems with cleanly separated channels for audio input and output barge-in can
be used. That means that the system playback is stopped when the user starts speaking. In
half-duplex systems the user should be able to interrupt system playback using a push-to-talk
button. In the cases of both barge-in and push-to-talk the interruption moment can be used as a
further information source to estimate the selected item (Balentine 1999, Balentine & Morgan
2001).

H-4-18

Spelling-based Hypothesis Reduction
Context Examples where this pattern can be used are systems that offer speech input of un-
constrained text or speech-based selection of items from very large sets such as timetable or
navigation systems. Errors are particularly likely in cases, when the user has to select from lists
with similar sounding words or words with inconsistent pronunciation such as foreign names.

Problem Large recognition vocabularies entail error-prone recognition, especially when many
similar sounding words have to be distinguished.

Forces

• Speech input can be used for selecting items from a list that cannot be displayed com-
pletely on a small screen, but if the list is too large for speech recognition or includes
several similar sounding or problematic words, speech recognition is likely to fail. Prob-
lem areas are names in directory assistance systems as well as album and song titles in
entertainment systems.

• In the case of recognition failure, the user can switch to text input (typing), but in some
applications such as driver assistance systems only unhandy (if any) string input facilities
are available.

• Typing the first letters can reduce the size of the selection list so that pointing is possi-
ble again, but in some applications such as navigation systems there might be a lot of
characters to be input (using an impractical input device) before the list is reduced to a
displayable size.

• Some speech recognisers, especially those for small devices, have only restricted re-
sources such that only small vocabularies e.g. for number recognition or for recognising
letters of the alphabet are supported. But operating applications this way only provides
little added value in contrast to using a small keypad, especially since letters some of
which sound similar are likely to be confused by the recogniser.

Solution Offer the user to input the first letters of the input tokens via typing. Use this sub-
string to reduce the size of selectable items (i.e. of the speech recognition vocabulary) to head-
matching strings. Using this vocabulary forthcoming speech inputs can be recognised more
robustly.

Record speech input attempts and keep this recording available for some forthcoming inter-
action steps. Failed speech input can thus be reinterpreted afterwards successfully with reduced
vocabulary.

Consequences

• By inputting quite few letters, the set of alternatives can be reduced to a size that – al-
though still unsuited for pointing-based list selection – allows robust speech recognition.

• The user needs only to input few letters. This is important in cases where text input is
inconvenient.

H-4-19

• There is no need to navigate and scroll through lists.

• Recognition of names, song titles and other problematic words becomes more robust.

• This technique of reducing speech recognition vocabularies simplifies speech recognition
on platforms with limited resources.

Rationale The reduction of speech recognition vocabulary can improve recognition perfor-
mance significantly.

Known Uses Marx & Schmandt (1994) describe the messaging system Chatter which allows
the user to input contact names via voice spelling, touch-tone spelling and speech-based naming
in a combined fashion.

The prototype of a multimodal driver assistance system by Neuss (2001) allows the user
to input the first letters using a rotary knob mounted on the centre console, so that the speech
recognition vocabulary can be reduced.

Other examples that go in the same direction can be found in Suhm et al. (2001) and Tan
et al. (2003).

Related Patterns This pattern can be used in conjunction with Speech-enabled Form, Drop-
down Chooser (Tidwell 2005) and Autocompletion (Tidwell 2005) to alleviate error handling in
speech-enabled input forms.

This pattern and Multimodal N-best Selection are refinements of Redundant Input. Spelling-
based Hypothesis Reduction uses (or is) some kind of variant of Continuous Filter (van Welie
& Trætteberg 2000). Instead of filtering the items of a selection list, the recognition vocabulary
is reduced according to the letters input by the user.

Variant Some systems allow the user to dictate characters (voice spelling) in a purely speech-
based way to reduce the recognition vocabulary.

In this case, phonetic alphabets can be used to reduce recognition failures. But this is only
feasible if the target user group is expected to be proficient in that phonetic alphabet.

When a phonetic alphabet is supported the user is not proficient in, this might result in
spontaneous wordings such as Motel instead of Mike or October instead of Oscar. This way,
recognition errors might even increase.

H-4-20

5 Related Patterns from other Collections

5.1 Multimodal User Interface Patterns
This is only a fraction of the patterns identified during this work. Other patterns focus on fast
/ efficient interaction. The following table outlines only the pattern Speech-enabled Form (cf.
Ratzka 2008), since it is referenced several times in this paper:

Name Problem Solution
Speech-enabled
Form

How to simplify string input in form
filling applications?

Let the user select the desired form field via
pointing and input the desired value via speech.

5.2 Related Patterns from other Authors
These patterns for multi-modal interaction are closely related to traditional user interface pat-
terns described by other authors:

Name
Reference

Problem Solution

Continuous Filter
(van Welie & Træt-
teberg 2000)

“The user needs to find an item in an
ordered set”.

“Provide a filter component with which the user
can in real time filter only the items in the data
that are of interest.”

Important Mes-
sage
(Tidwell 1999)

“How should the artefacts convey
this information to the user?”.

“Interrupt whatever the user is doing with the
message, using both sight and sound if possi-
ble.”

Form
(Tidwell 1999, Sin-
nig et al. 2004),
(www.welie.com)

“The user must provide structural
textual information to the applica-
tion. The data to be provided is logi-
cally related”

“Provide users with a form containing the nec-
essary elements. Forms contain basically a set
of input interaction elements and are a means of
collecting information [...]”.

Drop-down
Chooser
(Tidwell 2005)

“The user needs to supply input that
is a choice from a set [...], a date
or time, a number, or anything other
than free text typed at a keyboard.
[...]”.

“For the Drop-down Chooser control’s ‘closed’
state, show the current value of the control in
either a button or a text field. To its right, put a
down arrow. [...] A click on the arrow (or the
whole control) brings up the chooser panel, and
a second click closes it again [...]”.

Autocompletion
(Tidwell 2005)

“The user types something pre-
dictable, such as a URL, the user’s
own name or address, today’s date, or
a filename [...]”.

“With each additional character that the user
types, the software quietly forms a list of the
possible completions to that partially entered
string [...]”.

6 Conclusion
This paper outlines an emerging pattern language for multimodal interaction which is far from
being complete. Despite the research history of over twenty years, multimodality is still a
research-centric field. It begins to reach some dissemination in the fields of automotive, in-
dustrial and mobile applications. That is why interaction design support is needed. Interaction
design patterns constitute a challenging and exciting approach to this domain.

H-4-21

7 Acknowledgements
I would like to thank my shepherd Michael vanHilst and the members of the workshop group at
EuroPLoP 2008 for the numerous suggestions and valuable feedback.

References
Ainsworth & Pratt 1992
AINSWORTH, W.A.; PRATT, S.R.: Feedback strategies for error correction in speech recognition systems. In: Int J. Man-Mach. Stud. 36
(1992), Jun., Nr. 6, S. 833–842

André et al. 1996
ANDRÉ, E.; MULLER, A. J.; RIST, T.: The PPP Persona: A Multipurpose Animated Presentation Agent. In: AL., Catarci et (ed.): Advanced
Visual Interfaces, ACM Press, 1996, S. 245–247

Balentine 1999
BALENTINE, B.: Re-Engineering The Speech menu. In: GARDNER-BONNEAU, D. (ed.): Human Factors and Voice Interacive Systems.
Norwell, Massachussetts: Kluwer Akademic Publishers, 1999, S. 205–235

Balentine & Morgan 2001
BALENTINE, Bruce; MORGAN, D. P.: How to Build a Speech Recognition Application. A Style Guide for Telephony Dialogues. EIG Press,
2001

Benoı̂t et al. 1998
BENOÎT, C.; MARTIN, J.-C.; PELACHAUD, C.; SCHOMAKER, L.; SUHM, B.: Audio-Visual and Multimodal Speech Systems. Version: 1998.
http://www.limsi.fr/Individu/martin/publications/download/chmultimodal.ps. In: GIBBON, D. (ed.): Handbook of Standards
and Resources for Spoken Language Systems - Supplement Volume. 1998

Bernsen 1999
BERNSEN, Niels O.: Multimodality in Language and Speech Systems - from theory to design support tool. Lectures at the 7th European
Summer School on Language and Speech Communication (ESSLSC). http://www.nis.sdu.dk/ nob/stockholm.zip. Version: Juli 1999,
retrieved on: 20.06.2008

Binnie et al. 1974
BINNIE, C. A.; MONTGOMERY, A. A.; JACKSON, P. L.: Auditory and visual contributions to the perception of consonants. In: Journal of
Speech & Hearing Research 17 (1974), S. 619–630

Bürgy 2002
BÜRGY, Christian: An Interaction Constraints Model for Mobile and Wearable Computer-Aided Engineering Systems in Industrial Applica-
tions, Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, Diss., 2002

Busso et al. 2004
BUSSO, C.; DENG, Z.; YILDIRIM, S.; BULUT, M.; LEE, C.-M.; KAZEMZADEH, A.; LEE, S.; NEUMANN, U.; NARAYANAN, S.: Analysis
of emotion recognition using facial expressions, speech and multimodal information. In: ICMI ’04: Proceedings of the 6th international
conference on Multimodal interfaces. New York, NY, USA: ACM Press, 2004, S. 205–211

Campana et al. 2001
CAMPANA, E.; BALDRIDGE, J.; DOWDING, J.; HOCKEY, B.-A.; REMINGTON, R.-W.; STONE, L.-S.: Using eye movements to determine
referents in a spoken dialogue system. In: PUI ’01: Proceedings of the 2001 workshop on Perceptive user interfaces. New York, NY, USA:
ACM Press, 2001, S. 1–5

Chai & Qu 2005
CHAI, Joyce Y.; QU, Shaolin: A salience driven approach to robust input interpretation in multimodal conversational systems. In: HLT ’05:
Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing. Morristown, NJ,
USA: Association for Computational Linguistics, 2005, S. 217–224

Comerford et al. 2001
COMERFORD, L.; FRANK, D.; GOPALAKRISHNAN, P.; GOPINATH, R.; SEDIVY, J.: The IBM Personal Speech Assistant. In: Proc. of IEEE
ICASSP’01 DARPA, 2001, S. 319–321

Dragičević 2004
DRAGIČEVIĆ, Pierre: Un modèle d’interaction en entrée pour des systèmes interactifs multi-dispositifs hautement config-
urables, Université de Nantes, école doctorale sciences et technologies de l’information et des matérieaux, Diss., Mars 2004.
http://www.dgp.toronto.edu/˜dragice/these/html/memoire dragicevic.html, retrieved on: 20.06.2008

Duarte & Carriço 2006
DUARTE, C.; CARRIÇO, L.: A conceptual framework for developing adaptive multimodal applications. In: IUI ’06: Proceedings of the 11th
international conference on Intelligent user interfaces. New York, NY, USA: ACM, 2006, S. 132–139

H-4-22

Edwards et al. 2004
EDWARDS, P. J.; BARNARD, L.; EMERY, V. K.; YI, J. S.; MOLONEY, K. P.; KONGNAKORN, T.; JACKO, J. A.; SAINFORT, F.; OLIVER, P. R.;
PIZZIMENTI, J.; BADE, A.; FECHO, G.; SHALLO-HOFFMANN, J.: Strategic design for users with diabetic retinopathy: factors influencing
performance in a menu-selection task. In: Assets ’04: Proceedings of the 6th international ACM SIGACCESS conference on Computers and
accessibility. New York, NY, USA: ACM Press, 2004, S. 118–125

Emery et al. 2003
EMERY, V. K.; EDWARDS, P. J.; JACKO, J. A.; MOLONEY, K. P.; BARNARD, L.; KONGNAKORN, T.; SAINFORT, F.; SCOTT, I. U.: Toward
achieving universal usability for older adults through multimodal feedback. In: CUU ’03: Proceedings of the 2003 conference on Universal
usability. New York, NY, USA: ACM Press, 2003, S. 46–53

Erber 1969
ERBER, N. P.: Interaction of audition and vision in the recognition of oral speech stimuli. In: Journal of Speech & Hearing Research 12
(1969), S. 423–425

Erber 1975
ERBER, N. P.: Auditory-visual perception of speech. In: Journal of Speech & Hearing Disorders 40 (1975), S. 481–492

Foster et al. 2005
FOSTER, M. E.; WHITE, M.; SETZER, A.; CATIZONE, R.: Multimodal generation in the COMIC dialogue system. In: ACL ’05: Proceedings
of the ACL 2005 on Interactive poster and demonstration sessions. Morristown, NJ, USA: Association for Computational Linguistics, 2005, S.
45–48

Gunes et al. 2004
GUNES, Hatice; PICCARDI, Massimo; JAN, Tony: Face and body gesture recognition for a vision-based multimodal analyzer. In: VIP ’05:
Proceedings of the Pan-Sydney area workshop on Visual information processing. Darlinghurst, Australia, Australia: Australian Computer
Society, Inc., 2004, 19–28

Hazen et al. 2003
HAZEN, Timothy J.; WEINSTEIN, Eugene; PARK, Alex: Towards robust person recognition on handheld devices using face and speaker
identification technologies. In: ICMI ’03: Proceedings of the 5th international conference on Multimodal interfaces. New York, NY, USA:
ACM Press, 2003, S. 289–292

Holzapfel et al. 2004
HOLZAPFEL, Hartwig; NICKEL, Kai; STIEFELHAGEN, Rainer: Implementation and evaluation of a constraint-based multimodal fusion system
for speech and 3D pointing gestures. In: ICMI ’04: Proceedings of the 6th international conference on Multimodal interfaces. New York, NY,
USA: ACM Press, 2004, S. 175–182

Ibrahim & Johansson 2002
IBRAHIM, Aseel; JOHANSSON, Pontus: Multimodal dialogue systems: A case study for interactive tv. In: Proceedings of 7th ERCIM Workshop
on User Interfaces for All. Chantilly, France, 2002, 209–218

Jacko et al. 2004
JACKO, J. A.; BARNARD, L.; KONGNAKORN, T.; MOLONEY, K. P.; EDWARDS, P. J.; EMERY, V. K.; SAINFORT, F.: Isolating the effects of
visual impairment: exploring the effect of AMD on the utility of multimodal feedback. In: CHI ’04: Proceedings of the SIGCHI conference
on Human factors in computing systems. New York, NY, USA: ACM Press, 2004, S. 311–318

Jacko et al. 2003
JACKO, J. A.; SCOTT, I. U.; SAINFORT, F.; BARNARD, L.; EDWARDS, P. J.; EMERY, V. K.; KONGNAKORN, T.; MOLONEY, K. P.; ZORICH,
B. S.: Older adults and visual impairment: what do exposure times and accuracy tell us about performance gains associated with multimodal
feedback? In: CHI ’03: Proceedings of the SIGCHI conference on Human factors in computing systems. New York, NY, USA: ACM Press,
2003, S. 33–40

Jain 2003
JAIN, Anil K.: Multimodal user interfaces: who’s the user? In: ICMI ’03: Proceedings of the 5th international conference on Multimodal
interfaces. New York, NY, USA: ACM Press, 2003, S. 1–1

Kaiser et al. 2003
KAISER, E.; OLWAL, A.; MCGEE, D.; BENKO, H.; CORRADINI, A.; LI, X.; COHEN, P.; FEINER, S.: Mutual disambiguation of 3D multimodal
interaction in augmented and virtual reality. In: ICMI ’03: Proceedings of the 5th international conference on Multimodal interfaces. New
York, NY, USA: ACM Press, 2003, S. 12–19

Kopp et al. 2004
KOPP, Stefan; TEPPER, Paul; CASSELL, Justine: Towards integrated microplanning of language and iconic gesture for multimodal output. In:
ICMI ’04: Proceedings of the 6th international conference on Multimodal interfaces. New York, NY, USA: ACM Press, 2004, S. 97–104

Kumar et al. 2004
KUMAR, Sanjeev; COHEN, Philip R.; COULSTON, Rachel: Multimodal interaction under exerted conditions in a natural field setting. In: ICMI
’04: Proceedings of the 6th international conference on Multimodal interfaces. New York, NY, USA: ACM Press, 2004, S. 227–234

H-4-23

Lisetti & Nasoz 2002
LISETTI, Christine L.; NASOZ, Fatma: MAUI: a multimodal affective user interface. In: MULTIMEDIA ’02: Proceedings of the tenth ACM
international conference on Multimedia. New York, NY, USA: ACM Press, 2002, S. 161–170

Malaka et al. 2004
MALAKA, Rainer; HÄUSSLER, Jochen; ARAS, Hidir: SmartKom mobile: intelligent ubiquitous user interaction. In: IUI ’04: Proceedings of
the 9th international conference on Intelligent user interface. New York, NY, USA: ACM Press, 2004, S. 310–312

Marx & Schmandt 1994
MARX, Matt; SCHMANDT, Chris: Putting people first: specifying proper names in speech interfaces. In: UIST ’94: Proceedings of the 7th
annual ACM symposium on User interface software and technology. New York, NY, USA: ACM Press, 1994, S. 29–37

Mayhew 1999
MAYHEW, D. J.: The Usability Engineering Lifecycle. San Francisco: Morgan Kaufmann, 1999

McCaffery et al. 1998
MCCAFFERY, Fergal; MCTEAR, Michael F.; MURPHY, Maureen: A Multimedia Interface for Circuit Board Assembly. In: Multimodal
Human-Computer Communication, Systems, Techniques, and Experiments. London, UK: Springer-Verlag, 1998, 213–230

Microsoft
Microsoft: MiPad: Speech Powered Prototype to Simplify Communication Between Users and Handheld Devices.
http://www.microsoft.com/presspass/features/2000/05-22mipad.asp, retrieved on: 20.06.2008

Miyazaki 2002
MIYAZAKI, J.: Discussion Board System with modality variation: From Multimodality to User Freedom, Tampere University, Masterarbeit,
2002

Murray et al. 1993
MURRAY, A. C.; FRANKISH, C. R.; JONES, D. M.: Data-entry by voice: Facilitating correction of misrecognitions. In: BABER, C. (ed.);
NOYES, J.M. (ed.): Interactive Speech Technology: Human Factors issues in the Application of Speech Input/Output to Computers. Bristol,
PA: Taylor and Francis, 1993, S. 137–144

Nasoz et al. 2002
NASOZ, Fatma; OZYER, Onur; LISETTI, Christine L.; FINKELSTEIN, Neal: Multimodal affective driver interfaces for future cars. In:
MULTIMEDIA ’02: Proceedings of the tenth ACM international conference on Multimedia. New York, NY, USA: ACM Press, 2002, S.
319–322

Neely 1956
NEELY, K. K.: Effect of visual factors on the intelligibility of speech. In: Journal of the Acoustical Society of America 28 (1956), S. 1275–1277

Neuss 2001
NEUSS, Robert: Usability Engineering als Ansatz zum Multimodalen Mensch-Maschine-Dialog, Fakultät für Elektrotechnik und Information-
stechnik, Technische Universität München, Diss., 2001

Niedermaier 2003
NIEDERMAIER, Franz B.: Entwicklung und Bewertung eines Rapid-Prototyping Ansatzes zur multimodalen Mensch-Maschine-Interaktion im
Kraftfahrzeug, Fakultät für Elektrotechnik und Informationstechnik der Technischen Universität München, Diss., 2003

Obrenović et al. 2007
OBRENOVIĆ, Z.; ABASCAL, J.; STARČEVIĆ, D.: Universal accessibility as a multimodal design issue. In: Commun. ACM 50 (2007), Nr. 5, S.
83–88

Oviatt et al. 1999
OVIATT, S.; BERNARD, J.; LEVOW, G.: Linguistic adaptation during error resolution with spoken and multimodal systems. In: Language and
Speech (special issue on Prosody and Conversation) 41 (1999), Nr. 3–4, S. 415–438

Oviatt et al. 2000
OVIATT, S.; COHEN, P.; WU, L.; VERGO, J.; DUNCAN, L.; SUHM, B.; BERS, J.; HOLZMAN, T.; WINOGRAD, T.; LANDAY, J.; LARSON, J.;
FERRO, D.: Designing the User Interface for Multimodal Speech and Pen-based Gesture Applications: State-of-the-Art Systems and Future
Research Directions. In: Human Computer Interaction 15 (2000), Nr. 4, S. 263–322

Oviatt & vanGent 1996
OVIATT, S.; VANGENT, R.: Error reslution during multimodal human-computer interaction. In: Proc. of the International Conference on
Spoken Language Processing Bd. 2, 1996, S. 204–207

Oviatt 1999
OVIATT, Sharon L.: Mutual disambiguation of recognition errors in a multimodal architecture. In: CHI ’99: Proceedings of the SIGCHI
conference on Human factors in computing systems. New York, NY, USA: ACM, 1999, S. 576–583

H-4-24

Oviatt 2000a
OVIATT, Sharon L.: Multimodal Signal Processing in Naturalistic Noisy Environments. In: YUAN, B. (ed.); HUANG, T. (ed.); TANG, X. (ed.):
Proceedings of the 6th International Conference on SPoken Language Processing (ICSLP) Bd. 2. Peking: Chinese Friendship Publishers, 2000,
696–699

Oviatt 2000b
OVIATT, Sharon L.: Multimodal system processing in mobile environments. In: UIST ’00: Proceedings of the 13th annual ACM symposium
on User interface software and technology. New York, NY, USA: ACM Press, 2000, S. 21–30

Oviatt 2000c
OVIATT, Sharon L.: Taming recognition errors with a multimodal interface. In: Commun. ACM 43 (2000), Nr. 9, S. 45–51

Oviatt & Kuhn 1998
OVIATT, Sharon L.; KUHN, Karen: Referential features and linguistic indirection in multimodal language. In: Proceedings of the International
Conference on Spoken Language Processing Bd. 6, ASSTA, 1998, 2339–2342

Patterson & Gowdy 2003
PATTERSON, E.K.; GOWDY, J.N.: An audio-visual approach to simultaneous-speaker speech recognition. In: ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings Bd. 5, 2003, 780–783

Pieraccini et al. 2004
PIERACCINI, R.; DAYANIDHI, K.; BLOOM, J.; DAHAN, J.-G.; PHILLIPS, M.; GOODMAN, B. R.; PRASAD, K. V.: Multimodal conversational
systems for automobiles. In: Commun. ACM 47 (2004), Nr. 1, S. 47–49

Ratzka 2008
RATZKA, Andreas: Design Patterns in the Context of Multi-modal Interaction. In: To appear in: Proceedings of the 6th Nordic Conference on
Pattern Languages of Programs 2007 VikingPLoP 2007, 2008

Ratzka & Wolff 2006
RATZKA, Andreas; WOLFF, Christian: A Pattern-based Methodology for Multimodal Interaction Design. In: SOJKA, P. (ed.); KOPEČEK, I.
(ed.); PALA, K. (ed.): Proc. of Text, Speech, and Dialogue, TSD’06. Berlin, Heidelberg: Springer, 2006 (LNAI 4188), S. 677–686

Reithinger et al. 2003
REITHINGER, N.; ALEXANDERSSON, J.; BECKER, T.; BLOCHER, A.; ENGEL, R.; LÖCKELT, M.; MÜLLER, J.; PFLEGER, N.; POLLER, P.;
STREIT, M.; TSCHERNOMAS, V.: SmartKom: adaptive and flexible multimodal access to multiple applications. In: ICMI ’03: Proceedings of
the 5th international conference on Multimodal interfaces. New York, NY, USA: ACM Press, 2003, S. 101–108

Saenko et al. 2004
SAENKO, Kate; DARRELL, Trevor; GLASS, James R.: Articulatory features for robust visual speech recognition. In: ICMI ’04: Proceedings
of the 6th international conference on Multimodal interfaces. New York, NY, USA: ACM Press, 2004, S. 152–158

Schomaker et al. 1995
SCHOMAKER, L.; NIJTMANS, J.; CAMURRI, A.; LAVAGETTO, F.; MORASSO, P.; BENOÎT, C.; GUIARD-MARIGNY, T.; GOFF, B. L.; ROBERT-
RIBES, J.; ADJOUDANI, A.; DEFÉE, I.; MÜNCH, S.; HARTUNG, K.; BLAUERT, J.: A Taxonomy of Multimodal Interaction in the Human
Information Processing System. Version: Februar 1995. http://vonkje.cogsci.kun.nl/ miami/reports/reports.html. 1995. (A
Report of the Esprit Basic Research Action 8579 MIAMI). – Forschungsbericht

Sinnig et al. 2004
SINNIG, Daniel; GAFFAR, Ashraf; REICHART, Daniel; SEFFAH, Ahmed; FORBRIG, Peter: Patterns in Model-Based Engineering. In: CADUI,
2004, S. 195–208

Snelick et al. 2003
SNELICK, Robert; INDOVINA, Mike; YEN, James; MINK, Alan: Multimodal biometrics: issues in design and testing. In: ICMI ’03:
Proceedings of the 5th international conference on Multimodal interfaces. New York, NY, USA: ACM Press, 2003, S. 68–72

Suhm et al. 2001
SUHM, B.; MYERS, B.; WAIBEL, A.: Multimodal error correction for speech user interfaces. In: ACM Trans. Comput.-Hum. Interact. 8
(2001), Nr. 1, S. 60–98

Sumby & Pollack 1954
SUMBY, W. H.; POLLACK, I.: Visual contribution to speech intelligibility in noise. In: Journal of the Acoustical Society of America 26 (1954),
S. 212–215

Summerfield 1979
SUMMERFIELD, A. Q.: Use of visual information for phonetic perception. In: Phonetica 36 (1979), S. 314–331

Tan et al. 2003
TAN, Yeow K.; SHERKAT, Nasser; ALLEN, Tony: Error recovery in a blended style eye gaze and speech interface. In: ICMI ’03: Proceedings
of the 5th international conference on Multimodal interfaces. New York, NY, USA: ACM Press, 2003, S. 196–202

H-4-25

Tanaka 1999
TANAKA, Katsumi: A robust selection system using real-time multi-modal user-agent interactions. In: IUI ’99: Proceedings of the 4th
international conference on Intelligent user interfaces. New York, NY, USA: ACM Press, 1999, S. 105–108

Tidwell 1999
TIDWELL, J.: COMMON GROUND: A Pattern Language for Human-Computer Interface Design.
http://www.mit.edu/˜jtidwell/common ground.html. Version: 1999, retrieved on: 20.06.2008

Tidwell 2005
TIDWELL, Jenifer: Designing Interfaces: Patterns for Effective Interaction Design. O’Reilly, 2005

Trabelsi et al. 2002
TRABELSI, Z.; CHA, S.-H.; DESAI, D.; TAPPERT, C.: A voice and ink XML multimodal architecture for mobile e-commerce systems. In:
WMC ’02: Proceedings of the 2nd international workshop on Mobile commerce. New York, NY, USA: ACM Press, 2002, S. 100–104

Vitense et al. 2002
VITENSE, H. S.; JACKO, J. A.; EMERY, V. K.: Multimodal feedback: establishing a performance baseline for improved access by individuals
with visual impairments. In: Assets ’02: Proceedings of the fifth international ACM conference on Assistive technologies. New York, NY,
USA: ACM Press, 2002, S. 49–56

Wachsmuth 2001
WACHSMUTH, Sven: Multi-modal Scene Understanding Using Probabilistic Models, Technischen Fakultät, Universität Bielefeld, Diss., 2001

Wahlster et al. 2001
WAHLSTER, W.; REITHINGER, N.; BLOCHER, A.: SmartKom: Towards Multimodal Dialogues with Anthropomorphic Interface Agents. In:
WOLF, G. (ed.); KLEIN, G. (ed.); Projektträger des BMBF für Informationstechnik: Deutsches Zentrum für Luft- und Raumfahrttechnik (DLR)
e.V. (Veranst.): Proceedings of International Status Conference: Lead Projects Human-Computer-Interaction. Saarbrücken, 2001, 23–32

Wasinger 2006
WASINGER, Rainer: Multimodal Interaction with Mobile Devices: Fusing a Broad Spectrum of Modality Combinations. Saarbrücken,
Naturwissenschaftlich-Technische Fakultät I der Universität des Saarlandes, Diss., 2006

van Welie & Trætteberg 2000
WELIE, M. van; TRÆTTEBERG, H.: Interaction Patterns in User Interfaces. In: Proceedings of the Seventh Pattern Languages of Programs
Conference. Monticello, Illinois, USA, 2000

Yang et al. 1998
YANG, J.; STIEFELHAGEN, R.; MEIER, U.; WAIBEL, A.: Visual tracking for multimodal human computer interaction. In: CHI ’98: Proceed-
ings of the SIGCHI conference on Human factors in computing systems. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.,
1998, S. 140–147

Yang et al. 1999
YANG, J.; ZHU, X.; GROSS, R.; KOMINEK, J.; PAN, Y.; WAIBEL, A.: Multimodal people ID for a multimedia meeting browser. In:
MULTIMEDIA ’99: Proceedings of the seventh ACM international conference on Multimedia (Part 1). New York, NY, USA: ACM Press,
1999, S. 159–168

Zeng et al. 2004
ZENG, Z.; TU, J.; LIU, M.; ZHANG, T.; RIZZOLO, N.; ZHANG, Z.; HUANG, T. S.; ROTH, D.; LEVINSON, S.: Bimodal HCI-related affect
recognition. In: ICMI ’04: Proceedings of the 6th international conference on Multimodal interfaces. New York, NY, USA: ACM Press, 2004,
S. 137–143

Zhang et al. 2004
ZHANG, Q.; IMAMIYA, A.; GO, K.; MAO, X.: Overriding errors in a speech and gaze multimodal architecture. In: IUI ’04: Proceedings of
the 9th international conference on Intelligent user interface. New York, NY, USA: ACM Press, 2004, S. 346–348

H-4-26

P-1- 1 -

Turning me on, turning me off
More patterns for a pattern language

of interactive information graphics

Christian Kohls, c.kohls@iwm-kmrc.de
Knowledge Media Resarch Centre, Tuebingen

Tobias Windbrake, wb@fh-wedel.de

University of Applied Sciences Wedel, Wedel

Abstract
Interactive graphics are an effective way of communication and information delivery,
especially for complex domains. However, domain experts are rarely aware of the potentials
of interactive visual displays and which interaction principles can be in charge for
communication and teaching purposes. In this paper we extend a pattern language for
interactive information graphics and present four patterns. These patterns are all variations of
buttons that can switch between two visual states. Each pattern describes the consequences
and special fields of application related to the chosen button type in an educational setting.

Target Group
The language captures expertise about interactive graphics and focuses on the educational
benefits gained by each form of interaction. The primary target group are developers of
multimedia learning materials – for both, classroom and online sessions. The language can be
particularly useful for:

Educators who want to enhance their course materials with interactive graphics.
Teachers who want to use interactive content in their classroom lessons.
Editors and designers of rich online learning materials.
Information designers who want to enrich websites with interactive diagrams.
Exhibitors who want to design interactive information kiosks in museums or visitor centres.
Users of interactive displays.
Programmers who want to learn when and why an interactive screen adds value to content
presentation.
Project teams who need a common language to plan their development of materials, e.g.
course designers can unambiguously communicate to developers.

The goal is to illustrate what forms of interactive graphics are used in today’s multimedia
materials and how and when they can be used beneficial in educational contexts.

P-1- 2 -

About the patterns

Interactive graphics certainly helps to analyze, understand and communicate models, concepts
and data [Rie90], [SM00], [May01] if applied appropriately. Each pattern explicitly names
situations where to use it and gives a rationale why it can support the communication process.
With respect to the aimed target group of this pattern collection, the technological aspects of
the pattern descriptions should be low-threshold. There is no implementation section in the
documented patterns because educators, teachers and trainers are not likely to implement the
patterns in program code. Skilled programmers on the other hand will profit more from
understanding the pedagogical values than seeing rather trivial example codes. Another issue
is that implementations in different authoring tools are very idiomatic. Thus, explaining the
implementation in one tool would give no insights into the options other authoring tools may
offer. Fortunately, multimedia authoring tools recently started to offer templates, wizards or
objects to instantiate the patterns without programming. The major goal of this language is to
inform about the potentials, benefits and limitations of interactive graphics. The proper use of
interactive graphics is another issue. Using an inappropriate form of interaction can do harm
to the process of learning and understanding. Therefore, this pattern collection is also a guide
to choose the right formats for the tasks at hand.

The patterns presented in this paper are different variations of graphic buttons. Buttons are
common widgets in user interface design. The perspective taken in the present patterns is to
discuss the educational use of buttons in interactive graphics. One can also learn about the
consequences and special fields of application depending on the special type of button that is
chosen. One of the major differences to other descriptions of buttons is that in the given
examples the visual form of the buttons is different from the standard box layouts. In
educational illustrations any graphical form, shape, text, area or image can be used as a
button.

The pattern collection for interactive information graphics relates or overlaps with languages
for human computer interaction [Ba97], [Bor01], [GLC01], [MJ98], [Tid05], [Wel05], the
design of websites [WV03], [Sc05], [Mah06], [MLC05], [DLH04] and patterns for education
and e-learning [PPP], [VW04], [ND05]. The patterns that can be found in this paper are all
well-known human-computer-interaction patterns (and are described in [Tid05], [Wel05]).
What is new to the patterns is the view of how to use these interaction forms in an educational
contexts and which pedagogical challenges are solved by the patterns. The patterns presented
are a prosecution of a pattern collection that has been presented on previous PLoPs. As a
feedback from the various workshops, the pattern descriptions have become highly visual.

PLoP 2006 EuroPLoP 2007 PLoP 2007 EuroPLoP 2008
OPTIMIZE
OBJECT
PERCEPTION

DYNAMIC
LABELLING

SWITCH
BETWEEN
OBJECT STATES

TRANSPORT
OBJECTS

SYNCHRONIZE
OBJECT MOTION

DRAG
RESTRICTION

ACTIVE AREAS
(HOT AREAS)

ACTIVATOR

NO-GO-AREAS

SANDBOX

ON/OFF BUTTON

ROLLOVER
BUTTON

RADIO BUTTON

INFORMATION
DISPLAY

P-1- 3 -

Note that the patterns TOGGLE BUTTON, ROLLOVER BUTTON, RADIO BUTTON, and
INFORMATION DISPLAY are differentiations of the SWITCH BETWEEN OBJECT STATES pattern
presented at PLoP 2006 [KW06]. The SWITCH BETWEEN OBJECT STATES focussed on
technical similarities. On the code level the four patterns presented in this paper are almost
identical, i.e. in Java the difference between a TOGGLE and a ROLLOVER BUTTON is usually
just in which method of the event interface the property is changed. However, end users
perceive mouse over and mouse clicks quite differently in terms of usability and semantics. In
an experimental setting we have asked teacher students to categorize interactive graphics
based on some patterns of this pattern language [KU09]. For all students the event trigger
(mouse over or mouse click) was a discriminating feature.

Also note that DYNAMIC LABELLING is a pattern of a higher level focussing on educational
function only rather than the interaction form. A DYNAMIC LABEL can be implemented by all
of the patterns present in this paper and by ACTIVE AREAS and ACTIVATORS as well.

P-1- 4 -

Different buttons for different purposes
Now, which button type is the best for you? It depends on the context and type of information
you intend to provide. What you can do with each type of button you will find in the “What
can I do with this interaction form?” sections which list typical scenarios and applications.
Every button type has its own benefits and liabilities. To select multiple elements
simultaneously one can use TOGGLE BUTTONS E or several independent groups of RADIO
BUTTONS. An TOGGLE BUTTON lets the user decide at which time to switch each element
individually. While this adds more freedom to the user, it can also result in messed up screens,
e.g. too many added elements increases complexity, pop-ups hide other information or the
whole graphic alters to an unsatisfactory state. To ensure that graphic elements automatically
switch back to their original states, ROLLOVER and RADIO BUTTONS are a good choice.
ROLLOVERS are more intuitive, give faster access to extra information and implicitly indicate
which element is currently inspected while RADIO BUTTONS keep selected information
permanently available and do not block the mouse pointer for other tasks. TOGGLE BUTTONS
can build up graphics step-by-step whereas the other interaction forms allow transferring a
focus step-by-step.
TOGGLE, ROLLOVER, and RADIO BUTTONS all alter a base graphic. That way, newly added
information is integrated into the graphic but also hides or overwrites information. In
opposition, an INFORMATION DISPLAY is always spatially separated and does not interfere with
the graphic. But it also splits the attention between inspected elements and the explanatory
information. Only INFORMATION DISPLAYS allow defining more than two visual states for an
element. The element that shows the state for the INFORMATION DISPLAY is always distant to
the display itself. All other button types allow to be both trigger and output element in one.
Which functions are supported by which button type is summarized in the following table:

 Toggle Rollover Radio
Info Display
(click/rollover)

Selection of multiple elements
simultaneously
(e.g. to compare or filter objects) X
Assigning multiple (>2) visual states to an
element X
Mouse pointer indicates which element
is currently inspected X - / X
Mouse pointer is available for other tasks
(and not stressed for activation) X X X / -
Build up a graphic step by step X
Focus on graphic elements step by step X X X
Additional elements do not overlap
base information permanently X X X
Additional elements are nearest to base
information X X X
Allows to change components of a graphic X X X
Added elements and element changes
remain persistent
until explicitly reset X X X / -
Elements do not need a visual affordance
to indicate that they can be clicked X - / X
Highlight and focus elements X X X
Button element (hot area) can be changed
itself X X X
Can be used to replace large components
or the complete graphic X X
Can be used to replace small components
of a graphic X X X

P-1- 5 -

Supports exploration of a graphic X X X
Supports explicit selection of elements X X
No explicit operation required to deactivate
an element X X - / X

P-1- 6 -

Toggle Button – ON/OFF Button
Provide a way to change between two visual states of an element by clicking at it or a separate
button.

Examples
Zoom on Demand: If the user clicks at on of the marked areas, an enlarged illustration pops
out. The detailed illustration has to be deactivated explicitly by clicking at the corresponding
area for another time.

Switch illustration: The text acts as a button that switches between a medical illustration of
muscles or skeleton.

Dynamic labels: By clicking at areas of the skeleton, the labels appear.

P-1- 7 -

Context
For illustrative purposes you are using an information graphic in your classroom or in
multimedia materials. The information graphic is very complex and consists of many visual
elements (e.g. labels, boxes, parts, connections). Some of the elements might be of a dynamic
nature and can change their states (e.g. a light bulb can be on off, water can be frozen or not,
an engine can idle or run). Some elements are in themselves very complex and need further
explanation or even different kinds of explanations. Adding all these multiple states and
multiple explanations makes the graphic even more complex. Yet all the information given is
needed and cannot be reduced without loss.

Problem
You cannot leave out elements without losing important information necessary to understand
the illustrated subject but at the same time the complexity and amount of information is just
too overwhelming and makes it very hard for students to process the given information and
focus on relevant aspects.

Forces
Many subjects require complex graphics to illustrate relations and contextual information but
huge graphics can be overwhelming and the observer may not know where to start.

Today’s presentation tools allow adding information in a predefined sequence step-by-step,
however, depending on the subject it may be desirable to add elements in random order.

Adding information allows integrating new elements into the existing knowledge
representation but what to do with information that is needed only temporarily?

Multiple representations of objects (i.e. to show transformations, causal chains, different
viewpoints or levels of detail) can be accessed by navigating to another graphic screen but
what if only parts of the graphic should change? How to keep the number of prepared
graphics small if different aspects of a graphic can vary independently?

Solution
Add, remove or change elements dynamically in one graphic to reduce its complexity and
show elements or their alternative states only when needed.

To exactly control when elements change their state from invisible to visible or from inactive
to activate or from on to off, define for each alterable element a trigger. The trigger changes
the alterable element between two preset states. We shall call these two states ON and OFF.

Each of the states is represented by different visual properties:

Define an element on the screen as a button that triggers the state change:

P-1- 8 -

If the user clicks on the button, the ON-OFF object switches to the opposite state:

The button can be the ON-OFF element itself. That is, a click on the elemrnz will change its
own visual state:

Details
Elements that change their state between visible and invisible overlay an image in the
background if they become visible. In this case extra information is added to a base graphic.
In the following example, a transparent button element overlays Big Ben. If the user clicks at
it, arrow and annotation overlay the picture in the background without changing the picture:

Instead of adding elements, buttons can be used to change elements. In the next example the
“Turn”-button changes the image element of the chair:

P-1- 9 -

Buttons can be integrated in a larger picture or illustration. By splitting up an image into
independent elements, each element can switch between ON/OFF states if required. The next
example shows the chair as a changeable element of a picture:

Instead of clicking an extra “Turn” button, the element could be buttons itself:

The great advantage of ON/OFF buttons is that the user has full control over the activation of
elements. The order of adding or changing elements is not predefined. Also, the user is free to
choose how long an element remains in a chosen state. He can activate any selection of
ON/OFF elements whenever he wants and set the complexity of the shown graphic as he
wish. Information can be filtered and the combination of activated elements is not preset.

An ON/OFF button can turn multiple elements to ON or OFF in one step:

P-1- 10 -

Other properties that typically change are colour or text. Colour changes can be used to
highlight some elements out of a group. Text changes can be used to give different
information, e.g. translation of a vocabulary:

What can I do with this interaction form?
- Switch on and off additional information on the screen.
- Show pop-up information in small boxes on demand.
- Show the front and the back of an object.
- Switch on and off overlay elements for pictures.
- Switch on and off labels that explain parts of a picture.
- Ask a question and show the answer by clicking at the object.
- Reduce complexity by hiding elements if not needed.
- Adding elements step by step in random order.

