Tabling and Answer Subsumption for Reasoning
on Logic Programs with Annotated Disjunctions

Fabrizio Riguzzi' and Terrance Swift?

L ENDIF - University of Ferrara
Via Saragat 1, 1-44122, Ferrara, Italy
fabrizio.riguzzi@unife.it

2 CENTRIA — Universidade Nova de Lisboa
tswift@cs.suysb.edu

Abstract

Probabilistic Logic Programming is an active field of research, with
many proposals for languages, semantics and reasoning algorithms.
One such proposal, Logic Programming with Annotated Disjunctions
(LPADs) represents probabilistic information in a sound and simple
way.

This paper presents the algorithm “Probabilistic Inference with
Tabling and Answer subsumption” (PITA) for computing the prob-
ability of queries. Answer subsumption is a feature of tabling that
allows the combination of different answers for the same subgoal in
the case in which a partial order can be defined over them. We have
applied it in our case since probabilistic explanations (stored as BDDs
in PITA) possess a natural lattice structure.

PITA has been implemented in XSB and compared with ProbLog,
cplint and CVE. The results show that, in almost all cases, PITA is
able to solve larger problems and is faster than competing algorithms.

1 Introduction

Languages that are able to represent probabilistic information have a long
tradition in Logic Programming, dating back to [14, 17]. With these lan-
guages it is possible to model domains which contain uncertainty, as many
real world domains do. Recently, efficient systems have started to appear
for performing reasoning with these languages [3, 6]

Logic Programs with Annotated Disjunction (LPADs) [20] are a partic-
ularly interesting formalism because of the simplicity of their syntax and
semantics along with their ability to model causation [19]. LPADs share
with many other languages a distribution semantics [13]: a theory defines a
probability distribution over logic programs and the probability of a query
is given by the sum of the probabilities of the programs where the query is
true. In LPADs the distribution over logic programs is defined by means
of disjunctive clauses in which the atoms in the head are annotated with a
probability.

Proceedings of the 17th International RCRA workshop (RCRA 2010):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Bologna, Italy, June 10-11, 2010

Various approaches have appeared for performing inference on LPADs.
[11] proposed cplint that first finds all the possible explanations for a query
and then makes them mutually exclusive by using Binary Decision Diagrams
(BDDs), similarly to what has been proposed for the ProbLog language [3].
[12] presented SLGAD resolution that extends SLG resolution by repeatedly
branching on disjunctive clauses. [8] discusses the CVE algorithm that first
transforms an LPAD into an equivalent Bayesian network and then performs
inference on the network using the variable elimination algorithm.

In this paper, we present the algorithm “Probabilistic Inference with
Tabling and Answer subsumption” (PITA) for computing the probability
of queries from LPADs. PITA builds explanations for every subgoal en-
countered during a derivation of the query. The explanations are compactly
represented using BDDs that also allow an efficient computation of the prob-
ability. Since all the explanations for a subgoal must be found, it is very
useful to store such information so that it can be reused when the subgoal
is encountered again. We thus propose to use tabling, which has already
been shown useful for probabilistic logic programming in [4, 12, 5, 7]. This
is achieved by transforming the input LPAD into a normal logic programs in
which the subgoals have an extra argument storing a BDD that represents
the explanations for its answers. Moreover, we also exploit answer subsump-
tion to combine explanations coming from different clauses. PITA is tested
on a number of datasets and compared with cplint, CVE and ProbLog [6].
The algorithm was able to successfully solve more complex queries than the
other algorithms in most cases and it was also almost always faster.

The paper is organized as follows. Section 2 briefly recalls tabling and
answer subsumption. Section 3 illustrates syntax, semantics and inference
for LPADs. Section 4 gives an introduction to BDDs. Section 5 presents
PITA and shows its correctness. Section 6 describes the experiments and
Section 7 concludes the paper and presents directions for future works.

