MoDELS 2011 ACES-MB Workshop Proceedings

A Refinement Checking Technique for
Contract-Based Architecture Designs *

Raphael Weber!, Tayfun Gezgin!, and Maurice Girod?

1 OFFIS, Escherweg 2, 26121 Oldenburg, Germany,
{raphael.weber,tayfun.gezgin}@offis.de
2 Airbus Operations GmbH, Kreetslag 10, 21111 Hamburg, Germany,
maurice.girod@airbus.com

Abstract. During the development of software intensive systems, typ-
ically several models of this system are designed. These various models
represent the system structured by different concerns, e.g. abstraction.
While these approaches help to cope with complexity, the need of relating
the models to one another arises. A major task is to keep model speci-
fications consistent and traceable through special relations. The relation
of interest for this work is the refinement relation between abstraction
levels. In this work we describe a technique to check the validity of these
refinement relations with respect to formal behavior/interface specifica-
tions of design items. For evaluation, we apply our refinement technique
to an industrial example modeled with the contract-based methodology
from our previous work.

1 Introduction

In recent years, the design process of systems in domains like automotive, au-
tomation technology, avionics, or consumer electronics has become a more and
more complex task: The increasing number of functions which are realized by
software, inter-dependencies of software tasks, and the integration of existing
sub-systems lead to highly complex software intensive systems. This complex-
ity in conjunction with the increasing demand on a short time-to-market and
on quality aspects make it difficult for engineers to develop such systems. In
order to cope with this difficulty we proposed a new meta-model along with a
methodology in [2] to support the system architect.

The proposed common systems meta-model (CSM) is based on the meta-
model of Heterogeneous Rich Components (HRC) [6], which provides the con-
cept of contract-based specifications. The term “rich” alludes to the key ingre-
dient of HRCs to provide rigorous interface specifications for multiple aspects,
encompassing both functional and extra-functional (e.g. safety and real-time)
characteristics of components. To structure the design space and enable differ-
ent development approaches (e. g. top-down, bottom-up, ...), we described the

* This paper was partly funded by the German Federal Ministry of Education and Re-
search (BMBF) through the project “Software Platform Embedded Systems (SPES
2020)”, grant no. 01IS08045.

Wellington, New Zealand, October 18, 2011

55

MoDELS 2011 ACES-MB Workshop Proceedings

concept of Abstraction Levels and Perspectives along with their CSM represen-
tation. For the designer to navigate and model relations between abstraction
levels and perspectives, we briefly introduced the concept of a Mapping relation
(called Realization between abstraction levels and Allocation between perspec-
tives). Analyzing these mappings was not discussed in detail in our previous
work and is subject of this work.

For evaluation, an industrial example was proposed by Airbus: the Air-Condi-
tioning-System. We evaluate a certain portion of that example through refine-
ment check. This check finds out whether a component of a specific design can
be replaced by a component of a different design, i. e. it finds out whether the dif-
ferent design component can be virtually integrated into the environment of the
other component. The refinement check is done via model checking an Uppaal
[9] timed automata representation of the formal requirements of the model.

By formal requirements we mean the specification of requirements via the
pattern-based requirements specification language (RSL). The RSL is developed
and evaluated in the European CESAR project. While this requirement spec-
ification technique allows for easy transformation from predefined patterns to
automata it may not be the most intuitivly usable one. Yet, there are a variety
of methods to help to derive natural language requirements down to pattern
based requirement specifications (contracts). However, that subject is not part
of this paper, for more information about the RSL and requirement specification
methods in general refer to [4].

Related Work In current literature one can find many works that deal with
refinement checks via timed automata. One similar work is [15] in which the au-
thors use Uppaal timed automata (among others) to verify the correctnes of
their requirements. However, timed automata are not used to formally check the
refinement of these requirements. The theoretical foundation and practical appli-
cation of the contract-based specification method were elaborated in [5, 3]. One
could consider our work as a follow-up work of [5]. In [13] the authors propose a
basic calculus for adding and removing channels and components in a dataflow
architecture. The calculus formally allows for refinement checking between two
system architectures. While this approach covers adding and removing entities it
does not include the modification of artifacts. Furthermore, there is no relation
to meta-modelling concepts or to the (then emerging) UML standard. There
is also no practical example on which the calculus was applied and evaluated.
There is, however, an introducing example to motivate the approach.