Rationale
Adding visual elements on demand reduces the complexity as only the elements currently
needed are displayed. Also, it allows building up complex graphics step-by-step and helps to
avoid cognitive overload by chunking information [CS91]. Having the user decide which
elements should be turned on or off at any time gives maximum control to the user. In
general, buttons are graphic user interface elements that can trigger action and display states
as well [Tid05]. In the context of educational graphics they switch between two states of
elements. Thus, all objects of the world that may be represented by two major states, can be
simulated by an ON/OFF button. Switching the states explicitly by a mouse click is a form of
direct manipulation [Shn87].

Drawbacks
Each button can only set two states, ON and OFF. Many objects in the real world, however,
offer more than two interesting visual states. To assign multiple visuals states to an object, an
INFORMATION DISPLAY can be used.

The user has to explicitly turn off an element to deactivate it. In particular, if too many
elements are activated simultaneously, an image soon becomes overloaded. RADIO BUTTONS
and ROLLOVER buttons automatically turn OFF an activated element for the price of having
only one element activated at a time.

The changeable graphic elements have to be equipped with their own affordances in such a
way that the user can understand where he can click.

P-1- 11 -

Rollover Button
Provide a way to switch between two visual states of an object when the mouse pointer enters
a hot area.

Examples
Tips/Hints: If the mouse pointer moves over interesting areas of the image, a text bubble
appears. The text in the bubble explains what is shown under the mouse pointer. The text
bubbles disappear automatically as the mouse moves on to other interesting areas.

Ghost drawing on demand: If the mouse pointer moves over certain parts of the image, an
overlay shows the insights of the object.

Look through walls: If the mouse pointer moves over the question marks, the wall
disappears and the user gains insights into the house.

P-1- 12 -

Context
You are using an information graphic that can be explored by your students individually on a
laptop or PC. The information graphic consists of many elements and some elements are
interrelated (e.g. labels and text are related to objects, elements can be part of the same set,
elements can be connected, elements can show different states of the same object). The
interrelation between the elements should stand out and it should be clear which elements
belong together. The student should be allowed to focus on some elements without losing the
context of the whole graphic.

Problem
A huge number of elements makes it hard to recognize element relations and overloads the
screen. Elements may interfere each other, hide other elements, or be hard to perceive as
separate units.

Forces
Changing a graphic allows exploring given information but how can the user recognize which
data s/he is currently focussing on?

To replace graphic elements or to open information pop-ups allows adding details on demand
and fading-in further explanations but how can the user efficiently find out which parts of the
graphic trigger such changes?

Adapting the given information according to the needs of the user allows for self-paced
learning but altering all parts of the graphic can also mess up the illustration. Also, adding
more and more information reduces the clearness of the original graphic.

Adding information ad-hoc to provide object specific information avoids split attention effects
but the overlay information also hides some parts of the graphic in the background.

Solution
Add, remove or change elements dynamically by using the mouse pointer as an implicit
trigger for element changes. This allows for rapid, user-controlled changes of focussed
elements. If the mouse pointer points to a specific element, interrelated elements can change
their states (e.g. fade in, highlight or show a different image). Automatically reset all changes
if the mouse pointer exits the trigger element to no longer focus the activated element(s).

To highlight elements, define for the elements in question two visual states ON and OFF by
having some visual properties set differently:

Define an element as a hot area that is sensitive to the mouse pointer:

P-1- 13 -

If the mouse pointer is outside the hot area, show the OFF state:

If the mouse pointer is within the hot area, show the ON state:

On exiting the hot area, return to the OFF state:

The hot area can be the ON-OFF element itself. That is, if the mouse pointer enters the
element it will change its own visual state:

Details
A rollover is a button that automatically turns an elemrnz ON if the mouse pointer enters the
hot area element and automatically turns the same object OFF if the mouse pointer exits the
hot area element.

Information changes or pops out implicitly without having the user to explicitly click at an
element. The later case would require him to know where he can click, while a rollover offers
the information more incidentally. Users can explore images intuitively and will immediately
recognize where additional information is available. Information is presented rather on-focus
than on-demand. If the mouse exits the hot area, the ON/OFF element returns to its visual
OFF state. This means that there can be only one element highlighted at a time. This cleans up
the screen automatically but also means that information is only temporarily available.

Because the ON state is only temporarily for an element, a roll over can indicate that an
element or an area is activated at the moment. It can highlight which element is focussed by
the mouse pointer. If elements on the screen offer an affordance for further operations (i.e.
clicking at an element or drag the element), the highlighting indicates on which element the
mouse pointer would operate.

The transient character of rollover buttons can be useful to highlight related objects on the
screen. For example, by moving the mouse pointer over one element of a set, all members of

P-1- 14 -

the set could be highlighted. In the next example you see a group photo in which the members
of a team are highlighted simultaneously:

An advantage of an overlay (such as a label or text bubble) is the spatial nearness to the
object. Hence, the coherence of base data and faded-in data is optimized. However, overlays
are also disturbing because overlays hide data in the background.

P-1- 15 -

A rollover minimizes the area which is hidden because the overlay disappears as soon as the
mouse exits the hot area:

To avoid overlapping completely, an INFORMATION DISPLAY can be used for the price of
separating text and image. To conserve coherence between an illustration and the text,
corresponding words and objects could be highlighted at the same time:

What can I do with this interaction form?
- Highlight related areas or related information on the screen.
- Show or highlight all objects of one class or one set.
- Indicate that an object is activated or that the mouse points at an object that can be

activated.
- Highlight the bounds of an object, e.g. highlight where the border of a country runs.
- Dynamically fade in info boxes, windows or text bubbles.
- Provide tool tips.
- Show objects in a different state by activating them by the mouse pointer.

Rationale
Roll-over buttons add and remove additional information automatically to the graphic. Thus,
the visual elements are not required to have additional visual affordances [Gib79], because the
mouse pointer can explore the graphic by moving over interesting areas. Because no explicit
operations (such as mouse clicks) are required, the use of roll-over is self-explaining to the
user. Adding information only temporarily will automatically clean up the graphic when the
focus is lost. Therefore, information overlays can be integrated into the graphic with only
minor disturbance. The advantage is that extra information is close to the visual context it

P-1- 16 -

refers to. Hence, the contiguity principle - graphics and corresponding texts should be placed
close together – is respected [MM99]. Also, having related objects close together lets the
observer perceive them as a unit according to the gestalt law of proximity [Gol89]. By only
having one roll-over button activated at a time, an implicit focus is given to direct the
attention of the user. As attention is a limited resource, this can help to reduce the cognitive
load [CM02]. Confusion about which label belongs to which area is avoided since the mouse
pointer establishes an unambiguous point of reference.

Drawbacks
Using the mouse pointer for the activation of elements means that the pointer cannot be used
for anything else while activating the specific information. To let information pop out for a
longer time period, a RADIO BUTTON is an alternative which also takes care of only having
one information unit activated at a time. A RADIO BUTTON, however, is less intuitive as it
requires a more explicit user input (mouse clicks).

Some interactive displays, such as touch monitors and some interactive whiteboards, do not
recognise mouse motion without pressing the surface. Hence a rollover (which occurs on
moving the mouse without pressing the mouse button) will not work. As an option, one can
design an ON/OFF button that responds to pressing the mouse button (instead of mouse
entering) and releasing the mouse button (instead of mouse exiting).

It is not possible to select multiple elements simultaneously (e.g. to compare representations
or reduce the number of objects). Since each added information is automatically discarded if
the focus is lost, a ROLLOVER can not be used to create complex illustrations step-by-step. To
implement such behaviour, use a TOGGLE BUTTON instead.

P-1- 17 -

Radio Button
Provide a way to highlight one element out of a group.

Examples
Focus on information. By clicking at one of the dogs, its opacity changes and the user can
focus on that information unit. Only one of the information units is highlighted at a time.

Yoga exercises: One of the exercises is highlighted to show the participants which exercise
should be performed next.

P-1- 18 -

Zoom on Demand: If the user clicks at on of the marked areas, an enlarged illustration pops
out. Any enlarged illustration shown before disappears. Thus, only one zoom is visible at a
time and the attention is directed to only one zoomed detail.

Showing bounds: If the user clicks at any country, the complete area of that country is
highlighted. Thus, one can see exactly which parts belong to a country. In particular, this is
helpful if the areas are separated.

P-1- 19 -

Context
You are showing a complexly information graphic with distinct elements to your students. In
your presentation you are going to focus on some of the elements separately. To assist your
audience in paying attention to the element you are talking about it should be easy to find and
recognize it.

Problem
In a graphic full of elements it is hard to recognize a specific one and to discriminate it from
other objects (e.g. to find the exact position and/or boundaries). While searching for the
element the observer is distracted and cannot pay full attention to your talk.

Forces
Adding and changing graphic elements on demand makes an illustration adaptive and flexible
but can also mess up the screen or hide important information.

Turning graphic elements on and off allows selecting and filtering the information displayed
on the screen but how can one element be selected as a special one? How to focus and
highlight one element instead of treating all elements equally? How to ensure that only one
object out of a group is activated and shows a special visual state?

In some graphics one has to avoid that multiple elements are selected simultaneously but
users may forget to deselect other elements. Deselecting an element may be inconvenient as it
involves extra mouse moves. To deselect an element, the user has to search for the currently
activated element on the screen but graphic elements may not provide explicit visual hints
which element is currently activated.

Temporarily activating elements or groups of elements could be done by RADIO BUTTONS as
well. But if the mouse pointer has to be available for other operations the activation and
deactivation of elements must be triggered explicitly and not bind the mouse pointer. TOGGLE
BUTTONS support such an explicit change of states but do not ensure that only one element is
focussed at a time.

Solution
Allow the user to explicitly highlight or change an element by clicking at it. On activating the
element make sure that all other related elements are automatically deactivated.

To highlight the elements of a group, define two different visual states for each element of the
group. In other words, define ON and OFF states for each element by varying visual
properties:

P-1- 20 -

If the user clicks at any of the elements, the clicked element switches to its ON state and all
other elements switch to their OFF states at the same time:

Details
The main purpose of a radio button is to select or activate only one element out of a group at
the same time. One can select a single element to focus on it and direct the attention to that
element. An element that is highlighted that way stands out and all other elements of the
group fade out – either completely or partly. By directing the attention, one reduces the
complexity of the graphic because the observer has not to care about all parts at the same
time. Also, it is indicated directly which element is currently talked about. In particular, this
can help in presentations. One can highlight the bullet item or the row of a table one currently
talks about:

P-1- 21 -

Whenever an illustration shows a situation in which only one element can be active
concurrently, a radio button is very useful. For example, one can only listen to one radio
station at a time (that’s where the name “radio button” comes from), only perform one
exercise at a time, or allocate scarce resources to only one object at a time. The next example
shows how a radio button indicates who the next speaker in a meeting is:

By turning the last activated object automatically OFF, the user input is minimized and the
shown information becomes not overloaded.

Once an element is selected to pop out, it remains permanently in ON state until another
element of the group is activated. Thus, the mouse pointer is only needed once to activate an
element and can be used for different tasks thereafter (in opposition to ROLLOVER BUTTONS
which stress the mouse button for the time it activates an element).

If the user clicks at a button that is already in ON state there are two variations to react: the
button may either remain in ON state (meaning there is always one of the elements activated)
or it switches to OFF state (meaning that all elements are in OFF state).

At the beginning one of the buttons can be set to ON by default. Another option is to have all
buttons set to OFF at the beginning. Note that the visual properties that change can be varied
individually for each button. For example, one button could change its opacity while the other
button changes its colour.

What can I do with this interaction form?
- Highlight or select one object of a group.
- Direct attention to a particular object.
- Show explicitly that for a group of objects only one can be active or activated

concurrently.
- Show what to do next or who is in the row next.
- Indicate which object is currently focussed on and handled in a presentation.
- Reduce complexity by hiding or fading all information objects that are currently not

needed.
- Focus on objects step by step in random access.

Rationale
A radio button selects one element out of a group and provides and implicit focus [Thi90]. It
is taken care of that only one object is highlighted at a time. Thus, accidentally activating
multiple objects is prohibited. This is important if the graphic is used to show that only one
element should be focussed on or represents a special state. The activation state is
automatically transferred between the buttons in the group. Highlighting or focussing an

P-1- 22 -

object directs attention and clarifies which object is talked about. Radio buttons allow having
all buttons simultaneously visible while assigning one special visual state to one of the
buttons. Thus, information can be available at all times but it is assigned with different
priorities.

Drawbacks
Each button can only represent two visual states. There is no explicit indicator which element
is currently selected because the mouse pointer can move to other positions while the selected
element remains in ON state. Thus, the graphic element has to provide its own visual hint that
it is activated.

The graphic has to provide affordances to point out which areas are clickable in order to
activate one of the radio buttons. These affordances may add an undesirable interference with
the graphic itself. Radio buttons are often used to reduce the number of visual elements of a
graphic. Hence, if new visual elements are required to activate the buttons, the benefits are
nullified. For this reason, radio buttons work best if a base graphic is in use that offers
implicitly such affordances, e.g. the bounds of a map or the spatial parts of objects or charts.

P-1- 23 -

Information Display
Provide a display to show additional information about other objects on the screen.

Examples
Select a skyscraper: The user can click at one of the skyscraper icons to get an enlarged
illustration shown in the box.

Select a butterfly: The user can click at one of the small butterfly icons to replace the large
butterfly illustration shown in the centre.

P-1- 24 -

Info box: Clicking at one of the Scandinavian countries sets the content of the grey info box.
The name of the country, the flag and statistical information are shown in the info box.

Context
For illustrative purposes you are using an information graphic in your classroom or in
multimedia materials. For specific elements of the graphic you want to provide further
information or look into the details. The base graphic should always be visible for reference
and any additional information must not hide or replace the base graphic.

Problem
Overlaying the base graphic with additional information sometimes causes interfering with
the content, in particular if a large text or image element is added. But placing additional
information around the base graphic uses extra space on the screen. The available space is
limited due to low screen resolutions. Reducing the base graphic in size decreases its quality
and makes it harder to find orientation in the presented screen.

Forces
Adding information spatially close to an inspected object avoids split attention effects but
overlay information interferes with the background and often hides important information.
This is particularly true for larger pop-up frames.

If extra information is located close to an object, the user perceives it as a description of the
objects. However, objects can also be used to add or set information that is only indirectly
related to the object.

P-1- 25 -

Integrating extra information directly into a base graphic implicitly relates it to contextual
semantics but the new information may be independent or related to other contextual
information as well.

Adding or changing information in a base graphic forces the user to struggle with the
information while s/he may prefer to decide on her/his own when to access it.

Common buttons can change between two visual states but sometimes multiple state
representations are required. A mechanism is needed to select one out of multiple states.

Solution
Use an element as a separate information display that can change its visual states to show
information about different elements in a base graphic. Set a default visual state for the
information display:

Overlay the base graphic with a set of button elements or hot area elements that can alter the
visual state of the information display:

For each button/hot area assign specific visual property values to the information display:

If the user clicks at a button, use the assigned visual state for the information display:

If the mouse pointer enters a hot area, use the assigned visual state for the information
display:

If the mouse pointer exits a hot area, use the default visual state for the information display:

P-1- 26 -

Details
An information display can change its content by clicking at a button element or by entering a
hot area element in a base graphic. The information display is separated from the base graphic
which activates the content of the information display. Thus, the content of the display does
not overlay the original graphic and hide or interfere information. Showing extra information
in a separate area is less disturbing. However, the larger spatial distance between the focussed
area in the base graphic and the information given in the display decreases the overall
coherence. Locating the eyes on either the objects in the base graphic or the objects in the
information display costs cognitive resources. Using hot areas and mouse rollover to set the
information display supports reorientation as the mouse points directly to the area of interest
in the base graphic.

This orientation may get lost when using a button object, as the user can move the mouse
independently after clicking the button. On the other hand, information displays are less
transient if buttons are used.

The base graphic can be complex and the information display can show details or further
information about elements of the base graphic. Another option is to use the base graphic as a
menu. In this case, the base graphic’s elements are menu buttons that can select the content
shown in the information display.

Rather than having only two states (like TOGGLE BUTTONS), an information display has
multiple visual states. The number of states is set by the number of buttons or hot areas that
can set a specific state for the information display. The first shown state can be either an
additional default state, or it can be one of the regular button (or hot area) states preset.

The information display is perceived as a passive element on the screen. Therefore, it cannot
be involved as a button or hot area itself. If you want to provide a method to reset the
information display to its initial default state you should consider an additional button rather
than using a click on the display to reset it.

While the separation of the base graphic and the information display increases the spatial
distance and makes the complete graphic less coherent, it becomes more clearly what is the
base information and what information is additional or more detailed and zoomed in. Not only
does the display avoid visual overlapping of information, it also offers a large frame for
information if needed. Thus, explaining elements of the base graphic can be done more
elaborately than in small pop windows or text bubbles.

What can I do with this interaction form?
- Show a status bar.
- Provide text information for objects on the screen.
- Show details (e.g. a zoom view) for one of the objects on the screen.
- Use the button/hot area objects as menu items to select content.
- Explain components of a larger structure or object.
- Provide information about areas of a map.

P-1- 27 -

Rationale
The main purpose of the information display is to provide details on demand [Shn87]. The
base graphic is a means to select which information should be displayed. In that sense it is a
visual navigation menu which the user can use to navigate to information nodes. The content
of the information nodes is shown in the information display. Menu bars and content frames
are a special case of an information display. An information display allows zooming into the
details while having the overview picture shown at the same time [War04]. Relations between
the big picture and its details are better perceived. Information displays can also be used to
show small multiplies [Tuf90] and having one or two of the thumbnails enlarged (e.g. for
comparison).

Drawbacks
Information can only be given for one element at a time. Separating labels and images is a
cause for split attention effects. The eye’s focus has to shift between the information given in
the base graphic and the information display. In rollover information displays, the mouse
pointer can help for orientation. However, using the mouse pointer for activation disables the
mouse for any other activation. Clickable information displays release the mouse for other
tasks but it is harder to refocus on the activated area in the base graphic. An interesting option
to help this problem is to combine an information display with RADIO BUTTONS that highlight
the area in the base graphic which set the display.

An information display never alters the triggering element itself but sets the state for another
display. The display is usually at a distant location and has to be perceived as an active
element on the screen. If the display is small (e.g. a status bar at the bottom) the user may
miss the added information or the change of content.

Acknowledgement
Special thanks to Tim Wellhausen who has shepherded this paper and shared his experience
with the authors. We are especially thankful that Tim volunteered to shepherd an extra paper
and jumped in to backup. He was a great support and helped to improve the paper! We would
also like to thank all workshop members at the EuroPLoP 2008 in Irsee who have given very
valuable feedback.

References
[Ba97] Bayle, Elisabeth et al. : Putting It All Together : Towards a Pattern Language for Interaction
Design, Summary Report of the CHI’97 Workshop
[Bor01] Borchers, Jan: A Pattern Approach to Interaction Design; John Wiley & Sons, 2001
[CS91] Chandler, P., and Sweller, J.: Cognitive Load Theory and the Format of Instruction. Cognition
and Instruction (pp. 293-332) 8 (4). 1991.
[CM02] Clark, R. C., & Mayer, R. E.: E-Learning and the science of instruction. Proven Guidelines
for consumers and designers of multimedia learning. San Francisco: Jossey-Bass/Pfeiffer. 2002.
[DLH04] Duynie, Douglas K. van; Landay, James A.; Hong, Jason I.: The Design of Sites, Addison-
Wesley, 2004
[Gib79] Gibson, J. J.: The Ecological Approach to Visual Perception. Boston: Houghton Mifflin,
1979.
[Gol89] Goldstein, E. Bruce. Sensation and Perception. Belmont, Calif: Wadsworth Pub. Co, 1989.

P-1- 28 -

[GLC01] Granlund, Asa; Lafrenière, Daniel ; Carr, Daniel A.: A Pattern-Supported Approach to the
User Interface Design Process, Proceedings of HCI International 2001, 9th International Conference
on Human-Computer Interaction, 2001, New Orleans
[KU09] Kohls, C. and Uttecht, J. G. (in press). Lessons learnt in mining and writing design patterns
for educational interactive graphics. Computers in Human Behavior.
[KW06] Kohls, C., Windbrake, T. Towards a Pattern Language for Interactive Information Graphics.
Pattern Languages of Programming Design 2006. Portland, Oregon: Hillside Group. URL:
http://hillside.net/plop/2006/accepted_papers.htm.
[Mah06] Mahemoff, M: Ajax Design Patterns. Creating Web 2.0 Sites with Programming and
Usability Patterns. O’Reilly Media, Sebastopol, 2006
[MJ98] Mahemoff, M.; Jonston, L.: Principles for usability-oriented pattern language, OZCHI ’98
Proceedings, Adelaide, Australia, S. 132-139
[May01] Mayer, R. E.: Multimedia Learning. Cambridge: Cambridge University Press. 2001.
[MLC05] Malone, E.; Leacock, M.; Wheeler, C.: Implementing a Pattern Library in the Real World:
Yahoo! Case Study. http://www.leacock.com/patterns/ (accessed 01.04.06)
[MM99] Moreno, R.; Mayer, R.E.: Cognitive Principles of Multimedia Learning: The Role of
Modality and Contiguity, Journal of Educational Psychology, 91, p. 358-368, 1999
[ND05] Niegemann, Helmut M.; Domagk, S: ELEN project Evaluation Report, Report of Work
package 5. E-LEN project: a network of e-learning centres; http://www2.tisip.no/E-
LEN/documents/ELEN-Deliverables/Evaluation_Report_E_LEN.pdf (accessed 29.03.06)
[PPP] The Pedagogical Patterns Project, http://www.pedagogicalpatterns.org/
[Rie90] Rieber, L.P.: Computers, graphics, & learning. Englewood Cliffs, NJ: Prentice Hall. 1990
[SM00] Schumann, H.; Müller, W.: Visualisierung. Grundlagen und allgemeine Methoden, Springer,
Berlin, 2000
[Sc05] Schmitt, Silke; Schreiner, Martin; Timmesfeld, Fel; Vucica, Martina; Wallach, Dieter:
PatternCube.com: Ein webbasiertes Repository für User Interface Design Patterns. In: Hassenzahl M.;
Peissner, M. (Hrsg.): Usability Professionals 2005
[Shn87] Shneiderman, B.: Designing the User Interface: Strategies for Effective Human-Computer
Interaction. Reading, Mass: Addison-Wesley, 1987.
[Thi90] Thimbleby, H.: User Interface Design. ACM Press frontier series. New York, N.Y.: ACM
Press, 1990.
[Tid05] Tidwell, Jenifer: Designing Interfaces, O’Reilly, Sebastopol, 2005
[Tuf90] Tufte, E. R.: Envisioning Information. Cheshire, Conn.: Graphics Press, 1990.
[VW04] Vogel, R; Wipperamnn S.: Dokumentation didaktischen Wissens in der Hochschule
Didaktische Design Patterns als eine Form des Best-Practice-Sharing im Bereich von IKT in der
Hochschullehre, Wissenschaftsforschung Jahrbuch 2004, Berlin. 2005
[War04] Ware, C: Information Visualization – Perception for Design. Morgan Kaufmann Publishers,
San Francisco., 2004
[Wel05] Wellhausen, T. User Interface Design for Searching - A Pattern Language. http://tim-
wellhausen.de/papers/UIForSearching.pdf (accessed 19.06.2008)
[WV03] van Welie, M.; Veer, van der Gerrit, C.: Pattern Languages in Interaction Design: Structure
and Organization, Interact 2003

1

Patterns for Supervising Thesis Projects

Axel Schmolitzky

University of Hamburg, Germany

Vogt-Kölln-Str. 30

D-22527 Hamburg

+49.40.42883 2302

schmolitzky@acm.org

Till Schümmer

FernUniversität Hagen, Germany

Universitätsstr. 1

D-58084 Hagen

+49.2331 987 4371

till.schuemmer@fernuni-hagen.de

Abstract: Thesis projects are a challenging task for students as well as their
supervisors. In most cases, students have not managed such large projects
before. Many supervisors are good researchers, but have not received
training in pedagogy and project management. This means that students as
well as supervisors often lack best practices in managing thesis projects.
This paper fills this gap by providing a set of best practices for the supervisor
that may help to better structure and focus the collaboration between student
and supervisor so that the thesis runs smoothly, thus enabling students to
succeed.

1. Introduction

The following patterns describe best practices for supervisors of students’ thesis
projects. Students have to write such a thesis at the end of their bachelor,
masters, or diploma program (the "Diplom" was the most common degree in
higher education in Germany until the mandatory change to Bachelor/Master
degrees). These projects are typically long-term interactions between the
supervisor and the student that last between 3 and 12 months, sometimes even
longer.

Typically, after they have agreed on a topic with their supervisor, students can
take some time to familiarize with it and prepare for the official work term on
their thesis. Ideally, they use this time to reach a good understanding of their
subject and create a realistic plan for their practical and theoretical work. Quite
often this precedes the time officially allotted to the thesis.

One common problem is that students and supervisor do not meet on a daily
basis. Even if the students participate in a research group, typically the full-time
researcher cannot interact with them all the time. In addition, many students
have a part-time or even full-time job, so that the thesis work has to take place
in the evenings or on weekends. This is especially the case at distance teaching
universities like the FernUniversität in Hagen, Germany. Thesis projects are
thus an example for a blended learning setting: Co-located synchronous phases
of interaction interweave with phases where students work at home, following
their individual schedules and preferences for the work setting.

Proceedings of the 13th European Conference on Pattern Languages of Programs (EuroPLoP 2008),
edited by Till Schümmer and Allan Kelly, ISSN 1613-0073 <issn-1613-0073.html>.
Copyright © 2009 for the individual papers by the papers' authors. Copying permitted for private and
academic purposes. Re-publication of material from this volume requires permission by the copyright
owners.

2

Unfortunately, the freedom of working independently from the supervisor can
lead to phases where the thesis moves out of the student’s focus. Especially in
distance teaching universities, we can observe frequent drop outs of students
due to private matters or a high workload at the student’s workplace. Students
abort the thesis project before they have actually started the official part of the
project. In our experience, a closer interaction between supervisor and student
starting on the day of the first encounter helps to reduce the number of drop
outs and keeps the students focused on their theses.

The patterns introduced in this pattern language can guide supervisors in such
a close interaction. We started to write down these patterns for various reasons:

! After several years of experience in supervising students during their thesis
work, certain patterns were becoming too obvious for us to be ignored.

! Some best practices we apply today would have saved us a lot of time in our
early years as supervisors if we had been aware of them or been able to use
them. And we regretfully notice that novice colleagues tend to make the
same mistakes as we did when we first supervised thesis projects.

! Initially, we thought that there were already patterns for this subject.
However, we were not able to spot articles discussing this issue.

! Some books on the subject, such as [6], give good advice, but do not cater
to new developments such as agile methodologies. As many students’
thesis projects develop rather into an expedition than into the manufacturing
of a product, agile practices helped us a lot in supervising thesis projects.

! The integration of supporting computer technology (such as wikis, email,
repositories) into the supervising process has changed further and improved
the processes for us. We are not aware of any literature that captures how
technology support interrelates with the social practices of thesis
supervision.

! Finally, we think that a compact description in pattern form has more
potential to be widely noticed than any book on the subject, even if it is as
concise as [6].

Although these patterns are targeted at thesis supervisors, we think that they
can also help students working on their final theses. The patterns can act as a
guideline for both parties and help to make the expectations of supervisors and
students more explicit. This has the advantage that students can adapt to the
way how supervisors think that thesis projects should work. The patterns draw
the picture of an ideal student who is responsive and makes her process
transparent. But they also describe how an ideal supervisor should take care of
the student. Thus, the patterns require a high level of discipline on both sides,
and supervisors and students should be aware of the fact that both parties
might fail to implement some of the patterns. In our experience this is not
critical, as long as there is an open and honest communication culture. Neither
students nor supervisors should close their eyes, but speak up when observing
situations where one side fails to play their role.

We explicitly exclude supervising Ph.D. theses from our patterns for two
reasons:

! As a Ph.D. student has to work much more independently, less guidance

3

should typically be necessary.

! None of us has enough experience in supervising Ph.D. theses.

This does not mean that some of these patterns cannot be used in Ph. D.
supervision. However, we have no experience with the application of these
patterns in Ph. D. theses. If you are a Ph. D. thesis supervisor, you may have a
look at [3].

As noted before, we consider thesis projects to be instances of a blended
learning setting. Consequently, the patterns of this pattern language are written
as socio-technical patterns. Each pattern starts with a context description and a
problem statement that summarizes the main reasons why the pattern should
be used. After that, we list a set of forces that were considered in the pattern.
We understand these forces as conflicting requirements in the interaction
between supervisors and students. The goal of the pattern should be to change
the socio-technical setting of the process in a way that the forces are less
conflicting. In an ideal situation, the solution would remove the mentioned
conflict between the forces.

The solution names social interaction between student and supervisor. After
this, we discuss the design and use of technology that can support the social
interaction between supervisor and student. In most cases, it is sufficient to
employ standard technology including communication technology (telephone, e-
mail or instant messaging systems) and shared information spaces like wikis or
shared file systems (e.g., BSCW or Google Docs). In some cases, a tighter
integration of technology can be needed, which is described as a design
guideline for technology designers. Note that all patterns can also be
implemented without any technology support.

4

2. The Pattern Language

This paper contains the following patterns:

2.1 FIRST ENCOUNTER: Your first meeting creates the basis for a trusting and
efficient work relationship. Be thorough in defining the formal context
and leave the details of the subject of the thesis for later.

2.2 PROJECT HEARTBEAT: Request status updates on a regular basis to ensure
that the student is still participating in the project.

2.3 AGILE EXPOSÉ: Make the student write an exposé for the thesis and make
the student update it based on your feedback until the task is well-
defined for both the student and you.

2.4 EARLY OUTLINE: Let the student write and maintain an outline of the final
thesis as soon as the scope of the project is well-defined.

2.5 STUDENT-MANAGED SCHEDULE: Ask the student to create a project schedule
and ensure that the student updates the schedule when the work
progress deviates from it.

2.6 DIARY: Propose that the student writes daily notes on her/his progress in a
diary, so that ideas and decisions stay persistent throughout the
project.

2.7 ADVISED LITERATURE RESEARCH: Let the student collect and reflect on
literature in an interaction with you.

2.8 TEST THE WATERS: Identify the student’s strengths and weaknesses by
assigning tasks on a small scale. Upon completion, ask for the time
needed, so that you learn about this student in particular and about
students’ performance in general.

2.9 EXPRESSIVE STUDENT: Ask the student to present the core of her/his
research at different stages of the thesis project and on different
levels of granularity also to other people than yourself.

5

Figure 1: The patterns on a timeline

Figure 1 shows the patterns of this pattern language on a timeline. Any thesis
project has a formal starting point and a formal deadline. These dates are
typically enforced by official regulations of the educational institution. In the
figure, the patterns are shown in relation to these points in time. For example,
according to the figure, AGILE EXPOSÉ should be fully applied before the project
is formally started. DIARY can be started at some point before the formal start
and EXPRESSIVE STUDENT can be applied before and even after the formal
deadline.

When selecting patterns for a concrete thesis project, we suggest you first
select the patterns closer to the timeline since these patterns are more
important than those shown at the top of the figure.

6

2.1 FIRST ENCOUNTER

Context: A student is looking for a subject for her/his thesis. You fulfill the
formal prerequisites for being a supervisor. The student asks you if you would
be willing to supervise her/his thesis.

Problem: You need to find out whether cooperation with the student can
work out. If you do not clarify expectations upfront, there is too much
room for misunderstandings and conflict.

Forces:

! You might not know the student very well, maybe only from one or two
previous courses. Especially you might not know much about the student’s
abilities.

! The student might not know you too well, either. S/he might not know what
exactly you expect from her/him.

! Procedures might not be clear if no formal framework for theses is applied in
your institution.

! The topic should be tailored to the student’s preferences and capabilities.

! Your additional workload of yet another thesis supervision should also pay
off for yourself.

Solution: Meet the student to tell her/him how you handle thesis projects.
Give as much information about your way of supervising as possible. Pass on
this pattern language. Ask the student about her/his personal situation,
including:

! What degree is the student aiming for (Bachelor, Diploma, Master's
Degree)?

! In which program (e.g., Computer Science, IS) is the student aiming for a
degree?

! When is the student planning to start working on the thesis?

! Are there any external formal or hard deadlines, e.g., exams, expecting a
child, long-planned holidays?

! Is the student planning to work on the thesis full-time, part-time or at nights?

! What kind of degree is the student aiming for? Is s/he ambitious or just
looking for some final thesis?

! What preferences does the student have with regard to helpful skills, such
as programming, theory building, interviewing, or writing?

After the student got an impression of the formal context, ask how much time
per week (in days) the student is willing to spend on the thesis. Based on the
answer, calculate the earliest date you can think of for finishing the desired type
of thesis (e.g., the student is willing to work three days a week. For a half-year
full-time diploma thesis this means that the work will have to last for at least
nine months!). Try to fit this with your personal context (e.g., you might prefer to
get the final thesis in your semester break) and fix a deadline with the student.

7

Even though this might not be the actual formal deadline, having the time frame
fixed gives both the student and you a good base for planning.

Technology Support: When agreeing on a date for the first encounter, you can
ask the student to send you a short CV to learn more about her/his background.
Together with a confirmation of the appointment, you can send out an agenda
as well as a link to your personal thesis guidelines. These guidelines are a
public document in which the general rules and assumptions for the supervision
of thesis projects are shown. You may even consider passing this pattern
language to the student.

In cases where you use a shared workspace system for supporting the
interaction between you and the student, you should prepare the FIRST

ENCOUNTER by cloning a template workspace that already contains information
about structuring a thesis project.

Discussion: The first encounter helps to reach a mutual understanding of each
other’s goals and expectations. The questions stated in the solution can serve
as a check list and ensure that all important information is exchanged.

Although it can work in some cases, we advise against starting a thesis project
without an initial face-to-face meeting, even in a fully distributed setting like the
FernUniversität in Hagen. The meeting helps to create a mutual understanding
as well as an impression of the student (and the student will get an impression
of you). See also “Face to Face before Working Remotely” in [5] where the
authors recommend to have a face-to-face phase in the early days of a
development project before individual sub-teams start working in remote
locations. If you cannot arrange a face-to-face meeting, you should have the
best possible meeting infrastructure in place for this meeting including at least
high quality video and audio connections. In an ideal setting, you would also
use shared whiteboards for creating hand-drawn figures and application sharing
systems for looking at example systems together. But even then, we do not
recommend a remote FIRST ENCOUNTER.

Related Patterns:

! 2.3 AGILE EXPOSÉ: Typically, the first task for the student after the initial
meeting is to create a problem definition that captures her/his understanding
of the thesis’ goals.

! 2.5 STUDENT-MANAGED SCHEDULE: You can start discussing the cornerstones
of a schedule during the FIRST ENCOUNTER.

8

2.2 PROJECT HEARTBEAT

Context: The student is working on the thesis.

Problem: To successfully finish the thesis project, the student has to keep
up the pace. But it is hard to detect changes in the student’s pace that
make appropriate support and coaching necessary. The thesis eventually
runs completely out of schedule.

Forces:

! The student is not co-located with you (e.g., is not working in your research
group), so you have no casual or regular contact.

! Many external forces (workload, family-related issues) can hinder the
student’s progress in such a way that major rescheduling becomes
necessary.

! The project can lose its momentum because the student needs more
pressure from your side.

! The thesis might not be part of your own research agenda, so you have no
intrinsic interest in its progress; without active input from the student the
thesis shifts out of your focus.

Solution: Propose a social contract that forces the student to report the
project’s progress at least every 14 days. Ask the students to summarize the
work and their insights since the last report. Whenever a report is overdue,
remind the students of the violation of the social contract and propose a
meeting where the future of the thesis work is discussed.

Technology Support: The student sends you an e-mail reporting on the latest
progress. You store the latest mail in a thesis folder and mark this mail for
tracking after 14 days. You frequently check the mail folder and contact those
students who have violated the social contract.

An integrated system can even further improve the social process outlined by
the pattern. The system can keep track of the last activity summary and prompt
the students to update their activity summary in the agreed intervals. Both the
individual student and you can see the date of the last report. In addition, you
see an overview of due reports for all of your students.

Discussion: Project heartbeat is closely related to the ALIVENESS INDICATOR
presented in [10]. To our experience, the 14 days period has shown to be an
effective time span for not losing the mutual awareness. If the DIARY pattern is
applied, the regular entries can be considered to be PROJECT HEARTBEAT. In
such cases, an integrated groupware solution would keep track of the dates of
the latest diary entries.

Related Patterns:

! 2.6 DIARY: The DIARY provides more information on the progress of the
thesis. On the other hand, it requires additional efforts from the student. The
PROJECT HEARTBEAT can thus be considered an automated and lightweight
version of the DIARY. We consider PROJECT HEARTBEAT to be mandatory and
DIARY to be desirable.

9

2.3 AGILE EXPOSÉ

Context: The student has expressed interest in a specific problem area. You
are interested in specific results, like the creation of a software component, the
analysis of usage data, or a literature overview of a specific field. Such results
are valuable to you as a researcher and help you to gain new insights, e.g., in
the context of your larger research agenda. The problem statement for the task
has been discussed during the FIRST ENCOUNTER.

Problem: The student and you have different visions and goals for the
result of the thesis project. If the goals are too different, the student will
create a solution that does not meet the supervisor’s expectations. This can
result in a poor grade and unusable results.

Forces:

! You have identified an interesting problem, but you do not have an idea for a
solution to the problem yet. Note that solution ideas can evolve out of
discussions.

! You have a clear vision for the thesis, but you have failed to communicate it
to the student during the FIRST ENCOUNTER (1).

! The more the student delves into the topic, the more aspects will s/he be
able to contribute to the problem definition.

! The task should be challenging and scientifically relevant.

! The task should be tailored to the student’s preferences and capabilities.

! You have to guarantee that the task is appropriate for a thesis.

Solution: Ask the student to summarize the plan for her/his thesis in
her/his own words by writing an exposé. An exposé is a text of 2 to 6 pages
length, describing the context, the problem, the approach to a solution (if
appropriate) and a rough schedule for the actual work on the thesis. You
comment on the exposé and ask the student to rewrite it until it embodies a
shared understanding of the task. This process can take several iterations and
thus several weeks. It is the collective responsibility of the student and you to
reach such a written 'agreement' both are satisfied and comfortable with.

Technology Support: The supervisor creates an empty wiki page for the task
description. At the end of the meeting, s/he asks the student to summarize
her/his understanding of the task and to send the complete summary to the
supervisor. Upon receiving the mail, the supervisor edits the wiki page and
highlights points where s/he has a different understanding of the task. This is
repeated until the supervisor sees no more differences.

More task oriented groupware applications can improve the coordination
between student and supervisor. Typically, such systems provide explicit FLOOR

CONTROL [10] for the document. After the student has finished the task
summary, s/he passes the floor on to the supervisor who will get informed
immediately. The supervisor can use SHARED ANNOTATIONS [10] for pointing out
differences in understanding and pass the floor back to the student.

Discussion: An exposé should not be seen as a small version of the final
thesis (sometimes students write their thesis text based on their exposé).

10

Instead, an exposé describes upfront what should be done, with a focus on the
process, including a timeline with a description and an estimation of the
necessary subtasks. The structure of the final thesis text can be very different
from this (and typically is). After the student and you have agreed on a stable
exposé, it does not need to be changed again. It can serve as a contract that
defines the scope of the work.

Related Patterns:

! 2.9 EXPRESSIVE STUDENT: It is important that the exposé is written by the
student. But while EXPRESSIVE STUDENT aims at the student’s ability to
convey the core idea of the thesis project to other people than you, this
pattern focuses on the relationship and the mutual understanding between
the student and you (the supervisor).

! 2.8 TEST THE WATERS: When writing the AGILE EXPOSÉ, you learn more about
the student’s writing skills. For the student it is a first test of writing a text that
you must agree with.

11

2.4 EARLY OUTLINE

Context: The student has started to work on the thesis.

Problem: Students have difficulties to start the writing process, especially
when they see a blank screen or an empty sheet of paper. They have very
limited experience on structuring their ideas in a way that is suitable for a
scientific thesis.

Forces:

! Students typically underestimate the time needed for writing the final thesis
text.

! Often students have no prior experience with writing a larger document.

Solution: Ensure that the student creates an outline of the thesis directly
after the scope of the thesis has been defined. Provide a prototypical thesis
structure and ask the student to adapt the structure to her/his specific problem.
Ask the students to add one paragraph explaining the intended content for each
section in the outline.

A prototypical outline might look like this:

1. Introduction

This section motivates the problem that is solved in the thesis. It provides first explanations why the thesis
is worth reading and explains its structure.

2. Problem Analysis

The goal of this section is to explain the background of the investigated problem. It explains why it is a
problem and deducts a set of requirements that need to be fulfilled for finding an optimal solution. It may
also point out conflicting requirements and request that the conflict is resolved. It may make sense to
conclude this section with a table showing all requirements.

3. Existing / Other / Related Approaches

This section should contain a list of related approaches or solutions that could be applied for solving the
problem and satisfying the requirements. Each approach should be summarized and discussed with
respect to the requirements. At the end of this section, you should provide a summary of deficits of the
state of the art.

4. Approach of the Thesis

Explain the concepts of your approach and show how you address the requirements. In cases where you
build something that users should use (e.g., interactive software), it can be good to show how your solution
is used.

5. Solution Details

Explain details of the solution. The description should be detailed enough to allow a peer researcher or
practitioner to re-implement the solution. This section may also contain studies on how the solution has
been used.

6. Evaluation

Reflect on the effectiveness of the solution. Show evidence, if possible. Evaluation can be done
quantitatively or qualitatively, depending on the solution and the context.