2 Tabling and Answer Subsumption

The idea behind tabling is to maintain in a table both subgoals encountered
in a query evaluation and answers to these subgoals. If a subgoal is en-
countered more than once, the evaluation reuses information from the table
rather than re-performing resolution against program clauses. Although the
idea is simple, it has important consequences. First, tabling ensures ter-
mination of programs with the bounded term size property. A program P
has the bounded term size property if there is a finite function f: N — N
such that if, a query term @ to P has size size(Q), then no term used in
the derivation of @) has size greater than f(size(Q)). This makes it easier
to reason about termination than in basic Prolog. Second, tabling can be
used to evaluate programs with negation according to the Well-Founded Se-

mantics (WFS) [18]. Third, for queries to wide classes of programs, such as
datalog programs with negation, tabling can achieve the optimal complexity
for query evaluation. And finally, tabling integrates closely with Prolog, so
that Prolog’s familiar programming environment can be used, and no other
language is required to build complete systems. As a result, a number of
Prologs now support tabling including XSB, YAP, B-Prolog, ALS, and Ciao.
In these systems, a predicate p/n is evaluated using SLDNF by default: the
predicate is made to use tabling by a declaration such as table p/n that is
added by the user or compiler.

This paper makes use of a tabling feature called answer subsumption.
Most formulations of tabling add an answer A to a table for a subgoal
S only if A is a not a variant (as a term) of any other answer for S.
However, in many applications it may be useful to order answers accord-
ing to a partial order or (upper semi-)lattice. In the case of a lattice, an-
swer subsumption may be specified by means of a declaration such as table
arc(-,-,or/3 - zero/1)). which indicates that if a table contains an answer
arc(Argy, Args, Argi 3), and a new answer arc(Argy, Args, Args3) is de-
rived, then arc(Argy, Args, Arg: 3) is replaced by arc(Arg:, Args, or(Arg: 3,
Args 3)) (zero/1is the bottom element of the lattice). In the PITA algorithm
for LPADs presented in Section 5, if a table had an answer arc(a, b, E1) and
a new answer arc(a, b, o) were derived, where E; and Fy are probabilistic
explanations, the answer arc(a,b, E1) is replaced by arc(a, b, F3), where F3
is the logical disjunction of the first two explanations, as stored in a BDD!.
Answer subsumption over arbitrary upper semi-lattices is implemented in
XSB for stratified programs [15]; in addition, the mode-directed tabling of
B-Prolog can also be seen as a form of answer subsumption.

Section 5 uses the SLG resolution [1] extended with answer subsumption
in its proof of Theorem 2, although similar results could be extended to other
tabling formalisms that support negation and answer subsumption.

3 Logic Programs with Annotated Disjunctions

A Logic Program with Annotated Disjunctions [20] consists of a finite set of
annotated disjunctive clauses of the form

hi:a1V...Vhy:a,<by,...,bn

In such a clause hq, ... h, are logical atoms and b1, ..., b,, are logical literals,
{a1,...,an} are real numbers in the interval [0, 1] such that > -7, o < 1.
hi:ai1V...Vh, : a, is called the head and b1, . .., b, is called the body. Note
that if n = 1 and a3 = 1 a clause corresponds to a normal program clause,
sometimes called a non-disjunctive clause. If Zyzl aj < 1, the head of the

!The logical disjunction E3 can be seen as subsuming E; and Es over the partial order
af implication defined on logical formulas.

annotated disjunctive clause implicitly contains an extra atom null that does
not appear in the body of any clause and whose annotation is 1 — Z;‘:l a;.
For a clause C' of the form above, we define head(C) as {(h; : o;)|1 <7 < n}
if > a; =1landas {(h;:)|l <i<n}U{(null : 1->"7" | o;)} otherwise.
Moreover, we define body(C) as {b;|]1 < i < m}, hi(C) as h; and «;(C) as
(6708

The semantics of LPADs, given in [20], requires the ground program to
be finite, so the program must not contain function symbols if it contains
variables. If the LPAD is ground, a clause represents a probabilistic choice
between the non-disjunctive clauses obtained by selecting only one atom
in the head. As usual, if the LPAD T is not ground, 7" can be assigned
a meaning by computing its grounding, ground(T). By choosing a head
atom for each ground clause of an LPAD we get a normal logic program
called a possible world of the LPAD (an instance of the LPAD in [20]).
A probability distribution is defined over the space of possible worlds by
assuming independence between the choices made for each clause.