The remaining parts of this paper are organized as follows. In the next section
we give a short introduction on the modeling concepts of the CSM. In Section 3
we describe the refinement check for the case in which one contract is refined by
exactly another contract and give the construction principle of the automaton
networks. Section 4 illustrates the air-conditioning-system example by Airbus
and explains how we applied the refinement check to the example. In Section 5
we discuss the extension of the refinement check where the specification of a
component may consist of a set of contracts. In the last section we will sum up
our findings and draw a conclusion.

Wellington, New Zealand, October 18, 2011

56

MoDELS 2011 ACES-MB Workshop Proceedings

2 Modeling Concepts

In our previous work [2] on a new common systems meta-model (CSM), Hetero-
geneous Rich Components (HRCs), which originate from the European SPEEDS
project [17], represent the major modelling artifact. In addition to HRCs a new
methodology to traverse along the design space is also proposed in [2]. This sec-
tion gives a short introduction to the concepts of HRC and the design method-
ology of the CSM.

2.1 Heterogeneous Rich Components

The CSM provides basic constructs needed to model systems like components
with ports and connections (bindings) between them. We refer to these com-
ponents as Heterogeneous Rich Components (HRCs). HRCs rely on the basic
concepts of SysML blocks [12]. The dynamics of an HRC can be specified by
behavior, e.g. an external behavior model, or even source code. Furthermore,
requirements (or contracts) refer to a required behavior whereas the actual be-
havior is specified as stated above. The idea of contracts is insprired by Bertrand
Meyer’s programming language Eiffel and its design by contract paradigm [10].

In HRC, contracts are a pair consisting of an assumption and a guarantee,
both of which are specified by some text. Here we assume that assumptions and
guarantees are specified by a pattern based formalism called requirement specifi-
cation language. An assumption specifies how the context of the component, i. e.
the environment from the point of view of the component, should behave. Only
if the assumption is fulfilled, the component will behave as guaranteed. This
enables the verification of virtual system-integration (integrate a more detailed
component or a subcomponent in a more abstract environment) at an early stage
in a design flow, even when there is no implementation yet. Thus, the system
decomposition can be verified with respect to contracts. Details about the se-
mantics of HRC are given in Section 3.1. Note that in this work we consider
only the HRC semantics where a connection between two ports describes their
equality. A deeper insight into HRCs can also be found in [8, 16].

2.2 Structuring the development process

When developing an embedded system, an architecture is regarded in different
Perspectives at several Abstraction Levels during the design process as mentioned
in Section 1. On each abstraction level the product architecture is regarded in
different perspectives. As an additional concept for separation of concerns, mod-
els in each perspective reflect different aspects. For example, an aspect “Safety”
might be regarded in every perspective but an aspect “Realtime” is not regarded
in a geometric perspective and aspect “Cost” is not regarded when considering
operational use cases.

Wellington, New Zealand, October 18, 2011

57

MoDELS 2011 ACES-MB Workshop Proceedings

2.3 Realization and Allocation

In order to keep the models in different perspectives and abstraction levels con-
sistent (keep traceability between development steps) we defined a so called
Realization- and Allocation-Link. The basic idea behind both concepts is to re-
late the observable behavior of components exposed at its ports.

Realizations are relationships between ports of components on different ab-
straction levels. Intuitively a realization-link states, that a component (e.g. f1)
has somehow been refined and is now more concrete in terms of its interface
and/or behavior (e.g. f17). The refinement cannot always be captured by a pure
decomposition approach. Thus, we define the realization of a component by in-
troducing a state-machine that translates the behavior of the refined component
f1’ into according events observable at a port of component f1.

Allocations are relationships between ports of components in different per-
spectives. Intuitively an allocation-link states that the logical behavior of a com-
ponent (e.g. f4) is part of the behavior of a resource (e.g. r2), to which it has
been allocated. Here, we consider the same link-semantics as for the realization.
For more details, refer to [2]. In the next section we will deal with the automatic
verification of allocation and realize links in more detail.

3 Refinement Check

In the previous section we introduced our methodological concepts of the CSM
and the HRCs. This section describes how the concepts of realize and allocate
links can be automatically validated. For this, we first give an in-depth descrip-
tion of the semantics of HRCs.

The concepts of realize and allocate links between perspectives and abstrac-
tion levels are very similar. Both links define a refinement relation between
components with respect to their specification: The refined components have
to respect the requirements specified for their abstract counterparts. We say, a
specification C’ refines another specification C' if and only if the behavior spec-
ified by C’ is a subset of the behavior specified by C. In the following we will
formalize the refinement relation with respect to contracts and give a technique
in order to automatically check such a relation. In this work we will only consider
1-to-1 mappings, i.e. where a component is refined by exactly another compo-
nent. Mappings, where a set of components is related to another set of refined
components is subject of future work. Furthermore, we will only consider spec-
ifications which consist of exactly one contract. The generalization to a set of
contracts is subject of Section 5.