7. Conclusions

The final section should serve three purposes: (1) To summarize the approach; (2) To compare the
approach to the state of the art; and (3) To point at top directions of future research and development.

A. References

The outline should be a living document that should be updated regularly during
the thesis project.

12

Technology Support: Create a wiki page for a prototypical outline. Copy this
page after the student has created the problem statement and send it to the
student with a request for adapting the outline. Periodically ask the student if the
outline is still aligned with the current thesis.

Discussion: Sharing the thesis outline may result in a new pair of conflicting
forces: The outline should provide a high-level overview of the thesis, while the
thesis itself contains the real content. Changes in the outline affect the
document and vice versa. All current text processing systems thus automate the
process of outline creation. However, if only one part is modeled as a shared
document, this synchronization may be more difficult.

Related Patterns:

! 2.5 STUDENT-MANAGED SCHEDULE: The schedule explains how and in which
order the different parts of the outline will be filled. Both schedule and outline
help to structure the student’s work better.

! 2.3 AGILE EXPOSÉ: While the exposé describes what should be done,
together with a first version of a schedule, the outline is a mini-version of the
final thesis text und should describe what is being done.

13

2.5 STUDENT-MANAGED SCHEDULE

Context: The student and you have agreed on a problem statement and the
student is about to start working on the thesis.

Problem: Students are independently managing their time. However, they
often lack experience in planning a long-term project such as a thesis. If
this management is done in an unstructured way, students overlook critical
deadlines. As a result, in most cases the final phase of a thesis project is
accompanied by a high level of stress and may result in a quality
decrease.

Forces:

! It is hard to predict the future, especially in a research project. Examples of
common pitfalls are that

! the student underestimates the time needed for writing the final text;

! personal problems or the student’s job suddenly require more time
than expected;

! in order to finish the project on time, the student needs a plan;

! the student is not used to making and following a plan;

! the student is not aware of (potential) upcoming problems;

! you as a supervisor are not aware of problems in the student’s progress.

! Consequently, you fail to intervene or help the student when help is
required.

! The student is not happy with the progress but fears to discuss problems
with you since this might lower the final grade.

Solution: Ask the student to create and maintain a schedule for the thesis
project and ensure that s/he discusses it with you. Both parties agree on a
set of milestones where the student presents intermediate results to you. Think
about the deliverables that have to be completed at the end of the thesis project
and estimate roughly how long it would take to finish each deliverable. Remain
on a coarse level of detail (e.g., tasks lasting for approx. one week). You
renegotiate milestones if the student was unable to complete the required steps
for a milestone. The schedule should be updated regularly.

Technology Support: You create a skeleton wiki page that includes the typical
milestones for the thesis project. Before the student starts working on her/his
thesis, s/he adapts the schedule to her/his needs and fixes dates and content
for the milestones. You approve the schedule, e.g., by e-mail. Shortly before a
milestone, the student informs the supervisor by mail about the current status of
the project and arranges a presentation date for the milestone. Schedule
updates are also negotiated by e-mail. Finished tasks are marked in the
schedule wiki page.

You can ease the process of schedule creation and maintenance by integrating
scheduling support in the e-learning system. Instead of thinking about concrete
dates, the student estimates the required time for each task and defines the
sequence of tasks. Afterwards the system creates a schedule that is visible to

14

both the supervisor and the student. Students are informed about approaching
deadlines, and the supervisor is reminded of missed deadlines. This ensures
that there is a high awareness of tasks that are overdue. When all tasks for a
specific milestone have been done, the system automatically arranges a review
meeting where you discuss the milestone.

Discussion: The first draft of a schedule can be taken from the AGILE EXPOSÉ.

The schedule defines criteria by which the student’s progress can be evaluated.
In this context, it can serve as the source of an INSTRUCTOR EVALUATION [7], a
pattern that points out that the instructor should comment on the student’s
achievements. The main deficit of the INSTRUCTOR EVALUATION pattern is that it
does not explicitly focus on the underlying social interaction. Several systems
support project management in a similar way. However, most e-learning
environments do not support task planning.

The student should not add too much detail to the schedule. This is the reason
why we would not suggest the use of project-management systems such as
MS-Project®. These systems tend to create a vision of safety although the
research project as such still has a high level of uncertainty.

Related Patterns:

! 2.6 DIARY: The schedule should be reflected in the DIARY as soon as the
plan is realized.

! 2.2 PROJECT HEARTBEAT: An alternative way of tracking the student’s
progress is to let her/him send regular messages to you. If these are the
only record, the student should keep these messages as a DIARY equivalent.

15

2.6 DIARY

Context: The student is working on the thesis. The thesis involves design,
experimentation and tests with different design alternatives.

Problem: The thesis project requires a long research and learning process. The
student explores the state of the art, creates hypotheses and experiments to
verify the hypotheses. The deeper the student delves into the work, the less
reflection takes place. Important insights and ideas may thus get lost
during the project. In addition, in many cases the supervisor learns too
late about problems and thus is unable to provide suggestions for
improvements at the right time.

Forces:

! Good ideas and new insights materialize during a thesis project, and not all
of them can be implemented.

! The student forgets ideas and insights that s/he has not written down.

Solution: Ask the student to create a diary that documents the thesis
project activities. The diary serves as a knowledge repository for all thoughts
and insights, so that they will not be lost when the final thesis writing takes
place. The diary or excerpts of it should be shared between you and the student
at least. Frequently read the diary and see if the student ventures in the wrong
direction. If needed, offer help, so that the student gets back on track.

Technology Support: The easiest way to implement a diary is to write it as a
shared wiki page. However, student and supervisor have to agree on visibility
levels which not all wikis support. In cases where privacy is an issue, the diary
can also be created as a restricted wiki.

Further integration can link the diary writing activities to the student’s workplace:
Students log into the system when they start working for their thesis. Before
beginning the work, they summarize their plan for the day. In the process of
logging out, the system prompts them for a sentence telling what they have
achieved this day. The summary is stored in the diary system which allows the
student and the supervisor to browse all daily summaries of the thesis project. If
there are unsolved problems, the student can mark these as action items for the
next working session. Note that the system should allow students to mark
entries as private, so that the supervisor cannot see these entries.

Discussion: Derntl [7] also describes a DIARY pattern. Due to the pattern
structure used by Derntl, the problem is not clearly stated. In addition, the
staged solution description makes it easier to apply the DIARY pattern in
different e-learning systems. BLOGs are often used to support the collaborative
creation of a diary in e-learning contexts. Moodle, e.g., offers students and
teachers to co-construct a so-called journal that fills the role of the DIARY.

It can also be helpful for you to keep your own diary of the meetings with the
student (a supervisor diary). As you typically supervise more than one student,
this will help you to remember what has happened so far. This is especially
useful if the student is not applying this pattern or if you have no access to the
student’s diary.

Related Patterns:

16

! 2.2 Project Heartbeat also suggests to provide periodic summaries of the
progress made. As said before, a DIARY can replace the PROJECT HEARTBEAT
under certain circumstances, but without a DIARY there should a least be an
application of PROJECT HEARTBEAT.

! 2.5 STUDENT-MANAGED SCHEDULE: Whenever the student enters a note
regarding a finished task in the DIARY, s/he should re-estimate how this
helped her/him to finish schedule tasks.

! 2.7 ADVISED LITERATURE RESEARCH is an alternative for documenting and
exchanging insights from literature studies.

17

2.7 ADVISED LITERATURE RESEARCH

Context: The student is working on the thesis.

Problem: Students need to evaluate research literature in order to relate their
ideas to the state of the art. But in their previous studies, students were rarely
confronted with research literature. Instead, they received pedagogically
enhanced material that clearly stated questions, methods and results. Without
a solid base of references, the thesis might not be scientifically sound
enough and thus you would have to give it a poor grade.

Forces:

! Other people’s results can be very inspiring and helpful for the thesis project.

! Working with literature is not as interesting as building a design artifact, such
as a running software system.

! Students, especially in engineering disciplines, tend to think that literature
references are just a formal detail belonging only in the final thesis text.

! Sometimes it is not easy to find relevant literature for a specific topic.

! The students expect you to provide them with relevant references.

Solution: Ask the student to fill a literature pool. Let her/him search,
summarize and comment the literature. Make sure you obtain regular
access to the literature pool and comment on the student's summaries.
This is especially necessary if the student frequently uses “unsound” sources,
such as “XX in 21 Days for Dummies” or Wikipedia articles authored by
hobbyists that have not yet been reviewed by experts. Sometimes it is also
helpful to get a second opinion from a colleague on the literature pool for the
specific problem.

Technology Support: Use a wiki to manage the literature summaries. In cases
where the wiki supports page templates, you should create a template that
contains all required fields for the literature summary as well as the
bibliographic data. After the student created a literature summary page, s/he
shall send the URL of the new page to you, so you can comment the page.

Discussion: Systems like Connotea (http://www.connotea.org) or WIKINDX
(http://wikindx.sourceforge.net/) support groups of students in collecting
literature summaries.

This pattern is closely related to the READ, READ, READ pattern [3] which
emphasizes the process of creating a literature summary.

Related Patterns:

! 2.6 DIARY: ADVISED LITERATURE RESEARCH as well as DIARY can help to
document the student’s progress.

18

2.8 TEST THE WATERS

Context: The student is working on the thesis project and manages her/his own
schedule.

Problem: Thesis projects, as most research-related endeavors, contain many
uncertainties. Many different activities must be undertaken by the student, e.g.,
literature research, reading papers, conducting interviews, writing large portions
of text, creating design prototypes or developing working software. If the
student has no experience with the tasks the thesis project requires, the
estimation of a schedule becomes difficult for her/him and s/he may miss
deadlines. Furthermore, if you have a wrong impression of the student’s
abilities, you are in danger of expecting too much, which can result in a worse
grade than necessary.

Forces:

! You have your own idea of how much time is needed for a specific subtask,
but you do not know how long an average student needs.

! You have an idea of the amount of time needed by the average student, but
do not know how much time the student involved in this particular thesis
project will need.

! The final deadline of the thesis is fixed for formal reasons.

! Students often underestimate the time needed, especially for writing the final
text of the thesis, feeling too comfortable while having still some months to
go.

Solution: Let the student perform important activities on a small scale and
make her/him measure the time that was actually needed to complete the
task. Arrange to discuss these findings with the student, so you get an
impression of the student’s abilities. With such data you can learn about the
student’s time needs for this project, and you can tell other students how much
time their predecessors needed.

If you are uncertain about the student’s writing abilities, make her/him write part
of a chapter and let her/him tell you the time s/he needed. If programming plays
an important role in the thesis project, you can give the student a small
assignment and document the time s/he needed for completing it.

Technology Support: The student regularly sends you e-mails to inform you
about the time needed for different tasks in the project. You evaluate this data
and compare it with that of other students.

Discussion: In this pattern, we project the planning mechanisms of agile
methodologies (e.g., [1, 4]) onto thesis projects. The essence of agile planning
is that you can only estimate well based on first hand experience.

The name TEST THE WATERS is taken from a similar pattern by Manns and
Rising [8].

Related Patterns:

! 2.5 STUDENT-MANAGED SCHEDULE: A change in the work pace should result
in an updated schedule.

19

2.9 EXPRESSIVE STUDENT

Context: The student is working on the thesis.

Problem: The student doesn’t have a good idea of how to describe what
s/he is doing. S/he has problems to find the appropriate level of detail and
does not have a clear picture of which aspects should be put into or left out of
the written thesis.

Forces:

! Many things happen during a thesis project that are necessary for the
process, but not for the final thesis.

! If a student is deeply immersed in her/his subject, s/he can lose her/his view
of the big picture.

! Other people than the student and you have a different opinion of the
subject of the thesis; this is especially relevant if these people are also
responsible for the final grade.

Solution: Let the student express the subject of the thesis, both orally and
in written form as often as possible and on different levels of granularity.

Have a mandatory defense of the thesis at different stages of the project:
possibly after the Exposé has been written, before the student starts to
implement a solution, and at the end of the project.

The defense should clearly state:

! the importance of the problem;

! the current state-of-the-art;

! approaches that the student wants to take; and

! the expected contribution and benefits.

Invite members of your research group as well as peer students to the
presentation. Also ensure that students who are currently beginning to work on
their thesis have a chance to attend a defense by a student who is at a later
stage.

Make the student prepare an elevator talk: Tell a knowledgeable stranger in 30
seconds (about the time being together in an elevator) what the core ideas of
the thesis are. This talk can be updated regularly during the project.

Make the student write and present an incremental synopsis, i.e. the core ideas
of the thesis

! in one sentence;

! in one paragraph; and

! on one page.

The extended version of the one-page synopsis should be the exposé, if one
was written upfront. Again, the incremental synopsis can be updated regularly
throughout the project.

20

Make several students work together on their theses (in a thesis project, as
described, for example, in [9]). Make them exchange ideas and let them help
each other (pair programming, feedback on exposés, etc.). This can be very
helpful in large research groups.

Technology Support: The incremental synopsis can be stored as a dedicated
wiki page. The student should be able to reproduce the content of the synopsis
in different computer-mediated communication settings, such as electronic mail
(explaining the thesis in one paragraph when, e.g., inviting a secondary advisor)
or text-based chat tools.

Discussion: It is important that the student defends the current status of the
project, not you. The defense can take place in front of the whole research
group or just with the student, the advisor and the professor.

If the discussion went well, the student will be convinced that the topic is worth
working on (and not just the advisor providing the topic). Otherwise, the
audience will provide useful hints for adapting the topic. The student gets
trained in defending project proposals (important both in academia and in the
industry).

The concept of a defense is, e.g., practiced at Fraunhofer IGD in Darmstadt by
Peter Tandler, who proposed to include it in this pattern language. It is quite
well-established at many US universities.

Related Patterns:

! 2.3 AGILE EXPOSÉ: The exposé can be used as an input for the incremental
synopsis.

! INTROVERT – EXTROVERT [2] discusses the difficulties some people have with
presenting themselves, their ideas, and their project to others. The pattern
provides hints for introverted students, so that they will present their work
more self-confidently.

21

3. Conclusion

This paper is intended as a first step towards making the interaction between
students and supervisors more reliable and transparent. Initially thought as a
paper that describes the interaction between supervisor and student at a
distance teaching university, we discovered large commonalities with the ways
such projects are run at traditional universities. We also observed that –
although we did not attend the same universities at any point in time – there is
an implicit agreement on how successful thesis projects should look like. The
same applies to failed thesis projects that were not well supervised.

With this paper, we hope to initiate a broader discussion on good practices for
supervising thesis projects. More high-level theses as well as less drop outs
would justify our work.

Acknowledgements: Many people have helped us to write this paper. First of
all, we would like to thank our numerous students who have suffered from our
former way of advising thesis projects. Their pains made us look deeper into the
problems and iteratively improve the interaction between supervisor and
student. We also thank our recent students, since they made us more confident
that we have found good patterns of interaction by now. Additional thanks are
due to our colleagues who shared and discussed their style of supervision with
us. We thank Peter Tandler for his initial comments and his view on thesis
projects and especially for his input regarding the EXPRESSIVE STUDENT pattern.

We especially thank Andreas Rüping for shepherding this paper for EuroPLoP
2008.

22

4. References
[1] Beck, K. and Andres, C. Extreme Programming Explained - Embrace Change (2nd

ed.). Addison-Wesley, 2004.

[2] Bergin, J., Introvert - Extrovert. In Proc. EuroPLoP '02, UVK Konstanz, Irsee
(Germany), 2002.

[3] Bergin, J.: Patterns for the Doctoral Student,
http://pclc.pace.edu/~bergin/patterns/DoctoralPatterns.html, last updated: July 15,
2002, (last visited June 10, 2008).

[4] Cockburn, A. Agile Software Development. Addison-Wesley, Boston, 2002.

[5] Coplien, J.O. and Harrison, N.B. Organizational Patterns of Agile Software
Development. Prentice Hall International, 2004.

[6] Deininger, M., Lichter, H., Ludewig, J. and Schneider, K. Studien-Arbeiten (5.
Aufl.). Vdf Zürich - B. G. Teubner, Stuttgart, 2005.

[7] Derntl, M., Patterns for Person-Centered e-Learning, Ph. D. thesis, Faculty of
Computer Science, University of Vienna, Vienna, 2005.

[8] Manns, M.L. and Rising, L. Fearless Change. Pearson Education, Boston, MA,
2005.

[9] Olsson, B., Berndtsson, M., Lundell, B. and Hansson, J., Running Research-
Oriented Final Year Projects for CS and IS Students. In Proc. ACM SIGCSE, Reno
(Nevada), 2003, 79-83.

[10] Schümmer, T. and Lukosch, S. Patterns for Computer-Mediated Interaction. Wiley
& Sons, 2007.

 ACTIVATING STUDENTS IN INTRODUCTORY MATHEMATICS TUTORIALS 1

© Christine Bescherer, Wolfgang Müller & Christian Spannagel 2008

ACTIVATING STUDENTS IN INTRODUCTORY MATHEMATICS
TUTORIALS (EuroPLOP 2008)

Pattern for introductory mathematics tutorials following a constructivist
approach

Christine Bescherer and Christian Spannagel
 University of Education Ludwigsburg

Wolfgang Müller
University of Education Weingarten

Abstract. This paper describes a pedagogical pattern for mathematics
tutorials with two different solutions depending on the underlying philosophy
of learning or teaching. The aim of tutorials for introductory mathematics
courses is for students to practice and apply what they have learned during
the lecture. Adopting the traditional approach tutors show how to solve the
given problems. Students observe the tutor solving problems on the
chalkboard, copy the solution, and usually assume they are able to solve
similar problems by themselves next time. Following a constructivist
philosophy of learning we present a ‘parallel’ – different – solution to the
same problem where learners do actively mathematics while learning how
to solve mathematical problems.

Preliminary remarks
This pattern describes design decisions which �‘designers�’ of mathematics courses have
to take. There is a long tradition of teaching mathematics to freshman at universities. In
the pedagogical discussion after the TIMSS and PISA studies researchers in
mathematics education recommend teaching and learning scenarios in schools where
learners actively do mathematics, solve complex problems, reason and communicate
mathematically, and make connections between different fields and topics. This
concept differs widely from traditional tutorials at the universities.

In this paper we state the context and problem and then, present two different solutions
based on different philosophies of teaching and learning. One solution follows the
traditional approach, the other is based on the constructivist philosophy of learners
actively building their own knowledge.

In presenting the patterns, we merge the traditional pattern format and a formalism
developed by Wippermann (2008) especially for e-learning scenarios. In our
experience, this formalism communicates the main ideas of an educational setting
better than patterns designed for technological areas.

Context
Tutorials for introductory mathematics usually support mathematics lectures. In
Germany there are often several hundred students in �’Introductory Math�’ courses at
universities. The presentation of the lecture is usually given by a professor or lecturer.
The tutorials differ widely in the number of attending students but usually there are
smaller numbers of students (20 to 40 students in each group).

Proceedings of the 13th European Conference on Pattern Languages of Programs
(EuroPLoP 2008), edited by Till Schümmer and Allan Kelly, ISSN 1613-0073 <issn-
1613-0073.html>.

Copyright © 2009 for the individual papers by the papers' authors. Copying permitted
for private and academic purposes. Re-publication of material from this volume
requires permission by the copyright owners.

 ACTIVATING STUDENTS IN INTRODUCTORY MATHEMATICS TUTORIALS 2

© Christine Bescherer, Wolfgang Müller & Christian Spannagel 2008

Tutorials normally don�’t introduce new topics but concern themselves with practicing
the previous lectures�’ contents by solving mathematical problems given in worksheets.

The discussed setting in this paper is an introductory mathematics course for students
who want to become math teachers for primary and lower secondary schools. This is
one of the main reasons we follow a non-traditional teaching philosophy. As future
school teachers these students have to gain enough experience learning in
constructivist learning scenarios to be able to teach in these scenarios as well.

The pattern for constructivist mathematics learning can be easily adapted to other
school forms (i.e. high school) or even subjects with similar processes and
competencies like theoretical physics or computer science.

Problem / Challenge / Motivation1
Freshmen usually have to get used to the difference between mathematics at school
and at universities. At universities, performing mathematics means much more than
just solving a predefined set of mathematical problems in a given thematic context
(e.g., arithmetic or geometry). It means applying solution strategies and problem
solving heuristics such as finding examples and counter-examples, making
conjectures, and drawing graphs. In addition, performing 'real' mathematics often
means solving problems with no pre-defined single solution. Therefore, students have
to decide which information is relevant for the solution, how to process this information,
and how to present the results. In addition, they have to choose appropriate tools like
spreadsheet calculators or dynamic geometry systems.

Especially future teachers should experience this kind of performing mathematics very
early in their studies. They do not have to focus on the product (the solution of a
problem), but on the mathematical processes necessary for solving the problem. The
latter is the 'real' objective of learning mathematics. This change in the view on
mathematics education is clearly stated, e.g., in the NCTM 'Principles and Standards
for School Mathematics' (2000) where the process standards problem solving,
reasoning and proof, communication, connections, and representation are considered
as important as the content standards number and operation, algebra, geometry,
measurement, data analysis and probability.

How do beginners learn these strategies efficiently?

Forces
Here is the point where the pattern follows two different paths to reach answers to the
above stated challenge. Depending on the fundamental philosophy of learning and
teaching two different solutions arise. The descriptions are given parallel in the
following table to simplify the comparison.

The learning/teaching philosophies are deeply intertwined with theoretical pedagogical
approaches which will also be described in the table (s. �‘Rationale�’).

1 In a pedagogical context the word �‘problem�’ is not really adequate here. Students learning
geometry is not a problem which can be solved once and for all �– it�’s more a �‘challenge�’.

 ACTIVATING STUDENTS IN INTRODUCTORY MATHEMATICS TUTORIALS 3

© Christine Bescherer, Wolfgang Müller & Christian Spannagel 2008

Traditional teaching philosophy Learner activating teaching philosophy

�“Mathematics is learned by being exposed to definitions, theorems,
proofs, techniques and examples, through which one is exposed to
formalization, proof, modeling, techniques etc. The teacher�’s job is to
lay out the material clearly and logically. Students must rehearse
many examples in order to develop facility and through facility, gain
understanding of the concepts, the techniques and why the
techniques work. Hard work is valued, work consisting largely of
working through notes and problems to try to understand them.�”
(Holton, 2001, 73)

This is also the kind of learning most of the professors at German
universities experienced when learning mathematics themselves.

�“Mathematics is learned by reconstructing for oneself what others
have thought and tried to expound clearly and logically.
Reconstruction is carried out through constructing special and
illustrative cases, trying to see generality through the particular,
guided by theorems and other exposition. Exposition and practice on
exercises is useful, but only as means to reconstruction. Facility and
understanding grow together, as each contributes to the other and
neither necessarily precedes the other.�” (Holton, 2001, 73)

The basic idea of this concept is to motivate students actively doing
mathematics. The students work on their own choice of problems,
organized in small groups and aided by tutors. There are several
forms of feedback during the tutorials as well as virtually in learning
platforms.

Solution
Students work on a set of given problems and follow the
demonstrations of solved problems and proofs of theorems during
the tutorial.

Planning and preparation:
The person responsible (lecturer or advanced tutor) creates
problem sheets containing a number of problems all of which are
supposed to be solved by all students.

Students pick from 5-6 weekly problem suggestions and work in
groups during the tutorial on the chosen problems guided by the
tutor who doesn�’t give the correct solution away.

Planning and preparation:
The person responsible (lecturer or advanced tutor) creates
problem sheets containing problems with the same mathematical
topics but in different contexts for the students to choose from. The
wording focuses on the solution process rather than the correct
solution.

 ACTIVATING STUDENTS IN INTRODUCTORY MATHEMATICS TUTORIALS 4

© Christine Bescherer, Wolfgang Müller & Christian Spannagel 2008

A typical problem:
Show that for any x, y, z , | x - z| | x - y| + | y - z|.

An expected typical solution to the problem:
|x – z | = |x – y + y – z| |x – y| + |y – z| (triangle inequality)2

The problems are related closely to the content of the lecture. A
sample solution also has to be created. The problem sheets are
delivered to students one week or more before the tutorial session.
Tutors get the problem sheets at the same time plus a sample
solution to prepare for the demonstrations.

A typical problem:
Make conjectures of several unit fractions concerning their decimal
representation. What kind of decimal do you get?
If it is not a terminating decimal: How long are the periods and the
delays of the periods? Make conjectures on the base of your data.
Which properties determinate the kind of decimal? Which properties
determinate the length of the period and the delay? Test your
hypotheses with other unit fractions.
Hints / techniques:

 You can use the Excel spreadsheets available in Moodle.
 Which of the unit fractions are good indicators for your

conjectures?
Expected activities:

The students are expected to try to understand the properties of
decimal numbers using spreadsheets and to find the significance of
denominators only containing powers of 2 and 5 compared to
denominators without 2 and 5 or �‘mixed�’ ones.3

The problem suggestions have to cover enough of the mathematical
content so that students can not evade basic concepts such as
reasoning and proof, finding examples, or special techniques like
using group tables or important mathematical content. Some useful
hints and references which don't give away too much have to be
added.

Tutors need to be provided with ideas, hints, and strategies for
exemplary solutions and problem solving. Also, they have to be

2 Explanations for non-mathematicians: |x – z | = |x – y + y – z| because – y + y = 0 for any y and the triangle inequality is | x + y| |x| + |y| which is true
for all x, y
3 All the fractions with denominators which consists only of powers of 2 and 5 (e.g. 1/40 = 1/(5*2³)=0.025) are terminating. All the fractions with
denominators which consist of numbers without the factors of 2 and/or 5 are periodic (1/33=1/(3*11)=0.030303�…) and the rest are delayed periodic
(1/12=1/(3*2²)=0.083333�…).

 ACTIVATING STUDENTS IN INTRODUCTORY MATHEMATICS TUTORIALS 5

© Christine Bescherer, Wolfgang Müller & Christian Spannagel 2008

Tutors read through the given sample solution to be sure that they
understand everything.
Students work on the problems before the tutorial session. This is
not monitored or supported by tutors.

briefed about aspects of insufficient solutions and problematic
problem-solving strategies. Usually even tutors don't get the 'correct'
solution from the lecturer. In fact, they have to think through the
problems on their own and actively �‘do mathematics�’.

During the tutorials:
The tutors present the problem solutions on the chalkboard.
Students watch the demonstration and compare the solutions with
their own (if they have created one). Alternatively, a student may be
asked to present her or his own solution. Students may ask questions
and discuss different solutions.

During the tutorials:
Groups of students start work on the problems during the tutorial
session. They choose the problems they want to work on, discuss
ideas, find examples, and verify or disprove statements on the
worksheets and of others. They can use every tool they want to
support the problem solving process - laptops, calculators or
whatever. If necessary they ask for help and explain their problems.

Finally they have to decide whether something is a solution or not. If
they can't find a solution, they can also ask for help on their problem
in discussion forums in the online learning platform. Then other
students, tutors, or the lecturer may assist.

The tutors give feedback, ask helpful questions and confirm that a
solution is ok but don�’t give the correct solution. They give hints or
mirror back some ideas and questions brought already up by the
students. Very often, they just 'sit around' and do nothing.

After the tutorials:
The sample solutions are given to the students.

Students try to transfer the solutions to similar problems
(reproduction). They practice under their own steam.

After the tutorials:
All the participants join in the online discussion. Students finish not
yet solved problems and continue working on them based on their
lecture notes, trying to connect them to problems they worked on
during the tutorials.

 ACTIVATING STUDENTS IN INTRODUCTORY MATHEMATICS TUTORIALS 6

© Christine Bescherer, Wolfgang Müller & Christian Spannagel 2008

Rationale

Theoretical Background
Basically this kind of teaching is experts demonstrating learners how
mathematics �“goes�”. The social cognitive theory (Bandura, 1989)
states that people may learn by observing others doing something.
The process of demonstrating a specific behavior is called modeling
(Bandura, 2001). An example for this is a person in a restaurant
struggling to eat a lobster. Observing other guests, this person is able
to perform the task by imitating other guests�’ procedures. Vicarious
experience is one source of self-efficacy expectations (Bandura,
1998). People who see others performing well may think that they
could also master the task (Schunk, 1999; Margolis, 2005).

In the cognitive load theory (Chandler & Sweller, 1991; Sweller, van
Merriënboer, & Paas, 1998) instructional guidelines are developed
which help to avoid irrelevant cognitive load during problem solving
(Anderson, 1995). In many European universities mathematics
lectures and tutorials are designed following this idea. Students
follow an expert presenting the 'published' mathematics4 in a very
condensed way, avoiding wrong turns (Holton, 2001).

Theoretical Background
The basic idea of this concept is to motivate students to actively do
mathematics. It is based on constructivist teaching philosophy insofar
as by actively dealing with the mathematical problems themselves
students gain experiences and insights and adjust their ideas and
mathematical concepts which is all part of building new knowledge.

Constructivist teachers5 believe strongly in the idea that students
construct knowledge for themselves and they will not truly learn
something until they spend a good deal of time asking questions and
actively thinking about the topic. The job as a teacher is to provide
context, motivation and guidance. According to the cognitive
apprenticeship model (Collins, Brown, & Newman, 1989) the latter
has to fade with the learner�’s increasing expertise.

Motivation is a crucial factor for learning. Intrinsically motivated
students show higher levels of cognitive engagement in tasks than
students who are more extrinsically motivated (Pintrich & Schrauben,
1992). Ryan and Deci (2002) state that three factors promote intrinsic
motivation: perceived choice, perceived competence, and related-
ness.

The perception of competence is also related to the construct of self-
efficacy (Bandura, 1998). Mathematical self-efficacy is the belief of a
person that she or he is able to solve a mathematical problem (Betz &

4 �‘Published�’ means here the way mathematics is displayed in books where e.g. the concise and elegant form of a proof is printed and not the easier to
follow but longer approach which shows how the proof was found the first time.
5 For some first ideas on constructivism in mathematics education see e.g. http://mathforum.org/library/ed_topics/constructivism/, last visited May 31st, 2009

 ACTIVATING STUDENTS IN INTRODUCTORY MATHEMATICS TUTORIALS 7

© Christine Bescherer, Wolfgang Müller & Christian Spannagel 2008

Hackett, 1983; Pajares & Miller, 1995). One major source of efficacy
expectations is performance accomplishments. Repeated successes
have a positive influence on self-efficacy. Only if students try to solve
the problems on their own there is a chance to increase their self-
efficacy based on performances.

Reflections
This is a very efficient way �– from the teacher�’s point of view �– to
teach large groups of students how to solve mathematical problems.
If �‘an expert�’ (tutor or good student) demonstrates his previously
prepared solution all students have seen at least one correct way of
solving that particular problem.

This solution is often used in introductory mathematics courses at
universities and since a lot of mathematics teachers went through
this system they obviously were successful.

But there are a lot of drawbacks in this solution.

1. Non preparation

Often students come to the tutorial session without own solutions or
without even having read the problem sheet. Therefore they just copy
the solutions without any understanding. Students need a lot of time
and effort just before the exams to �‘catch up�’ with all the missing
understanding and often there just isn�’t enough time.

There are possibilities to deal with this non-preparation of students
and force them to work on the problems before they get the solution
presented:

At the beginning of the session a list with all problems is passed
around and students have to tick the problems they have prepared.
The tutor then calls students according to the list to present the
solution. Every student has to tick at least 50% (or more) of all

Reflections
Students have to get used to this kind of tutorial. A lot of the students
are not very confident that they can really recognize a correct or
incorrect solution. They want always some authority to check their
answers. For these students there are several support structures
beside the weekly face-to-face tutorials and online discussions. For
example, there is an �‘open math room�’ three to four times during the
week where tutors answer questions.

Learning to be a good problem solver requires working on problems
at the same time as reflecting on the problem solving processes. This
is very easy in collaborative settings and by actively participating in
the problem solving processes. Working in groups students
automatically communicate, ask questions, represent mathematical
ideas, etc. and therefore mathematical processes can be expe-
rienced, reflected and discussed.

One issue is definitely the time needed by the tutors for preparation
and feedback.

 ACTIVATING STUDENTS IN INTRODUCTORY MATHEMATICS TUTORIALS 8

© Christine Bescherer, Wolfgang Müller & Christian Spannagel 2008

problems otherwise he or she is not allowed to take the exam. Also,
each student has to present solutions a certain number of times
during the semester.

Another approach is to state problems that should be done at home
by the students. Written solutions will have to be handed to the tutor
at the beginning of the session. These solutions are graded (or just a
feedback is given) and also an average grade must be reached to
take part in the exams.

2. Illusion of Understanding
Presenting solutions without eliciting deep processing often creates
the 'illusion of understanding' (cf. Atkinson et al., 2000). Students
assume they have understood the solution. Realization that they
didn�’t often occurs during the final exam.
This problem can be mitigated if students actively process the
demonstrations (cf. Mayer, 2004). Some guidelines for the design of
worked examples have been developed to increase the student's
cognitive activity, e.g., giving incomplete worked examples
(completion problems; Sweller et al., 1998), emphasizing the
structure of the solution (Catrambone & Holyoak, 1990), or prompting
students to elicit self-explanations (Chi, de Leeuw, Chiu, &
LaVancher, 1994).

3. Motivation
Predominantly, students are extrinsically motivated. They want to
pass the final test. But intrinsic motivation is a crucial factor in
learning: see �‘Theoretical background�’ of the �‘Learner activating
teaching philosophy �– solution�’.

4. �‘Modern�’ learning theories
See: �‘Theoretical background�’ of the �‘Learner activating teaching
philosophy �– solution�’.

 ACTIVATING STUDENTS IN INTRODUCTORY MATHEMATICS TUTORIALS 9

© Christine Bescherer, Wolfgang Müller & Christian Spannagel 2008

Examples

This kind of tutorials can still be found at many German universities. This kind of tutorials were realized from October 2007 until July 2008
at the University of Education Ludwigsburg in the courses Introduction
to Arithmetic for Secondary Teachers (Einführung in die Arithmetik für
Lehramt Realschule) and Introduction to Geometry for Secondary
Teachers (Einführung in die Geometrie für Lehramt Realschule).
The whole setting of weekly lectures and tutorials were evaluated by
different instruments: a questionnaire on mathematical self-efficacy
and a questionnaire on learning motivation. The results are published
in Bescherer and Spannagel (2008; in German).
Since October 2008 these tutorials are developed further in the
context of the research project SAiL-M (www.sail-m.de) funded by the
German Federal Ministry of Education and Research.

Related Patterns

 PATTERNS FOR ACTIVE LEARNING by Eckstein, Bergin, Sharp
(http://www.pedagogicalpatterns.org/current/activelearning.pdf)

TECHNOLOGY ON DEMAND, HELP ON DEMAND, FEEDBACK ON
DEMAND (all Bescherer & Spannagel, 2009) and HINT ON DEMAND
(www.sail-m.de)

 ACTIVATING STUDENTS IN INTRODUCTORY MATHEMATICS TUTORIALS 10

© Christine Bescherer, Wolfgang Müller & Christian Spannagel 2008

Summary
The above presented pattern gives two solutions to the same challenge (problem)
based on two different teaching philosophies. Of course these solutions describe more
or less the extreme variations of tutorials and all shades in between these are possible.

Acknowledgements
We would like to thank Marc Zimmermann for final readings.
Literature
Anderson, J. R. (1995). Cognitive Psychology and its Implications. New York: W. H.
Freeman and Company.
Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from Examples:
Instructional Principles from the Worked Examples Research. Review of Educational
Research 70(2), 181-214.
Bandura, A. (1989). Human Agency in Social Cognitive Theory. American Psychologist
44(9), 1175-1184.
Bandura, A. (1998). Self-efficacy. The Exercise of Control. New York: W. H. Freeman
and Company.
Bandura, A. (2001). Modeling. In W. E. Craighead & C. B. Nemeroff (eds.), The Corsini
Encyclopedia of Psychology and Behavioral Science (pp. 967-968). New York: John
Wiley & Sons.
Bescherer, C. & Spannagel, C. (2009). Design Patterns for the Use of Technology in
Introductory Mathematics Tutorials. Education and Information Technologies (in press),
Springer
Bescherer, C. & Spannagel, C. (2008). Aktivierendes Mathematik-Lernen zum
Studienbeginn. Tagungsband der GDM-Tagung 2008, Budapest, online available
http://www.mathematik.uni-dortmund.de/ieem/BzMU/BzMU2008/BzMU2008/
BzMU2008_BESCHERER_Christine%20&%20SPANNAGEL_Christian.pdf, last visited:
May 31st, 2009.
Betz, N. E. & Hackett, G. (1983). The Relationship of Mathematics Self-Efficacy
Expectations to the Selection of Science-Based College Majors. Journal of Vocational
Behavior 23, 329-345.
Catrambone, R. & Holyoak, K. J. (1990). Learning subgoals and methods for solving
probability problems. Memory & Cognition 18(6), 593�–603.
Chandler, P. & Sweller, J. (1991). Cognitive Load Theory and the format of instruction.
Cognition and Instruction 8, 293�–332.
Chi, M. T. H., de Leeuw, N., Chiu, M.-H., & LaVancher, C. (1994). Eliciting Self-
Explanations Improves Understanding. Cognitive Science 18, 439-477.
Collins, A., Brown, J.S., und Newman, S.E. (1989). Cognitive Apprenticeship: Teaching
the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing,
learning and instruction (pp.453�–494). Hillsdale: Lawrence Erlbaum Associates.
Holton, D. (2001). The teaching and learning of mathematics at university level. New
ICMI study series, vol. 7. Dordrecht: Kluwer.
Pajares, F. & Miller, M. D. (1995). Mathematics Self-Efficacy and Mathematics
Performances: The Need for Specifity in Assessment. Journal of Counseling
Psychology 42(2), 190-198.
Pintrich, P. R. & Schrauben, B. (1992). Students' Motivational Beliefs and Their
Cognitive Engagement in Classroom Academic Tasks. In D. H. Schunk & J. L. Meece
(eds.), Student Perceptions in the Classroom (pp. 149-183). Hillsdale: Lawrence
Erlbaum.

 ACTIVATING STUDENTS IN INTRODUCTORY MATHEMATICS TUTORIALS 11

© Christine Bescherer, Wolfgang Müller & Christian Spannagel 2008

Margolis, H. (2005). Increasing struggling learner's self-efficacy: what tutors can do and
say. Mentoring and Tutoring 13(2), 221-238.
Mayer, R. E. (2004). Should there be a three strikes rule against pure discovery
learning? The case for guided methods of instruction. American Psychologist 59(1),
14�–19.
NCTM - National Council of Teachers of Mathematics (2000). Principles and Standards
for School Mathematics. Reston, Virginia, USA.
Ryan, R. M. & Deci, E. L. (2002). Overview of Self-Determination Theory: An
Organismic Dialectical Perspective. In E. L. Deci & R. M. Ryan (eds.), Handbook of
Self-Determination Research (pp. 3-33). Rochester, NY: The University of Rochester
Press.
Schunk, D. H. (1999). Social-self interaction and achievement behavior. Educational
Psychologist 34(4), 219-227.
Sweller, J., van Merriënboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive
architecture and instructional design. Educational Psychology Review, 10(3), 251�–296.
Wippermann, Sven (2008): Didaktische Design Patterns zur Dokumentation und
Systematisierung didaktischen Wissens und als Grundlage einer Community of
Practice. Saarbrücken: Vdm Verlag Dr. Müller.

Didactic Design Pattern „Highlights“

a pattern for peer-review.

Sven Wippermann

University of Education Ludwigsburg, Germany

Reuteallee 46

D-71636 Ludwigsburg

+49 7141 140 744

 wippermann@ph-ludwigsburg.de

Abstract: The core intention of the pattern is to enrich the learner‘s perspectives by
giving and receiving feedback through peer-review.

1. Introduction

The Design Pattern „Highlight“ has been developed and used within a the master study course of

Educational Leadership at the University of Education Ludwigsburg, Germany. The course is embe-

dded into a blended learning architecture. The Pattern focuses on the E-Teaching aspects of the

learning scenario and aims at capturing the didactic knowledge on how to use this method within

an E-Teaching setting.

Feedback is often provided by the lecturer without referring to other students‘ works. Further more

students are not used to give feedback on other students‘ results. This pattern captures a best

practice on using a specific, didactic driven method within a learning environment and is therefore

particularly useful for the following audience:

□ Teachers and lecturers who want their students to gain a different perspective on a

solution/topic.

□ Teachers and lecturers who want to implement a formative assessment of their

students.

Depending on the discipline lecturers are more or less used to enrich their teaching with digital

media. In order to reach a broad audience of lecturers of all kinds of disciplines this pattern con-

tains two parts each with a specific focus and level of abstraction:

On the one hand it focuses on a very technical and abstract perspective following the common pat-

tern structure to submit the core intension (part 1).

On the other hand part 2 emphasizes a pedagogic view upon this topic to submit information

which is needed for planning and using learning scenarios (Siebert 2006).

Special thanks to my shepherd Michael who encouraged me to merge both structures and gave

brilliant feedback for improving this pattern. We had good discussions opening up new perspecti-

ves on this pattern. Thanks a lot!

2. The Pattern Language

This pattern is part of a pattern language which will include the following related patterns:

Figure 1: pattern language

3. Didactic Design Pattern „Highlights“ (part 1)

Context

This pattern is effectively implemented within the master study course of Educational Leadership

at the University of Education in Ludwigsburg, Germany. Within the module "personal manage-

ment“ this pattern provides a blended learning environment supporting the continuation of lear-

ning from the first face-to-face meeting. The students work on assigned tasks with the aim of ex-

ploring different points-of-view and a deeper level of inquiry into the subject matter. Following this

broad and deep study, individuals create solutions and share them with their peers for reflection

and comment. This interactive method fosters new views of the topic by exposure to a variety of

understandings.