More specifically, an atomic choice is a triple (C,0,i) where C' € T, 0
is a substitution that grounds C and i € {1,..., |head(C)|}. (C,0,i) means
that, for ground clause C, the head h;(C') was chosen. A set of atomic
choices k is consistent if (C,0,i) € k,(C,0,5) € k = i = j, i.e., only one
head is selected for a ground clause. A composite choice k is a consistent
set of atomic choices.

A selection o is a composite choice that, for each clause C in ground(T),
contains an atomic choice (C,0,7) in . We denote the set of all selections o
of a program T by Sy. The probability P(k) of a composite choice k is the
product of the probabilities of the individual atomic choices, i.e. P(k) =
[0.9)ex @i(C). A selection o identifies a normal logic program w, defined
as follows w, = {(hi(C)8 < body(C))0|(C,0,i) € o}. we is called a possible
world (or simply world) of T'. Since selections are composite choices, we can
assign a probability to possible worlds: P(ws) = P(0) = [(¢9.)er @i(C).

We consider only sound LPADs in which every possible world has a total
well-founded model. In this way, the uncertainty is modeled only by means
of the disjunctions in the head and not by the features of the semantics. In
the following we will write w, = ¢ to mean that the closed formula ¢ is true
in the well-founded model of the program w,-.

The probability of a closed formula ¢ according to an LPAD T is given
by the sum of the probabilities of the possible worlds where the formula is
true according to the WFS:

P(¢)= Y. Plo)

0EST W,):Qb

It is easy to see that P satisfies the axioms of probability.

Example 1. Consider the dependency of a person’s sneezing on his having
the flu or hay fever:

C1 = strong-sneezing(X) : 0.3 V moderate_sneezing(X) : 0.5 < flu(X).

Cy = strong_sneezing(X) : 0.2V moderate_sneezing(X) : 0.6 <+ hay_fever(X).
Cs = flu(david).

Cy = hay-fever(david).

This program models the fact that sneezing can be caused by flu or hay fever.
Flu causes strong sneezing with probability 0.3, moderate sneezing with proba-
bility 0.5 and no sneezing with probability 1—0.3—0.5 = 0.2; hay fever causes
strong sneezing with probability 0.4, moderate sneezing with probability 0.3
and no sneezing with probability 1 —0.2—0.6 = 0.2. strong_sneezing(david)
is true in 5 of the 9 instances of the program and its probability is

Pr(strong_sneezing(david)) = 0.3-0.24+0.3-0.6+0.3-0.24+0.5-0.2+0.2-0.2 =0.44

If the LPAD contains function symbols, its semantics can be given by
following the approach proposed in [10] for assigning a semantics to ICL
programs with function symbols. A similar result can be obtained using the
approach of [13]. In the extended version of this paper? we discuss how this
can be done.

In order to compute the probability of a query, we can first find a set of
covering explanations and then compute the probability from them.

A composite choice k identifies a set of possible worlds w, that contains
all the worlds relative to a selection that is a superset of &, i.e.,

wy = {ws|o € Sr,0 D K}

Similarly we can define the set of possible worlds associated to a set of
composite choices K:
WK = U Wy

rEK
Given a closed formula ¢, we define the notion of explanation and of covering
set of composite choices. A finite composite choice x is an explanation for
¢ if ¢ is true in every world of w,. In Example 1, the composite choice

{(C1,{X/david}, 1)}

is an explanation for strong_sneezing(david). A set of choices K is covering
with respect to ¢ if every world w, in which ¢ is true is such that w, € wg.
In Example 1, the set of composite choices

Ly = {{(C1, {X/david}, 1)}, {(Ca, { X/david}, 1)} } (1)

is covering for strong_sneezing(david). Moreover, both elements of L;
are explanations, so L; is a covering set of explanations for the query
strong-sneezing(david).

“http://www.ing.unife.it/docenti/FabrizioRiguzzi/Papers/RigSwi09-TR.pdf.

We associate to each ground clause C'f) appearing in a covering set of ex-
planations a multivalued variable Xy with values {1,..., head(C)}. Each
atomic choice (C,0,7) can then be represented by the propositional equa-
tion X¢g = 4. If we conjoin equations for a single explanation and disjoin
expressions for the different explanations we obtain a Boolean function that
assumes value 1 if the values assumed by the multivalued variables corre-
spond to an explanation for the goal.