3.1 Semantics of HRC

The specification of HRCs is given in terms of contracts over their interaction
points capturing the required dynamics of a component. This means that for
specifically assumed environment conditions the component shall guarantee a

Wellington, New Zealand, October 18, 2011

58

MoDELS 2011 ACES-MB Workshop Proceedings

specific behavior exposed at its ports. In the following we assume without loss of
generality that each port contains exactly one interaction point, so we can refer
to that interaction point when talking about a port.

A contract is a tuple (A4,G), where A defines the assumption and G the
guarantee as introduced in Section 2. The semantics of a contract is defined as

[C] = [A]1°™" v [dl, (1)

where (X)C™! defines the complement of a set X in some universe & and [X]
is defined as the semantic interpretation of X.

The semantics of A and G is given in terms of sets of timed traces. A trace
over a port set P is a sequence of port assignments. A port assignment)V is a
function ¥V : P — D assigning each port p; € P to a value in its domain D;.
Further, a time sequence 7 is a monotonically increasing sequence of real values,
such that for each ¢t € R there exist some ¢ > 1 such that 7; > ¢. A timed trace
is a sequence (p,7) where p is a sequence of port assignements and 7 a time
sequence. The set of all timed traces over P is denoted by T'r(P).

The specification S of a component is given in terms of a set of contracts, i. e.
[S] :== N, [C:]. An implementation I of a component satisfies its specification
S, if [I] C [S] holds. The refinement relation between two contracts C' and C’
is defined in a similar way. Note that the definition for n contracts is subject of
Section 5.

C' refines C, if [A] C a([A]) and «([C']) C [C], (2)

where o : Tr(P’') — Tr(P) is called the mapping function (represented through
a state machine as mentioned in Subsection 2.3) relating concrete traces with
abstract ones. This function is necessary as both contracts C' and C’ may talk
about different ports. Here we only assume mapping functions which can be
transformed to timed automata. Note that mapping functions are not generated
automatically but rahter are given by the systems architect.

In the following subsection we will introduce a technique to check such a
refinement relation.

3.2 Checking the Refinement Relation

We introduce our concept of verifying a refinement relation by specifications
consisting of only one contract. In order to check the refinement relation between
the contract of the abstract and the concrete component, we derive Uppaal timed
automatal9] out of both contracts and do a reachability check[1]. As defined in
Equation 2 the check consists of two parts, i.e. first checking the set inclusion
of the assumptions and second checking the set inclusion of both contracts.

Checking Set Inclusion of Assumptions In order to check [A] C a([A']) we
derive a timed automaton out of A’ serving as passive observer O. The transitions
of O are annotated with receiving events (derived out of port names) and clock
constraints in such a way, that the observer accepts the set of timed traces which
are element of [A']. For all traces which are not element of [A'] the observer

Wellington, New Zealand, October 18, 2011

59

MoDELS 2011 ACES-MB Workshop Proceedings

enters a bad state. Then we derive an automaton T4 out of A which serves as
a trigger for O. The transitions of T4 are annotated with sending events and
timing constraints, such that T4 produces all traces that are element of A.

At least we need the automaton Gl realizing the mapping function o which
receives events from T4 and translates corresponding events to the observer.
This automaton is assumed to be given by the system architect.

From all automata we build the automaton network T4 || Gl || O. If the
trigger automaton now produces a sequence which is not element of A’ — and
therefore the subset inclusion property will be violated — the corresponding
observer will enter a bad state. So we need to check T4 || Gl || O against the
following Uppaal query: AL not O.bad.

Checking Set Inclusion of Contracts The second part consists of checking
a([C']) € [C]. This is done by deriving an automaton network T out of C’ or
more precisely one automaton for the assumption part and one for the guarantee
part. Both automata serve as trigger for the observer network derived out of C'.
Analogously to the first part it holds that whenever one of the trigger automata
does a step which is not defined in the contract of the abstract component, the

corresponding observer will enter a bad state.
%0,

O, @ O, toBad? 0, gc:))\‘
O toBad!

O,toBad?
O,toBad?
G

O, toBad! O toBad!

A
! O, toBad!

Fig. 1. Automaton network for Observer: O¢ is the automaton for the guarantee, O 4
for the assumption and O¢ for the overall state of the contract.