Problem

How can students gain different perspectives on solutions/tasks by providing feedback

to one another?

Forces

Feedback plays an important role in regard to evaluating students‘ work, because it contains both

positive elements and aspects that need to be improved in order to support the students‘ personal

or academic development. Feedback is often provided by the teacher without referring to other

students‘ works. Annotating students‘ work and giving feedback also increases the workload for te-

achers immensely.

WG-P-5 - 2

Creating solutions, reviewing others' work, and receiving peer feedback allows students to explore

new ideas and to gain a deeper and broader understanding of a given topic. Peer review provides

the opportunity to learn from other students‘ work. Using this method teachers‘ workload is also

significantly reduced.

Solution

In order to achieve this, each student annotates the work of another student and returns it

to the author who then picks one highlight to forward to the lecturer at a defined time.

He/she collects all highlights and publishes them to a learning management system.

A highlight in this sense is a concise portion of a solution that offers new insights into the given to-

pic to reviewer. Due to the fact that every reviewer has a specific knowledge and point of view on

the topic each highlight is very individual.

The solution invokes the following core activities (referring activities are explained within the im-

plementation section, see part 2):

Figure 2: activities

Students work on the tasks they receive from the lecturer (1). The results of their work is forwar-

ded to another student (student B) who acts as a reviewer (2). He/she annotates the work and re-

turns it to the original author, student A (3). The reviewer also selects his/her highlight of the aut-

hor‘s results and forwards it to the lecturer (4). The lecturer collects all highlights and publishes

them (5).

WG-P-5 - 3

The teacher acts as a coach, supporting the students in finding solutions to the given tasks. The

students play the most active role within this phase by attending to the given tasks.

These activities are intended to make the students become aware of different approaches to the

solutions, thus increasing their understanding and knowledge. These new understandings are

brought about through the act of reviewing and annotating another students solution and viewing

yet another peers' comments on their own solution.

Consequences

The benefits using this pattern are the following: Creating solutions, reviewing others' work, and

receiving peer feedback allows students to explore new ideas and to gain a deeper and broader

understanding of a given topic. Furthermore the students become aware of different perspectives

by annotating their peer's work. Finally with peer reviewing being the primary mechanism of feed-

back, lecturers can devote more time to observing and fine-tuning the learning process.

The liabilities using this pattern include the following aspects: The pattern is centered on students

creating their own solutions as well as reviewing and commenting upon other students' work --

which, in turn, is then evaluated by the lecturer (primarily through "highlights"). The addition step

of peer review adds time to the process. Also students depend on one-another to complete tasks

on-time. Thus, all students must respect the time-frame of each task in order to complete the pat-

tern on schedule. Another liability can be found in the dependency on technical resources, especi-

ally the Learning Management System.

Discussion

Alternative usage may focus on two levels. In regard to an organizational level it is possible to

hand the tasks to the students in a face-to-face environment with the advantage that questions

can be answered directly, in plenum. In addition to that aspect assigning a single task to the stu-

dents (instead of clustering many tasks), reduces the student workload for creating and annota-

ting the solutions.

In regard to the activity level the highlights may also be sent to all students via email or in a face-

to-face learning situation instead of publishing them within a learning management system. Finally

the lecturer may skip adding to student annotations in the event that student annotations and

highlights cover the target learning goals.

Known uses

This pattern is effectively implemented within the master study course of educational leadership at

the University of Education in Ludwigsburg, Germany. Within the module "personal management“

this pattern provides a blended learning environment supporting the continuation of learning from

WG-P-5 - 4

the first face-to-face meeting. All tasks are clustered. From the complete set, students choose five

tasks to complete utilizing the pattern.

This pattern also works within the pattern writing workshops. An author submits his/her pattern to

peers who review it and give highlights to the author who explores new ideas of what he/she can

keep or improve and also gains a deeper and broader understanding of how his work is

interpreted.

In other educational contexts such as discussing a paper, students read through the text, highlight

their key aspects and contribute their individual perspectives to the peers.

Related Patterns

Feedback loop (T. Schümmer)

References

Reich, K. (2002). Konstruktivistische Didaktik : Lehren und Lernen aus interaktionistischer Sicht.

Neuwied [u.a.]: Luchterhand.

Siebert, H. (2006). Didaktisches Handeln in der Erwachsenenbildung : Didaktik aus konstruktivisti-

scher Sicht (5. ed.). Augsburg: Ziel-Verlag.

Wippermann, S. (2008). Didaktische Design Patterns zur Dokumentation und Systematisierung di-

daktischen Wissens und als Grundlage einer Community of Practice. Saarbrücken: vdm.

WG-P-5 - 5

4. Introduction to part 2

The second part of the pattern emphasizes a pedagogic view to submit information which is nee-

ded for arranging and using learning scenarios (Siebert 2006). It aims at supporting those lectur-

ers who are not used to enrich their teaching with digital media and those who only have a weak

affinity to such media usage by presenting essential pedagogical aspects.

5. Structure of Didactic Design Patterns

Theoretical Background

These aspects refer the constructivistic didactic (Reich 2002). It contains the most holistic proces-

ses for arranging learning scenarios under a pedagogic perspective and is therefore essential for

the Didactic Design Patterns (Wippermann 2008).

Meta-Pattern - new structure

The pedagogical elements are integrated into a new pattern structure (meta-pattern). The struc-

ture of each Didactic Design Pattern follows four main sections (Wippermann 2008):

metadata

didaktische motivation

implementation

reflection

A specific color represents each section on the right hand border of the pattern in order to help the

reader navigation through it.

Each sections contains specific items to structure the knowledge within each pattern:

WG-P-5 - 6

1. metadata 2. didactic motivation

■ name,

■ date,

■ status,

□ draft version,

□ work in progress,

□ final version,

■ author,

■ characteristics of E-Learning,

□ communication vs. content centered,

□ synchronous vs. asynchronous,

□ independent on vs. dependent on special

location.

■ abstract,

■ didactic motivation,

■ hints for implementation,

□ amount of learners,

□ social learning aspects,

□ state of learning,

□ time needed for implementation,

□ degree of competencies,

□ instruction vs. construction

3. implementation 4. reflection

■ didactic steps

□ planning and preparation,

□ information and instruction,

□ activities,

□ implementation,

□ evaluation,

■ drama ,

□ roles,

□ learning activities,

■ tasks,

■ embedding,

□ learning activities before pattern usage,

□ learning activities after pattern usage,

■ technical preconditions,

□ tools.

■ problems,

■ discussion,

□ advantages,

□ disadvantages,

□ alternatives,

■ examples,

■ references,

■ related patterns.

WG-P-5 - 7

Meta-Pattern - Characteristics at a glance

To provide an overview at the glance regarding didactic aspects each pattern starts with a visuali-

zation showing the characteristics of seven didactic items (see 2. didactic motivation).

The following table shows the variety of each item linked to a specific icon that allows a faster un-

derstanding (Wippermann 2008):

icon name characteristics

e-learning

■ synchronous vs. asynchronous,

■ communication centered vs. content centered

■ dependent on vs. independent on special location.

amount of learners

■ small,

■ middle,

■ huge.

social aspects

■ individual work,

■ team work,

■ group work,

■ plenum.

state of teaching/learning

■ to start off,

■ to work,

■ to integrate,

■ to evaluate.

amount of time needed

■ days,

■ weeks,

■ months.

teacher‘s competencies

(in realizing the pattern)

■ few,

■ some,

■ many.

instruction vs. construction
■ instruction,

■ construction.

WG-P-5 - 8

The characteristics of all items are gathered and visualized in order to provide selective knowledge

of the pattern (see 6.).

Additional information about a pattern (version number, status, ratings) are also provided next to

the characteristics stated above (see 6. and Wippermann 2008).

All of these information is essential for arranging learning scenarios and especially support lectur-

ers who do not have a strong affinity to digital media in gaining an idea of the patterns‘ potential.

WG-P-5 - 9

6. Didactic Design Pattern „Highlights „

a pattern for peer-review

- Sven Wippermann -

wippermann@ph-ludwigsburg.de

12.08.2004 - 12.02.2008

WG-P-5 - 10

Didactic Motivation

The students work on assigned tasks with the aim of exploring different points-of-

view and a deeper level of inquiry into the subject matter. Following this broad and

deep study, individuals create solutions and share them with their peers for reflection

and comment. This interactive method fosters new views of the topic by exposure to

a variety of understandings.

Abstract

This pattern describes the handling of individual students' work results within a given

time-frame: At a defined time each student sends his solution to another student who

annotates the work and returns it to the author who then picks one highlight to for-

ward to the lecturer. He/she collects all highlights and publishes them to a learning

management system.

Implementation

1. Planning and preparation:

a. Conceptual design of tasks

The lecturer designs different tasks in regard to a specific learning topic and lso

states his requests for the solutions (e.g. complexity of results etc.). He/she has

to bear in mind that the student‘s results have to be composed on a computer in

order to send them to another student quickly and easily -- and to be published

within a learning management system.

b. Clustering of tasks

The lecturer unites the designed tasks (see above) to thematic clusters and defi-

nes the number of tasks within each cluster.

c. Definition of annotation mode

One process of assigning student reviewers is based on simple alphabetical se-

quence: Each student forwards his results to the student whose surname falls

immediately after his/her own surname, alphabetically; the student at the end of

the alphabetical list forwards the results to the first student on the list. The lec-

turer is responsible for the alphabetical student listing (which should include

email addresses).

Lecturers must also define the specific type of feedback that students should fo-

cus their annotations upon (e.g. correctness of results, new view/insight on to-

pic, etc.) and how the annotations should be formatted (e.g. below the result in

a different color, etc.).

WG-P-5 - 11

d. Definition of a highlight

The lecturer defines the meaning of the term "highlight". A useful working defini-

tion is "a concise portion of a solution that offers new insight into the given to-

pic". Furthermore, the lecturer must also specify the number of highlights to be

included with each solution. The number of highlights included with a solution

should be a subset of the total comments provided (e.g., students may include

as many comments as they wish, but they must select 3-5 comments to distin-

guish as highlights).

e. Definition of time-frame

The implementation of this pattern is based on a specified time-frame based

upon the amount of work assigned to the students (see Tasks above.). The follo-

wing deadlines have to be defined:

– date on which results have to be forwarded to next student (see c.) via

email.

– date on which the foreign results have to be annotated and sent back to the

author.

– date on which the chosen highlights have to be sent to the lecturer.

– date on which the highlights have to be published to the learning manage-

ment system.

f. Preparation of learning management system

All highlights will be published to the learning management system. The lecturer

is responsible for meeting the technical requirements and for ensuring that the

system works properly (it might be necessary to set up a secure learning space

for the course).

g. Initiating student work

A message providing instructions for the students should be composed. This

message should include all necessary instructions as defined in the Planning and

Preparation phase. (see Activity Phase).

During Planning and Preparation, only the lecturer plays an active role in specifying

and designing the learning activities and setting-up the learning environment.

2. Information and Instruction:

The lecturer sends the Instructions and all necessary materials to the students via

email.

WG-P-5 - 12

The lecturer activities within this phase are: providing instructions to students regar-

ding learning activities and responding to student questions.

The students occupy themselves with the given activities, posing questions as

desired.

3. Activities:

a. Individual task activities

The students work on the given tasks individually and compose their results via

computer, respecting the specified deadlines.

b. Forwarding results to peers

The results are properly annotated/commented and are then forwarded to the

appropriate within the specified time (follow deadline).

c. Annotation of peer results

Within the defined time-frame the results are annotated by the students followi-

ng the annotation mode. Students should give special attention to potential

highlights.

d. Return results with annotations to student

The annotations are sent to the author within the specified time-frame so every

student receives feedback on his results.

e. Send highlights to lecturer

Following the schedule, the reviewing student choses the recommended number

of highlights (among all annotations), and sends the highlights with the results

and complete annotations to the lecturer.

f. Collecting highlights

The lecturer collects the highlights and arranges them according to the task

clusters.

Within this phase of implementation the lecturer acts as a coach, supporting the stu-

dents in finding solutions to the given tasks.

The students play the most active role within this phase by attending to the given

tasks. These activities are intended to bring students into awareness of different

approaches to the solutions, thus increasing their understanding and knowledge. The-

se new understandings are brought about through the act of reviewing and annotating

another students solution and viewing yet another peers' comments on their own

solution.

WG-P-5 - 13

4. Presentation:

a. All highlights are summarized in one digital document.

b. This document is published within a specified area within the learning manage-

ment system.

Here, the lecturer is active in the role of publishing the student‘s highlights.

5. Evaluation:

The lecturer should take the opportunity to provide additional commentary on the re-

ceived highlights. These annotations may be included in the electronic document (see

4.), or published separately within the learning management system.

This pattern is incorporated in a specific learning context which consists of these

sections:

1. Introduction section

Tasks focusing on special topics that have to be introduced to the student.

2. Closing section

This pattern ends with the publication of the student highlights. However, a dis-

cussion of the highlights will also support and extend the learning process.

The implementation of this pattern is linked with specific technical preconditions and

may be supported by necessary tools.

1. Technical preconditions

a. Email account,

b. web browser,

c. learning management system,

d. valid account for learning management system,

e. text editor or word processing application.

2. Tools

a. Email account

Free email accounts are available from yahoo.de, web.de, gmx.de or others.

WG-P-5 - 14

b. Email client

Most providers offer a web interface which can be used to sent mail. A free

email client named thunderbird is available under this URL (http://www.mozil-

la.org/, retrieved 23.08.2007).

c. Web browser

A web browser is installed on almost every computer. Free browsers are also

available: firefox (http://www.mozilla.org/, retrieved 23.08.2007) opera

(http://www.opera.com/products/, retrieved 23.08.2007), safari (http://app-

le.de/, retrieved 24.11.2007).

b. Learning management system

A german version of the learning management system named moodle is

available under: http://www.moodle.de/, retrieved 23.08.2007. A free trial

account to BSCW (basic support for cooperative work / be smart - cooperate

worldwide) may also be used as learning management system: http://pu-

blic.bscw.de, retrieved 23.08.2007.

c. Valid account for learning management system

All student must have a valid account in order to access the highlights.

d. Text editor or word procession application

A free office suite is named Open Office is available here: http://de.openoffi-

ce.org/, retrieved 23.08.2007).

Reflection of the Didactic Design Pattern

1. Potential problems

a. Technical problems

1. See technical preconditions (it is advisable to save the documents in the

rich text format).

2. The tasks, results and annotation must be composed on a computer.

b. Vague instructions

1. The tasks must be written in clear, concise prose so that the students rea-

dily understand what to do. This is very important because --in contrast

to face-to-face learning-- the lecturer has no opportunity to react directly

to student‘s questions e.g. interpreting gestures, receiving and providing

instantaneous clarification, etc.

Questions about the structure of the pattern should be answered and for-

warded to all students (such as in a Frequently Asked Questions doc-

ument published to the Learning Management System).

WG-P-5 - 15

2. The annotation mode must be specific and concise to facilitate forwarding

results.

c. Management of deadlines

2. This pattern consists of different sections with specified time-frames to be

defined, communicated and followed.

2. Reasons for not implementing this pattern

a. Insufficient technical resources.

b. Insufficient time to allow for proper implementation.

3. Advantages of the pattern

a. Creating solutions, reviewing others' work, and receiving peer feedback allows

students to explore new ideas and to gain a deeper and broader understan-

ding of a given topic.

b. The students become aware of different perspectives by annotating their

peer's work.

c. With peer reviewing being the primary mechanism of feedback, lecturers can

devote more time to observing and fine-tuning the learning process..

4. Disadvantages of the pattern

a. The pattern is centered on students creating their own solutions as well as re-

viewing and commenting upon other students' work --which, in turn, is then

evaluated by the lecturer (primarily through "highlights"). The addition step of

peer review adds time to the process.

b. Students depend on one-another to complete tasks on-time. Thus, all stu-

dents must respect the time-frame of each task in order to complete the pat-

tern on schedule.

c. Dependency on technical resources, especially the Learning Management

System.

5. Alternatives

a. Organization

1. It is possible to hand the tasks to the students in a face-to-face environ-

ment with the advantage that questions can be answered directly, in

plenum.

2. Assigning a single task to the students (instead of clustering many tasks),

reduces the student workload for creating and annotating the solutions.

WG-P-5 - 16

b. Activities

1. The highlights may also be sent to all students via email or in a face-to-

face learning situation instead of publishing them within a learning ma-

nagement system.

2. The lecturer may skip adding to student annotations in the event that stu-

dent annotations and highlights cover the target learning goals.

The following statement clarifies the implementation of the pattern:

This pattern is effectively implemented within the master study course of educational

leadership at the University of Education in Ludwigsburg, Germany. Within the module

"personal management“ this pattern provides a blended learning environment suppor-

ting the continuation of learning from the first face-to-face meeting. All tasks are clu-

stered. From the complete set, students choose five tasks to complete utilizing the

pattern.

References:

No specific references.

Online glossary: http://www.e-teaching.org/glossar, retrieved 30.08.2007

The Didactic Design Patterns create a network and are related to each other

Related Didactic Design Patterns

■ Use of Themenweb,

■ virtual collaboration,

■ virtual mood barometer.

Related Support Patterns

■ StudienMail,

■ Introduction Page of Learning Management System.

WG-P-5 - 17

Proceedings of the 13th European Conference on Pattern Languages of Programs (EuroPLoP 2008),

edited by Till Schümmer and Allan Kelly, ISSN 1613-0073 <issn-1613-0073.html>.

Copyright © 2009 for the individual papers by the papers' authors. Copying permitted for private

and academic purposes. Re-publication of material from this volume requires permission by the

copyright owners.

Guess my X and other techno-pedagogical patterns

Toward a language of patterns for teaching and learning mathematics

Yishay Mor (yishaym@gmail.com), London Knowledge Lab

Abstract

Most people see learning mathematics as a demanding, even threatening, endeavour. Consequently,

creating technology-enhanced environments and activities for learning mathematics is a

challenging domain. It requires a synergism of several dimensions of design knowledge: usability,

software design, pedagogical design and subject matter. This paper presents a set of patterns

derived from a study on designing collaborative learning activities in mathematics for children

aged 10-14, and a set of tools to support them.

Introduction

This paper considers the question of designing educational activities for learning mathematics and

the technologically-enhanced environments to support them. It is grounded in a techno-pedagogical

approach with prioritises the function of educational technologies over their structure. This function

is determined as much by their mode of use as it is by their static features; hence I see a discussion

of tools as meaningful only with respect to the activities in which they are employed. My

perspective is in line with the “instrumental genesis” approach to the design and analysis of

educational technology (Ruthven 2008; Trouche, 2005; Folcher, 2003; Rabardel and Bourmaud,

2003; Trouche, 2003). As Rabardel and Bourmaud phrase it, “design continues in usage” (Rabardel

and Bourmaud, 2003, p 666). In view of this position, the patterns presented in this paper do not

P-7 Guess my X and other techno-pedagogical patterns 2/ 24

make a distinction between tool and activity. These patterns can be implemented by developing new

software components, by configuring and orchestrating existing components or even – in some

cases – with analogue technologies such as paper and pencil.

Target

This paper addresses designers of educational activities and the technology to support such

activities. It takes an inclusive approach, following Herbert Simon’s position that – “Everyone

designs who devises courses of action aimed at changing existing situations into desired ones”

(Simon, 1969, p 129). The focus of this paper is on designing opportunities for learning

mathematics. Thus, the designers in mind are educational practitioners who are considering ways of

using technology to enhance their teaching, as well as technology designers who wish to support

innovative educational practices,. A third potential audience are researchers experimenting with

new practices or technologies. Likewise, the notion of technological design extends beyond the

production of new tools from scratch, and includes the appropriation and adaptation of existing

tools to enable particular practices.

Therefore,

Educators could use these patterns in designing educational activities, using off-the self tools.

Educators and learners could use these patterns as a language for participatory learning design,

where the learners are included as equal partners in the educational process.

Educators and developers could use these patterns as a language for discussing the design and

development of new educational technologies.

Developers could use these patterns as an entry point into contemporary learning theories, by

embedding these in the familiar form of a pattern language.

Historical background

The patterns below are derived from The WebLabs Project (www.weblabs.eu.com), which has been

described in detail elsewhere (Mor et al, 2006; Simpson et al, 2006). The project aimed at exploring

P-7 Guess my X and other techno-pedagogical patterns 3/ 24

new ways of constructing and expressing mathematical and scientific knowledge in communities of

young learners. The WebLabs project involved several hundred students, aged ten to fourteen,

across sixteen schools and clubs in six European countries. Our approach brought together two

traditions: constructionist learning as described by Papert & Harel (1991) and collaborative

knowledge-building in the spirit of Scardamalia & Bereiter (1994). The former was largely

supported by the programming language ToonTalk (Kahn, 1996; 2004; Morgado and Kahn, in

press) (www.toontalk.com), whereas for the latter we have designed and built a web-based

collaboration system called WebReports (Mor, Tholander & Holmberg, 2006). The central design

intention of our approach is that students should simultaneously build and share models of their

emerging mathematical knowledge.

ToonTalk is an animated language and a programming environment designed to be accessible by

children of a wide range of ages, without compromising computational and expressive power.

Following a video game metaphor, the programmer is represented by an avatar that acts in a virtual

world. Through this avatar the programmer can operate on objects in this world, or can train a robot

to do so. Training a robot is the ToonTalk equivalent of programming. The programmer leads the

robot through a sequence of actions, and the robot will then repeat these actions whenever presented

with the right conditions. ToonTalk programmes are animated: the robot displays its actions as it

executes them.

The WebReports system was set up to serve both as a personal memory aid and as a communication

tool. web reportis a document that is composed and displayed online, through which a learner can

share experiences, questions and ideas derived from her activities. The uniqueness of our system is

that it allows the author to share her ideas not just as text, but also graphics and animated ToonTalk

models. This last point is crucial: rather than simply discussing what each other may be thinking,

students can share what they have built, and rebuild each others’ attempts to model any given task

or object.

A main concern was the careful design of a set of activities, aiming to foster learning of specific

mathematical topics, such as sequences, infinity and randomness. The choice and design of

technologies was subordinate to this cause.

P-7 Guess my X and other techno-pedagogical patterns 4/ 24

The Patterns

This paper assumes a pedagogical approach which combines construction, communication and

collaboration. The patterns presented here are focused on this perspective. They were derived from

a three-year European educational research project. These patterns are viewed as the first steps

towards a language. Figure 1 offers a “fantasy map” of this language – a possible draft of the form it

may eventually take. This map is by no means comprehensive. To cover the whole field of

technology-enhanced mathematical education would be a project of immense scale. The patterns

actually discussed in this paper are highlighted in this map. The lines in the map show the links

between patterns to other patterns they extend or use.

The most elaborate of these is GUESS MY X (GmX), which was elicited from the guess my robot

activity (Mor et al, 2006) and other activities cast in its mould by my colleagues Michelle Cerulli

and Gordon Simpson. Other patterns were derived from this one as higher-order abstractions or as

Figure 1: A "fantasy map" of the emerging pattern language. Dark highlighted patterns are

presented in this paper. Light highlighted ones are mentioned. Italics denote anti-patterns.

P-7 Guess my X and other techno-pedagogical patterns 5/ 24

components.

The five patterns described in detail are followed by “thumbnail” descriptions of other patterns

mentioned in the text.

The structure of the design patterns aims to balance precision and simplicity. Visualising these

patterns is often challenging, since they relate to intangible aspects of learning and teaching

processes. I have tried to identify imagery which invokes a useful metaphor.

The problem descriptions utilize an innovative form of visual force-maps. These maps are based on

Alexander’s force diagrams (1964), extended with iconic illustrations. While a formal

methodological discussion of these force maps is called for, it is out of the scope of this paper. Is is

hoped that these maps will prove of intuitive value and assist readers in understanding the problems

under inspection.

P-7 Guess my X and other techno-pedagogical patterns 6/ 24

1. Mathematical Game Pieces

Mathematical content is often injected

artificially into games or other activities, as

SUGAR-COATING. This has a dual effect of

ruining the game and alienating the

mathematics. By contrast, for many

mathematicians, mathematics is the game.

The problem

How do you design (or choose) a game to convey mathematical ideas in an effective and motivating

manner? How do you judge if a proposed game is an adequate tool for teaching particular

mathematical concepts?

P-7 Guess my X and other techno-pedagogical patterns 7/ 24

Forces

� A game used in education has to provide a good game experience, or else it is “just another

boring task”.

� Learners need to engage with the mathematical content that the game aims to promote.

� The chosen representations need to be consistent both with the game metaphors and with the

epistemic nature of the content domain.

Context

An educator wishing to use games as part of her teaching, either evaluating existing “educational”

games, appropriating “entertainment” games, or designing and developing her own games.

A developer wishing to develop games for the educational market.

Solution

• Identify an element of the mathematical content you wish to address in this game.

Figure 2: Force map for Mathematical Game Pieces pattern

P-7 Guess my X and other techno-pedagogical patterns 8/ 24

• Find a visual, animated or tangible representation of this element which is consistent with

the game metaphors.

• Design your game so that these objects have clear PURPOSE AND UTILITY as game elements

in the gameplay structure.

The objects representing the mathematical content should have a meaningful intrinsic role in the

game. Manipulating these objects can be part of the game rules or goals, or understanding them

could be a necessary condition for success.

If the game includes or is followed by communication between participants, then the mathematical

game pieces should become OBJECTS TO TALK WITH.

Examples

In Chancemaker (Pratt, 1988) users manipulate the odds of various chance devices, such as dice

and roulette wheels. The game pieces are representations of probability (Figure 3).

Figure 3: Chancemaker gadgets are probability game pieces

P-7 Guess my X and other techno-pedagogical patterns 9/ 24

Related Patterns

Used by: OBJECTS TO TALK WITH.

Contradicts: SUGAR-COATING (anti-pattern)

Elaborated by: GUESS MY X

Notes

This is a very high level pattern which needs to be elaborated per specific game and content classes.

For example, in a quest type game it might spawn different sub-patterns than in puzzle type games.

In Programming Building Blocks (http://www.thinklets.nl) the object of the game is to

reconstruct a 3D shape from its 2D projections. The mathematical content is the focus of the

game, and the objects used in the game are straightforward representations of that content

(Figure 4).

Figure 4: Building blocks constructions as 3D geometry game pieces

P-7 Guess my X and other techno-pedagogical patterns 10/ 24

Likewise, factual and procedural knowledge might lead to different strategies than meta-cognitive

skills. Nevertheless, it is useful as a guideline for evaluating design proposals. Its absence marks a

game as a weak tool for learning.

P-7 Guess my X and other techno-pedagogical patterns 11/ 24

2. Guess My X

Use a CHALLENGE EXCHANGE game of BUILD THIS puzzles to

combine construction and conversation, promoting an

understanding of process-object relationships and lead to

meta-cognitive skills such as equivalence classes, proof and

argumentation.

The problem

A teacher wants to design a game for learning concepts, methods and meta-cognitive skills in a

particular mathematical domain. This game should use a combination of available technologies.

Many complex concepts require an understanding of the relationship between the structure of an

object and the process which created it. Novices may master one or the other but find it challenging

to associate the two. Constructing objects helps build intuitions, and discussing them espouses

abstracting from intuitions and establishing socio-mathematical norms (Yackel & Cobb, 1995).

Learning mathematics is fundamentally learning to be a mathematician. It requires the learner to

internalize a range of mathematical skills as regular habits: computation, analysis, conjecturing and

hypothesis testing, argumentation and proof. For this to happen, the learner needs to be deeply

engaged in meaningful mathematical inquiry, problem solving and discussion. Games provide a

natural setting for the kind of “flow” needed, but how do we ensure that the focus of this flow is

P-7 Guess my X and other techno-pedagogical patterns 12/ 24

mathematical activity and discourse?

Forces

� Many mathematical domains require learners to understand the relationship between

mathematical objects and the process which generated them. This is a challenge for

many learners.

� The teacher needs a non-invasive monitoring mechanism to assess students'

performance.

� The communicational approach (Sfard, 2006) sees learning mathematics as acquiring a

set of language rules and meta-rules. In order to achieve this, learners need to engage in

meaningful and sustained discussion of mathematical topics.

� The classroom hierarchies and the perception of a teacher as more knowledgeable causes

learners to be cautious and restrained in their mathematical discourse.

Figure 5: Force map for the Guess my X design pattern

P-7 Guess my X and other techno-pedagogical patterns 13/ 24

Context

Primarily, a classroom supported by a technological environment which provides a shared and

protected web space (e.g. wiki or forum), common tools (programming environment, spreadsheets,

etc.) and sufficient access time for all students.

The game relies on sustained interaction over a period of several sessions. It can be used as a short

introduction to a topic, but the greater meta-cognitive benefits may be lost if not enough time is

allowed for conversations to evolve.

Also works for several groups collaborating over a web-based medium.

Solution

Guess my X is a pattern of game structure, which can be adapted to a wide range of mathematical

topics. It extends CHALLENGE EXCHANGE to encourage discussion and collaborative learning, and to

break down classroom hierarchies. It uses BUILD THIS to engender reflection and discussion about

the relationships between mathematical objects and the processes that produce them. The core of

the pattern is described in Figure 6.

P-7 Guess my X and other techno-pedagogical patterns 14/ 24

Figure 6: Schematic diagram of GmX

GmX involves players in two roles, proposers and responders, and a facilitator. An implementation

of the game would specify a domain of mathematics and rules for constructing processes in that

domain. A proposer sets a challenge, in the form of a mathematical object which she constructed.

The explicit rules of the game define the nature of the process by which this object can be created,

but not its details. A proposer would construct such a process, and capture its product. The proposer

then saves the process model in a private space and publishes the product as a challenge.

Responders then need to “reverse engineer” the process from the product. If they succeed, they

publish their version as a response to the challenge. The proposer then needs to confirm the

responder’s solution of provide evidence for the contrary.

It is important to keep the mathematical content explicit from the start. The game is not a SUGAR-

COATING to disguise the mathematics: it is a game with MATHEMATICAL GAME-PIECES. The rules of

the game are intentionally left vague, in the sense that the evaluation function used to determine the

responders' success is not fully specified. This requires students to negotiate what constitutes a

correct answer, and in doing so collaboratively refine the underlying mathematical concepts. These

negotiations can lead to discussions of issues such as proof, equivalence and formal descriptions.

The quality and extent of these discussions depends on the scaffolding and provocations provided

by the teacher, but a necessary condition for them to emerge is that the medium of the game provide

P-7 Guess my X and other techno-pedagogical patterns 15/ 24

a NARRATIVE SPACE, Where the MATHEMATICAL GAME-PIECES of the game can become OBJECTS TO

TALK WITH.

Set-up phase

Before the game begins, the teacher needs to verify that the players have a minimal competence in

analysing and constructing the mathematical objects to be used.

1. Teacher introduces the rules of the game and the game environment.

2. Teacher simulates one or two game rounds during a whole class discussion.

3. Students may need to initialize their game space on the chosen collaborative medium.

If the game uses separate media for construction and communication, consider using a TASK IN A

BOX to streamline the transition between them.

Game session

The game sessions for the proposer and the responder are different, although the same player can

play both parts in parallel.

1. Proposer initiates the game, by constructing and object according the game rules and

publishing it. She then waits for responses.

2. Responder chooses an attractive challenge, and attempts to resolve it. If she believed she has

succeeded, she responds to the challenge by posting the object she constructed and the

method she used.

3. Proposer reviews the response, and confirms or rejects it. If the response is rejected, an

argument needs to be provided.

Play session

Each play session involves a single iteration of the game. Students tend to prolong their interaction

in the game, by providing secondary challenges, etc. Since the iterations are a-synchronous, there

P-7 Guess my X and other techno-pedagogical patterns 16/ 24

may be a time gap of several days between turns.

The communication medium chosen for the game should afford NARRATIVE SPACES for the

proposer and the responder. Although the rules of the game are limited to the exchange of

mathematical objects, the ability to augment these with personal narratives is crucial for personal

reflection as well as for collaborative knowledge building.

Set-down phase

The POST LUDUS discussion should highlight the issue of the evaluation function and its resolution.

Examples

In the Guess my Robot game (Mor et al, 2006) students exchanged challenges in the domain of

number sequences. Proposers would program a ToonTalk robot to produce a sequence, keep the

robot to themselves, and publish the first few terms of the sequence (Figure 10). Responders would

then solve the challenge by recreating a robot to produce the same sequence and posting it as a

comment on the challenge page (Figure 11). Often the response robot was different from the

original, which led learners to discussions about issues such as proof and equivalence. The same

structure was then used in the Guess my graph game in the domain of function graphs (Simpson,

Hoyles and Noss, 2006) and the Guess my garden game in the domain of randomness and

probability (Cerulli, Chioccariello and Lemut, 2007).

P-7 Guess my X and other techno-pedagogical patterns 17/ 24

Figure 10: Example guess my robot challenge

P-7 Guess my X and other techno-pedagogical patterns 18/ 24

Related Patterns

Elaborates: MATHEMATICAL GAME-PIECES;

Uses: CHALLENGE EXCHANGE; UNDERCOVER PROCESS; BUILD THIS; TASK IN A BOX; OBJECTS TO

TALK WITH; NARRATIVE SPACES;

Leads to: POST LUDUS;

Notes

Guess my X assumes a degree of social and technical sophistication which suggests it would be

suitable for young teens and above. It can, however, be adapted for younger children.

The game requires flexibility in time to allow learning dynamics to emerge. It can be interleaved

with other activities.

It is suitable for concrete, well-bounded content domains, such as computation, modelling or

analysis. It uses these as a stratum for developing meta-cognitive skills of problem solving,

analysis, argumentation and general mathematical discourse.

The fact that the game dynamics are driven by participants makes the educators’ role subtle and

critical. The educator needs to facilitate fruitful interactions, and monitor these to divert them to

Figure 11: Example guess my robot response

P-7 Guess my X and other techno-pedagogical patterns 19/ 24

high standards of mathematical discourse.

The game can be played by individuals, pairs or teams. The number and spread of participants can

also vary. However, it is crucial to allow enough time for a culture to emerge. This can be achieved

by interleaving the game with other activities, e.g. playing it for the last 10 minutes of each session

over several weeks.

Both proposers and responders tend to converge to challenges which are HARD BUT NOT TOO HARD.

When the environment encourages social cohesion, players seem to reciprocate 'good' challenges.

P-7 Guess my X and other techno-pedagogical patterns 20/ 24

3. Soft scaffolding

Technology should be designed to

scaffold learners' progress, but an

interface that is too rigid impedes

individual expression, exploration

and innovation.

The problem

Scaffolding is a powerful tool for accelerating learning. It is a fundamental principle in many

interactive learning environments, such as OISE's Knowledge Forum, and is a guiding principle in

Learner-centred approaches (c.f. Quintana et al, 2004). However, scaffolds can become straitjackets

when they are too imperative.

How do you provide direction and support while maintaining the learners’ freedom, autonomy and

sense of self, as well as the teachers’ flexibility to adapt?

P-7 Guess my X and other techno-pedagogical patterns 21/ 24

Forces

� The role of the educator, and by extension educational tools, is to direct the learner towards

a productive path or enquiry.

� If the educational tool adamantly leads the learner through a set sequence, it risks failure on

several accounts:

� There is no leeway for mistakes, innovations, explorations or personal trajectories of

learning.

� Learners feel deprived of personal voice, and their motivation may falter.

� It is hard to bypass design flaws discovered in the field or adjust to changing

circumstances.

Figure 7: Force map for the Soft Scaffolding pattern

P-7 Guess my X and other techno-pedagogical patterns 22/ 24

Context

Scaffolding is a term commonly used in educational design to describe structure that directs the

learner's experience along an effective path of learning. This pattern originates from interactive

web-based interfaces, where users can express themselves in writing. However, it should apply to

almost any interactive learning interface.

Solution

Provide scaffolding which can easily be overridden by the learner or by the instructor. Let the

scaffolding be a guideline, a recommendation which is easier to follow than not, but leave the

choice in the hands of the learner.

• When providing a multiple-selection interface, always include an open choice, which the

user can specify (select 'other' and fill in text box).

� When the user is about to stray off the desired path of activity, warn her, ask for

confirmation, but do not block her.

� When providing templates for user contributions, include headings and tips but allow the

user to override them with her own structure.

Examples

The ACTIVE WORKSHEETS used in the WebReports system (Mor, unpublished) provided participants

a structure to work within, but allowed them to take control and change this structure as their

confidence grew (Figure 8).

P-7 Guess my X and other techno-pedagogical patterns 23/ 24

The ToonTalk tool packaging convention (Mor et al, 2006), which was the basis for TASK IN A BOX,

prompted learners to package their own productions in a particular way by providing them with

useful examples. It did not block them from developing their own packaging style, but the

ToonTalk-weblabs interface did give precedence to conventionally packaged constructions (Figure

9).

Figure 8: Example of Active worksheet. Learners were given a template in which to report on their

exploration, but could edit it freely and replace the structure with their own.

Figure 9: Task-in-a-box demonstrating the ToonTalk packaging convention. Learners received

their tasks in the recommended style for submitting their answers, but could edit and modify it to

their preference.

P-7 Guess my X and other techno-pedagogical patterns 24/ 24

Related Patterns

Used by: GUESS MY X; WEBLABS PEDAGOGICAL CYCLE; NARRATIVE SPACES

Elaborated by: ACTIVE WORKSHEET

Notes

The forces of this pattern are present in face-to-face learning situations. Experienced educators

resolve them by providing ADAPTIVE SUPPORT; varying the learners freedom in response to their

confidence. This could be implemented by intelligent tutoring systems, but simple learning

environments lack this flexibility, and tend to compensate by being over-directive.

P-7 Guess my X and other techno-pedagogical patterns 25/ 24

4. Narrative spaces

Constructing narrative is a

fundamental mechanism for making

sense of events and observations. To

leverage it, we must give learners

opportunities to express themselves

in narrative form.

The problem

How can the epistemic power of narrative be harnessed by educators and learners in the

construction of mathematical meaning?

P-7 Guess my X and other techno-pedagogical patterns 26/ 24

Forces

� Narrative is a powerful cognitive and epistemological construct (Bruner 1986; 1990; 1991).

� Mathematics appears to be antithetical to narrative form, which is always personal,

contextual and time-bound.

Context

Digital environments for collaborative learning of mathematics.

Figure 10: force map for Narrative Spaces

P-7 Guess my X and other techno-pedagogical patterns 27/ 24

Solution

Provide learners with a narrative space: a medium, integrated with the activity design, which allows

learners to express and explore ideas in a narrative form:

� Allow for free-form text, e.g. by supporting SOFT SCAFFOLDING.

� Choose NARRATIVE REPRESENTATIONS when possible.

Mark narrative elements in the medium:

� Clearly mark the speaker / author, to support a sense of voice.

� Date contributions to support temporal sequentiality ('plot').

� Use SEMI-AUTOMATED META-DATA to provide context.

P-7 Guess my X and other techno-pedagogical patterns 28/ 24

Examples

The webreports system allowed learners to comment on any page using a free-form WYSWYG

editor (Figure 6). This allowed them to express their mathematical ideas in a personal narrative, as

well as the path by which they arrived at these ideas. Using this feature, learners expressed and

developed arguments which they could not yet formalize, and shared their learning process.

One participant in the guess my robot game (described below) used ToonTalk robots in an

unexpected way: he trained the robot to “act out” the way in which he solved a challenge (Figure 7).

Figure 11: Example comment from the Guess my Robot game (described below). Rita expresses

mathematical ideas far beyond the curriculum for her age, and shares her learning process with

her peers.

P-7 Guess my X and other techno-pedagogical patterns 29/ 24

Related Patterns

Uses: NARRATIVE REPRESENTATIONS; OBJECTS TO TALK WITH; SEMI-AUTOMATED META-DATA

Used by: GUESS MY X

Figure 12: A robot acting out the way in which its programmer solved a mathematical

challenge

P-7 Guess my X and other techno-pedagogical patterns 30/ 24

5. Objects to talk with

Natural discourse makes extensive use of

artefacts: we gesture towards objects that

mediate the activity to which the discussion

refers. This dimension of human interaction

is often lost in computerized interfaces.

When providing tools for learners to discuss

their experience, allow them to easily include

the objects of discussion in the discussion.

The problem

Several approaches to mathematics education highlight the importance of conversation and

collaboration. The communicational approach (Sfard, 2008) equates thinking with communication,

and sees learning mathematics as acquiring certain rules of discourse. Yackel and Cobb (1995) talk

of the establishment of socio-mathematical norms through classroom discourse. Hurme and Järvelä

(2005) argue that networked discussions can mediate students’ learning, allowing students to co-

regulate their thinking, use subject and metacognitive knowledge, make metacognitive judgments,

perform monitoring during networked discussions and stimulates them into making their thinking

visible.

Most computer-mediated discussion tools are strongly text-oriented, prompting users to express

their thoughts lucidly in words or symbols. Yet two important elements of natural conversation are

lost: the embodied dimension, i.e. gestures, and the ability to directly reference the objects of

discussion.

P-7 Guess my X and other techno-pedagogical patterns 31/ 24

Forces

• Conversation is a powerful driver of learning, it:

o Prompts learners to articulate their intuitions and in the process formulate and

substantiate them.

o Establishes mathematical norms of discourse.

o Enables learners to share knowledge and questions.

• Conversation is even more powerful when building on personal experience or constructing

or exploring mathematical objects.

• However, text based conversation media may obstruct learners, by forcing them to describe

verbally the objects of enquiry which they would naturally gesture at.