Thus, if K is a covering set of explanations for a query ¢, the probability
of the Boolean formula

fX=\ N Xeo=i

KEK (C\0)ER

taking value 1 is the probability of the query, where X is the set of all ground
clause variables.

For example, the covering set of explanations of Equation (1) translates
into the function

fX) =X =1V (Xey =1) (2)

Computing the probability of f(X) taking value 1 is equivalent to computing
the probability of a DNF formula which is an NP-hard problem. In order
to solve it as efficiently as possible we use Decision Diagrams, as proposed

by [3].

4 Representing Explanations by Means of Deci-
sion Diagrams

In order to compute the probability of Boolean expressions over multi-valued
variables we can use Multivalued Decision Diagrams [16]. An MDD repre-
sents a function f(X) taking Boolean values on a set of multivalued variables
X by means of a rooted graph that has one level for each variable. Each
node has one child for each possible value of the multivalued variable associ-
ated to the level of the node. The leaves store either 0 or 1. Given values for
all the variables X, an MDD can compute the value of f(X) by traversing
the graph starting from the root and returning the value associated to the
leaf that is reached. For example, the MDD corresponding to Function 2 is
shown in Figure 1(a).

The advantage of MDDs is that they represent a Boolean function f(X)
by means of a generalization of the Shannon’s expansion

FX) =X =D A fxi=(X)] Ve V(XL =n) A fx=n(X)]

where X is the variable associated to the root node of the diagram and
fx,=i(X) is the function associated to the i-th child of the root node. The

XCNJ XCQ@ XC1®1 XCQ@I
(a) MDD. (b) BDD.

Figure 1: Decision diagrams for Example 1.

expansion can be applied recursively to the functions fx,—;(X). This ex-
pansion allows the probability of f(X) to be expressed by means of the
following recursive formula

P(f(X)) = [P(X1 =1) - P(fx,=1(X))] + ... + [P(X1 = 1) - P(fx,=n(X))]

because the disjuncts are mutually exclusive due to the presence of the
X1 =i equations. Thus the probability of f(X) can be computed by means
of a dynamic programming algorithm that traverses the MDD and sums up
probabilities.

Decision diagrams can be built with various software packages that pro-
vide highly efficient implementation of Boolean operations. However, most
packages are restricted to work on Binary Decision Diagram (BDD), i.e.,
decision diagrams where all the variables are Boolean. To work on MDD
with a BDD package, we must represent multivalued variables by means of
binary variables. Various options are possible, we found that the follow-
ing, proposed in [2], gives the best performance. For a variable X; having
n values, we use n — 1 Boolean variables Xi1,...,X1,-1 and we repre-
sent the equation X; = ¢ for ¢ = 1,...n — 1 by means of the conjunction
X11AX12A ... AX1i—1 A X1, and the equation X1 = n by means of the con-
junction X117 A X12 A ... A Xip—1. The BDD representation of the function
in Equation 2 is given in Figure 1(b). The Boolean variables are associ-

ated with the following parameters: P(X11) = P(X; = 1)...P(Xy) =
_ P(X,=i)
H};ll(l—P(Xliq))'

5 Program Transformation

The first step of the PITA algorithm is to apply a program transformation
to an LPAD to create a normal program that contains calls for manipulating
BDDs. In our implementation, these calls provide a Prolog interface to the
CUDD? C library and use the following predicates?

e init, end: for allocation and deallocation of a BDD manager, a data
structure used to keep track of the memory for storing BDD nodes;

Shttp://vlsi.colorado.edu/ fabio/
4BDDs are represented in CUDD as pointers to their root node.

e zero(-BDD), one(-BDD), and(+BDD1,+BDD2,-BDDO), or(+BDD1,
+BDD2,-BDDO), not(+BDDI,-BDDO): Boolean operations between
BDDs;

e add_var(+N_Val,+Probs,-Var): addition of a new multi-valued vari-
able with N_Val values and parameters Probs;

e cquality(+Var,+ Value,-BDD): BDD represents Var=Value, i.e. that
the variable Var is assigned Value in the BDD;

e ret_prob(+BDD,-P): returns the probability of the formula encoded by
BDD.