The observer consists of three automata: one automaton for each assumption
and guarantee and a third automaton tracing the state of the overall contract.
This is illustrated in Figure 1: The observer obtained from the guarantee (O¢)
and the assumption (O 4) send an event to the automaton O¢ when entering their
bad state. The automaton O¢ states whether the contract is fulfilled. According
to Equation 1 this is the case when either both the assumption and guarantee
are fulfilled or the assumption does not hold. If the assumption does not hold,
O 4 sends an event Of}) Bag Such that O¢ directly switches to state good. If the
guarantee was not fulfilled previously, then O¢ switches to its good state in the
case that the assumption is finally violated.

The automaton network Tcr || Og || Oa || Oc is again checked against the
Uppaal query: ALl not O¢.bad. If O¢ enters its bad state as the corresponding
guarantee is not fulfilled, we need to check whether finally its assumption au-
tomaton also enters its bad state, such that O switches to its state good. This
is realized by checking the query O¢.bad --+ O¢.good. The arrow is the leads-to

Wellington, New Zealand, October 18, 2011

60

MoDELS 2011 ACES-MB Workshop Proceedings

operator of Uppaal and states for this case that whenever O¢ enters its bad state
it will finally enter its good state.

4 Case Study: Air-Conditioning-System

In this section we will describe in text and figures how the air-conditioning-
system was modeled. Note that this is only a cut-out on two abstraction levels
described in detail in Subsections 4.2 and 4.3.

4.1 Preliminary Notes on the Example

The following two subsections contain details about a cut-out of an example
model of the air-condintioning-system (ACS) we did with Airbus in the scope
of the SPES2020 project. This cut-out deals only with the technical perspective
on two different abstraction levels, called the “upper” and the “lower”. In each
technical perspective we first define our system context (the environment outside
the system under development). The boundaries of this environment description
may change between abstraction levels, as is the case in our example. Note that
we renamed some entities of the model.

The air-generation demand calculation system which is part of the ACS was
previously modeled in the logical perspective (not described here). It is subject
of the upper level whereas the processor of the upper level is refined in the lower
level. The contracts of this particular processor and its subcomponents are de-
scribed and examined for a refinement check which is described in Subsection 4.4.

4.2 The Upper Abstraction Level

The air-generation demand calculation system is designed in a rather fine level
of granularity. At this point in the design process, it is time to initially design the
technical architecture. Our system context contains the air-generation demand
calculation system with four inputs (selected air demand from two crew selections
and two sensor values of the actual climate to be conditioned) and one output
(the calculated air demand value).

The system under design (the air-generation demand calculation system) is
decomposed into certain resource artifacts. The Input_ Terminal (a device re-
source, fetching data from certain memory addresses), the Input Com (a com-
munication resource, among others, sending requested data over an Input bus to
a computation resource), the CPU! (a computing resource on which the actual
air-generation demand calculation task is executed), the Out Com (a commu-
nication resource which, among others, sends the result of the calculation to the
Out_ Terminal, to be distributed), and the Out Terminal (a device resource,
writing data to certain memory addresses). The schedule, according to which
the task is scheduled, is a static time table, just like an ARINC653-Module
specification (see [7]). The system under design with its artifacts is displayed in
Figure 2.

Wellington, New Zealand, October 18, 2011

61

MoDELS 2011 ACES-MB Workshop Proceedings

«System»
Air_Generation_Demand_Calculation_System

«DeviceResource» «DeviceResource»
input_terminal:Input_Terminal out_terminal:Out_Terminal
crew_inputl com_port air_flow_and_temper

atureﬁdemandivaluesBP—B]
crew_input2
actual_climate datal «CommunicationResource»
actual_climate_data2 com_port out_com:Out_Com
<] com_port cpul_port [&
«CommunicationResource») «ComputingResource»
input_comiInput Com cpul:CPUL

com_port cpul _port input_port output _port 5

Fig. 2. The air-generation demand calculation system with resources.

The terminals and busses details are not described here. Instead we focus
on the model of the CPUI. It contains one task (demand_ calculation), which
performs the actual air flow and temperature calculation based on its inputs
and writes it to its output port. Furthermore, the CPUI component contains a
scheduler slot (which contains information, relevant for the scheduler) represent-
ing a certain amount of time within the schedule of CPUI. CPU1 also contains
the scheduler that has a certain scheduling policy. The ports between the slot
and the task are SchedulerPorts, over which the slot “tells” the task when it is
executing. Likewise, the ports between the scheduler and the slot enabling the
scheduler to “tell” the slot when it executes. This scheme also makes hierarchi-
cal scheduling possible and allows other scheduling policies to be specified. The
CPU1 with its task, slot, scheduler, and a formal contract (denoted by “Con-
tract CPU_Performance”) are displayed in Figure 3. The contract assumes that
an event on input_port occurs each 100ms and guarantees that the distance be-
tween the input event on input port and the output event on port ouput port
is within 12ms and 15ms.