Figure 13: force map for the Objects to Talk With pattern

P-7 Guess my X and other techno-pedagogical patterns 32/ 24

Context

This pattern refers to interfaces which allow learners to converse about a common activity.

Solution

Learning activities often involve the use or construction of artefacts. When providing tools for

learners to discuss their experience, allow them to easily include these artefacts in the

discussion. If the activity is mediated by or aims to produce digital artefacts, then the discussion

medium should allow embedding of these artefacts. The medium should support a visual

(graphical, symbolic, animated or simulated) 1:1 representation of these objects.

When providing a NARRATIVE SPACE, allow the user to seamlessly embed the objects of

discussion in the flow of narrative, so that learners can refer to these objects in a naturalistic

manner.

In POST LUDUS discussions, the game’s MATHEMATICAL GAME PIECES should become the

OBJECTS TO TALK WITH. If the game is supported by a NARRATIVE SPACE, this emerges from the

game flow.

Examples

This pattern identifies one of the WebReports system’s primary design objectives. When

developing the final version of the system, significant effort went into providing streamlined

integration, which would allow students to select objects in ToonTalk and with a few clicks embed

them in a webreport. The embedded objects were represented by their graphical image. When

clicked, this image would invoke the original ToonTalk object in the viewers’ ToonTalk

environment. Likewise, when the activity involved graphs, learners could embed these in their

report (Figure 14).

P-7 Guess my X and other techno-pedagogical patterns 33/ 24

This is the real graph that was

produced by the cumulate total of

the halving-a-number robot. It looks

like the top of my graph but I made

the fatal mistake of thinking it

started at zero. I also said it

wouldn’t go over 100, which was

very wrong.

Figure 14: Webreport discussing a graphing activity, with the graph embedded as an object to talk

with.

Related Patterns

Used by: GUESS MY X; TASK IN A BOX; ACTIVE WORKSHEET; SOFT SCAFFOLDING; NARRATIVE

SPACES; POST LUDUS

Uses: MATHEMATICAL GAME-PIECES

Notes

The wide range of patterns which use this one indicate that it is indeed a fundamental component,

applicable to most systems aiming to support discussion and collaborative learning.

P-7 Guess my X and other techno-pedagogical patterns 34/ 24

Thumbnails

NARRATIVE

REPRESENTATIONS

Prefer forms of representation which have narrative qualities, or afford

narrative expression. These are not only textual representation, but also

visual or animated forms which include elements of context, plot, and voice.

POST LUDUS Follow a game (or any other exploratory activity) with a discussion in which

participants are prompted to articulate their learning experience and acquired

knowledge. Such a discussion brings intuitions to the surface, strengthening

structured knowledge and exposing discrepancies.

HARD BUT NOT TOO

HARD

A challenge has to be set at a level which is slightly above the participants

current level. A challenge too easy will be perceived as boring, while a

challenge too hard will result in frustration – both leading to disengagement.

CHALLENGE

EXCHANGE

A self-regulating mechanism for implementing HARD BUT NOT TOO HARD:

allow learners to set challenges for one another.

BUILD THIS A type of challenge / game, where learners are shown an object and asked to

reconstruct is.

TASK IN A BOX When using environment A to provide tasks in environment B, package

these tasks in a compact form that can be embedded in A and unpacked in B.

Each task package should include the task description, any tools required to

perform it, and the mechanism for reporting back the results.

UNDERCOVER

PROCESS

A challenge / game / task where learners need to reverse-engineer a process

by observing its effects.

SUGAR-COATING

(anti-pattern)

Mathematical (or any other subject) matter is injected into a game in a

disconnected way, so that the game is the sugar-coating used to help the

learner swallow the bitter content.

As a result the game loses its appeal, and the learner receives the message

that the educational content is inherently un-enjoyable.

P-7 Guess my X and other techno-pedagogical patterns 35/ 24

Conclusions

This paper presented five patterns out of an emerging language of patterns for techno-pedagogical

design for mathematics learning and teaching, and outlined another seven. These design patterns

reflect a techno-pedagogical approach which sees the design of educational activities and tools as a

holistic endeavour. Thus, while some patterns emphasise certain features of technology and others

highlight structures of activity, they all relate to some extent to both. The pedagogical approach

underlying these patterns combines construction, communication and collaboration.

Above all, these patterns demonstrate the immense complexity of designing for learning. This

complexity calls for further efforts towards identifying methodical frameworks for describing,

aggregating and mapping design knowledge. The prime example of this complexity is the GUESS

MY X pattern. At first, guess my robot may seem a simple game with surprising effects. The

detailed analysis embodied in the GUESS MY X pattern, along with its ‘ancestor’ patterns – such as

CHALLENGE EXCHANGE and BUILD THIS, suggests that the games success is not a fluke, but rather a

result of an intricate assemblage of multiple design elements relating to the tools, the activity and

the ways in which they interact.

Apart from the patterns themselves, this paper introduces the construct of force-maps as an

innovative form supporting design pattern problem descriptions.

References

Alexander, C. W. (1964), Notes on the Synthesis of Form, Harvard University Press.

Bruner, J. (1991), 'The Narrative Construction of Reality', Critical Inquiry 18.

Bruner, J. (1990), Acts of Meaning : Four Lectures on Mind and Culture (Jerusalem-Harvard

Lectures), Harvard University Press, Cambridge, MA.

Bruner, J. (1986), Actual Minds, Possible Worlds (The Jerusalem-Harvard Lectures), Harvard

University Press, Cambridge, MA.

Cerulli, M.; Chioccariello, A. & Lemut, E. (2007), A micoworld to implant a germ of probability, in

' 5th CERME conference - congress of European Society for Research in Mathematics Education,

Larnaca, Cyprus'.

Disessa, A. A. & Cobb, P. (2004), 'Ontological Innovation and the Role of Theory in Design

P-7 Guess my X and other techno-pedagogical patterns 36/ 24

Experiments', Journal of the Learning Sciences 13(1), 77-103.

Folcher, V. (2003), 'Appropriating artifacts as instruments: when design-for-use meets design-in-

use', Interacting with Computers 15(5), 647-663.

Hurme, T. & Järvelä, S. (2005), 'Students’ Activity in Computer-Supported Collaborative Problem

Solving in Mathematics', Journal International Journal of Computers for Mathematical Learning

10(1), 49--73.

Kahn, K. (2004), The child-engineering of arithmetic in ToonTalk, in 'IDC '04: Proceeding of the

2004 conference on Interaction design and children', ACM Press, New York, NY, pp. 141-142.

Kahn, K. (1996), 'ToonTalk - An Animated Programming Environment for Children', Journal of

Visual Languages and Computing 7(2), 197-217.

Morgado, L. & Kahn, K. (in press), 'Towards a specification of the ToonTalk language', Journal of

Visual Languages and Computing.

Mor, Y. & Noss, R. (2008), 'Programming as Mathematical Narrative', International Journal of

Continuing Engineering Education and Life-Long Learning (IJCEELL) 18(2), 214-233.

Mor, Y. & Winters, N. (2007), 'Design approaches in technology enhanced learning', Interactive

Learning Environments 15(1), 61-75.

Mor, Y.; Noss, R.; Hoyles, C.; Kahn, K. & Simpson, G. (2006), 'Designing to see and share

structure in number sequences', the International Journal for Technology in Mathematics Education

13(2), 65-78.

Papert, S. & Harel, I. (1991), Situating Constructionism, in Seymour Papert & Idit Harel,

ed.,'Constructionism', Ablex Publishing Corporation, Norwood, NJ.

Quintana, C.; Soloway, E. & Norris, C. A. (2001), Learner-Centered Design: Developing Software

That Scaffolds Learning., in 'ICALT', pp. 499-500.

Rabardel, P. & Bourmaud, G. (2003), 'From computer to instrument system: a developmental

perspective', Interacting with Computers 15(5), 665 - 691.

Ruthven, K. (2008), 'The Interpretative Flexibility, Instrumental Evolution and Institutional

Adoption of Mathematical Software in Educational Practice: The Examples of Computer Algebra

and Dynamic Geometry', Journal of Educational Computing Research 39(4), 379-394.

Sfard, A. (2008), Thinking as Communicating: Human Development, the Growth of Discourses,

and Mathematizing, Cambridge University Press.

Simpson, G.; Hoyles, C. & Noss, R. (2005), 'Designing a programming-based approach for

modelling scientific phenomena', Journal of Computer Assisted Learning 21(2), 143-158.

Simon, H. A. (1996), The Sciences of the Artificial - 3rd Edition, The MIT Press, Cambridge, MA.

P-7 Guess my X and other techno-pedagogical patterns 37/ 24

Trouche, L. (2005), 'Instrumental genesis, individual and social aspects', The didactical challenge of

symbolic calculators: Turning a computational device into a mathematical instrument, 197-230.

Trouche, L. (2003), 'From artifact to instrument: mathematics teaching mediated by symbolic

calculators', Interacting with Computers 15(6), 783-800.

Winters, N. & Mor, Y. (2008), 'IDR: a participatory methodology for interdisciplinary design in

technology enhanced learning', Computers and Education 50(2), 579-600.

Yackel, E. & Cobb, P. (1995), Classroom Sociomathematical Norms and Intellectual Autonomy, in

'Nineteenth International Conference for the Psychology of Mathematics Education', Program

Committee of the 19th PME Conference, Recife, Brazil, pp. 264-271.

Page 1

“Choose Your Own Architecture”
Interactive Pattern Storytelling

James Siddle, IBM UK Ltd, james.siddle@uk.ibm.com

Illustrations by Maisie Platts, maisie_platts@yahoo.co.uk

‚You peer into the gloom to see dark, slimy walls with pools of water on the

stone floor in front of you. The air is cold and dank. You light your lantern

and step warily into the blackness. Cobwebs brush your face and you hear

the scurrying of tiny feet: rats most likely. You set off into the cave. After

a few yards you arrive at a junction.

Will you turn west (turn to 71) or east (turn to 278)?‛

The Warlock of Firetop Mountain (1) [Jackson+]

Introduction

This paper proposes making pattern stories interactive, in order to be more

engaging, educational, and fun, and to support the exploration of pattern-based

designs. The ‚Choose Your Own Adventure‛ [CYOA1] style of book is suggested as a

suitable basis for introducing interactivity into pattern stories.

Two interactive pattern stories appear in this paper. These stories are based on a

story describing ‚A Request Handling Framework‛ that appears in ‚Pattern Oriented

Software Architecture, Volume 5: On Patterns and Pattern Languages‛ [POSA5]. The first

story is interactive around design alternatives, and illustrates different consequences

that can occur given different design choices. The second story is interactive around

requirements, allowing the reader to choose problems they want to solve, illustrating

how pattern languages can solve a variety of related problems. Both stories provide

the reader with the opportunity to explore pattern-based designs.

The rest of this paper is structured as follows. The target audience is introduced first,

followed by brief introduction to pattern and interactive fiction concepts. The origin

and structure of the two interactive stories is then described, and a reader guidance

section provides essential information needed to read the stories. This is followed by

the interactive stories themselves. The paper closes with an analysis of story features,

a comparison between the stories presented, and a brief discussion of the benefits,

liabilities, and applicability of the approach.

Proceedings of the 13th European Conference on Pattern Languages of Programs (EuroPLoP

2008), edited by Till Schümmer and Allan Kelly, ISSN 1613-0073 <issn-1613-0073.html>.

Copyright © 2009 for the individual papers by the papers' authors. Copying permitted for

private and academic purposes. Re-publication of material from this volume requires

permission by the copyright owners.

Page 2

Target Audience

By reading this paper, computer science students, software developers, and software

architects will gain an insight into the application of patterns, the choices available

during software design, and will learn several desirable and undesirable design

choices in the context of request handling. Patterns theorists and authors will learn

how to combine interactive fiction and pattern concepts to create interactive pattern

stories for patterns-based education. Technical writers may also benefit from

learning an interactive approach to describing the design and development of

software through patterns.

Concepts

Patterns, pattern stories, pattern languages

A pattern [Alexander+77] is a solution to a problem that occurs in a particular

context, captured in an easy to understand format. A pattern story [Henney06]

describes the application of one or more patterns. Pattern stories can be derived from

pattern languages [Alexander+77], which connect patterns together to provide

guidance in solving wider problems than is possible with individual patterns. A key

feature of pattern languages is that patterns are connected together via a shared

context, where the application of one pattern creates a context in which another

pattern can be applied.

To apply a pattern language, one follows the connections in the language to build up

a sequence [Henney06] of patterns. Each pattern application solves one part of the

overall problem, after which the reader determines the next sub-problem they want

to tackle (the pattern texts can help with this). The reader then follows a connection

from one of the patterns they have already applied, to solve the next part of the

overall problem. This continues until the reader's overall problem has been fully

solved, or the pattern language is unable to help the reader further.

It should be noted however that patterns and the associated structures, concepts and

approaches are not a silver bullet for designing software – for example a pattern or

pattern language may only cover part of the problem space for a given context,

which may leave the designer with a partial solution. The quality of a design derived

from a pattern language is dependent on how extensive and rich the language is.

Additionally, effective use of patterns relies on the designer treating them as design

guidance rather than prescriptive solutions; the designer must use their knowledge

of the specific problem being faced to fill in the gaps in any particular pattern.

“Choose Your Own Adventure” and Interactive Fiction

‚Choose Your Own Adventure‛ [CYOA1] books are a form of children’s literature

which is interactive in nature. The reader typically starts at a single entry point

which describes the overall context for the story, then is presented with several

decisions each of which lead to further story, and further decision points, etc.

Eventually the reader will come to one of the many endings, some of which will be

good, others bad. A short history of interactive fiction can be found in the first

appendix.

Page 3

Interactive Pattern Stories

Origin of the stories presented

This paper presents interactive stories that are based heavily on a pattern story

published in ‚Pattern-Oriented Software Architecture, Volume 5: On Patterns and Pattern

Languages‛1 [POSA5]. In this story, a collection of patterns are applied to create a

framework for handling requests. Various problems are posed, such as how to

encapsulate or uniformly handle requests, and various patterns are applied (in the

story) to solve the problems. This pattern story was originally derived from the

pattern language published in [POSA4].

Rather than write a completely new pattern story from scratch, the request handling

framework story is taken (almost verbatim), and transformed into the interactive

versions that appear below. The text is reworded into second-person (a defining

characteristic of interactive fiction stories), and decisions and associated

consequences are introduced into the tail end of the story. Specifically, the reader is

able to make decisions relating to the STRATEGY, TEMPLATE METHOD, NULL OBJECT,

and COMPOSITE COMMAND patterns.

The design alternatives and consequences in the stories were derived from variations

to the requesting handling framework story which are presented in [POSA5], as well

as the pattern language in [POSA4].

Story structure

Two variations of the interactive pattern-story format are presented - one provides

the reader with design choices, the other with choices related to functional

requirement fulfilment.

The first story allows the reader to explore the consequences of applying different

patterns to fulfil a fixed set of functional requirements, which are a system’s

capabilities, services, and behaviour [Bass+03]. This story allows the reader to

experience the consequences of choosing both optimal and sub-optimal design

alternatives. The consequences of the reader’s choices are described in terms of

quality requirements -also known as ‘-ilities’, these are the qualities of the system

being developed that are influenced by design decisions taken [Bass+03]. The first

story has been enhanced with illustrations to show some of the possible ‘real world’

consequences of the decisions in the story.

The second interactive story variation allows the reader to choose which functional

requirements they wish to fulfil, and illustrates how a collection of related problems

can be solved by applying a pattern language. In this story, there is only one possible

way to fulfil any particular functional requirement.

1 Frank Buschmann, Kevlin Henney, Douglas C. Schmidt. © 2007, John Wiley & Sons Limited.

Reproduced with permission.

Page 4

Guidance on Reading the Stories

Before proceeding to the interactive stories, it’s important to understand who should

read them, the requirements around which they are based, and how to read them.

This information is presented as reader guidance below.

Who should read the stories

Computer science students, software developers, software architects, technical

writers, patterns theorists and pattern authors will benefit from reading the stories.

The reader is referred to the target audience section at the start of the paper for

audience motivation statements, in order to avoid unnecessary duplication of

information.

Requirements

The interactive stories that appear below are based around certain requirements.

There are two functional requirements, and three quality requirements. The

functional requirements serve as the basis of reader choices, whilst the quality

requirements are expected of the framework being developed in the stories, and of

any concrete systems that are built on top of it.

The specific role of these requirements to the interactive stories will be made clear in

a short introductory paragraph before each story, and you may wish to refer back to

this point when you are presented with choices in the stories.

Functional requirements:

F1. Support for an optional logging policy mechanism to allow requests that are

handled by the framework to be logged in a variety of ways. This mechanism

is expected to be used to allow different qualities of service (such as the level

of detail provided) for different deployments of the request handling

framework.

F2. The ability to create compound requests, to support composition of

commands that have been written to be processed by the framework.

Quality requirements:

Q1. Developers and users of the framework should find it easy to work with

(understandability),

Q2. It should be easy to perform routine maintenance of framework and

framework-using code, such as fault correction or performance improvement

(maintainability),

Q3. It should also be easy to take advantage of new software or hardware

technologies that may become available in the future (evolvability).

The requirements are referred to throughout the interactive stories via the unique

codes above (e.g. Q1 denoting quality requirement number one, understandability).

Page 5

How to read the stories

Start reading at step 1 which appears in the next section. Step 1 describes a context

that is shared by both stories2, then presents the choice of which story variation to

read. ‚Varying Design Choices‛ appears first, and is followed by ‚Varying

Requirements‛.

Make sure you read the introduction to each story, and then simply follow the

decision instructions as they appear. Route maps for both stories can be found in the

appendices, along with thumbnails for each pattern used.

Here are a few other things to bear in mind whilst reading the stories:

 The decisions presented are intentionally short on information in order to

keep each story succinct, and to promote exploration of the design space.

Under ideal circumstances, design decisions would be made based on an

assessment of all relevant information, but this is rarely the case on real

projects so the decisions do represent realistic choices.

 A valid option at each decision point is to go back a step – after all most

software projects employ some form of source control, allowing earlier

versions of source code to be reverted to. The reader is asked to take this as

an implicit option, which simplifies the presentation of available options.

 Similarly, the choices presented do not represent the entire set of decisions

available, rather a subset chosen in order to explore software design and

development in the particular context. In reality, a software professional is

always free to make whatever choice they wish. More experienced or

advanced practitioners may find the choice constraints limiting.

2
 In addition to those listed above, other functional requirements apply to step 1. These are

not explicitly listed to ensure the information presented is relevant to the interactive portions

of the stories.

Page 6

The Interactive Stories

Context

1
You are developing an extensible request-handling framework for your system, and

are faced with the problem of how requests can be issued and handled so that the

request handling framework can manipulate the requests explicitly.

You decide to objectify requests as COMMAND objects, based on a common

interface of methods for executing client requests. COMMAND types can be expressed

within a class hierarchy, and clients of the system can issue specific requests by

instantiating concrete COMMAND classes and calling the execution interface. This

object can then perform the requested operations on the application and return the

results, if any, to the client.

The language chosen for implementing the framework is statically typed, and

there may be some implementation common to many (or even all) COMMANDs in

your system. You wonder what the best form for the COMMAND class hierarchy is.

You decide to express the root of the hierarchy as an EXPLICIT INTERFACE. Both

the framework and clients can treat it as a stable and published interface in it's own

right, decoupled from implementation decisions that affect the rest of the hierarchy.

You decide that concrete COMMAND classes will implement the root EXPLICIT

INTERFACE, that common code can be expressed in abstract classes below the

EXPLICIT INTERFACE rather than in the hierarchy root, and that concrete classes are

expressed as leaves in the hierarchy.

You realise that there may be multiple clients of a system that can issue

COMMANDs independently, and wonder how COMMAND handling can be handled

generally.

You decide to implement a COMMAND PROCESSOR to provide a central

management component to which clients pass their COMMAND objects for further

handling and execution. The COMMAND PROCESSOR depends only on the EXPLICIT

INTERFACE of the COMMAND hierarchy.

You also realise that the COMMAND PROCESSOR makes it easy to introduce a

rollback facility, so that actions performed in response to requests can be undone.

You extend the EXPLICIT INTERFACE of the COMMAND with the declaration of an

undo method (which will affect the concreteness of any implementing classes), and

decide that the COMMAND PROCESSOR will handle the management.

After introducing the undo mechanism, you recognise that there is also a need for

a redo facility, to allow previously undone COMMAND objects to be re-executed. You

need to determine how the COMMAND PROCESSOR can best accommodate both undo

history and redo futures for COMMAND objects.

You decide to add COLLECTIONS FOR STATES to the COMMAND PROCESSOR, so that

one collection holds COMMAND objects that have already been executed – and can

Page 7

therefore be undone – while another collection holds COMMAND objects that have

already been undone – and can therefore be re-executed. You make both collections

into sequences with 'last in, first out' stack-ordered access.

You understand that some actions may be undone (or redone) quite simply, but

that others may involve significant state changes that complicate a rollback (or

rollforward). You wonder how the need for a simple and uniform rollback

mechanism can be balanced with the need to deal with actions that are neither

simple nor consistent with other actions.

You decide to allow COMMAND objects to be optionally associated with

MEMENTOs that maintain whole or partial copies of the relevant application state, as

it was before the COMMAND was executed. You also decide that those COMMAND

types that require a MEMENTO will share common structure and behaviour for

setting and working with the MEMENTO’s state. You express this commonality by

introducing an abstract class that in turn implements the COMMAND's EXPLICIT

INTERFACE; MEMENTO based COMMAND types can then extend this abstract class.

COMMAND types that are not MEMENTO based won't inherit from this abstract class,

implementing the EXPLICIT INTERFACE directly, or extending another abstract class

suitable for their purpose.

The following UML diagram shows the story so far:

The story continues in both ‚Varying Design Choices‛ on page 8,

 and ‚Varying Requirements‛ on page 15.

2

1

«interface»

Command

Concrete
Command 1

Concrete
Command 1

Abstract
Command

Command
Processor

Collection

Concrete
Command 3

Memento
Command

Memento

Page 8

Story 1 - Varying Design Choices

In the following interactive story, you fulfil all of the functional requirements that

were introduced above. The choices you make in the following story determine to

what extent you fulfil the quality requirements or not, and the text of the story

describes the consequences of your design decisions in relation to those quality

requirements.

Now continue at step 2...

2
You now realise that the framework needs a logging facility for requests, and

wonder how logging functionality can be parameterized so that users of the

framework can choose how they wish to handle logging, rather than the logging

facility being hard-wired.

If you wish to use inheritance to support variations in

housekeeping functionality, turn to 7.

Otherwise if you prefer the use of delegation, turn to 3.

Page 9

Story 1 - Varying Design Choices

3
You choose to express logging functionality as a STRATEGY of the COMMAND

PROCESSOR, so that a client of the framework can select how they want requests

logged by providing a suitable implementation of the STRATEGY interface. This

ensures that the common COMMAND PROCESSOR behavioural core is encapsulated in

one class, while variations in logging policy are separated into other classes, each of

which implements the STRATEGY interface.

Clients of the request handling framework can select how they want logging

performed by choosing which STRATEGY to instantiate the COMMAND PROCESSOR

with. Some users will want to just use the standard logging options, while others

may wish to define their own custom logging, so you ensure the framework

provides some predefined logging types.

This clean separation supports the understandability (Q1), maintainability (Q2),

and evolvability (Q3) of both the framework and any additional logging policy

classes introduced as part of concrete deployments.

Having introduced a parameterized logging facility, you wonder how the

optionality of logging can be realised, in the knowledge that it makes little functional

difference to the running of the framework.

If you wish to make changes to the COMMAND PROCESSOR

control flow to take account of optionality, turn to 8.

Otherwise if you prefer a more transparent solution, turn to 4.

Page 10

Story 1 - Varying Design Choices

4
You provide a NULL OBJECT implementation of the logging STRATEGY which doesn't

do anything when it is invoked, but uses the same interface as the operational

logging implementations. This selection through polymorphism ensures that you

don't need to introduce difficult to understand control flow selection within the

framework to accommodate the optional behaviour, and ensures understandable

(Q1) and maintainable (Q2) framework code.

Turn to 5.

5
Your request handling framework is almost complete; but you still need to ensure

that compound requests are handled. Compound requests correspond to multiple

requests performed in sequence and as one; they are similarly undone as one. The

issue you face is how compound requests can be expressed without upsetting the

simple and uniform treatment of COMMANDs within the existing infrastructure.

If you want to create a special kind of COMMAND

to deal with all compound requests, turn to 6.

Otherwise, if you're happy for compound requests to be handled

by the framework as it stands, turn to 9.

Page 11

Story 1 - Varying Design Choices

6
You decide to implement a compound request as a COMPOSITE COMMAND object that

aggregates other COMMAND objects. To initialise a COMPOSITE COMMAND object

correctly, you ensure that other COMMAND objects (whether primitive or COMPOSITE

themselves) must be added to it in sequence.

This special type of COMMAND enables arbitrary compound requests to be created

and composed, simplifying use of the request handling framework and avoiding the

need for complex, tightly coupled, dedicated compound request classes - enhancing

the maintainability (Q2) and evolvability (Q3) of client code. This comes at the cost,

however, of a reduction in the understandability (Q1) of framework code –

COMPOSITE implementations can be complex and non-obvious.

Turn to 10.

6 – An evolvable design supports the easy addition of new
features, for example the addition of SMS based delivery
notifications to an online shopping service

Page 12

Story 1 - Varying Design Choices
7
You decide to introduce a logging TEMPLATE METHOD to the COMMAND PROCESSOR

class, then call the abstract method whenever logging is required within the

COMMAND PROCESSOR. By necessity, you make the COMMAND PROCESSOR class

abstract.

Different logging policies are provided by creating subclasses of the COMMAND

PROCESSOR. This ensures that the common COMMAND PROCESSOR behavioural core

is encapsulated in a superclass, while variations in logging policy are separated into

different classes, each of which implements the TEMPLATE METHOD. Clients of the

request handling framework can select how (or if) they want logging performed by

choosing which subclass to instantiate. Some users will want to just use the standard

logging options, while others may wish to define their own custom logging, so you

ensure the framework provides some predefined logging subclasses.

This clean separation supports the understandability (Q1), maintainability (Q2),

and evolvability (Q3) of both the framework and any additional logging policy

classes introduced as part of concrete deployments.

Turn to 5.

Page 13

Story 1 - Varying Design Choices
8
You decide to branch explicitly whenever a null logging STRATEGY object reference is

detected within the COMMAND PROCESSOR.

Unfortunately this introduces a great deal of repetition and complexity into the

class, reducing understandability (Q1) and maintainability (Q2) of the framework

code. A knock-on effect of this may even be a reduction in system reliability, if, for

example, checks for null object references are forgotten.

Turn to 5.

8 – An unexpected null pointer exception may leave a system
in an inconsistent state, causing an online shopping system

to send an order to the wrong person.

Page 14

Story 1 - Varying Design Choices

9
You decide to support compound requests through concrete COMMAND objects

which aggregate other COMMAND objects. You don't need to make any changes to

the existing framework because this type of functionality is already supported. But

while this decision means the request handling framework itself is simpler,

supporting understandability (Q1) and maintainability (Q2) of framework code, it

means that clients of the framework will find it harder to use. Clients will need to

represent each different compound request via a unique concrete class, which will be

difficult to maintain (Q2), and harder to evolve (Q3).

Turn to 10.

10
Congratulations, your request handling framework is complete! You've introduced

an optional logging policy mechanism and support for compound requests. But is it

easy to use, and is it easy to maintain? Is it everything you'd hoped for? The

decisions were yours, so whatever they were, you now have to deal with the

consequences!

The End

Page 15

Story 2 - Varying Requirements

In the following interactive story, you decide the make-up of your system by

choosing which functional requirements to fulfil at each step. The quality

requirements also apply to this story, but no choices related to quality requirements

are available.

Now continue at step 2...

2
You now realise that the framework might benefit from a logging facility for

requests, and wonder how logging functionality can be parameterized so that users

of the framework can choose how they wish to handle logging, rather than the

logging facility being hard-wired.

If you wish to introduce a logging

facility into the framework, turn to 3.

Otherwise, if you're happy to leave the framework

without a logging facility, turn to 6.

Page 16

Story 2 - Varying Requirements
3
You choose to express logging functionality as a STRATEGY of the COMMAND

PROCESSOR, so that a client of the framework can select how they want requests

logged by providing a suitable implementation of the STRATEGY interface. This

ensures that the common COMMAND PROCESSOR behavioural core is encapsulated in

one class, while variations in logging policy are separated into other classes, each of

which implements the STRATEGY interface.

Clients of the request handling framework can select how they want logging

performed by choosing which STRATEGY to instantiate the COMMAND PROCESSOR

with. Some users will want to just use the standard logging options, while others

may wish to define their own custom logging, so you ensure the framework

provides some predefined logging types.

This clean separation supports the understandability (Q1), maintainability (Q2),

and evolvability (Q3) of both the framework and any additional logging policy

classes introduced as part of concrete deployments.

Having introduced a parameterized logging facility, you wonder how the

optionality of logging can be realised, in the knowledge that it makes little functional

difference to the running of the framework.

If you wish to introduce transparent handling of situations

when there is no logging strategy, turn to 4.

Or if you don't think the framework needs

special handing for this situation, turn to 10.

Page 17

Story 2 - Varying Requirements
4
You provide a NULL OBJECT implementation of the logging STRATEGY which doesn't

do anything when it is invoked, but uses the same interface as the operational

logging implementations. This selection through polymorphism ensures that you

don't need to introduce difficult to understand control flow selection within the

framework to accommodate the optional behaviour, and ensures understandable

(Q1) and maintainable (Q2) framework code.

Your request handling framework is almost complete; but you wonder if you

need to ensure that compound requests are handled. Compound requests

correspond to multiple requests performed in sequence and as one; they are

similarly undone as one. The issue you would face is how compound requests can be

expressed without upsetting the simple and uniform treatment of COMMANDs

within the existing infrastructure.

If you want to create a special kind of COMMAND

to deal with all compound requests, turn to 5.

Otherwise, if you're not worried about

compound request handling , turn to 13.

5

You decide to implement a COMPOSITE COMMAND ... go to step 14 to see what

happens.

Congratulations, your request handling framework is complete! You've

successfully introduced support for a logging facility, which in addition to allowing

transparent policy selection can also be seamlessly disabled via a special 'null'

strategy object. In addition to that, your framework also supports uniform handling

of both individual and compound requests, via a special 'composite' command

object. By using this object, clients of the framework will avoid introducing their

own compound request objects, which can be complicated, fragile, and difficult to

maintain.

The End

Page 18

Story 2 - Varying Requirements

6
Your request handling framework is almost complete; but you wonder if you need to

ensure that compound requests are handled. Compound requests correspond to

multiple requests performed in sequence and as one; they are similarly undone as

one. The issue you would face is how compound requests can be expressed without

upsetting the simple and uniform treatment of COMMANDs within the existing

infrastructure.

If you want to create a special kind of COMMAND

to deal with all compound requests, turn to 7.

Otherwise, if you're not worried about

compound request handling , turn to 8.

7

You decide to implement a COMPOSITE COMMAND ... go to step 14 to see what

happens.

Congratulations, your request handling framework is complete! Your framework

now supports uniform handling of both individual and compound requests, via a

special 'composite' command object. By using this object, clients of the framework

will avoid introducing their own compound request objects, which can be

complicated, fragile, and difficult to maintain.

The End

8
Congratulations, your request handling framework is complete! It was already

perfect for your needs, so you've decided to leave it just as it is.

The End

9
You exclaim 'xyzzy!'. You are spontaneously transported 100 miles away into the

middle of the countryside, where you discover your true calling as a druid and

spend the rest of your life living in a swamp.

The End

Page 19

Story 2 - Varying Requirements

10
Your request handling framework is almost complete; but you wonder if you need to

ensure that compound requests are handled. Compound requests correspond to

multiple requests performed in sequence and as one; they are similarly undone as

one. The issue you would face is how compound requests can be expressed without

upsetting the simple and uniform treatment of COMMANDs within the existing

infrastructure.

If you want to create a special kind of COMMAND

to deal with all compound requests, turn to 11.

Otherwise, if you're not worried about

compound request handling , turn to 12.

11

You decide to implement a COMPOSITE COMMAND ... go to step 14 to see what

happens.

Congratulations, your request handling framework is complete! You've

successfully introduced support for a logging facility which allows transparent

policy selection. In addition to that, your framework also supports uniform handling

of both individual and compound requests, via a special 'composite' command

object. By using this object, clients of the framework will avoid introducing their

own compound request objects, which can be complicated, fragile, and difficult to

maintain.

The End

12
Congratulations, your request handling framework is complete! You've successfully

introduced support for a logging facility which allows transparent policy selection.

The End

Page 20

Story 2 - Varying Requirements
13
Congratulations, your request handling framework is complete! You've successfully

introduced support for a logging facility, which in addition to allowing transparent

policy selection can also be seamlessly disabled via a special 'null' strategy object.

The End

14
You decide to implement a compound request as a COMPOSITE COMMAND object that

aggregates other COMMAND objects. To initialise a COMPOSITE COMMAND object

correctly, you ensure that other COMMAND objects (whether primitive or COMPOSITE

themselves) must be added to it in sequence.

This special type of COMMAND enables arbitrary compound requests to be created

and composed, simplifying the use of the request handling framework and avoiding

the need for complex, tightly coupled, dedicated compound request classes -

enhancing the maintainability (Q2) and evolvability (Q3) of client code. This comes

at the cost, however of a reduction in the understandability (Q1) of framework code

– COMPOSITE implementations can be complex and non-obvious.

Now return to the step that sent you here...

Page 21

Analysis

The stories presented above allow a reader to explore the different designs that can be

derived from a pattern language within a particular context, along with the negative

consequences that can come from non-pattern-based solutions in that context. Below, the

features of the stories that were presented are discussed, the two stories are compared, then

the benefits and liabilities of the approach are examined.

Interactive Story Features

Alternative decision points

In the first story, one design alternative allows the choice of differing but equally

desirable solutions to problems. At step 2, the reader's choice leads to either

TEMPLATE METHOD or STRATEGY, both reasonable solutions given the context.

Optimal versus Sub-optimal decision points

The first story also allows the reader to explore the negative consequences that may

be encountered if the desirable solution for the context (i.e. pattern) is not selected.

For example at Step 3, the reader either opts for a transparent solution which leads

to NULL OBJECT, or to introduce complicated control flow to deal with a missing

STRATEGY.

Optional requirement decision points

The second story is focused on fulfilling requirements, so the decisions allow the

reader to select which functional requirements they are interested in fulfilling. For

example at step 2, the reader can choose not to introduce a transparent logging

policy, so the remaining decision for this route at step 6 only discusses support for

compound requests.

Joining branches

In ‚Varying Design Choices‛, the story branches but the narrative is rejoined in two

places, at steps 5 and 10. This demonstrates that not all branches in the story are

irreconcilable. The story can be rejoined at these two points because the context of

the remaining story from step 5, and at step 10, is unaffected by differences between

the branches.

Specifically, the choice of how to support compound requests at step 5 is unaffected

by the choice of logging policy mechanism that was made previously. Similarly, the

ending of the story at step 10 is intentionally vague and unrelated to the specific

design choices taken; this is only possible because the consequences of each decision

are described along the way. As such the ending could be either desirable or

undesirable, and this depends on the consequences the reader has built up as they

have gone. In this case, the journey really is more important than the destination.

Page 22

Story summaries

In the ‚Varying Requirements‛ story, there are exactly six (or is it seven?) endings,

each of which provides a brief summary of the final request handling framework

that the reader has chosen. This is only possible because no branches have joined in

this story.

Shared descriptions

Many of the story 'nodes' in ‚Varying Requirements‛ are similar (see 5, 7 and 11)

but slightly different because of the different context that occurs in each case – a

fully branching story may contain many similar nodes. As such, each of steps 5, 7

and 11 describe the introduction of COMPOSITE COMMAND in a way that helps

prevent redundancy in the story text.

Effectively the detailed description of the design, implementation, and consequences

associated with the reader’s decision are separated into a new paragraph. This is

’called’ from several places, and the shared step directs the reader to return to the

originating step at the end. A useful metaphor for understanding this mechanism is

that of the sub-procedure (in structured programming terms), or method (in object

oriented terms).

Illustrations

Finally, the ‚Varying Design Choices‛ story includes a number of illustrations

associated with particular story steps. These act to tie the decisions made by the

reader to ‘real world’ consequences, both to illustrate the possible consequences of

the reader’s decisions, and also to make the story more engaging.

Story Comparison

To compare and contrast the different stories available to the reader in the two variations,

consider the following routes:

Varying Design Choices

Route ‹1,2,3,4,5,6,10›: The reader selects a delegation approach to introducing logging

policy (i.e. STRATEGY), a transparent mechanism for handling a missing logging

policies (i.e. NULL OBJECT), and a special COMMAND object for handling compound

requests (i.e. COMPOSITE COMMAND).

Route ‹1,2,3,8,5,9,10›: The reader selects a delegation approach to introducing logging

policy (i.e. STRATEGY), but chooses to introduce special control flow handling for

missing STRATEGY objects, and to ignore special handling of compound requests.

The difference between the two routes should be clear – the former route takes all possible

optimal choices, while the latter takes all possible sub-optimal choices. In both cases, the

choice of STRATEGY is a neutral choice because the alternative was equally viable.

Page 23

Varying Requirements

Route ‹1,2,3,4,5›: The reader selects to introduce a logging policy, transparent

handling of a missing logging policies, and a mechanism for handling compound

requests.

Route ‹1,2,6,8›: The reader decides that no further requirements need to be fulfilled.

Here, in the first route all 'yes' choices are taken, in the second route all 'no' choices are

taken, i.e. in the first route every possible requirement that could be fulfilled has been

fulfilled, in the second route the request handling framework is left as-is.

The key difference between the two stories presented is that ‚Varying Design Choices‛

presents the reader with a fixed set of requirements, and choices which include design

alternatives and sub-optimal choices for the context. ‚Varying Requirements‛ only has

optimal choices, but allows the reader to choose which requirements they care about.

This distinction highlights the purpose of each story; in the first case, the aim is to

encourage the reader to learn about design by making mistakes. Going down the wrong

path in this story is a good thing because the reader will gain an understanding of the

negative consequences of their decision. Not only that, but cheating may also be a good

thing – after going down the wrong path, the reader can choose to backtrack and change

their mind, exposing them to the positive consequences of decision they chose not to make.

Subsequent readings of significantly different routes, such as those relating ‘horror story’

designs, may also give the reader further insight.

The aim of the second story is to provide a framework for designing actual systems; as such

there are no wrong choices, and every ending is equal. Here, negative consequences are

avoided in favour of presenting the many different good designs that are possible for a

particular pattern language and context. However the lack of design choices in the second

story is a little artificial. A real-world application of an interactive pattern story is likely to

require the choice of both requirements and design alternatives; the lack of design choices

in the second story in this paper serves to allow the features of interactive pattern stories to

become apparent in contrast to the first story.

Page 24

Benefits and Liabilities

The main benefit of the approach is considered to be the engaging format, as well as the

opportunity to explore pattern language based designs.

Interactive stories in the ‚Choose Your Own Adventure‛ format are written in a second

person, genderless way. This avoids the dry, often uninteresting tone of 'third person

passive' writing. The authors of [POSA5] advise that ‚A pattern description that is hard to read,

passive to the point of comatose, formal, and aloof is likely to disengage the reader‛ - a story written

about YOU is considered to be more engaging.

The ability to make decisions in the story is also involving because the reader affects the

outcome. The story takes on a game-like element where the set of outcomes is constrained

by the reader's choices. In addition to being involving, this also makes the story fun to read.

The decision making mechanism also provides the opportunity to explore the various

designs that are possible for a particular pattern language, as well as to experience (to a

limited degree) the negative consequences of sub-optimal design choices for a given

context. Although the examples presented here are relatively simple, it is feasible that more

complex and thorough interactive stories could be written.

The main liability of the approach is considered to be the complexity of the task. Even

writing the simple interactive stories for this paper was a non-trivial task, requiring many

different possibilities to be considered and accounted for in the stories. Interactive pattern

stories are likely to be difficult to modify after creation for the same reason. The complexity

of the task therefore, may limit the practical applicability of such an approach. Few

industrial projects are likely to invest the necessary effort to create and maintain such

stories, suggesting that the approach may be better suited to academic and educational

fields. That said, using the complete pattern story from [POSA5] and the pattern language

in [POSA4] as a starting point did simplify the writing process considerably, and other

support mechanisms such as tooling may increase the feasibility of the approach. For

example the Storyspace or iWriter tools [Storyspace] [iWriter] may help to simplify

interactive story development, and avoid repetition such as that found at step 14 of

‚Varying Requirements‛.

Another liability is that individual patterns or full designs from an interactive pattern story

could be naively applied in an unsuitable context. For example the consequences of

applying NULL OBJECT versus conditional null checking would be different if performance

was a priority rather than understandability or maintainability. Such misapplication could

lead to unexpected and undesirable consequences.

An interactive pattern story could also be applied in a prescriptive way to limit design

options, for example to force designers to always use STRATEGY to support transparent

logging policies. Such a use is likely to be unwelcome as it would be considered to be a

‘strait-jacket’, unnecessarily restricting design choices.

Page 25

Applicability

By extension from their non-interactive counterparts, interactive pattern stories are likely to

be most useful for education and learning. The ability to explore a constrained design space

in a fun, engaging way suggests that interactive pattern stories will be a useful addition to

teaching and learning environments.