add_var(+N_Val,+Probs,-Var) adds a new random variable associated to
a new instantiation of a rule with N_Val head atoms and parameters list
Probs. The auxiliary predicate get_var_n/j is used to wrap add_var/3 and
avoid adding a new variable when one already exists for an instantiation. As
shown below, a new fact var(R,S, Var) is asserted each time a new random
variable is created, where R is an identifier for the LPAD clause, S is a list
of constants, one for each variable of the clause, and Var is an integer that
identifies the random variable associated with clause R under grounding S.
The auxiliary predicates has the following definition
get_var_n(R, S, Probs, Var) <

(var(R, S, Var) — true;

length(Probs, L), add_var(L, Probs, Var), assert(var(R, S, Var))).
where Probs is a list of floats that stores the parameters in the head of the
rule. R, S and Probs are input arguments while Var is an output argument.

The PITA transformation applies to clauses, literals and atoms.

e If h is an atom, PIT Ay (h) is h with the variable BDD added as the
last argument.

o If b; is an atom, PIT Ay(b;) is b; with the variable B; added as the
last argument.

In either case for an atom a, BDD(PITA(a)) is the value of the last argument
of PITA(a),

e If b; is negative literal —aj, PIT Ay(b;) is the conditional
(PITAj(aj) — not(BNj, Bj);one(Bj)), where PITAj(a;) is a; with
the variable BN; added as the last argument.

In other words, the input BDD BN is negated if it exists; otherwise the
BDD for the constant function 1 is returned.

A non-disjunctive fact C, = h is transformed into the clause
PITA(C,) = PITAp(h) < one(BDD).

A disjunctive fact C. = hy : a1 V...V hy : ay. where the parameters
sum to 1, is transformed into the set of clauses PITA(Cy)

PITA(C,,1) = PITAp(h1) < getvarn(i,|], a1, ..., ay], Var),
equality(Var,1, BDD).

PITA(Cy,n) = PITAp(hy) < getvarn(r,[],[oa,..., o], Var),
equality(Var,n, BDD).
In the case where the parameters do not sum to one, the clause is first
transformed into Ay : a1 V...V hy o Vnull : 1 — Z? «;. and then into the

clauses above, where the list of parameters is [, ..., a,, 1 — >} ;] but the
(n + 1)-th clause (the one for null) is not generated.

The definite clause C, = h < by,bs,...,by,. is transformed into the
clause

PITA(C,) = PITAp(h) < PITAy(b1), PIT Ay(ba),
and(Bi1, B2, BBs), ...,
PIT Ay(by,), and(BBy,—1, By, BDD).
The disjunctive clause
Cr=h1:a1V...Vhy:ap< by,by, ... by
where the parameters sum to 1, is transformed into the set of clauses
PITA(C,)
PITA(C,,1) = PITAy(hy1) < PITAy(b1), PIT Ap(bs),
and(B1, B2, BBs), ...,
PITAy(bi), and(BBy,—1, By, BBp,),
get var n(r,VC,|ay,...,a,],Var),
equality(Var, 1, B),
and(BBy,, B, BDD).

PITA(CT, n) = PITAh(hn) — PITAb(bl), PITAb(bQ),
cmd(Bl, BQ, BBQ), P
PIT Ay(by,), and(BBy,—1, B, BBy,),
get varn(r,VC, |ay,...,a,], Var),
equality(Var,n, B),
and(BBy,, B, BDD).
where VC is a list containing each variable appearing in C,.. If the pa-
rameters do not sum to 1, the same technique used for disjunctive facts is
used.

Example 2. Clause C1 from the LPAD of Example 1 is translated into
strong_sneezing(X, BDD) «— flu(X, By),
get_var_n(1,[X],[0.3,0.5,0.2], Var),
equality(Var,1, B),and(By1, B, BDD).
moderate_sneezing(X, BDD) <+ flu(X, By),
get_var_n(1,[X],[0.3,0.5,0.2], Var),
equality(Var,2, B),and(By, B, BDD).
while clause C3 is translated into
flu(david, BDD) < one(BDD).