Note that CPU! has only one task receiving data and exporting data back
to the bus. This indicates that there might be some bus interface functionality
within the task. So maybe it is a good idea to decompose this one task a lit-
tle further. The following section will describe the lower abstraction level (the
component level), in which the technical perspective will be refined.

4.3 The Lower Abstraction Level

After designing the initial technical architecture on the upper level, we now
proceed to model the technical architecture with more detail on the lower ab-
straction level. As mentioned above, we need to decompose the air-generation-
demand-calculation-application task a bit further into the importer task, the

Wellington, New Zealand, October 18, 2011

62

MoDELS 2011 ACES-MB Workshop Proceedings

«ComputingResource»
CPU1

«SWTask»
demandCalculation:CalculationApplication

input_port [2 input_data calculated_air_flow_and_temp_demand 5] output_port

schedules
&
«SchedulerSlot» Ischedules «Scheduler»
slot1:TTSlot1 ttsched:TTScheduler
«Satisfy»

Contract CPU_Performance

> ° Assumption: input_port occurs each100 ms.

° Guarantee: delay between input_port and
output port within[12ms,15ms].

Fig. 3. The CPU1 component with one task.

actual calculation task, and the exporter task. This means, we will refine the
computing resource CPU! from the upper level.

For the environment part we modeled the type with the two corresponding
ports of the CPU. For now, there is no behavior environment model, so there is
no further decomposition of the environment component. As for the CPU: It was
decomposed into its tasks, slots and the scheduler. Figure 4 depicts the model.

«ComputingResource»

CPU1
«SWTask» «SWTask» «SWTask»
datalmporterDatalmporter calcRoutine:CalculationRoutine dataExporter.DataExporter
B input_port crew_inputl B crew_input1 temperature_demand) temperature_demand output_port]

crew_input2 5 3 crew_input2

3 actual_climate_datal air_flow _demand B air_flow _demand

actual_climate_datal [

NIV VT
[

actual_climate_data2 [) actual_climate_data2

schedules schedules

schedules
schedules schedules

Bl«SchedulerSlot» «SchedulerSlot»
slot2:TTSlot2 slot3:TTSlot3

«SchedulerSlot »
slot1:TTSlot1

«Scheduler»
ttsched:TTScheduler

schedules

Input_Port_Output Port_Deadline
«Satisfyr=====2xe Assumption input port occurs eachl00ms.
o Guarantee: delay between input_port and output port within [14ms,15ms].

(me———-

Fig. 4. The lower abstraction level CPU1 component with three tasks.

Wellington, New Zealand, October 18, 2011

63

MoDELS 2011 ACES-MB Workshop Proceedings

As depicted there are now three tasks in the computing resource: The datalm-
porter, calculationRoutine, and the dataFEzporter. The data importer has one
input (the connection to the Imput Com communication resource like on the
upper level). Likewise, the data exporter has the output port connecting to the
Out_ Com communication resource. The calculation routine has an input port
for each incoming data and an output port for each outgoing data. It can only
be activated if all four incoming data packets are available.

There is also a Contract (denoted by “Input _ Port Output_Port Deadline”)
that the CPU1 satsifies: The refined (from the upper level) deadline for the input
and output port. Note that the assumption is unchanged, but the deadline inter-
val has changed now (this often happens when traversing from a more abstract
design to a more detailed design).

Having the two technical perspectives, one on the upper and one on the
lower level, we now need to specify how they are mapped, i.e. how the upper
level is refined into the lower level. Figure 5 shows how the task on the upper
level is mapped to the tasks on the lower level. In this case it is rather simple,
though the ports have different names their types are the same and it is a simple
One-Port-To-One-Port mapping. Having said that, it is not obvious how the two
contracts on both levels relate to each other.