It is expected that different audiences will benefit in different (and multiple) ways from

reading interactive pattern stories, so there are potentially as many applications as target

audiences. By varying the content, choices, or emphasis of interactive pattern stories,

different aspects of software design and development may be targeted. The stories in this

paper presented choices around design and requirements, but it would also have been

possible to present choices around desired qualities. It may also be desirable to create

stories combining design, requirement, and quality choices in order to more closely match

real world software development.

The addition of code or model fragments and the creative use of typesetting such as

italicising topic sentences may support educational applications further.

Interactive pattern stories may also serve as the basis of single narrative stories, which may

be desirable for some readers. Interactive stories written with tooling support would be

suitable candidates for generating such single-narrative stories, as long as the tooling

supported such functionality.

Additionally, it may be possible to employ the approach to software architecture evaluation

and comparison. Where patterns are applied to create a software system, a pattern story

may be written to capture the design choices made. It would then be possible to introduce

alternative steps to describe other potential outcomes, for example a poor design choice that

was avoided or a better design choice that was missed. Such an approach may prove useful

in describing architecture rationale in an engaging way.

The approach is not thought to be well suited to technical documentation because of the

effort involved in creating and updating such documentation. Again, tool support may

make such documentation more feasible.

Summary

This paper proposed that interactivity can be introduced into pattern stories in order to

engage readers and support the exploration of pattern languages for educational purposes.

The ‚Choose Your Own Adventure‛ game-book format was suggested as a suitable basis for

introducing interactivity.

Two interactive pattern stories were told, both based on the ‚request handling framework‛

story from [POSA5]. In the first story, the reader was able to explore design alternatives in

solving a fixed set of requirements, while in the second story the reader was able to choose

which requirements they wished to fulfil.

The benefits of the approach were considered to be the engaging format, the ability to

Page 26

explore the different designs that can be created from a pattern language, and the

opportunity to experience the negative consequences associated with sub-optimal design

choices. The liabilities were considered to be the complexity of the writing task, the

possibility of misapplication, and the fact that prescriptive stories may be unwelcome. The

approach was considered to be applicable in educational environments, and to software

architecture evaluation and comparison.

Acknowledgements

Thanks to Paris Avgeriou for providing many insights and useful feedback during the

shepherding of this paper for EuroPLoP 2008, and to Kevlin Henney for providing feedback

on an early version of the paper. Thanks also to the authors of POSA volumes 4 and 5 and

to John Wiley & Sons Ltd for granting permission to use the request handling framework

story. Thank you also to Sam Clark for providing excellent feedback and guidance on the

layout of the paper. Finally thanks to Oxford University’s Kellogg college for providing

funding for me to attend EuroPLoP 2008.

Page 27

Appendix- History of Choose Your Own Adventure books

The first book in the ‚Choose Your Own Adventure‛ series was ‚The Cave of Time‛ [CYOA2]

by Edward Packard, in which the reader discovers a strange cave whilst hiking. On

entering and exploring the cave, the reader is transported through time, encounters many

adventures, and ultimately through their choices determines which of the forty possible

endings they come to. There is an approximately equal distribution of positive, negative,

and neutral endings in ‚The Cave of Time‛, as shown in the figure below.

The interactive fiction format has been successfully applied to gaming several times,

leading to amongst others, the long running ‚Fighting Fantasy‛ [FF] series.

‚Choose Your Own Adventure‛ books are not the first example of interactivity in fiction; the

short-lived ‚The Adventures of You‛ series, also written by Edward Packard and in

conjunction with R. A. Montgomery, preceded the ‚Choose Your Own Adventure‛ books.

Earlier notable examples are ‚El Jardín de senderos que se bifurcan‛ (‚The Garden of Forking

Paths‛) [Borges] by Jorge Luis Borges, and ‚Un conte à votre façon‚ by Raymond Queneau.

The latter being published in ‚Oulipo: A Primer of Potential Literature‛ [Oulipo08], a

collection of works from the ‚Oulipo‛ [Oulipo] a french group of writers and

mathematicians notable for exploring ‚constrained writing‛ techniques, used to trigger

ideas and inspiration [OulipoWP].

A more recent example of work by the Oulipo can be found in ‚The State of Constraint‛,

published as part of ‚McSweeney’s Quarterly Concern‛, issue 22. This includes Paul Fournel’s

‚Once Upon a Colony: A Tree Story, with Some Ramifications‛ where the reader’s decisions

determine the fate of a primitive (but happy) village which encounters western civilisation

[McSweeney22].

Interactive fiction has also been applied successfully in electronic format, with numerous

'text adventures' being playable by way of virtual machines, such as the 'Z' virtual

computer invented in 1979 [InformZ]. The most notable and widely acclaimed text

adventure stories are those published by Infocom [Infocom], such as ‚The Hitchhiker's Guide to

the Galaxy‛, developed by Steve Meretzky and Douglas Adams. An online version of ‚The

Hitchhiker's Guide to the Galaxy‛ is available via the official Douglas Adams website [H2G2].

For further information, see ‚Twisty Little Passages: An Approach to Interactive Fiction‛

[Montfort] which explores interactive fiction in detail.

Page 28

Figure 1- Map courtesy of Assistant Prof. Mark Sample from George Mason University,
built using CMap [CMap].

Page 29

Appendix – Story Maps

The following diagrams provide an overview of the decisions that you can make and the

different routes through the stories that can be found in this paper.

In each diagram, circles represent decisions points and italicised text shows possible

choices. Rounded boxes represent the resulting development activities and decision

consequences, and numbers denote discrete steps in the interactive story. Where numbered

steps include both development activities and choices, the numbers are repeated. Grey

boxes represent text that summarises the story at the end.

Map of “Varying Design Choices” Story

Compound requests – use existing
framework, or special COMMAND?

Logging policy – delegation
or inheritance?

When no logging – use control
flow, or transparency?

Transparency Control flow

Delegation Inheritance

1: Initial context

2

3: STRATEGY

3

7: TEMPLATE
METHOD

8: Null
checking

4: NULL OBJECT

Special COMMAND Existing F/W

5
5

9: Existing
Framework

6: COMPOSITE

COMMAND

10: The End

Map of Story 1 – Varying Design Choices

Page 30

Map of “Varying Requirements” Story

Note that above, step 14 (not shown) is actually referred to from several other steps.

Yes

Yes

Yes

Support
compound
requests?

Support
compound
requests?

Include a transparent
logging policy?

Transparent handling
of missing strategy?

No

Yes

Yes

No

1: Initial
context

2

3: STRATEGY

3

4: NULL

OBJECT

No

4

5: COMPOSITE

COMMAND

(inc. step 14)

5: The End

Transparent logging

policy; optional

logging; compound

requests)

13: The End

(Transparent logging

policy; optional

logging)

No

10

11: COMPOSITE

COMMAND

(inc. step 14)

11: The End

(Transparent logging

policy; compound

requests)

12: The End

(Transparent

logging policy.)

Support
compound
requests?

No
No

6
2

7: COMPOSITE

COMMAND

(inc. step 14)

7: The End

(Compound

requests)

8: The End

(No change)

Map of Story 2 – Varying Requirements

Page 31

Appendix – Pattern Thumbnails

The various patterns discussed in this paper are fully captured in [POSA4]; however for the

purposes of this paper these patterns are paraphrased below:

COMMAND

When decoupling the sender of a request from its receiver, encapsulate

requests being made into command objects. Provide these command

objects with a common interface to execute the requests that they

represent.

EXPLICIT

INTERFACE

To enable component reuse, whilst avoiding unnecessary coupling to

component internals, separate the declared interface of a component from

its implementation

COMMAND

PROCESSOR

When an application can receive requests from multiple clients, provide a

command processor to execute requests on client’s behalf within the

constraints of the application.

COLLECTIONS

FOR STATES

For objects that need to be operated on collectively with regard to their

current state, represent each state of interest by a separate collection that

refers to all objects in that state.

MEMENTO

To enable the recording of an object’s internal state without breaking

encapsulation, snapshot and encapsulate the relevant state within a

separate memento object. Pass this memento to the object’s clients rather

than providing direct access to internal state.

STRATEGY

Where an object has a common core, but may vary in some behavioural

aspects, capture the varying behavioural aspects in a set of strategy

classes, plug in an appropriate instance, then delegate execution of the

variant behaviour to the appropriate strategy object.

TEMPLATE

METHOD

Where an object has a common core, but may vary in some behavioural

aspects, create a superclass that expresses the common behavioural core

then delegate execution of behavioural variants to hook methods that are

overridden by subclasses.

NULL OBJECT

If some object behaviour will only execute when a particular object exists,

create and use a null object instead of checking for null object references.

This avoids the unnecessary introduction of complex and repetitious null

checking.

COMPOSITE

COMMAND

When a transparent and simple mechanism for single and compound

request execution is needed, express requests as COMMANDs, and group

multiple COMMANDs in a COMPOSITE to ensure that single and multiple

requests are treated uniformly.

Page 32

References

[Alexander+77] C. Alexander, S. Ishikawa, M. Silverstein, et al "A Pattern Language",

Oxford University Press, 1997

[Bass+03] L. Bass, P. Clements, R. Kazman, ‚Software Architecture in Practice, 2nd

Edition‛, Addison Wesley 2003

[Borges] J. L. Borges, ‚El Jardín de senderos que se bifurcan‛ (‚The Garden of

Forking Paths‛), published in ‚Ficciones‛, Grove Press / Atlantic

Monthly Press (30 Jun 2000)

[BorgesHT] Hypertext version of ‚The Garden of Forking Paths‛ by J. L. Borges:

http://www.geocities.com/papanagnou/cover.htm

[CMap] CmapTools, knowledge modeling toolkit:

 http://cmap.ihmc.us/

[CYOA1] The Official ‚Choose Your Own Adventure‛ website:

http://www.cyoa.com/

[CYOA2] E. Packard, ‚Choose Your Own Adventure 1: The Cave of Time‛, Bantam

Books, 1979

[FF] Website of ‚Fighting Fantasy‛ gamebooks:

 http://www.fightingfantasygamebooks.com/

[Henney06] K. Henney, ‚Context Encapsulation. Three Stories, a Language, and Some

Sequences‛ (2006)

[H2G2] ‚The Hitchhiker's Guide to the Galaxy‛ Infocom text adventure:

 http://www.douglasadams.com/creations/infocomjava.html

[InformZ] Website of the Inform system for interactive fiction:

 http://www.inform-fiction.org/zmachine/index.html

[Infocom] Infocom website:
 http://www.csd.uwo.ca/Infocom/

[iWriter] iWriter by talkingpanda software: http://talkingpanda.com/iwriter/

[Jackson+] S. Jackson, I. Livingstone, ‚The Warlock of Firetop Mountain‛, Wizard

Books; 25th Anniversary Edition (2 Aug 2007)

[McSweeney22] Various authors, ‚McSweeney’s Quarterly Concern‛, issue no. 22.

Hamish Hamilton/Penguin Books, 2006.

http://www.geocities.com/papanagnou/cover.htm
http://cmap.ihmc.us/
http://www.cyoa.com/
http://www.fightingfantasygamebooks.com/
http://www.douglasadams.com/creations/infocomjava.html
http://www.inform-fiction.org/zmachine/index.html
http://www.csd.uwo.ca/Infocom/
http://talkingpanda.com/iwriter/

Page 33

[Montfort] N. Montfort, ‚Twisty little passages: An Approach to Interactive Fiction‛,

The MIT Press (December 1, 2003)

[Oulipo] Website of the ‚Ouvroir de Littérature Potentielle‛:

 http://www.nous.org.uk/oulipo.html

[OulipoWP] Wikipedia entry on the Oulipo:

 http://en.wikipedia.org/wiki/Oulipo

[Oulipo08] W. F. Motte Jr. (editor), ‚Oulipo: A Primer of Potential Literature‛,

Dalkey Archive Pr; First Dalkey Archive edition (March 10, 2008)

[POSA4] F.Buschmann, K. Henney, D.C. Schmidt, ‚Pattern-Oriented Software

Architecture Volume 4: A Pattern Language for Distributed Computing‛,

John Wiley and Sons (2007)

[POSA5] F.Buschmann, K. Henney, D.C. Schmidt, ‚Pattern-Oriented Software

Architecture Volume 5: On Patterns and Pattern Languages‛, John Wiley

and Sons (2007)

[Storyspace] Storyspace website: http://www.eastgate.com/Storyspace.html

http://www.nous.org.uk/oulipo.html
http://en.wikipedia.org/wiki/Oulipo
http://www.eastgate.com/Storyspace.html

S-2-1

Patterns and their impact on system concerns

Michael Weiss
Department of Systems and Computer Engineering

Carleton University, Ottawa, Canada
weiss@sce.carleton.ca

Abstract

Making the link between architectural decisions and system concerns explicit is a major
contribution that patterns can make. Over the past decade, there have been several efforts
to close the gap between requirements and architecture by using patterns. In this paper,
our goal is to take a step back and survey these different contributions, as well as related
efforts in other communities (such as the work on aspect-oriented requirements
engineering). From these, we identify common elements and present a perspective on
how to move forward. This thematic track on Pragmatic and Systematic Approaches in
Applying Patterns should provide a good conduit for this discussion.

1 Introduction

There has been much recent interest in understanding the link between patterns and
system concerns, also known as non-functional requirements. There is a well-recognized
gap between requirements and architecture. We also know that system concerns may be
satisfied to a differing extent by alternative architectures, and that we need to explore and
evaluate architectural alternatives (Grau and Franch 2007). The system architect is faced
with designing a system that meets both functional and non-functional requirements.

Harrison and Avgeriou (2007) suggest that patterns are a good way to understand the
impact of architectural decisions, because they contain information about consequences
and context of the pattern usage. However, they also go on to state that this information
has been of limited use, because it is not presented consistently or systematically at
present. They propose to integrate the information about the impact of patterns on system
concerns in order to increase the usefulness of architectural patterns.

Over the past decade, a number of research groups have made contributions to our
understanding of the link between patterns and system concerns. However, their work has
been dispersed and we have not leveraged the results as well as we could have. As a step
towards advancing these efforts, our goal is to summarize the existing research on the
problem and to identify lessons learned and questions for future research.

S-2-2

We have divided the surveyed contributions into three streams. The first stream is on
work that explicitly aims to link patterns and system concerns. Much of this work has
been carried out with the goal of supporting the selection of patterns, our second stream.
The third stream is concerned with work on documenting the rationale for architectural
decisions and trade-offs. Here, we will only review some representative examples.

2 Patterns and system concerns

Several papers are concerned with making an explicit link between patterns and system
concerns.1 There are three perspectives within this stream: non-functional requirements
modeling (Gross and Yu 2001; Araujo and Weiss 2002; Chung et al. 2002; Mussbacher,
Amyot and Weiss 2006), layered system architecture and non-functional patterns
(Fernandez 2003), and effective information organization (Harrison and Avgeriou 2007).

Gross and Yu (2001) examine the applicability of the well-established Non-Functional
Requirements (NFR) framework by Chung et al. (2000) to the representation and
application of patterns. The NFR framework makes the relationship between non-
functional requirements and design decisions explicit. Gross and Yu extract the
contributions of a pattern on non-functional requirements from a textual analysis of the
problem statement. They then model the impact of a pattern in terms of “softgoals”.
Softgoal is the term used by Chung et al. (2000) to indicate that, unlike functional
requirements, non-functional requirements cannot be achieved in an absolute sense, but
only to some degree. Gross and Yu (2001) use softgoals to represent the forces that a
pattern helps achieve or prevents from achieving. Solutions of patterns are represented as
operationalizing goals. They are said to “operationalize” goals, as they turn those goals
into solutions that help achieve those goals in a specific manner. Side effects of a solution
are also made explicit as part of their analysis. This approach allows the comparison and
consequent selection of patterns in terms of their impact on system concerns.

Araujo and Weiss (2002) improve on the work by Gross and Yu (2001) in an effort to
create a catalog of the impact of patterns on system concerns using a consistent
vocabulary of forces for a given domain (their domain is distributed system design). They
show how patterns can be mapped to architectural issues and decisions, resources,
constraints, and system concerns. Like Gross and Yu (2001), they model patterns using
softgoal graphs. A link between a pattern and a force in the goal graph (which the authors
call a “force hierarchy”) indicates that the pattern contributes to its achievement. Each
pattern is the result of a trade-off or balance between forces. Representing the
contributions of a pattern as a softgoal graph makes the contributions of the pattern
toward achieving the domain forces explicit. It highlights the trade-offs made by a

1 I thank my shepherd for pointing out that these patterns are also, in some sense, about the selection of
patterns. Representing the impact on system concerns is a precondition for selecting patterns. For example,
when a security pattern mitigates a particular security threat, this pattern becomes a candidate to be selected
when this threat is faced. However, none of the papers in this section directly discusses the application to
selection. Yet, clearly pattern selection builds on pattern representations such as those developed here.

S-2-3

pattern. For example, it may achieve certain forces, but hinders the achievement of other
forces. It also makes visible forces that remain unresolved after applying a pattern.

Chung et al. (2002) document the rationale for selecting design patterns that are used
together (something they call a “pattern set”) using softgoal graphs. Their approach
marries goal-oriented modeling with design reuse in the form of patterns. The approach is
also based on the NFR framework. It proposes to model the functional and non-functional
requirements of a system using the NFR framework, refine and prioritize them, and
establish architectural alternatives that meet these requirements. Next, a system designer
should consider patterns that satisfy these architectural alternatives, and analyze the
trade-offs among the architectural alternatives and their associated patterns. The approach
ends with the selection of architectures and patterns that best satisfy the non-functional
requirements identified, and instantiating the patterns in the design. For example, indirect
and direct invocation are two architectural alternatives to notify subscribers, and the
Observer pattern is a way of implementing the indirect invocation style. Indirect
invocation leads to a loosely coupled system, which improves maintainability. This link
is modeled through contributions. Pattern dependencies are also accounted for in this
approach, so selecting an Observer pattern would imply using a Factory pattern.

System concerns are impacted at all levels of a system, as pointed out by Fernandez
(2006). His particular focus is on security: access control and authorization constraints
defined at the application level need to be enforced by lower levels, such as database,
distribution, and hardware levels. Patterns provide a systematic way of reusing design
knowledge to build systems that meet specific non-functional requirements. Extending
the proposal of Araujo and Weiss (2002), Fernandez’ approach also incorporates the
notion of mapping between patterns at different levels of abstraction:

We can define patterns at all levels. This allows a designer to make sure that all levels are
secured, and also makes easier propagating down the high-level constraints.

For example, the implementation of the Authorization pattern at the application level
requires the use of the Single Access Point and Check Point patterns at the system level,
as well as patterns for file access and process creation at the operating system level.

Later, Mussbacher, Amyot and Weiss (2006) more clearly distinguish between a force
and a non-functional requirement than earlier work. They formalize architectural patterns
with the Goal-oriented Requirements Language (GRL). Forces and contributions of
individual patterns are captured using GRL. Combinations and side effects (correlations)
are described with AND graphs, and alternative combinations for a given (functional)
goal are represented with an OR graph. With the help of strategies (that is, initial
selections of candidate patterns) and propagation rules, designers can assess the impact of
their selection on the forces and find a suitable solution in their context. This context can
itself be modeled with GRL, first at the actor/dependency level and then at the level of
intentional elements (goals, softgoals, tasks, etc.) for the system. This enables global and
rigorous assessments to be made, even when many functional subgoals are considered.

S-2-4

Harrison and Avgeriou (2007) analyze the impact of patterns on system concerns and
propose a way of organizing this information so that it is more accessible and
informative. They selected well-known architectural patterns and documented the
consequences of applying these patterns in terms of their strengths and liabilities in the
form of tables that allow for easy comparison. Commenting on their analysis, they
remark that using patterns makes it less likely that architects overlook important
consequences of architectural decisions. In their words, this “relieves the architect of the
burden of being expert in all the quality attributes”. In comparison to other methods that
center around system concerns such as QASAR (Bosch 2000), patterns focus more on the
interaction among patterns and quality attributes than on specific system concerns.

Table 1 compares these approaches in terms of their features.

3 Selection of patterns

Other approaches also target the selection of patterns, and are, thus, presented in this
section, although they all include a representation of the system concerns impacted by a
pattern. This stream includes work on pattern-based design (Weiss 2003), design space
visualization (Zdun 2006), architectural decision trees (Fernandez et al. 2006), decision-
theoretic approaches to automate pattern selection (MacPhail and Deugo 2001), and
pattern search engines (Weiss and Mouratidis, 2008). Note that we limited our attention
to approaches that use system concerns as part of their decision process. There are other
approaches to pattern selection that do not consider system concerns.

Weiss (2003) describes a pattern-based approach to system design that is both goal-
driven (top-down) and pattern-driven (bottom-up) as in Error! Reference source not
found.. Their approach involves five steps: identify domain forces, document roles
(patterns are documented as role diagrams in this approach), document patterns and their
dependencies, identify the overall design goals (expressed in terms of the forces implied
by the requirements), and select patterns that help achieve them. The last step is
concerned with selecting patterns. The first three steps are steps that only pattern writers
go through, whereas the last two steps are performed by designers, who want to apply the
patterns.

Having identified the overall prioritized design goals, the architect should now select the
patterns that help achieve them. As in Araujo and Weiss (2002), the approach relies on a
softgoal representation of the patterns. The selection is performed manually with the help
of a reverse index that lists the patterns achieving a particular force. This index can be
derived from the individual softgoal graph model of each pattern. Weiss (2003) also
remarks that if we want to evaluate the effect of applying several patterns, we can
combine the softgoal graphs for the individual patterns, and obtain a softgoal graph in
which the patterns are operationalizations (designs or implementations that achieve the
softgoals). We can also compare the results of applying alternative solutions to the same
problem suggested by different patterns. The choice of the pattern depends on the
prioritization of the forces by the designer (that is, there is no single best solution).

S-2-5

H

ar
ris

on
 a

nd

A
vg

er
io

u
(2

00
7)

C
ol

um
ns

 R
ow

s

Zd
un

 (2
00

7)

C
rit

er
ia

(Q
ue

st
io

ns
?)

O
pt

io
ns

Fo
llo

w
-u

p
qu

es
tio

ns

M
us

sb
ac

he
r e

t
al

. (
20

06
)

So
ftg

oa
ls

G
oa

ls

Ta
sk

s

Ta
sk

de

co
m

po
si

tio
n,

ac

to
r

de
pe

nd
en

ci
es

G
oa

l g
ra

ph
 w

ith

st
ak

eh
ol

de
rs

A
ct

or

de
pe

nd
en

ci
es

C
hu

ng
 e

t a
l.

(2
00

3)

So
ftg

oa
ls

 O
pe

ra
tio

na
li-

za
tio

ns

C
on

tri
bu

tio
ns

C
on

tri
bu

tio
ns

Pr
io

rit
ie

s

A
ra

uj
o

an
d

W
ei

ss
 (2

00
2)

So
ftg

oa
ls

 O
pe

ra
tio

na
li-

za
tio

ns

 C
on

tri
bu

tio
ns

G
oa

l g
ra

ph

G
ro

ss
 a

nd
 Y

u
(2

00
1)

So
ftg

oa
ls

G
oa

ls

O
pe

ra
tio

na
li-

za
tio

ns

 C
on

tri
bu

tio
ns

 Fo
rc

es

Fu
nc

tio
na

l
go

al
s

Pa
tte

rn
s

Pa
tte

rn

de
pe

nd
en

ci
es

Fo
rc

e
re

la
tio

ns
hi

ps

C
on

te
xt

Table 1. Features of the different pattern representations

S-2-6

Fernandez et al. (2006) propose the use of architectural decision trees to record selected
patterns as well as alternatives that were considered but discarded. A decision tree allows
architects to make decisions about system concerns vs. functional decisions. Architects
can also later backtrack in the tree and make different decisions as the outcome of a
decision was not the expected one or the requirements change.

Zdun (2007) describes an approach to reduce the complexity of pattern selection by
employing pattern language grammars and design spaces. The approach considers quality
goals (which the author equates with forces) and pattern variants. The design space
approach extends the question-option-criteria (QOC) notation from HCI, which is related
to the goal-question-metric approach from software engineering. Instead of using QOC
analysis to visualize alternative design decisions, Zdun (2007) applies it to document the
impact of alternative patterns to the quality attributes in forces and consequences. As in
the work of Gross and Yu (2001) and Araujo and Weiss (2001), the level of abstraction
is, therefore, that of patterns, not that of concrete design decisions. The design space
approach is recursively applied, if related patterns raise new design questions.

Some proposals have been made to automate the selection of patterns. For example,
McPhail and Deugo (2001) use a weighted distance metric (where each force is weighted
by its priority) to search for matching patterns among a large number of patterns. An
interesting aspect of their proposal is to decompose forces (such as performance and
maintainability) into object-oriented quality metrics. The level of satisfaction of a force
can thus be automatically computed from the object model of the pattern solution. Their
approach is particularly suitable to compare variants of a pattern, that is, to determine
which of various versions of, say, the Visitor pattern is best for a particular design.

Schumacher (2003) describes an expert system for the retrieval of security patterns. He
proposes a representation of meta-information for security patterns, which includes the
standard context, problem, solution elements as well as pattern dependencies, but also
security-specific elements such as information about the threats a pattern protects against.
Through a set of inference rules that encode knowledge about the pattern elements and
pattern relationships, the expert system supports navigation of patterns based on pattern
relationships, and detection of conflicts and comparison of alternatives. There is also
some support for the qualitative comparison of patterns in terms of non-security forces.

Current work by Weiss and Mouratidis (2008) proposes a search engine for patterns that
employs the pattern representation by Mussbacher, Amyot and Weiss (2006). Patterns are
represented in terms of their impact on system concerns. A rules engine is used to reason
about the effect of combining patterns on system concerns, and to identify trade-offs
between system concerns. Its input is a set of system concerns that need to be satisfied,
and its output a set of patterns that meets all requirements, if they can be satisfied, or
most of them. The search engine can produce multiple pattern sets, ranked on how they
satisfy the input requirements. The reasoning process also considers pattern
dependencies: one important implication is that each pattern may add new requirements
of its own, which then drive the selection of further patterns.

S-2-7

4 Rationale for architectural decisions

This stream is concerned with related work on documenting the rationale for making
architectural decisions. It also looks at efforts undertaken under the umbrella of
separation of concerns. There are two groups of papers reviewed here: the work by
Akerman et al. (2006), Zimmermann et al. (2007) and Brito et al. (2007), which models
architectural decision making in terms of reasoning about system concerns, but does not
make explicit use of patterns, and work that treats patterns as reusable architectural
knowledge (Zimmermann et al. 2008; Harrison and Avgeriou 2007). The former work is
included here, because it has direct bearing on how we can reason about the impact of
patterns on system concerns, if we treat patterns as architecture knowledge.

Akerman et al. (2006) propose an approach to software development that focuses on
architectural decisions and uses an ontology to capture the architecture. The ontology has
major components for capturing stakeholder concerns, architectural assets, architectural
decisions, and a transformation roadmap. They present detailed models of these
components, which could provide the basis for a common vocabulary for reasoning about
architectural decisions. According to the authors, a pattern catalog of the type described
in (Araujo and Weiss 2002) may be a start to populate an enterprise architecture
ontology. Recent work by Zimmermann et al. (2007) on an Architectural Decision
Knowledge Wiki applies the theoretical framework Akerman et al. (2006) and
implements it in a tool. This work considers three levels of architectural decisions:
concept, technology, and asset. Concepts are patterns or abstract principles.

Zimmermann et al. (2008) combines pattern languages and architectural decision models.
The proposed ArchPad method facilitates the selection of patterns and provides
traceability from generic patterns to project-specific adaptations of those patterns.
Patterns are treated as a source of reusable architectural knowledge, whereas architectural
decision models document specific design decisions and the alternatives considered.
Applying a pattern means to make an architectural decision; to address the consequences
of a pattern, further architectural decisions need to be made.

The impact of architectural decisions on system concerns is also heavily researched in the
aspect-oriented requirements engineering community. A recent example is Brito et al.
(2007), who propose to use the Analytic Hierarchy Process to resolve conflicts between
system concerns. Given a set of alternatives and a set of decision criteria, the method will
determine the best alternative in a rigorous manner.

Quality attributes often interact. Changes to a system that improve one set of quality
attributes usually have unforeseen side effects on quality attributes elsewhere, as noted by
Harrison and Avgeriou (2007). An example of the complexity of the interaction of non-
functional requirements has been documented in Dyson and Longshaw (2004).

The Non-Functional Requirements (NFR) framework in Chung et al. (2000) is a goal-
oriented approach for modeling interactions between NFRs, and deriving a “good” or
(with respect to the user’s priorities) optimal software architecture. It introduces the

S-2-8

notion of a softgoal. The prefix “soft” indicates that softgoals are often subjective in
nature, unlike functional (or “hard”) goals. The NFR framework is used for documenting
design rationale, and it helps represent the relationships between design decisions and
non-functional requirements. Its extension within the Goal-oriented Requirements
Language (GRL) can also model the viewpoints of multiple stakeholders (GRL 2007).

5 Lessons Learned

Our first set of lessons learned from our survey of the literature indicates that the
literature on patterns and system concerns is still fragmented:

• There are several dispersed research efforts on enhancing our understanding of
how to link patterns and system concerns

• These efforts lack a common vocabulary and do not agree on notation2
• There is also a lack of large case studies to validate the proposed approaches,

specifically ones with industrial involvement

On the other hand, as this paper hopes to show, there are many common ideas underlying
these approaches, and their synergy should be better exploited:

• Patterns make the communication of architectural decisions easier
• Architectural decisions are made in terms of system concerns: solutions to the

same functional requirements differ in their impact on NFRs
• Patterns capture reusable architectural knowledge, so use of patterns can reduce

the effort on documenting architectural decisions and help capture rationale
• There are several related notions to represent the concept of force in patterns, and

there is an important distinction between force and non-functional requirement
• Pattern selection must take pattern dependencies into account (different

approaches use goal decomposition and pattern language grammars)
• While forces are often treated as one-dimensional (as in “performance” is a

force), they often interact in rich and complex ways
• Not all notations make the context in which a pattern is applied explicit

Acknowledgement
My thanks go to my shepherd Ed Fernandez whose probing questions and insights have
helped me clarify my initial ideas.

2 This is not to say that a variety of notations is bad, but it may be indicative of a
fragmentation of the literature into different “closed” schools

S-2-9

References

Primary references are indicated with a (*). The other references are provided as sources
supporting the argument in the paper, but are not essential reading.3

* Akerman, A., and Tyree, J., Using Ontology to Support Development of Software
Architectures, IBM Systems Journal, 45(4), 813-825, 2006

* Araujo, I., and Weiss, M., Linking Non-Functional Requirements and Patterns,
Conference on Pattern Languages of Programs (PLoP), 2002

Bass, L., Clements, P., and Kazman, R., Software Architecture in Practice, Addison
Wesley, 2003

Bosch, J., Design and Use of Software Architecture- Adopting and Evolving a Product-
Line Approach, Addison Wesley, 2000

Brito, I., Viera, F., Moreira, A., and Ribiero, R., Handling Conflicts in Aspectual
Requirements Compositions, Transactions on Aspect-Oriented Software Design III,
LNCS 4620, 144–166, 2007

Chung, L., Nixon, B., Yu, E., and Mylopoulos, J., Non-Functional Requirements in
Software Engineering, Kluwer, 2000

* Chung, L., Supakkul, S., and Yu, A., Good Software Architecting: Goals, Objects,
and Patterns, Information, Computing & Communication Technology Symposium, 2002

Davidsson, P., Johansson, S., and Svahnberg, M., Using the Analytic Hierarchy Process
for Evaluating MAS Architecture Candidates, International Workshop on Agent Oriented
Software Engineering, 2005

Dyson, P., and Longshaw, A., Architecting Enterprise Solutions, Wiley, 2004, pp. 18-22
discuss balancing non-functional requirements

* Fernandez, E., Security Patterns, International Symposium on System and Information
Security, Keynote, 2006

Fernandez, E., Cholmondeley, P., and Zimmermann, O., Extending a Secure System
Development Methodology to SOA, 2006

3 In this way, I hope to balance the trade-off between the expectation that a pattern paper
should only include a small number of references, and acknowledging the large number
of sources that have inspired and shaped this paper.

S-2-10

Grau, G., and Franch, X., A Goal-Oriented Approach for the Generation and Evaluation
of Alternative Architectures, European Conference on Software Architecture, LNCS
4758, Springer, 139-155, 2007

* Gross, D., and Yu, E., From Non-Functional Requirements to Design through Patterns,
Requirements Engineering, 6(1), 18–36, 2001

GRL, http://www.cs.toronto.edu/km/GRL, last accessed in March 2007

* Harrison, N., and Avgeriou, P., Leveraging Architecture Patterns to Satisfy Quality
Attributes, European Conference on Software Architecture, LNCS 4758, Springer, 263-
270, 2007

McPhail, J.C., and Deugo, D., Deciding on a Pattern, International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert Systems,
LNCS 2070, 901–910. Springer, 2001

* Mussbacher, G., Amyot, D., and Weiss, M., Formalizing Architectural Patterns with the
Goal-Oriented Requirement Language, Nordic Pattern Languages of Programs
Conference (VikingPLoP), 2006

* Schumacher, M., Security Engineering with Patterns, LNCS 2754, Springer, 2003

Zimmermann, O., Gschwind, T., Küster, J., Leymann, F., and Schuster, N., Reusable
Architectural Decision Models for Enterprise Application Development, International
Conference on Software Architecture, LNCS 4880, 15-32, Springer, 2007

* Weiss, M., Pattern-Driven Design of Agent Systems: Approach and Case Study,
International Conference on Advanced Information Systems Engineering, LNCS 2681,
711-723, Springer, 2003

Weiss, M., and Mouratidis, H., Selecting Security Patterns that Fulfill Security
Requirements, International Conference on Requirements Engineering, 2008

* Zdun, U., Systematic Pattern Selection Using Pattern Language Grammars and Design
Space Analysis, Software Practice and Experience, 27, 983-1016, 2007

Zimmermann, O., Zdun, U., Gschwind, T., and Leymann, F., Combining Pattern
Languages and Reusable Architectural Decision Models into a Comprehensive and
Comprehensible Design Method, Working IEEE/IFIP Conference on Software
Architecture, 157-166, 2008

Proceedings of the 13th European Conference on Pattern Languages of Programs (EuroPLoP 2008), edited by
Till Schümmer and Allan Kelly, ISSN 1613-0073 <issn-1613-0073.html>.
Copyright © 2009 for the individual papers by the papers' authors.
Copying permitted for private and academic purposes. Re-publication of material from this volume requires
permission by the copyright owners.

1

Experiences in Using Patterns to Support Process Experts in
Wizard Creation

Birgit Zimmermann1, 2, Christoph Rensing1, Ralf Steinmetz1

1 KOM Multimedia Communications Lab
Technische Universität Darmstadt

Merckstr. 25, 64283 Darmstadt, Germany
{birgit.zimmermann, christoph.rensing, ralf.steinmetz}@kom.tu-darmstadt.de

2 SAP AG
SAP Research CEC Darmstadt

Bleichstr. 8, 64283 Darmstadt, Germany
birgit.zimmermann@sap.com

1 Overview

Users of software often complain that many software solutions only insufficiently support
them in solving their problems and performing their tasks. This phenomenon occurs with all
kinds of software. It can also be seen with tools that are especially developed to support users
in performing specific tasks. Working on a tool supporting users in performing so called
adaptation processes we found the same problem. (These processes are needed to adapt
existing E-Learning material in order to make it suited for changed usage scenarios.) To offer
tool support for adaptation processes we created a wizard based on a pattern based description
formalism for adaptation processes. This paper presents our experiences with this approach.
The next chapter gives an introduction to adaptation processes.

2 An Introduction to Adaptation Processes

Creating high-quality E-Learning material is a time and cost consuming task. Re-using
existing material could reduce these costs. But often a one-to-one reuse of the existing
material is not possible, as the new scenario of usage differs to a certain degree from the
original usage scenario. Therefore, to achieve a high quality, it is necessary to adapt the
existing material to the new usage scenario.

The processes needed to perform the adaptations are structured hierarchically: A process is
performed by executing several process steps. These process steps can consist of smaller
process steps or of atomic operations that cannot be split up into smaller units (see Figure 1
on the next page).

Let us have a look at one example process: The adaptation of E-Learning material to a
changed (corporate) design consists of several process steps like exchanging logos and images

mailto:birgit.zimmermann@sap.com

2

that do not fit, or changing fonts, backgrounds, colours, etc. The process step ”exchanging
images” consists of several atomic operations like identifying all used images, testing for each
image, if it fits to the requirements, finding images that have to be used instead of non-fitting
images etc.

Figure 1: Process hierarchy [18].

In many cases it is necessary to perform several adaptations in order to achieve a good result.
When changing the layout to make it suited for a different corporate design, it is for example
often also needed to change the terminology, in order to adapt it to the terminology of the new
company. But in reality, often the persons, who have to adapt the material, are not experts in
performing all needed tasks. Mostly they only have a certain basic knowledge of how to
perform the adaptation processes. This means that compared to Dreyfus’ model of skills [4]
they are novices in performing adaptation processes. But with the help of a tool that is based
on the knowledge of persons from the expert level it is possible that the novices are supported
in performing adaptation processes in such a way that they are enabled to achieve results that
a user from a higher skill level would achieve. To develop such a tool support was our goal
within the Content Sharing Project (http://www.contentsharing.com).

To be able to offer support for adaptation processes it was necessary to find out how the
adaptation processes have to be performed and how a useful tool support could look like.
Therefore we carried out a survey of persons being experts in performing the processes
needed to adapt existing E-Learning material in order to make it suited for changed usage
scenarios [18]. These persons perform adaptation processes very often. Therefore they can
offer a detailed description of how to perform the processes.

Many of the adaptation process experts mentioned that existing tools are not well suited to
support users in performing the adaptation processes. Especially novice users are often not
able to use these tools. The main reason for this problem is that the tools often do not
represent the processes themselves. They are based on the software designers understanding
of the processes [9]. But in many cases this understanding differs from the processes as they
are performed and understood by the process experts [11]. Thus we decided to look for a
possibility that allows adaptation process experts to be involved more directly in the
development of a tool offering support for adaptation processes.

…

… …

adaptation of
(corporate) design

check
images

identify
images

check
fonts

identify
fonts

exchange
images

change fonts

replace
images

change
fonts

Pool of functions

Adaptation
Process

Process
Steps

Atomic
Operations

http://www.contentsharing.com)./

3

3 Problem: How to Enable Process Experts to Describe their Knowledge
of Adaptation Processes?

Traditional software development often starts with analysis activities in order to collect
information about how processes are performed. The requirements from user side as well as
from system side are collected. Based on these requirements, models of the processes are
developed and implemented [12]. The exact proceeding can deviate depending on the
underlying project structure (e.g. software development according to v-model, spiral models,
extreme programming, rational unified process etc.).

But this proceeding often leads to problems caused by misunderstandings between process
experts and software designers and developers [11]. To make things worse, it is often not
possible for process experts to control if the models really describe their processes, as they do
not have knowledge of common modelling formalisms like UML or ARIS. According to Siau
et al. [16] UML is too complex in many cases and its constructs are ambiguous. The same
holds for ARIS [13].

Someone who for example is working as a translator (an adaptation that occurs very often) is
a process expert for translation. Normally this person is not simultaneously an experienced
software developer or designer. Therefore most translators are not able to deal with common
modelling formalisms as UML, ARIS or BPMN [1], as they do not need these methods in
their daily work. The same holds for many other adaptation processes: Mostly persons have
expertise in the processes they deal with in their daily work. Thus they are able to give a
detailed description of how they perform these processes. But many of these persons have
never learned to describe their processes with common modelling formalisms.

Thus it would be desirable to facilitate adaptation process experts to describe their process
knowledge and to use this knowledge for software creation in a way that is easy to learn and
easy to understand and that does not require extensive training. In order to solve this problem
it was necessary to find a possibility that fulfils the following requirements:

It must be possible for adaptation process experts to describe their knowledge with an
easy to use formalism. In addition the process experts should be enabled to create a
prototypic support tool based on the created descriptions. This prototype should give
process experts a possibility to find out if a given process description is correctly
reflected in the prototype and if a tool based on the prototype would support the
described adaptation process in the desired way.

At the same time it has to be considered that the description formalism is structured in
such a way, that on one hand it is possible to create the prototype mentioned above
based on the description in a way that does not require development skills. On the
other hand, the prototype has to solve as a basis for further development. This means
that the prototype as well as the process description have to contain all information
needed to create a prototype and to allow a developer to implement a computer
program by enhancing the prototype.

For the adaptation process expert it is important that the description formalism can be used
without extensive training. For the developer it is important that the description formalism

4

allows using familiar software development proceedings and tools as far as possible. We
wanted to find an approach that meets both requirements. This approach should be used to
enhance the software development processes existing by now. It was not intended to replace
those processes.

4 Solution: Pattern Based Process Description

Patterns document proven solutions to recurring problems; they describe best practices [8].
Patterns are noted in natural language. Hence they are easy to understand for the persons of
whom knowledge is collected with the patterns [7].

Patterns offer a regular form and they can have a structured, fixed notation. They can be
stored in an XML format as the Pattern Language Markup Language (PLML) [10]. PLML is
an XML DTD, which originally was thought of as a common standard for HCI patterns. XML
is very flexible. It offers the possibility to be used for several different areas of application.
For example, XML can be rendered to HTML or other formats, e.g. by using XSLT. In this
way it is readable for a non IT person. At the same time it is very structured and thus machine
readable. Besides it can be imported to established UML modelling tools by using XML
Metadata Interchange (XMI).