In order to answer queries, the goal solve(Goal,P) is used, which is de-
fined by
solve(Goal, P) < init, retractall(var(-, _,_)),

add_bdd_arg(Goal, BDD,Goal BDD),

(call(GoalBDD) — ret_prob(BDD, P); P = 0.0),

end.
Moreover, various predicates of the LPAD should be declared as tabled.
For a predicate p/n, the declaration is table p(-1,...,-n,or/3-zero/1), which
indicates that answer subsumption is used to form the disjunct of multiple
explanations: At a minimum, the predicate of the goal should be tabled; as
in normal programs, tabling may also be used for to ensure termination of
recursive predicates, or to reduce the complexity of evaluations.

Correctness of PITA In this section we consider the correctness of the
PITA transformation and its tabled evaluation®. For the purposes of our
semantics, we consider the BDDs produced as ground terms, and do not
specify them further. We first state the correctness of the PITA transfor-
mation with respect to the well-founded semantics of LPADs. Because we
allow LPADs to have function symbols, care must be taken to ensure that
explanations are finite. To accomplish this, we prove correctness for what
we term finitary programs, essentially those for which a derivation in the
well-founded semantics does not depend on an infinite unfounded set. In the
statement of Theorem 1, for a ground atom a for a predicate p/n, PIT A(a)
is an atom of predicate p/(n + 1) whose last argument is a variable for the
BDD. In the well-founded model, an atom PIT A(a)f has its last argument
instantiated to a given BDD: BDD(PIT A(a)f).

Theorem 1 (Correctness of PITA Transformation). Let 7" be a sound fini-
tary LPAD. Then o is a finite explanation for a ground atom a iff there is
some PITA(a)f in WFM (PIT A(ground(T))), such that o is a path to a 1
leaf in BDD(PIT A(a)0)

Theorem 2 below states the correctness of the tabling implementation
of PITA since the BDD returned for a tabled query is the disjunction of a
covering set of explanations for that query. The proof uses an extension of
SLG evaluation that includes answer subsumption but that is restricted to
fixed-order dynamically stratified programs [15], a formalism that models the
implementation tested in Section 6. Note that unlike Theorem 1, Theorem 2
does not require the program 7' to be grounded. However, Theorem 2 does
require T to be range restricted in order to ensure that tabled evaluation
grounds answers. A normal program/LPAD is range restricted if all the

Due to space limitations, our presentation is somewhat informal: a for-
mal presentation with all proofs and supporting definitions can be found at
http://www.ing.unife.it/docenti/FabrizioRiguzzi/Papers/RigSwi09-TR.pdf.

10

variables appearing in the head of each clause appear also in the body. If a
normal program is range restricted, every successful SLDNF-derivation for G
completely grounds G [9], a result that can be straightforwardly extended to
tabled evaluations. In addition, Theorem 2 requires T' to have the bounded
term size property (cf. Section 2).

Theorem 2 (Correctness of PITA Evaluation). Let T be a range restricted,
bounded term depth, fixed-order dynamically stratified LPAD and a a gro-
und atom. Let € be an SLG evaluation of PIT A(a) against PITA(T'), such
that answer subsumption is declared on PIT A(a) using BDD-disjunction.
Then £ terminates with an answer ans for PITA(a) and BDD(ans) repre-
sents a set of covering explanations for a.

6 Experiments

PITA was tested on programs encoding biological networks from [3], a game
of dice from [20] and the four testbeds of [8]. PITA was compared with
the exact version of ProbLog [3] available in the git version of Yap as of
19/12/2009, with the version of cplint [11] available in Yap 6.0 and with the
version of CVE [8] available in ACE-ilProlog 1.2.20°. The biological network
problems compute the probability of a path in a large graph in which the
nodes encode biological entities and the links represents conceptual relations
among them. Each programs in this dataset contains a definition of path
plus a number of links represented by probabilistic facts. The programs
have been sampled from a very large graph and contain 200, 400, ..., 5000
edges. Sampling has been repeated ten times, so overall we have 10 series
of programs of increasing size. In each test we queried the probability that
the two genes HGNC_620 and HGNC_983 are related”.

We ran PITA, ProbLog and cplint on the graphs in sequence starting
from the smallest program and in each case we stopped after one day or at
the first graph for which the program ended for lack of memory®. In PITA,
we used the group sift method for automatic reordering of BDDs variables.
Figure 2(a) shows the number of subgraphs for which each algorithm was
able to answer the query as a function of the size of the subgraphs, while
Figure 2(b) shows the execution time averaged over all and only the sub-
graphs for which all the algorithms succeeded. PITA was able to solve more
subgraphs and in a shorter time than cplint and ProbLog. For PITA the
vast majority of time for larger graphs was spent on BDD maintenance.