«SWTask»
demandCalculationCalculationApplication

’EE input_data calculated_air_flow_and_temp_demand Eﬂ‘

4 LY
] \
/ \
4 S
’ \

’ 1\
«PortRealize» «PortRealize»
Y A A Y
J \

; «SWTask» «SWTask» \
datalmporterDatalmporter dataExporter.DataExportdy
[\
input_port crew_inputl temperature_demand output_port

crew_input2
actual _climate_datal air_flow_demand

actual climate_data2

Fig. 5. The mapping between the task of the two abstraction levels.

Keep in mind that in the HRC semantics, a connection between two ports
describes their equality. So, for delegation connections the contract’s parts and
ports are the same and for assembly connectors assumption and guarantee have
to be checked against each other. In our case this means: The input_port
of CPU! on the upper level is delegated to the task port input_data (see
Figure 3) denoting their equality. The same is valid for the connection be-
tween output_port and the calculated_air_flow_and_temp_demand. Again,

Wellington, New Zealand, October 18, 2011

64

MoDELS 2011 ACES-MB Workshop Proceedings

this also holds for the ports on the lower level (see Figure 4). So, with the con-
tracts on the upper and lower level satisfied by the corresponding CPUI, parts
of these contracts are also valid for the subcomponents of CPUI. It so happens
that these subcomponents are mapped and thus induce the necessity of an real-
ization test: Is the contract of the coarser component still valid if it is replaced
by a finer component? Or in our example: Is the CPUI on the lower level a
valid realization of the CPU! on the upper level, concerning their contracts and
mappings? For this we apply the refinement check which formally checks if the
answer to the above questions is Yes. The next subsection will describe in detail
how this refinement check is performed for our example.

4.4 Realization Check between Abstraction Levels

We will apply the technique checking a refinement relation introduced in Sec-
tion 3.2. For this, we implemented a tool which derives relating contracts out of
the system models, parses the RSL pattern with which the contracts are spec-
ified, generates a corresponding Uppaal timed automaton network and checks
this against the properties illustrated in Section 3.2.

Consider again the contracts of CPU1 in the upper and lower abstraction
level introduced in the previous section. In general we have to check both con-
ditions [As] € «([AL]) and a([C']) C [C], but as in our example Ay and A’
are equal, we can directly start checking the second condition. The observer
automata resulting from the CPU1 contract of the upper abstraction level are
illustrated in Figure 6. It consists of three parts:

— The automaton O4 in Figure 6(a) results from the assumption of CPUI at
the upper abstraction level, i.e. A = input_port occurs each 100ms. Each
100ms it enters its state S; and expects to receive event input_port. If
the event is not received timely, it enters its bad state and sends an event
R1_ObserverO_toBadState to the automaton depicted in Figure 6(c).

— The automaton O¢ in Figure 6(b) results from the guarantee part of the
contract, i.e. G = delay between input_port and output_port within [12ms,
15ms]. It enters its bad state if the delay between event input port and
output_port is less than 12ms or greater than 15ms.

— The automaton O¢ in Figure 6(c) gives the overall state of the contract. If
O 4 switches to its bad state, the contract is trivially fulfilled and O switches
to the state good. If the Og switches to its bad state, the O4 must finally
switch to its bad state, because otherwise the contract would be falsified.

This observer network is triggered by the automaton network depicted in
Figure 7 consisting of two automata:

— The automaton in Figure 7(a) results from the assumption of the contract
of CPU1 at the lower abstraction level, i.e. Ay = input_port occurs each
100ms.

— The automaton in Figure 7(b) results from the guarantee part of the contract
G = delay between input_port and output port within [14ms, 15ms].

Wellington, New Zealand, October 18, 2011

65

MoDELS 2011 ACES-MB Workshop Proceedings

z1 <=0
input_port2? - -
S0 Z1p::0 g St I(?u:;;ulzopi‘i(?zo o 20 > ub
= SO ,9..0 S1 020 badZwischen
20 <100 input_port3? 20 <=0
input_port2? 20:=0 output_port?
z1:=0 20:=0
R3_Observer1_toBadState!
21 <=0
badZwischen bad Obad
(a) Observer automaton for (b) Observer automaton for G =

As = input_port occurs each 100ms. delay between input port and out-
put_ port within [12ms, 15ms].

R1_Observer0 toBadState?

S0 bad good
M

N\
R3_Observer1_toBadState? R1_Observer0_toBadState?

(c) Automata giving the state of the contract.

Fig. 6. Automata for the contract of the abstract component.

S0
20 <=100
z1 <=0
input_port! b <= 20 &&lzo <=ub input_port1?
2120 output_port! 2020
: z0:=0 ’ ’
~ 20 <= ub "I~ _input_port1?
z1 <=0 S z1>0 s
(a) Trigger automaton for As; = in- (b) Trigger automaton for G = de-
put_port occurs each 100ms. lay between input port and out-

put_ port within [14ms, 15ms].