Patterns are written down in natural language. Therefore pattern based process descriptions
are easy to understand for adaptation process experts. In addition software designers as well
as developers will find their familiar views on pattern based process descriptions stored in
XML, because of the flexibility of XML. Thus we decided to use patterns to capture the
process knowledge of adaptation experts and to store these patterns in an XML format. We
have written down the outcome of our user survey using patterns to describe the adaptation
processes. This led to a couple of initial patterns. We revised the initial patterns together with
process experts. In addition we made sure to find at least three known uses for each pattern by
searching for successful applications of the patterns. Some of the results have been published
at PLoP conferences ([19], [20]).

These patterns describe the processes needed to adapt existing E-Learning material on a high
level. They contain important information about how to proceed. Especially they contain a
section naming all needed process steps. Some other pattern formats also include sections
describing concrete steps in detail. But as process steps are sometimes needed in several
processes we name the steps within a pattern, but we separated their concrete description from
the patterns. We added a second kind of descriptions for the process steps, called how-to
guides. These how-to guides explain in detail what has to be done to perform each process
step and which smaller process steps or atomic operations are needed during execution.
Compared to the patterns describing the whole process the how-to guides are much more
detailed. Most atomic operations are used in several process steps. Therefore we also have
separately written down instructions for all atomic operations needed in the process steps.

Wizards are a common solution in computer science, to offer users without expert knowledge
a step by step guidance through processes. According to [6] wizards can be used, if novices
have to perform a complex task composed of several steps. The novices know which goals
they want to reach, but they do not necessarily know which steps they have to perform. A
wizard helps them in reaching their goals.

5

Wizards are easy to use even for users who are not familiar with the processes supported by
the wizard. Adaptation processes often have to be carried out by persons who are not experts
in performing these processes. Therefore they need detailed step by step guidance through the
adaptation processes. Thus we decided to develop a wizard as a supporting tool for this kind
of processes.

As stated before it was our aim to enable the process experts to be involved more directly into
the software creation process in order to achieve software that is based on their knowledge.
But we did not want them to learn common modelling formalisms or programming
techniques. Thus we were searching for a possibility allowing the process experts to prove the
outcome of their process descriptions. As stated before adaptation process experts often have
no knowledge of common modelling formalisms. We therefore decided to develop a method
that allows process experts to generate a prototypic wizard, which is based on the process
descriptions. With the prototype it can be checked, whether the underlying process
descriptions really describe how the process is performed. As most of the experts in
performing adaptation processes do not have the knowledge to develop such a wizard, the
method should be easy to use for persons without programming experience. Therefore we
wanted an automated wizard generation that does not require expertise in software
development. In addition the wizard should be based on the process descriptions written down
in patterns, process step descriptions and atomic operations descriptions, as they contain all
information needed to carry out the processes.

To be able to offer this possibility we needed a two-stage proceeding for the creation of
process descriptions: First the knowledge of process experts had to be captured in an easy to
understand format. In a second step this format had to be mapped to a formal XML
representation allowing to generate a wizard based on the given information. Therefore it was
necessary to formalize the process descriptions to such a degree that they can be used as basis
for automated code generation. In addition we had to find a possibility for an easy to use auto-
mated wizard generation. In the following section we show our concept for solving this issue.

5 Implementation

The patterns, process step descriptions and atomic operations descriptions contain the
knowledge of the adaptation process experts. To be able to create a wizard out of these
process descriptions we needed a structured, machine readable representation of this
information. Because of its flexibility we have chosen an XML notation (adapted from
PLML) to store the patterns describing the adaptation processes (as described in section 4).
We also used XML to store the process step descriptions and the atomic step descriptions.

But most process experts have no knowledge of XML. Because of this we developed a
process description input tool (PIT), which supports users in writing down pattern like process
descriptions and saving them as XML files. PIT stores the descriptions given by the process
experts in two files: one file containing all textual information about the process and a second
file containing a graph representation of the structure of the process. This proceeding
corresponds to the two-stage proceeding for the creation of process descriptions represented
before: In a first step PIT allows to capture the process knowledge in an easy to understand
format. In a second step it maps the format to a formal XML representation.

6

The XML files are taken as input for a wizard generation tool (WGT). WGT generates a
wizard by interpreting the data provided by PIT. The generated wizard represents a first
prototype of a process support wizard. It can be taken as a starting point for further
development.

Thus the pattern-based wizard generation approach proposed in this paper is based on a three-
step proceeding:

1. Writing pattern like process descriptions
2. Automated wizard generation
3. Extension of prototypic wizard

Each of these steps is explained in detail in the next sections.

6 Step 1: Writing Process Descriptions

In the first step the process expert has to create a pattern like process description. For each
process one pattern is created. If a process is more complicated and contains several sub-
processes, it is possible to create patterns for the sub-processes and to link them to the super
process. (This is realized via a specific type of related patterns.) In addition the process step
descriptions and the descriptions of the atomic operations have to be created.

To support process experts in creating process descriptions in the needed format the process
description input tool (PIT) has been created. PIT is a Java application developed under
Eclipse. It offers an input form helping process experts to describe processes in the required
pattern based notation formalism.

Figure 9 in the appendix presents a part of PIT’s input form for process descriptions. One can
see that the process description contains common pattern elements like intent, context, or
problem statement. These elements provide a reason why a process can be applied, why a
certain context has to be fulfilled to be able to perform the process etc. Thus they are useful
for other persons who might want to perform the described process. All this information is
very valuable to all persons, who have to decide, which process helps them in solving a
specific problem, and who are not process experts.

As shown in figure 9, mandatory input fields are marked with an asterisk. We have chosen
these elements as mandatory as they are most important to other persons in order to
understand why and how a process has to be performed. Mandatory elements are:

The pattern ID is a unique ID used to address the pattern. It is created automatically.
The name provides a first, rough idea what the pattern is about.
The problem section describes the situation addressed by the pattern.
The solution explains to the user, how the problem can be solved.
The process steps list all steps needed to execute the solution.
The consequences help other persons, to decide if they want to apply a pattern or not,
depending on if the positive consequences are more important than the negative ones.

7

The non mandatory elements are needed if a process expert wants to write a pattern, but they
are not necessary, to offer a useful process description:

The process expert has a certain confidence in the process description. (As we talk
about process experts the confidence should be high.)
The intent gives a short overview what a pattern is about.
The context describes the situation where the pattern can occur.
The process expert can give an example of a successful application of the pattern.
The forces describe the sometimes contradicting trade-offs that must be considered
when performing the process.
Known uses describe situations where the pattern has been applied successfully.
Related patterns can exist, but it might be that there are no related patterns.

When the process expert stores a process description, the given information is stored in XML
files. The XML files contain in one file the textual description of the process and in a separate
file the graph representation defining the process flow and all its dependencies and
preconditions. In the appendix a DTD of the XML file containing the process information can
be found. Many of the elements of this DTD are taken from PLML [10]. The PLML v1.1
DTD contains some additional elements that have not been taken into account here: alias,
synopsis, diagram, rationale, literature, pattern-link and management. The
patterns taken as a starting point for this work do not need these elements.

But our patterns contain some elements that have a slightly different meaning compared to
PLML. The PLML element illustration is called example_illustration, as to our
understanding, this better explains what is meant by this element. To be able to better
differentiate the example as used in PLML from the example_illustration we call it
example_explanation. What is referenced as an implementation in PLML is called
process_steps in our DTD. The related_patterns already contain a link to the pattern
they are related to. Therefore our related_patterns are a kind of a combination between
related-patterns and pattern-link in PLML.

The following elements that are used in our DTD are not mentioned in PLML, but they are
necessary in our approach:

intent: The intent explains what the pattern aims for.
known_uses: The known uses are part of the example-section in PLML. In our
patterns the example only contains one known-use. Other known uses can be added by
using this element.
consequences: The consequences occur when the pattern has been applied. Positive
and negative consequences can occur. As for a reader of a pattern it is very important
to know, what will happen when applying the pattern, we added this section.

6.1 Defining Process Steps and Atomic Operations

The steps of a process, their interdependencies, and the preconditions for the execution of
each step constitute the process. Thus they are essential for the execution of a process. Also
branching and cycles within the process flow are of importance. Hence PIT provides a special

8

wizard to define the process steps. This wizard allows a fine granular specification of the
process flow without requiring special knowledge of process modelling. It is started by
pressing a button to add a step to the process description.

With this wizard users can define for each step if the execution of a step is mandatory or
optional, or if certain preconditions have to be fulfilled, before the step can be executed, or if
there are dependencies on other steps. Branches are embodied by a special kind of
precondition: If the precondition leads to one result, one step is executed, if it leads to another
result, another step is executed. Cycles are defined by specifying a step that is the starting
point for the cycle and another one, which is the end point. In addition a termination condition
has to be defined. This is again modelled by a special kind of a precondition. Figure 2 shows
the screen used to define a step that has to be performed, if other steps have been performed
before. Another part of the wizard helps users to define preconditions and a third one allows
to model cycles. In addition an input form exists, used to describe how a process step has to
be performed. The description of process steps is also stored in the process description file.

Figure 2: Defining dependencies between steps.

Compared to the pattern based description of a whole process, the process step description is
very short: It contains the name of the process step, a detailed description of how to perform
the process step and a listing of all smaller process steps and atomic operations needed when
performing the process step. Sometimes a process step is as complex that it can be regarded as
a complete process on its own. Then it is possible to create a process description for this step.
This description can be added to the process step description via a special link. In the wizard
this is presented as a link to an additional page containing the complex description. Users of
the wizard can then read this additional information.

As steps themselves consist of smaller steps - atomic operations or again process steps - it is
also possible to define all operations and smaller steps needed to perform a process step.

9

Again a wizard helps to state if the execution is mandatory or optional, or if certain
preconditions have to be fulfilled. Dependencies on other atomic operations can also be
determined. For each atomic operation a description has to be provided, how the operation is
executed. This can be done via a special input form.

There exist three different kinds of atomic operations: queries, decisions and executions.

Queries are needed to determine information. For example: Find all images used in an
E-Learning course.
Decisions are needed if a person, who performs the process, has to decide on
something. For example: Decide for each image, if the image has to be deleted or not.
Executions are needed whenever something is changed or done. For example: Delete
all images that have been chosen for deletion.

Based on the information represented via the process steps and the atomic operations the
second XML file is created. This file represents the process flow. It names all steps and
atomic operations. For each step or atomic operation it contains the information whether the
execution is mandatory or not, and if there exist preconditions or dependencies. Via the
pattern ID, process step ID, and atomic operation ID it is possible to map the information
stored in this file to the information stored in the description file. Listing 2 in the appendix
contains an example for such a process graph description.

Figure 3: Part of the visualization of a process graph.

PIT offers several possibilities to work with the generated process descriptions: It is certainly
possible to edit an existing description. In addition the textual description stored in XML can
be rendered as HTML in order to view it via a browser. Thereby it is possible to read the
entire process description as a continuous text. Thus it is more comfortable to control whether
the description is complete and accurate. Furthermore, a visualization of the process graph is
available that represents all steps of the process flow. (Figure 3 shows the first level of the
process graph corresponding to listing 2 in the appendix. By clicking on a process step the

10

level under this step opens in the viewer.) At the moment this visualization is only a first
prototype. Further enhancements are planned. As the process descriptions are stored in XML
it is possible to offer several visualizations that are tailored to the needs of several persons (a
developer and a process expert need, for example, different visualizations). In addition it is
planned to offer an export to XMI. The XMI files could be used to provide a class diagram
and an activity diagram representing the process.

7 Step 2: Automated Wizard Generation

The XML files generated by PIT serve as input for the wizard generation tool (WGT) used in
step 2 of the proceeding proposed here. WGT is a Java application developed under Eclipse.
Based on the information of PIT’s XML files it generates a wizard that, as a first prototype,
can be used as a starting point for further development.

WGT is started by selecting a menu entry in PIT. WGT reads the process description that is
actually open within PIT. The user specifies where the generated wizard has to be stored and
then starts the wizard generation by simply pressing a button (compare figure 4). WGT then
parses the XML files created by PIT. It extracts the information contained in the files and fills
several predefined code templates with this information. By this procedure all needed Java
classes for the prototype are created. The “Activate additional options...” section shown in
figure 4 can be activated to open a dialog that allows to specify, how the atomic operations
have to be distributed over the wizard pages. (Later in this chapter this is explained more
detailed.)

Figure 4: Screenshot of WGT.

The main purpose of the wizard generation tool is to generate a wizard based on the
information given by the process descriptions created with PIT. The wizard should have a
graphical user interface, which allows directly after its generation that the process expert
evaluates whether the wizard contains all needed information and whether the process flow is
correct. The design of the user interface should follow common rules for designing user
interfaces, as described in [3], [14].

11

The atomic operations used in the wizard are not automated directly after generating the
wizard. Instead the wizard contains descriptions telling a user how to proceed. We believe
that it leads to better results, if an experienced software developer checks, where it is
reasonably possible to automate certain operations. Where this is possible the developer can
extend the automatically generated source code. To make it easier for the developer, to find
where the source code can be extended, comments are added to the automatically generated
source code during its creation.

Another important point during wizard generation is the time needed to generate the wizard.
As long as the wizard does not fulfil all needs the process expert will change the description
created with PIT and generate a new version of the wizard. Thus it is highly probable that the
process expert will use WGT several times until a wizard is generated that really fulfils all
needs. Therefore WGT has to be fast in order to reduce the time, where the process expert has
to wait for the generation to finish.

WGT takes the process description as a model of the process that is supported by the wizard.
This kind of software creation is called generative programming [2], which is a special kind
of model driven software development (MDSD). There are a lot of different approaches for
MDSD [17]. As large parts of the wizard stay the same for all kinds of processes regarded
here, we decided to use code generation templates to create the wizard. This allows a fast
source code generation.

The wizard generation tool consists of three logical units that are passed one after the other
(shown in figure 5):

1. In the first part the XML files provided by PIT are read. The information about the
process flow is transferred into an internal process structure model and the information
contained in the descriptions is extracted.

2. The second part uses this information to map it to Java code templates. The textual
information is used to enhance the content of the graphical user interface. The
structural information is used to create all process steps and to transfer the structure of
the process flow to the wizard. By this all needed Java classes are generated.

3. The third part writes the generated source code to several Java classes and marks all
parts in the source code that can be enhanced by adding additional source code. In
addition the created classes are compiled and a batch file is created that allows starting
the wizard comfortably.

Figure 5: Three phases of wizard generation.

12

The prototype wizard generated by WGT is based on the model-view-controller principle [5]:

The process graph containing information about the process flow serves as a model.

The wizard pages providing a graphical user interface build the view. Those pages
contain the textual information of the pattern-based process description. They are
based on Java code templates. WGT instantiates those templates by filling them with
the given information. The pages then contain a detailed description on how to
perform the process, each process step, and each atomic operation.

The controller of the wizard passes events caused by the user to the model and
reactions caused by the model back to the user. The controller interprets the process
flow information provided by the model. Depending on the user input the controller
monitors which step has to be performed at which time and which step is possible as
next step. Thus the controller assures a correct process flow. In addition it contains
information about the actual state of the wizard, as it stores, which steps have been
carried out so far as well as their results. This is important for a further
implementation of the wizard enhancing it with automated functionality. The
controller also has to collect and distribute all data that have been created or are
required when performing several steps in an automated way.

As large parts of the source code stay the same, code generation templates exist for most
wizard classes. There are several kinds of page templates and composite templates depending
on the function of each part of the wizard: One template exists for the start page of the wizard,
another one for the last page. A special page template exists for process steps. This template
contains a part, where the description of the process step can be added. The atomic operations
are realized via composites that are based on composite templates. For the three different
types of atomic operations three different templates are used. The composites of the
operations of a process step are grouped together on one page, which is also created based on
a template.

After generating all the Java classes of the wizard, WGT starts to compile those files and to
build an executable wizard. A batch file is created that allows to start the wizard comfortably.
The executable wizard is a first prototype. It offers the process expert the possibility to prove,
whether the wizard represents and supports the described process. If this is not the case, the
process expert can refine the process description and generate a revised version of the wizard.

7.1 Arranging Steps and Operations on Pages

One problem when creating the wizard is how to distribute the process steps and atomic
operations over the wizard pages. There are several possibilities how to solve this problem:
One could create one page explaining each process step and one additional page for each
atomic operation. As many adaptations consist of quite a lot of process steps and atomic
operations, this can easily lead to a huge number of pages with sometimes only a short
explanation on it. Therefore this possibility has been discarded.

Another possibility would be to create one page for each process step, and to add all atomic
operations needed in the process step to this page. But many process steps contain ten and

13

more atomic operations. Then the pages would become huge and overcrowded with
information. We also discarded this possibility.

We decided to use something in between these two extremes: We create one page describing
how to perform a process step. As the wizard offers an expert and a novice mode, this page
can be displayed to novice users and it can be hidden for experts, who do not need this
information. In addition the atomic operations are spread over several pages. By default 5
atomic operations are grouped on one page. But someone who knows how the user interfaces
of the automated atomic operations look like can group the operations in such a way that the
automated operations fit well on the page. Therefore the “Additional Options” mode of WGT
exists. This mode allows to group the atomic operations on the pages in a way that best fits
the needs.

Figure 6 shows how a user can group atomic operations to pages. You can see that for each
process step it is shown, which operations are needed in this step. On the right site it is
possible to see which operations are placed on which page. By selecting an operation and
pressing the arrows on the right you can move this operation to a page before or behind the
actual page. Selecting for example the operation “If the size does not fit the requirements,
change it” and pressing the “Down”-Arrow on the right would move this operation to the
second page.

Figure 6: Arranging atomic operations on pages.

8 Step 3: Extension of Prototypic Wizard

Together with the process descriptions generated during the first step the wizard serves as a
basis for communication between process experts and developers. Based on this prototype a
common understanding of the process described in the wizard can be established. The wizard
makes it easier to discuss ideas for further development in a vivid way. In addition it provides

14

a code skeleton that can be enhanced comfortably by a developer. For this purpose the code
generated by WGT is marked with special comments indicating, where additional code can be
added. This can be done in the third step of the proceeding presented in this paper. The two
steps presented so far are both executed by process experts. Step 3 has to be executed by a
developer.

To make work faster and less error prone it is useful to add automated functionalities to the
wizard, where this is reasonably possible. Therefore the wizard created by a process expert
has to be handed over to a developer. The developer gets the information created in the first
step and the prototype generated in the second step.

With the Wizard Generation Tool WGT for each process step one or more pages have been
created. The pages contain a list of all operations needed to execute the process steps. The
developer can add additional source code for each operation that can be automated. The initial
source code contains comments indicating where automation is possible. The developer has to
provide a new part of source code describing the user interface and a code section in the
controller class that stores the information needed for and provided by the operation. The
operations itself are stored in a so called function pool. This allows to reuse operations in
several process steps. Comments within the original source code give hints, where to enter the
new code and which dependencies between model, view, and controller have to be taken into
account. By this it is possible to add code for all operations that can be automated. Figure 7
and figure 8 show a part of one wizard before and after adding automation to the operations.
Together with the process expert the developer can check for each operation if it works in the
desired way. By this proceeding we enhanced the prototype created based on the adaptations
patterns to a fully functioning support tool for adaptation processes.

Figure 7: One wizard page before adding automated functionalities.

15

Figure 8: The same page after adding automated functionalities.

9 Application of the Approach to the Example Scenario

With the approach presented before we created a wizard supporting users in performing the
adaptation processes described in chapter 2. The wizard is based on patterns describing the
following adaptations:

Adaptation to a changed (corporate) design
Adaptation in order to achieve a print version
Adaptation to a changed terminology
Adaptation to a changed language (i.e. translation)
Adaptation to achieve an accessible version

For each adaptation a pattern exists describing the adaptation process. (The adaptation to
achieve an accessible version is an exception: This adaptation is described by several patterns,
used to describe sub-processes.) By entering the patterns into PIT and by adding all needed
additional information about the processes, like process step descriptions and atomic
operations descriptions, we created process descriptions. Then we generated a wizard with
WGT based on these process descriptions. Outcome was a first prototype wizard (Figure 7
shows one page of this wizard).

As a next step we automated all parts of the wizard, where this was reasonably possible.
(Figure 8 shows one of the pages enriched with automated functionalities.) We analysed the
functions needed to perform the supported adaptation processes and we designed
functionalities that could be used to enhance the prototype. These functionalities have been
added to the wizard. Outcome of this proceeding was a tool that supports users in performing
adaptation processes for E-Learning material.

16

A first evaluation with test users of the Content Sharing Project was promising: The users
were enabled to perform all offered adaptations correctly. They found process guidance and
detailed help on all processes. Based on their feedback we improved the functionalities. In a
second, larger evaluation we tested our tool by comparing it to a common WYSIWYG HTML
editor. At the moment no tool exists that supports the adaptation of existing E-Learning
material to changed usage scenarios. Therefore we have chosen a tool that supports at least
many functions needed to perform the adaptation processes to compare it with our tool. As
many E-Learning courses are stored in HTML format we have chosen an HTML editor. We
wanted a tool that is easy to use and that offers a WYSIWYG function allowing to control
directly what has been changed. We decided to use Netscape Composer as HTML editor, as it
is easy to use and allows to perform at least some typical adaptations.

We asked 32 users to perform some typical adaptations to three existing E-Learning courses.
(It was possible to perform all adaptations with our tool as well as with Netscape Composer.)
One E-Learning course was dealing with medical topics, one was an introduction to
Multimedia, and the third one was a course to learn English. Half of the users were asked to
work with our tool; the others got the WYSIWYG tool. Both groups got a detailed
explanation how to use their tool. The tasks were the same for both groups. At the end of the
test the participants were asked to answer a questionnaire in order to determine how satisfied
they were in working with the tool.

Both groups were able to perform the adaptations as described in the manuals. Both groups
did the tasks fast and with only very few errors. But we found that users working with our
adaptation support tool needed less time to perform the tasks (in average 14 minutes with our
tool compared to in average 20 minutes with Netscape Composer). And they made fewer
mistakes. (Users working with the Netscape Composer made in average twice as many
mistakes as users working with the adaptation tool.) In addition they were more satisfied with
the use of our tool. As the adaptation tool got very positive feedback and the outcome of the
adaptations had a very good quality, we think that our tool offers a better support for
adaptation processes then the tool used for comparison. In addition we think that the
knowledge collected with patterns is a good support for users in performing adaptations as the
explanations how to use the tools for both test groups were based on the patterns. And the
results for both test groups were very satisfying. For the future we plan to enhance our
adaptation tool based on the feedback we got from the users.

All users, that have been taking part in the evaluation, have knowledge of the HTML file
format. But one additional benefit of our tool is that this knowledge is not needed, as the tool
abstracts from a concrete file format. Thus it is possible to use one tool to perform all
adaptations in all files belonging to a learning resource without having detailed knowledge
how of the formats. This is a feature that is not supported by the tools that up to now have
been used to perform adaptation processes.

10 Evaluation of Concept

The aim of the concept presented in this paper was, to enable adaptation process experts
without knowledge of process modelling to describe adaptation processes by an easy to

17

understand process description formalism and to create prototypic wizards that reflect the
processes as they are performed by the process experts.

To evaluate if process experts are able to use the process description formalism and the
wizard generation tool independent from their knowledge of common programming
formalisms and modelling formalisms, we performed a user test with 32 users. Half of the
persons had knowledge of process modelling and of IT related issues like programming. Half
of the users did not have this kind of knowledge.

All persons were asked to describe the same process with the help of PIT and to generate a
prototype wizard based on the process descriptions by using WGT. It turned out that all users
made very good process descriptions with only very few errors. Users without modelling and
IT knowledge made a few more errors then users with this kind of knowledge. (In average the
difference was only one error.) All users were able to generate a good prototype. It was no
difference between the two user groups. In addition all users gave a very positive feedback
regarding the understandability and the manageability of both tools. Thus we assume that all
users were able to use the process description formalism and the wizard generation tool in the
intended way. We also got some feedback how to increase the usefulness of the tools and the
resulting wizard. We plan to analyse this feedback and to take it as a basis for further
improvements.

11 Unresolved Issues and Future Work

There are several unresolved issues concerning PIT and WGT. For the future we plan to work
on these issues. In this section we give an overview on the unresolved issues.

PIT allows entering relationships between processes. These are taken into account when
generating the wizard: If one process has been finished in the wizard, a hint to related
processes is given. PIT also allows specifying forces and consequences. But at the moment
these are not taken into account in the generated wizard. But we are thinking on how to
realize this. One possibility would be to use the forces as well as the consequences to find out
if a process is useful in a specific situation:

If users are not sure which process they have to perform, they can search the problem
statements. This helps to limit the number of possible processes. In addition users should be
able to browse through the consequences and forces. This also reduces the number of possible
processes. If a process has been performed the consequences can again be shown to users to
allow them, to decide if a second process is necessary to eliminate negative consequences.

At the moment the wizard generation tool WGT is a first prototype. The layout of the wizard
has to be overdone by taking into account common HCI guidelines. Nevertheless the wizard
as it is by now already offers a good starting point for further development and a valuable
basis for communication between process experts and software developers, as the evaluation
of the adaptation tool, which is based on such a wizard, has shown.

Additionally to serving a basis for communication, the prototype wizard also can be used as a
starting point for further development. Therefore WGT adds comments to the automatically
generated source code of the prototype. Those comments offer hints to a developer, where it is

18

possible to change the source code of the prototype in order to add additional functionalities.
But it might occur that a process expert decides to change the process description after a while
and to create a new prototype wizard based on the changed description. The new wizard then
does not contain the enhancements added by the developer before. At the moment this means
that the developer again has to add the additional functionalities. For the future it is planned to
develop a concept that allows to merge both versions.

We created the approach presented in this paper to support adaptation processes. But we
believe that it also can be used for other kinds of processes. Thus we tested for several other
kinds of processes, if it is possible to describe them with PIT.

We found that PIT also can be used to enter already existing patterns (that might have to be
adapted to the pattern notation used here) as well as new patterns. We have successfully tested
this with some of the security patterns presented in [15]. In addition we created new patterns
describing processes for hiring new employees as well as processes for booking journeys. For
all these kinds of processes it turned out that it was possible to describe them with PIT and to
create prototype wizards with WGT.

But it seems that there are other processes that cannot be described with PIT, e.g. processes
with a focus on data flow. Thus, for the future it would be desirable to analyse which kinds of
processes can be described with PIT and for which kinds of processes the approach presented
here does not work.

When we were creating the E-Learning material adaptation wizard (compare section 9), we
entered patterns as descriptions for the process and additional descriptions (not patterns) for
the needed process steps and atomic operations. But as PIT only reassures that all needed
information to perform a certain process is provided in the predefined structure, it has to be
taken into account that the process descriptions provided by process experts might not meet
common pattern criteria like being generic or having at least three known uses. It might occur
that the process experts only create process descriptions that are written down in a pattern
based notation formalism but do not meet common pattern criteria like having at least three
known uses. But these descriptions also contain valuable knowledge and offer a good basis
for the wizard creation. As the process expert is enabled to generate the wizard he or she can
change the process description as many times as needed to achieve a wizard that really meets
the experiences of the process experts.

12 Acknowledgements

The authors thank all persons, who supported this work. Especially we thank Michael Weiss,
who provided a huge amount of helpful comments during shepherding for EuroPLoP 2008.
Although many thanks go to our writer’s workshop group at EuroPLoP 2008 for a very good
discussion and so many useful hints.

The authors thank SAP AG - SAP Research CEC Darmstadt, as well as KOM Multimedia
Communications Lab at the Technical University of Darmstadt for supporting this work.

This work is supported by the German Federal Ministry of Economics and Technology in the
context of the project Content Sharing.

19

13 References

[1] Business Process Modeling Notation Specification. Final Adopted Specification, 2006.
Available under: http://www.omg.org/docs/dtc/06-02-01.pdf

[2] Czarnecki, K., Eisenecker, U. W.: Generative Programming - Methods, Tools, and
Applications. Addison-Wesley, 2000

[3] DIN En ISO 9241: Ergonomics of Human System Interaction. Part 11: Guidance on
usability and part 110: Dialogue principles.

[4] Dreyfus, S.E.,Dreyfus, H.L: A five stage model of the mental activities involved in
directed skill acquisition. Unpublished report supported by the Air Force Office of
Scientific Research (AFSC), USAF (Contract F49620 79 0063), University of
Califonia at Berkley, 1980.

[5] Eckstein, R.: Java SE Application Design With MVC. 2007.
http://java.sun.com/developer/technicalArticles/javase/mvc/index.html

[6] Folmer, E.,van Welie M., Bosch, J.: Bridging patterns: An approach to bridge gaps
between SE and HCI. In: Information and Software Technology, 48(2), 2006.

[7] Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley, 1996.
[8] Hahsler, M.: Analyse Patterns im Softwareentwicklungsprozeß. PhD thesis at WU

Wien, 2001.
[9] Müller, S.: Modellbasierte IT-Unterstützung von wissensintensiven Prozessen -

Dargestellt am Beispiel medizinischer Forschungsprozesse. PhD thesis at the
Universität Erlangen - Nürnberg, 2007.

[10] PLML, XML DTD available under http://www.hcipatterns.org/PLML+1.0.html
[11] Robertson, S.: Requirements trawling: techniques for discovering requirements. In:

International Journal of Human-Computer Studies, Volume 55, Number 4, October
2001.

[12] Royce, W., W.: Managing the Development of Large Software Systems. In:
Proceedings of the 9th international conference on Software Engineering. 1987.

[13] Scheer, A.-W.: CIOs entwickeln sich zu Chief Process Officers. In: CIO, 2007.
http://www.cio.de/karriere/cios_im_portrait/810380/index4.html

[14] Shneiderman, B., Plaisant, C.: Designing the user interface. Addison Wesley, 2004.
[15] Schumacher, M., Fernandez, E., Hybertson, D., Buschmann, F., Sommerlad, P.:

Security Patterns - Integrating Security and Systems Engineering. John Wiley & Sons,
2005.

[16] Siau, K., Ericksson, J., Lee, L.: Theoretical versus practical complexity: The case of
UML. In: Journal of Database Management 16, 3, 2005.

[17] Völter, M., Stahl, T.: Model-Driven Software Development: Technology, Engineering,
Management. Wiley, 2006.

[18] Zimmermann, B., Bergsträßer, S., Rensing, C., Steinmetz, R. A Requirements Analysis
of Adaptations of Re-Usable (E-Learning) Content. In: In Proceedings of World
Conference on Educational Multimedia, Hypermedia and Telecommunications 2006.

http://www.omg.org/docs/dtc/06-02-01.pdf
http://java.sun.com/developer/technicalArticles/javase/mvc/index.html
http://www.hcipatterns.org/PLML
http://www.cio.de/karriere/cios_im_portrait/810380/index4.html

20

[19] Zimmermann, B., Rensing, C., Steinmetz, R.: Patterns for Tailoring E-Learning
Materials to Make them Suited for Changed Requirement. Published in the Proceedings
of VikingPLoP 2006.

[20] Zimmermann, B., Rensing, C., Steinmetz, R.: Patterns towards Making Web Material
Accessible. Published in the Proceedings of EuroPLoP 2007.

14 Appendix

The Process Description Input Tool PIT supports adaptation process experts in creating
process description of adaptation processes. It has been described in section 6. Figure 9 shows
the main input form of PIT.

21

Figure 9: Part of PIT’s input form.

22

PIT stores the process description given by the process experts in XML format (compare
section 6). The following listing shows the DTD of the XML files containing the process
information.

<!ELEMENT pattern (intent?, context?, problem, example_illustration?,
example_explanation?, forces, solution, process_steps, known_uses*,
consequences, related-patterns>

<!ATTLIST pattern patternID ID #REQUIRED
confidence CDATA #IMPLIED
name CDATA #REQUIRED >

<!ELEMENT intent (#PCDATA)>
<!ELEMENT context (#PCDATA)>
<!ELEMENT problem (#PCDATA)>
<!ELEMENT example_illustration (#PCDATA)>
<!ELEMENT example_explanation (#PCDATA)>
<!ELEMENT forces (force*)>
<!ELEMENT force EMPTY>

<!ATTLIST force name CDATA #REQUIRED>
<!ELEMENT solution (#PCDATA)>
<!ELEMENT Process_steps (Process_step+)>
<!ELEMENT Process_step EMPTY>

<!ATTLIST Process_step
name Name #REQUIRED
mandatory (true | false) “true”>

<!ELEMENT known_uses (#PCDATA)>
<!ELEMENT consequences

(positive_consequence+, negative_consequence*)>
<!ELEMENT positive_consequence EMPTY>

<!ATTLIST positive_consequence name CDATA #REQUIRED>
<!ELEMENT negative_consequence EMPTY>

<!ATTLIST negative_consequence name CDATA #REQUIRED>
<!ELEMENT related_patterns (related_pattern*)>
<!ELEMENT Related_patterns (Related_pattern*)>
<!ELEMENT Related_pattern EMPTY>

<!ATTLIST Related_pattern
name CDATA #REQUIRED
patternID ID #REQUIRED
type CDATA #REQUIRED

>

Listing 1: Pattern file DTD.

The information about the process flow is stored as a process graph. The following listing
shows a part of such a process graph stored in XML (compare section 6.1). You can see a
process identified via its ID. All process steps needed to perform the process are listed in the
requires section of the process. For each process step it is noted if the step has to be
performed (mandatory="true") or not (mandatory="false").

The last process step in the example is only performed if at least one of the steps before has
been performed. Therefore all process steps, which can be performed before this step, are
listed in the precondition section of the last process step. For the first process step you
can see all atomic operations needed to perform this step. Again it is written down for each
operation if the execution is mandatory. In addition you can see the three kinds of atomic
operations (query, decision, and execution). The original file also contains a section defining
the needed atomic operations. This section is not shown in the listing below.

23

<process id="process_pattern$56667" process-pattern="true">
 <requires fragmentRef="process_step$22357234" mandatory="false"/>
 <requires fragmentRef="process_step$25517184" mandatory="false"/>
 <requires fragmentRef="process_step$28757034" mandatory="false"/>
 <requires fragmentRef="process_step$36740146" mandatory="false"/>
 <requires fragmentRef="process_step$43532108" mandatory="false"/>
 <requires fragmentRef="process_step$50025522" mandatory="true">
 <precondition fragmentRef="process_step$22357234"/>
 <precondition fragmentRef="process_step$25517184"/>
 <precondition fragmentRef="process_step$28757034"/>
 <precondition fragmentRef="process_step$36740146"/>
 <precondition fragmentRef="process_step$43532108"/>
 </requires>
</process>
<process-step id="process_step$22357234">
 <requires functionRef="query$28693719" mandatory="true"/>
 <requires functionRef="decision$26294026" mandatory="true"/>
 <requires functionRef="decision$24376617" mandatory="false"/>
 <requires functionRef="query$23537464" mandatory="false"/>
 <requires functionRef="decision$32687500" mandatory="false"/>
 <requires functionRef="query$33442589" mandatory="false"/>
 <requires functionRef="execution$5472454" mandatory="false"/>
 <requires functionRef=" execution $51555041" mandatory="false"/>
</process-fragment>

Listing 2: Part of a process graph file.

Modeling Architectural Pattern Variants

Ahmad Waqas Kamal1, Paris Avgeriou1, and Uwe Zdun2

1 Department of Mathematics and Computing Science,
University of Groningen, The Netherlands

a.w.kamal@rug.nl, paris@cs.rug.nl

2 Distributed Systems Group,
Vienna University of Technology, Austria
zdun@infosys.tuwien.ac.at

Abstract Systematic modeling of architectural patterns is a challenging task
mostly because of the inherent pattern variability and because pattern elements
do not match the architectural abstractions of modeling languages. In this paper,
we describe an approach for systematic modeling of architectural patterns using
a set of architectural primitives and a vocabulary of pattern-specific architectural
elements. These architectural primitives can be used as the basic building blocks
for modeling a number of architectural patterns. We introduce profiles for the
UML2 meta-model to express the architectural primitives. The use of the primi-
tives along with the stereotyping scheme is capable of handling some of the chal-
lenges for the systematic modeling of architectural patterns, such as expressing
pattern participants in software design.

keywords: Architectural Pattern, Architectural Primitive, Modeling, UML.

1 Motivation

Architectural patterns provide solutions to recurring problems at the architecture de-
sign level. These patterns not only document ’how’ solution solves the problem at hand
but also ’why’ it is solved, i.e. the rationale behind this specific solution [14]. So far,
a huge list of patterns has been documented in the literature [5,6]. These patterns have
been successfully applied to design software in different domains and provide concrete
guidelines for modeling the structural and behavioral aspects of software systems. Al-
though at present, the practice of modeling architectural patterns is largely ad hoc and
unsystematic, the topic of systematic pattern modeling is receiving increasing attention
from researchers and practitioners [3].

Proceedings of the 13th European Conference on Pattern Languages of Programs (EuroPLoP

2008), edited by Till Schmmer and Allan Kelly, ISSN 1613-0073 (issn-1613-0073.html). Copy-

right 2009 for the individual papers by the papers’ authors. Copying permitted for private and

academic purposes. Re-publication of material from this volume requires permission by the copy-

right owners.

2 Ahmad Waqas Kamal, Paris Avgeriou, Uwe Zdun

In spite of the benefits that patterns offer for solving recurring design problems and the ever-
growing list of documented patterns, there is not yet a proven approach for the systematic model-
ing of architectural patterns and pattern variants in software design. Some architecture description
languages (ADLs), such as UniCon [13], Aesop [8], ACME [9], and Wright [2] capture specific
concepts for modeling patterns. However, none of the approaches presented so far, for modeling
architectural patterns, can effectively express the semantics of architectural patterns [11]. This
is because each pattern addresses a whole solution space comprised of different variants of the
same pattern, which are difficult to express in a specific ADL. In contrast to ADLs, UML offers
a generalized set of elements to describe software architecture but UMLs support for modeling
patterns is weak because pattern elements do not match the architectural abstractions provided in
UML. In summary, both ADLs and the UML provide only limited support for modeling patterns.

In our previous work [14], we identified a set of architectural primitives. These primitives
offer reusable modeling abstractions that can be used to systematically model solutions that are
repetitively found in different patterns. In this paper, we introduce a few more primitives and use
all the primitives discovered during our current and previous work to devise an approach that is
capable of systematically modeling architectural patterns in system design. The main contribution
of this paper lies in modeling pattern variants using primitives, identifying pattern aspects that
are difficult to express using primitives, and devising a generalized scheme that uses a vocabulary
of pattern-specific components and connectors (e.g., pipes, filters) in conjunction with primitives
for systematically modeling architectural patterns.

The remainder of this paper is structured as follows: In Section 2 we present our approach
for representing patterns and primitives as modeling abstractions, exemplified using an extension
of the UML. Section 3 briefly introduces the primitives discovered in our previous work while
Section 4 gives detailed information of the new primitives documented in this paper. In section
5, we give an overview of the relationships between patterns and primitives. Section 6 describes
the modeling of few selected pattern variants using primitives and a pattern-elements vocabulary.
Section 7 compares related work and Section 8 discusses future work and concludes this study.

2 Extending UML to Represent Patterns and Primitives
UML is a widely known modeling language and is highly extensible [3]. There are two ap-
proaches for extending UML: extending the core UML metamodel or creating profiles which
extend metaclasses. Our work focuses on the second approach where we create profiles specific
to the individual architectural primitives. Although this work is exemplified using UML 2.0, the
same approach can be used for other modeling languages as long as the selected modeling lan-
guage supports an extension mechanism to handle the semantics of the primitives. The key idea
is that a modeling language can be extended to facilitate semantics of the architectural primitives
and that these primitives can then be used to model patterns.

We extend the UML metamodel for each discovered architectural primitive using UML pro-
files. That is, we define the primitive as extensions of existing metaclasses of the UML using
stereotypes, tagged values, and constraints:

– Stereotypes: Stereotypes are one of the extension mechanisms to extend UML metaclasses.
We use stereotypes to extend the properties of existing UML metaclasses. For instance, the
Connector metaclass is extended to generate a variety of primitive-specific specialized con-
nectors.

– Constraints: We use Object Constraint Language (OCL) [1] to place additional semantic
restrictions on extended UML elements. For instance, constraints can be defined on associa-
tions between components, navigability, direction of communication, etc.

Modeling Architectural Pattern Variants 3

– Tagged Values allow one to associate tags to architectural elements. For example, tags can
be defined to represent individual layers in a layered architecture using layer numbers.

We chose the UML profiles extension mechanism due to the following reasons:

– A large community of software architects understands UML as a software modeling lan-
guage. This enables us to use the existing set of UML elements as the basis for extensions.
Thus, the time needed to learn a new language and the risks of a novel approach are reduced.

– UML allows the creation of profiles without changing the semantics of the underlying ele-
ments of the UML metamodel. Profiles are good enough to serve for this purpose.

– A number of UML tools are available to design software architecture and support profiles
out-of-the-box. In contrast, a metamodel extension would require an extension of the tools.

In the architectural primitives, presented in this paper, we mainly extend the following classes
of the UML 2 metamodel to express the primitives:

– Components are associated with required and provided interfaces and may own ports. Com-
ponents use connectors to connect with other components or with its internal ports.

– Interfaces provide contracts that classes (and components as their specialization) must com-
ply with. We use the interface meta-class to support provided and required interfaces, where
provided interfaces represent functions offered by a component and required interfaces rep-
resents functions expected by a component from its environment.

– Ports are the distinct points of interaction between the component that owns the ports and its
environment. Ports specify the required and provided interfaces of the component that owns
them.

– Connectors connect the required interfaces of one component to the provided interfaces of
other matching components.