5 All experiments were performed on Linux machines with an Intel Core 2 Duo E6550
(2333 MHz) processor and 4 GB of RAM.

"The definition of path that is used is the one in [6] that performs loop checking
explicitly by keeping the list of visited nodes.

8CVE was not applied to this dataset because the current version can not handle graph
cycles.

11

1 o—&

9 R

\
8 Q&
\

70 °\

6L
0 A
2 2
S 5| \
< \
o, o

\

3b \

s

1L

L n L L L -2 L L n L L
0 500 1000 1500 2000 2500 ¥ 3000 0 500 1000 1500 2000 2500 3000
Edges Size
(a) Number of successes. (b) Execution times.

Figure 2: Biological graph experiments.

40 60 80 100

Figure 3: Three sided die.

The second problem? models a game in which a die with three faces is
repeatedly thrown until a 3 is obtained. This problem is encoded by the
program

on(0,1):1/3 ; on(0,2):1/3 ; on(0,3):1/3.
on(T,1):1/3 ; on(T,2):1/3 ; on(T,3):1/3 <
T1is T-1, T1>=0, on(T1,F), on(T1,3).

For this problem, we query the probability of on(N,F) for increasing values
of N. In PITA, we disabled automatic reordering of BDDs variables. The
execution times of PITA, CVE and cplint are shown in Figure 3. In this
problem, tabling provides an impressive speedup, since computations can
be reused often.

The four datasets of [8], containing programs of increasing size. served
as a final suite of benchmarks. bloodtype encodes the genetic inheritance
of the blood type, growingbody contains programs with growing bodies,
growinghead contains programs with growing heads and uwcse encodes a
university domain. In PITA we disabled automatic reordering of BDDs

9In the remaining problems, ProbLog was not considered because the publicly available
version is not yet able to deal with non-binary variables

12

10 10°
10E L B reeta0ttato
a
107
0 4
@10 M 2
[}
£ 107! LT]
10 R E .
10
-2
107 —&—cplint —=—cplint
~<-CVE -~ CVE
107)) | [PITA 107))))) _ L PITA
20 40 | 60 80 5 10 15 20 25 30 35 40
Number of persons in family N
(a) bloodtype. (b) growingbody.

Figure 4: Datasets from (Meert et al. 2009).

4
10 102
51 D
@ ~ 100
g 10° .OE_J
[=
- 1077}]
107% i i
L —=—cplint —a—-cplint
btk b
-4 . . . -4 X X
10 5 10 15 20 10 0 5 10 15
N Number of PhD students
(a) growinghead. (b) uwcse.

Figure 5: Datasets from (Meert et al. 2009).

variables for all datasets except for uwcse where we used automatic reorder-
ing with the group sift method. The execution times of cplint, CVE and
PITA are shown respectively in Figures 4(a), 4(b), 5(a) and 5(b)!°. PITA
was faster than cplint in all domains and faster than CVE in all domains
except growingbody.

7 Conclusion and Future Works

This paper presents the algorithm PITA for computing the probability of
queries from an LPAD. PITA is based on a program transformation approach
in which LPAD disjunctive clauses are translated into definite clauses. We
show that PITA is correct for finitary LPADs with the bounded term depth
property. Such results may be used to guide termination and other analysis
for tabled evaluation of LPADs with functions.

The experiments substantiate the PITA approach which uses BDDs to-

""For the missing points at the beginning of the lines a time smaller than 1076 was

recorded. For the missing points at the end of the lines the algorithm exhausted the
available memory.

13

gether with tabling with answer subsumption. PITA outperformed cplint,
CVE and ProbLog in expressiveness, scalability or speed in almost all do-
mains considered. The implementation of PITA is greatly simplified by its
use of answer subsumption, which is a comparatively easy extension to an
engine that already performs tabling. Accordingly PITA programs should
be easily portable to other tabling engines such as that of YAP, Ciao and B
Prolog if they support answer subsumption over general semi-lattices.