Fig. 7. Automata for the contract of the concrete component.

This automaton network is checked against the property A not O¢.bad,
where O¢ is the observer automaton illustrated in Figure 6(c). This property
states that the bad state of O¢ is never reached. If the network fulfills this
property, we have shown a valid refinement, which is the case in this example.

5 Considering Sets of Contracts

In this section we discuss the extension of the refinement check introduced in
Section 3 in order to deal with specifications which may consist of a set of
contracts. In this section we will omit technical details of the construction of
automata networks like e. g. glue automata. Instead, we will focus on the general
checking procedure and will give an extended formulation of the proof obligations
introduced in Section 3. Further, we will discuss the construction for only a
restricted subset of properties since (as we will see in the following subsection)
that the generalization is not always applicable. For the assumption parts we
will only consider activation patterns stating periodic triggering of a port. The

Wellington, New Zealand, October 18, 2011

66

MoDELS 2011 ACES-MB Workshop Proceedings

guarantee parts will contain only delay patterns as demonstrated in the example
of Section 4.4. More general cases are work in progress.

5.1 Extension of the Refinement Check

The specification of a component with more than one contract is obtained by
conjugating them. Unfortunately, the conjunction of two or more contracts is
not simply the conjunction of all assumptions and all guarantees. Rather there
are various possibilities to formulate the conjunction of contracts. We will use
the following:

CiA..ACh= (A G), with A= A4, v \/(4A~G;)and G =)\ G..
i=1 i=1 i=1
The first refinement property [A] C [A'] is checked in two steps (note that

in the following we will omit the semantic evaluation brackets for the sake of
readability) :

- /\?:1 A ¢ A
~ Vi (A A-Gy) © A

We omit the necessity to construct a timed automaton for the trigger part
which generates the union of both parts, by splitting this check into two parts.
Note that timed regular languages are not closed under complementation. So
this approach does not work in general. For the special case of delay patterns,
the complement of the guarantee automata can be easily constructed.

The second refinement condition becomes in the general case (A’, G') C
(A, G). In the first part of the check we have shown A C A’ which is equivalent
to =A D —=A’. With this we can simplify the left hand side of this term to G'.
For technical reasons it could further be necessary to add the assumptions to
the guarantee. Consider for example the special case of activation and delay
patterns: The assumption part is used to trigger the guarantee part. Without
the assumptions an additional trigger structure for the guarantee part would be
necessary.

In order to extend the left hand side of the above expression we use the
following equivalence (zero set extension):

n n
¢'= (NAiv-(\a) g
i=1 i=1
Because it holds that —=(A]_; A;) AG’ C A we can omit this term. This leads us
to the following proof obligation:

m n n n
NG <\ -4~ A=) vG) v NG
i=1 i=1 i=1 i=1

Again we have the problem of complementing a timed automaton. In the case
of the automata A, resulting from periodic activation patterns we can again find
an automaton accepting all words which are not accepted by A,.

Wellington, New Zealand, October 18, 2011

67

MoDELS 2011 ACES-MB Workshop Proceedings

5.2 Cyclic dependencies

If the specification of a component consists of a set of contracts, we could get
cyclic dependencies if an output port is connected to an input port. For this
we need a strong causality between events. In [11] this problem is prevented
by a stepwise definition of contracts, i.e. all guarantees hold initially and if the
assumptions hold up to the n'” step then the guarantees hold up to n+ 1" step.
Another way to break such cyclic dependencies is to add delays to the data flow.
The cases we considered utilized delay patterns.

6 Summary

In this paper we illustrated a technique to verify refinement relations for contract-
based specifications for our previously proposed common systems meta-model
(CSM). Our CSM allows to structure the design space by concepts like Ab-
staction Levels and Perspectives. It enables formal specifications via contracts
allowing for each aspect to characterize the allowed design context of a compo-
nent. In order to preserve traceability between model artifacts and to put those
into refinement relations, the concept of Mapping was introduced.

In particular, an abstract component which is realized by a more concrete
component has a refinement relation to that component. This relation has to
respect contract specifications of both components. Thus, we formally defined
the refinement relation and introduced a timed automaton based verification
technique. For this, we derived a timed automaton network out of the assumption
and guarantee parts of relating components and defined necessary properties.
Whenever the network adheres to the properties, the refinement relation between
the corresponding contracts holds. The resulting network was checked against
the properties with the aid of the verification tool Uppaal. For evaluation, our
technique was applied to an industrial case study from the avionics domain.