3 Architectural Primitives

This section provides an extension to our previous work [14] where we listed nine architectural
primitives along with the mechanism to discover primitives in architectural patterns. We have
used the same mechanism to discover new primitives in this paper. We first present five primi-
tives discovered in the Component-Connector view that are repetitively found as abstractions in
modeling variants of a number of patterns. Moreover some patterns documented in [7] are used
as solution participants of other patterns, hence we consider their modeling solution as primi-
tives and include them in our collection. Subsequently, in the next section, we extend the set of
primitives with five new primitives.

Our original set of primitives was comprised of the following [14]:

– Callback: A component B invokes an operation on Component A, where Component B
keeps a reference to component A in order to call back to component A later in time.

– Indirection: A component receiving invocations does not handle the invocations on its own,
but instead redirects them to another target component.

– Grouping: Grouping represents a Whole-Part structure where one or more components work
as a Whole while other components are its parts.

– Layering: Layering extends the Grouping primitive, and the participating components follow
certain rules, such as the restriction not to bypass lower layer components.

– Aggregation Cascade: A composite component consists of a number of subparts, and there
is the constraint that composite A can only aggregate components of type B, B only C, etc.

4 Ahmad Waqas Kamal, Paris Avgeriou, Uwe Zdun

– Composition Cascade: A Composition Cascade extends Aggregation Cascade by the further
constraint that a component can only be part of one composite at any time.

– Shield: Shield components protect other components from direct access by the external
client. The protected components can only be accessed through Shield.

– Typing: Using associations, custom typing models are defined with the notion of super type
connectors and type connectors.

– Virtual Connector: Virtual connectors reflect indirect communication links among compo-
nents for which at least one additional path exists from the source to the target component.

4 Description and Modeling Solutions to Architectural Primitives
in the Component-Connector View

In this section, we present five primitives that are repetitively found among a number of architec-
tural patterns. For the first selected primitive, we briefly describe the primitive, discuss the issues
of modeling the primitive in UML, present UML profile elements as a concrete modeling solution
for expressing the primitive, and motivate known uses of the primitive in architectural patterns.
For the sake of simplicity, the modeling issues and modeling solutions of remaining primitives
are detailed in the Appendix.

4.1 Push-Pull

Context: Push, Pull, and Push-Pull structures are common abstractions in many software patterns.
They occur when a target component receives a message on behalf of a source component (Push),
or when a receiver receives information by generating a request (Pull). Both structures can also
occur together at the same time (Push-Pull).

Modeling Issues: Semantics of push-pull structures are missing in UML diagrams. It is dif-
ficult to understand whether a certain operation is used to push data, pull data, or both. A major
problem in modeling the patterns using Pushs or Pulls in UML is that although Push-Pull struc-
tures are often used to transmit data among components, it cannot be explicitly modeled in UML.

Modeling Solution: To properly capture the semantics of Push-Pull in UML, we propose a
number of new stereotypes for dealing with the three cases Push, Pull, and Push-Pull. Figure 1
illustrates these stereotypes according to the UML 2.0 profile package, while Figures 2 and 3
depict the notation used for the stereotypes.

The Push-Pull primitive consists of the following stereotypes and constraints:

– IPush: A stereotype that extends the Interface metaclass and contains methods that Push data
among components.

– IPull: A stereotype that extends the Interface metaclass and contains methods that Pull data
among components.

– PushPort: A stereotype that extends the Port metaclass and is supported by IPush as provided
interface and IPull as required interface. This can be formalized using two OCL constraints:

A Push port is typed by IPush as a provided interface
inv: self.basePort.provided->size() = 1
and self.basePort.provided->forAll(

Modeling Architectural Pattern Variants 5

Figure 1. Stereotypes for modeling Push-Pull

6 Ahmad Waqas Kamal, Paris Avgeriou, Uwe Zdun

i:Core::Interface |
IPush.baseInterface->exists (j | j=i))

A Push port is typed by IPull as a required interface
inv: self.basePort.required->size() = 1
and self.basePort.required->forAll(

i:Core::Interface |
IPull.baseInterface->exists (j | j=i))

PullPort: A stereotype that extends the port metaclass and is supported by IPush as required
interface and IPull as provided interface. This can be formalized using two OCL constraints for
the Pull port:

A Pull port is typed by IPull as a provided interface
inv: self.basePort.provided->size() = 1
and self.basePort.provided->forAll(

i:Core::Interface |
IPull.baseInterface->exists (j | j=i))

A Pull port is typed by IPush as a required interface
inv: self.basePort.required->size() = 1
and self.basePort.required->forAll(

i:Core::Interface |
IPush.baseInterface->exists (j | j=i))

Push: A stereotype that extends the Connector metaclass and connects a PushPort with a
matching PullPort of another component.

A Push connector has only two ends.

inv: self.baseConnector.end->size() = 2

A Push connector connects a PushPort of a component to a matching PullPort of another
component. A PushPort matches a PullPort if the provided interface of the former matches the
required interface of the later

inv: self.baseConnector.end->forAll(
e1,e2:Core::ConnectorEnd | e1 <> e2 implies (

(e1.role->notEmpty() and
e2.role->notEmpty()) and
(if PushPort.basePort->exists(p |
p.oclAsType(Core::ConnectableElement) =
e1.role)

then
(PullPort.basePort->exists(p |
p.oclAsType(Core::ConnectableElement) =
e2.role)
and
e1.role.oclAsType(Core::Port).required =
e2.role.oclAsType(Core::Port).provided)

else
PullPort.basePort->exists(p|

Modeling Architectural Pattern Variants 7

p.oclAsType(Core::ConnectableElement) =
e1.role)

endif)))

Figure 2. Ports and interfaces to model Push structure from B to A

Pull: A stereotype that extends the Connector metaclass and connects a PullPort with a
matching PushPort of another component.

A Pull connector has only two ends.
inv: self.baseConnector.end->size() = 2

A Pull connector connects a PullPort of a component to a matching PushPort of another
component. A PushPort matches a PullPort if the provided interface of the former matches the
required interface of the later

inv: self.baseConnector.end->forAll(
e1,e2:Core::ConnectorEnd | e1 <> e2 implies (
(e1.role->notEmpty() and
e2.role->notEmpty()) and
(if PushPort.basePort->exists(p |
p.oclAsType(Core::ConnectableElement) =
e1.role)

then
(PullPort.basePort->exists(p |
p.oclAsType(Core::ConnectableElement) =
e2.role)
and
e1.role.oclAsType(Core::Port).required =
e2.role.oclAsType(Core::Port).provided)

else
PullPort.basePort->exists(p|
p.oclAsType(Core::ConnectableElement) =
e1.role)
endif)))

Known uses in patterns:

8 Ahmad Waqas Kamal, Paris Avgeriou, Uwe Zdun

Figure 3. Ports and interfaces to model Pull structure from A to B

– In the Model-View-Controller [4] pattern, the model pushes data to the view, and the view
can pull data from the model.

– In the Pipes and Filters [4] pattern, filters push data, which is transmitted by pipes to other
filters. In addition, pipes can request data from source filters (Pull) to transmit it to the target
filters.

– In the Publish-Subscribe [4] pattern, data is pushed from a framework to subscribers and
subscribers can pull data from the framework.

– In the Client-Server [4] pattern, data is pushed from the server to the client, and the client
can send a request to pull data from the server.

4.2 Virtual Callback

Context: Consider two components are connected via a callback mechanism. In many cases the
callback between components does not exist directly, rather there exist mediator components be-
tween the source and the target components. Such information should be represented at the design
level. For instance, in the MVC pattern, a model may call a view to update its data but this data
may be rendered first by the mediator components before it is displayed on the GUI.

Modeling Issues: The virtual relationship is an important aspect to show collaborating ele-
ments. The standard UML supports connector or association links to model virtual relationships.
However, such a relationship cannot be made explicit in standard UML as it may become difficult
to determine which components have subscribed to other components to be called back virtually.

Modeling Solution: To capture the semantics of Virtual Callback properly in UML, we extend
the Callback [14] primitive with constraints that a virtual callback can only be used between two
components where there is a path of components and connectors that links A to B using following
constraints:

To capture the semantics of callback primitive properly in UML, we use the following stereo-
types: VirtualCallback, EventEnd, and CallbackEnd. The VirtualCallback extends the Connector
metaclass while the EventEnd and CallbackEnd extend the ConnectorEnd metaclass where the
EventOccurence takes place at the sender component (EventEnd) while the EventExecution takes
place at the receiver end (CallbackEnd).

Known Uses in Patterns:

– In the MVC [4] pattern, the view and model components may communicate to each other
virtually using callback operation.

– In the Observer [6] pattern, the subjects may observe the target objects virtually.
– In the Publish-Subscribe [4] pattern, the publishers may callback subscribers virtually.

Modeling Architectural Pattern Variants 9

Figure 4. The notation of the stereotypes in Virtual Callback Modeling

4.3 Delegation Adaptor
Context: This primitive converts the provided interface of a component into the interface the
clients expect. The Delegation Adaptor primitive is a close match to the Object Adaptor [?]
pattern.

Modeling Issues: Adaptors shield the underlying system implementation from its surround-
ings. However, adaptors can not be explicitly modeled using the architectural abstractions present
in UML as their task is more focused on conversion rather than computation.

Modeling Solution: To capture the semantics of Adaptor properly in UML, we propose the
following new stereotypes: AdaptorPort extends the Port metaclass and is typed by the IAdap-
tor as provided interface and IAdaptee as required interface. Both the IAdaptor and IAdaptee
stereotypes extend the Interface metaclass.

Known Uses in Patterns:

– In the Layers [4] pattern, the adaptor supports the separation of explicit interface of a layer
from its implementation.

– In the Broker [4] pattern, the adaptor translates the messages coming from remote services
to the underlying system.

– In the Microkernel [4] pattern, the adaptor is used to map communication between external
and internal servers.

– In the Proxy [6] pattern, the adaptor is used to separate the interface from the implementation.

4.4 Passive Element
Context: Consider an element is invoked by other elements to perform certain operations. Passive
elements do not call operations of other elements.

10 Ahmad Waqas Kamal, Paris Avgeriou, Uwe Zdun

Modeling Issues: UML components do not structurally differentiate between active and pas-
sive elements. Such a differentiation is important to understand clearly the responsibility of indi-
vidual elements in the design.

Modeling Solution: To capture the semantics of Passive Element properly in UML, we use
the following new stereotypes: PElement extends the Component metaclass and attaches the Pas-
sivePort. The IPassive stereotype extends the Interface metaclass and types the PassivePort, which
extends the Passive metaclass.

Known Uses in Patterns:

– In the Pipes and Filters [4] pattern, the passive filter cannot pull or push data to its neighbor-
ing filters.

– In the MVC [4] pattern, the passive view only receives or displays data to the user and does
not invoke any operation on a model or controller elements.

– In the Client-Server [4] pattern, the passive server does not invoke any operation on client-
side and responds only to the client requests.

4.5 Interceder

Context: Sometimes certain objects in a set of objects cooperate with several other objects. Al-
lowing direct link between such objects can overly complicate the communication and result in
strong coupling between objects [6]. To solve this problem, Interceder components are used.

Modeling Issues: Interceder components are typically involved in decoupling components
and store the collective behavior of interacting components. The structural representation of me-
diator components in UML diagrams is hard to understand.

Modeling Solution: To capture the semantics of Interceder primitive properly in UML, we
propose following new stereotypes: Incdr, IncdrPort, and IFIncdr. Incdr extends the Component
metaclass and attaches IncdrPort. IncdrPort extends the Port metaclass and is typed by the pro-
vided interface IFIncdr.

Known Uses in Patterns:

– In the PAC [4] pattern, a controller is used to intercede communication between agents in
the PAC hierarchy.

– In the Microkernel [4] pattern, an interceder component receives requests from external
server and dispatches these requests to one or more internal servers.

– In the Reflection [4] pattern, the meta level components intercede communication by pro-
viding interfaces to facilitate modification in underlying components.

5 The Pattern-Primitive Relationship

Architectural patterns and architectural primitives are complementary concepts. Modeling pat-
terns in a system design is applying one of the alternate solutions to solve specific problems at
hand [4] where as primitives serve as the building blocks for expressing architectural patterns.
In this context, patterns offer general solutions while primitives offer relatively more specific
solutions. Similar to the selection of architectural patterns among complementary patterns, prim-
itives might also need to be selected among complementary primitives, e.g., based on the system
requirements you might choose either Shield or Indirection. Such a decision to select the ap-
propriate primitive involves the context in which the pattern is applied, and the specific solution
variant addressed by the pattern. Moreover, certain primitives can be used in combination with

Modeling Architectural Pattern Variants 11

Patterns Pr
im

iti
ve

s

C
al

lb
ac

k
In

di
re

ct
io

n
G

ro
up

in
g

La
ye

rin
g

A
gg

re
ga

tio
n

C
as

ca
de

C
om

po
si

tio
n

C
as

ca
de

Sh
ie

ld
Ty

pi
ng

V
irt

ua
lC

on
ne

ct
or

Pu
sh

Pu
ll

V
irt

ua
lC

al
lb

ac
k

A
da

pt
or

Pa
ss

iv
e

El
em

en
t

C
on

tro
l

In
te

rc
ed

er

Active Repository [5] X X X
Broker [4] X X X X
Cascade [6] X X
Client Server [4] X X X X X X X
Component and Wrapper [5] X X
Composite [6] X X
Facade [6] X X X
Event [6] X
Explicit Invocation [6] X
Indirection Layers [5] X X X X X X
Interceptor [6] X
Interpreter [6] X X
Knowledge Level [5] X
Layered System [5] X X X X X
Layers [4] X X X X X X
Message Redirector [5] X X
Microkernel [4] X X
MVC [4] X X X X X
Observer [6] X X
Object System Layer [5] X X X
Organization Hierarchy [5] X X
PAC [4] X X X
Pipes and Filters [4] X X X
Proxy [4] X X
Publish Subscribe [4] X X X X X
Reactor [6] X
Reflection [4] X X
Remote Proxy [5] X
Type Object [5] X
Virtual Machine [5] X X X
Visitor [6] X
Wrapper Facade [5] X X
Table 1. Patterns to Primitives mapping (X: found in documented pattern)

12 Ahmad Waqas Kamal, Paris Avgeriou, Uwe Zdun

other primitives. For example, the Callback and Push-Pull primitives can work in conjunction to
serve a common purpose.

Table 1 provides a patterns-to-primitives mapping, which is based on the primitives discov-
ered so far in our work. The detailed discussion about the discovery of each primitive in the
related patterns is already documented in the Known Uses in Patterns subsections of our current
and previous work (see Section 3 and [14] for details). The intention is to use the pool of all
available primitives to model several architectural patterns. However, the mapping from patterns
to primitives is not one-to-one: rather different variants of the patterns can be modeled using a
different combination of primitives. Thus, the decision to apply a specific primitive for modeling
patterns lies with the architect who selects primitive(s) that best meet the needs to model the se-
lected pattern(s).
The issues addressed above directly deal with the traditional challenge of modeling pattern vari-
ability. The solution variants entailed by a pattern can be applied in infinite different ways and
so is the selection of primitives for modeling pattern variants. More important is that whichever
pattern variant is applied in system design, it should address the solution clearly with structural
and semantic presence. Using our primitives allows an architect to apply a near infinite solution
variants with certain level of reusability. Such a reusability support also depends on the context in
which the pattern is applied as in some cases extra constraints or missing pattern semantics may
be required.

5.1 Expressing Missing Pattern Semantics in UML

An important aspect of modeling architectural patterns is the explicit demonstration of patterns
in system design and support for automated model validation. Such a representation helps in bet-
ter understanding of the system by allowing the user to visualize and validate the patterns. The
primitives described above capture recurring building blocks found in different patterns. How-
ever, it may be the case that certain pattern aspects of a specific solution variant may not be fully
expressed by the existing set of primitives. Therefore, for expressing missing pattern semantics
that are not covered by the primitives, we provide support to the user with a vocabulary of design
elements that can be used alongside with the primitives to fully express pattern semantics such as
pipes, filters, client, server etc. For this purpose, we define few stereotype in UML with known
semantics of the selected architectural patterns. For instance, a component can be stereotyped
as filter and a connector can be stereotyped as pipe. The stereotyping scheme presented here is
further complimented by using these stereotypes for modeling the example patterns in the next
section.

The use of pattern-specific design elements for expressing pattern variants has a number of
significant benefits. First, it offers reusability support for expressing patterns in system design.
The well-known properties entailed by documented pattern variants can be reapplied in system
design as a solution to new problems. Second, this makes it easier for a stakeholder to understand
design of the system. For example, the use of design vocabulary to express pipes and filters in sys-
tem design makes an architecture more explicit to understand and the way different architectural
elements fit in the structure. Third, it offers a good support for automated model validation by
ensuring that selected patterns are correctly applied in a system design. All of these three benefits
compliment our use of primitives for modeling patterns. The intention is that though primitives
offer good reusability and model validation support, as advocated in our current and previous
work [14], the stereotyping scheme presented in this section makes the story complete for the
systematic modeling of architectural patterns and pattern variants.

Modeling Architectural Pattern Variants 13

6 Modeling Architectural Patterns Using Primitives

In this section, we use the primitives and stereotyping scheme described in the previous sections
to model specific pattern variants. The patterns modeled in this section are specialization to the
patterns documented in POSA [4] and hence are called pattern variants. We do not claim to cover
all the variability aspects of the selected patterns. However, an effort to describe selected pattern
variants using primitives provides a solid base for modeling unknown pattern variants as well. To
serve this purpose, we have selected three traditional architectural patterns namely the Layers,
Pipes and Filters, and Model-View-Controller (MVC). We use the following guidelines to model
each selected pattern variant:

– A brief description of selected pattern variants
– Mapping selected pattern variants to the list of available primitives
– Highlight the issues in modeling pattern variants using primitives
– Use stereotyping scheme to capture the missing pattern semantics.

6.1 Pipes and Filters

The Pipes and Filters pattern consists of a chain of data processing filters, which are connected
through pipes. The filters pass the data output to the adjacent filters through pipes. The elements
in the Pipes and Filters pattern can vary in the functions they perform e.g. pipes with data buffer-
ing support, feedback loops, forks, active and passive filters etc. The primitives discovered so
far address many such variations for systematically modeling Pipes and Filters pattern. However,
certain aspects of the Pipes and Filters pattern may not be fully expressed by the primitives e.g.
feedback loops, forks, etc. The requirements we consider in this section for modeling the specific
Pipes and Filters pattern variant are: a) filters can push or pull data from the adjacent filters; b)
filters can behave as active or passive elements; and c) feedback loop.

At first, we map the selected Pipes and Filters pattern variant to the list of available primitives.
We select the Push, Pull, and Passive Element primitives from the existing pool of primitives. The
rationale behind the selection of these primitives is as follows:

– The Push and Pull primitives are used to express the pipes that transmit streams of data
between filters.

– The filters that are not involved in invoking any operations on their surrounding elements are
expressed using the Passive Element primitive.

Missing Semantics: As described in section four, the challenge to model missing pattern se-
mantics is solved by stereotyping UML elements. In the current example, the selected primitives
are sufficient to express the Push, Pull, and Passive Elements in the Pipes and Filters pattern.
However, we identify that the feedback loop cannot be fully expressed using the existing set of
primitives. The existing primitives can express that the data is pushed or pulled between the filters
but this does not express the presence of a feedback structure. Similarly, the semantics of the Pipe
and Filter elements are not applied using the existing set of primitives.

Additional Stereotypes: We apply the Feedback stereotype on the Push primitive to capture
the structural presence of feedback loop in the Pipes and Filters pattern. Such a structure repre-
sents that the data is pushed from one filter to another filter using the feedback loop. The original
Push primitive, as described in section four, extends the UML metaclasses of connector, inter-
face, and port. While the feedback stereotype further specializes the Push primitive by labeling

14 Ahmad Waqas Kamal, Paris Avgeriou, Uwe Zdun

it as Feedback. The introduction of feedback stereotype does not introduce new constraints nor
affects the underlying semantics of the Push primitive. Figure 5 shows the stereotypes used for
expressing Pipes and Filters pattern.

Figure 5. UML stereotypes for expressing Pipes and Filters pattern participants

Feedback: A stereotype that is applied to the Push primitive for expressing the Feedback
structure in the Pipes and Filters pattern variant. Feedback stereotype extends the Connector
metaclass of UML.

The second stereotype named Filter that we use from the existing vocabulary of design ele-
ments is defined as follows:

Filter: A stereotype that extends the Component metaclass of UML and attaches input and
output ports.

A Filter component is formalized using the following OCL constraints:
An Input port is typed by Iinput as a provided interface

inv: self.basePort.provided->size() = 1
and self.basePort.provided->forAll(

i:Core::Interface |
Iinput.baseInterface->exists(j | j = i))

Modeling Architectural Pattern Variants 15

An Output port is typed by Ioutput as a required interface
inv: self.basePort.required->size() = 1

and self.basePort.provided->forAll(
i:Core::Interface |

Ioutput.baseInterface->exists(j | j = i))

The third stereotype that we use from the existing vocabulary of design elements is Pipe that
is defined as follows:
Pipe: A stereotype that extends the Connector metaclass of UML and connects the output port of
one component to the input port of another component.
A Pipe is formalized using following OCL constraints:

inv: self.baseConnector.end->size() = 2

As shown in figure 6, the first filter in the chain works as a passive filter and does not invoke
any operations on its surrounding filters. While the second filter is an active filter, which pulls
data from the passive filter and after processing pushes this data to the next filter in the chain. The
third filter in the chain sends data back to the passive filter for further processing, and sends the
final processed data to the sink.

Figure 6. Modeling Pipes and Filters Pattern Variant Using Primitives

6.2 Model-View-Controller
The structure of the MVC pattern consists of three components namely the Model, View, and
Controller. The Model provides functional core of an application and notifies views about the
data change. Views retrieve information from the Model and display it to the user. Controllers
translate events into requests to perform operations on View and Model elements. Usually a
change propagation mechanism is used to ensure the consistency between the three components
of the MVC pattern [4].

As a first step, we map the MVC pattern to the list of available primitives as shown in the
table in section four. We select the Callback, Passive Element and Control primitives for modeling
the MVC pattern. The rationale behind the selection of these primitives is as follows:

– The View subscribes to the model to be called back when some data change occurs and
works as passive object by not invoking any operation on the Model.

16 Ahmad Waqas Kamal, Paris Avgeriou, Uwe Zdun

Missing Semantics: However, not every aspect of the MVC pattern can be modeled using
the existing set of primitives. For instance, the Model, View, and Controller components are not
mapped to any primitives discovered so far. Keeping in view the general nature of these compo-
nents, there is a need to provide reusability support by including these three pattern elements in
the existing vocabulary of design elements.

Additional Stereotypes: As described above, despite the reusability support offered by the
selected primitives, the MVC pattern semantics are not structurally distinguishable. We use the
following three stereotypes from the existing set of design elements:

Model: A stereotype that extends the Component metaclass of UML and attaches ports for
interaction with the Controller and View components.

Controller: A stereotype that extends the Component metaclass of UML and attaches ports
for interaction with the Model and View components.

View: A stereotype that extends the Component metaclass of UML and attaches ports for
interaction with the Model and Controller components.

As shown in Figure 7, the Controller receives input and translates it into requests to the
associated model using the Control primitive. While, the Model calls back View when a specific
data change occurs.

Figure 7. Modeling MVC Pattern Using Primitives

6.3 Layers

The Layers pattern groups elements at a certain level of abstraction where lower layers provide
services to the adjacent upper layer. Such a structure is used to reduce dependencies between
objects in different Layers. As a first step, we map the Layers pattern to the list of available
primitives and select the Layering primitive. The rationale behind the selection of this primitive
is as follows:

Modeling Architectural Pattern Variants 17

– Components are members of specific layers where each lower layer provides services to the
adjacent upper layer

– A component can only be a member of one layer

Missing Semantics: In the Layers pattern, the high-level functions implementation relies on
the lower level ones. Such system requires horizontal partitioning where each partition carries
operations at a certain level of abstraction. As each layer in the Layers pattern is a virtual entity so
it cannot exist without the presence of at least one component. Moreover, the upper layers cannot
bypass the layers for using services in the bottom layers i.e. in Figure 8, the group members from
layer3 can call components in layer2, but not into layer1.

Additional Stereotypes: Almost all structural characteristics of the Layers pattern are modeled
using the Layering primitive as shown in Figure 8. Using the layering primitive, the constraints
assure that within an individual layer all component work at the same level of abstraction and no
component belongs to more than one layer at any time. Moreover, no additional stereotyping of
UML elements is required to model this specific variant of the layers pattern.

Figure 8. Modeling Layers Pattern Using Primitives

7 Related Work
The approach described in this paper is based on our previous work [14] where we present an
initial set of primitives for modeling architectural patterns. However, the idea to use primitives

18 Ahmad Waqas Kamal, Paris Avgeriou, Uwe Zdun

for software design is not novel and has been applied in different software engineering disciplines
[12]. The novelty of our work lies in the use of primitives for systematically modeling architec-
tural patterns, which has not be addressed before.
Using different approaches, a few other researchers have been working actively on the systematic
modeling of architectural patterns [8]. Garlan et al. [8] proposes an object model for represent-
ing architectural designs. The authors characterize architectural patterns as specialization of the
object models. However, each such specialization is built as an independent environment, where
each specialization is developed from scratch using basic architectural elements. Our approach
significantly differs in a way that our focus is on reusing primitives and pattern elements and
only where required we extend the primitives and pattern elements to capture the missing pattern
semantics.
Simon et al. [10] extends the UML metamodel by creating pattern-specific profiles. The work
by Simon et al. maps the MidArch ADL to the UML metamodel for describing patterns in soft-
ware design. However, this approach does not address the issue of modeling a variety of patterns
documented in the literature rather manual work is required to create profiles for each newly dis-
covered pattern. Our approach distinctively differs from this work as we focus on describing a
generalized list of patterns using the primitives.
Mehta et al. [12] propose eight forms and nine functions as basic building blocks to compose
pattern elements. Their approach focuses on a small set of primitives for composing elements of
architectural styles. Our approach is different in the sense that we offer a more specialized set
of primitives that are captured at a rather detail level of abstraction. Moreover, we use vocabu-
lary of pattern elements in parallel to architectural primitives to capture the missing semantics of
architectural patterns.

8 Conclusion

Using architectural primitives and pattern-specific design elements vocabulary in combination
offers a systematic way to model patterns in system design. We have extended the existing pool
of primitives with the discovery of five more primitives. With the help of few examples, we
show an approach for modeling architectural pattern variants using primitives. The scheme to use
stereotyping in conjunction with primitives offers: a) reusability support by providing vocabulary
of design elements that entail the properties of known pattern participants; b) automated model
validation support by ensuring that the patterns are correctly modeled using primitives; and c)
explicit representation of architectural patterns in system design.
To express the discovered primitives and design elements vocabulary, we have used UML2.0 for
creating pattern-specific profiles. As compared with the earlier versions, UML2.0 has come up
with many improvements for expressing architectural elements. However, we still find UML as
a weak option in modeling many aspects of architectural patterns e.g. weak connector support.
As a solution to this problem, the extension mechanisms of the UML offers an effective way
for describing new properties of modeling elements. Moreover, the application of the profiles to
the primitives allows us to maintain the integrity of the UML metamodel. By defining primitive-
specific profiles, we privilege a user to apply selective profiles in the model.
As future work, we would like to advance in the automation of our approach by developing a
tool, which supports modeling pattern variability, documentation, analyzing the quality attributes,
source code generation, etc. We believe that we can discover more primitives in different archi-
tectural views in near future, which will provide a better re-usability support to architects for
systematically expressing architectural patterns.

Modeling Architectural Pattern Variants 19

References

1. Object constraint language specification. OMG Standard, 1.1.
2. R. Allen and D. Garlan. A formal basis for architectural connection. ACM Transactions on

Software Engineering and Methodology, Volume 6, No. 3(ACM Transactions on Software
Engineering and Methodology):213–249, 1997.

3. M. Bjorkander and C. Kobryn. Architecting systems with uml 2.0. IEEE Softw., 20(4):57–61,
2003.

4. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Soft-

ware Architecture, Volume 1: A System of Patterns. Wiley & Sons, 1996.
5. D. C. S. Frank Buschmann, Kevlin Henney. Pattern-Oriented Software Architecture: A Pat-

tern Language for Distributed Computing. Wiley Series in Software Design Patterns, 2007.
6. D. C. S. Frank Buschmann, Kevlin Henney. Pattern-Oriented Software Architecture: On

Patterns and Pattern Languages. Wiley Series in Software Design Patterns, 2007.
7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1994.
8. D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style in architectural design environ-

ments. SIGSOFT Softw. Eng. Notes, 19(5):175–188, 1994.
9. D. Garlan, R. Monroe, and D. Wile. Acme: an architecture description interchange language.

In CASCON ’97: Proceedings of the 1997 conference of the Centre for Advanced Studies on

Collaborative research, page 7. IBM Press, 1997.
10. S. Giesecke, F. Marwede, M. Rohr, and W. Hasselbring. A style-based architecture mod-

elling approach for uml 2 component diagrams. In Proceedings of the 11th IASTED Inter-

national Conference Software Engineering and Applications (SEA’2007), pages 530–538.
ACTA Press, Nov. 2007.

11. A. W. Kamal and P. Avgeriou. An evaluation of adls on modeling patterns for software archi-
tecture design. In 4th International Workshop on Rapid Integration of Software Engineering

Techniques, 26 November 2007.
12. N. R. Mehta and N. Medvidovic. Composing architectural styles from architectural primi-

tives. In ESEC/FSE-11: Proceedings of the 9th European software engineering conference

held jointly with 11th ACM SIGSOFT international symposium on Foundations of software

engineering, pages 347–350, New York, NY, USA, 2003. ACM.
13. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik. Abstractions

for software architecture and tools to support them. IEEE Trans. Softw. Eng., 21(4):314–335,
1995.

14. U. Zdun and P. Avgeriou. Modeling architectural patterns using architectural primitives.
Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented programming,

systems, languages, and applications, pages 133–146, 2005.

9 Appendix

For the architectural primitives presented in this work, following we provide the OCL constraints
used to express the semantics of architectural primitives precisely in a system design.

9.1 Virtual Callback

We use the following OCL constraints to define the semantics of callback primitive:
inv: self.baseConnector.end.role.oclAsType(
Core::Property).class->forAll(

20 Ahmad Waqas Kamal, Paris Avgeriou, Uwe Zdun

c1,c2:Core::Component | c1 <> c2 implies
c1.oclAsType(Core::Component).connects(c2))

9.2 Delegation Adaptor

To capture the semantics of Adaptor properly in UML, we use the following OCL constraints:
AdaptorPort is typed by IAdaptor as a provided interface

inv: self.basePort.provided->size() = 1
and self.basePort.provided->forAll(

i:Core::Interface |
IAdaptor.baseInterface->exists (j | j=i))

AdaptorPort is typed by IAdaptee as a required interface
inv: self.basePort.required->size() = 1
and self.basePort.required->forAll(

i:Core::Interface |
IAdaptee.baseInterface->exists (j | j=i))

AdapteePort is typed by IAdaptee as a provided interface
inv: self.basePort.provided->size() = 1
and self.basePort.provided->forAll(

i:Core::Interface |
IAdaptee.baseInterface->exists (j | j=i))

AdapteePort is typed by IAdaptor as a required interface

inv: self.basePort.required->size() = 1
and self.basePort.required->forAll(

i:Core::Interface |
IAdaptor.baseInterface->exists (j | j=i))

Adaptor component attaches the AdaptorPort.
inv: self.baseComponent.ownedPort.name = ’AdaptorPort’

9.3 Passive Element

To capture the semantics of Passive Element properly in UML, we use the following OCL con-
straints:

PassivePort provides the IPassive interface
inv: self.basePort.provided->size() = 1
and self.basePort.provided->forAll(

i:Core::Interface |
IPush.baseInterface->exists (j | j=i))

PElement attaches the PassivePort
inv: self.baseComponent.ownedPort.name = ’PassivePort’

Modeling Architectural Pattern Variants 21

9.4 Interceder

To capture the semantics of Interceder primitive properly in UML, we use the following OCL
code:

A IncdrPort is typed by IRIncdr as a provided interface
inv: self.basePort.provided->size() = 1
and self.basePort.provided->forAll(

i:Core::Interface |
IRIncdr.baseInterface->exists (j | j=i))

A IncdrPort is typed by IFIncdr as a provided interface
inv: self.basePort.provided->size() = 1
and self.basePort.provided->forAll(

i:Core::Interface |
IFIncdr.baseInterface->exists (j | j=i))

An Interceder component owns IncdrPort
inv: self.baseComponent.ownedPort.name = ’IncdrPort’

Junkies Like Us
How the Social Web Influences
Our Understanding Of Privacy

Andreas Rüping

Sodenkamp 21 A, 22337 Hamburg, Germany
andreas.rueping@rueping.info

www.rueping.info

Introduction
With Web 2.0 becoming increasingly popular, people tend to make more and
more personal information available on the Internet: in social networks, blogs,
chats and wikis. The younger generation especially seems to enjoy social
networks and gives information about their lifestyle away freely. Have we, or will
we, become Web junkies who deliberately put more or less their entire lives
online?
Looking at the material that people put online, it’s easy to be torn between two
positions:
• On the one hand, there’s the concept of online communities, the idea of a

democratic Web, the perspective of a more open society, and the fun that
comes from actively participating in today’s most popular medium.

• On the other hand, there’s the unpleasant prospect of endless personalised
advertising, the possible danger that virtually anyone can track you down
and collect arbitrary information about you, and the possibility that all our
concerns for privacy might vanish one day.

So is the Social Web a good thing or a bad?
This focus group set out to discuss this question. We first analysed the benefits
and risks involved in the Social Web and then moved on to explore possible strat-
egies and personal practices for handling the challenges. The following photo-
graph shows the session output that was produced.
Proceedings of the 13th European Conference on Pattern Languages of Programs (EuroPLoP 2008), edited by
Till Schümmer and Allan Kelly, ISSN 1613-0073 <issn-1613-0073.html>.
Copyright © 2009 for the individual papers by the papers’ authors. Copying permitted for private and academic
purposes. Re-publication of material from this volume requires permission by the copyright owners.

Andreas Rüping: Junkies Like Us — How The Social Web Influences Our Understanding Of Privacy
Evaluation

Benefits There was consensus among the focus group participants that there is value in
the Social Web and that it makes options available that weren’t available before.
The following table summarises the benefits of the Social Web that were
identified during the session.

Area Benefit

Access to information
and services

• gain access to information (event announce-
ments, etc.) through web sites, blogs, etc.

• gain access to services (shopping, banking,
printing services)

Publishing general
information

• share / publish opinions and recommendations
(for books, music, movies, restaurants)

• share / publish photos

• tag information with keywords

• rate published material

Publishing personal
information

• build an information repository (bookmarks,
etc.)

• share / publish personal status / location

• share / publish personal photos
2

Andreas Rüping: Junkies Like Us — How The Social Web Influences Our Understanding Of Privacy
Borderline
Properties

In addition, the focus groups participants identified a few characteristics of the
Social Web that they were reluctant to classify as benefits, although these charac-
teristics aren’t necessarily negative either. They were tentatively named
‘borderline properties’. The following table summarises these ‘borderline
properties’ — things that can be regarded as positive or negative, depending on
perspective.

Risks Just as there was no doubt about the Social Web offering benefits, there was no
doubt about the existence of risks either. Participants’ opinions varied regarding
how severe the specific risks are, but it was clear from the discussion that
awareness of these risks is a precondition for using the Social Web safely and
successfully. The following table summarises the risks that were identified.

Community building • stay in touch

• build a community of practice

• build a niche community

Culture • satisfy your curiosity

• build collective intelligence

• add diversity to the web

• improve free speech in totalitarian countries /
repressive societies

Area Benefit

Information trans-
parency

• employer checking out a job candidate’s personal
data

• candidate putting material online to improve job
chances

• easier investigation into crime, etc.

Area Risk

Information overload • a flood of useless information (requires effective
filters)

• relative importance of search engines and infor-
mation portals (“if you can’t find it, it doesn’t
exist”)

Lack of reliability • amateurisation (everybody acts as a journalist)

• subjective information is confused with facts

• intentional / unintentional misinformation
3

Andreas Rüping: Junkies Like Us — How The Social Web Influences Our Understanding Of Privacy
Strategies and Practices
The second half of the focus group was devoted to a discussion of possible strat-
egies for handling the challenges imposed on us by the Social Web. The
discussion was somewhat controversial, but anyway we were able to come up
with a list of strategies, or personal practices, that were widely regarded as useful.

Some of the strategies may seem slightly contradictory at first (especially the first
two in the following table), but in fact they aren’t. They aim to resolve the tension
built up by the Social Web, its benefits and risks, and their combination should
constitute a sensible approach to using the Social Web.

The following table lists these strategies formulated as prototypical patterns.

Lack of authority • unclear copyrights

• plagiarism

• derivative work (users who copy from different
sources and publish under their own name)

Lack of awareness • information is less protected than users think

• illusion of anonymity

Data misuse • user monitoring (without the user knowing)

• cross-linking (information about a user being
collected from different sources)

• personal data (etc. addresses, profile, personal
preferences) being sold to third parties (etc. for
personalised advertising)

User misbehaviour • open doors for slander without legal redress

• vandalism / personal threats (especially when
anonymous)

Time • published material is volatile

• no information revocation (once published,
information cannot be deleted)

Culture • communication stress (pressure to be always
online)

• exhibitionism

• growing disregard of privacy (pressure to put
private information online)
4

Andreas Rüping: Junkies Like Us — How The Social Web Influences Our Understanding Of Privacy
In a way, others expect you to put information online and if you don't, then that
will give a poor impression of you, therefore:

Tell the world what you want the world to know.

Put material online if you're sure it represents you well.

Once you've published something, everyone can (in principle) read it and you
can't delete it either, therefore:

Apply selective foresight.

Publish material only if it's ok with you if the world finds out about it.

Sharing (with a community) and publishing (for everyone to see) may not be
the same thing, but information can leak, therefore:

Share information only if it's generally ok should the information get
published.

Web 2.0 is full of unreliable sources, therefore:

Question your sources.

Watch out for opinions dressed as facts.

Look up multiple references.

Some parts of Web 2.0 are more reliable than others, some are perhaps
dangerous. Smaller (more specific) communities are often more trustworthy,
therefore:

Build a mental map of the Web and identify areas of trust.

Find out about the people behind the scenery (owners of a social site etc.).

Some sites respect your privacy more than others. Some are quite ok with
respect to privacy, while others have made selling your personal data a part of
their business model, therefore:

Favour sites with an opt-in policy (where by default, personal information
may not be passed to third parties) over sites with an opt-out policy (where
users must actively deselect the dissemination of their data).

More and more stuff is put online and it's easy to lose track, therefore:

Reflect regularly about your sharing habits.

Google yourself regularly.
5

Andreas Rüping: Junkies Like Us — How The Social Web Influences Our Understanding Of Privacy
Conclusion
Web 2.0 is a pretty cool place. All focus groups participants said they used it to
some extent, although there are clear limits to what we would put online and to
what online platforms we’d use for sharing information with others.

But it’s not just us that matters. Almost all participants agreed that, if they were
15 years younger, they’d probably use the Social Web more. Perhaps much more.
It’s safe to assume that there are (younger) people out there who use the Social
Web quite extensively, largely oblivious to the existing risks. We therefore felt it
was important to name these risks and to think of ways to avoid them.

The idea is not to avoid the Social Web. The idea should to embrace it, and at the
same time to be aware of its technological background, its dangers and its
cultural implications. Hopefully the strategies developed in this focus group can
contribute to this goal.

Acknowledgements
Thanks to all participants for their contributions and for turning this focus group
into three hours of fruitful discussion. Special thanks to Ademar Aguiar for
taking the photograph and for providing the reference to [Doctorow 2007].

Suggested Reading
[Anderson 2006]

Chris Anderson. The Long Tail - Why The Future of Business Is Selling Less Of
More. Hyperion, 2006.

A book that explains how the Internet has helped niche markets to come to fruition. Not
primarily about the Social Web, but significant anyway.

[Berners-Lee 2008]
Tim Berners-Lee. Questions & Answers. BBC News, 2008-Mar-17.

An interview with the founder of the Web who argues against net tracking.

[Doctorow 2007]
Cory Doctorow. Little Brother. “www.craphound.com/littlebrother/”, 2007.

A novel about a teenage hacker’s quest against omnipresent surveillance.

[Hodgkinson 2008]
Tom Hodgkinson. With Friends Like These... The Guardian, 2008-Jan-18.

A newspaper artcile that details reservations about a popular Social Web site.

[Shirky 2008]
Clay Shirky. Here Comes Everybody - The Power of Organizing Without
Organizations. Penguin, 2008.

A book about the Social Web and its implications on our society. An in-depth analysis
of what is described as one the most revolutionary developments of our time.
6

	paper01
	paper02
	paper03
	paper04
	paper05
	paper06
	paper07
	paper08
	Introduction
	Overview
	Pattern 1: Identifiers Point To Data
	Pattern 2: Data Accompanying Products
	Pattern 3: Synchronized Data Location
	Pattern 4: Business Event Manager
	Acknowledements

	paper09
	paper10
	paper11
	paper12
	paper13
	paper14
	paper15
	paper16
	paper17
	paper18
	paper19
	paper20
	paper21
	paper22
	paper23
	paper24
	Junkies Like Us
	Introduction
	Evaluation
	Strategies and Practices
	Conclusion
	Acknowledgements
	Suggested Reading