In the future, we plan to extend PITA to the whole class of sound LPADs
by implementing the SLG DELAYING and SIMPLIFICATION operations for
answer subsumption. In addition, we plan to develop a version of PITA
that is able to answer queries in an approximate way, similarly to [6].

References

[1] W. Chen and D. S. Warren. Tabled evaluation with delaying for general
logic programs. J. ACM, 43(1):20-74, 1996.

[2] L. De Raedt, B. Demoen, D. Fierens, B. Gutmann, G. Janssens,
A. Kimmig, N. Landwehr, T. Mantadelis, W. Meert, R. Rocha, V. San-
tos Costa, I. Thon, and J. Vennekens. Towards digesting the alphabet-
soup of statistical relational learning. In NIPS*2008 Workshop on Prob-
abilistic Programming, 2008.

[3] L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: A probabilistic
Prolog and its application in link discovery. In International Joint
Conference on Artificial Intelligence, pages 24622467, 2007.

[4] Y. Kameya and T. Sato. Efficient EM learning with tabulation for
parameterized logic programs. In Computational Logic, volume 1861 of
LNCS, pages 269-284. Springer, 2000.

[5] A. Kimmig, B. Gutmann, and V. Santos Costa. Trading memory for
answers: Towards tabling ProbLog. In International Workshop on Sta-
tistical Relational Learning, Leuven, Belgium, 2009. KU Leuven.

[6] A. Kimmig, V. Santos Costa, R. Rocha, B. Demoen, and L. De Raedt.
On the efficient execution of ProbLog programs. In International Con-

ference on Logic Programming, volume 5366 of LNCS, pages 175-189.
Springer, 2008.

[7] T. Mantadelis and G. Janssens. Tabling relevant parts of sld proofs for
ground goals in a probabilistic setting. In Colloquium on Implementa-
tion of Constraint and Logic Programming Systems, 2009.

[8] W. Meert, J. Struyf, and H. Blockeel. CP-Logic theory inference with
contextual variable elimination and comparison to BDD based inference

14

[12]

[13]

[14]

[15]

[16]

methods. In International Conference on Inductive Logic Programming,
Leuven, Belgium, 2009. KU LEuven.

S. Muggleton. Learning stochastic logic programs. FElectron. Trans.
Artif. Intell., 4(B):141-153, 2000.

D. Poole. Abducing through negation as failure: stable models within
the independent choice logic. J. Log. Program., 44(1-3):5-35, 2000.

F. Riguzzi. A top down interpreter for LPAD and CP-logic. In Congress
of the Italian Association for Artificial Intelligence, number 4733 in
LNAI, pages 109-120. Springer, 2007.

F. Riguzzi. Inference with logic programs with annotated disjunctions
under the well founded semantics. In International Conference on Logic
Programming, number 5366 in LNCS, pages 667-771. Springer, 2008.

T. Sato. A statistical learning method for logic programs with distri-
bution semantics. In International Conference on Logic Programming,
pages 715-729, 1995.

E. Y. Shapiro. Logic programs with uncertainties: a tool for implement-
ing rule-based systems. In International Joint conference on Artificial
intelligence, pages 529-532. Morgan Kaufmann Publishers Inc., 1983.

T. Swift. Tabling for non-monotonic programming. Ann. Math. Artif.
Intell., 25(3-4):201-240, 1999.

A. Thayse, M. Davio, and J. P. Deschamps. Optimization of multi-
valued decision algorithms. In International Symposium on Multiple-
Valued Logic, pages 171-178, Los Alamitos, CA, USA, 1978. IEEE Com-
puter Society Press.

M. H. van Emden. Quantitative deduction and its fixpoint theory. J.
Log. Program., 30(1):37-53, 1986.

A. van Gelder, K. Ross, and J. Schlipf. Unfounded sets and well-founded
semantics for general logic programs. J. ACM, 38(3):620-650, 1991.

J. Vennekens, M. Denecker, and M. Bruynooghe. CP-logic: A language
of causal probabilistic events and its relation to logic programming.
Theory Pract. Log. Program., 9(3):245-308, 20009.

J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with
annotated disjunctions. In International Conference on Logic Program-
ming, volume 3131 of LNCS, pages 195-209. Springer, 2004.

15