Currently, we are extending our approach of refinement checking in order to
deal with more general n-to-m mappings, i. e. where one component is related to a
set of more abstract or more detailed components. Especially cycles deserve more
research: Interdependent contracts may lead to false conclusions. This problem
is widely discussed in literature, e.g. in [11, 14].

In the future, we will analyze for which set of properties our approach is
applicable. In this context we will analyze the effects which are occuring when
we extend our approach to multi viewpoint analyses.

Further research will be conducted also in the field of deeper analysis methods
for more complex mapping functions. In the future we also plan to integrate the
refinement check described in this work with a broader evaluation of architecture
alternatives in order to guide a developer through a design space exploration
process.

Wellington, New Zealand, October 18, 2011

68

MoDELS 2011 ACES-MB Workshop Proceedings

References

1.

10.
11.

12.

13.

14.

15.

16.

17.

L. Aceto, A. Burguefio, and K. Larsen. Model checking via reachability testing for
timed automata. In B. Steffen, editor, Tools and Algorithms for the Construction
and Analysis of Systems, volume 1384 of Lecture Notes in Computer Science, pages
263-280. Springer Berlin / Heidelberg, 1998. 10.1007/BFb0054177.

A. Baumgart, P. Reinkemeier, A. Rettberg, I. Stierand, E. Thaden, and R. Weber.
A model-based design methodology with contracts to enhance the development
process of safety-critical systems. In Proceedings of the 8th IFIP WG 10.2 inter-
national conference on Software technologies for embedded and ubiquitous systems,
SEUS’10, pages 59-70, Berlin, Heidelberg, 2010. Springer-Verlag.

A. Benveniste, J.-B. Raclet, B. Caillaud, D. Nickovic, R. Passerone, A. Sangiovanni-
Vincentelli, T. Henzinger, and K. G. Larsen. Contracts for the design of embedded
systems, Part II: Theory. Submitted for publication, 2011.

CESAR SP2 Partners. Definition and exemplification of requirements specification
language and requirements meta model. CESAR_D_SP2_ R2.2 M2 v1.000.pdf
on http://www.cesarproject.eu/fileadmin /user upload/, 2010.

W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand. Using contract-
based component specifications for virtual integration testing and architecture de-
sign. In Design, Automation Test in Europe Conference Exhibition (DATE), 2011,
pages 1-6, march 2011.

W. Damm, A. Votintseva, A. Metzner, B. Josko, T. Peikenkamp, and E. Béde.
Boosting re-use of embedded automotive applications through rich components.
In Foundations of Interface Technologies, FIT 05, 2005.

A. R. INC. ARINC 653 - Avionics Application Software Standard Interface - Part
1 - Required Services. Part of ARINC 600-Series Standards for Digital Aircraft &
Flight Simulators, March 2006.

B. Josko, Q. Ma, and A. Metzner. Designing Embedded Systems using Heteroge-
neous Rich Components. Proceedings of the INCOSE’08, 2008.

K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer STTT, 1(1-2):134-152, 1997.

B. Meyer. Applying "design by contract". Computer, 25(10):40-51, 1992.

J. Misra and K. Chandy. Proofs of networks of processes. Software Engineering,
IEEE Transactions on, SE-7(4):417 — 426, july 1981.

Object Management Group. OMG Systems Modeling Language (OMG SysML
™) November 2008. Version 1.1.

J. Philipps and B. Rumpe. Refinement of information flow architectures. In
Proceedings of the 1st International Conference on Formal Engineering Methods,
ICFEM 97, pages 203—, Washington, DC, USA, 1997. IEEE Computer Society.
A. Pnueli. In transition from global to modular temporal reasoning about programs,
pages 123-144. Springer-Verlag New York, Inc., New York, NY, USA, 1985.

R. P. Pontes, M. Essado, P. C. Véras, A. M. Ambrosio, and E. Villani. Model-based
refinement of requirement specification: A comparison of two v&v approaches.
ABCM Symposium Series in Mechatronics, 4(IV.05):374-383, 2010.

Project SPEEDS: WP.2.1 Partners. SPEEDS Meta-model Behavioural Semantics
— Complement do D.2.1.c. Technical report, The SPEEDS consortium, 2007.
The SPEEDS Consortium. SPEEDS Project. http://www.speeds.eu. com.

Wellington, New Zealand, October 18, 2011

69

